SUE 3000
High Speed Transfer Device
Brochure
Uninterrupted power supply

Voltage decreases or complete supply interruptions represent the most important and critical problems in the quality of energy supply today. It is especially true that voltage disturbances with electronic control systems and other sensitive installations can lead to complete loss of production and long stoppage times.

As a long-established supplier of High Speed Transfer Devices, with more than 2000 systems and devices already supplied world-wide, ABB can rely on a unique know-how in this area of specialization.

The SUE 3000 High Speed Transfer Device guarantees an optimum safeguarding of energy supply. The device ensures the continued supply to the consumer through automatic transferring to a stand-by feeder and protects the subsidiary process from expensive stoppage times. Furthermore, through the possibility of manually-initiated transfers – for targeted clearings, for example – the operation of the installation is considerably simplified.

HMI (Human machine interface) of the SUE 3000 (3 Circuit-breaker configuration)
As a perfectly integrated High Speed Transfer System (HSTS), in combination with the multifunctional protection and control units REF542plus and optimized ABB vacuum circuit-breakers type VM1-T (operating time about 16ms) SUE 3000 reaches extremely short transfer times of approximately 30ms. The application of the SUE 3000 High Speed Transfer Device marks technically and economically the optimized solution for ensuring uninterrupted power supply to many processes.

- Configuration with 2 or 3 circuit-breakers
- Flexible, project specific configuration and parameterisation with “functional block programming language” (FUPLA)
- Flexible communication concept (IEC 61850-8-1, SPABUS, LON, MODBUS RTU, IEC 60870-5-103, Ethernet interface, Webserver, Proﬁbus DP with Adapter unit)
- Integrated disturbance recorder

1. Analysis of transfer with disturbance recorder | 2 Comfortable FUPLA programming | 3 Oscillogram of a fast transfer | 4 Oscillogram of a transfer at the 1st phase coincidence