Insulation Monitors in Energy Storage

Matt Darroch
Product Marketing Manager
Why you need insulation monitoring

Energy storage system

Application

- Energy storage systems (ESSs) utilize ungrounded battery banks to hold power for later use
- **NEC 706.30(D)** For BESS greater than 100V between conductors, circuits can be ungrounded if a ground fault detector is installed.
- **UL 9540:2020 Section 14.8** For BESS greater than 100V between conductors, circuits can be ungrounded if ground fault detector is installed.

Ground fault issue

- Since they are ungrounded, ESSs have lessened protection against ground faults
- Ground fault = lower performance
- Ground fault = safety/ fire risk

Insulation monitoring

- Insulation monitoring devices (IMDs) help enhance safety by monitoring earth leakage
- Detect unwanted leakage values before a fault occurs
- Detect insulation deterioration in real time
How it works
Energy storage system

Operating principle

- IMDs superimpose a test signal which measures the resistance to ground
- A resistance threshold is determined
- IMDs detect values outside the threshold

Diagram:

- Inverter (AC to DC)
- Battery
- Ground
- CM-IWN

©ABB
September 23, 2021 | Slide 3

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents—in whole or in part—is forbidden without prior written consent of ABB.
Product Selection

Insulation monitoring relays

General Purpose (CM-IWS and CM-IWN)

Performance
- Up 0-400V AC or 0-600 V DC
- Up to 20μf Ce
- 1 SPDT contact each for pre-warning and warning
- Coupling unit CM-IVN allows monitoring at 690V AC or 1000V DC

Dimension
- 45mm width (90mm with CM-IVN)

Features
- LED status indication
- Adjustment/ DIP switches via front panel

Advanced Applications (CM-IWM)

Performance
- Up to 1500V DC or 1100V AC network voltage
- Up to 3000μf Ce
- High adjustable range up to 250kΩ
- 1 SPDT contact each for pre-warning and warning

Dimension
- 90mm width

Features
- LED status indication
- LED indication for R
- Auto self test
Why Insulation Monitoring and not Residual Current Devices?

Principle

- A floating delta system cannot create the fault current magnitude needed for low impedance ground return path
- The system charging current is lower than the operating point of most RCDs
- The RCD device will never trip, not even if a bolted fault* existed for multiple days

*Bolted fault: a very low impedance connection between a phase and ground

\[I_F = \frac{V_{SG}}{R_{GR} + R_{QR} + R_{NG}} \]

- \(I_F \): Fault Current, in amperes
- \(V_{SG} \): Voltage between faulted phase and ground, in volts
- \(R_{GR} \): Resistance of the ground fault, in ohms
- \(R_{QR} \): Resistance of the ground-return path
- \(R_{NG} \): Resistance of neutral-to-ground bonding jumper
Why Insulation Monitoring and not Residual Current Devices?

Principle

- Ground fault detection in ungrounded arrays is typically achieved by measuring the insulation resistance of each pole relative to ground.
- Resistance values are measured in hundreds or thousands of kilo-ohms.
- Ground fault is detected when the impedance to ground of either pole drops to a low level (pre-warning and warning settings on IMDs).