
 16 ABB review 1|15

MARIO HOERNICKE, RIKARD HANSSON – When process
control systems are going through their final test phases,
a software simulation of the process is often used to test
the control system response. However, this simulation is
usually focused on the functional part of the process
control system – namely, the centralized control applica-
tions. Distributed control functions, located within sub-

systems or field devices, are often neglected. ABB’s
virtual emulator framework (VEF) integrates and automati-
cally configures subsystem emulators and so enhances
functional testing. The networks of emulators that VEF’s
virtualization-based technology enables the user to
configure appear and behave like the actual automation
system, subsystems and networks.

The virtual emulator framework simplifies
process control system testing

Emulation to
the rescue

 17Emulation to the rescue

To tackle the emu-
lation complexity
encountered in
the integration and
factory acceptance
tests, ABB has
developed the
virtual emulator
framework.

T
raditional process control sys-
tems (PCSs) commonly con-
sisted of a single subsystem –
the distributed control system

(DCS) – that interacted with sensors and
actuators, and displayed process states
or alarms and events on an operator con-
trol station. In contrast, the modern PCS
is a high-performance product that incor-
porates – alongside the still-dominant
DCS – fieldbuses, intelligent devices and
other subsystems in order to provide
more flexible and intelligent functionality.

The Foundation Fieldbus (FF) is one of the
most prevalent fieldbuses found in mod-
ern PCSs [1].

Title picture
ABB’s virtual emulator framework greatly simplifies
process control system testing by including
distributed control elements in the overall
simulation. Shown is part of an oil and gas
plant in Hammerfest, Norway.

The FF distributes control functions for
execution in field devices. In some cases,
cascaded loops are used where the inner
cascade is located in field devices and the
outer cascade is located in the DCS con-
trollers. In other words, the FF can em-
body an entity that is altogether more
complex than the DCS.

Another important example of a DCS-
connected subsystem is the electrical
control system. The IEC 61850 standard,
for instance, describes a fieldbus used for
substation automation. The intelligent
electronic devices (IEDs) with which it
deals are comparable to the controllers of
a traditional DCS.

However, there is a price to be paid for
the increased functionality these subsys-
tems bring: For each subsystem integrat-
ed into the PCS, different engineering
methods are required and highly complex
interfaces have to be created.

Alongside this increasing sophistication
– and, consequently, greater engineering
effort – customers also demand a short-
er time to market. When the shrinking
number of engineers is factored in, it
 becomes clear that today’s PCS engi-
neering world faces a daunting task.
Nevertheless, engineers must guarantee
acceptable quality, so efficient and com-
plete tests are essential.

Challenges in testing process control
systems
The more complex the automation, the
better testing has to be. As is the case in
most software projects, testing is usually
done throughout the development phase
of a PCS. But there are two test stages
at the end of the engineering effort con-
siderably more important than the rest:
The factory acceptance test (FAT), where
the PCS engineers test critical parts in
cooperation with, and in the presence of,
the customer, in order to validate engi-

 18 ABB review 1|15

The modern PCS
is a high-perfor-
mance product
that incorporates
fieldbuses, intelli-
gent devices and
other subsystems
in order to provide
more flexible and
intelligent function-
ality.

are regularly sent directly to the site in
 order to save shipping and staging costs,
this testing is often not possible [2]. Re-
cent initiatives have developed imitations
of the automation system hardware to
 replace the hardware missing at integra-
tion test and FAT time ➔ 1.

To stimulate the automation system emu-
lators and to provoke reactions to pro-
cess states, a process simulation is often
used. For the integration test and FAT,
lightweight simulation models are usually
accurate enough, but in case operator
training simulation or virtual commission-
ing is required for the plant, high-fidelity
models can be used for these two tests.
The connection between the PCS and the
process simulation model, as well as the
orchestration of the simulation environ-
ment and higher-level simulation function-
ality, can be performed using software
such as the Extended Automation System
800xA Simulator [3].

Although the plant can be completely imi-
tated and tested using process simulation
combined with automation emulation and
subsystem emulation, emulation is still not
well established in the integration test and
FAT. Investigations showed that this is due
to the immense configuration effort re-
quired for the separate tools, combined
with the high administration effort for the
emulation PCs and the impracticalities in-
volved in engineers mastering a large vari-
ety of emulation tools.

neering results (“Is it the right product?”);
and the integration test, which checks
the entire PCS functionality, including, for
example, controller parameters or sub-
system interfaces. The integration test is
performed before the FAT to verify engi-
neering results according to the specifi-
cation (“Is the product right?”). Both of
these stages require the control system

hardware to be staged on the shop floor
– so servers, field devices, etc. need to
be present, configured and administrat-
ed. This is a complex and time-consum-
ing task.

An important aspect of the integration
test is the testing of the connections
 between control functions located in
the DCS and the subsystems (eg, FF or
IEC 61850). Since the field components

1 The virtual “hardware-in-the-loop” test bed can replace large parts of the
automation hardware.

Controller
OPC servers

System server(s)

HSE: high-speed Ethernet

Profinet IO

PROFIBUS DP
FF H1

FF HSE IEC 61850

PROFIBUS PA

Process

Process
simulation

FF HSE OPC
connectivity
server

Plant network/
client-server network

61850 OPC server

Control network

HMISystem clients

Controller
(DCS)

DCS emulation
(eg, AC800M
SoftController

Profibus
emulation

I/O emulation
(eg, SoftIO)

FF emulation
(eg, SoftFF)

IEC 61850
emulation

Coupler emulation
(eg, SoftCI, SoftCI860)

Profinet
emulation

I/O

The VEF is able to
plan and deploy
entire emulation
networks for the
automation system
in question with
just a few mouse
clicks.

 19Emulation to the rescue

The user is able to
monitor and debug
the configuration of
the selected sub-
systems and the
automation sys-
tem. The network
behaves like – and
appears to be –
the original auto-
mation hardware
and subsystem
hardware.

2 Virtual-machine template with installed emulators

3 Parameters for emulator integration

Parameter Usage

Number of Ethernet interfaces Each emulator requires a defined number of Ethernet interfaces for each
instance in which it is executed. The VEF uses this to configure the virtual
hardware.

Number of simultaneously executable
emulator instances

Depending on the implementation of the emulator, it is capable of executing
a defined number of instances on a single PC or VM. This number is used to
calculate how many VMs are required.

Number of simultaneously executable
subsystem instances per emulator instance

Some emulators can emulate a number of subsystem instances within a
 single instance of the emulator. VEM needs this number, as well, to create
the instances of the emulators and assign a subsystem instance to each.

RAM required per emulator instance Indicates whether an emulator instance can be executed within a given
PC environment and is used to configure the RAM of the VMs.

Object type of the emulated subsystem Each subsystem (or each emulated object) has an object type.
The object type is used to identify the required emulation tool.

Emulation PC resources

Virtual PC resources

FF
emulator

Soft
DCS

I/O
emulator

Since the emulators have different capa-
bilities, depending on their implementa-
tion and the emulated subsystem type, a
few parameters have to be provided to
the VEF for each emulator type. The VEF
uses these parameters to plan the virtual
network topology and virtual hardware for
each emulator type ➔ 3.

Besides the emulator-type-specific pa-
rameters – that have to be specified just
once for each emulator type – the IP ad-
dresses for each object to be emulated
are required. This parameter is instance-
specific and therefore needs to be sepa-
rately configured for each instance of an
emulatable object.

Finally, the VEF uses this information to
 automatically configure the virtual net-
works and automatically establish commu-
nication between the emulator instances
and the plant network.

Algorithm to generate a
virtual emulator network
Based on the VM template, the VEF is
able to apply a multistage algorithm. With
this algorithm, the VEF is able to generate
the required VMs, configure the virtual
hardware according to the requirements
of the emulator instances, configure the
network interfaces and execute the emu-

To tackle this complexity, ABB has devel-
oped the virtual emulator framework (VEF).

The virtual emulator framework
The VEF is able to plan and deploy entire
emulation networks for the automation
system in question with just a few mouse
clicks. Since it uses virtualization to auto-
matically create the emulation networks,
the virtual hardware can also be automati-
cally created and configured, according to
the automation system and PCS topology.

Integration of emulators into the VEF
As a prerequisite for the automatic gen-
eration of emulation networks, the emula-
tion tools need to be tightly integrated
into the VEF. Conceptually, the VEF uses
virtual machine (VM) infrastructure to inte-
grate emulators and to automatically gen-
erate the virtual appliances and the virtual
networks for the emulation. The emula-
tors are installed on a VM template in the
same way as on a physical PC ➔ 2.

The advantage of the virtual infrastructure
is that the template can be easily dupli-
cated – allowing many instances to be
created without user interaction and with-
out staging new physical PCs.

 20 ABB review 1|15

lator instances with the instance-specific
configuration ➔ 4.

When the algorithm has been success-
fully executed, the user is able to monitor
and debug the configuration of the se-

lected subsystems and the automation
system. The network behaves like – and
appears to be – the original automation
hardware and subsystem hardware.

VEF system architecture
To evaluate the developed algorithm,
a prototype was developed for the
PCS System 800xA. Two emulators, the
AC 800M SoftController [4] and SoftFF [2]
– including SoftCI [5] – were integrated
into the prototype.

Since System 800xA has a distributed sys-
tem architecture and the focus has been on
large system emulations, the architecture of
the VEF is also of a distributed nature. As a
base for the communication between the
different nodes within the VEF and System
800xA, TCP/IP was chosen.

The VEF consists of four node types that
can be installed on the same physical PC or
in VMS or it can be distributed – just as in

The VEF automati-
cally configures
the virtual network
and automatically
estab lishes commu-
nication between
the emulator
 instances and the
plant network.

Step No. Description Illustration

1

Export of the automation system topology
In the first step, the topology of the automation system is
 exported from the PCS engineering system. The engineered
 topology within the PCS contains the automation system
 components, eg, controllers. Based on the object type,
 emulatable components can be identified and highlighted.

2

Selection of parts that need to be emulated
Usually, only certain parts of the plant are tested at the same
time and the user can select these. The configuration files for
these instances are then created. Those files are later used to
automatically configure the emulator instances.

3

Calculation of required number of VMs
Based on the parts selected for emulation, the required
number of VMs can be evaluated, whereby some rules have
to be adhered to:
– The maximum number of Ethernet
 cards per VM may not be exceeded.
– The maximum number of executable instances
 on one VM may not be exceeded for any emulator.
– The maximum number of emulatable objects
 per emulator instance may not be exceeded.
– Virtual RAM may not exceed physical RAM.

4
Instantiation of virtual machines
Based on the calculated number of required VMs, the VM
 instances are created from the template.

5

Configuration of virtual hardware
Based on the parameters of the emulator types, the hardware
of the specific VM instances is configured. The required number
of Ethernet interfaces and the required RAM for each individual
instance are configured.

6

Configuration and execution of emulator instances
In the last step, the VM instances are started, the configura-
tion files created in step 2 are used to configure the emulator
instances, and the emulator instances are executed.

4 Algorithm to create the virtual emulation network

Configuration
of the virtual

hardware

Virtual emulator framework

Instantiation and
configuration of the

emulators

Calculation of
required number

of virtual machines

Virtual emulator framework

Instantiation of
virtual machines

Configuration data
of the required

emulator instances

Number of required
virtual machines

Topology
export

Selection of
object to be

emulated and
configuration

export

Configuration files
for the emulator

instances

Virtual
emulator

framework

VM

VM

VM
VM

VM

VM

 21

System 800xA ➔ 5-6. Except for the con-
figuration node, the VEF consists only of
MS Windows services that do not require
user interaction.

As a base for the prototype, the VMware
platform was chosen. The prototype has
been evaluated using VMware Workstation
for small emulation networks that can be
deployed on a single PC and VMware
vSphere Hypervisor for large virtual emula-
tion networks, based on the VMware ESXi
platform. Both scenarios have been tested
with positive results.

Fast FAT
The VEF was developed to enable an effi-
cient integration test and FAT preparation,
with little manual intervention, and it has
been successful in this.

The VEF requires only two user interac-
tions to deploy an entire virtual emulation
network: The selection of the objects to

be emulated and the configuration of the
private cloud/virtualization PCs. The pur-
chase, staging and configuration of spe-
cial emulation PC hardware is no longer
necessary.

By using virtualization, the configuration
of the hardware interfaces required for
the emulator instances also becomes un-
necessary. Now, the configuration can be
performed automatically in accordance
with engineering data exported from the
engineering tools.

The prototype demonstrates the feasibili-
ty of implementing this solution for a
complex PCS. Hence, the VEF is a scal-
able solution to efficiently configure and
deploy heterogeneous emulation net-
works for process control systems.

Mario Hoernicke

ABB Corporate Research

Ladenburg, Germany

mario.hoernicke@de.abb.com

Rikard Hansson

ABB Process Automation, Simulator Solutions

Oslo, Norway

rikard.hansson@no.abb.com

Emulation to the rescue

References
[1] H. Sato, “The Recent Movement of Foundation

Fieldbus Engineering,” in SICE Annual
Conference, Fukui, 2003, pp. 1134–1137.

[2] M. Hoernicke et al., “The fieldbus outside the
field: Reducing commissioning effort by
simulating Foundation Fieldbus with SoftFF,”
ABB Review 1/2012, pp. 47–52.

[3] System 800xA Simulator – Improve safety
and productivity through simulation.
(Accessed 2015, January 22). Available:
http://www.abb.com/product/seitp334/
a5beb9cb235cd859c125734700336e07.aspx

[4] System 800xA system guide summary.
(Accessed 2015, January 22). Available: http://
search.abb.com/library/Download.aspx?Docum
entID=3BSE069079&LanguageCode=en&Docu
mentPartId=&Action=Launch

[5] M. Hoernicke, T. Harvei, “Virtually speaking:
DCS-to-subsystem interface emulation using
SoftCI,” ABB Review 2/2013, pp. 58–63.

Node type name Usage Residence

Configuration
node

The configuration node is used to select the parts
that will be emulated.

A PC inside the System 800xA network;
not necessarily a System 800xA node.

Engineering system
access node

This node type consists of a single service that is
used to interface with the engineering system of
System 800xA. It is used to export the automation
system topology and the configuration files for the
emulator instances.

A System 800xA node that contains the
 required engineering tools for exporting the
configuration and that has access to the
 aspect directory.

Orchestration node
for the hypervisor

Orchestration of the hypervisor controlling the VMs
is required as well. This node makes the connection
to the hypervisor (eg, VMware vSphere) and to start,
stop, create, etc. the VMs.

This node needs to be installed and executed
on a PC that has access to the hypervisor (eg,
PC with vSphere Client installed). It must be
located in the same networks, like the other
nodes.

Virtual machine
node

The VM node configures the emulator instances and
starting and stopping the emulator instances inside
the VMs.

This node is installed in the VM template and
executed automatically on every VM instance.

5 System architecture: virtual-emulator-framework nodes

6 Virtual-emulator-framework communication structure

Virtual machineEngineering node

Simulator
manager

Framework
manager

Hypervisor
proxy

Engineering
system proxy

Ethernet

Configuration
data base

Simulation node(s)Framwork configuration
node

 Data flow

 Control flow

