
ROBOTICS

Application manual
RobotWare add-ins

Trace back information:
Workspace 23C version a25
Checked in 2023-10-10
Skribenta version 5.5.019

Application manual
RobotWare add-ins

RobotWare 7.12

Document ID: 3HAC070207-001
Revision: F

© Copyright 2020-2023 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2020-2023 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...
9Safety ..

111 Getting started
111.1 About RobotWare add-ins ...
121.2 Add-in directory and file structure ...
141.3 Quick start procedures for example add-in ...

192 Reference material
192.1 Custom event log messages ...
192.1.1 About event log messages ..
202.1.2 Event log texts ..
222.1.3 Validating event log .xml files ..
232.1.4 Configure event logs to take focus on the FlexPendant
252.2 Register safety template ...
302.3 System parameters related to add-in development ..
302.3.1 About cfg files ..
332.3.2 Topic Controller ..
362.3.3 Topic I/O System ...
372.3.4 Topic Man-machine Communication ...
472.3.5 Example cfg files ...
492.4 The install.cmd file ..
492.4.1 Introduction ..
532.4.2 Commands ..
672.4.3 Examples of install.cmd files ...
682.5 RAPID ...
682.5.1 RAPID modules ..
702.5.2 Using text resources from files ..
712.5.3 Hiding RAPID content ..
732.5.4 Optional settings for RAPID arguments (RAPID meta data)
742.5.4.1 Hiding arguments in programs ...
762.5.4.2 Hiding optional argument when changing selected instruction
782.5.4.3 Argument filter ..
802.5.4.4 Argument value range ..
812.6 RobotWare Add-In Packaging tool ..
812.6.1 Introduction ..
812.6.1.1 About the RobotWare Add-In Packaging tool
832.6.1.2 Optional features ...
852.6.1.3 Files of a packaged add-in ...
862.6.1.4 Signing with digital certificates ...
902.6.1.5 Types of add-in packaging tools ...
912.6.2 User interface ...
912.6.2.1 The home page ...
922.6.2.2 The File menu ...
942.6.2.3 The Product Manifest view ..

1062.6.3 Creating and building an add-in project ...
1072.6.4 Building an add-in from the console ..
1092.7 License Generator ...
1092.7.1 Introduction ..
1102.7.2 The user interface ...
1102.7.2.1 The Preferences window ...
1112.7.2.2 The main window ..
1132.7.3 Creating the license ...

115A Appendix: Migration from RobotWare 6

Application manual - RobotWare add-ins 5
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

Table of contents

119B Appendix: Product manifest files guidelines (RobotWare 7)

123Index

6 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This manual contains instructions for how to create your own add-in to use with
ABB robots. The manual is divided into two parts:

• Getting started:
This section provides examples and instructions to enable you to create and
start using a simple, but completely functioning, add-in with little effort.

• Reference material:
This section provides the information you need in order to be able to further
develop your add-in. The reference material includes information such as
system parameters, commands and RAPID meta data, as well as instructions
for the tools used for packaging and licensing.

Note

Chapters under section Reference material on page 19 are to the large extent
independent of each other and can be read in any order.
It is recommended to read sectionGetting started on page11 and try the example
before reading specific chapters in the reference part.
The reference part contains information relevant to RobotWare 7, without going
into details of differences between RobotWare 6 and RobotWare 7. The appendix
Appendix: Migration fromRobotWare 6 on page115 contains information that can
be useful for add-in migration from RobotWare 6 to RobotWare 7.

Usage
With the help of this manual, you can can learn how to create functionality that
extends the base RobotWare system, so called RobotWare add-ins. You will also
learn how to package and distribute these add-ins.

Who should read this manual?
This manual is intended for:

• Line builders that want to implement the same program solution on many
robots

• Value providers, selling the ABB robots with their own functionality added
• ABB companies selling robots

Prerequisites
The reader should...

• be experienced in working with ABB robots
• be experienced RAPID programmer
• be familiar with system parameters
• have the latest version of the RobotWare Add-In Packaging tool that supports

RobotWare 7 (minimal tool version is 1.10)

Continues on next page
Application manual - RobotWare add-ins 7
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

Overview of this manual

References

Document IDReference

3HAC065041-001Technical reference manual - System parameters

3HAC032104-001Operating manual - RobotStudio

3HAC065037-001Operating manual - Integrator's guide OmniCore

Revisions

DescriptionRevision

Released with RobotWare 7.1.A

Released with RobotWare 7.2.
• All information about eventlogtitle removed from sections Add-in direct-

ory and file structure on page 12, Custom event log messages on
page 19 and Commands on page 53.

• New script math_lib_set_mem_size added in section Commands on
page 53.

B

Released with RobotWare 7.5.
• Section Argument Name Rules (MMC_REAL_PARAM) on page 39 up-

dated with information about how to add a string in Rapid rules.

C

Released with RobotWare 7.7.
• Information regarding the config command updated in section Com-

mands on page 53.
• Updated the section Building an add-in from the console on page 107.

D

Released with RobotWare 7.10.
• Updated the section Commands on page 53.
• Updated the section config on page 54.
• Information about Product Identity updated in The Product Manifest

view on page 94.
• Information about Product Id updated in The Product Manifest view on

page 94.

E

Released with RobotWare 7.12.
• Added the section Register safety template on page 25.
• Added the parameter robot to the section if_feature_present on page59.
• Added the parameter envvalue in setstr on page 65.
• Command for I/O project installation added in The install.cmd file on

page 49.
• New appendix:Appendix: Product manifest files guidelines (RobotWare

7) on page 119. Link added to new appendix in RobotWare Add-In
Packaging tool on page 81.

F

8 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

Overview of this manual
Continued

Safety
Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardous movement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.
Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

WARNING

Program changes should always be validated and tested before entering
production, to protect humans and property. Ensure it is possible to stop the
robot with a protective stop device.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in the manual Safety manual for robot - Manipulator and
IRC5 or OmniCore controller.

Application manual - RobotWare add-ins 9
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

Safety

This page is intentionally left blank

1 Getting started
1.1 About RobotWare add-ins

What is an add-in
Add-ins are independently developed and versioned software packages that extend
the capabilities offered by RobotWare, making ABB's robot controllers even smarter
and even more user-friendly. Creating RobotWare add-ins is also the recommended
way for 3rd party developers to add new features into RobotWare.
An add-in can include several RAPID modules, system modules, or program
modules which hold the basic code for the add-in. The add-in also includes script
files for initializing the add-in functionality at start-up. The add-in may also include
.xml files with custom-defined event log messages in different languages.
An add-in may also implement one or more FlexPendant applications using the
WebApps concept (introduced in RobotWare 7). This manual covers the controller
side implementation and the packaging of the add-in contents for distribution. For
more information on how to implement FlexPendant applications, see theOmniCore
App SDK manual, available as part of the SDK download.

Packaging your add-in
Once the content of an add-in is developed, it needs to be packaged so that it can
be distributed and installed into a RobotWare system. RobotWare add-ins use the
ABB proprietary format that is called rpk-format. The RobotWare Add-In Packaging
tool is used to produce such a package. The tool also produces the package
metadata file, the manifest file, which is also a part of the package.

Licensing your add-in
The add-in can have one of the following license models:

• Make the add-in available to anyone without charge (open add-in).
• Require a license for using the add-in.

To package and distribute a simple unlicensed/open add-in, the only tool needed
is the RobotWare Add-In Packaging tool. That is the simplest way to get started.
When working with licensed add-ins, you also need the tool License generator.
The License generator is not needed for creating and packaging a licensed add-in,
but it is needed for to create the licenses that open the add-in functionality to the
users that will install and use the developed add-in.

Application manual - RobotWare add-ins 11
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.1 About RobotWare add-ins

1.2 Add-in directory and file structure

Recommended file structure
An add-in implementation consists of several files and directories. The following
structure is recommended:

<option name>

install.cmd

install.cmd

instlang.cmd

language

en
elogtext.xml
text.xml

text_utf8.xml

. . .

. . .

. . .

config
sys.cfg
mmc.cfg

<. . .>.sys

<. . .>.mod

RAPID

WebApps

. . .

. . .

xx2000002017

Add-in files
In order to make your own add-in, the following files must be created:

DescriptionFile type

Installation script. Specifies for example which .cfg files to load, see The
install.cmd file on page 49. Must be in the root directory of your add-in.

install.cmd

Continues on next page
12 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.2 Add-in directory and file structure

DescriptionFile type

One or several .cfg files with the configuration of system parameters. If
the add-in includes RAPID, one of the .cfg files should specify which
RAPID module (.sys file) to load, see System parameters related to add-
in development on page 30.

config/

Contains installation scripts and language specific resource files. For
more information about implementing custom event log messages, see
Custom event log messages on page 19.

language/

It is possible to create and use language specific text resource files that
can be used from RAPID programs. For more information, see Including
language files from your add-in on page 70.

The RAPID source code of your modules contained in files .sys or .mod,
see RAPID modules on page 68.

RAPID/

The WebApps directory can be empty or contain one or more subdirect-
ories containing FlexPendant web applications. Each application must
be stored in its own subdirectory.

WebApps

Application manual - RobotWare add-ins 13
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.2 Add-in directory and file structure

Continued

1.3 Quick start procedures for example add-in

Prerequisites
• RobotWare Add-In Packaging tool. Download from ABB Library Download

Center.
• RobotStudio

Copy the example add-in
1 Locate the example subdirectory of the installation directory of RobotWare

Add-In Packaging tool (for example C:/Program Files (x86)/ABB Industrial
IT/Robotics IT/AddinPackagingTool/Examples).

2 Copy the Circlemove7 folder from this location and place it on your local disk
(for example C:/Users/MyName/AddIns/Circlemove7).

Get familiar with the contents of the add-in
Once when you have copied the add-in, inspect the Circlemove7 contents.
Note that the Circlemove7 example has three additional files in the root directory
of the example (Circlemove.manifest,Circlemove.rpkproj andCirclemove.rpkspec).
These files are not a part of the add-in implementation, but are used by the add-in
packaging tool to store information about the add-in (such as name, version etc.)
which is necessary for packaging the add-in.
If you wish to change/customize the example project, then edit the example files.
See Reference material on page 19 for detailed information on how to work with
specific topics. If not, you can just proceed reading this chapter and come back to
the specific topic later.
The add-in includes the following functionality:

• Implements a RAPID command called Circlemove, which can be used by
RAPID programs.

• Shows how to define and use custom event log messages.
• Shows how to use localizable text resources from your RAPID code.
• Implements a simple WebApp that shows up on the FlexPendant. No

additional configuration is needed. For the application to be loaded properly
on the FlexPendant, the add-in registers itself using the register-type option
command in the install.cmd file, see register on page 63.

See Add-in directory and file structure on page 12 for location of the files.

Continues on next page
14 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.3 Quick start procedures for example add-in

https://library.abb.com
https://library.abb.com

Package your add-in for installation
To make it possible to install and use the add-in in a RobotWare system, it must
first be packaged. This is done using the RobotWare Add-In Packaging tool. To
open the add-in in the packaging tool, simply double-click on theCirclemove.rpkproj
file which is located in the root directory of the example. When the project is open,
click on Build>Build project.

xx2000002045

The result of the Build process is a directory containing two files:
• Rmf file – the manifest (metadata) of the add-in package
• Rpk file – the implementation of the add-in

Create a Virtual Controller in RobotStudio using the Modify Installation function

Modify Installation
The add-in is included in the Virtual Controller system by browsing to the
Circlemove.rmf file in the Product step of the system creation. See Operating
manual - Integrator's guide OmniCore for more information about adding products
and using the Modify Installation function.

Continues on next page
Application manual - RobotWare add-ins 15
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.3 Quick start procedures for example add-in

Continued

Try the add-in
To verify that your add-in is properly installed in the virtual system created in the
previous step, do the following in RobotStudio:

1 Select your Virtual Controller and start the Omnicore virtual FlexPendant
that is connected to your virtual system. The Circlemove user interface shall
appear on the start page of the FlexPendant:

xx2000002042

Continues on next page
16 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.3 Quick start procedures for example add-in
Continued

2 Click on the Circlemove icon and the following page showing a rotating ABB
logo shall appear:

xx2000002043

3 Go back to the main page and open the RAPID editor (create a program if
necessary). Verify that the MoveCircle RAPID instruction is available:

xx2000002044

Continues on next page
Application manual - RobotWare add-ins 17
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.3 Quick start procedures for example add-in

Continued

Distributing add-in to your users
Once you are satisfied with your add-in and you wish to distribute it to other users,
this can be done in two different formats:

• Rpk/rmf format
This is the output that the add-in packaging tool produces. As seen previously
in this example, this is the input format required by the Modify Installation
function when creating a RobotWare system.

• RobotStudio package, rspack format
In this case, the rpk/rmf files are packaged once again into an rspack file.
Using this method, several add-ins can be included into a single rspack file.
The rspack-s can be imported into RobotStudio using the Add-In page. All
add-ins included in the rspack package will be automatically available to the
Modify Installation function when creating a RobotWare system. To learn
more on how to work with RobotStudio rspack, see the RobotStudio developer
center documentation:
https://developercenter.robotstudio.com/api/robotstudio/
articles/Concepts/Distribution-Package/DP_Overview.html

18 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

1 Getting started
1.3 Quick start procedures for example add-in
Continued

2 Reference material
2.1 Custom event log messages

2.1.1 About event log messages

Overview
It is possible to create your own event log messages. The text of the message is
placed in one .xml file for each language. You can then use RAPID instructions
such as ErrRaise and ErrLog in the Circlemove example to raise an error using
this message. Language independent strings can be used as arguments to
ErrRaise and ErrLog, and be included in the message.

Event log message .xml file
The event log messages are added to the system via an .xml file that contains all
the information about the messages.
The file can be given any name, as long as the installation script install.cmd points
out the correct file name. It is, however, recommended to use the following name:

• <Add-In name>_elogtext.xml

Template file
A template files for the required file template_elogtext.xml is included in the
RobotWare installation.
The template is located in the following directory in the RobotWare package folder,
such as ...\ProgramData\ABB\DistributionPackages\ABB.RobotWare-<version>\
RobotPackages\RobotControl_<version>\utility\Template\Elog.

Note

Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Application manual - RobotWare add-ins 19
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.1.1 About event log messages

2.1.2 Event log texts

Overview
All event log messages must be written in the following .xml file:

• <Add-In name>_elogtext.xml
The messages must have unique numbers, within its domain, which are used to
reference the message text from the RAPID code.

Explanation of the .xml file
This is a list of the XML tags and arguments that you need to define. All other tags
and arguments should always look like in the example below. The complete syntax
is also shown in the example below.

DescriptionXML tag or
argument

Event log messages are divided into different domains. Domain number 8 is
called User events and is reserved for non-ABB messages. For add-ins, al-
ways use domain 8 to avoid conflict with messages defined by ABB.

domainNo

Language code for the text in the messages. The same two-letter code as
the name of the folder where the message .xml files are placed. This code
is defined by the standard ISO 639.

lang

The first message number in this file.min

The last message number in this file.max

Create one instance of Message for each error message.Message

A unique number, between 1 and 9999, identifying the error message.number
Make sure that the systems using this add-in will not have other add-ins using
the same message numbers.

A unique name for the message. Keep it short and descriptive.eDefine

The message title that will be shown in the event log.Title

The text describing the error, shown in the event log.Description

A string used as argument in the ErrRaise or ErrLog instruction will be
inserted in the message.

arg

The format of the argument sting from ErrRaise or ErrLog. For example
%.40s means that the string cannot be longer than 40 characters.

format

Determines which string argument from ErrRaise or ErrLog that should
be used in this arg tag. For example 1 means that the first string argument
is used.

ordinal

Continues on next page
20 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.1.2 Event log texts

Example of the .xml file
This .xml file <Add-In name>_elogtext.xml contains the text for an error message
that will look similar to this:

xx2000002145

<?xml version="1.0" encoding="utf-8"?>

<!--***-->

<!--The text description file for Elog Messages -->

<Domain elogDomain="PROC" domainNo="11" lang="en"
elogTextVersion="1.0" xmlns="urn:abb-robotics-elog-text"
min="5001" max="5001">

<Message number="5001" eDefine="ERR_ARG_TO_SMALL">

<Title>Too small value on argument</Title>

<Description>

Task: <arg format="%s" ordinal="1" /><p />

The argument <arg format="%s" ordinal="2" /> was set to <arg
format="%s" ordinal="3" /> but the minimum allowed value
is

<arg format="%s" ordinal="4" />. <p />

Context: <arg format="%s" ordinal="5" />

<p />

</Description>

</Message>

</Domain>

Application manual - RobotWare add-ins 21
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.1.2 Event log texts

Continued

2.1.3 Validating event log .xml files

Introduction
A validation tool checks that the event log .xml file is correctly formatted, using the
corresponding XML schema file, elogtext.xsd.

• The schema file (elogtext.xsd) and the file template_elogtest.xml are available
in the RobotWare package folder, see Template file on page 19.

• The command line tool XMLFileValidator can be downloaded from theRobot-
Studio Online Community, where it is included in the Tools and Utilities
package.

To run the validation, start the tool and use your search paths using the principle
below:

xmlfilevalidator elogtext.xsd my_elogtext.xml

The result of the validation is displayed in the console. Detailed error information
including row- and column references, is displayed for any found formatting errors.

Prerequisites
The XMLFileValidator is provided as-is.
Microsoft .NET framework version 2.0 or later is required.

22 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.1.3 Validating event log .xml files

http://new.abb.com/products/robotics/robotstudio
http://new.abb.com/products/robotics/robotstudio

2.1.4 Configure event logs to take focus on the FlexPendant

Overview
Normally, new event log messages are only indicated by a notification in the
FlexPendant status bar. The event log message list can then be accessed by
clicking Event log in the status bar:

xx2000002180

It is, however, possible to configure rules that enable selected event log messages
to get more attention on the FlexPendant. If such rules are defined, the selected
event log messages will pop up immediately on the FlexPendant screen:

xx2000002179

Configuration setup and prerequisites
In order for the event log message configuration to work, the following must be
set up:

• The messages that should get focus must be defined in the .xml file for the
the specific event log domain. See Create event log message rules on
page 24.

• The .xml file that defines the rules must be registered for the event log
domains in the install.cmd file. See Register rules in install.cmd file on
page 24.

Continues on next page
Application manual - RobotWare add-ins 23
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.1.4 Configure event logs to take focus on the FlexPendant

Note

This feature is only available for RobotWare 7.1 and onwards in combination
with FlexPendant software version 1.3.x.

Create event log message rules
The event log message rules are defined in an .xml file.
The message numbers specified in the .xml file define what event log messages
will take focus on the FlexPendant.

Note

If messages from several domains are to be configured, one .xml file must be
created for each domain. Define domain with domainNo.

Example
<?xml version="1.0" encoding="UTF-8" ?>

<rulesdomainNo="11"xmlns="urn:abb-robotics-elog-rules">

<!--Eventlog message rules for the FlexPendant -->

<message number="5001"/>

</rules>

Register rules in install.cmd file
The rules for each of the event log domains on the controller must be registered
in the install.cmd file, using the command register.
For more information about the command register, see The install.cmd file on
page 49.

Example
Register event log rules for Add-In

register -type elogrules -prepath $BOOTPATH -postpath
CircleMove_elogrules.xml

24 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.1.4 Configure event logs to take focus on the FlexPendant
Continued

2.2 Register safety template

Introduction
Few safety configuration templates are included in FlexPendant when it is newly
delivered. It is also possible to package a new safety configuration template.
The RobotWare add-in Packaging Tool helps you to create a package with safety
configuration templates and this package can be distributed and installed into a
RobotWare system. This feature allows you to package any number of safety
configuration templates.

Add-in directory and file structure
An Add-in implementation consists of several files and directories. The following
structure is recommended to install safety configuration templates into the
RobotWare systems.

• Add-in root folder
- install.cmd

This is the installation script to register the safety configuration
templates.

- Safety
<....>_metadata.xml

The file contains information about the safety configuration
templates

Templates
The folder contains the number of safety configuration templates

<....>.xml

<....>.xml

Continues on next page
Application manual - RobotWare add-ins 25
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.2 Register safety template

The following directory and file structure is for reference. The structure can be
organized in any way as long as it follows the add-in guidelines as described in
Add-in directory and file structure on page 12.

xx2300001520

Prepare the directory and files for the add-in
The following section describes suggested files and directories for the add-in.

install.cmd

install.cmd is a mandatory file, and it must be in the root directory of add-in.
This script is executed when the system starts and registers a safety template.
Following is the script that registers safety templates in the RobotWare system.

register -type safety_template -prepath $BOOTPATH/ -postpath
Safety/<...>_metadata.xml

The script can be customized to work for a specific configuration, robot, and so
on. Refer to the section System parameters related to add-in development on
page 30 for details about customizing the scripts.

Safety
Safety is not a mandatory directory, but it is good to create this directory to keep
all the safety template related files and directories together.
For example, this directory can contain <...>_metadata.xml file and other
directories needed for the safety template add-in.
Since Safety is not a mandatory directory, the files and directories can be placed
directly in the root directory of add-in or in some other directory. But the path for
the <...>_metadata.xml file must be correct in the script to register safety
templates in install.cmd.

Continues on next page
26 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.2 Register safety template
Continued

<...>_metadata.xml

The <...>_metadata.xml file is mandatory and can be placed anywhere within
the add-in directory but the path for the file must be correct in install.cmd.
This file contains a list of XML tags and arguments that you need to define. The
following table gives an overview of all the XML tags or arguments.

DescriptionXML tags or ar-
guments

XML namespace for naming schemaxmlns

It is a collection of Safety Configuration TemplatesTemplates

The version of the safety templates metadata formatversion

Create one instance of Template for each safety configuration template.Template

Unique friendly name for the Template instancename

The title for the Template instance will be shown in the SafeMove Tem-
plate Selector page.

Title

The text describes the safety configuration template that will be shown
in the SafeMove Template Selector page.

Description

When the safety configuration template is created that will be shown in
the SafeMove Template Selector page.

Date

This helps to locate where the actual safety configuration template is
stored.

TemplateFile

The path attribute in <TemplateFile/> shall be either relative to
<...>_metadata.xml file or the complete path.

path

Relative path: The path for the safety configuration templates is relative
to the <...>_metadata.xml file. For example, <TemplateFile
path="./Templates/<...>.xml"/>

Complete path: This must include the product identity of add-in (an en-
vironment variable) as part of the path and that can be obtained from
the add-in tool. For example, <TemplateFile
path="$OPEN.ABB.CRB1100SAFETYTEMPLATES/Safety/Templates/<...>.xml"/>.
OPEN.ABB.CRB1100SAFETYTEMPLATES is the product identity.

All tags and arguments should always look like the following example:
<?xml version="1.0" encoding="utf-8" ?>

<Templates version="1.0" xmlns
="urn:abb-robotics-registry-safety-templates">

<Template name="Template_1">

<Title text="User-friendly text"/>

<Description text="Description for the template"/>

<Date>When it is created (Date and Time)</Date>

<TemplateFile path="./Templates/<...>.xml"/>

</Template>

<Template name="Template_2">

<Title text="User-friendly text"/>

<Description text="Description for the template"/>

<Date>When it is created, (Date and Time)</Date>

<TemplateFile path="./Templates/<...>.xml"/>

</Template>

</Templates>

Continues on next page
Application manual - RobotWare add-ins 27
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.2 Register safety template

Continued

For the complete path (<TemplateFile path=""/>) for the safety configuration
template, product identity environment variable shall be obtained from the add-in
tool as shown in the following figure.

xx2300001521

Templates
Templates is not a mandatory directory, but it is good to create this directory to
keep all the safety templates in one location. This directory shall contain all the
safety configuration templates, those can be distributed and installed into the
RobotWare system to configure the Safety Controller.
You can add any number of safety configuration templates in this directory. These
templates can later be browsed and loaded from the Flexpendant SafeMove app
on the Template Selector page onto the Safety Controller.

Display of directory and file structure in the Add-in packaging tool
Once the directory structure for the Add-in is ready, the next step is to package
everything together and create an Add-in package that can be distributed and
installed into the RobotWare system.
The following images display the sample directory and file structure in Add-in
Packaging Tool.

Continues on next page
28 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.2 Register safety template
Continued

The content of an Add-in is developed in the Files and Folders section. Prepare
the directory and files for the Add-in to be added so that it can be distributed and
installed into a RobotWare system.

• Root Folder

xx2300001527

-

- Safety

xx2300001528

- Templates

xx2300001529

Application manual - RobotWare add-ins 29
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.2 Register safety template

Continued

2.3 System parameters related to add-in development

2.3.1 About cfg files

Overview
The cfg files are used to define instances of system parameter types in a specific
domain. The specified instances are then created by loading the cfg file. Only one
domain can be specified per cfg file.
The file shall be formatted according to the rules in the following sections.

Domain specifier
A cfg file must start with a name of a domain where the specified instances will be
created.
The row must contain the following information, where <version> and <revision>
are optional:

<domain name>:CFG_1.0:<version>:<revision>::

Example

Domain EIO without version numberEIO:CFG_1.0::

Domain EIO with version number 5.0EIO:CFG_1.0:5:0::

Domain EIO with version number 6.0EIO:CFG_1.0:6:0::

Comments
A comment row starts with '#'.

Type specifiers
The domain specifier is followed by one or more parameter type specifiers and
their instances.

• A type specifier should always be preceded by a row containing a single
character '#'. (Not mandatory)

• A type specifier consists of a parameter type name directly followed by a ':'.
• There should be an empty row between the type name and the first instance.

(Not mandatory)
• There should be no more rows after the last instance row in a cfg file. (Not

mandatory)
• Add a description of all attributes in a type directly after the type specifier.

This is helpful for the user to understand the type. (Not mandatory)
See cfg file examples later in this section.

Instances and attributes
The type specifier is followed by zero or more instances. Each instance contains
one or several attributes defining its properties. Attributes can be mandatory or
optional.

Continues on next page
30 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.1 About cfg files

Mandatory attributes must be specified explicitly in the cfg file otherwise an error
will be generated when loading the file. Optional attributes that are not specified
in the cfg file will be set to the default value for this attribute at loading. If the value
of the optional attribute is specified, then the specified value will be used.
Each instance shall start with the Name attribute (if the instance has a name). Each
attribute shall start with '-' (dash) followed by the attribute name, a blank space
and value. Blank spaces are not allowed in the value except for string values with
quotation marks.
Example:

-name MoveCircle -param_nr 6

Quotation marks can be used for string values. Note, all characters (including
spaces) inside the quotation marks will be treated as one single string.
Example:

-name "M.C 1" -type "MMC_MC1"

Single or multiple rows
All attributes and their values in an instance can be put in a single row or in multiple
rows. Comments or empty rows are not allowed in an instance. Several attributes
per row are allowed.
For instances with multiple rows, each row in an instance shall end with '\'
(backslash), except for the last row. The name and the value of an attribute cannot
be separated by '\', that is, they must be on the same row.
For example, the following is not valid:

-name \

"M.C 1"

Arrays
If an attribute is of an array type, then the attribute value may consist of several
comma separated values. Blank spaces and the multiple row separator '\' cannot
be used inside the array.
Example:

-name MoveCircle -default_struct 1,1,1,1,1,0

Attribute of type Boolean
If the attribute is of type Boolean, giving only the attribute name in the cfg file will
set the value to true.
Example:

-hidden

Example of cfg file
SIO:CFG_1.0::

#

COM_PHY_CHANNEL:

-Name "LAN1" -Connector "LAN"

#

COM_TRP:

-Name Name of transmissions protocol (MAN)

Continues on next page
Application manual - RobotWare add-ins 31
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.1 About cfg files

Continued

-Type Name of transmissions protocol type (MAN)

-PhyChannel Name of the physical channel (MAN)

-HostName Name of host (OPT)

-RemoteAdress Remote address (OPT)

-Gateway Default gateway (OPT)

-SubnetMask SubNetmask (OPT)

-Name "TCPIP1" -Type "TCP/IP" -PhyChannel "LAN1"

32 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.1 About cfg files
Continued

2.3.2 Topic Controller

About the topic Controller
This section describes system parameters that belong to the topic Controller (that
is, in the configuration file sys.cfg) and that are closely related to add-in
development.
The configuration of which program modules to load is made in the topicController.
All files containing the RAPID code for the add-in must be defined here.
For more information about the types and parameters of the Controller topic, see
Technical reference manual - System parameters.

Automatic loading of modules (CAB_TASK_MODULES)
The type CAB_TASK_MODULES is used to define modules to be loaded when the
controller is started.
For more information, see Technical reference manual - System parameters.

DescriptionParameter

The name of the file including the path on the controller.File
An environment variable can preferably be used. That is, <environ-
ment variable>:/<file name>. See setenv on page 64.

Name of a task, if it should only be loaded to one specific task.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

Task

Defines if the contents of a module should be reachable from all
tasks. The module is not loaded, it is installed, but reachable from
all tasks.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

Shared

Note

The parameter Shared cannot be combined with Installed.

Defines if the module should be loaded into all tasks.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

AllTask

Defines if the module should be loaded into all motion tasks.

Note

The parameters Task, Shared, AllTask and AllMotionTask are mutu-
ally exclusive.

AllMotionTask

Continues on next page
Application manual - RobotWare add-ins 33
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.2 Topic Controller

DescriptionParameter

A module can be loaded or installed.Installed
A loaded module will behave like a module manually loaded from
the teach pendant.
An installed module will behave like a built in module. By default the
attributes NOVIEW and NOSTEPIN are set, even if not stated in the
module declaration. Thus it will not be visible from the FlexPendant
and can only be removed by using the restart mode Reset system.
It will not be possible to step into a routine in such a module with
FWD.
It is recommended that all application modules are installed as built
in modules, since then they will be handled as part of the controller
and quite separated from the user´s modules.

Note

The parameter Installed cannot be combined with Shared.

RAPID routines and data in this module are hidden from the user.Hidden

Example
CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMove.sys" -Installed -AllTask

Modules included in a backup
There are some rules that apply when RAPID modules are saved by RobotWare
in a system backup, that add-in developers need to be aware of.
The rules are the following:

• RAPID modules that are installed or loaded directly from their add-in
installation location (for example, using environment variables) are never
included in a backup

• RAPID modules from location other than the product installation location
(such as HOME):

- If loaded – they are always included in a backup
- If installed (including shared) - inclusion in backup depends on how

the CFG file (CAB_TASK_MODULES instances) is loaded
config -internal -> not in backup
config (without -internal) -> included in backup

Exclude files and directories at backup
By default all files and directories in the HOME directory are included in the backup.
It is possible to exclude HOME directory files and directories from the backup. It
is also possible to include files or directories to the backup that are not located in
the HOME directory.
The text must be edited directly in the SYS.CFG file for type BACKUP_RESTORE.

DescriptionParameter

This file in the HOME directory shall not be included
in the backup.

ExcludeFileFromHomeAtBackup

Continues on next page
34 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.2 Topic Controller
Continued

DescriptionParameter

This directory in the HOME directory shall not be in-
cluded in the backup.

ExcludeDirFromHomeAtBackup

This file is not located in theHOME directory, but shall
be included in the BACKINFO directory in the backup.

IncludeFileAtBackup

This directory is not located in the HOME directory,
but shall be included in the BACKINFO directory in
the backup.

IncludeDirAtBackup

Example
BACKUP_RESTORE:

-ExcludeDirFromHomeAtBackup "SecretDirectory"

-IncludeFileAtBackup "DATA:/ImportantFile.xml"

Note

The main HOME and DATA directory is intended for use by the end user RAPID
program and user files.
In RobotWare 7, each add-in has its own dedicated HOME and DATA directory
under the AddInData location that is separated from the main HOME and DATA
directory. For more information see Introduction on page 49.

Application manual - RobotWare add-ins 35
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.2 Topic Controller

Continued

2.3.3 Topic I/O System

About the topic I/O System
This section describes system parameters that belong to the topic I/O System (that
is, in the configuration file eio.cfg).
For more information about the types and parameters of the I/O System topic, see
Technical reference manual - System parameters.

Hiding I/O signals to the user
Add-ins can use virtual signals for internal communication, for example to
communicate between RAPID tasks. It is possible to hide such signals from
browsing by setting the Access property, for each signal, to internal.
It is possible to modify a hidden signal from RAPID, if the name of the signal is
known and if the category of the signal is set to RAPID.

Example
EIO:CFG_1.0::

#

EIO_SIGNAL:

-Name "DOAccessInternal" -SignalType "DO" -Access "internal"

-Name "DOAccessInternalRAPID" -SignalType "DO" -Access "internal"
-Category "rapid"

36 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.3 Topic I/O System

2.3.4 Topic Man-machine Communication

About the topic Man-machine Communication
This section describes some of the types and system parameters in the topic
Man-machine communication (that is, the configuration file mmc.cfg). It is used to
define how a self-developed instruction should be presented on the FlexPendant,
for example which menu to select it from (pick lists) and which argument values
should be used as default (RAPID rules).
A short example is given for each type, and an example of an entire cfg file is
shown after the type descriptions.

Pick list titles (MMC_PALETTE_HEAD)
It is possible to add custom pick lists alongside with the predefined pick lists that
are included by default. The title for each custom pick list is defined in the
MMC_PALETTE_HEAD type.

DescriptionParameter

The title of the custom pick list.name

The type that contains the instruction names of the pick list¨type

Example
MMC_PALETTE_HEAD:

-name "M.C 1" -type "MMC_MC1"

-name "SpotWelding" -type "MMC_SPOTWELD"

Custom pick lists (MMC_MC1, MMC_MC2, MMC_MC3, etc.)
For each custom pick list there shall be an alias type definition to configure which
instructions will be present in the pick list.

DescriptionParameter

The name of the instruction.name

Note

• The pick list types contains more parameters and more functionality. For
more information about these, see section Most Common Instruction Types
in Technical reference manual - System parameters.

• Note the use of the equal sign to define the alias type, where the type name
defined in MMC_PALETTE_HEAD is defined as an alias of the base type
MMC_PALETTE.

Example
MMC_MC1 = MMC_PALETTE:

-name MoveCircle

MMC_SPOTWELD = MMC_PALETTE:

-name "SpotL"

-name "SpotJ"

Continues on next page
Application manual - RobotWare add-ins 37
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication

Default arguments (MMC_REAL_ROUTINE)
MMC_REAL_ROUTINE is used to define which arguments should have proposed
values, that is, a default value when the instruction is added on the FlexPendant.

DescriptionParameter

The instruction name.name

Defines which arguments should have proposed values.
• 0: No proposed value
• 1: A proposed value. If alternative arguments, 1 indicates that the

first alternative argument should be used with a proposed value.
• 2: Only for alternative arguments. The second alternative argument

should be used with a proposed value.
• 3: Only for alternative arguments. The third alternative argument

should be used with a proposed value.
• 4: Only for alternative arguments. The fourth alternative argument

should be used with a proposed value.

default_struct

Defines if the instruction should be hidden when showing RAPID routines.
If hidden is set, the instruction will not be shown when choosing an in-
stance for ProcCall or Move PP to Routine.

hidden

For changes of the hidden parameter to take effect, the controller must
be restarted by using the restart mode Reset RAPID or Reset system.
A restart is not enough.

Tip

It is not necessary to specify default_struct if there should only be proposed
values for required arguments.

Example
The instruction TriggInt is defined with the following arguments:

TriggInt TriggData Distance [\Start] | [\Time] Interrupt

Argument alternativeArgument numberArgument

01TriggData

02Distance

13Start

23Time

04Interrupt

Note that Start and Time are alternative arguments and therefore have the same
argument number.
The following alternatives are examples of how to configure an instance of the type
MMC_REAL_ROUTINE:
Proposed values for TriggData, Distance, and Interrupt (the same result as
if default_struct is not defined):

-name TriggInt -default_struct 1,1,0,1

Proposed values for TriggData, Distance, Start, and Interrupt:
-name TriggInt -default_struct 1,1,1,1

Continues on next page
38 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication
Continued

Proposed values for TriggData, Distance, Time, and Interrupt:
-name TriggInt -default_struct 1,1,2,1

Argument reuse (MMC_INST_NOT_REUSING_PREV_OPT_ARG)
The proposed value of an instruction argument can be the same as (or in sequence
with) the same argument for a previous instruction. For example, if a work object
has been used in the previous move instruction, the same work object is proposed
when a new move instruction is added.
If the reusing of argument values is not desired for some arguments, those
arguments are specified in the typeMMC_INST_NOT_REUSING_PREV_OPT_ARG.
Even if default_struct in the type MMC_REAL_ROUTINE is set to 0, an argument
used in the previous instruction will be used in the next instruction. To avoid this,
these arguments must also be specified in
MMC_INST_NOT_REUSING_PREV_OPT_ARG.

DescriptionParameter

Specifies the argument numbers that should not reuse values from pre-
vious instruction calls.

param_nr

Example
The instruction MoveL is defined with the following arguments:

MoveL [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] [\Inpos]
Tool [\WObj] [\Corr] [\TLoad]

As the arguments Conc, V, T, Z, and Inpos should not be reused, the instance of
MMC_INST_NOT_REUSING_PREV_OPT_ARG would look like this:

MMC_INST_NOT_REUSING_PREV_OPT_ARG:

-name MoveL -param_nr 1,5,7,8

Note that both V and T have argument number 5, as they are alternative arguments.

Argument Name Rules (MMC_REAL_PARAM)
The type MMC_REAL_PARAM is used to specify how to generate the proposed
identifier for instruction arguments.
Even arguments that have default_struct in MMC_REAL_ROUTINE set to 0 and
are defined in param_nr in MMC_INST_NOT_REUSING_PREV_OPT_ARG may
need to be defined in MMC_REAL_PARAM. No argument proposal will be used
when the instruction is chosen from a pick list, but if the argument is actively
selected it will use the identifier specified in MMC_REAL_PARAM.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument name>
(for example MoveL_Tool).

name

It is also possible to define a common argument name (common_<argument
name>) to be used in the type MMC_COMMON_PARAM.

Continues on next page
Application manual - RobotWare add-ins 39
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication

Continued

DescriptionParameter

Specifies how the argument proposal should be generated. The following
rules can be used:

• NONE - Unexpanded placeholder. No proposal is generated.
• CUR - The parameter method is used to define the argument proposal.

For example used when the tool argument should use the current tool.
• DEF - The argument proposal should be a default value defined by the

parameter def_name.
• SEQ - The argument proposal is based on the previous instruction with

a similar argument. Based on the identifier used in the previous instruc-
tion, an increment of the index is used to create a new identifier. For
example, if the robtarget of the previous move instruction is p10, the
next move instruction will propose p20 (unless p20 is already used,
then p30, p40, ... will be tried until an identifier is found that is not
already used). If no similar argument is found, looking 100 instructions
back, a data value is used instead of an identifier.

• LAST - The argument proposal gets its value from the previous instruc-
tion with a similar argument. If no similar argument is found, looking
100 instructions back, a default value specified by def_name is used.

• VAL - No argument identifier is used. A literal value is used instead.

name_rule

Method to be called if name_rule is CUR or SEQ. Supported methods are:
• hirule_robtarget - robtarget symbol name increment value
• hirule_jointtarget - jointtarget symbol name increment value
• hirule_tooldata - current tooldata
• hirule_wobjdata - current wobjdata
• hirule_tloaddata - current tload

method

Default name needed if name_rule is LAST or DEF.

Note

A string must have 3 quotation marks:
-name Direction -name_rule LAST -def_name """Z"""

def_name

Example
This example shows how some arguments for the MoveL instruction are configured.
It also defines the common arguments common_point, common_speed, and
common_zone, that are used in the type MMC_COMMON_PARAM.

Argument proposalArgument

If V is actively selected it should:
1 use the value from the last instruction using V
2 use the default value 1000

V

No identifier should be proposed for ID. A numeric value is pro-
posed instead. The proposed numeric value is defined in
MMC_REAL_DATATYPE.

ID

If T is actively selected it should use the default value 5.T

If Z is actively selected it should:
1 use the value from the last instruction using Z
2 use the default value 50

Z

The proposal for Tool should be defined by the method
hirule_tooldata.

Tool

The proposal for WObj should be defined by the method
hirule_wobjdata.

WObj

Continues on next page
40 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication
Continued

Argument proposalArgument

The proposal for TLoad should be defined by the method
hirule_tloaddata.

TLoad

The proposal for common_point should:
1 be a sequential increase from the last robtarget
2 be defined by the method hirule_robtarget

common_point

The proposal for Tool should:
1 use the value from the last instruction using speeddata
2 use the default value 1000

common_speed

The proposal for common_zone should:
1 use the value from the last instruction using zonedata
2 use the default value z50

common_zone

MMC_REAL_PARAM:

-name MoveL_V -name_rule LAST -def_name 1000

-name MoveL_ID -name_rule VAL

-name MoveL_T -name_rule DEF -def_name 5

-name MoveL_Z -name_rule LAST -def_name 50

-name MoveL_Tool -name_rule CUR -method hirule_tooldata

-name MoveL_WObj -name_rule CUR -method hirule_wobjdata

-name MoveL_TLoad -name_rule CUR -method hirule_tloaddata

-name common_point -name_rule SEQ -method hirule_robtarget

-name common_speed -name_rule LAST -def_name v1000

-name common_zone -name_rule LAST -def_name z50

Argument Identifier Rules (MMC_COMMON_PARAM)
With the type MMC_COMMON_PARAM, a common argument (defined in
MMC_REAL_PARAM) is used to define an argument proposal.
For example, a common argument defining proposals for all ToPoint arguments
can be defined inMMC_REAL_PARAM. InMMC_COMMON_PARAM, the ToPoint
argument for all move instructions can use that common argument.

DescriptionParameter

The instruction argument, defined as <instruction name>_<ar-
gument name> (for example MoveL_Tool).

name

Name of the common argument defined in
MMC_REAL_PARAM.

common_space_name

Example
In this example the argument proposals for the MoveL arguments ToPoint, Speed,
and Zone are defined by common_point, common_speed, and common_zone.

MMC_COMMON_PARAM:

-name MoveL_ToPoint -common_space_name common_point

-name MoveL_Speed -common_space_name common_speed

-name MoveL_Zone -common_space_name common_zone

Continues on next page
Application manual - RobotWare add-ins 41
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication

Continued

Data Value Rules (MMC_REAL_DATATYPE)
The typeMMC_REAL_DATATYPE is used to specify how to generate the proposed
value for a data type.
When an instruction is added, the proposed argument identifiers are defined in
MMC_REAL_PARAM, while the values of those arguments are defined in
MMC_REAL_DATATYPE.

DescriptionParameter

Name of the data type.name

Default base identifier for the data (for example tool). The identifier for
the data is created from the def_name and an index. If nothing else is
defined, the index starts at 1 and the increment for each data is 1 (for
example the first tooldata is called tool1, the second is called tool2 and
so on).

def_name

Specifies how the value of the new data should be generated:
• NONE - No initialize value for non-value data type.
• CUR - The parameter method is used to define the data value. For

example used when a robtarget is given the value of the current
robot TCP.

• DEF - The data value should be a default value defined by the
parameter use_value.

• SEQ - The data value is based on the previous data of the same
data type. The previous value is increased with a value defined
by use_value. If no data is found, when looking up to 100 state-
ments back, a zero value is used.

value_rule

Method to be called if value_rule is CUR. Supported methods are:
• hirule_robtarget - current robot TCP robtarget value
• hirule_jointtarget - current robot TCP jointtarget value
• hirule_tooldata - current tooldata value
• hirule_wobjdata - current wobjdata value
• hirule_tloaddata - current tload value

method

Default value if value_rule is DEF or SEQ. Also used as increment value
if value_rule is SEQ.

use_value

Data object type (i.e. CONST, VAR, PERS or TASK PERS).object_type

Method to be called when validating data. Supported methods are:
• hirule_validate_tooldata
• hirule_validate_wobjdata
• hirule_validate_robtarget
• hirule_validate_orient
• hirule_validate_pose
• hirule_validate_progdisp
• hirule_validate_loaddata

validate_hook

Example
This example defines the proposed values for the data types identno and
robtarget.

Proposed data valueData type

If no identno exists, the value is 10. Otherwise the value from the last
identno is increased with 10.

identno

Continues on next page
42 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication
Continued

Proposed data valueData type

The new robtarget gets the value of the current robot TCP.robtarget
A validation is used so that the value of a robtarget cannot be changed
to an incorrect format.

MMC_REAL_DATATYPE:

-name identno -def_name id -value_rule SEQ -use_value 10 \

-object_type CONST

-name robtarget -def_name p -value_rule CUR \

-method hirule_robtarget -object_type CONST\

-validate_hook hirule_validate_robtarget

Highlight argument (MMC_SELECT_PARAM)
When an instruction is added, one of the arguments can be automatically selected
for further definitions. This is defined in the type MMC_SELECT_PARAM. For
example, when adding a MoveC instruction, the CirPoint is set to the current TCP
value and the ToPoint is selected for the required modify position.

DescriptionParameter

Parameter number for the argument to be selected.param_nr

Example
The instruction MoveC is defined with the following arguments:

MoveC [\Conc] CirPoint ToPoint [\ID] Speed [\V] | [\T] Zone [\Z]
[\Inpos] Tool [\WObj] [\Corr] [\TLoad]

Since a modify position of ToPoint is required after the instruction is added, the
argument ToPoint is selected:

MMC_SELECT_PARAM:

-name MoveC -param_nr 3

Work objects (MMC_INSTR_WITH_WOBJ)
MMC_INSTR_WITH_WOBJ is used when adding instructions from the FlexPendant,
for which no default arguments are specified in MMC_REAL_PARAM.
It checks if the instruction has a \WObj optional argument, and what position the
optional argument has in the instruction. If the active work object on the FlexPendant
differs from the default work object, wobj0, then the optional argument \WObj in
the instruction is added and set to the active work object.

DescriptionParameter

Name of the instruction.name

Argument number for the \WObj optional argument.param_nr

Example
MMC_INSTR_WITH_WOBJ:

-name MoveL -param_nr 10

Continues on next page
Application manual - RobotWare add-ins 43
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication

Continued

Load objects (MMC_INSTR_WITH_TLOAD)
MMC_INSTR_WITH_TLOAD is used when adding instructions from the FlexPendant,
for which no default arguments are specified in MMC_REAL_PARAM.
It checks if the instruction has a \TLoad optional argument, and what position the
optional argument has in the instruction. If the active payload on the FlexPendant
differs from the default payload, load0, then the optional argument \TLoad in the
instruction is added and set to the active payload.

DescriptionParameter

Name of the instruction.name

Argument number for the \TLoad optional argument.param_nr

Example
MMC_INSTR_WITH_TLOAD:

-name MoveL -param_nr 12

Circular points (MMC_INSTR_WITH_CIR_POINT)
MMC_INSTR_WITH_CIR_POINT is used for instructions with circular points,
CirPoint.
After a position is modified, the controller tries to update the planned path to use
the new position. This functionality needs to know if a target is a circular point.

DescriptionParameter

Name of the instruction.name

Argument number for the circular point, CirPoint.param_nr

Example
MMC_INSTR_WITH_CIR_POINT:

-name MoveC -param_nr 2

Arguments not available for modify position (MMC_NO_MODPOS)
MMC_NO_MODPOS defines instruction arguments that should not be modified
with modify position, even though they are of data type robtarget or
jointtarget.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument
name> (for example MoveL_Tool).

name

Example
The instruction MToolTCPCalib is defined with the following arguments:

MToolTCPCalib Pos1 Pos2 Pos3 Pos 4 Tool MaxErr MeanErr

Pos1, Pos2, Pos3, Pos4 are of type jointtarget but should not be available for
modify position:

MMC_NO_MODPOS:

-name MToolTCPCalib_Pos1

-name MToolTCPCalib_Pos2

-name MToolTCPCalib_Pos3

-name MToolTCPCalib_Pos4

Continues on next page
44 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication
Continued

Targets not available for modify position when additional axes offset is active
(MMC_NO_DATA_MODPOS_IF_ACT_EOFFS)

MMC_NO_DATA_MODPOS_IF_ACT_EOFFSdefines data types, targets, that should
not be modified with modify position by url (e.g. from Program Data view on the
FlexPendant) if an additional axes offset is active.

DescriptionParameter

The name of the data type.name

Example
MMC_NO_DATA_MODPOS_IF_ACT_EOFFS:

-name jointtarget

Optional argument for considering additional axes offset (MMC_USE_ACT_EOFFS_IN_MODPOS)
MMC_USE_ACT_EOFFS_IN_MODPOS is used to define instructions with optional
arguments, that controls if an active additional axes offset shall be considered or
not, when calculating the current position.

DescriptionParameter

The name of the instruction.name

Identifies the optional argument.param_nr

Defines if the offset shall be considered if the argument is present
(1) or when it is not present (0).

use_if_present

Example
MMC_USE_ACT_EOFFS_IN_MODPOS:

-name MoveAbsJ -param_nr 4 -use_if_present 0

Between points (MMC_NO_PC_MOVEMENT)
For instructions with between point, such as MoveC, the program pointer should
not continue to the next instruction after modify position of the between point. The
type MMC_NO_PC_MOVEMENT is used to define the between points for which a
modify position will not move the program pointer to the next instruction.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument
name> (for example MoveC_CirPoint).

name

Example
MMC_NO_PC_MOVEMENT:

-name movec_cirpoint

Continues on next page
Application manual - RobotWare add-ins 45
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication

Continued

Without between point (MMC_NO_PC_MOVEMENT_CLEAR_PATH)
For instructions without between point, such as SpotL, the program pointer should
not continue to the next instruction and a clear path is performed after modify
position. The type MMC_NO_PC_MOVEMENT_CLEAR_PATH is used default in
Spot systems to avoid disturbing event log messages and regain dialogs after
modifying position.

DescriptionParameter

The instruction argument, defined as <instruction name>_<argument
name>.

name

Example
MMC_NO_PC_MOVEMENT_CLEAR_PATH:

-name SpotL_ToPoint

-name SpotJ_ToPoint

-name SpotML_ToPoint

-name SpotMJ_ToPoint

Service routines (MMC_SERV_ROUT_STRUCT)
MMC_SERV_ROUT_STRUCT is used to specify instructions that should be defined
as service routines.

DescriptionParameter

Instruction name.name

Example
In this example the instruction LoadIdentify is defined as a service routine:

MMC_SERV_ROUT_STRUCT:

-name LoadIdentify

Change of motion mode (MMC_CHANGE_MOTION_MODE)
For some move instructions it is possible to change motion mode (for example
from MoveL and MoveJ). Which instructions allow change of mode and what
instruction it is changed to is defined in MMC_CHANGE_MOTION_MODE.

DescriptionParameter

Name of the existing instruction.name

Name of the instruction it should be changed to.shift_name

Motion mode of instruction after changing motion mode.shift_mode

Defines an argument number. If this argument is set, change of
motion is not allowed.

param_restr

Example
This example specifies that the instruction MoveL can be changed into a MoveJ

instruction. If the argument Corr is set this change of motion mode cannot be
done.

MMC_CHANGE_MOTION_MODE:

-name MoveL -shift_name MoveJ -shift_mode Joint -param_restr 11

-name MoveJ -shift_name MoveL -shift_mode Linear

46 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.4 Topic Man-machine Communication
Continued

2.3.5 Example cfg files

Overview
This section contains cfg example files for the add-inCirclemove and the instruction
MoveCircle.

CircleMove_sys.cfg
This example uses the environment variable CIRCLEMOVE that is defined in
install.cmd, see Examples of install.cmd files on page 67.

SYS:CFG_1.0::

Installation of RAPID routines for Add-In CircleMove

$Revision: 1.7 $

#

CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMove.sys" -Install -AllTask

CircleMove_mmc.cfg
The instruction MoveCircle is defined with the following arguments:

MoveCircle pCenter Radius Speed Zone Tool [\WObj]

To define how MoveCircle should behave on the FlexPendant, the following
configuration is placed in a file called CircleMove_mmc.cfg, which is added to the
CircleMove add-in.

MMC:CFG_1.0::

MMC : RAPID PROGRAMMING RULES FOR MODULE CIRCLEMOVE

$Revision: 1.7 $

#

MMC_MC1 = MMC_PALETTE:

-name MoveCircle

#

MMC_REAL_ROUTINE:

-name MoveCircle -default_struct 1,1,1,1,1,0 -hidden

#

MMC_REAL_PARAM:

-name MoveCircle_pCenter -name_rule SEQ -method hirule_robtarget

-name MoveCircle_Radius -name_rule LAST def_name 10

-name MoveCircle_Speed -name_rule LAST -def_name v1000

-name MoveCircle_Zone -name_rule LAST -def_name z50

-name MoveCircle_Tool -name_rule CUR -method hirule_tooldata

-name MoveCircle_WObj -name_rule CUR -method hirule_wobjdata

#

Continues on next page
Application manual - RobotWare add-ins 47
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.5 Example cfg files

MMC_INSTR_WITH_WOBJ:

-name MoveCircle -param_nr 6

48 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.3.5 Example cfg files
Continued

2.4 The install.cmd file

2.4.1 Introduction

Description
The script install.cmd initializes the add-in and brings it to the default state. It is
executed automatically on the first startup after system installation, each time after
system update (using theModify Installation function) and when using Reset
system (I-Start). This script installs several different resource files that are packaged
with the add-in, such as configuration files or text files. This section describes
syntax used by the script, behavior and arguments of the commands that can be
used in this script.
Main elements and concepts used by the installation scripts are the following:

• Comments
All lines beginning by # followed by space are treated as comments.
For example, # A comment.

• Labels
All lines beginning by # followed by some text (no space between) are labels
that can be used by those commands that support label arguments.
For example, #LABEL_99.

• Empty lines
Empty lines are lines containing no text. Any number of empty lines can be
used to increase readability.

• Commands
Commands are non-empty lines that do not start by "#". Commands may
use zero or more arguments. Some of the arguments may be optional.
Argument names are preceded by "-", for example: -path. Argument value
must follow the argument name. For Boolean arguments, the value can be
TRUE or FALSE and can be omitted. Specifying a Boolean argument without
its value is the same as assigning it to TRUE. Values of string arguments
should be surrounded by quotes. Quotes must be used in case a string
argument value contains spaces (for example, print -text "This is a
message").

• Flow control
Installation scripts only have basic support for controlling script command
execution flow. This is accomplished by "if***" group of commands and other
commands that support conditional jumping on labels, depending on
command result.
Installation scripts do not support loops, such as "do" or "while" loops, switch
statements etc. that can be found in other programming languages.

• One vs. multiple script files
In case more complex logic is required in the installation script, more than
one script may be created. The install.cmd remains the "main" script, but

Continues on next page
Application manual - RobotWare add-ins 49
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.1 Introduction

it can execute any number of other scripts by using commands "include"
and "loop". Include command executes another script and then returns to
the current script. State can be passed between scripts by using script
variables (see below). Loop command is used to execute anther script several
times in a loop.

• Script variables
Installation scripts support two types of named script variables – string
variables (the variable value is a string) and integer variables (the variable
value is an integer). Names of the script variables are strings prefixed by $
and the maximal length of the variable name is 20 characters. Script variables
defined in add-in installation scripts are not persistent, which means that
they are lost when the controller restarts. For more information and examples,
see commands setintvar on page 65 and setstr on page 65.
Predefined script variables are the following:

Corresponding envvarScript variable name

Same as environment variable HOME.$HOME

Same as environment variable DATA.$DATA

Same as environment variable BACKUP.$BACKUP

Same as environment variable TEMP.$RWTEMP

Same as environment variable RAMDISK.$RAMDISK

Temporary variable that points to the installation directory of
the add-in that is currently initialized. It is the root folder that
contains install.cmd.

$BOOTPATH

• Environment variables and directory structure on the controller
Environment variables are persistent variables that can be used in the
installation scripts, RAPID programs and clients of Robot Web Services to
access controller resources in a portable and uniform manner. The following
table describes predefined environment variables and their intended usage:

Intended usageReadOnly/Read-
Write

Environment variable name

Store and read files from RAPID pro-
gram(s) and for files explicitly saved
by user.

RWHOME

If necessary, add-ins may copy some
files from their product installation
directory to HOME from their install
script, if those files are intended to be
modified by the user or developer of
the RAPID program.
The HOME directory is included in
backups, so add-in developers must
make sure that they maintain back-
wards compatibility for all files placed
in this directory.

Directory intended for logs or similar
files that should not be included in
backups, and which are created from
RAPID programs.

RWDATA

Continues on next page
50 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.1 Introduction
Continued

Intended usageReadOnly/Read-
Write

Environment variable name

Directory intended for storing
backups.

RWBACKUP

Directory for storing temporary files.
This directory is cleaned on system
Reset (I-Start) and during system up-
dates.

RWTEMP

Directory located in RAM disk (non-
persistent) for high-performance log-
ging. Content is lost on each restart
of the controller.

RWRAMDISK

Product installation directory for an
add-in. The name of the variable is
capitalized product ID (from add-in
product manifest). Note that this is a
read-only location and the write pro-
tection cannot be removed from the
add-in installation scripts.

ROXXX.YYY.ZZZ
(e.g. OPEN.ABB.ROBOT-
ICS.CIRCLEMOVE)

Add-in specific HOME directory that
is included in backups and restored
when restoring a backup.

RWXXX.YYY.ZZZ_HOME
(e.g. OPEN.ABB.ROBOT-
ICS.CIRCLEMOVE_HOME)

Each add-in should use its own HOME
directory to avoid mixing its own data
with data coming from other add-ins,
RAPID programs and user files.

Add-in specific DATA directory that is
included in backups (for diagnostics)
but not restored when restoring a
backup. Each add-in should use its
own DATA directory to avoid mixing
its own data with data coming from
other add-ins, RAPID programs and
user files.

RWXXX.YYY.ZZZ_DATA
(e.g. OPEN.ABB.ROBOT-
ICS.CIRCLEMOVE_DATA)

In addition to the system pre-defined environment variables, add-in
developers can define custom variables from their installation scripts (see
setenv on page 64). Typical use case in RobotWare 6 was to copy the value
of $BOOTPATH script variable into an own environment variable to be able to
access the add-in installation directory from RAPID code. As shown in the
above table, in RobotWare 7 there are system pre-defined environment
variables for each add-in installation and runtime data directories, so this is
no longer necessary.

Note

To make sure that your add-in will work properly in RobotWare releases
7.2 and later, make sure that you only use the locations specified in the
above table.

Note

RobotWare 7 add-ins cannot remove write protection on installed products
and modify the installation from their install.cmd scripts.

Continues on next page
Application manual - RobotWare add-ins 51
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.1 Introduction

Continued

• Environment variables vs. script variables
Script variables should be used as local variables for implementing script
logic. Environment variables are global and persistent until the RobotWare
system is reset or uninstalled and can be used from RAPID. System
predefined environment variables can be used in Robot Web Services URL-s.
Script commands, that access file resources, recognize and expand both
script variables and environment variables before accessing files and
directories. Recommended way of accessing file resources is using
environment variables from the table in the previous section, since it is a
uniform way that works from RAPID and Robot Web Services as well.

Expansion rules during variable assignment
The following expansion rules apply when using existing variables to define new
variables:

• Script variables
Any number of script variables are allowed in an assigned value and all those
script variables are expanded during assignment to other script variables
and when assigning to environment variables.

• Environment variables
At most one environment variable is allowed in an assigned value. It is

- recognized only in the beginning of the value
- expanded during assignment to another environment variable
- not expanded when assigning to a script variable.

• Script and environment variables can be combined in an assigned value at
the same time.

• Parts of an assigned string value that do not match the name of any existing
variable are left unchanged.

52 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.1 Introduction
Continued

2.4.2 Commands

addintvar
Increment or decrement a previously defined integer variable. A variable is defined
using setintvar.

DefaultDescriptionParameter

Name of the script variable.name

Value to add.value

Examples:
setintvar -name $TEST -value 123

addintvar -name $TEST -value 5

addintvar -name $TEST -value -1

append
This command can be used for two different purposes:

• Append a content of one file to another file
or

• Generate one line - "include" command into a script to make it include another
script.

DefaultDescriptionParameter

Name of an existing file or script that shall be appended or in-
cluded.

from

Path of the file in which the content shall be appended to.to

FALSEIf FALSE, then "include" statement shall be generated in the
script specified by "to" argument (append by reference).

paste

If TRUE, then contents of file "from" shall be appended to the
file "to" (append by value).

Examples:
append -from OPEN.ABB.ROBOTICS.CIRCLEMOVE/myfile1.txt -to

OPEN.ABB.ROBOTICS.CIRCLEMOVE_HOME/myfile.txt -paste

append -from OPEN.ABB.ROBOTICS.CIRCLEMOVE/myfile3.txt -to

OPEN.ABB.ROBOTICS.CIRCLEMOVE_HOME/myfile.txt -paste

attrib
This command can be used to modify file or directory attributes, such as read-write
or read-only.

DefaultDescriptionParameter

Name of an existing file or directory that shall be modified.path

Attributes to modify:attrs
-R – remove write protection from a file or directory
+R – apply write protection on a file or directory

Example:
attrib -path OPEN.ABB.ROBOTICS.CIRCLEMOVE_HOME/myfile.txt -attrs

"-R"

Continues on next page
Application manual - RobotWare add-ins 53
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

cfg_create_type_from_xml
This command can be used to create a new type in the system parameter database,
based on the type description provided in the specified XML file.

DefaultDescriptionParameter

Name of XML file containing type definition.path

Example:
cfg_create_type_from_xml -path

OPEN.ABB.ROBOTICS.CIRCLEMOVE/mytypes.xml

Note

This command is currently provided to ease the migration between RobotWare
6 and RobotWare 7. However, description of the XML file syntax is not published
yet.

cfg_create_type_from_rules_def
This command can be used to create a new type in the system parameter database,
based on the type description provided in the specified XML file which is in CFG
rules format.

DefaultDescriptionParameter

Path of XML file containing type definition. Types can currently
only be created in the PROC domain of the configuration
database.

name

Example:
cfg_create_type_from_rules_def -name OPEN.ABB.ROBOTICS.CIRCLEMOVE

/mytypes.xml

Note

This command is currently provided to ease the migration between RobotWare
6 and RobotWare 7. However, description of the XML file syntax is not published
yet.

config
The config command can be used to load configuration resource files into the
cfg object and to modify existing contents of a configuration domain.
The following operations are possible:

• Add new cfg types and instances
• Replace existing instances
• Modify attribute values for existing non-internal instances
• Write-protect instances or protect instances from deletion

DefaultDescriptionTypeParameter

The full cfg file name, including the path of the
file to load.

stringfilename

Continues on next page
54 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

DefaultDescriptionTypeParameter

FALSEWrite-protect the cfg instances, defined in the
cfg file. The write-protected instances will not
be included when cfg data is saved to file from
the FlexPendant, RobotStudio or from any Add-
in application, or be part of a backup. That is,
only data that is part of the RobotWare release
or an application installed on the controller
should be write-protected. Internal instances are
not modifiable, see Exceptions on page 55.

booleaninternal

FALSEAll instances defined in the cfg file will replace
existing non-internal instances with the same
name in the cfg domain. To create a new in-
stance and keep all modified values, the user
has to define all attributes and their values in
the cfg file. If any attribute is not defined in the
file, the default value will be used. See Excep-
tions on page 55.

booleanreplace

FALSEModifiy the attribute values, defined in the cfg
file, in existing named non-internal instances.
Values of other attributes which are not included
in the cfg file will remain the same.

booleanmodify

FALSEProtect the cfg instances, defined in the cfg file,
from deletion.

booleannondeletable

FALSEAffects only if used together with the "-replace
and -internal" arguments.

booleanforce

Same behavior as for "-replace and -internal"
except that existing internal/write-protected in-
stances also will be replaced.
Replaced instances will be write-protected (in-
ternal).
See Exceptions on page 55.

The boolean arguments can only be used one at a time. If more than one is used,
the argument that has lower precedence will be ignored. The order of precedence
is as follows:
-nondeletable > -modify > (-replace && -internal && -force) > (-replace &&
-internal) > -internal > -replace

Exceptions
The only exception to the order of precedence is that the arguments "-replace and
-internal" or "-replace and -internal and -force" may be used at the same time.
The first combination results in a replace of existing non-internal instances and
the replaced instances will also get write-protected (internal). Already existing
internal/write-protected instances will not be replaced, they will be ignored.
The second combination results in a replace of existing non-internal/internal
instances and the replaced instances will also get write-protected (internal).

Examples

Note

All calls of the command config require that the argument -filename is specified.

Continues on next page
Application manual - RobotWare add-ins 55
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

Continued

Add cfg types and instances without write-protection:
config -filename $BOOTPATH/mysys.cfg

Add cfg types and instances with write-protection:
config -filename $BOOTPATH/mysys.cfg -internal

Replace existing instances and add new instances:
config -filename $BOOTPATH/myeio.cfg -replace

Modify attribute values for named instances that are not write-protected:
config -filename $BOOTPATH/mymoc.cfg -modify

Protect the cfg instances from deletion by e.g. the command delete_cfg_instance:
config -filename $BOOTPATH/mymoc.cfg -nondeletable

Replace existing instances (also if internal/write-protected) and add new instances,
all replaced/new instances will be write-protected (internal):

config -filename $BOOTPATH/myeio.cfg -replace -internal -force

Example on usage of -modify argument
This example shows how to modify the value for attribute -Devicemap from 15 to
14 for the named instance custom_DO_7.

Note

Before using -modify, custom_DO_7 must already exist in the domain.

Contents in the saved eio.cfg:
EIO:CFG_1.0:7:0::

#

…

#

EIO_SIGNAL:

-Name "custom_DO_7" -SignalType "DO" -Device "ManipulatorIO"\

-DeviceMap "15"

Script command:
config -filename $HOME/eio_modify.cfg -modify

Contents in eio_modify.cfg:
EIO:CFG_1.0:7:0::

#

EIO_SIGNAL:

-Name "custom_DO_7" \

DeviceMap "14"

Continues on next page
56 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

copy
Copy a file.

DefaultDescriptionParameter

The file to be copied, including the file path.from

The new file name, including the file path.to

Example:
copy -from $BOOTPATH/instopt.cmd -to $RWTEMP/instopt.cmd

delay
Delay the running of the command script.

DefaultDescriptionParameter

100Number of milliseconds to delay.time

Example:
delay -time 1000

delete
Delete a file.

DefaultDescriptionParameter

Name of file to delete, including file path.name

Example:
delete -path $RWTEMP/opt_l0.cmd

direxist
If a directory exists, go to a label.

DefaultDescriptionParameter

The complete path to the folder.path

The label to go to if the folder exists.label

Example:
direxist -path $TEMP/MyFolder -label CLEANUP_0

echo
Echo (print) a message to the system console and FlexPendant system startup
screen.

DefaultDescriptionParameter

The text to show on the FlexPendant startup screen. This text
can contain arguments such as $ANSWER and will be converted
before it is displayed.

text

FALSEAdds an internal event log with the text as message.elog

Examples:
echo -text "Installing configuration files"

echo -text ”Error when installing configuration for $ANSWER” -elog

Continues on next page
Application manual - RobotWare add-ins 57
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

Continued

fileexist
If a file exists, go to a label.

DefaultDescriptionParameter

File name, including the file path.path

The label to go to if the file exists.label

Example:
fileexist -path $RWTEMP/opt_l0.cmd -label CLEANUP_0

find_replace
Find and replace occurrences of a string in a file. Only the first occurrence of the
string in each line of the text is replaced.

DefaultDescriptionParameter

File to search, including the file path.path

String to find.find

String to replace with.replace

Example:
find_replace -path $HOME/myfile.txt -find "ABC" -replace "CBA"

getkey
A number of selections can be made by user at the time of system creation. Values
of these selections come from product manifest file and are stored by the system
as a number of keys. The values stored in these keys can be read at the system
startup time using the getkey command.

DefaultDescriptionParameter

Name of the key whose value is to be retrieved.id

Name of the variable where the result (the key value) is stored.strvar

Label to go to if an error occurs.errlabel

Example:
getkey -id "LangSelect" -strvar $ANSWER -errlabel ENGLISH

goto
Go to a label.
The label to go to can either be specified directly, using the parameter label, or via
a string containing the label name, using the parameter strvar.

DefaultDescriptionParameter

A string containing the label name to go to.strvar

Label to go tolabel

Examples:
goto -strvar $ANSWER

goto -label END_LABEL

Continues on next page
58 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

if_feature_present
This command tests if the specified optional product feature is currently present
in the system configuration and directs execution flow in the installation script to
the specified label.

DefaultDescriptionParameter

The ID of the feature that should be checked.id

1The robot number to check if the feature is present. Useful in
multimove systems.

robot

Label to go to if the feature is present.label

Example:
if_feature_present -id

abb.robotics.robotcontrol.options.multitasking -robot 1 -label

MULTITASKING_AVAILABLE

print -text "RAPID multitasking is not available."

goto -label NEXT_STEP

#MULTITASKING_AVAILABLE

...

#NEXT_STEP

ifintvar
Compares an integer variable and the specified value, and if equal jumps to the
specified label. If not equal, the next statement is executed.

DefaultDescriptionParameter

Name of the script variable.name

Integer value to compare to.value

Label to go to if values are equal.label

Example:
ifintvar -name $NUMBER_OF_CYCLES -value 5 -label SELECTION_5

...

#SELECTION_5

ifstr
If a string variable is equal to a string value, go to the specified label. If not equal,
the next statement is executed.
If the string variable is undefined, the command returns an error code.

DefaultDescriptionParameter

String variable to be compared with a string value.strvar

String value to compare the string variable with.value

Label to go to if the comparison is true.label

Example:
ifstr -strvar $ANSWER -value "IRT5454_2B" -label APP2

Continues on next page
Application manual - RobotWare add-ins 59
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

Continued

ifvc
If the script containing this command is run on the virtual controller, go to the
specified label.

DefaultDescriptionParameter

Label to go to if the script is run on a virtual controller.label

Example:
ifvc -label NO_START_DELAY

include
Include the script of another command file. Executes all commands in the script
and then return to the current script.

DefaultDescriptionParameter

The file name of the included script, including the file path.path

Example:
include -path $BOOTPATH/instdrv.cmd

install_io_project
The install_io_project command can be used to install I/O project files from
an add-in so the controller will start up with all the needed I/O configurations.

DefaultDescriptionTypeParameter

FALSEWrite-protect the CFG instances, defined in the
ioeprj file. The write-protected instances will not
be included when CFG data is saved to file from
the FlexPendant, RobotStudio or from any Add-
in application, or be part of a backup. That is,
only data that is part of the RobotWare release
or an application installed on the controller
should be write-protected. Internal instances are
not modifiable.

Note

The argument -internal does not apply to the
safety related parts of an I/O project.

booleaninternal

Note

For configurations with Safety Config Status set to Locked, the existing
configuration cannot be overridden using the install_io_project command.

Examples
Add I/O projects without write-protection:

install_io_project -file $BOOTPATH/config/myproject.ioeprj

Add I/O projects with write-protection:
install_io_project -file $BOOTPATH/config/myinternalproject.ioeprj

-internal

Continues on next page
60 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

loop_break
Used to break execution of loop_include.
No parameters.
Example:
See loop_include on page 61.

loop_include
Used to execute a script in a loop.

DefaultDescriptionParameter

Path of the script to execute in loop.path

Maximal number of times to execute the specified script.cycles

Example:
install.cmd

loop_include -path $BOOTPATH/script2.cmd -cycle 5

script2.cmd

print -text "Executing script 2"

...

loop_break

math_lib_set_mem_size
Used to increase the size of the memory pool used for matrix calculations in RAPID.

DefaultDescriptionParameter

20000 bytesThe size in bytes.size

The default size is 20000 bytes.
Minimum allowed size is 20000 (same as default size).
Maximum allowed size is 20000000, that is, 20 MB.
If several calls to math_lib_set_mem_size are made, the largest value is used.

mkdir
Make a directory.

DefaultDescriptionParameter

Directory name, including the path.path

Example:
mkdir -path $RWTEMP/newdir

Continues on next page
Application manual - RobotWare add-ins 61
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

Continued

onerror
Set the default behavior of the script motor in case a script command fails and
returns an error status code.
It is always the most recent onerror command that sets the current default
behavior. The onerror semantics of included scripts does not affect the onerror
semantics of any script that includes it.

DefaultDescriptionParameter

continueDefines if an error should result in: go to label, continue execu-
tion, stop execution, system failure or return from included
script to the including script

action

Defines what behavior an error should result in. The allowed
values are:

• goto - Go to a label
• continue - Ignore errors and continue execution
• stop - Stop execution of startup task using assert()
• sysfail - Call SYS_FAIL()
• return - If used by a script included by another script,

execution returns to the calling script. The included
script returns an error code that needs to be handled by
the including script.

The label to go to if action is goto.label

Examples:
onerror -action goto -label MY_LABEL1

onerror -action continue

onerror -action stop

onerror -action sysfail

onerror -action return

print
Prints a text to the system console.

DefaultDescriptionParameter

The text to show on the console.text

Example:
print -text "Copying files to $BOOTPATH"

rapid_delete_palette
Deletes a picklist in the FlexPendant programming window.

DefaultDescriptionParameter

The name of the picklist to be deleted.palette

Example:
rapid_delete_palette -palette "M.C 3"

rapid_delete_palette -palette "Settings"

Continues on next page
62 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

rapid_delete_palette_instruction
Deletes a RAPID instruction in a picklist in the FlexPendant programming window.

DefaultDescriptionParameter

The name of the picklist.palette

The name of the RAPID instruction to be deleted.instruction

Example:
rapid_delete_palette_instruction -palette "Common" -instruction

"FOR"

rapid_delete_palette_instruction -palette "Common" -instruction
":="

rapid_delete_palette_instruction -palette "Common" -instruction
"MoveAbsJ"

rapid_delete_palette_instruction -palette "M.C 1" -instruction
"MoveJ"

register
Registers additional information from an xml to controller registers, depending on
the type parameter. The supported types are:

• Error messages (elogmes) – register the xml-file to the elogtext_registry.xml
file. Once registered, these messages can be used by the RAPID program.

• Error messages rules (elogrules) – register the xml-file to the
elogtext_registry.xml file. Once registered, these messages will get focus on
the FlexPendant screen.

• Options (option) - Registers the option in the option_registry.xml file. This
will enable automatic loading of FlexPendant applications from the WebApps
folder for the add-in.

• RAPID meta data (rapid_metadata) – Registers additional RAPID argument
settings to the rapid_metadata_registry.xml.

Applies to
type

DescriptionParameter

Defines which type (for example elogmes, option, rap-
id_metadata, or rapid_text) that is being registered.

type

elogmesError messages are stored in different domains. Which domain
to register in is defined by domain_no.

domain_no

For add-ins, domain_no should always be 9.

elogmesThe first message number in the file being registered.min

elogmesThe last message number in the file being registered.max

elogmes,
elogrules,
rap-
id_metadata

The path to the language directory.prepath

elogmes,
elogrules,
rap-
id_metadata

The rest of the path, after the language directory, including the
character \ (backslash) and the file name.

postpath

optionA flag indicating that the add-in is an external add-in.extopt

Continues on next page
Application manual - RobotWare add-ins 63
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

Continued

Applies to
type

DescriptionParameter

optionThe name of the add-in.description

optionThe path to the add-in.path

Examples:
Register event log message for Add-In

register -type elogmes -domain_no 11 -min 5001 -max 5001 -prepath
$BOOTPATH/language/-postpath /CircleMove_elogtext.xml

-extopt

Register event log rules for Add-In

register -type elogrules -prepath $BOOTPATH -postpath
CircleMove_elogrules.xml

Register path for Add-In

register -type option -description MyAddIn -path $BOOTPATH

Register path for RAPID meta data

register -type rapid_metadata -prepath $HOME/ -postpath
my_rapid_edit_rules.xml

register -type rapid_text -min 1 -max 123 -resource myAddIn -prepath
$BOOTPATH/language/ -postpath

myAddInTexts.xml

rename
Rename a specified file or directory.

DefaultDescriptionParameter

Path of the existing original file or directory.from

New name.to

Example:
rename -from $TEMP/myfile.txt -to $TEMP/myfile.txt.old

setenv
Define an environment variable and set its value.
An environment variable can be used in the RAPID code or in cfg files.
For more information about environment variables, see Introduction on page 49.

DefaultDescriptionParameter

The environment variable to be assigned a new value.name

The string to assign to the environment variable.value

Example:
setenv -name CIRCLEMOVE -value $BOOTPATH

Continues on next page
64 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

setintvar
Define a string variable, if it is not defined and then set its long integer value.

DefaultDescriptionParameter

Name of a new or an existing script variable.name

Value to set.value

Example:
setintvar -name $COUNTER -value 10

setstr
Define a string variable and set its value. The string can only be used in the
installation script.

DefaultDescriptionParameter

The string variable to be assigned a new string.strvar

The string to assign to the string variable.value

The name of the environment variable.envvalue
Its string value will be assigned to the string variable.

Examples:
setstr -strvar $LANG -value "en"

setstr -strvar $CFGPATH -value $SYSPAR

setstr -strvar $MY_SCRIPT_VAR -envvalue "MY_ENV_VAR"

text
This command loads a text description file into a text resource of a package. It
accomplishes the same thing as the RAPID instruction TextTabInstall, but can
also specify different texts for different languages.
For more information, read about user message functionality in Application
manual - Controller software OmniCore, and Overview on page 70.

DefaultDescriptionParameter

Name of the description file, including the file path.filename

"en"Package for building the text resource.package

Example:
text -filename $BOOTPATH/language/en/text_file.xml -package "en"

timestamp
Read the system clock and print number of seconds and milliseconds to the
standard output.
No parameters.

Continues on next page
Application manual - RobotWare add-ins 65
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands

Continued

xattrib
Extended attrib command that works recursively on a directory structure, including
all subdirectories.

DefaultDescriptionParameter

Name of a file directory to modify.path

Attributes to modify:attrs
-R – remove write protection from a file or directory
+R – apply write protection on a file or directory

Example:
xattrib -path OPEN.ABB.ROBOTICS.CIRCLEMOVE_HOME/dir1 -attrs "-R"

xcopy
Recursively copy a directory structure from one location to another. It is possible
to use wildcards.

DefaultDescriptionParameter

Name of a directory to copy.from

Location to copy to.to

FALSEIf specified, the destination directory shall be created if it does
not exist.

cre-
ate_dest_dir

Examples:
xcopy -from $BOOTPATH/MyDir -to $TEMP/MyDir -create_dest_dir

xcopy -from $BOOTPATH/MyDir/a*.txt -to $TEMP/MyDir_txt
-create_dest_dir

xdelete
Recursively delete a directory structure. It is possible to use wildcards.

DefaultDescriptionParameter

Name of a directory to delete.path

FALSERemove write protection if necessary.unprotect

Examples:
xdelete -path $TEMP/MyDir

xdelete -path $TEMP/MyDir2/*

66 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.2 Commands
Continued

2.4.3 Examples of install.cmd files

Example for CIRCLEMOVE
Install.cmd script for Add-In CIRCLEMOVE

echo -text "Installing CIRCLEMOVE Add-In"

Load configuration files

config -filename $BOOTPATH/CircleMove_sys.cfg -domain SYS -internal

config -filename $BOOTPATH/CircleMove_mmc.cfg -domain MMC

Define environment variable

setenv -name CIRCLEMOVE -value $BOOTPATH

Register elog messages

register -type elogmes -domain_no 11 -min 5001 -max 5001 -prepath
$BOOTPATH/language/ -postpath /CircleMove_elogtext.xml

Application manual - RobotWare add-ins 67
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.4.3 Examples of install.cmd files

2.5 RAPID

2.5.1 RAPID modules

Overview
The RAPID code, implementing the functionality of your add-in, is written in a
system module (.sys) file (preferably <Add-In name>.sys).

Tip

By setting the argument NOSTEPIN on the module, stepwise execution of the
RAPID program will not step into the module. This makes a routine written in the
module behave like an instruction delivered from ABB.

RAPID code example
This is an example of how to create your own move instruction and how to use
your own error messages. An instruction, MoveCircle, is created that moves the
robot TCP in a circle around a robtarget, with the radius given as argument. If
MoveCircle is called with a too small radius, a message defined in an .xml file is
written to the event log, see Event log texts on page 20.

MODULE CIRCLEMOVE(SYSMODULE, NOSTEPIN)

VAR errnum ERR_CIRCLE:= -1;

VAR num errorid := 5001;

PROC MoveCircle(

robtarget pCenter,

num Radius,

speeddata Speed,

zonedata Zone,

PERS tooldata Tool

\PERS wobjdata WObj)

VAR robtarget p1;

VAR robtarget p2;

VAR robtarget p3;

VAR robtarget p4;

BookErrNo ERR_CIRCLE;

IF Radius < 2 THEN

ErrRaise "ERR_CIRCLE", errorid, ERRSTR_TASK, "Radius",
NumToStr(Radius,2), "2", ERRSTR_CONTEXT;

ENDIF

p1:=pCenter;

p2:=pCenter;

p3:=pCenter;

p4:=pCenter;

Continues on next page
68 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.1 RAPID modules

p1.trans:=pCenter.trans+[0,Radius,0];

p2.trans:=pCenter.trans+[Radius,0,0];

p3.trans:=pCenter.trans+[0,-Radius,0];

p4.trans:=pCenter.trans+[-Radius,0,0];

MoveL p1,Speed,Zone,Tool\WObj?WObj;

MoveC p2,p3,Speed,z10,Tool\WObj?WObj;

MoveC p4,p1,Speed,Zone,Tool\WObj?WObj;

BACKWARD

MoveL p1,Speed,Zone,Tool\WObj?WObj;

ERROR

IF ERRNO = ERR_CIRCLE THEN

TPWrite "The radius is too small";

RAISE;

ENDIF

ENDPROC

ENDMODULE

Application manual - RobotWare add-ins 69
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.1 RAPID modules

Continued

2.5.2 Using text resources from files

Overview
It is possible to use text strings from a text table file. This is useful, for example,
when a message to the user should be displayed in different languages.
How to use text table files is described in section Advanced RAPID in Application
manual - Controller software OmniCore.

Including language files from your add-in
Localized files can be installed by moving their installation to a separate install.cmd
file and including it from the main installation script.

include -path "$BOOTPATH/language/install.cmd"

The add-in folder must contain a subfolder called language with a separate
install.cmd file used to install the localized files. The localized files are placed in
language specific subfolders of the folder language. The subfolders should be
named with the 2 letter language code, for example en, de, fr etc. See illustration
in section Recommended file structure on page 12.
The file install.cmd will call the file instlang.cmd in the language folder once for
every installed language on the robot controller with the variable $LANG set to the
corresponding language code. After this process has completed the $LANG variable
will always be reset to en.
If using the RAPID instruction TextGet, place the text strings in the respective
language folder in a file ending with text.xml.

Example
Example of instlang.cmd, how to install a localized file.

fileexist -path $BOOTPATH/language/$LANG/CircleMove_text.xml -label
INSTALL_FILE

goto -label END

#INSTALL_FILE

text -filename $BOOTPATH/language/$LANG/CircleMove_text.xml -package
$LANG

#END

70 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.2 Using text resources from files

2.5.3 Hiding RAPID content

Overview
It is possible to hide the implementation of RAPID code on the FlexPendant.
Developers of add-ins often expose a public interface to their functionality that
other RAPID programmers and end users can access. It is a good programming
practice to hide parts of the internal implementation that are not intended for the
users of your add-in.
This section describes some recommendations for hiding the code.

Split the code into two modules
One way of hiding the code is to split the code into two modules. The first module
contains the implementation that shall be hidden, and the second module contains
the public interface which is visible. The interface module contents will be visible
but the code can be encrypted.
For more information, see Automatic loading of modules (CAB_TASK_MODULES)
on page 33.

Example
sys.cfg

CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMoveImpl.sys" -Hidden -AllTask

-File "CIRCLEMOVE:/CircleMove.sys" -AllTask

CircleMove.sys - Interface
MODULE CIRCLEMOVE(SYSMODULE, NOSTEPIN)

PROC MoveCircle(

robtarget pCenter,

num Radius,

speeddata Speed,

zonedata Zone,

PERS tooldata Tool

\PERS wobjdata WObj)

MoveCirecleImpl pCenter, Radius, Speed, Zone, Tool \WObj?WObj;

ENDPROC

ENDMODULE

Continues on next page
Application manual - RobotWare add-ins 71
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.3 Hiding RAPID content

CircleMoveImpl.sys - Implementation
MODULE CIRCLEMOVEIMPL(SYSMODULE, NOVIEW)

VAR errnum ERR_CIRCLE:= -1;

VAR num errorid := 5001;

PROC MoveCircleImpl(

robtarget pCenter,

num Radius,

speeddata Speed,

zonedata Zone,

PERS tooldata Tool

\PERS wobjdata WObj)

...

ENDPROC

ENDMODULE

Use hidden modules and the pick list
Another method is to place all code in a hidden module and use the pick list to call
the procedures.
For more information, see Custom pick lists (MMC_MC1, MMC_MC2, MMC_MC3,
etc.) on page 37.

Example
sys.cfg

CAB_TASK_MODULES:

-File "CIRCLEMOVE:/CircleMove.sys" -Hidden -AllTask

mmc.cfg
MMC_CIRCLEMOVE_PALETTE = MMC_PALETTE:

-name "MoveCircle"

MMC_PALETTE_HEAD:

-name "Move Circle Palette" -type "MMC_CIRCLEMOVE_PALETTE"

72 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.3 Hiding RAPID content
Continued

2.5.4 Optional settings for RAPID arguments (RAPID meta data)

Overview
It is possible to specify certain optional settings for arguments in RAPID instructions.
For instance it is possible to define if certain arguments shall be hidden when
viewing the RAPID program on the FlexPendant.
The optional settings are specified in an .xml file.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" show="true" showeditor="false" />

</Instruction>

</Edit>

</Rapid>

Tip

Use the template file named rapid_edit_rules.xml located in the following directory
in the RobotWare package folder:
...\RobotPackages\RobotWare_RPK_<version>\utility\Template\RAPIDOptional
Arguments\
Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Name and location of the .xml file
The .xml file shall be registered using the setup script (see register on page 63) or
should be named rapid_edit_rules.xml and installed in the $(HOME) directory of
the controller.

Continues on next page
Application manual - RobotWare add-ins 73
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4 Optional settings for RAPID arguments (RAPID meta data)

2.5.4.1 Hiding arguments in programs

Overview
It is possible to hide any of the arguments listed when displaying a programmed
RAPID instruction in the Program Editor and the Production Window on the
FlexPendant.
Which arguments to be shown in program windows is specified in the .xml file
using the showeditor attribute. The default value is that arguments shall be
shown.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" showeditor="true" />

<Argument name="Arg2" showeditor="false" />

</Instruction>

</Edit>

</Rapid>

Example
This is an example of an .xml file specifying which optional arguments to show for
MoveJ.

<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="MoveJ">

<Argument name="Conc" showeditor="true" />

<Argument name="ID" showeditor="true" />

<Argument name="V" showeditor="true" />

<Argument name="T" showeditor="false" />

<Argument name="Z" showeditor="false" />

<Argument name="Inpos" showeditor="false" />

<Argument name="WObj" showeditor="true" />

<Argument name="TLoad" showeditor="false" />

</Instruction>

</Edit>

</Rapid>

Continues on next page
74 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.1 Hiding arguments in programs

The result will be that only the arguments Conc, ID, V and WObj will be shown in
the program windows on the FlexPendant for the instruction MoveJ.

Note

Hiding an argument has priority over other functions such as selection of
argument when adding an instruction, see Highlight argument
(MMC_SELECT_PARAM) on page 43, or additional optional argument in pick
lists, see Pick list titles (MMC_PALETTE_HEAD) on page 37. For the latter case
the argument will be added, but it will not be shown.

Application manual - RobotWare add-ins 75
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.1 Hiding arguments in programs

Continued

2.5.4.2 Hiding optional argument when changing selected instruction

Overview
It is possible to hide any of the optional arguments listed when a RAPID instruction
is changed from the FlexPendant.
Which optional arguments to be shown on the FlexPendant is specified in the .xml
file using the show-attribute. The default value is that arguments shall be shown.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" show="true" />

<Argument name="Arg2" show="false" />

</Instruction>

</Edit>

</Rapid>

Example
This is an example of an .xml file specifying which optional arguments to show for
MoveJ.

<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="MoveJ">

<Argument name="Conc" show="true" />

<Argument name="ID" show="true" />

<Argument name="V" show="true" />

<Argument name="T" show="false" />

<Argument name="Z" show="false" />

<Argument name="Inpos" show="false" />

<Argument name="WObj" show="true" />

</Instruction>

</Edit>

</Rapid>

The result will be that only the optional arguments Conc, ID, V, and WObj will be
shown when changing the instruction on the FlexPendant for the instruction MoveJ.

Usage

Commentshoweditorshow

Default, same as True, True<not defined><not defined>

Shown everywhere in FPTrueTrue

Hidden in Program Editor and Production WindowFalseTrue

Continues on next page
76 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.2 Hiding optional argument when changing selected instruction

Commentshoweditorshow

Hidden in Argument Window, but shown in Program
Editor and Production Window.

TrueFalse

Users will not be able to program arguments having
this combination, thus it is unlikely that users will be
exposed to this combination. Which means that in
practice this is more like False/False.

Totally hidden, cannot be edited by Program EditorFalseFalse

Application manual - RobotWare add-ins 77
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.2 Hiding optional argument when changing selected instruction

Continued

2.5.4.3 Argument filter

Overview
It is possible to filter the data that is shown as arguments listed on the FlexPendant
and in RobotStudio.
The filter for a specific parameter is specified in the .xml file using the
filter-attribute. The default value is that no filter is used.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" filter="PLC_do_.*" />

</Instruction>

</Edit>

</Rapid>

In the example above only data with a name starting with "PLC_do_" will be matched
and shown for the parameter "Arg1" in the instruction "Instr1".

Regular expressions
The regular expressions are a powerful mechanism when it comes to matching a
multitude of names with a single expression.
In a regular expression all alphanumeric characters match, for example the
expression "abc" will match the sequence "abc". Regular expressions are case
sensitive. Most other characters also match, but a small set is known as the
meta-characters. These are:

MeaningExpression

Marks the beginning of the name being matched. Default.^

Marks the end of the name being matched. Default.$

Any single character..

Any character in the non-empty set s, where s is a sequence of
characters. Ranges may be specified as c-c.

[s]

Any character not in the set s.[^s]

Zero or more occurrences of the regular expression r.r*

One or more occurrences of the regular expression r.r+

Zero or one occurrence of the regular expression r.r?

The regular expression r. Used to separate a regular expression
from another.

(r)

The regular expression r or r'.r | r'

Continues on next page
78 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.3 Argument filter

Examples
Some examples:

• The expression "MoveL" (or "^MoveL$") would match the name "MoveL",
and nothing else.

• The expression "Move.*" would match "MoveL", "MoveC", "MoveCDO" etc.
• The expression ".*Move.*" would match the names "MyMove", "MoveL",

"MoveC" , "MoveCDO" etc.
• The expressions "", ".*", or "^.*$", i.e. an empty string, matches anything.

Application manual - RobotWare add-ins 79
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.3 Argument filter

Continued

2.5.4.4 Argument value range

Overview
It is possible to define minimum and maximum allowed value when specifying a
numerical value for an argument. The value will be validated by the FlexPendant
and RobotStudio when entering such a value.
The minimum and maximum allowed values for a specific parameter is specified
in the .xml file using the minvalue and maxvalue attributes. The default value is
that no minimum and maximum values are used.

XML format
<?xml version="1.0" encoding="utf-8"?>

<Rapid>

<Edit>

<Instruction name="Instr1">

<Argument name="Arg1" minvalue="1" maxvalue="16" />

</Instruction>

</Edit>

</Rapid>

In the example above only values between 1 and 16 will be allowed when entering
a numerical value for the parameter "Arg1" in the instruction "Instr1".

Note

The check for valid numerical value will only be performed when entering a
numerical value as argument. No validation will be performed if for instance a
variable is used as argument.

80 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.5.4.4 Argument value range

2.6 RobotWare Add-In Packaging tool

2.6.1 Introduction

2.6.1.1 About the RobotWare Add-In Packaging tool

General
RobotWare Add-In Packaging tool (APT) is a Windows program that helps to pack
the add-in as a package that can be deployed to the robot controller using the
Modify Installation function. The output of the RobotWare Add-In Packaging tool
is a product manifest file and a robot package file.
The tool helps you to:

• Package new RobotWare 6 add-ins.
• Package new RobotWare 7 add-ins.
• Package RobotWare 6 add-ins based on RobotWare 5 additional options.
• Define how the end-user will see the add-in product in theModify Installation

function.
• Define one or more optional features and rules for how options can be

selected in the Modify Installation function.
• Define dependencies between your add-in and other products (RobotWare

and other add-ins).
The RobotWare add-in and the RobotWare add-in license can then be used together
with RobotWare to create a RobotWare system using the Modify RobotWare function
in RobotStudio.
For more information about the Modify Installation function, see Operating
manual - RobotStudio.

Tip

See also the tutorials on using the RobotWare Add-In Packaging tool available
at ABB Library Download Center.

Open and licensed add-ins
There are two major types of add-ins that can be created with the RobotWare
Add-In Packaging tool, open add-ins and licensed add-ins.
For open add-ins, the product manifest and the robot package file created will
contain everything required for the user to install the product unsigned.
For licensed add-ins, there is also a signing step involved in the packaging of the
add-ins, that will later allow you to generate licenses for the add-ins. The licensed
add-ins will require the user to add a license file using the Modify Installation
function to be able to install the add-in.

Continues on next page
Application manual - RobotWare add-ins 81
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.1 About the RobotWare Add-In Packaging tool

https://library.abb.com

Installation procedure
Before installing the software make sure that the certificates are available, for more
information see Digital signing on page 86.

1 Install the RobotWare Add-In Packaging tool.
2 Install the certificate for signing add-ins using the RobotWare Add-In

Packaging tool. Use the password provided by ABB.
(A certificate is only needed when packaging licensed add-ins.)

3 Install your own publisher certificate.
(A certificate is only needed when packaging licensed add-ins.)

4 Start the RobotWare Add-In Packaging tool.

82 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.1 About the RobotWare Add-In Packaging tool
Continued

2.6.1.2 Optional features

Option identity
The option identity is what uniquely identifies an option in a product.
The option identity namespace must start with the product identity and also have
its own unique part. If the add-in has many options, the option identity part may
be built up of several parts, to group options logically.
For example: open.yourcompany.yourproduct.youroption
When you decide what scheme to use for the option identity names, keep in mind
that these option identity names are the identifiers that will be used in settings files
and license files (for licensed add-ins). If option identifiers are changed between
two releases of an add-in, compatibility with old settings files and license files will
be broken.

System options and robot options
In RobotWare 7 there is support for both system options and robot options. Typically
an option is classified as a robot option if its primary use is within the task of a
robot. For example, equipment that a robot is dressed with is an example of a robot
option. Or something that is connected to, or set up for, a specific robot in a
MultiMove system. A system option is global to the system, for example languages.

Dependencies
A dependency specified for an option in an add-in could be either of type AND
dependency, or of type OR dependency. This will define the dependency rule
between the options selected.
For example, dependencies like the following can be defined: Source option A is
dependent on both option B and C. Source option D is dependent on either A, B,
or C.

AND dependency
If an option does not work unless all of its dependent options are also being
installed, all these options are mandatory and should go into the AND dependency
list.
Example:

813-1 Optical Tracking

<AND dependent on>

624-1 Continuous Application Platform

628-1 Sensor Interface

OR dependency
If an option does not work unless one of its dependent options are also being
installed, all these options should go into the OR dependency list. In this case the
option will work if either of the options in the list are also selected for installation.

Continues on next page
Application manual - RobotWare add-ins 83
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.2 Optional features

For example. PROFIenergy requires that either PROFINET Controller/Device or
PROFINET Device is selected for installation:

963-1 PROFIenergy

<OR dependent on>

888-2 PROFINET Controller/Device

888-3 PROFINET Device

84 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.2 Optional features
Continued

2.6.1.3 Files of a packaged add-in

The product manifest file
The product manifest file (.rmf) is a container of the metadata for the add-in product.
It contains all product and option details.
Product details:

• Product name, product id, product version, version name, company name,
company url, copyright, and description.

• Any product dependencies to other products, such as RobotWare or add-ins
that the product may have.

Option details:
• Descriptions of all the options that are included in the add-in, such as option

names, option id's, option type (system or robot) and licensing restrictions,
• How the option structure should be displayed to the user in the Modify

Installation function.
• Any dependencies to other options that the options in the add-in may have.
• Any conflicts to other options that the options in the add-in may have.

The purpose of the product manifest is to define how the end-user will see the
product using the Modify Installation function. It will display the options in a
structure to the user and define the rules for how options can be selected and what
other products are required for the add-in to work.
For more information about product manifest files, see Appendix: Product manifest
files guidelines (RobotWare 7) on page 119.

The robot package file
The robot package file (.rpk) is an archive file that contains the actual contents of
the add-in, in a compressed form.
The folders and files of the add-in containing installation and application logics in
.cmd, .cfg, and .sys files.
This package will be transferred to the controller during installation and will be
unpacked on the controller where the .cmd files of the add-in will be executed to
install the add-in on the controller.

Application manual - RobotWare add-ins 85
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.3 Files of a packaged add-in

2.6.1.4 Signing with digital certificates

Digital signing
RobotWare 7 uses signing with digital certificates to ensure the integrity of published
products. When creating a RobotWare add-in that contains licensed options a
digital signature is mandatory.
To digitally sign a RobotWare add-in two different types of certificates are required,
a publisher certificate and a licensing certificate.
The publisher certificate signature has 2 main purposes:

• Identify the publisher of the add-in to the end user.
• Ensure the integrity of the published software. For example, any modifications

to the signed product manifest file will make the signature invalid and cause
the robot controller to refuse to install the add-in.

The publisher certificate is also commonly known as a code-signing certificate.
The add-in packaging tool will accept any x509 v3 certificate issued for this purpose.
ABB does not issue publisher certificates, it is the responsibility of the add-in
developer to obtain a suitable certificate for example by purchasing it from a trusted
certificate authority vendor or create their own self-signed certificate.
The licensing certificate is issued by ABB. This certificate is tied to the product id
you specify and grants you as the publisher the right to issue licenses for your
add-in. In addition to being used to sign your product the licensing certificate is
also used by the License Generator when creating license files for your RobotWare
add-in.

Timestamping
In addition to the signing certificates the RobotWare Add-In Packaging tool also
allows you to specify a timestamping server. Timestamping is the process of
applying a timestamp from a trusted source to your digital signature. This ensures
that the signature will still remain valid even if the signing certificate expires or is
revoked at a later date.
For example, without a timestamp the act of revoking a publisher or licensing
certificate would invalidate all products ever signed with these certificates whereas
with a timestamp products signed up to the revocation date will still remain valid.
Although not required, it is considered best practice and recommended to apply
a timestamp when signing your product.
The RobotWare Add-In Packaging tool supports timestamping services that follows
Microsoft Authenticode® standard. If you have purchased a publisher certificate
from a certificate authority they should be able to recommend a suitable
timestamping service.
As an alternative Symantec® operates a public timestamping service at the URL
http://timestamp.verisign.com/scripts/timstamp.dll. (Note that it is not possible to
browse to this URL.)

Continues on next page
86 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.4 Signing with digital certificates

Installation of digital certificates
All digital certificates (with the exception of self-signed certificates) are signed by
an issuer certificate. The issuer certificate in turn can have its own issuer, and so
on, until a self-signed root certificate is reached, this forms a so called certificate
chain.
For example the certificate chain for an ABB issued licensing certificate looks like
this:

ABB RobotWare Licensing Root

|

ABB RobotWare Licensing Issuing CA

|

Licensing for <your product>

The add-in packaging tool requires that all issuer certificates must be installed in
the Windows certificate store to be able to use the end user certificate for signing.
In the example above the ABB RobotWare Licensing Root and ABB RobotWare
Licensing Issuing CA certificates must be installed in order to be able to use the
Licensing for <your product> certificate.
In the case of publisher certificates, if you have purchased a certificate from a 3rd
party vendor the necessary certificate chain is usually already preinstalled in
Windows and no further installation is necessary.
In the case of licensing certificates the complete certificate chain is included in the
.pfx file delivered from ABB and the simplest way to install the issuer certificates
is therefore to install the .pfx file. This will also install the end user certificate which
can be uninstalled afterwards if desired.
To install the certificates locate the .pfx file in Windows Explorer, right click on the
file and select the Install PFX option, this will open up theCertificate ImportWizard.

Continues on next page
Application manual - RobotWare add-ins 87
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.4 Signing with digital certificates

Continued

Proceed through the wizard (you will need the pfx password provided by ABB)
until prompted to select a certificate store:

xx1500000935

By default the wizard will try to determine the appropriate store based on the type
of certificate. This would cause parts of the certificate chain to be installed as a
trusted root certificate which is not recommended in the case of licensing certificates
for security reasons. Instead it is recommended to change the default option and
place all the certificates in the personal store. This will not affect the signing
operations but will prevent the certificates from being trusted for operations for
which they are not intended.

Continues on next page
88 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.4 Signing with digital certificates
Continued

Viewing the installed certificates
It is possible to view and manipulate the contents of the Windows certificate store
through the certmgr snap-in to the Microsoft Management Console. To launch the
snap-in, execute the file cermgr.msc in the Windows system folder, usually
C:\Windows\system32\certmgr.msc.

xx1500000936

Application manual - RobotWare add-ins 89
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.4 Signing with digital certificates

Continued

2.6.1.5 Types of add-in packaging tools

Overview
The RobotWare Add-In Packaging tool is available in two forms; a GUI based tool
and a console based packaging tool. See User interface on page 91 and Building
an add-in from the console on page 107.

90 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.1.5 Types of add-in packaging tools

2.6.2 User interface

2.6.2.1 The home page

The home page
The home page of RobotWare Add-In Packaging tool is displayed when you select
New or Open from the File menu.

xx2000001995

The home page has three main views, Product Manifest, Files and Folders, and
Signing Certificates.
When all the information about the add-in has been entered, the add-in is built by
selecting Build Project from the Build menu.

Application manual - RobotWare add-ins 91
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.1 The home page

2.6.2.2 The File menu

The File menu
The File menu is used to manage the projects:

xx2000001996

The following table provides an overview of the options available in the File menu:

DescriptionName

Creates a new add-in project. The following options are available:
• Empty 6.x project: Select this option to create a 6.x add-in pack-

age project from scratch.
Empty 7.x project: Select this option to create a 7.x add-in pack-
age project from scratch.

• Project from an existing folder hierarchy: Select this option to
create an add-in using an existing folder hierarchy.

For details about creating a project, see Creating and building an add-
in project on page 106.

New

Opens an existing add-in project.

Note

The add-in project file extension is .rpkproj

Open

Closes the current active project.Close

Saves the current active project.Save

Continues on next page
92 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.2 The File menu

DescriptionName

Save the current active project to a different location on the file sys-
tem/network.

Note

The Save As operation saves all the project details in project files (.rp-
kproj, .rpkspecs and .manifest) into the newly selected location. Also a
copy of source files under the Files and folders tab will be created and
stored under the newly selected project folder.

Save As

Displays a list of 10 recently closed projects. You can choose to open a
recent project directly, instead of using the Open menu item.

Recent Projects

Exits the tool.Exit

Application manual - RobotWare add-ins 93
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.2 The File menu

Continued

2.6.2.3 The Product Manifest view

Introduction
The Product Manifest view is used to fill the product related information that goes
into the product manifest file. For example, product details such as Product Name,
Company Name and Product Version. The Product Manifest view is also used
to structure the add-in, and to set any dependencies or conflicts with the other
add-ins or RobotWare versions.

xx2000001995

Product Details tab
The following information is to be defined in the Product Details tab.

DescriptionField name

The name of the product.Product Name

The internal identifier that uniquely identifies the product.
• For licensed products the Product Identity must start with

one of the namespace strings defined by the licensing certi-
ficate. For more information, see Digital signing on page 86.

• For unlicensed products the Product Identity must start with
the string open, for example:
open.yourcompany.yourproduct.

Note

The namespace must be unique and may not contain the id of an-
other product. If so, it will not be possible to select both products
when creating an RS system.
For example, if product A has id open.mycompany.A, then product
B cannot have id open.mycompany.A.B.
The id must be changed to open.mycompany.A_B or some other
unique name.

Product Identity

Continues on next page
94 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

DescriptionField name

The product version field is used to uniquely identify a specific build
of the product. This information is used by the Modify Installation
function and other tools to determine the relation between different
releases of a product, that is, older, equal, or newer.

Product Version

The format of the product version follows the standards for Semantic
Versioning 2.0.0:
<Major>.<Minor>.<Patch>.<Pre-release>.<Build>

Note

The format differs between RobotWare 6 and 7.

The version name field represents the product version as displayed
to the end user. It differs from the Product Version field in that it is
intended for display purposes only and is not restricted to a specific
format. It can, for example, contain identifiers such as "Beta" or
"Release Candidate" in addition to the version.

Version Name

For example, if the Product Version is "2.1.0-32.Internal.Beta1+32"
the Version Name can be "2.1.0-32.Internal.Beta1".

Note

Add-Ins built with version 1.3 or older of the RobotWare Add-In
Packaging tool are displayed in the Modify Installation function as
a combination of the Product Name and Product Version fields.
From version 1.4 the Version Name is used instead of Product
Version and it is therefore important that this field contains relevant
information.

The name of your company.Company Name

The website of your company.Company Url

Copyright information.Copyright

Short product description.Description

The Product Dependencies settings are used to set up dependencies to other
add-ins and RobotWare versions.
Click Add and then Import to add a dependent software. The following fields will
be filled automatically:

DescriptionField name

The internal identifier of the product.Identity

The name of the product.Name

The installation target platform, for instance robot controller and/or
virtual controller.

Platform

The company name of the add-in publisher.Publisher

The minimum product version.MinVersion

The maximum product version (optional).MaxVersion

Product type. Always set to Add-In.Type

Continues on next page
Application manual - RobotWare add-ins 95
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

Continued

Options tab
The Options tab helps you to create options and to specify their details.
Click New to display the required fields for creating a new option.

xx2000001998

The information is to be defined in the following fields:

DescriptionField name

Displays all fields that must be completed for the creation of a new
option.

New

Removes the selected option.Remove

Validates the newly created option.Validate

Type the name of the option. This name is displayed in the Modify
Installation function in RobotStudio.

Display Name

Type the internal identifier of the option. This id is what uniquely
identifies an option in a product. The identifier must begin with the
the internal identifier of the product.

Identity

For example: open.yourcompany.yourproduct.youroption

For more information, see Optional features on page 83.

Select the type of the option:
• System - Options that are global for the system.
• Robot - Options that can be set per robot in the system. For

example, when using MultiMove where different robots may
have different equipment.

Type

Continues on next page
96 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view
Continued

DescriptionField name

Select the option attributes:
• Required license - The option requires a license.
• Is internal - The option is not shown in theModify Installation

function user interface.
• Is default selected - The option is selected by default in the

Modify Installation function in RobotStudio.
• Is locked - The option cannot be deselected inModify Install-

ation function in RobotStudio.

Note

For licensed products, at least one option should have theRequired
license check box selected.

Attributes

The minimum number of robots in the system that can have the
option.

Note

This field is only valid for the option type Robot.

Min Instances

The maximum number of robots in the system that can have the
option. For example, when using several robots in a MultiMove
system.

Note

This field is only valid for the option type Robot.

Max Instances

Validate the option
Before leaving the Options tab, you must validate the options by clicking the
Validate button.
The following validation is performed:

• The option identity must always begin with product identity text as prefix.

Feature Data
For each option it is possible to define key values that can be retrieved from
install.cmd file during product installation. For more information see, getkey on
page 58.

DescriptionField name

Id of the key value.Id

Key value.Key

Continues on next page
Application manual - RobotWare add-ins 97
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

Continued

Feature Data in MultiMove systems
By default, all the robots in a MultiMove system will get the same option settings.
When it is desired to have different settings for the different robots it is necessary
to provide more details to the robot options in the Feature Data settings.
Select a robot option in the option view, in the Feature Data section, add
{{instance}} to the Id or Key data of those robot options you would like to work
per robot in a MultiMove system, for example ROBOT{{instance}}COLOR.

xx2000001999

During installation, the Modify Installation function will resolve {{instance}} to
1, 2, 3, or 4, depending on which robot this setting was meant for. This will allow
to check for settings like ROBOT1COLOR, ROBOT2COLOR, ROBOT3COLOR, and
ROBOT4COLOR in the install.cmd files, for example in the following way:

getkey -id "ROBOT1COLOR" -var 10 -strvar $ANSWER -errlabel ERROR

goto -strvar $ANSWER

#ORANGE

config ...

#NEXT

#ERROR

Continues on next page
98 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view
Continued

Categories tab
The Categories tab is used to group and structure the options according to how
the add-in should be displayed in the Modify Installation user interface.
It is not allowed to mix system options and robot options within the same category.
When both system options and robot options are included in the add-in, they must
be put into separate categories.

Modify InstallationCategories tab

xx1400002383

xx2000002000

The following validation is performed:
• Only the same option type can be grouped together in a category. That is,

an option of the type System cannot be in the same category as an option
of type Robot.

Dependency tab
The Dependency tab is used to configure the dependencies between options.

xx2000002001

Continues on next page
Application manual - RobotWare add-ins 99
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

Continued

A dependency specified for an option in an add-in could be either of type AND
dependency options, or of type OR dependency options.
For more information, see Dependencies on page 83.

Note

Combining AND dependencies with OR dependencies in the same group is not
supported.

Use the following procedure to configure the dependencies between options:
1 Select a source from the Source list. The source option is the option that

should have a dependency to one or several other options.
2 Select an option in the list, and click Add to move the dependencies for that

option either to the AND dependency options list or to the OR dependency
options list.

Note

If you added a product dependency in the Product Details tab, the options
of that product will also be listed as options that the source option can
depend upon.

3 Click Add Group to define the dependency.
The group is added to the Preview dependency groups section.

Note

When the dependency has been defined, it is listed in the dependency
group list. Use theEdit Group andRemoveGroup buttons to edit or remove
a dependency rule for an option dependency group.

Continues on next page
100 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view
Continued

Conflict tab
The Conflict tab is used to configure conflicts between the options.

xx2000002002

By configuring the conflicts, the conflicting options cannot be selected at the same
time in the Modify Installation user interface.
Add the conflicting options one by one, and group them by clicking Add Group.
Create a conflict group for each set of conflicting options.

Note

Sometimes, options specified in an OR dependency list are also in conflict with
each other. In that case they should also be added both to the OR dependency
list and to a conflict group.

The Files and folders view
The Files and Folders view is used to create the robot package file.

Note

Verify that all the files and folders to be transferred to the controller during
installation are in place. Files and folders can be added and removed using the
user interface.

Files and folders can be added to the project using the Files and Folders view.

Application manual - RobotWare add-ins 101
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

Continued

Right-click at the folder level for the following options:

xx2000002003

DescriptionField name

Creates a new folder. The folder is added to the respective level on
the tree.

New Folder

Adds an existing folder on the file system to the project.Add Folder

Adds the individual files to the project.Add Files

Renames the selected folder.

Note

The root folder cannot be renamed.

Rename

Removes the selected folder.

Note

The root folder cannot be removed.

Remove

102 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view
Continued

Right-click inside a folder for the following options:

xx2000002004

DescriptionField name

Creates a new folder under the selected folder. The folder is added
to the respective level on the tree.

New Folder

Adds an existing folder under the selected folder.Add Folder

Adds the individual files to the project.Add Files

Copies the full path of the selected file to the clipboard.Copy Full Path

Opens the selected folder location in Explorer.Open Containing
Folder

Opens the selected file in the software tool for the file.Open

Renames the selected file.Rename

Removes the selected file from the project.Remove

The name of the installation folder is a combination of the Product Name and the
Product Version, that was defined in the Product Details tab.

Note

The added files or folders are not physically copied to the project folder. The
RobotWare Add-In Packaging tool creates only a reference to the source files
or folders. Hence the added files and folders should be available at the original
source path.

When the project files or folders are modified in the original source location, there
will be impacts in the Files and Folders view while opening a saved project.

• if a file or folder is deleted from the source location, then there will be an
indication about the missing file or folder in the Files and Folders view.

Application manual - RobotWare add-ins 103
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

Continued

• if a file or folder is manually added to the source location, then no indication
is provided. You need to manually add the new file or folder in the Files and
Folders view of the RobotWare Add-In Packaging tool, if the newly added
file or folder is needed in the output package.

Files and folders for converted add-ins
After converting an additional option to an add-in, the Syskey directory can be
removed from the Files and Folders view, since it will no longer be used in the
RobotWare 6 installation. It was required for the import of the additional option,
since it enables the RobotWare Add-In Packaging tool to auto generate the option
details, but now the folder can be removed.
The relkey.txt file can also be removed, since it is not used anymore.

The Signing Certificate view
The Signing Certificate view is used to add the publisher and licensing certificates.
This information is mandatory for licensed options and is used during the signing
of the manifest and robot package files. For more information, see Digital signing
on page 86.

xx2000002005

104 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view
Continued

DescriptionField nameSection

Select this option if the publisher certificate for digital
signing should be provided as .pfx files.

Note

Browse Publisher Certificate to select the certificate
from its stored location.

Select from filePublisher Certi-
ficate

Select this option if the publisher certificate for digital
signing should be installed on your PC from the Win-
dows certificate store.

Select fromWin-
dows certificate
store

Browse to select a certificate (.pfxfile) from its stored
location. The selected path is displayed.

Note

This field is used in combination with option Select
from file.

Publisher Certi-
ficate

The password for the publisher certificate when spe-
cified as a .pfx file.

Publisher Certi-
ficate Password

Select this option if the licensing certificate for digital
signing should be provided as .pfx files.

Note

Browse Licensing Certificate to select the certificate
from its stored location.

Select from fileLicensing Certi-
ficate

Select this option if the licensing certificate for digital
signing should be installed on your PC from the Win-
dows certificate store.

Select fromWin-
dows certificate
store

Browse to select a certificate (.pfxfile) from its stored
location. The selected path is displayed.

Note

This field is used in combination with option Select
from file.

Licensing Certi-
ficate

The password for the licensing certificate when spe-
cified as a .pfx file.

Licensing Certi-
ficate Password

Displays the URL to a timestamp server.TimestampServ-
er For more information, see Timestamping on page 86.

Application manual - RobotWare add-ins 105
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.2.3 The Product Manifest view

Continued

2.6.3 Creating and building an add-in project

Procedure
Use the following procedure to create and package the add-in.

1 Create a new empty project by clicking New in the File menu, and then
selecting one of the following options:

• Empty 6.x project: Select this option to create a 6.x add-in package
project from scratch.

• Empty 7.x project: Select this option to create a 7.x add-in package
project from scratch.

• Project from an existing folder hierarchy: Select this option to create
an add-in using an existing folder hierarchy. The tool will try to generate
default data for the add-in.

2 Complete all mandatory information for the add-in in the Product Manifest
view. This includes information regarding product details, options, categories,
dependencies and conflicts. See The Product Manifest view on page 94 for
details.

3 Create the robot package file by adding files and folders in the Files and
Folders view. See The Files and folders view on page 101 for more details.

Note

Verify that all the files and folders to be transferred to the controller during
installation are in place. Files and folders can be added and removed using
the user interface.

4 For licensed options, add the publisher and licensing certificates in the
Signing Certificate view. See The Signing Certificate view on page 104 for
more details.

5 Build the add-in by selecting Build Project from the Build menu.
6 Generate a license using the License Generator. See License Generator on

page 109 for more details.
7 Verify the add-in by building a system using the Modify Installation function

in RobotStudio. See Operating manual - RobotStudio for more information.

106 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.3 Creating and building an add-in project

2.6.4 Building an add-in from the console

Overview
The console version of the RobotWare Add-In Packaging tool,
APTCommandLine.exe, is used to build an existing add-in project from the
command line.
The console version may be used as a batch command with relevant information
to generate the add-in.
Use the argument "-h" along with APTCommandline.exe to display all the available
arguments.

Note

Use : (colon) to separate an argument name and its value.

Note

Run APTCommandline.exe without any argument on the command line to view
the usage of arguments with examples.

Prerequisites
The add-in project must be created with all relevant references and desired files
and folders using the with the GUI based add-in packaging tool.
The console based add-in packaging tool uses this project to generate the add-in
in an unattended manner when provided with all the relevant information in the
batch command.

Description
The following table provides details of allowed add-in packaging tool command
line parameters switches:

DescriptionParameters switches

Project file name for APT RPKProj file.-projectfilename

Publisher signing certificate file.-pubcertfile

Password for the publisher certificate.-pubcertfilepassword

Licensing signing certificate file.-liccertfile

Password for the licensing certificate-liccertfilepassword

Thumbprint for the licensing certificate stored in the certi-
ficate store.

-liccertthumbprint

Thumbprint for the publisher certificate stored in the certi-
ficate store.

-pubcertthumbprint

Timestamping server URL for code signing.-timestampurl

Output folder where project output will be generated.-outputfolder

If this parameter's value is set to TRUE, an open add-in is
generated without considering the licensing.

-isopenaddin

Continues on next page
Application manual - RobotWare add-ins 107
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.4 Building an add-in from the console

For signing APT output files using Certificate files, possible options are:
• Publisher certificate files -pubcertfile along with the certificate file

password -pubcertfilepassword.
• Licensing certificate files -liccertfile along with the certificate file

password -liccertfilepassword.
For signing APT output files with thumbprint of certificate in the computer’s
certificate store, possible options are:

• Publisher thumbprint -pubcertthumbprint
• Licensing thumbprint -liccertthumbprint

Note

For publisher/licensing certificate signing, user can either use certificate file(s)
and password or thumbprint(s) but not both in a single batch instruction.

Note

It is possible to use file certificate file and password for publisher signing and
thumbprint for license signing.

108 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.6.4 Building an add-in from the console
Continued

2.7 License Generator

2.7.1 Introduction

General
The License Generator generates license files for RobotWare add-ins.

Installation procedure

Note

The License Generator, including the license certificate, must be ordered from
ABB.

1 Install the License Generator.
2 Install the certificate for the License Generator. Use the password provided

by ABB.
3 Start the License Generator.

Application manual - RobotWare add-ins 109
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.7.1 Introduction

2.7.2 The user interface

2.7.2.1 The Preferences window

Preferences
Before running the License Generator, the preferences in the Preferenceswindow
must be set up:

xx2000002041

DescriptionField name

The location of the product manifest files (*.rmf).Product Locations

The default location where the created licence files (*.rlf) should
be saved.

Default License Location

The authorization file, license file, (*.rlf) for the License Gener-
ator provided by ABB.

Authorization File

Install/use the certificate provided by ABB, same certificate as
for the RobotWare Add-In Packaging tool.

• Select from certificate store - Select certificates from
store if the certificates are already installed.

• Select from file - Select certificates from file (*.pfx) to
install the certificates.

Signing Certificate
(radio button)

Use the certificate password provided by ABB.Certificate Password

URL to a timestamp server.Timestamp Server
For more information, see Timestamping on page 86.

110 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.7.2.1 The Preferences window

2.7.2.2 The main window

Overview of the main window
The main window is used to add all options that are to be included in the license
file. When all options are added, the license file is built by clicking Generate
License.

xx2000002040

DescriptionField name

Select the product manifest for which the license should be
created.

Select product

Select a license to import. The content of that license will be
copied.

License

Enter the serial number of the controller.Serial Number

Expand/collapse the options in the selected tab.Expand/collapse button.

License type Controller is selected.License Type

Clear all selected options.Clear All Selections
(button)

Automatically select dependant options.Auto resolve dependen-
cies (check box)

Generate the license file.Generate License
(button)

Tip

Double-click an option in the Preview Summary window to locate and highlight
the option in the tree-view.

Continues on next page
Application manual - RobotWare add-ins 111
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.7.2.2 The main window

Tip

Use the search function to search for option names instead of browsing through
the tree-view.

112 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.7.2.2 The main window
Continued

2.7.3 Creating the license

Creating a new license

Note

Before creating a license it is necessary to set up the preferences in the
Preferences window, see The Preferences window on page 110.

Use this procedure to create a new license.
1 Start the License Generator.
2 Set up the preferences in the Preferences window, see The Preferences

window on page 110.
3 In the main window, in field Select Product, select the product manifest for

which the license should be created.
4 Enter the Serial Number of the controller.
5 In the tree-view, select all options to be included in the licence.
6 Click Generate License to generate the license file.
7 Verify the license by building a system using the Modify Installation function

in RobotStudio.

Import and modify a license
Before creating a license it is necessary to set up the preferences in thePreferences
window, see The Preferences window on page 110.
Use this procedure to import and modify a license.

1 Start the License Generator.
2 Set up the preferences in the Preferences window, see The Preferences

window on page 110.
3 In the main window, in field Select Product, select the product manifest for

which the license should be created.
4 In field License, select the license to be imported and then click Open.
5 Enter the Serial Number of the controller.
6 In the tree-view, add or remove options.
7 Click Generate License to generate the license file.
8 Verify the license by building a system using the Modify Installation function

in RobotStudio.

Viewing a licence file
The content of the license file is displayed in the Licence View window.
Use this procedure to view a license.

1 Start the License Generator.
2 In the main window, click View to access the Licence View window.
3 Browse to the folder where the license is located.
4 Select the license file and click Open.

Continues on next page
Application manual - RobotWare add-ins 113
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.7.3 Creating the license

5 The content of the license file is displayed.

114 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

2 Reference material
2.7.3 Creating the license
Continued

A Appendix: Migration from RobotWare 6
RobotWare 6 install script command migration to RobotWare 7

The following table displays the RobotWare 6 commands and their migration status
to RobotWare 7:

• Not changed:
RobotWare 7 command is compatible with RobotWare 6 command.

• Available with restrictions:
The RobotWare 7 command has path restrictions compared to the RobotWare
6 command:
An add-in install script can only read from and write to the paths specified
in Introduction on page 49. The product installation directory is read-only
and add-ins cannot remove the write protection. See environment variables
under Introduction on page 49 for more details.

• Replaced:
The command is not available in RobotWare 7 but a replacement command
with corresponding functionality is introduced in RobotWare 7.

• Not available:
Currently not available in RobotWare 7. Use cases are requested for this
command.

• Removed:
Actively removed and there are no plans to support it in RobotWare 7.

DescriptionMigration statusName

Replaced by addintvar on page 53.Replacedaddvar

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsappend

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsattrib

Not changedconfig

Path restrictions apply. See Introduction on
page 49.

Available with restrictionscopy

Not changeddelay

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsdelete

Currently not available in RW 7.1. Can be
considered for RW 7.2. Use cases are reques-
ted for this command.

Not availabledelete_cfg_in-
stance

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsdirexist

Not changedecho

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsfileexist

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsfind_replace

Continues on next page
Application manual - RobotWare add-ins 115
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

A Appendix: Migration from RobotWare 6

DescriptionMigration statusName

Do not use argument -varno. Consider using
command if_feature_present on
page 59.

Not changedgetkey

Not changedgoto

Replaced by ifintvar on page 59.Replacedif

Not changedifstr

Not changedifvc

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsinclude

Available in RW 6, but not documented and
supported.

Removedinvoke

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsmkdir

Replaced by loop_include on page 61
and loop_break on page 61.

Replacedloop

Not changedonerror

Not changedprint

Not changedrapid_de-
lete_palette

Not changedregister

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsrename

Not changedsetenv

Not changedsetstr

Replaced by setintvar on page 65.Replacedsetvar

Not changedtext

Not changedtimestamp

Currently not available in RW 7.1. Can be
considered for RW 7.2. Uses cases are re-
quested for this command.

Not availableuas_install_ap-
plica-
tion_grants

Currently not available in RW 7.1. Can be
considered for RW 7.2. Uses cases are re-
quested for this command.

Not availableuas_in-
stall_groups

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsxattrib

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsxcopy

Path restrictions apply. See Introduction on
page 49.

Available with restrictionsxdelete

Continues on next page
116 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

A Appendix: Migration from RobotWare 6
Continued

Note

RobotWare 7 sandboxes all add-ins in a more strict way than RobotWare 6.
Therefore, only the commands described in this manual and with the restrictions
described here can be used in RobotWare 7.

Application manual - RobotWare add-ins 117
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

A Appendix: Migration from RobotWare 6
Continued

This page is intentionally left blank

B Appendix: Product manifest files guidelines
(RobotWare 7)
Overview

This appendix contains a list of additional guidelines that should be followed as
best practices when structuring product manifest files in add-in packaging tool.
Following these guidelines will ensure that the add-in is properly displayed in
RobotStudio when modifying RobotWare system configuration of a real and virtual
controller that utilizes the add-in.

General product level guidelines

Unique product ID
Each product needs to have a unique product ID that is not a subset of another
product ID.
Example:
The following two product IDs overlap and will not be handled correctly when
configuring a system that includes both products:

open.mycompany.productA

open.mycompany.productA.extension

Views

Multiple appearances of a feature
For those parts of the view tree structure that can be visible at the same time, it is
possible but not recommended to expose the same feature in multiple places in
the view.

Note

A feature has always the same value regardless of where it appears in the view.

Note

Option/feature editor hides child nodes of unselected nodes.

Build hierarchies
Use <FeatureRef> element in the view:

• For those branches in the view that represent exclusive/conflicting choices
, or

• When a view branch and all its child features are optional

Continues on next page
Application manual - RobotWare add-ins 119
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

B Appendix: Product manifest files guidelines (RobotWare 7)

It other cases, it is most likely simpler to just use a <Group> element for
representing the branch in the view.

Note

<FeatureRef> cannot directly contain <FeatureRef>s. To add sub-features under
a <FeatureRef>, it is always necessary to create a new pair of elements:

<Groups><Group>...</Group></Groups>

Example:

xx2300001368

Deep hierarchies
Whenever possible, avoid deep hierarchies in the view.

Conflicts

Selecting feature group member
When one and only one member of a feature group must always be selected by
the user, then

• define the feature group using <Conflict> element, and
• use isMandatory="true" attribute on the <Conflict> element.

Continues on next page
120 Application manual - RobotWare add-ins

3HAC070207-001 Revision: F
© Copyright 2020-2023 ABB. All rights reserved.

B Appendix: Product manifest files guidelines (RobotWare 7)
Continued

Note

Members of the Conflict group that is marked with isMandatory="true" attribute
are vizualized by the viewer as radio-buttons.

Example:

xx2300001388

Group conflict
A conflict group can, but it does not have to, correspond to a single <Group> in
the view.
Example:
Robot variants have multiple named sub groups in the view , but there is just one
conflict definition for all robot variants.

xx2300001389

xx2300001390

Dependencies
• Keep dependencies as simple and minimal as possible!
• Do not use circular dependencies between features. If used, behavior is

undefined.

Continues on next page
Application manual - RobotWare add-ins 121
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

B Appendix: Product manifest files guidelines (RobotWare 7)
Continued

• Only use dependencies between features that are defined in the same
manifest file and to features from other products that are listed in the product
dependency list

• Avoid using AND and OR dependencies between features that have parent
- child relationships in views (applies to both directions: parent -->child and
child -->parent)

• Use AND dependencies to automatically pull in dependent features:
- that are present in different branches of the view tree and between

features in the same group of a view (avoid dependencies between
parent --> child nodes as mentioned above), or

- to pull in hidden (internal) features
• Use OR dependencies to refer to a dependent feature group (or a subset of

it) that is defined in another branch of the view tree. (Advanced)
Example:
Robot variant > Controller drive system(s)

Licensing

Licence protected features
Features that are license protected can be declared as such in two different ways:

• Directly - those feature definitions directly marked by using isLicensed=”true”
attribute, or

• Indirectly - by making a feature AND dependent to another feature that has
attribute isLicensed=”true”

Hierarchical licensing models
Hierarchical licensing models can be implemented by:

• first defining a set of directly licensed features which represent licensing
levels (e.g., Basic, Premium, Premium Plus)

• define ordering of the licensing levels by making them AND dependent to
each other (e.g., Basic < Premium < Premium Plus)

• and then assigning each functional feature to one of those license levels by
making it "AND dependent" on the chosen licensing level (e.g.,"Feature A"
> Basic, "Feature A++" > Premium).

Default selection
When possible, define one of conflicting features choices as default. See information
about the isMandatory attribute in Selecting feature group member on page 120.

122 Application manual - RobotWare add-ins
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

B Appendix: Product manifest files guidelines (RobotWare 7)
Continued

Index
A
addintvar, 53
append, 53
attrib, 53

C
CAB_TASK_MODULES, 33
cfg_create_type_from_rules_def, 54
cfg_create_type_from_xml, 54
config, 54
copy, 57

D
default argument values, 37
delay, 57
delete, 57
direxist, 57

E
echo, 57
eio.cfg, 36
event log messages, 19
event log texts, 20

F
fileexist, 58
find_replace, 58

G
getkey, 58
goto, 58

I
if_feature_present, 59
ifintvar, 59
ifstr, 59
ifvc, 60
include, 60
install_io_project, 60
install.cmd, 53, 67

L
load modules, 33
loop_break, 61
loop_include, 61

M
math_lib_set_mem_size, 61
mkdir, 61
mmc.cfg, 37
module, 68
MoveCircle, 68

N
NOSTEPIN, 68

O
onerror, 62

P
pick list, 37
print, 62

R
rapid_delete_palette, 62
rapid_delete_palette_instruction, 63
RAPID module, 68
RAPID rules, 37
register, 63
rename, 64

S
safety, 9
setenv, 64
setintvar, 65
setstr, 65
sys.cfg, 33
system module, 68

T
template file, 19
text, 65
timestamp, 65

V
validating .xml, 22

X
xattrib, 66
xcopy, 66
xdelete, 66
xml

validating, 22

Application manual - RobotWare add-ins 123
3HAC070207-001 Revision: F

© Copyright 2020-2023 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
70
20
7-
0
0
1,
R
ev

F,
en

© Copyright 2020-2023 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	Safety
	1 Getting started
	1.1 About RobotWare add-ins
	What is an add-in
	Packaging your add-in
	Licensing your add-in

	1.2 Add-in directory and file structure
	Recommended file structure
	Add-in files

	1.3 Quick start procedures for example add-in
	Prerequisites
	Copy the example add-in
	Get familiar with the contents of the add-in
	Package your add-in for installation
	Create a Virtual Controller in RobotStudio using the Modify Installation function
	Modify Installation
	Try the add-in

	Distributing add-in to your users

	2 Reference material
	2.1 Custom event log messages
	2.1.1 About event log messages
	Overview
	Event log message .xml file
	Template file

	2.1.2 Event log texts
	Overview
	Explanation of the .xml file
	Example of the .xml file

	2.1.3 Validating event log .xml files
	Introduction
	Prerequisites

	2.1.4 Configure event logs to take focus on the FlexPendant
	Overview
	Configuration setup and prerequisites
	Create event log message rules
	Example

	Register rules in install.cmd file
	Example

	2.2 Register safety template
	Introduction
	Add-in directory and file structure
	Prepare the directory and files for the add-in
	install.cmd
	Safety
	<...>_metadata.xml
	Templates

	Display of directory and file structure in the Add-in packaging tool

	2.3 System parameters related to add-in development
	2.3.1 About cfg files
	Overview
	Domain specifier
	Example

	Comments
	Type specifiers
	Instances and attributes
	Single or multiple rows
	Arrays
	Attribute of type Boolean

	Example of cfg file

	2.3.2 Topic Controller
	About the topic Controller
	Automatic loading of modules (CAB_TASK_MODULES)
	Example

	Modules included in a backup
	Exclude files and directories at backup
	Example

	2.3.3 Topic I/O System
	About the topic I/O System
	Hiding I/O signals to the user
	Example

	2.3.4 Topic Man-machine Communication
	About the topic Man-machine Communication
	Pick list titles (MMC_PALETTE_HEAD)
	Example

	Custom pick lists (MMC_MC1, MMC_MC2, MMC_MC3, etc.)
	Example

	Default arguments (MMC_REAL_ROUTINE)
	Example

	Argument reuse (MMC_INST_NOT_REUSING_PREV_OPT_ARG)
	Example

	Argument Name Rules (MMC_REAL_PARAM)
	Example

	Argument Identifier Rules (MMC_COMMON_PARAM)
	Example

	Data Value Rules (MMC_REAL_DATATYPE)
	Example

	Highlight argument (MMC_SELECT_PARAM)
	Example

	Work objects (MMC_INSTR_WITH_WOBJ)
	Example

	Load objects (MMC_INSTR_WITH_TLOAD)
	Example

	Circular points (MMC_INSTR_WITH_CIR_POINT)
	Example

	Arguments not available for modify position (MMC_NO_MODPOS)
	Example

	Targets not available for modify position when additional axes offset is active (MMC_NO_DATA_MODPOS_IF_ACT_EOFFS)
	Example

	Optional argument for considering additional axes offset (MMC_USE_ACT_EOFFS_IN_MODPOS)
	Example

	Between points (MMC_NO_PC_MOVEMENT)
	Example

	Without between point (MMC_NO_PC_MOVEMENT_CLEAR_PATH)
	Example

	Service routines (MMC_SERV_ROUT_STRUCT)
	Example

	Change of motion mode (MMC_CHANGE_MOTION_MODE)
	Example

	2.3.5 Example cfg files
	Overview
	CircleMove_sys.cfg
	CircleMove_mmc.cfg

	2.4 The install.cmd file
	2.4.1 Introduction
	Description
	Expansion rules during variable assignment

	2.4.2 Commands
	addintvar
	append
	attrib
	cfg_create_type_from_xml
	cfg_create_type_from_rules_def
	config
	Exceptions
	Examples
	Example on usage of -modify argument

	copy
	delay
	delete
	direxist
	echo
	fileexist
	find_replace
	getkey
	goto
	if_feature_present
	ifintvar
	ifstr
	ifvc
	include
	install_io_project
	Examples

	loop_break
	loop_include
	math_lib_set_mem_size
	mkdir
	onerror
	print
	rapid_delete_palette
	rapid_delete_palette_instruction
	register
	rename
	setenv
	setintvar
	setstr
	text
	timestamp
	xattrib
	xcopy
	xdelete

	2.4.3 Examples of install.cmd files
	Example for CIRCLEMOVE

	2.5 RAPID
	2.5.1 RAPID modules
	Overview
	RAPID code example

	2.5.2 Using text resources from files
	Overview
	Including language files from your add-in
	Example

	2.5.3 Hiding RAPID content
	Overview
	Split the code into two modules
	Example

	Use hidden modules and the pick list
	Example

	2.5.4 Optional settings for RAPID arguments (RAPID meta data)
	Overview
	XML format
	Name and location of the .xml file
	2.5.4.1 Hiding arguments in programs
	Overview
	XML format
	Example

	2.5.4.2 Hiding optional argument when changing selected instruction
	Overview
	XML format
	Example
	Usage

	2.5.4.3 Argument filter
	Overview
	XML format
	Regular expressions
	Examples

	2.5.4.4 Argument value range
	Overview
	XML format

	2.6 RobotWare Add-In Packaging tool
	2.6.1 Introduction
	2.6.1.1 About the RobotWare Add-In Packaging tool
	General
	Open and licensed add-ins
	Installation procedure

	2.6.1.2 Optional features
	Option identity
	System options and robot options
	Dependencies
	AND dependency
	OR dependency

	2.6.1.3 Files of a packaged add-in
	The product manifest file
	The robot package file

	2.6.1.4 Signing with digital certificates
	Digital signing
	Timestamping
	Installation of digital certificates
	Viewing the installed certificates

	2.6.1.5 Types of add-in packaging tools
	Overview

	2.6.2 User interface
	2.6.2.1 The home page
	The home page

	2.6.2.2 The File menu
	The File menu

	2.6.2.3 The Product Manifest view
	Introduction
	Product Details tab
	Options tab
	Validate the option
	Feature Data
	Feature Data in MultiMove systems

	Categories tab
	Dependency tab
	Conflict tab

	The Files and folders view
	Files and folders for converted add-ins

	The Signing Certificate view

	2.6.3 Creating and building an add-in project
	Procedure

	2.6.4 Building an add-in from the console
	Overview
	Prerequisites
	Description

	2.7 License Generator
	2.7.1 Introduction
	General
	Installation procedure

	2.7.2 The user interface
	2.7.2.1 The Preferences window
	Preferences

	2.7.2.2 The main window
	Overview of the main window

	2.7.3 Creating the license
	Creating a new license
	Import and modify a license
	Viewing a licence file

	A Appendix: Migration from RobotWare 6
	RobotWare 6 install script command migration to RobotWare 7

	B Appendix: Product manifest files guidelines (RobotWare 7)
	Overview
	General product level guidelines
	Unique product ID

	Views
	Multiple appearances of a feature
	Build hierarchies
	Deep hierarchies

	Conflicts
	Selecting feature group member
	Group conflict

	Dependencies
	Licensing
	Licence protected features
	Hierarchical licensing models

	Default selection

	Index

