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MARIO HOERNICKE, RIKARD HANSSON – When process 
control systems are going through their final test phases, 
a software simulation of the process is often used to test 
the control system response. However, this simulation is 
usually focused on the functional part of the process 
control system – namely, the centralized control applica-
tions. Distributed control functions, located within sub-

systems or field devices, are often neglected. ABB’s 
virtual emulator framework (VEF) integrates and automati-
cally configures subsystem emulators and so enhances 
functional testing. The networks of emulators that VEF’s 
virtualization-based technology enables the user to 
configure appear and behave like the actual automation 
system, subsystems and networks.

The virtual emulator framework simplifies 
process control system testing

Emulation to 
the rescue
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To tackle the emu-
lation complexity 
encountered in  
the integration and 
factory acceptance 
tests, ABB has  
developed the  
virtual emulator 
framework.

T
raditional process control sys-
tems (PCSs) commonly con-
sisted of a single subsystem – 
the distributed control system 

(DCS) – that interacted with sensors and 
actuators, and displayed process states 
or alarms and events on an operator con-
trol station. In contrast, the modern PCS 
is a high-performance product that incor-
porates – alongside the still-dominant 
DCS – fieldbuses, intelligent devices and 
other subsystems in order to provide 
more flexible and intelligent functionality.

The Foundation Fieldbus (FF) is one of the 
most prevalent fieldbuses found in mod-
ern PCSs [1]. 

Title picture
ABB’s virtual emulator framework greatly simplifies 
process control system testing by including 
distributed control elements in the overall 
simulation. Shown is part of an oil and gas  
plant in Hammerfest, Norway.

The FF distributes control functions for 
execution in field devices. In some cases, 
cascaded loops are used where the inner 
cascade is located in field devices and the 
outer cascade is located in the DCS con-
trollers. In other words, the FF can em-
body an entity that is altogether more 
complex than the DCS.

Another important example of a DCS-
connected subsystem is the electrical 
control system. The IEC 61850 standard, 
for instance, describes a fieldbus used for 
substation automation. The intelligent 
electronic devices (IEDs) with which it 
deals are comparable to the controllers of 
a traditional DCS.

However, there is a price to be paid for 
the increased functionality these subsys-
tems bring: For each subsystem integrat-
ed into the PCS, different engineering 
methods are required and highly complex 
interfaces have to be created.

Alongside this increasing sophistication 
– and, consequently, greater engineering 
effort – customers also demand a short-
er time to market. When the shrinking 
number of engineers is factored in, it 
 becomes clear that today’s PCS engi-
neering world faces a daunting task. 
Nevertheless,  engineers must guarantee 
acceptable quality, so efficient and com-
plete tests are essential.

Challenges in testing process control 
systems
The more complex the automation, the 
better testing has to be. As is the case in 
most software projects, testing is usually 
done throughout the development phase 
of a PCS. But there are two test stages 
at the end of the engineering effort con-
siderably more important than the rest: 
The factory acceptance test (FAT), where 
the PCS engineers test critical parts in 
cooperation with, and in the presence of, 
the customer, in order to validate engi-



                                      18 ABB review 1|15

The modern PCS 
is a high-perfor-
mance product 
that incorporates 
fieldbuses, intelli-
gent devices and 
other subsystems 
in order to provide 
more flexible and 
intelligent function-
ality.

are regularly sent directly to the site in 
 order to save shipping and staging costs, 
this testing is often not possible [2]. Re-
cent initiatives have developed imitations 
of the automation system hardware to 
 replace the hardware missing at integra-
tion test and FAT time ➔ 1.

To stimulate the automation system emu-
lators and to provoke reactions to pro-
cess states, a process simulation is often 
used. For the integration test and FAT, 
lightweight simulation models are usually 
accurate enough, but in case operator 
training simulation or virtual commission-
ing is required for the plant, high-fidelity 
models can be used for these two tests. 
The connection between the PCS and the 
process simulation model, as well as the 
orchestration of the simulation environ-
ment and higher-level simulation function-
ality, can be performed using software 
such as the Extended Automation System 
800xA Simulator [3].

Although the plant can be completely imi-
tated and tested using process simulation 
combined with automation emulation and 
subsystem emulation, emulation is still not 
well established in the integration test and 
FAT. Investigations showed that this is due 
to the immense configuration effort re-
quired for the separate tools, combined 
with the high administration effort for the 
emulation PCs and the impracticalities in-
volved in engineers mastering a large vari-
ety of emulation tools.

neering results (“Is it the right product?”); 
and the integration test, which checks 
the entire PCS functionality, including, for 
example, controller parameters or sub-
system interfaces. The integration test is 
performed before the FAT to verify engi-
neering results according to the specifi-
cation (“Is the product right?”). Both of 
these stages require the control system 

hardware to be staged on the shop floor 
– so servers, field devices, etc. need to 
be present, configured and administrat-
ed. This is a complex and time-consum-
ing task.

An important aspect of the integration 
test is the testing of the connections 
 between control functions located in  
the DCS and the subsystems (eg, FF or 
IEC 61850). Since the field components 

1  The virtual “hardware-in-the-loop” test bed can replace large parts of the  
automation hardware.
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The VEF is able to 
plan and deploy 
entire emulation 
networks for the 
automation system 
in question with 
just a few mouse 
clicks.
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The user is able to 
monitor and debug 
the configuration of 
the selected sub-
systems and the 
automation sys-
tem. The network 
behaves like – and 
appears to be – 
the original auto-
mation hardware 
and subsystem 
hardware.

2  Virtual-machine template with installed emulators

3  Parameters for emulator integration

Parameter Usage

Number of Ethernet interfaces Each emulator requires a defined number of Ethernet interfaces for each 
instance in which it is executed. The VEF uses this to configure the virtual 
hardware.

Number of simultaneously executable 
emulator instances

Depending on the implementation of the emulator, it is capable of executing 
a defined number of instances on a single PC or VM. This number is used to 
calculate how many VMs are required.

Number of simultaneously executable 
subsystem instances per emulator instance

Some emulators can emulate a number of subsystem instances within a 
 single instance of the emulator. VEM needs this number, as well, to create 
the instances of the emulators and assign a subsystem instance to each.

RAM required per emulator instance Indicates whether an emulator instance can be executed within a given 
PC environment and is used to configure the RAM of the VMs.

Object type of the emulated subsystem Each subsystem (or each emulated object) has an object type. 
The object type is used to identify the required emulation tool.

Emulation PC resources

Virtual PC resources

FF 
emulator

Soft
DCS

I/O
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Since the emulators have different capa-
bilities, depending on their implementa-
tion and the emulated subsystem type, a 
few parameters have to be provided to 
the VEF for each emulator type. The VEF 
uses these parameters to plan the virtual 
network topology and virtual hardware for 
each emulator type ➔ 3.

Besides the emulator-type-specific pa-
rameters – that have to be specified just 
once for each emulator type – the IP ad-
dresses for each object to be emulated 
are required. This parameter is instance-
specific and therefore needs to be sepa-
rately configured for each instance of an 
emulatable object. 

Finally, the VEF uses this information to 
 automatically configure the virtual net-
works and automatically establish commu-
nication between the emulator instances 
and the plant network.

Algorithm to generate a 
virtual emulator network
Based on the VM template, the VEF is 
able to apply a multistage algorithm. With 
this algorithm, the VEF is able to generate 
the required VMs, configure the virtual 
hardware according to the requirements 
of the emulator instances, configure the 
network interfaces and execute the emu-

To tackle this complexity, ABB has devel-
oped the virtual emulator framework (VEF).

The virtual emulator framework
The VEF is able to plan and deploy entire 
emulation networks for the automation 
system in question with just a few mouse 
clicks. Since it uses virtualization to auto-
matically create the emulation networks, 
the virtual hardware can also be automati-
cally created and configured, according to 
the automation system and PCS topology.

Integration of emulators into the VEF
As a prerequisite for the automatic gen-
eration of emulation networks, the emula-
tion tools need to be tightly integrated 
into the VEF. Conceptually, the VEF uses 
virtual machine (VM) infrastructure to inte-
grate emulators and to automatically gen-
erate the virtual appliances and the virtual 
networks for the emulation. The emula-
tors are installed on a VM template in the 
same way as on a physical PC ➔ 2.

The advantage of the virtual infrastructure 
is that the template can be easily dupli-
cated – allowing many instances to be 
created without user interaction and with-
out staging new physical PCs.
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lator instances with the instance-specific 
configuration ➔ 4.

When the algorithm has been success-
fully executed, the user is able to monitor 
and debug the configuration of the se-

lected subsystems and the automation 
system. The network behaves like – and 
appears to be – the original automation 
hardware and subsystem hardware.

VEF system architecture
To evaluate the developed algorithm,  
a prototype was developed for the  
PCS System 800xA. Two emulators, the  
AC 800M SoftController [4] and SoftFF [2] 
– including SoftCI [5] – were integrated 
into the prototype.

Since System 800xA has a distributed sys-
tem architecture and the focus has been on 
large system emulations, the architecture of 
the VEF is also of a distributed nature. As a 
base for the communication between the 
different nodes within the VEF and System 
800xA, TCP/IP was chosen.

The VEF consists of four node types that 
can be installed on the same physical PC or 
in VMS or it can be distributed – just as in 

The VEF automati-
cally configures  
the virtual network 
and automatically 
estab lishes commu-
nication between 
the emulator 
 instances and the 
plant network.

Step No. Description Illustration

1

Export of the automation system topology
In the first step, the topology of the automation system is 
 exported from the PCS engineering system. The engineered 
 topology within the PCS contains the automation system 
 components, eg, controllers. Based on the object type, 
 emulatable components can be identified and highlighted.

2

Selection of parts that need to be emulated
Usually, only certain parts of the plant are tested at the same 
time and the user can select these. The configuration files for 
these instances are then created. Those files are later used to 
automatically configure the emulator instances.

3

Calculation of required number of VMs
Based on the parts selected for emulation, the required  
number of VMs can be evaluated, whereby some rules have  
to be adhered to:
– The maximum number of Ethernet 
 cards per VM may not be exceeded.
– The maximum number of executable instances 
 on one VM may not be exceeded for any emulator.
– The maximum number of emulatable objects  
 per emulator instance may not be exceeded.
– Virtual RAM may not exceed physical RAM.

4
Instantiation of virtual machines
Based on the calculated number of required VMs, the VM 
 instances are created from the template.

5

Configuration of virtual hardware
Based on the parameters of the emulator types, the hardware 
of the specific VM instances is configured. The required number 
of Ethernet interfaces and the required RAM for each individual 
instance are configured.

6

Configuration and execution of emulator instances
In the last step, the VM instances are started, the configura- 
tion files created in step 2 are used to configure the emulator 
instances, and the emulator instances are executed.

4  Algorithm to create the virtual emulation network
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System 800xA ➔ 5-6. Except for the con-
figuration node, the VEF consists only of 
MS Windows services that do not require 
user interaction.

As a base for the prototype, the VMware 
platform was chosen. The prototype has 
been evaluated using VMware Workstation 
for small emulation networks that can be 
deployed on a single PC and VMware 
vSphere Hypervisor for large virtual emula-
tion networks, based on the VMware ESXi 
platform. Both scenarios have been tested 
with positive results.

Fast FAT
The VEF was developed to enable an effi-
cient integration test and FAT preparation, 
with little manual intervention, and it has 
been successful in this.

The VEF requires only two user interac-
tions to deploy an entire virtual emulation 
network: The selection of the objects to 

be emulated and the configuration of the 
private cloud/virtualization PCs. The pur-
chase, staging and configuration of spe-
cial emulation PC hardware is no longer 
necessary.

By using virtualization, the configuration 
of the hardware interfaces required for 
the emulator instances also becomes un-
necessary. Now, the configuration can be 
performed automatically in accordance 
with engineering data exported from the 
engineering tools.

The prototype demonstrates the feasibili-
ty of implementing this solution for a 
complex PCS. Hence, the VEF is a scal-
able solution to efficiently configure and 
deploy heterogeneous emulation net-
works for process control systems.
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Node type name Usage Residence

Configuration 
node

The configuration node is used to select the parts 
that will be emulated.

A PC inside the System 800xA network;  
not necessarily a System 800xA node.

Engineering system 
access node

This node type consists of a single service that is 
used to interface with the engineering system of 
System 800xA. It is used to export the automation 
system topology and the configuration files for the 
emulator instances.

A System 800xA node that contains the 
 required engineering tools for exporting the 
configuration and that has access to the 
 aspect directory.

Orchestration node 
for the hypervisor

Orchestration of the hypervisor controlling the VMs 
is required as well. This node makes the connection 
to the hypervisor (eg, VMware vSphere) and to start, 
stop, create, etc. the VMs.

This node needs to be installed and executed 
on a PC that has access to the hypervisor (eg, 
PC with vSphere Client installed). It must be 
located in the same networks, like the other 
nodes.

Virtual machine 
node

The VM node configures the emulator instances and 
starting and stopping the emulator instances inside 
the VMs.

This node is installed in the VM template and 
executed automatically on every VM instance.

5  System architecture: virtual-emulator-framework nodes

6  Virtual-emulator-framework communication structure
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