
EXFG Probe for use with Z-MT Oxygen Analyzer System

Installation Guide

Specific to order number: EXP/N/17371/TJA

& for use with ZMT Electronics Unit code number: ZMT/301/00000/4002CE

ABB KENT-TAYLOR

The Company

ABB Kent-Taylor is an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255(B) is just one of the ten flow calibration plants operated by the Company, and is indicative of ABB Kent-Taylor's dedication to quality and accuracy.

Use of Instructions

An instruction that draws attention to the risk of injury or death.

Caution.

An instruction that draws attention to the risk of damage to the product, process or surroundings. BS EN ISO 9001

St Neots, U.K. – Cert. No. Q5907 Stonehouse, U.K. – Cert. No. FM 21106

Lenno, Italy - Cert. No. 9/90A

Stonehouse, U.K. - Cert. No. 0255

Clarification of an instruction or additional information.

I Information.

Further reference for more detailed information or technical details.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of Technical Communications Department, ABB Kent-Taylor.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- 1. The relevant sections of these instructions must be read carefully before proceeding.
- 2. Warning labels on containers and packages must be observed.
- 3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- 4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- 5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- 6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

CONTENTS

Sect	on Pa	ge
1	NTRODUCTION 1.1 Documentation 1.2 Certification 1.3 System Overview 1.4 Principle of Operation	. 2 . 2 . 3 . 4
2	PREPARATION 2.1 Checking the Code Number 2.2 Accessories Check 2.2.1 Test Gas Connector Kit 2.2.2 Probe Flange 2.2.3 Mounting Plates	. 5 . 6 . 6 . 6
3	NSTALLATION 3.1 Siting 3.2 Mounting	. 7
4	ELECTRICAL CONNECTIONS 4.1 Conduit, Cable and Gland Specifications 4.2 Conduit and Cable Options 4.2.1 Access to Probe Terminals 4.2.2 Single Conduit Probe Connections 4.2.3 Dual Conduit Probe Connections 4.2.4 Dual Cable Probe Connections	. 9 10 10 10 11
5	PIPE CONNECTIONS	13 13 13
6	OPERATION	14
7	CALIBRATION 7.1 Test Gas Connection	
8	 FAULT FINDING Checking the Zirconia Cell 8.1.1 Checking the Control Thermocouple 8.1.2 Checking the Heater Resistance Checking the Trip Thermocouple 	15 15 16

Section 9 DIS

9	DISM	ANTLIN	G AND RE-ASSEMBLY	. 18
	9.1	Replac	ing the Ceramic Filter	. 19
		9.1.1	Removing the Ceramic Filter	. 19
		9.1.2	Fitting the Ceramic Filter	. 19
	9.2	Replac	ing the Zirconia Cell	
		9.2.1	Removing the Zirconia Cell	
		9.2.2	Fitting the Zirconia Cell	
	9.3	Replac	ing the Thermocouple/Electrode	
			ssembly	. 22
		9.3.1	Removing the Thermocouple/	
			Electrode Lead Assembly	. 22
		9.3.2	Fitting Ceramic Insulators	
		9.3.3	Fitting the Thermocouple/Electrode	0
		0.0.0	Lead Assembly	24
	9.4	Remov	ing the Probe Body	
	9.5		ing the Heater Assembly	
	3.5	9.5.1	Removing the Heater Assembly	
		9.5.2	Fitting the Heater Assembly	
		9.5.2 9.5.3	Aligning the Heater Assembly	
	9.6		ing the Trip Thermocouple Assembly	
	9.0	9.6.1	Removing the Trip	. 51
		9.0.1	e	21
		9.6.2	Thermocouple Assembly Fitting the Trip Thermocouple	. 51
		9.0.2	Assembly	22
	9.7	Domou	ing Seized Screws	
	9.7	Remov	ing Seized Screws	. აა
10	REPL		NT PARTS	. 34
	10.1		ed Parts List	
	10.2		ng Plate	
	10.3		Assemblies and Special Dual Cable	
		10.3.1	Single Conduit Assembly	
		10.0.1	(combined power/signal)	38
		10.3.2	Dual Conduit Assembly	
		10.0.2	(separate power/signal)	38
		10.3.3	Special Dual Cable	. 00
		10.0.0	(separate power and signal cable)	38
	10.4	Snares	Kits and Replacement Items	
	10.4	10.4.1	Electrode/Thermocouple	. 50
		10.4.1	Lead Assembly	38
		10.4.2	Zirconia Cell	
		10.4.2	Ceramic Filter	
		10.4.3	Heater	
		-		
	10 E	10.4.5	Fastenersts	
	10.5			
	10.6	Access	ory Kits	. 38
	APPE	ENDIX		. 39
			d Value (mV) v. Percentage Oxygen	
	-	-1 -7 -	(,	

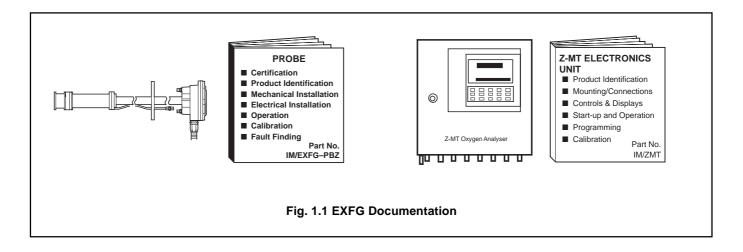
Page

1 INTRODUCTION

1.1 Documentation

Documentation for the ZMT Oxygen Analyzer System is shown in Fig. 1.1.

The Standard Documentation Pack is supplied with all instruments.


The Supplementary Manuals supplied depend on the specification of the instrument.

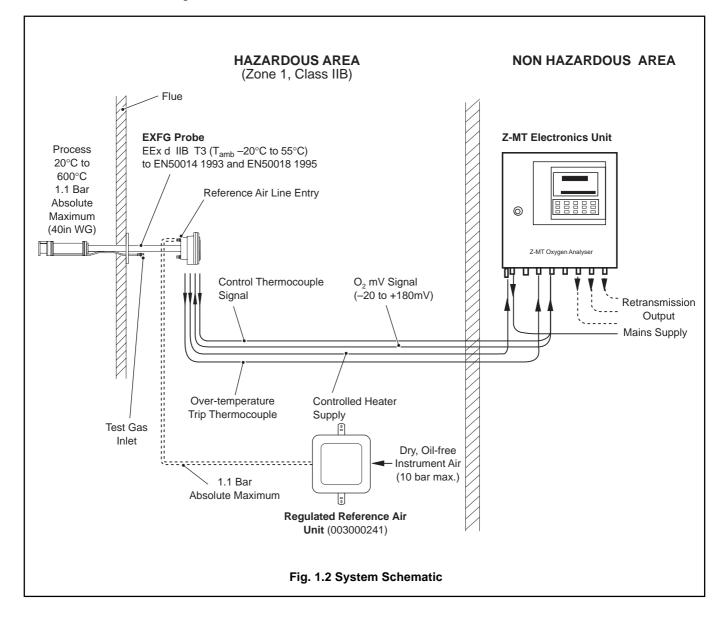
1.2 Certification

The EXFG Probe described in this manual is regarded as a certified flameproof enclosure EEx d IIB T3 (-20 to 55°C) conforming to EN50014 (1993) and EN50018 (1995). As such it is safe for use in Zone 1 hazardous areas both in and out of a flue duct (copies of the certificate are available on request).

However, when the T_{amb} of 55°C is exceeded at the sensor end of the probe by process temperature, certification is not invalidated as the hazard is that of the process and not of the certified probe.

1 INTRODUCTION...

1.3 System Overview - Fig. 1.2

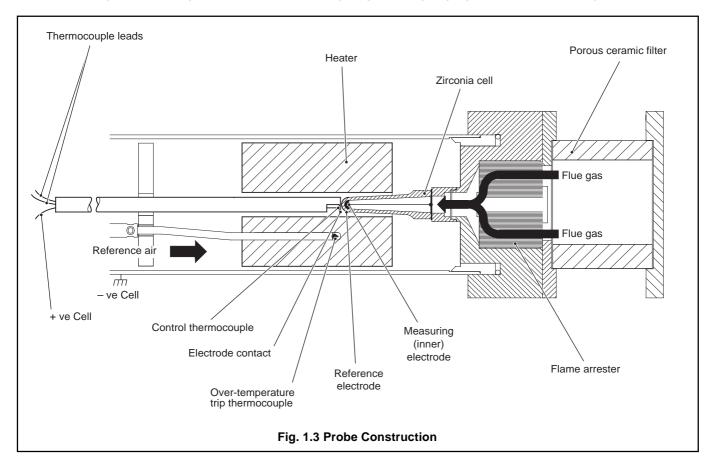

The EXFG Oxygen Probe measures oxygen concentration in flue gas using an in situ ('wet analysis') method. The 'wet analysis' method avoids measurement error (typically 20% of reading higher than the actual value) which would be introduced by a sampling system using the 'dry analysis' method.

System equipment comprises the EXFG Oxygen Probe (flue-mounted) and a ZMT Zirconia Oxygen Analyzer.

During operation, a zirconia cell within the EXFG Probe is controlled by the ZMT Oxygen Analyzer at a temperature of 700°C. This temperature is maintained by a probe heater and control thermocouple assembly. A trip thermocouple is fitted to ensure the surface temperature of the probe never exceeds T3 (200°C). If the heater control circuitry fails 'unsafe' a mechanically interlocked power supply trip relay operates cutting the power supply to the probe. Therefore the system fails 'safe'.

Warning. The probe must be only be connected to a ZMT Oxygen Analyzer, otherwise probe certification may be invalidated. Only ZMT codes **ZMT/301/000000/4002CE** are permissable.

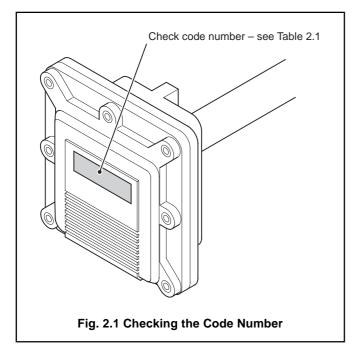
An output generated at the zirconia cell is processed in the ZMT Oxygen Analyzer into a 4 to 20mA retransmission signal representing 25% to 0.25% O_2 .


...1 INTRODUCTION

1.4 Principle of Operation – Fig. 1.3

The probe's zirconia cell is a thimble-shaped sensing element fitted with inner and outer electrodes at its closed end. The inner electrode is exposed to the flue gas entering the open end of the cell; the outer electrode is supplied with reference air from a regulator and is therefore exposed to a constant partial pressure of oxygen. The cell is held at a constant 700°C by a heater and control thermocouple.

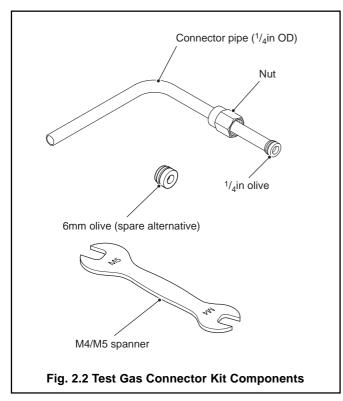
Because zirconia is an electrolyte which conducts only oxygen ions at temperatures in excess of 600°C, the voltage generated between the electrodes (i.e. the cell output) is a function of the ratio of the oxygen partial pressure difference between the reference electrode and the measuring electrode and its temperature. Therefore, any change in the oxygen partial pressure of the flue gas at the exposed electrode produces a change in the cell output voltage as dictated by the Nernst equation.


Cell output voltage increases logarithmically with decreasing oxygen, thus giving high sensitivity at low oxygen levels.

2 **PREPARATION**

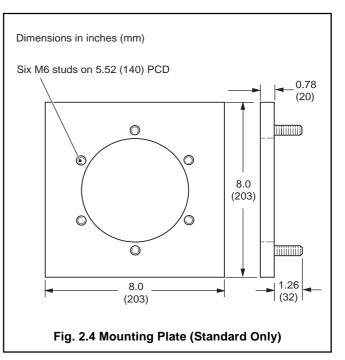
2 PREPARATION...

2.1 Checking the Code Number – Fig. 2.1

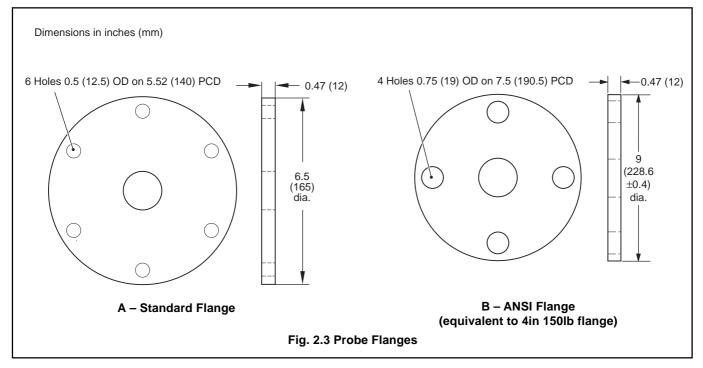


EXFG Oxygen Analyzer System		EXFG/	х	х	х	000
EXFG Probe	Not supplied		0			
	1.64ft (0.5m) insertion length – with standard flange		1			
	3.281ft (1.0m) insertion length – with standard flange		2			
	6.562 (2.0m) insertion length – with standard flange		3			
	1.64ft (0.5m) insertion length – with ANSI flange		4			
	3.281ft (1.0m) (insertion length) – with ANSI flange		5			
	6.562 (2.0m) insertion length – with ANSI flange		6			
Flexible Conduits	No conduits			0		
	19.68ft (6.0m) Single conduit assembly – combined signal/power			1		
	32.81ft (10.0m) Single conduit assembly – combined signal/power			2		
	19.68ft (6.0m) Dual conduit assembly – separate signal/power (comprising one signal conduit and one power conduit)			3		
	32.81ft (10.0m) Dual conduit assembly – separate signal/power (comprising one signal conduit and one power conduit)			4		
or						
Dual Special Cables		(ordered	l separa	ately)		
	SWA signal cable – EXFG/0194 (per metre, 100 metre max.) 25/20mm reducer – B11274 (qty. 2 rqd.)					
	20mm barrier gland – (qty. 2 rqd.)					
	and					
	SWA power cable – EXFG/0195 (per metre, 100 metre max.) 20mm barrier gland – B11275 (qty. 2 rqd.)					
Mounting Plate	Not supplied				0	
	Mounting plate assembly – standard flange only				1	

...2 PREPARATION


2.2 Accessories Check

2.2.1 Test Gas Connector Kit – Fig. 2.2



2.2.3 Mounting Plates – Fig. 2.4

In addition to the probe flange, the probe may also be supplied with a mounting plate assembly if specified – see Table 2.1. A mounting plate is required if there is no existing mounting on the flue or boiler.

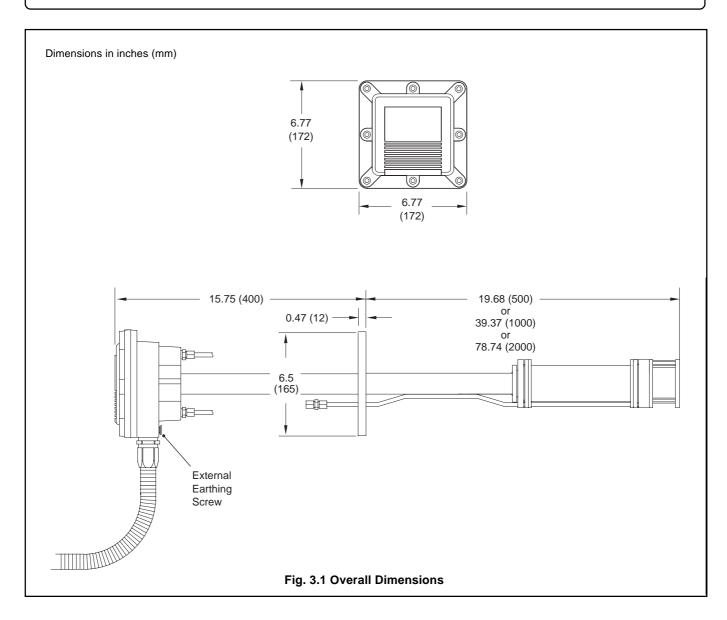
2.2.2 Probe Flange – Fig. 2.3

3 INSTALLATION

Warning. Maximum process pressure 1.1 bar absolute. Certification is invalidated if this pressure is exceeded.

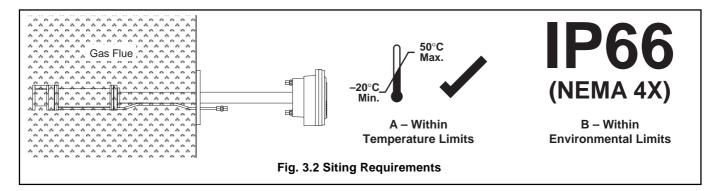
Caution. Handle with care. Avoid mechanical shock to prevent damage to the probe's internal ceramic components.

3.1 Siting - Figs. 3.1 and 3.2


Select a position where the intake is located in the main stream of flue gas. Gas temperature must be in the range 20°C to 600°C.

Avoid positions where obstructions or bends may impede gas flow or prevent insertion, or subsequent removal, of the probe.

Probe dimensions are shown in Fig 3.1. A clearance of at least 1 inch (25mm) in excess of the overall probe length is necessary for installation or removal procedures.


The probe can be supplied with 19.68ft (6m) or 32.81ft (10m) of flexible conduit as standard which contains cables for connection to the ZMT Oxygen Analyzer. The probe head can accept two conduits for separate routing of signal and power cables if required. Special cables complete with appropriate glands can be provided in lengths up to 328.1ft (100m) maximum. The special cable option is only available as a dual cable configuration comprising separate power and signal cables.

Caution. Thermal shock may break the zirconia cell if the flue is cleaned using a high pressure water hose. If this method of cleaning is used, remove the probe from the flue prior to cleaning.

...3 INSTALLATION

....3.1 Siting – Figs. 3.1 and 3.2

3.2 Mounting – Fig. 3.3

丛 Warning.

- Installation and repair must only be carried out by the manufacturer, authorized agents or persons conversant with the construction standards for hazardous area certified equipment.
- Installation must conform to BS5345.

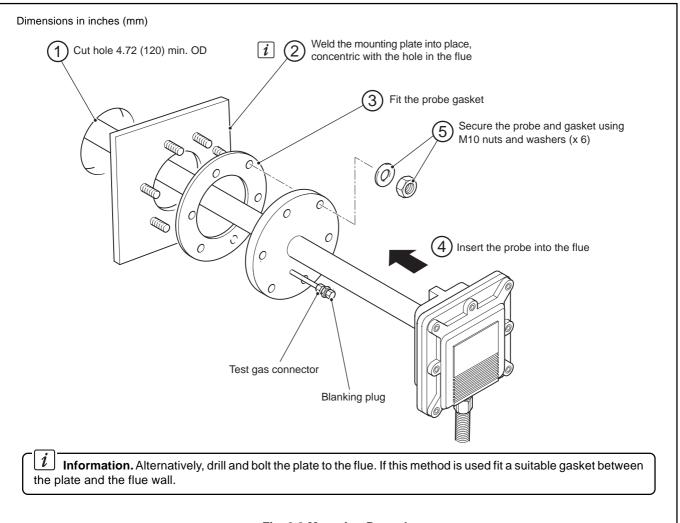


Fig. 3.3 Mounting Procedure

4 ELECTRICAL CONNECTIONS

4.1 Conduit, Cable and Gland Specifications

Caution.

- Installation and repair must only be carried out by the manufacturer, authorized agents or persons conversant with the
 construction standards for hazardous area certified equipment. The specifications described in Table 4.1 are for system
 electrical requirements only. Only specifications shown may be used to conform to BS5345, EN50014 and EN50018.
- All cables must conform to BS5345 for flameproof 'd' type enclosures for mechanical construction.

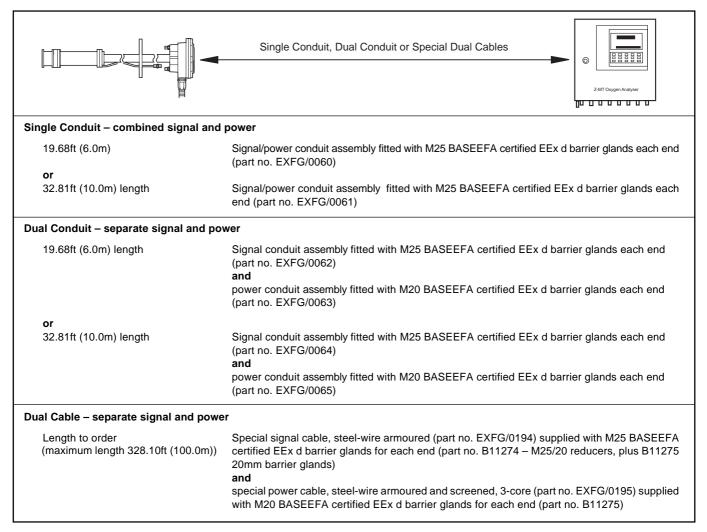
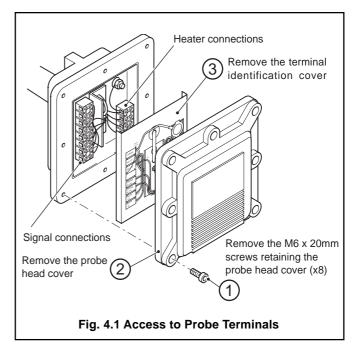


Table 4.1 Conduit/Cable and Gland Specifications – ZMT Oxygen Analyzer to EXFG Probe

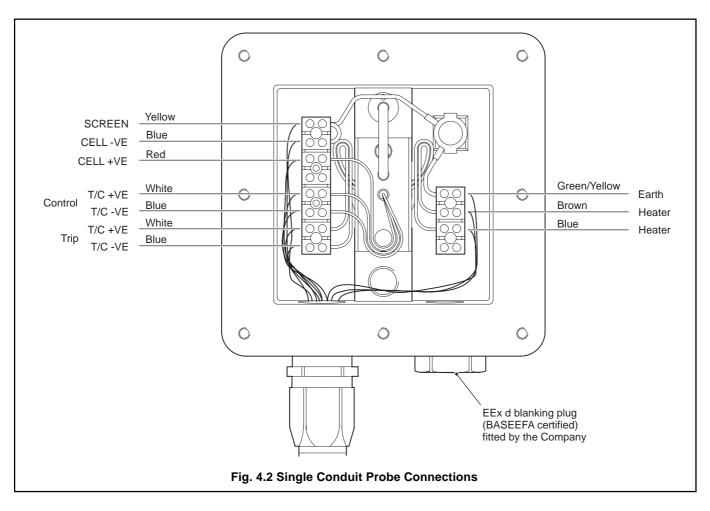
...4 ELECTRICAL CONNECTIONS

4.2 Conduit and Cable Options

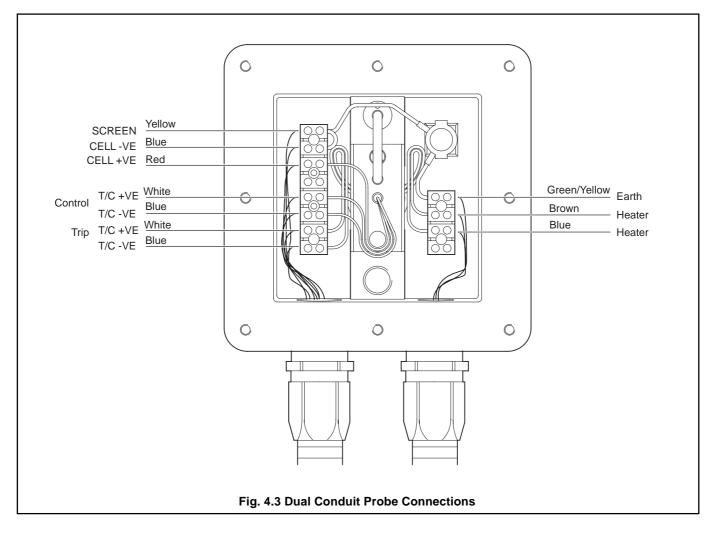

The probe is available with one of three connection options – see Table 2.1 for code numbers. Options are:

- a) Single conduit 19.68ft (6.0m) or 32.81ft (10.0m) lengths, comprising; one conduit for signal and heater power leads,
- b) Dual conduits 19.68ft (6.0m) or 32.81ft (10.0m) lengths, comprising; one conduit for signal leads, one conduit for the heater power lead,
- c) Dual special cables for lengths up to 328.10ft (100.0m), comprising; one special cable for signal leads, one special cable for the heater power lead.

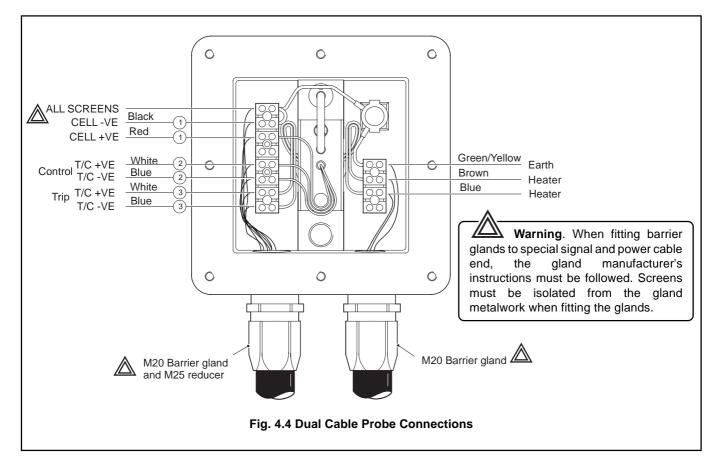
A 0.23in (6mm) external earthing point is fitted on the probe head base – see Fig. 3.1.


4.2.1 Access to Probe Terminals - Fig. 4.1

Warning. Once commissioned, the enclosure must not be opened when a flammable atmosphere is present.


4.2.2 Single Conduit Probe Connections – Fig. 4.2

When making connections, ensure that the cables are routed correctly as shown in Fig. 4.2 (single conduit), Fig. 4.3 (dual conduit) or Fig. 4.4 (dual cable).


4 ELECTRICAL CONNECTIONS...

4.2.3 Dual Conduit Probe Connections – Fig. 4.3

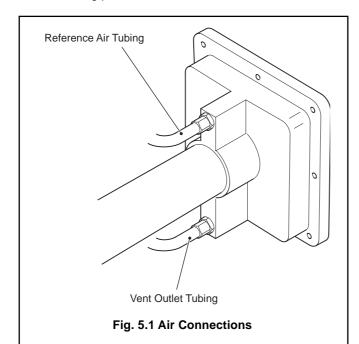
...4 ELECTRICAL CONNECTIONS

4.2.4 Dual Cable Probe Connections – Fig. 4.4

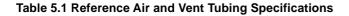
5 PIPE CONNECTIONS

5.1 Pipe Connections – Fig. 5.1

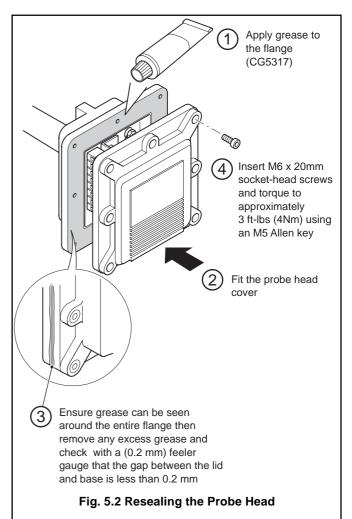
The compression fittings on the back of the probe head have a $^{1/4}$ in olive as standard. Spare 6mm olives are also supplied in the accessory kit as an alternative size – see Section 2.2.


5.1.1 External Reference Air Connection – Fig. 5.1

Warning. The maximum reference air pressure is 1.1 bar absolute – certification may be invalidated if exceeded.


A clean, dry, oil-free regulated air supply is required at a pressure between 20 and 100 millibars (8 to 40 in. W.G.), e.g. from a regulator unit (Model 003000241) available from the Manufacturer. Connect the reference air tubing as shown in Fig. 5.1. Refer to Table 5.1 for reference air and vent outlet tubing specifications.

5.1.2 Vent Connection - Fig. 5.1


The vent outlet allows the reference air to escape to atmosphere via built in flame arrestors. If the outlet is likely to be exposed to moisture, a suitable vent tube must be connected to the outlet and routed to a dry area – see Fig. 4.5. Ensure that the vent outlet, or the vent tube, does not become blocked during probe use.

Tubing	Tubing Specification
Reference Air Tubing	¹ /4in o.d. x ¹ /8in i.d. stainless steel, nylon or p.v.c. tube (100°C ambient max.)
Vent Outlet Tubing	¹ /4in o.d. x ¹ /8in i.d. stainless steel, nylon or p.v.c. tube (100°C ambient max.)

5.2 Resealing the Probe Head – Fig. 5.2

6 OPERATION

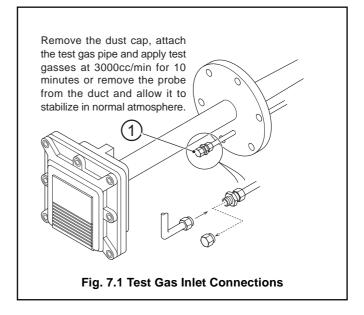
a) Check that a blanking plug is securely fitted to the test gas connector on the probe – see Fig. 3.3.

Note. If the blanking plug is not fitted, air leaking into the probe via the connector may cause measurement errors. In a pressurized flue, gases venting to atmosphere through the connector could cause corrosion of the test gas tube. In a negative pressure flue, air leakage may cause high O₂ reading errors.

- b) Check connections on both the Probe and the ZMT Oxygen Analyzer (refer also to the ZMT Oxygen Analyzer Manual IM/ZMTEXFG Issue 1).
- c) Switch on the mains power supply and reference air flow.
- d) Check and, if necessary, adjust the reference air flow to a stable flow rate between 50 and 1,000cc/min.

7 CALIBRATION

Full gas calibration procedures for the system are described in the *ZMT Oxygen Analyzer Manual IM/ZMTEXFG Issue 1*.


Note. Test gas flows for all probes **must be set to 3,000cc/min.** (±10%) or measurement errors may occur.

System fault finding procedures are given in Section 8. Where a fault is traced to the probe, it may be possible to identify and rectify the fault.

After any rectification, the system must be re-calibrated as described in the *ZMT Oxygen Analyzer Manual IM/ZMTEXFG Issue 1*, to maintain the stated accuracies.

7.1 Test Gas Connection – Fig. 7.1

A test gas inlet is provided for in situ probe testing using a test gas. A test gas connector kit is supplied in the accessory kit – see Section 2.2.1.

8 FAULT FINDING

8 FAULT FINDING...

8.1 Checking the Zirconia Cell

Note. The zirconia cell can be tested without affecting the explosion-proof integrity of either the EXFG Probe.

a) Carry out a system calibration check as described in the *ZMT Oxygen Analyzer Guide, IM/ZMTEXFG Issue 1.*

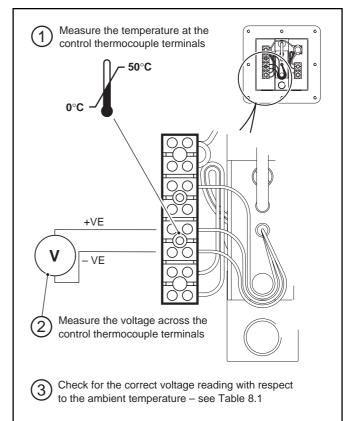
If the analyzer response is correct when measuring test gas but sluggish and insensitive when measuring flue gas, replace the ceramic filter as described Section 8.1.

If a correct test gas response cannot be obtained, check the control thermocouple operation as described in Section 8.1.1.

8.1.1 Checking the Control Thermocouple – Fig. 8.1

Warning. To check the control thermocouple operation it is necessary to remove the probe's connection cover, thus invalidating the explosion proof integrity. Consequently, before removing the connection cover ensure that their are no hazardous gases present or, alternatively, remove the probe from the hazardous area.

a) Remove the probe connection cover as described in Section 4.2.1.


Warning. The probe heater terminals are at high voltage (55V a.c.). Take all necessary precautions against electric shock when measuring voltages inside the probe head.

b) Check the control thermocouple voltage as shown in Fig. 8.1. The measured voltage must be within ± 0.1 mV of the voltages listed in Table 8.1.

If the measured voltage is **correct**, replace the zirconia cell as described in Section 9.2.

If the measured voltage is **high**, relocate the probe to a position in the flue where the temperature does not exceed 600° C.

If the measured voltage is **low**, check the heater operation as described in section 8.1.2.

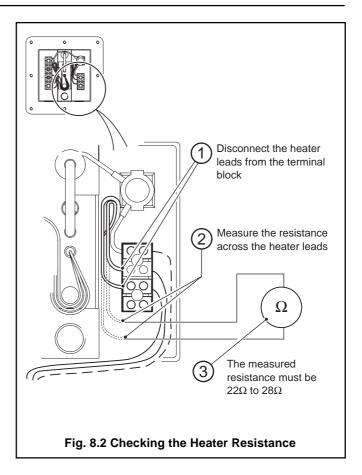
Fig. 8.1 Checking the Control Thermocouple

Ambient Temp. (°C)	Thermocouple mV	Ambient Temp. (°C)	Thermocouple mV
50	26.266	24	27.328
49	26.307	23	27.369
48	26.348	22	27.409
47	26.389	21	27.450
46	26.430	20	27.490
45	26.471	19	27.530
44	26.512	18	27.570
43	26.554	17	27.611
42	26.595	16	27.651
41	26.636	15	27.691
40	26.677	14	27.731
39	26.718	13	27.771
38	26.759	12	27.811
37	26.799	11	27.851
36	26.840	10	27.891
35	26.881	9	27.931
34	26.922	8	27.971
33	26.963	7	28.011
32	27.003	6	28.050
31	27.044	5	28.090
30	27.085	4	28.130
29	27.126	3	28.169
28	27.166	2	28.209
27	27.207	1	28.249
26	27.247	0	28.288
25	27.288		
		1	

Table 8.1 – Control Thermocouple v. Ambient Temperature (680°C)

...8 FAULT FINDING

8.1.2 Checking the Heater Resistance – Fig. 8.2


Warning. To check the heater resistance it is necessary to remove the probe's connection cover, thus invalidating the explosion proof integrity. Consequently, before removing the connection cover ensure that their are no hazardous gases present or, alternatively, remove the probe from the hazardous area.

- a) Switch off the mains power supply to the Interface Electronics Unit.
- b) Check the resistance of the probe heater as described in Fig. 8.2.

If the heater resistance is **correct**, check the loop resistance of the heater circuit at the Interface Electronics Unit.

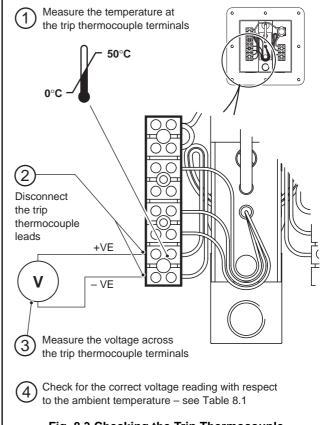
If the loop impedance is **correct**, replace the zirconia cell as described in Section 9.2.

If the heater resistance is **incorrect** replace the heater assembly as described in Section 9.5.

8 FAULT FINDING

8.2 Checking the Trip Thermocouple – Fig. 8.3

Warning. To check operation of the trip thermocouple, the probe's connection cover must be removed, thus invalidating the explosion proof integrity. Consequently, before removing the connection cover ensure that their are no hazardous gases present or, alternatively, remove the probe from the hazardous area.


a) Remove the connection cover as described in Section 4.2.1.

Warning. The probe heater terminals are at high voltage (55V a.c.). Take all necessary precautions against electric shock when measuring voltages inside the probe head.

b) Check the trip thermocouple voltage as shown in Fig. 8.3.

Caution. The trip thermocouple voltage must be greater than or equal to the voltages listed in Table 8.2, or the probe's certification is invalidated.

- c) Ensure the measured voltage is correct.
- d) If the measured voltage is **incorrect**, check the position of the trip thermocouple inside the heater then check the trip thermocouple voltage again. If the voltage is still incorrect, replace the trip thermocouple assembly as described in Section 9.6.

Fig. 8.3	Checking	the	Trip	Thermocouple
----------	----------	-----	------	--------------

		1	
Ambient	Thermocouple	Ambient	Thermocouple
Temp. (°C)	mV	Temp. (°C)	mV
		,	
50	21.815	24	22.877
49	21.856	23	22.918
48	21.897	22	22.958
47	21.938	21	22.999
46	21.979	20	23.039
45	22.020	19	23.079
44	22.061	18	23.119
43	22.103	17	23.160
42	22.144	16	23.200
41	22.185	15	23.240
40	22.226	14	23.280
39	22.267	13	23.320
38	22.308	12	23.360
37	22.348	11	23.400
36	22.389	10	23.440
35	22.430	9	23.480
34	22.471	8	23.520
33	22.512	7	23.560
32	22.552	6	23.599
31	22.593	5	23.639
30	22.634	4	23.679
29	22.675	3	23.718
28	22.715	2	23.758
27	22.756	1	23.798
26	22.796	0	23.837
25	22.837		
1		1	

Table 8.2 – Trip Thermocouple v. Ambient Temperature (575°C Minimum)

9 DISMANTLING AND RE-ASSEMBLY

Warning. Repairs and refurbishing of apparatus with type of protection 'd' should be performed only by the original manufacturer, authorized agents or a repairer who is conversant with the construction standards for flameproof equipment and demonstrates the ability to understand certification restraints. (*Extract from BS5345*.)

Caution.

- The probe is a certified flameproof enclosure. Therefore, clearances and surface finishes between mating parts and lengths of spigot type joints **MUST NOT** be damaged during Dismantling and Re-assembly or any other maintenance procedures.
- If this condition is not observed, the certification of the equipment is invalidated. In the event of any damage to the equipment, refer to the Company.
- EEx d glands used on the Probe must be of the EEx d 'Barrier Gland' type with BASEEFA certification.
- All cables must conform to BS5345 for flameproof 'd' type enclosures for mechanical construction.
- Before removing the probe, thoroughly clean the outer surfaces with non-abrasive materials to prevent contamination of the inner assemblies.
- Only use replacement parts and components approved by the Company, this applies to nuts and bolts as well as component parts. Never refit damaged items.
- We recommend that a special fasteners spares kit (see Section 10.4.5) is obtained prior to work on any of the dismantling and re-assembly procedures described in this section.

Tools Required

Maintenance Procedure	Tools Required
Replacing the Ceramic Filter	1 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key 2 Small/medium hacksaw
Replacing the Zirconia Cell	1 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key 2 Small/medium hacksaw 3 Scalpel 4 M4 open-ended spanner
Replacing the Thermocouple/Electrode Lead Assembly	 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanner Two slot-head screwdrivers, one small, one medium
Removing the Probe Body	 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanner Two slot-head screwdrivers, one small, one medium
Replacing the Heater Assembly	 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanners (x 2) Two slot-head screwdrivers, one small, one medium 5.5mm Open-ended spanner Long nosed pliers (x 1 pair)
Replacing the Trip/Thermocouple Assembly	 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanners (x 2) Two slot-head screwdrivers, one small, one medium 5.5mm Open-ended spanner Long nosed pliers (x 1 pair)

9 DISMANTLING AND RE-ASSEMBLY...

9.1 Replacing the Ceramic Filter – Fig. 9.1

A ceramic filter kit is required when replacing the ceramic filter - see Section 10.4.3.

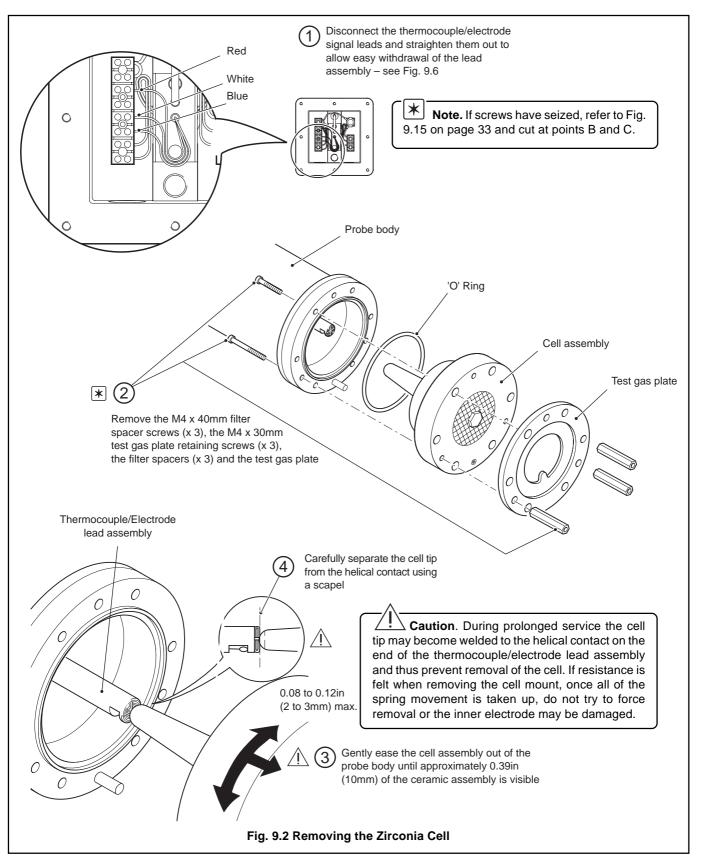
9.1.1 Removing the Ceramic Filter – Fig. 9.1

Remove the ceramic filter as described in Fig. 9.1.

9.1.2 Fitting the Ceramic Filter - Fig. 9.1

Fit a replacement filter by reversing the procedure described in Fig. 9.1.

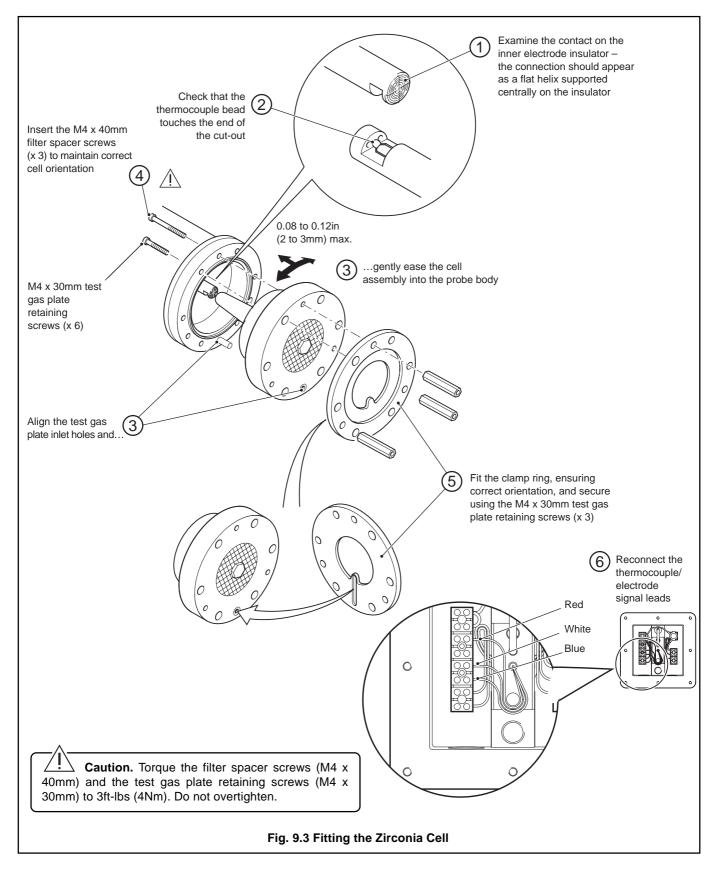
When refitting, insert a sufficient number of gaskets to allow the securing screws to hold the filter firmly in position.



...9 DISMANTLING AND RE-ASSEMBLY

9.2 Replacing the Zirconia Cell

A zirconia cell assembly is required when replacing the zirconia cell – see Section 10.4.2.


- 9.2.1 Removing the Zirconia Cell Fig. 9.2
- a) Remove the ceramic filter as described in Section 9.1.1.
- b) Remove the zirconia cell as described in Fig. 9.2.

9 DISMANTLING AND RE-ASSEMBLY...

9.2.2 Fitting the Zirconia Cell – Fig. 9.3

- a) Carry out the procedures described in Fig. 9.3.
- b) Refit the ceramic filter as described in Section 9.1.2.

...9 DISMANTLING AND RE-ASSEMBLY

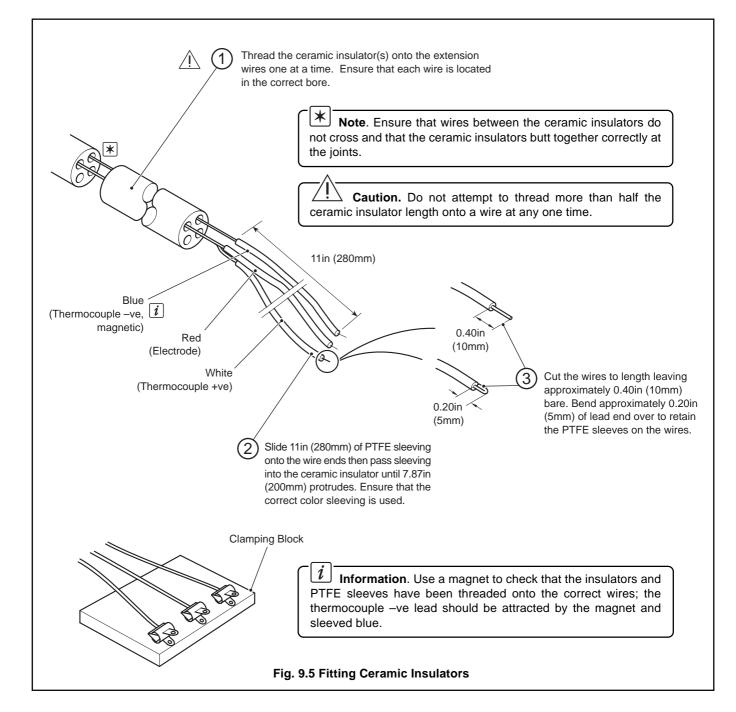
9.3 Replacing the Thermocouple/Electrode Lead Assembly

An electrode/thermocouple assembly is required when replacing the electrode/thermocouple lead assembly – see Section 10.4.1

9.3.1 Removing the Thermocouple/Electrode Lead Assembly – Fig. 9.4

- a) Remove the ceramic filter as described in Section 9.1.1.
- b) Remove the zirconia cell as described in Section 9.2.1.
- c) Remove the thermocouple/electrode lead assembly as described in Fig. 9.4.

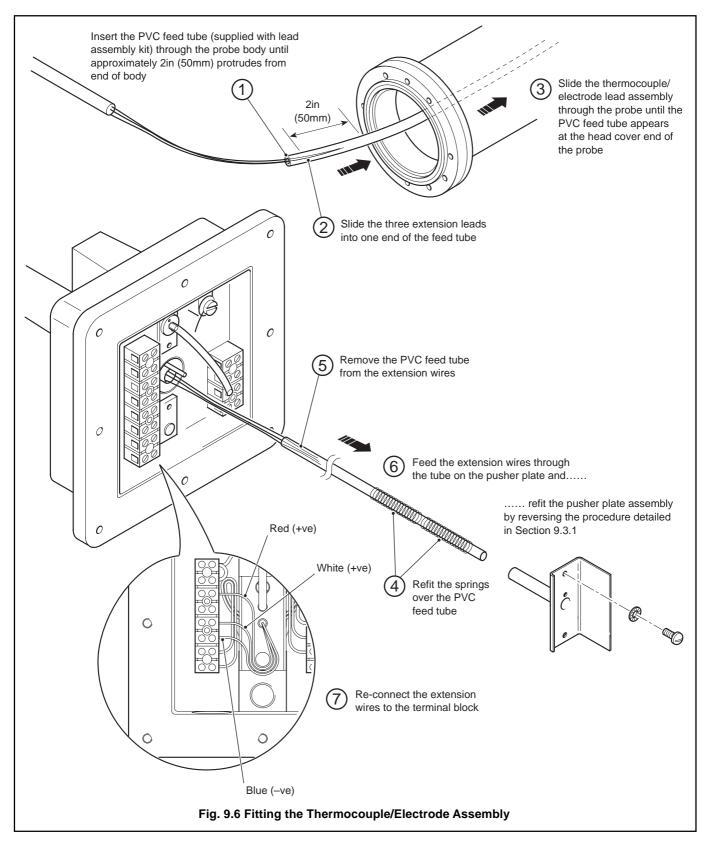
9 DISMANTLING AND RE-ASSEMBLY...


9.3.2 Fitting Ceramic Insulators – Fig. 9.5

a) Lay the new thermocouple/electrode lead assembly at the end of a long work surface and carefully uncoil the extension wires, one at a time.

Note. To retain the uncoiled lead ends during fitting, use a clamping block constructed from a wooden board and three bulldog clips – see Fig. 9.5.

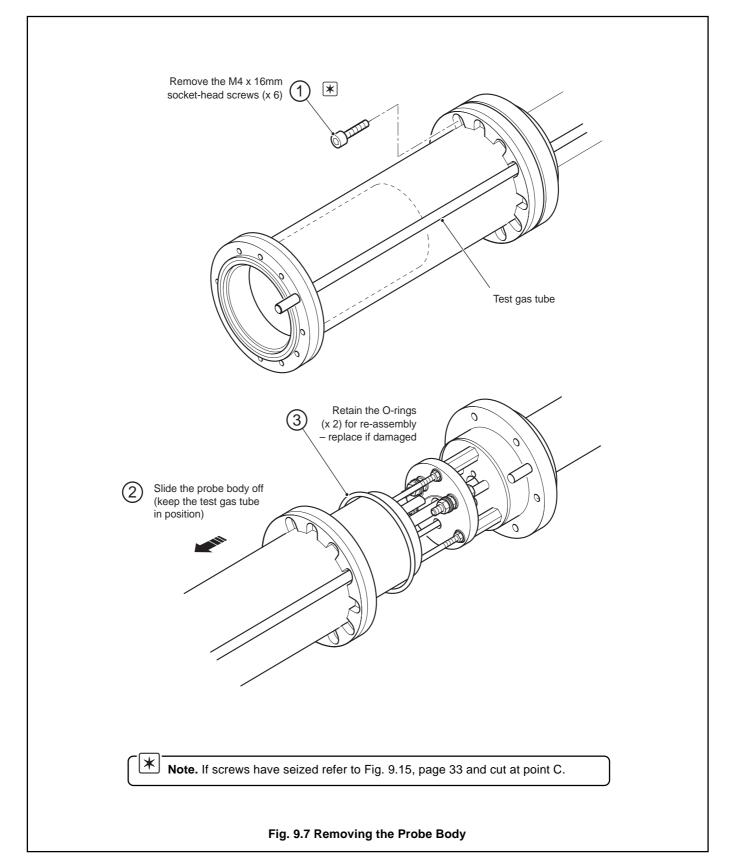
Caution. Do not to kink the wires during fitting to avoid damage to the finished assembly.


- b) Refit the ceramic insulators as described in Fig. 9.5.
- c) Refit the zirconia cell as described in Section 9.2.2.
- d) Refit the ceramic filter as described in Section 9.1.2.

...9 DISMANTLING AND RE-ASSEMBLY

9.3.3 Fitting the Thermocouple/Electrode Lead Assembly – Fig. 9.6

- a) Refit the thermocouple/electrode lead assembly as described in Fig. 9.6.
- b) Refit the zirconia cell as described in Section 9.2.2.
- c) Refit the ceramic filter as described in Section 9.1.2.

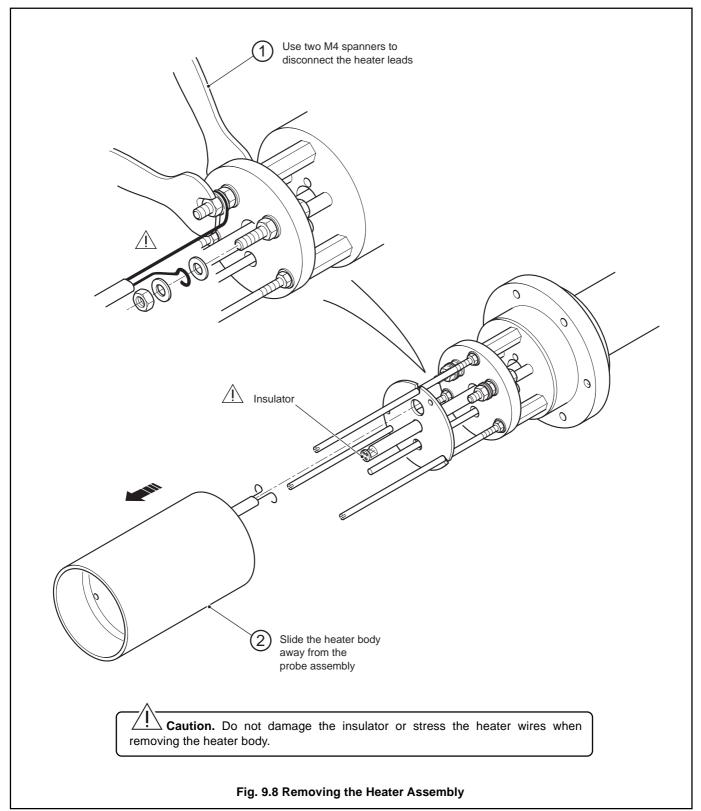


9 DISMANTLING AND RE-ASSEMBLY...

9.4 Removing the Probe Body – Fig. 9.7

a) Remove the ceramic filter as described in Section 9.1.1.

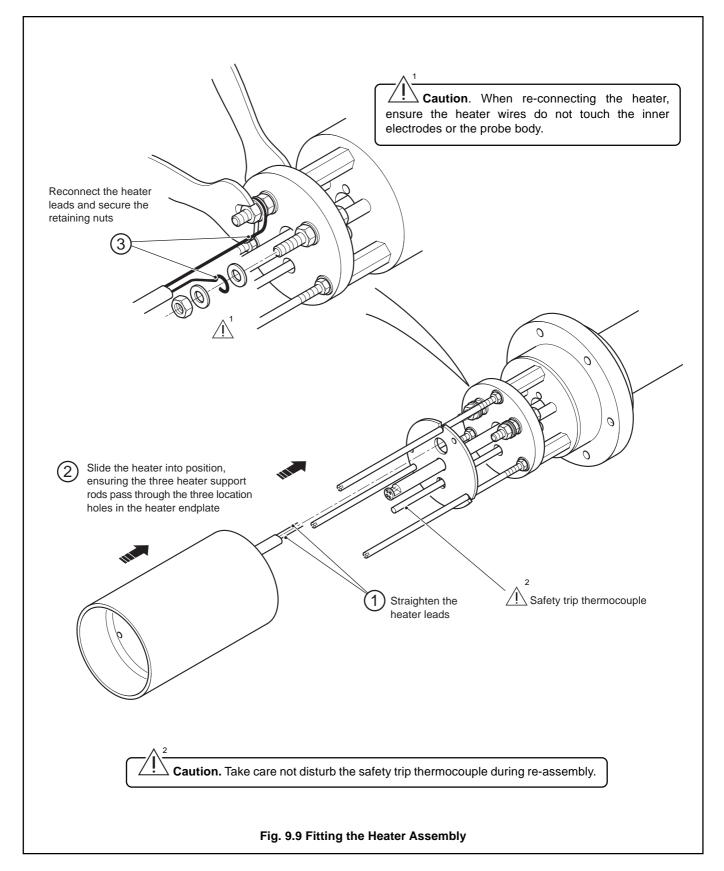
- A special fasteners kit is required when refitting the probe body see Section 10.4.5.
- b) Remove the zirconia cell as described in Section 9.2.1.
- c) Remove the probe body described in Fig. 9.7.


...9 DISMANTLING AND RE-ASSEMBLY

9.5 Replacing the Heater Assembly

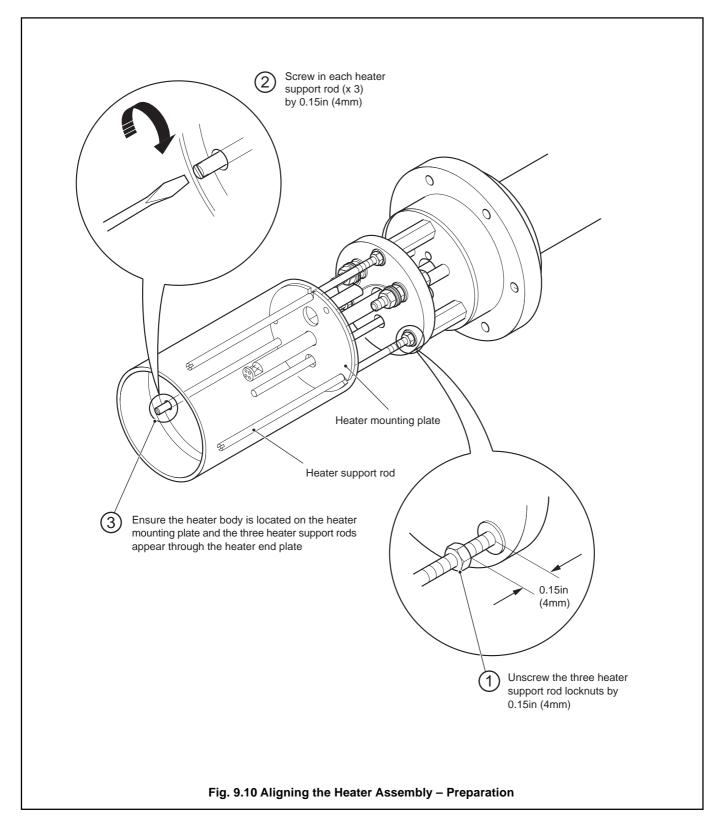
A new heater assembly is required when replacing the heater assembly – see Section 10.4.4.

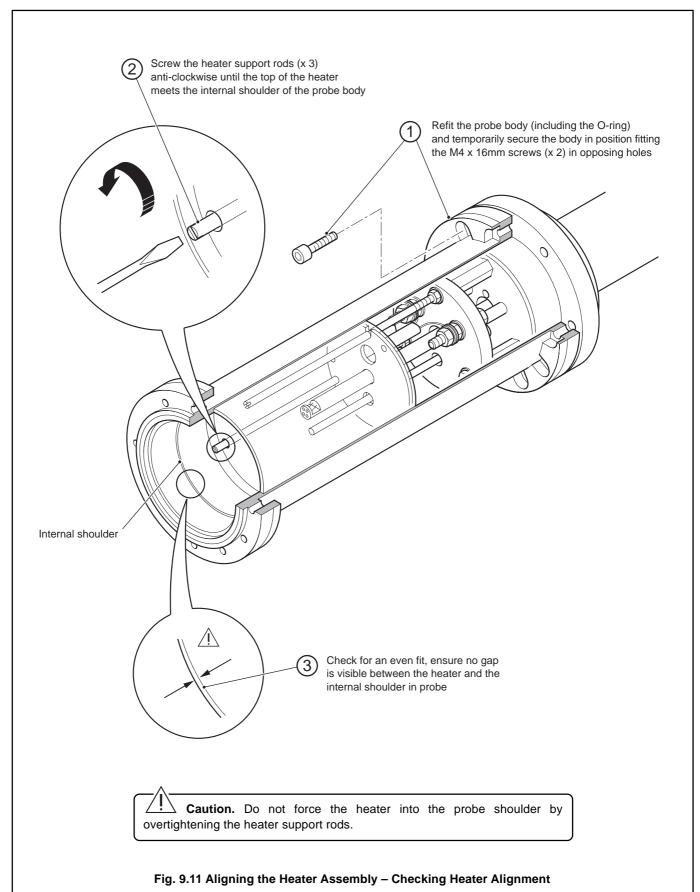
9.5.1 Removing the Heater Assembly – Fig. 9.8


- a) Remove the ceramic filter as described in Section 9.1.1
- b) Remove the zirconia cell as described in Section 9.2.1.
- c) Remove the probe body described in Section 9.4.
- d) Remove the heater assembly as described in Fig. 9.8.

9 DISMANTLING AND RE-ASSEMBLY...

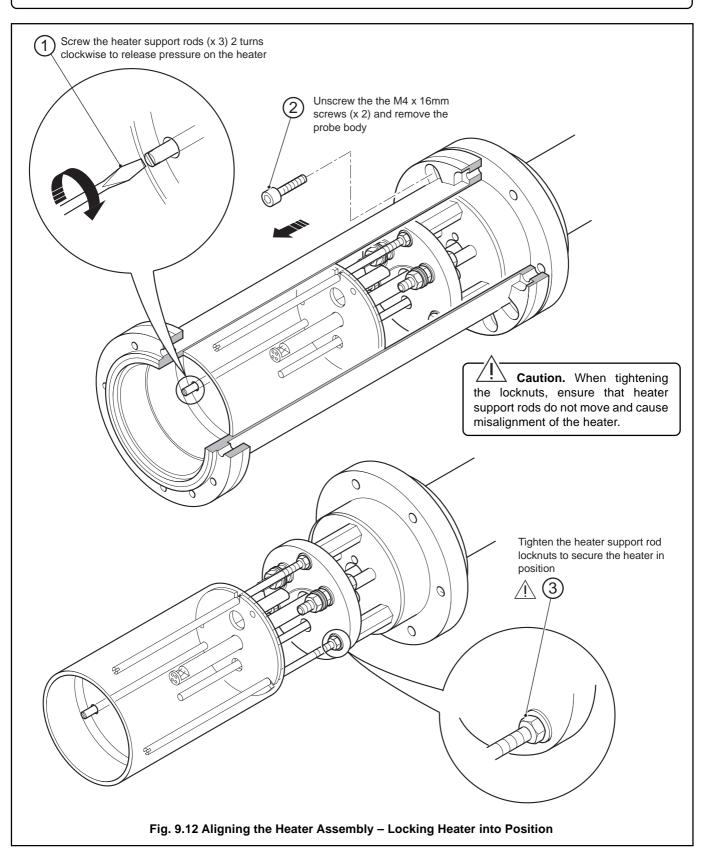
9.5.2 Fitting the Heater Assembly – Fig. 9.9


- a) Refit the heater assembly as described in Fig. 9.9
- b) Align the heater assembly as described in Fig. 9.10.


...9 DISMANTLING AND RE-ASSEMBLY

9.5.3 Aligning the Heater Assembly – Figs. 9.10, 9.11 and 9.12

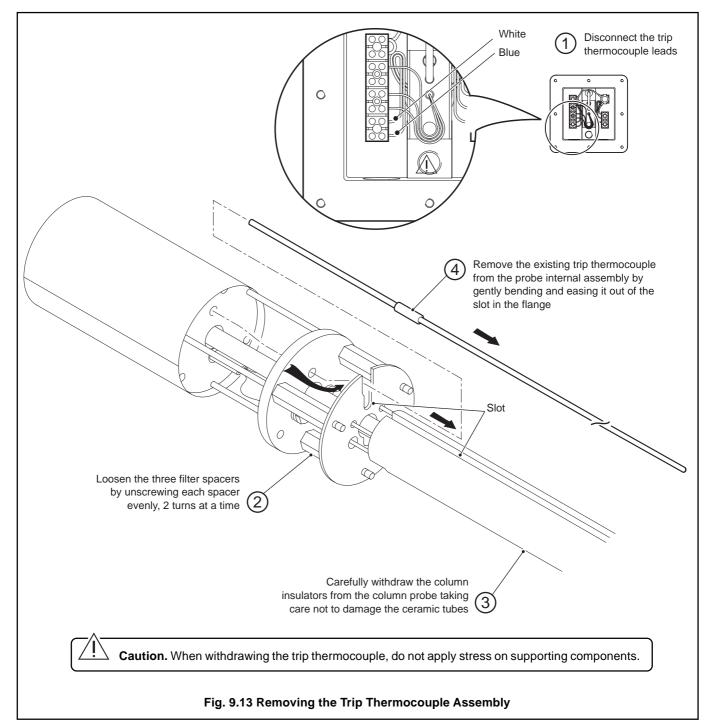
- a) Align the heater assembly as described Figs. 9.10, 9.11 and 9.12.
- b) Refit the probe body by reversing the steps described in Fig. 9.7.
- c) Refit the zirconia cell as described in Section 9.2.2.
- d) Refit the ceramic filter as described in Section 9.1.2.


...9.5.3 Aligning the Heater Assembly

...9 DISMANTLING AND RE-ASSEMBLY

...9.5.3 Aligning the Heater Assembly

Caution. After refitting the heater, check the trip thermocouple voltage (see Section 8.2), or the probe's certification is invalidated.


9 DISMANTLING AND RE-ASSEMBLY...

9.6 Replacing the Trip Thermocouple Assembly

A replacement trip thermocouple assembly is required for this procedure - see Section 10, Fig. 10.1b, item 35.

9.6.1 Removing the Trip Thermocouple Assembly – Fig. 9.13

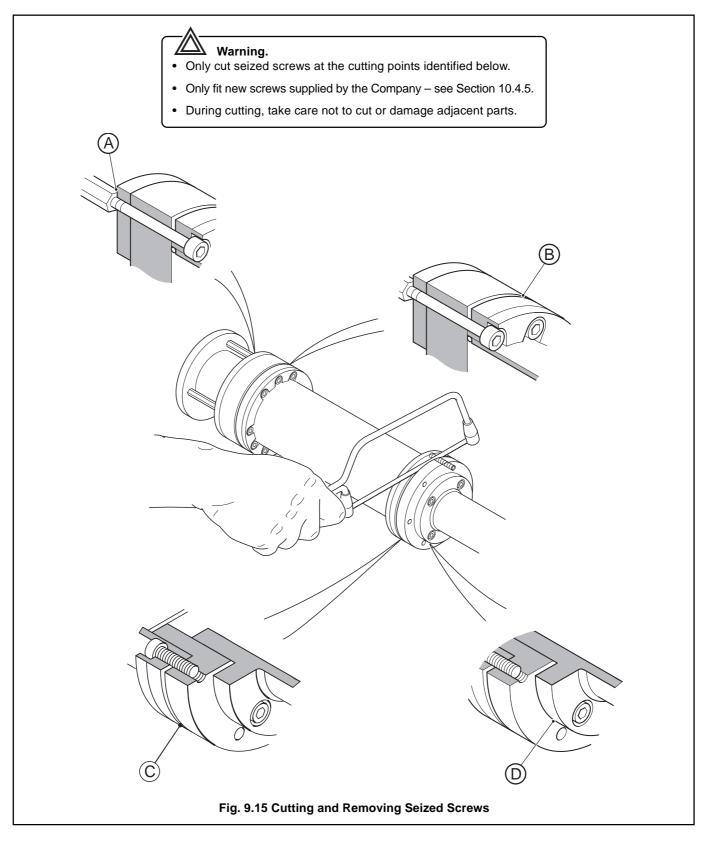
- a) Remove the ceramic filter as described in Section 9.1.1.
- b) Remove the zirconia cell as described in Section 9.2.1.
- c) Remove the probe body described in Section. 9.4.
- d) Disconnect the thermocouple/electrode lead assembly as described in Section 9.3.1.
- e) Disconnect the trip thermocouple leads in the terminal head see Section 4.
- f) Remove the trip thermocouple assembly as described in Fig. 9.13.

...9 DISMANTLING AND RE-ASSEMBLY

9.6.2 Fitting the Trip Thermocouple Assembly – Fig. 9.14

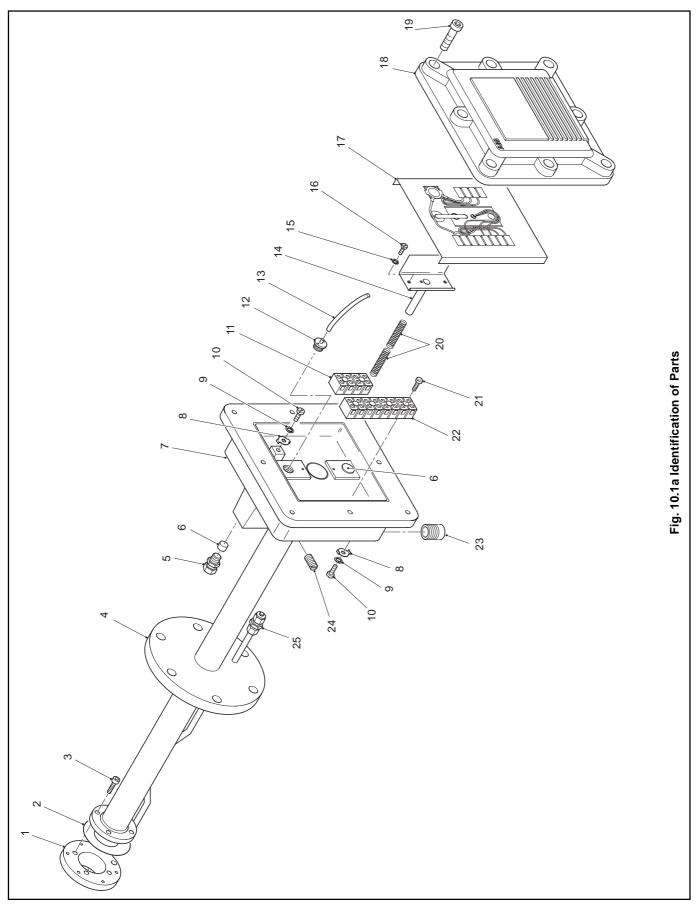
- a) Re-assemble the trip thermocouple assembly as described Fig. 9.14.
- b) Re-connect the trip thermocouple leads in the terminal head see Section 4.
- c) Refit the thermocouple/electrode lead assembly as described in Sections 9.3.2 and 9.3.3.
- d) Refit the probe body by reversing the steps described in Section 9.4.
- e) Refit the zirconia cell as described in Section 9.2.2.
- f) Refit the ceramic filter as described in Section 9.1.2.
- g) When the probe is fully assembled:
 - i) Switch on the ZMT Oxygen Analyzer .
 - ii) When heater operating temperature is reached (after approximately 15 minutes) leave for a further 1 hour to stabilize.
 - iii) Check the trip thermocouple voltage as described in Section 8.2.

Caution. The trip thermocouple voltage must be within the limits stated in Section 8.2, or the probe's certification is invalidated.



9 DISMANTLING AND RE-ASSEMBLY...

9.7 Removing Seized Screws – Fig. 9.15

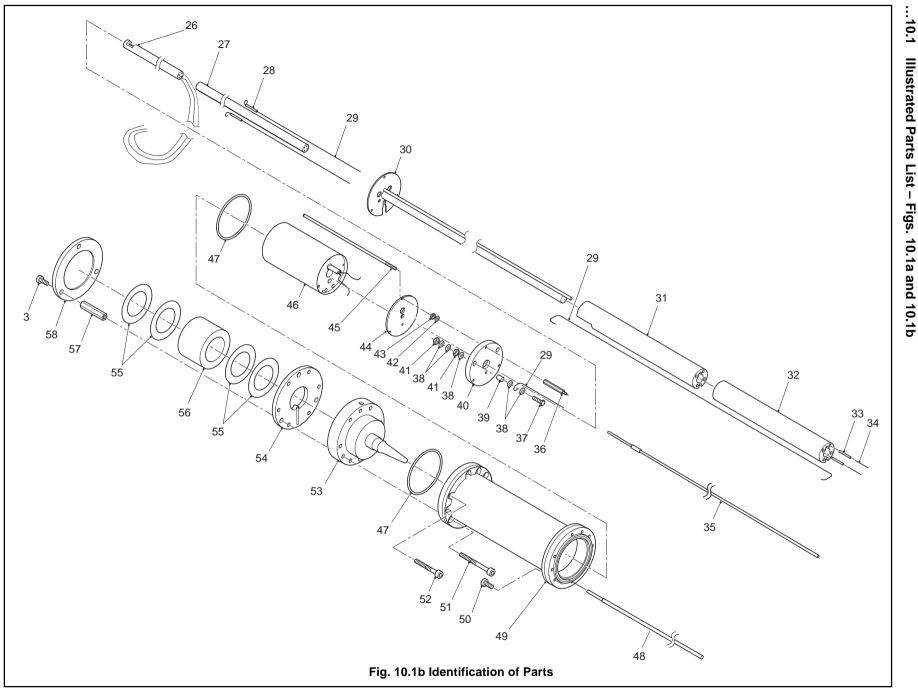

During prolonged service in a high temperature screws may become seized. Seized screws must be cut (using a suitable hacksaw) and removed to allow sub-assemblies to be dismantled or removed.

Authorized replacement screws (for all external fastenings) can be obtained by ordering a special fasteners spares kit - see Section 10.4.5.

10 REPLACEMENT PARTS

10.1 Illustrated Parts List - Fig. 10.1a and 10.1b

ltem	Description	Part No. Qty.
~	EEx d column flange	EXFG/013111
2	Column gasket	EXFG/01012
ε	M4 x 10mm socket-head screw	B97607
4	Column assembly 1.64ft (0.5m) Probe body Standard	EXFG/007011
	ANSI	EXFG/0076I1
	3.281ft (1.0m) Probe body Standard	EXFG/00711
	ANSI	EXFG/007711
	6.56ft (2.0m) Probe body Standard	EXFG/0072I1
	ANSI	EXFG/007811
5	Union-adaptor (test gas)	B111192
9	Felt filter	B111172
7	Probe head base	EXFG/0113I1
8	Earthing washer	EXFG/01542
6	M6 locking washer	B103892
10	M6 x 12 socket-head screw	B111302 EXFG/00501
	Body earth lead*	EXFG/00591
7	Terminal block (4-way)	B92541
12	Air inlet adaptor	EXFG/01191
13	Air inlet tube	2336Bx201006 As rqd.
14	Pusher plate assembly	EXFG/00741


* Items not illustrated

ltem	Description	Part No. Qty.
15	M4 locking washer	. J/0225/6702
16	M4 x 10mm plain screw	. J/0227/5862
17	Connection cover	EXFG/0138 1
18	Probe head lid	EXFG/01111 1
19	M6 x 20mm socket-head screw	B111158
20	Spring	B111862
21	M3 x 16 screw	B64174
22	Terminal block (8-way)	B61841
23	M20 x 1.5 conduit plug (EEx d) (single conduit option only)	B111161
24	M6 x 10mm grub screw	B111142
25	Coupling (test gas)or	0023200441
	Blanking plug*	0030003481

10 **REPLACEMENT PARTS...**

Qty.	ltem	Description	Part NoQty.	
	38	M4 plain washer	B729810	
	39	Connection plate spacer	ZFG2/01292	
-	40	Ceramic terminal plate	EXFG/01081	
- c	41	M4 full nut	B86904	
7	42	M3 plain washer	B111383	
2	43	M3 full nut	B70673	
As rqd.	44	Heater mounting plate	ZFG2/0158 1	
	45	Heater support rods	EXFG/01183	
, , , , , , , , , , , , , , , , , , ,	46	Spares heater assembly	EXFG/00961	
7	47	O-ring	0023100382	
-	48	Test gas tube	EXFG/01261	
Ţ	49	EEx d probe body assembly	EXFG/0090I1	
- 4	50	M4 x 16mm socket-head screw	B72956	
თ	51	M4 x 40mm socket-head screw B10709	B107093	
-	52	M4 x 30mm socket-head screw	B107146	
As rqd.	53	Spares cell assembly	EXFG/0088 1	
As rqd.	54	EEx d test gas plate	EXFG/0133I2	
	55	Filter gasket	003000944 (min.)	_
£ ,	56	Spares ceramic filter kit	EXFG/00871	
	57	Filter spacer	EXFG/01353	
3	58	Filter end plate	EXFG/01341	
2		* Items not illustrated		

10 REPLACEMENT PARTS...

ltem	Description	Part No. Qty.
26	Electrode/thermocouple assembly s (full replacement kit, excluding. item 27)	see Section 9.5 7)
27	Ceramic tube 1.64ft (0.5m) Probe body 3.28ft (1.0m) Probe body 6.56ft (2.0m) Probe body	RMV313
28	Heater lead insulator sleeve	EXFG/01622
29	Heater/ceramic insulator wire	001351006As rqd
30	Centre tube assembly 1.64ft (0.5m) Probe body 3.28ft (1.0m) Probe body 6.56ft (2.0m) Probe body	EXFG/00801 1 EXFG/00811 1 EXFG/00821 1
31	Column insulator machined	EXFG/01071
32	Column insulator 1.64ft (0.5m) Probe body 3.28ft (1.0m) Probe body 6.56ft (2.0m) Probe body	EXFG/0106 1 EXFG/0106 4 EXFG/0106 9
	1.64ft (0.5m) Probe body only Short column insulator [*]	EXFG/01141
33	Heater connection wire sleeve	B4204As rqd.
34	Heater connection wire	B2404As rqd
35	Trip thermocouple 1.64ft (0.5m) Probe body 3.28ft (1.0m) Probe body 6.56ft (2.0m) Probe body	EXFG/01701 EXFG/01711 EXFG/01721
36	Heater mounting spacers	EXFG/0122 3
37	M4 x 25mm hexagon-head screw	B107272

10 REPLACEMENT PARTS

10.2 Mounting Plate

Mounting plate assembly - see Fig. 2.4 003000354

10.3 Conduit Assemblies and Special Dual Cable

10.3.1 Single Conduit Assembly (combined power/signal)

Standard 19.68ft (6m) assembly M20 EEx d bung	
Standard 32.81ft (10 m) M20 EEx d bung	

10.3.2 Dual Conduit Assembly (separate power/signal)

Standard 19.68ft (6m) assembly, comprising: signal conduit (inc. 2 x M25 EEx d glands) .. EXFG/0062 and

power conduit (inc. 2 x M20 EEx d glands) .. EXFG/0063

Standard 32.81ft (10m) assembly, comprising:

signal conduit (inc. 2 x M25 EEx d glands) .. EXFG/0064 and power conduit (inc. 2 x M20 EEx d glands) .. EXFG/0065

10.3.3 Special Dual Cable (separate power and signal cable)

Cable up to 328.10ft (100m):

signal cable (per meter)	EXFG/0194
M20 EEx d glands (x 2)	B11275
M25/M20 reducer (x 2)	B11274
power cable (per meter)	
M20 EEx d glands (x 2)	B11275

10.4 Spares Kits and Replacement Items

10.4.1 Electrode/Thermocouple Lead Assembly

Thermocouple/Electrode lead assembly kit EXFG/0086

Comprising:

Electrode/thermocouple sub-assembly	EXFG/0085
Spring (x 2)	
Heater sleeve, length 0.98ft (0.3m)	B4204
Insulation sleeve – blue,	
length 0.82ft (0.25m)	002410034
Insulation sleeve – white,	
length 0.82ft (0.25m)	002410033
Insulation sleeve – red,	
length 0.82ft (0.25m)	002410032
PVC feed tube,	
length 1.64ft (0.5m)	YBM0202

10.4.2 Zirconia Cell

Zirconia cell assembly EXFG/0088

10.4.3 Ceramic Filter

Ceramic filter kit	EXFG/0087
Comprising:	
Ceramic filter	EXFG/0136
Filter gaskets (x 7)	003000094

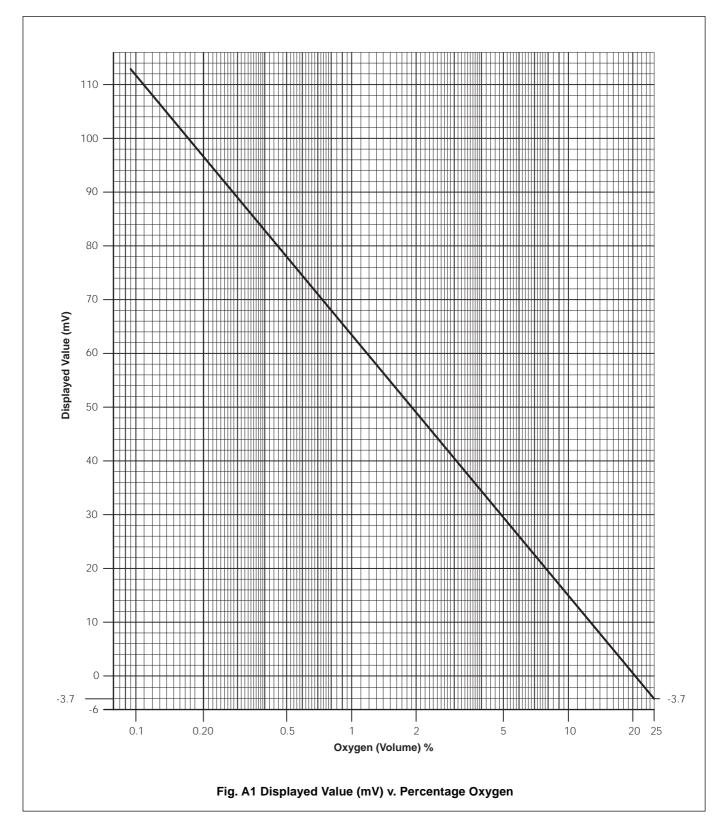
10.4.4 Heater

Heater assembly	EXFG/0096
-----------------	-----------

10.4.5 Fasteners

Special fasteners spares kit EXFG/0083

Comprising:	
M4 x 10mm socket-head screw (x 7)	B9760
M4 x 16mm socket-head screw (x 6)	B7295
M4 x 30mm socket-head screw (x 6)	B10714
M4 x 40mm socket-head screw (x 3)	B10709
M6 x 20mm socket-head screw (x 8)	B11115


10.5 Sealants

Grease 0.88lb (400gm) tube (probe head flange)	CG5317
Thread sealant (vent connections)	CG5091

10.6 Accessory Kits

Accessory kit - see Fig. 2.2.	EXFG/0067
-------------------------------	-----------

APPENDIX

A1 Displayed Value (mV) v. Percentage Oxygen – Fig. A1

NOTES

PRODUCTS & CUSTOMER SUPPORT

A Comprehensive Instrumentation Range

Analytical Instrumentation

- Transmitters
 On-line pH, conductivity, and dissolved oxygen transmitters and associated sensing systems.
- Sensors pH, redox, selective ion, conductivity and dissolved oxygen.
- Laboratory Instrumentation

pH and dissolved oxygen meters and associated sensors.

• Water Analyzers

For water quality monitoring in environmental, power generation and general industrial applications including: pH, conductivity, ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine.

• Gas Analyzers

Zirconia, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Controllers & Recorders

• Controllers

Digital display, electronic, pneumatic. Discrete singleloop and multi-loop controllers which can be linked to a common display station, process computer or personal computer.

 Recorders
 Circular and strip-chart types (single and multi-point) for temperature, pressure, flow and many other process measurements.

Electronic Transmitters

- Smart & Analog Transmitters For draft, differential, gauge and absolute pressure measurement. Also, liquid level and temperature
- I to P Converters and Field Indicators

Flow Metering

- *Magnetic Flowmeters* Electromagnetic, insertion type probes and water meters.
- Turbine Flowmeters
- Wedge Flow Elements
- *Mass Flow Meters* Transmitters, sensors, controllers and batch/display units.

Level Control

• Submersible, Capacitance & Conductivity.

Pneumatic Instrumentation

- Transmitters
- Indicating Controllers
- Recording Controllers

Customer Support

ABB Kent-Taylor provides a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom

ABB Kent-Taylor Limited Tel: +44 (0)1480 470781 Fax: +44 (0)1480 470787

United States of America

ABB Instrumentation Inc. Tel: +1 716 2926050 Fax: +1 716 2736207

Italy

ABB Kent-Taylor SpA Tel: +39 (0) 344 58111 Fax: +39 (0) 344 56278

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:

- 1. A listing evidencing process operation and alarm logs at time of failure.
- 2. Copies of operating and maintenance records relating to the alleged faulty unit.

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

© 1996 ABB Kent-Taylor Printed in the EC 12.96

ABB Kent-Taylor Ltd. St. Neots, Cambs. England, PE19 3EU Tel: (01480) 475321 Fax: (01480) 217948

ABB Kent-Taylor Ltd. Analytical & Flow Group Stonehouse, Glos. England, GL10 3TA Tel: (01453) 826661 Fax: (01453) 826358

ABB Instrumentation Inc. PO Box 20550, Rochester New York 14602-0550 USA Tel: (716) 292 6050 Fax: (716) 273 6207 ABB Kent-Taylor SpA 22016 Lenno Como Italy Tel: (0344) 58111 Fax: (0344) 56278