Adaptive programming
Application Guide

" Adaptive Programming {0319}

In the drive - ol Download to drive - On PC
¥ Program tools ¥ Functional Blocks

Add Subtract Multip! Divvide b Filter
9| € | &5 '
Undo Redo Open In In D In

D D

1 Inl Inl Mu
n2 n2

In2 1 1 Deniam Time
O | < @
Save Run program Restore
| Arithmetic blocks (8) m | Logical iocks (7) |SEIE|:ticln blocks (7)
Constants |~ | 1o
110 1 Start control
Add
Actual values Speed control
Inl
Status D Frequency control
Data storage Inz 3 Torque control
— Limitations

Adaptive programming

Application Guide

Table of contents

3AXD50000028574 Rev D
EN

Original instructions
EFFECTIVE: 2023-12-19

Table of contents 5

Table of contents

1 Introduction to the guide

Contents of this ChapPterooiiii e 1
Y o] o1 1 et= o 1 1 1 11
CoMPATT D Y e 11
Safety INSErUCTIONS ..o et e e 1
1K= T L= = 10 Lo |11 oY 12
Related ManUalsooiiii e e 12

2 Adaptive programming

Contents of this ChapPtercoiiii e e 13
Overview of Adaptive programmingeeiiiiiietiiiiiiii e e eeaaaaaeens 13
o]I o] oo | 2= o o S R 14
ST=Te 11 g Tol=T o] oo | =1 o o I 14
Connecting the Adaptive program to a drive control program 14
Enabling and running the Adaptive programcoiiiiiiiiiiiiiiii e 14
Execution of the Adaptive programttt e eeeiceee s 15
Creating a bacKUP /reStOre .. .ot e et e e e eeaeeas 15

3 Using PC tool interface

Contents of this Chapterooiiiii e e 17
Adaptive programming user interfaceccoviiiiiiiiiii i e 17
Base and SEqUENCE PrOgramsueiiiie ettt e ee e et e eaaaeeeeeeaannaaeeeens 18
Program t0O0IS .o e 19
Functional BIOCKS ..o e e 19

T 01U 1 o 19
Editing the input labels ... 19

L LT o 1 U 1 20
SY=To U] ool Iy = o U 21
State tranSTtION ..o e 21

3 Creating an Adaptive program

Contents of this ChapPtercoiiii e e 23
Creating @ base Programooiiiiiiii ettt e e 23
Creating @ SEQUENCE PrOGIaMNun.tee et e eeeieteeeeeaaaeeeeseaaaneeeeseaaannneees 25
Downloading the adaptive programc.ooiiiiiiiiiiiii e 27

3 Program elements

Contents of this ChapPtercoiiii e e 31
0T o 1 1 o R 32
L@ 013 o= o 1 T 32
=T =Y 0 1= o = = 32
7@ 32
ACLUAL ValUEBS ..o e e e 33

1] 1= 1 o 33

6 Table of contents

D 1= X = =0 o] =Y [34
1)V =T TR0 U 1 @ 1 1 of = 35
o T =Y 1= o =T o= 35
7 35
15 o=V o o] o o | 36
SpeEA CONTIOl ..o e eeeeaaaeas 36
(=T [U =T Ty YA o] o oo) 37
B 1o] e LU TSI o] o1 o o 1 Pt 37
T 0 o= o o 38
T o = 38
DT X = =0 o] =Y [39
PrOCESS PlID ..t e 39
Function block specificationsooiiiiii i 40
L o 40
(0 1 o o 1 o P 40

T T 40
BlOCK fUNCHION Lo e e e 40

o Cot=T o T] o T= I of= =T 40
o o 41
(0 1 o o 1 o P 41

LT LU == 41
DefaUlt TNPULS: 2 ittt e et 41
BlOCK fUNCHION L o e 41

e Cot=T o T] o 1= H of= =T 41
N 42
(0 11 o o P 42

LT LU == S 42
DefaUlt TNPULS: 2 ittt e et 42
BlOCK fUNCHION L o e 42

e Cot=T o1t Te] o T= J of= =T 42

2 o T 43
(0 T 1 o o P 43

T LU = 43
BlOCK fUNCHION Lo e e 43

e Cot=T o Tt T] o T= I of= =T 43
BItWISE AN DD ...ttt e, 45
(0 T 1 o o P 45

T LU == 45
BlOCK fUNCHION Lo e e e 45

e Cot=T o Tt T] o T= I of= =T 45
BIEWISE O R Lottt e aas 46
(0 T o o P 46

LT LU == 46
BlOCK fUNCHION L. e e 46
EXCEPIONAl CaSES ..ttt 46
BItWISE O R ..ttt e e, 47
(0 11 o o P 47

T 16 = 47
BlOCK fUNCHION Lo e e e 47

e Cot=T o Tt T] o T= I of= =T 47
DLV = 48

(0 1 o o 1 o P 48

Table of contents 7

T LU = 48
BlOCK fUNCEION L e ettt 48
EXCEPIONAl CASES .ttt 48
B UL e 49
L T8] 1 49
T LU = 49
BlOCK fUNCEION Lo e et 49
EXCEPLIONAl CASES . uut ittt 49
T 50
L T8 o 1 50
T LU = 50
BlOCK fUNCEION Lo e ettt 50
LT 1T 50
EXCEPIONAl CaSES ..ttt 50
Greater than 51
L T8] 1 51
T LU = 51
BlOCK fUNCHION Lo e e et 51
T 51
Second (If firsSt 1S NOT ErU): .ottt et 51
Third (if neitherare true): ... 51
EXCEPLIONAl CaSES .ttt 51
I3 o - 1 o 52
L T8] 1 52
T LU = 52
BlOCK fUNCEION L e ettt 52
T 53 52
Second (If FIrSt SN T TrUE) ..ttt et 52
Third (if neither are true) ... 52
EXCEPLIONAl CaSES .ttt 52
8 0 0 T 53
L T o 1 53
T LU = 53
BlOCK fUNCEION L e ettt 53
EXCEPLIONAl CaSES .ttt 53
O 54
L T8 o 1 54
T LU = 54
DefaUlt INPULS: 2 .ttt e e e 54
BlOCK fUNCEION Lo e et 54
EXCEPLIONAl CaSES ..ttt 54
1 o P 55
L T o o 1 55
T LU = 55
D AUt INPULS: 2 ittt e e e 55
BlOCK fUNCEION Lo e ettt 55
EXCEPLIONAl CaSES .ttt 55
17 1 T o 56
L T o 1 56
T LU = 56
D AUt INPULS: 2 ittt e e e 56

(=] o Yol i 10 [Tt [o TP 56

8 Table of contents

e Cot=T o Tt T] o T= I of= =T 56
) 57
(0 T o o P 57
T L 57
BlOCK fUNCHION L o e 57
EXCEPIONAl CaSES ..ttt 57
L 58
(0 11 o o P 58
LT LU == 58
DefaUlt TNPULS: 2 ittt et 58
BlOCK fUNCHION Lo e e 58
e Cot=T o1t Te] o T= J of= =T 58
Pl e e eeee e aeeeaieeeaaeeaaaa, 59
(0 1 o o 1 o P 59
T 16 = 59
BlOCK fUNCHION L. e e 60
e Cot=T o1t Te] o T= J of= =T 60
= 1 010 o 61
(0 T o o P 61
T 16 = 61
BlOCK fUNCHION L o e 61
e Cot=T o1t] o T= I of= =T 62
SeleCt DOOIEAN ... e 63
(0 T o o P 63
T LU = T 63
Default INPULS: B ..t e e e et 63
BlOCK fUNCHION L. e e 63
EXCEPIONAl CaSES ..ttt 63
1 Y= 1= ot B - 1 = 64
(0 11 o o P 64
T 16 = T 64
DefaUlt INPULS: B .. e e et 64
BlOCK fUNCHION L o e 64
o Cot=T oY] o T= I of= =T 64
1S = o =T 65
(0 11 o o P 65
T 16 = 65
BlOCK fUNCHION L. e e 66
e Cot=T o1t] o T= I of= =T 66
St DS B Lottt e 67
(0 11 o o P 67
T 16 = 67
BlOCK fUNCHION Lo e e e 68
e Cot=T o Tt T] o T= I of= =T 68
1Yo 10 1= 1 = o T 69
(0 101 o o P 69
T 16 = 69
BlOCK fUNCHION L. e e 69
e Cot=T o1t Te] o T= J of= =T 69
5 P 70
(0 T 1 o o P 70

Table of contents 9

BlOCK fUNCHION L. e e 70
EXCEPLIONAl CaSES ..ttt 70
158 0 o = Vot 71
L T8 o 1 71
T LU = 71
BlOCK fUNCHION L. e e 71
EXCEPLIONAl CaSES ..ttt 71
SWiItch boolean ... 72
L T8 o 1 72
T LU = Tt 1 72
DefaUlt TNPULS: B ..ttt e ettt 73
BlOCK fUNCHION L o e 73
= 10T o L 73
EXCEPIONAl CaSES ..ttt 73
SWItCN ValUe ..o e e e 74
L T o 1 74
T LU = Tt 1 74
DefaUlt TNPULS: B it e ettt 75
BlOCK fUNCHION L. e e 75
= 10T o L 75
EXCEPLIONAl CASES . uut ittt 75
L1010 76
L T8] 1 76
T LU = e 76
Default INPUES: 4 .. e e 76
BloCk fUNtION ..o e 76
EXCEPLIONAl CaSES .ttt 78
I T T 1= e [0 o 79
L T8] 1 79
T L o 79
BlOCK fUNCHION L. e e 79
EXCEPLIONAl CaSES .ttt 79
I T T 1= 0 o 80
L T8] 1 80
T L o 80
BlOCK fUNCHION L. e e 80
EXCEPLIONAl CaSES ..ttt 80
LI o 2 81
L T8] 1 81
T LU = 81
BlOCK fUNCHION L. e e 81
EXCEPLIONAl CaSES ..ttt 81
1 I o P 82
L T8] 1 82
T LU = 82
BlOCK fUNCHION L. e e 82
EXCEPLIONAl CaSES .ttt 82
(0] 83
L T8] 1 83
T L6 = 83
BlOCK fUNCHION L. e e 83

EXCEPLIONAl CaSES .ttt 83

10 Table of contents

Further information

Introduction to the guide 11

Introduction to the guide

Contents of this chapter

This chapter gives general information on the guide.

Applicability

This guide applies to Adaptive programming - a standard feature available in the Drive
Composer PC tool. These version of the tool include the Adaptive programming:

+ Drive Composer Pro 1.9 or later

» Drive Composer entry x.x or later.

Compatibility

Several control programs for drives and units support Adaptive programming. Refer
to the appropriate control program firmware manual.

Safety instructions

Follow all safety instructions delivered with the drive.

» Read the complete safety instructions before you install, commission, or use the
drive. The complete safety instructions are delivered with the drive as either part
of the Hardware manual, or, in the case of ACS880 multidrives, as a separate
document.

+ Read the software function specific warnings and notes before changing the
default settings of the function. For each function, the warnings and notes are
given in the Firmware Manual in the subsection describing the related user
adjustable parameters.

12 Introduction to the guide

Target audience

This guide is intended for people who design, commission, or operate the drive system.

Related manuals

You can find manuals on the Internet. See below for the relevant code/link. For more
documentation, go to www.abb.com/drives/documents

« Firmware manual of the drive or unit with the Adaptive program.
« Drive Composer user’s manual 3AUA0000094606

https://library.abb.com/r?cid=9AAC100211
https://search.abb.com/library/Download.aspx?DocumentID=3AUA0000094606&LanguageCode=en&DocumentPartId=1&Action=Launch

Adaptive programming 13

Adaptive programming

Contents of this chapter

This chapter provides an overview of Adaptive programming and how to use the
Adaptive program.

Overview of Adaptive programming

Adaptive programming is used to customize the operation of a drive in case the drive
parameter setting is not sufficient. The Adaptive program is built with standard
function blocks included in the drive firmware. The program consists of the following
elements:

- Apredefinedlist of input elements to read values from the drive control program..
« Apredefined list of outputs to write values to the drive control program..

« Acollection of states in which each state has its own block program, including
inputs, outputs and state transition elements.

Standard function blocks (for example ADD, AND) are used to create an executable
Adaptive program. The maximum size of an Adaptive program is approximately 20
standard function blocks, depending on the block types used and the number of
predefined inputs and outputs utilized in the program. Numerical function blocks use
floating point numbers in the calculations.

Adaptive program is created in the drive control program using the Drive composer
software with which the program can also be downloaded to the drive and started.
By default, Adaptive program is started when the drive is powered On, if the program
already exists in the drive.

Adaptive programming execution stops when macro or user set is changed.

14 Adaptive programming

Base program

The base program is the actual function block program.

Sequence program

In addition to the Base program, the Adaptive program can also consist of a collection
of states, called a Sequence program. When the program is running, there is always
one state active and the corresponding program is executed until another state is
active. Execution of sequence states always begins from state 1.

The state changes are controlled with state transition elements that can be connected
to function block outputs. State transition takes place after the full execution cycle
of the program during which the value of any corresponding output becomes true. In
case multiple state transitions are true during a single execution cycle, then the one
that is connected to the smallest numbered block is triggered. See the example
program execution.

Not all drive control programs support the Sequence program. Refer to the drive
firmware manual.

See also Creating a sequence program (page 25) and Downloading the adaptive
program (page 27).

Connecting the Adaptive program to a drive control
program

Adaptive program is connected to the drive control program through input and outputs.
When a Adaptive program uses a drive parameter as an output, it is reserved for the
Adaptive program and write-protected otherwise.

Drive provides the available inputs and outputs and sets the parameter values
accordingly based on the created program.

When the predefined output (value/bit pointer parameter) is written to from the
Adaptive program, the parameter is write protected and it is not changed in the

parameter table. The control panel and Drive composer shows text in the pointer
parameter to indicate that the parameter is connected to the Adaptive program.

Enabling and running the Adaptive program

The Adaptive program function can be enabled or disabled with the drive parameter
96.70 Disable Adaptive program.

Adaptive program is in running when all of these conditions are valid:

1. Run program button in the Adaptive programming window is active (pressed).
Run program button is on the In drive tab.

2. Adaptive program is enabled.
3. The control unit of the drive or unit is powered

The control program of the drive or unit is not performing a parameter restore,
application macro change, or other large scale parameter change operation.

When Adaptive program is disabled, the situation is similar to a drive without Adaptive
program. The following operations are not possible:

Adaptive programming 15

« Adaptive program cannot be put to running mode when the drive is powered On

- Adaptive program cannot be edited or put to running mode from Drive composer.

Execution of the Adaptive program

Adaptive program is executed on firmware time level. The parameter 7.30 Adaptive
program status shows the status of the Adaptive program. The program can be edited
only when the drive is in Stopped state. While editing the program, the Start inhibit
is On, so that the drive cannot be started.

Note: For time level actual value, refer firmware manual.

The Adaptive program executes the function blocks in numerical order with all blocks
on the same time level. This cannot be changed by the user. The user can only do the
following tasks:

« build a program using the standard blocks and connections
« change the numbering of the blocks by moving them to different positions
» select the operation mode of the program (run/edit).

If Adaptive program in the drive is not compatible or corrupted, the fault 64A6h
Adaptive program is activated. The extension code of the fault explains the detail of
the problem with the Adaptive program.

Creating a backup/restore

Adaptive program can be saved to the backup file and restored. The program starts
automatically if the conditions listed in Enabling and running the Adaptive
program (page 14) are valid.

16

Using PC tool interface 17

Using PC tool interface

Contents of this chapter

This chapter describes the main user interface elements of PC tool for Adaptive
programming.

Adaptive programming user interface

The Adaptive programming user interface is available in the Drive Composer PC tool.
From the interface it is possible to:

« Create an Adaptive program
« Edit the Adaptive program
- Download a new/edited Adaptive program to the drive.

The working area can be used either with tab or floating window. The selection between
tab and floating window can be made using Drive composer pro View menu. The figure
below shows the user interface with tabbed window.

18 Using PC tool interface

¥ Program tools ¥ Sequence states | ¥ Functional blocks
‘) C ; I Ade I Subtract I Multily I Oivide e ‘ Filter ‘ Ramp L " .s.,m.w. Anp
i el Open P P D) Oe [JOw D Dsepaine I [| Pm
Dby Dby DL D Dy Dy D 5 O
.\ 2 2 2 _/ Denom A Time _J Increase _/ Actual n2
R | O S
Save to X A
= Restore Arithmetic blocks (3) Logical blocks {10) Selection blocks (7) Compariso._ Timer bloc. Operation blacks (5)
[V nputs | ¥ Base program [7 State ransition |
Constants 4
Parameters A Parameters
1
l{e; Add lle}
o1 G D » RO
o2 G s D
-/ In2
D‘QB m AO1
ou I » DIO1
5D
A2 » DIO2
DIO1
@ Start control
Doz @ Speed control
Actual values Frequency control
Status P Sequence program Tarana canteal

Figure 1. Adaptive programming user interface

Base and sequence programs

There are separate canvases for creating base and sequence programs. The required
canvas can be expanded or collapsed.

« The base program canvas can be used to create a base program with function
blocks. The user can drag and drop the desired function blocks to build a base
program. See Creating a base program (page 23).

- The sequence program canvas can be used to create a sequence program. The
user can drag and drop the desired amount of states to build a sequence program.
See Creating a sequence program (page 25).

¥ Sequence states | ¥ Functional blocks
Square roat AND oR
Blank state
N

A In D > Inl > Inl
> In2 D > In2 D
Arithmetic blocks [3) Logical |

» Base program
¥ Sequence program

S2: State 2

Figure 2. Sequence program user interface

Using PC tool interface 19

Program tools
The program tools contains the following options:
+ Undo: Erases the last change made and reverts it to an older state
+ Redo: Reverses the undo or advances to a more current state
« Open: Opens a program from locally saved file
« Save: Saves the active program to a local file (.dcap format)

« Restore: Restores the default program.

Functional blocks

Functional blocks of Adaptive programming are grouped into categories and are

shown on a horizontal shelf. The scroll bar shows category labels and indicates the

current view. The user can drag and drop the required blocks to the canvas.
Inputs

Theinputs are categorized into groups. Note that the available groups and inputs are
dependent on the drive type. Typical examples are:

. Constants
- 1/0
« Actual values.

The same input can be used multiple times in the same program. Hovering over an
input on the shelf highlights every instance of that input on the canvas, so you can
easily locate where the input is used in the program.

“Vinputs |V Base program

Constants

Parameters

11O Add

= AH

D1 i EY..

D12 B2 Eﬁ D)
In2

Figure 3. Inputs

Editing the input labels
You can edit the input labels and add a comment.

1. Click Exllabel in the functional block input.

20 Using PC tool interface

AMD T_on
= DH

_m inl [_D In = RO1

= DIz D) = Numerical value
_E In2 m Delay

Figure 4. Editing label

2. Editthelabel and add the comment as desired.

AND T_on
= oH

_m Tnl [_D In = RO1

e

Start button @ D '
DI2 (DI2) "

This input is connected to —
start button

= Numerical value

Delay

Figure 5. Editing label and comment

Outputs

The outputs are categorized into groups. Note that the available groups and outputs
are dependent on the drive type. Typical examples are:

« Parameters

- 1/0

« Start control

« Speed control.

Each output can be used only once in the program. After you drag and drop an output
to the canvas, it is faded on the shelf.

Using PC tool interface 21

Tl v Outputs |
‘, Parameters

Add 11O
= AH
Start control

Inl = Speed refi

= A Speed control

9

Speed proportional
gain

Speed integration
time

Acceleration time 1

Figure 6. Outputs

For more information on output descriptions, refer firmware to the appropriate
firmware manual of the drive or unit.

Sequence states
The sequence states contains a:

« Blank state: adds a new empty state to the sequence program.
You can drag-and-drop this empty state any number of times to the sequence
program canvas and rename the state in the program.

State transition

State transition element is used to control the sequence of state transitions when
connected to boolean type block outputs. There can be several state transition
elements used in a single state.

:
4
AND Parameters

_Eﬁ 110
Inl

Start control

= DIz
_B In2 Speed control

Frequency control
Torque control

Limitations

Figure 7. State transition

22

Creating an Adaptive program 23

Creating an Adaptive program

Contents of this chapter

This chapter describes how to create an Adaptive program and download the program
to the drive.

You can do the following:
» Create a base program using function blocks.
« Optionally create a sequence program using states.

« Download the program to the drive.

Creating a base program

To create a base program using function blocks, proceed as follows:

1. Open the Drive composer PC tool, and make sure that it is connected the drive
for which you want to create a base program.

2. Select ... to open the Adaptive programming interface.

3. Drag-and-drop the desired function blocks to the base program canvas.

24 Creating an Adaptive program

g Peavg 019
In the drive - L%y Downioad to drive - On PC
V_Functional Blocks
- D'I“E‘;'" Switch value hs:)il‘::n Greater than Less than Equal | Ton T off
2|1 € | &
Undo Redo Open, ’ Sell Sell A A A T In
o <'L_I| @ | inl Inl 3 8 8 Delay Delay
| e i il leer—=r @ | Logical siacks (7) | setection biocks () [combarisoJTimer.. Josera. | +
v 1o | = o] =
o1 I " 2 » RO1
DI2 Ii» AND T_on | 3
¥ RO2
D13 [Ep i =
Di4 TP > B || [
InZ Delay RO3
os BB
Dis ﬁ AO1
i m
- AO2
£ m i I m | » =

Figure 8. Function block

4. Drag-and-drop the desired input element from the Inputs categories to the
function block(s). Function block input shape indicates which type of input element
it accepts, boolean or numeric. Double-click the input element to select or define
the actual input content. For example, select the parameter index for the Parameter
input element.

[V imputs |V Base program

Constants [
4
|

Parameters

I @] AND Ton
= DH

o G B. S
o2
4 D > e Yo
Di4
Al
A2

Dio1 BB

pioz

Actual values

Figure 9. Adding inputs

5. Drag-and-drop the desired connections from the block outputs to other function
block(s). Function block output shape indicates which type of output element it
accepts, boolean or numeric. Double-click the output element to select or define
the actual output content. For example, select the parameter index for the
Parameter output element.

Creating an Adaptive program 25

¥ Base program

4
A

AND Ton

= DIz D = MNumerical value D
T @ In2 m Delay

Figure 10. Adding outputs

Drag-and-drop the desired output element from the Outputs categories to the
function block(s).

¥ Bass program (> State transition |
7]
A Parameters
1 2
AND T_on l{e}
= D
o, Start control
_m Inl . [_D In
=& D ' =L » Ext1/Ext2 selection
| | Inz Delay
» Run enable 1
» Ext1in1 cmd
» Ext1in2 cmd
» Ext1in3 cmd

Figure 11. Adding outputs

Creating a sequence program

To create a sequence program using states, proceed as follows:

1.

Open the Drive composer PC tool, and make sure that it is connected the drive
for which you want to create an sequence program.

Open the Adaptive programming interface.
Open the Sequence Program canvas.

Drag-and-drop the desired amount of states to the sequence.

26 Creating an Adaptive program

5.

¥ Functional blocks

Switch Less than Equal T.on T o

Switch value Greater than
Blank state boolean
> - > o)) A > In > In

> : nl D >:'|'. D -;.: D -‘;: D ;3 D) D) [

_+ Delay _+ Delay

™ b ~ ™
Arithmetic blocks [9) Logical blodcks (10) Selection blocks (7) Co

> Base program
¥ Sequence program

S1: State 1

52 : State 2

Figure 12. Sequence program states

Select the state and create desired block program for each state.

¥ Sequence program
| 4
1 L |
AND
S1: State 1 =oH
o 2%
= D
|| In2
52: State 2
2
S3: State 3 Connect | o ced refl
= Numerical value =
"

Figure 13. Block program in selected state

6. Drag-and-drop the desired state transitions to each state.

Creating an Adaptive program 27

> Base program [State ransition |

¥ Sequence program
| prog 51 53
L4

A
1
S1:State 1 AND Parameters
=DH Me)
| | Inl
= D Start control
—@ In2 Speed control

Speed ref1

Speed proportional
gain

Speed integration
time

BN :
Connect

= Speed ref
= MNumerical value

750 8

Acceleration time 1

Figure 14. State transitions

Downloading the adaptive program

After creating a base program and optionally a sequence program, you can download
the program to a drive and run the program.

1.

Click Download to drive.

¥ Program tools ¥ Sequence states | ¥ Functional blocks

Switch

= I O Ja Ja p p 2 enatie
D, D, D, DD, Db, D

Undo Redo Open Sell

‘ O 7 ml _/ Detay _/ Detay Reset
Save Restore S N n ~
Arithmetic blocks (9) Logical blocks (10) Selection blocks (7) =
¥ nputs | V Base program
Constants "]
Parameters ‘.
il 2
o] AND T.on

Actual values FEY .. Bl = Exttint cmd

Status =i D I = Mumerical value

Data storage In2 Delay

P Sequence program

Figure 15. Downloading to drive

The program is downloaded to the drive.

28 Creating an Adaptive program

2.
3.

In drive

R

Save Run program

¥ Base program

£% 2

AND

—m Inl r—D In = Ext1in1 cmd
>

= Numerical value:

T_on

In2 Delay

P Sequence program

Figure 16. Program downloaded to a drive

Go to In drive tab. In the Program tools, click Run program to start the program.

Open the Sequence program canvas to view the sequence program.

In drive

R

Save Run program
P Base program

¥ Sequence program

BN <1 State 1 L
=DH

532 : State

|N |

= Mumerical value

- CEID i
e N et

In

Figure 17. Sequence program

Creating an Adaptive program 29

After downloading the program to the drive, you can

« click Edit program to stop the program and start editing
or

« click Save to save the adaptive program to a local file (.dcap format).

30

Program elements 31

Program elements

Contents of this chapter

This chapter presents the main Adaptive program elements, that is, input and output
element listings, and function blocks.

The content of the input/and output element listings vary depending on the control
program of the drive or unit. This chapter presents I/0 elements for ACS880 primary
control program.

32 Program elements

Inputs

Constants
This input element list contains two elements, Numerical value and Boolean value:
« Use Numerical value to read a constant with a numeric value.

. Use Boolean value to read a constant with boolean value.

Constants

Numerical value m
Boolean value

Drag and drop the input element to an input of a function block. Function block input
shapeindicates which type of input element it accepts, boolean or numeric. Double-click
the element to select the constant index

Parameters
This input element list contains two elements, Numerical value and Boolean value:
« Use Numerical value to read a parameter with a numeric value.
« Use Boolean value to read a parameter with boolean value.

Constants

Parameters

Parameter value m
Parameter bit

Drag and drop the input element to an input of a function block. Function block input
shapeindicates which type of input element it accepts, boolean or numeric. Double-click
the element to select the parameter index

1/0

This input element list contains digital input, analog input and digital input/output
signals of the drive or unit. For example, DI1, etc.

Drag and drop the input element to an input of a function block. Function block input
shape indicates which type of input element it accepts, boolean or numeric.

Program elements 33

V¥ Inputs

Constants
Parameters

1/O

o1 D
oz D

DI3 [slEs

D14 CINp

DI5 pl3

Dic EED

DIIL [

A (T
w2 [

DIO1 [plle

bllex3oio> 2

Actual values

This input element list contains the basic signals for monitoring the operation of the
drive or unit. For example, Motor speed, etc.

Drag and drop the input element to an input of a function block. Function block input
shape indicates which type of input element it accepts, boolean or numeric.

V¥ Inputs

Constants
Parameters
l/O

Actual values
Motor speed ﬂ
Output frequency
Motor current
Motor torque
Motor shaft power m

Status

Data storage

Status

This input element list contains the basic status signals of the drive or unit. for example,
Enabled, etc.

34 Program elements

V¥ Inputs

Constants
Parameters
lle]

Actual values

Status

Enabled EE P
Inhibited SR
Ready to start B
Tripped w

At setpoint @
Limiting [EX54p

Ext1 active m
Ext2 active m

Data storage

This input element list shows the data storage values of the control program. These
are the values of the 32 bit real data storage parameters in the control program. For
example, values for parameters 47.01 to 47.08.

¥ Inputs

Constants
Parameters
1/0

Actual values
Status

Data storage

Data storage 1 real
32
Data storage 2 real
32
Data storage 3 real
32
Data storage 4 real
32
Data storage 5 r%azl Dse

Data storage 6 resazl

Data storage 7 real

20 Ll
Data storage 8 real

30

DS1

Ds2

DS3

Program elements 35

System outputs

Parameters
This input element list contains two elements, Numerical value and Boolean value:
+ Use Numerical value to write a parameter with a numeric value.

+ Use Boolean value to write a parameter with boolean value.

Parameters

Parameter value

L Parameter value

Drag and drop the output element to an output of a function block. Function block
output shape indicates which type of output element it accepts, boolean or numeric.
Double-click the element to select the parameter index

The block output value is written to the parameter only when the value changes. The
written parameter values are not saved over power down of the drive.

For efficiency, the parameter reading and writing is made in the internal format. In
case of some parameters, it is possible that the block input shows a different value
than the corresponding parameter.

1/0

This output element list contains digital output, analog output and digital input/output
signals of the drive or unit. For example, DI1, etc.

Drag and drop the output element to an output of a function block. Function block
output shape indicates which type of output element it accepts, boolean or numeric.

Parameters

Y])
O @]
%) d

Py,
o]
w

o >
o S

=)
()]
%]

agauaaa%
>
Q

36 Program elements

Start control

This output element list contains signals that have effect on the drive start/stop
control. For example:

- EXT1/EXT2: Defines the source signal for the external control location selection
(parameter 19.11).

» Run enable 1: Defines the source for the run enable 1 signal (parameter 20.12).

- Faultreset: Defines the source for the external fault reset signal (parameter 31.11)

Parameters
/O

Start control

Ext1/Ext2 selection

Run enable 1

Ext1in1 cmd

Ext1 in2 cmd

Ext1 in3 cmd

Ext2 in1 cmd

o Fwt? in? ~md

Refer to an appropriate firmware manual for more information.

Speed control

This output element list shows signals that have effect on the speed control of the
drive. For example:

- Speedrefl: Defines the value for the Speed refernce 1 signal in the speed control
chain (parameter 22.11). Refer to the firmware manual for the drive parameter and
the location of the signal in the speed reference control chain.

Program elements 37

Parameters
/O
Start control

Speed control

Speed refl

Speed ref2

Speed additive 1

Speed proportional
gain

Speed integration
time

Acceleration time 1

Frequency control

This output element list shows signals that have effect on the frequency control of
the drive. For example:

- Frequency refl: Defines the value for the Frequency refernce 1 signal in the
frequency control chain (parameter 28.11). Refer to the firmware manual for the
drive parameter and the location of the signal in the frequency reference control
chain.

Parameters
11O

Start control
Speed control

Frequency control

Torque control

Frequency ref1

Frequency ref2

This output element list shows signals that have effect on the torque control of the
drive. For example:

« Torquerefl: Defines the value for the Torque refernce 1 signalin the torque control
chain (parameter 26.11). Refer to the firmware manual for the drive parameter and
the location of the signal in the torque reference control chain.

38 Program elements

Parameters

11O

Start control
Speed control
Frequency control

Torgue control

Torque ref1
Torque ref2

Torque additive 2

Limitations

This output element list defines the source of maximum torque limit for the drive. For
example:

« Minimum torque 2: Defines the value for the Minimum torque 2 signal in the torque
limit control chain (parameter 30.23). Refer to the firmware manual for the drive
parameter and the location of the signalin the torque limit reference control chain.

| v Outputs |
Parameters
11O
Start control
Speed control
Frequency control
Torgue control

Limitations

m Minimum torque 2
m Maximum torque 2

Events

This output element list shows signals that have effect on the external events of the
drive. For example:

- External event 1: Defines the value for the External event 1 signal in the external
event control chain (parameter 31.1). Refer to the firmware manual for the drive
parameter and the location of the external event in the torque reference control
chain.

Program elements 39

Parameters

I}

Start control
Speed control
Frequency control
Torque control
Limitations

Events

External event 1
External event 2

External event 3

External event 4

Data storage

Parameters

l{e}

Start control
Speed control
Frequency control
Torque control
Limitations
Events

Data storage

Data storage 1 real
32

Data storage 2 real
32

Data storage 3 real
32

Process PID

For example: Set 1 setpoint 1, Set 1 feedback 1, Set 1 tracking mode etc. For more
information on output descriptions, refer to firmware manual(s) in Related
manuals (page 12)

40 Program elements

Function block specifications

You can adjust the number of inputs by dragging the bottom line in the function block.

Note: Function blocks which do not contain bottom line cannot be adjusted.

Abs

Calculates absolute value.

Abs

w [

Output:

Name Type Default value

Out Float 0]

Input: 1

Name Type Default value Function
In Float 0] Block input

Block function

Block calculates absolute value of value in input In. Output =1In .

Exceptional cases

Block input is not connected. Input has a default value.

Program elements 41

Add

Adds n inputs and outputs result.

Add Add
Output:
Name Type Default value
Out Float 0]
Inputs: 2-8

Default inputs: 2

‘ Name Type Default value Function

‘ In1-1n8 Float 0 Provides values to add

Block function
Output =Inl +In2 +...+ In8.

Exceptional cases

« Inputs which are not connected are added as default value.

- Overflow to positive side: output is limited to Max float.

» Overflow to the negative side: output is limited to negative Max float.

+ Underflow: value 0 is kept at output.

42 Program elements

AND

Performs logic AND.

AND

Output

AND

In&

Ing

Name

Type

Default value

Out

Inputs: 2-8

Default inputs: 2

Boolean

0]

Name

Type

Default value Function

In1-1In8

Boolean

N/A Block inputs

Block function

Function block performs logical conjunction operation with inputs.

Out=In1&In2 & ... & In8.

The truth table of AND operation is below. Example uses two inputs. Same logic can
be applied to other inputs. Output is 1 (true) if and only if all inputs have value 1 (true).

Inl In2 Out
0 0 0
0 1 0
1 0] 0
1 1 1

Exceptional cases

« Inputs which are not connected have no effect on the output.

» If someinputs are connected and others are not, only the connected inputs are

evaluated.

Bit get

Performs logic OR operation with selected bits from inputs.

& ik
Bit get Bit get

Bit sel D -l ,u =l D

/ Bitseld
./ Bit sel

Program elements 43

Output

‘ Name ‘ Type Default value

‘Out ‘ Boolean

Inputs: 2-9

Name Type Default value Function

In Float 0] Value to read bits
Bitsel1-8 Float N/A Provides number of bits

Block function

to be selected frominput
value.

Basic functionality of the block is to get the value of the defined bit. In case several
bits are defined then values of these bits are retrieved and OR operation is executed

with these to get the block output value.

Bits O - 15 can be selected.

For example, in case only Bit sel 1is connected then Out = vall. If Bit sel 1 and 2 are
connected then Out = vall OR val2, where vall - value of bit selected by Bit sel 1 input
and val2 - value of bit selected by Bit sel 2 input.

Exceptional cases

« Bit selinputis not connected. Bit defined by this input is skipped.

- If entered bit sel value > 15, bit 15 is selected.

44 Program elements

- If bit sel < 0 then bit 0 is selected.
- IfinputInis not connected, it gets default value.

« Aninput In value that is either negative or larger than (2231)-1 is set to default
value 0.

Program elements 45

Bitwise AND
ANDs the lowest 16 separate bits of the input values and outputs the combination as
float.
T 1
Bitwise AND Bitwise AND
4 Ind
Ind
Output
Name Type Default value
Out Float 0
Inputs: 2-8
‘ Name Type Default value ‘ Function
Float N/A ‘ Provides an input value.

‘ Inl-In8

Block function

Connected inputs are rounded to the nearest integer after which the AND operation
is performed on them. The lowest 16 bits of the result is taken, converted to float and
written to output.

Exceptional cases

« Aninput value that is either negative or larger than (2231)-1is set to default value

0.

» Ifonlylinputis connected then that input is rounded and sent to the output.

46 Program elements

Bitwise OR

ORs the lowest 16 separate bits of the input values and outputs the combination as

float.
T 1
Bitwise OR Bitwise OR
nl A Ink
) Ind
In7
Ing
Output
Name Type Default value
Out Float 0]
Inputs: 2-8
Name Type Default value Function
Inl1-1n8 Float Provides an input value.

Block function

Inputs are rounded to the nearest integer after which the OR operation is performed
on them. The lowest 16 bits of the result is taken, converted to float and written to

output.

Exceptional cases

- Aninput value that is either negative or larger than (2231)-1is set to default value

0.

« Ifonly 1input is connected then that input is rounded and sent to the output.

- Disconnected inputs have default value O.

Program elements 47

Bitwise XOR
XORs the lowest 16 separate bits of the input values and outputs the combination as
float.
1
Bitwise XOR
Inl
In2
Output
Name Type Default value
Out Float 0]
Inputs: 2
Name Type Default value Function
In1 Float 0 Provides an input value.
In2 Float 0 Provides an input value.

Block function

Inputs arerounded to the nearest integer after which the XOR operation is performed
on them. The lowest 16 bits of the result is taken, converted to float and written to

output.

Exceptional cases

« Aninput value that is either negative or larger than (2231)-1 is set to default value

0.

« Ifonly linputis connected then that input is rounded and sent to the output.

48 Program elements

Divide

Divides block inputs.

Divide

[

Denom

Output:

Name Type Default value
Out Float 0]

Inputs: 2

Name Type Default value Function
Num Float 0] Dividend
Denom Float 0] Divisor

Block function

Output =1Inl1/In2

Dividing by zero will set block output to zero.

Exceptional cases

« Inputs which are not connected are assigned with default values.

- Overflow to positive side: output is limited to Max float.

- Overflow to the negative side: output is limited to negative Max float.

« Underflow: value 0 is kept at output.

Program elements 49

Equal

Checks if values at inputs are equal.

[

Equal

Output

Name Type Default value

Out Boolean 0]

Inputs: 2

Name Type Default value Function

A Float 0 First comparison value
B Float 0 Second comparison value

Block function

Block compares the whole number parts of numbers in A and B. Behavior of the block
can be seen in table below.

Condition Out
A and B are equal 1
A and B are not equal 0

Inputs are rounded before comparison. Only whole number part of the inputs are
compared.

For example, if value 70.5 is in input, it will be compared as 71. If value 70.4 is in input
it will be compared as 70. Rounding of negative numbers works as illustrated in the
following example. -70.4 rounds to -70. -70.5 rounds to -71.

Exceptional cases

Inputs which are not connected will have a default value.

50 Program elements

Filter

Filters input for a defined length of time and then outputs it.

[

Filter

Output:

Name Type Default value

Out Float 0]

Inputs: 2

Name Type Default vallue Function

In Float 0 Signal to be filtered
Time Float 0] Filter time constant in

seconds

Block function

This block is a single pole low - pass filter. Input signal /Inis filtered using provided
time constant Time. The following equation is used for internal calculations.

Coefficient = TinmeLevel / (TinmeLevel + Tine)
Qut[i] = Coefficient * (In[i] — Qut[i - 1]) + Qut[i - 1]

Where:

Variable Function

Out [i] Current calculated output value

Out [i-1] Previous output value of the filter from previous
time cycle

In [i] Current input value

Timelevel Value of timelevel that the program is running at.

This function is a discrete model for single pole low - pass filter.

Exceptional cases

- Time constant Time < timelevel or negative constant is provided. Filter does not
filterinput signal. Input is written to output unaltered. Time constant is evaluated
to 0.

« Inis not connected - Input gets default value.

. Time constant is not connected - assumed to have default value.

Program elements 51

Greater than
Comparison block. Compares values at its inputs to see if first value is greater than
second. Comparison accuracy is set by the user.

1
1

Greater than

>

(53]

Output

Name Type Default value

Out Boolean 0]

Inputs: 3

Name Type Default value Function

A Float 0 Provides first comparison
value

B Float 0 Provides second compar-
ison value

Hyst Float 0 Value B is subtracted

Block function

Takes two inputs to compare with one another, A and B, and a third input that
manipulates input B.

First:

« If A>B, outputissettol.

Second (if first is not true):

« If A <(B-Hyst) then output is reset to O.
Third (if neither are true):
« Previous output value is kept at block output.

Exceptional cases
« When either A or B input is not connected then output is set to default value O.

« Adisconnected Hyst input has value 0.

52 Program elements

Less than
Comparison block. Compares values at its inputs to see if first value is smaller than
second. Comparison accuracy is set by the user.

1
Less than

Output

Name Type Defautl value

Out Boolean 0]

Inputs: 3

Name Type Default value Function

A Float 0 Provides first comparison
value

B Float 0] Provides second compar-
ison value

Hyst Float 0] Value that is added to B

Block function

Takes two inputs to compare with one another, A and B, and a third input that
manipulates input B.

First

« If A<B,outputissettol.

Second (if first isn't true)

- If A> (B+ Hyst) then outputis reset to O.
Third (if neither are true)

« Previous output value is kept at block output.
Exceptional cases

« When either A or B input is not connected then output is set to default value 0.

« Adisconnected Hyst input has value 0.

Program elements 53

Limit

Takes an input that is limited and outputs the value after limiting it.

Lirnit

Output:

Name Type Default value

Out Float 0

Inputs: 3

Name Type Default value Function

In Float 0 Value to be limited.

Max Float 3.4028235e+38 Maximum value In is
limited

Min Float -3.4028235e+38 Minimum value In is
limited.

Block function

Inis written to the output as long as it is within the value range of Maxand Min. When
In exceeds or falls below the respective limit values, it will first be capped to the
appropriate limit value and then written to the output. /nis evaluated first against
Max. If Maxis not limiting, then /Inis evaluated against Min.

Exceptional cases
- If Inis not connected then the block output is zero.

« If Maxor Mininput is not connected, then the highest and lowest float values are
set as the default values for Max or Min.

54 Program elements

Max

Compares ninputs and outputs the largest input value.

Max Max
In4
Output:
Name Type Default value
Out Float 0]
Inputs: 2-8

Default inputs: 2

Name Type Default value Function

Inl-1n8 Float (0] Provides an input value
to compare

Block function

Compares all input values to determine the highest one and outputs it.

Exceptional cases

If some inputs are connected and other inputs are not connected, only the connected
inputs are evaluated.

Program elements 55

Min

Compares ninputs and outputs the smallest input value.

Min Min
Ing
Output:
Name Type Default value
Out Float 0]
Inputs: 2-8

Default inputs: 2

Name Type Default value Function

In-In8 Float 0] Provides an input value
to be compared

Block function

Compares all input values to determine the lowest one and outputs it.

Exceptional cases

If someinputs are connected and others are not connected, only the connected inputs
are evaluated.

56 Program elements

Multiply

Multiples n inputs and outputs the result.

1 2

Multiply Multiply
Ind

Output:
Name Type Default value
Out Float 0]
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1-1n8 Float N/A Provides values for mul-

tiply block to perform
multiplication

Block function
Out=Inl*In2 *...* In8

Exceptional cases

Inputs which are not connected are not multiplied. If one input is connected, its
value is at output.

All inputs are not connected: output is assigned a default value.
Overflow to positive side: output is limited to Max float.
Overflow to the negative side: output is limited to negative Max float.

Underflow: value 0 is kept at output.

NOT

Inverts value at input.

=

NOT

- [

Program elements 57

Output

‘ Name ‘ Type Default value

‘Out ‘ Boolean 1

Input: 1

‘ Name Type Default value Function

‘ In Boolean (0] Block input

Block function

Function block performs inversion.

In Out
0 1
0

Exceptional cases

In case a block input is not connected then its value is set to 0 by default.

58 Program elements

OR

Performs logic OR.

OR OR
Inf
Output
Name Type Default value
Out Boolean 0]
Inputs: 2-8

Default inputs: 2

Name Type Default value Function

Inl1-1n8 Boolean 0 Block inputs

Block function
Function block performs logical or operation with inputs. Out = InlvIn2v ... vIn8.

The truth table of OR operation is below. Example uses two inputs. Same logic can be
applied to otherinputs. Output has value 1 when one of the inputs have value 1. Output
is 0 if and all inputs have value 0.

InO Inl Out
0] 0] 0]
0] 1 1
1 0] 1
1 1 1

Exceptional cases

If some inputs are connected and others are not, only the connected inputs are
evaluated.

Program elements 59

Pl
Pl controller.
1
PI

Setpoint

Actual

zain

Int time

Track

Track

reference

Max

Min
Output:
Name Type Default value
Out Float 0]
Inputs: 8
Name Type Default value Function
Setpoint Float 0 Desired output value
Actual Float 0] Actual output value
Gain Float 0] Proportional gain (Kp)
Integration time Float 0] Integration time in

seconds (s)
Track Boolean Enables tracking mode
Track reference Float Output value in tracking
mode

Min Float - 3.4028235e+38 Maximum output value
Max Float 3.4028235e+38 Minimum output value

60 Program elements

Block function

Calculates the P and | terms based on error, proportional gain and an integral
coefficient. The sum of P and | is written to the output. Sets output to tracking
reference value when tracking is enabled and limits the output when needed. In these
cases, the | term value is maintained directly in reference to the tracking reference or
limit values to provide smooth transfer/anti-windup. Pl output continuous changing
from track reference value when track is disabled. In the limitation, the value is
evaluated first against Max limit. If Max is not limiting, then the value is evaluated
against Min limit.

Exceptional cases

« Incase ablock input is not connected then its value is set to default value.

« When either Setpoint, Actual or Gain are not connected then output is set to O.
When Trackis enabled and Track referenceis not connected then outputis set to
0.

« When Integration time input is not connected then integral component is reset
and PI block functions as a P controller.

« When Min or Maxis not connected, the default values of these inputs areused.

Ramp

Program elements 61

Changes the output value to match the input value at a defined rate of change.

Ramp

mrease
Decreaze
Track
Track
referance
Min
Output
Name Type Default value
Out Float 0]
Inputs: 7
Name Type Default value Function
In Float 0 Reference value to ramp
to output
Increase Float 0] The amount of outputin-
creased per second
Decrease Float 0 The amount of output
decreased per second
Track Boolean Enables tracking mode
Track reference Boolean Output value in tracking
mode
Max Float 3.4028235e+38 Maximum value block
output will be limited
Min Float - 3.4028235e+38 Minimum value block

Block function

output will be limited

If output value does not equal input reference, then the output value starts changing
towards the input value.

62 Program elements

The amount of change per second is defined by the inputs for increasing and decreasing
the output. Sets output to track reference value when track is enabled. Output is
limited to maximum and minimum limit values. In the limitation, the output is evaluated
first against Max limit. If Maxis not limiting, then the output is evaluated against Min
limit. Ramp output continues changing from tracking reference value when tracking
is disabled.

Exceptional cases
« Incase a block input is not connected, then its value is set to default value.

« Incase, either maximum or minimum limit is disconnected, then their values will
be defaulted to the highest and lowest value representable by a float.

« Incase, Increase or Decrease input is disconnected then Output = /In when trying
to ramp with the disconnected input. If the other inputis connected then ramping
with it behaves as normal.

« Incase, Ininput is disconnected then Output = 0.

Program elements 63

Select boolean

Outputs the Boolean input value that is selected by the selector input.

2 2
Select Select
boolean boolean

InZ nz
Output
Name Type Default value
Out Boolean 0]
Inputs: 3-9

Default inputs: 3

Name Type Default value Function

Sel Float 0 Selects input value to
connect to output

Inl1-1n8 Boolean 0 Provides selectable input
value for the block.

Block function

This is a selector block that can have different input connected to output. Input to be
connected is selected by Selinput.

When Sel/ =1 then Out = In1, when Sel =2 Out = In2 etc.
When Se/ =8 Out = In8.

Allowable value range for Selinputis 1 <= Sel <= 8.

Exceptional cases
« When Selinput is out of its allowable range then Out = 0.

« Inputs which are not connected will have a default value.

64 Program elements

Select value

Outputs the float input value that is selected by the selector input.

il

Select value

2

Select value

Output

Name Type Default value

Out Float 0]

Inputs: 3-9

Default inputs: 3

Name Type Default value Function

Sel Float 0 Selects input to be con-
nect to output

In1-1n8 Float 0 Provides selectable input

Block function

value for the block

This is a selector block that can have different input connected to output. Input to be

connected is selected by Sel input.

When, Sel = 1then Out = In1, and Sel = 2 then Out = In2 and etc.
When, Sel = 8 then Out = In8.

Allowable value range for Selinputis 1 <= Sel <= 8.

Exceptional cases

« When Selinput is out of its allowable range then Output = 0.

« Inputs which are not connected will have a default value.

Set bits 0-7
Updates bits 0-7 of the input value.

1

Set bits 0-7

)

Program elements 65

BitD

Btk

Bit2

Bit3

Eird

Bit5s

Bith

Bit7
Output
Name Type Default value
Out Float 0
Inputs: 9
Name Type Default value Function
In Float 0 Value to be updated
BitO Boolean N/A Value of bit O (lowest)
Bitl Boolean N/A Value of bit 1
Bit2 Boolean N/A Value of bit 2
Bit3 Boolean N/A Value of bit 3
Bit4 Boolean N/A Value of bit 4
Bit5 Boolean N/A Value of bit 5
Bit6 Boolean N/A Value of bit 6
Bit7 Boolean N/A Value of bit 7

66 Program elements

Block function

Rounds the float input to closest integer and updates bits 0-7 of the integer value
based on the boolean inputs Bit0-Bit7. Takes then the lowest 16 bits of the integer
result and converts the value to float and writes it to output.

Exceptional cases

« Aninputvalue that is either negative or larger than (2231)-1is set to default value
0. Bits 0-7 of the default value are updated.

- If Boolean input is not connected, the value of that bit is not updated.

Set bits 8-15

Update bits 8-15 of the input value.

1

Set bits B-15

[

Program elements 67

BitE

Bgit9

BitId

Bitll

BitL2

Bitl3

BitI4

Bitls
Output
Name Type Default value
Out Float 0
Inputs: 9
Name Type Default value Function
In Float 0 Value to be updated
Bit8 Boolean N/A Value of bit 8
Bit9 Boolean N/A Value of bit 9
Bit10 Boolean N/A Value of bit 10
Bitll Boolean N/A Value of bit 11
Bit12 Boolean N/A Value of bit 12
Bit13 Boolean N/A Value of bit 13
Bit14 Boolean N/A Value of bit 14
Bit15 Boolean N/A Value of bit 15

68 Program elements

Block function

Rounds the float input to closest integer and updates bits 8-15 of the integer value
based on the Boolean inputs Bit8-Bit15. Takes then the lowest 16 bits of the integer
result and converts the value to float and writes it to output.

Exceptional cases

« Aninputvalue that is either negative or larger than (2231)-1is set to default value
0. Bits 8-15 of the default value are updated.

- If Boolean input is not connected, the value of that bit is not updated.

Square root

Calculates square root of value at input

1

Square root

Program elements 69

Output
Name Type Default value
Out Float 0]
Inputs: 1
‘ Name Type Default value ‘ Function
0 ‘ Block input

‘In Float

Block function

Block calculates square root of input. Out = Vi1

Exceptional cases

« When value at the input is negative (In < 0), then Out =0

70 Program elements

SR

SR trigger is used to store Set value.

SR

(%]
m

=]
n
fuf

Output

Name Type Default value

Out Boolean 0]

Input: 2

Name Type Default value Function
Set Boolean 0 Set input
Reset Boolean 0 Reset

Block function

This is SR latch. Output keeps it value once set by Set input. Value at output is reset
to O when Reset =1. Value at output depends on previous output value. See truth table.

Previous Out Reset Set Current Out
0 0 0 0
0 0 1 1
X 1 0
1 0 0 1
1 0 1 1

Exceptional cases
. If Setis not connected, it is assumed to have default value.

- If Resetis not connected, it is assumed to have default value.

Subtract

Performs subtract.

Subtract

Program elements 71

Output:

Name Type Default value

Out Float 0]

Inputs: 2

Name Type Default value Function

In1 Float 0 Value to subtract from
In2 Float 0] Value to be subtracted

Block function

Output =Inl-1In2

Exceptional cases

« Incase both inputs are not connected, output has a default value.

« Inputs which are not connected are assigned default value.

« Overflow to positive side: output is limited to Max float.

« Overflow to the negative side: output is limited to negative Max float.

« Underflow: value 0 is kept at output.

72 Program elements

Switch boolean

Outputs the input Boolean value whose enable value is set first.

Switch
boolean
Sell

Inl

Default

Output:

Switch

boolean

Sell

Inl

In2

Sel3

In3

Ind

Sels

In5

In7

Diefault

Name

Type

Default value

Out

Boolean

0

Inputs: 3-15

Program elements 73

Default inputs: 3

Name Type Default value Function

Sell - Sel7 Boolean 0 Selects/deselects input
value.

Inl-In7 Boolean 0] Provides selectable input
value for the block.

Default Boolean 0] Default output when Sel
is not active for any in-
puts.

Block function

The value written to the output is “In X” value whose “Sel X” is set first. If no “Sel X” is
set then Default input is written to the output.

Example:

Multiple Sel inputs have value 1. Inputs are evaluated from top to bottom. In case of
multiple In, Sel pairs In1, Sell is checked first followed by In2, Sel2 and etc. In case
Multiple Sel inputs are 1 the first one will be connected to output. In this example, if
both Sell and Sel2 are 1 then Inlis connected to output.

Exceptional cases

Inputs which are not connected will have a default value.

74 Program elements

Switch value

Outputs the input float value whose enable value is set first.

1 2
Switch value Switch value

Zell Sell
))

Inl Inl

Default Sel2
In2
Sei3
In3
Zel4
Ind
Sel5
In5
Self

InG

=17

Defsult

Output:

Name Type Default value

Out Float 0

Inputs: 3-15

Program elements 75

Default inputs: 3

Name Type Default value Function

Sell - Sel7 Boolean 0 Selects/deselects input
value

Inl-In7 Float 0] Provides selectable input
value for the block

Default Float 0 Default, that is, connec-
ted to output when no
Selis 1

Block function

The value written to the output is “In X” value whose “Sel X” is set first. If no “Sel X” is
set, then the Default input is written to the output.

Example:

Multiple Sel inputs have value 1. Inputs are evaluated from top to bottom. In case of
multiple In, Sel pairs In1, Sellis checked first followed by In2, Sel2 etc. In case Multiple
Sel inputs are 1, the first one will be connected to output. In this example, if both Sel1
and Sel2 are 1 then Inlis connected to output.

Exceptional cases

« Inputs which are not connected will have a default value.

76 Program elements

Timer

Runs through states at the speed of timer values defined at the inputs. Outputs the
current state. The timers can be paused and the state can be reset.

> Ress > Reset
4 Timel Time
Time2 Time2
Time:
met
rmeh
Torme?
TimeE
Output
Name Type Default value
Out Float 1

Inputs: 4-10

Default inputs: 4

Name Type Default value Function

Enable Boolean 0 Enables/disables timer.

Reset Boolean 0] Resets time when rising
edge is detected on in-
put.

Timel - Time8 Float 0 Provides time in state,
time value is in seconds.

Block funtion

Timer block is a state machine that goes through states. The time block stays in each
state is specified by time inputs Timel - Time8. Minimal number of time inputs is 2.
When timer starts, it is in state 1 and block output is 1. Timer stays in this state for
the time specified in input Timel. When this time is passed, the timer block switches
to the next state. This behavior of normal operationisillustrated below. Reset is false,

Program elements 77

enable is true. Time values Timel = 2s, Time2 = 1s and Time3 = 2s are used in all
examples below.

Reset
F F F F F F F
Enable T T T T T T T
Out 1 1 2 3 3 1 1
Time, s 1s 2s 3s 4s 5s bs 7s "

Timer block can be paused by setting enable to false. During which the block stays in
the state that it was at the time. When Enable is set to true again, timer resume its
work from where it left off. The effect of enable input is illustrated below.

Reset
F F F F F F F
Enable T T T F F T T
Out 1 1 2 2 2 3 3
Time, s 1s 2s 3s ds 5s 6s 7s -

Timer block can be reset using the reset input. When rising edge is detected at the
reset input, block goes to state 1 if it is a valid state. If time in state 1 is specified to
beless than the time level that the program is running at, timer block will find the next
valid state to go to starting from state 1. If all states have delay times that are less
than the time level, block will go to state 1. The reset of the timer block happens also

in case the block is not enabled.

The reset behavior under normal circumstances is illustrated below. In this example
there are 3 time inputs and they all have valid delay times specified.

78 Program elements

Reset
F F F F F F F
Enable T T T F F T T
Out 1 1 2 2 2 3 3
Time, s 1s 2s 3s 4s Ss bs 7s "

Block only reacts to rising edge. The reset behavior is illustrated below. The rising
edge occurs at time 4s. Reset input is left true but this does not interfere with block

operation. At time 5s block is in normal operation mode again.

Reset
F F F T T F F
Enable T T T T T T T
Out 1 1 2 1 1 2 3
Time, s 1s 2s 3s 4s 5s 6s 7s -

Exceptional cases

« Not connected inputs get default values assigned.

When specified time in a state is smaller than the value of the time level that the
program is running, the state will be skipped.

When all time inputs have times specified that are smaller than the time level value,
the block output is set to default value.

Trigger down

Falling edge detection.

1

Trigger down

s L)

Program elements 79

Output

Name Type Default value

Out Boolean 0]

Input: 1

Name Type Default value Function
In Boolean 0] Block input

Block function

Function block performs falling edge detection. Outputis 1 when input previous value
is 1 and current value is 0. Otherwise output is O.

Exceptional cases

- Ifinput Inis not connected, it will get the default value.

- Ifinput In has value O at the first execution cycle of the block, the output of the

block is set to O.

80 Program elements

Trigger up

Rising edge detection.

¥
Trigger up

. D

Output

Name Type Default value

Out Boolean 0]

Input: 1

Name Type Default value Function
In Boolean Block input

Block function

Function block performs rising edge detection. Output is 1 when block input previous

value is 0 and current value is 1. Otherwise output is O.

Exceptional cases

« When input /nis not connected, it will get the default value.

- Ifinput In has value 1 at the first execution cycle of the block, the output of the

block is set to 1.

T_off

Turns off the delay.

T_off

F

[

Yy

Program elements 81

Output

Name Type Default value

Out Boolean 0]

Inputs: 2

Name Type Default value Function

In Boolean 0] Provides boolean value

Delay Float 0] Provides the time value
in seconds to delay out-
putting O

Block function

If the value of Inis 1 then it is written to the output. If the value of Inis 0 it is written
to the output only after a time period is passed which is defined by Delay. Delay is
limited to 2097152 seconds.

Exceptional cases

In case a block input is not connected, then its value is set to default value.

82 Program elements

T_on
Turns on the delay.

1

T_on

[>

Delay

Output

Name Type Default value

Out Boolean 0]

Inputs: 2

Name Type Default value Function

In Boolean 0] Provides boolean value.
Delay Float 0] Provides time value in

Block function

seconds to delay output-
ting 1.

If the value of Inis O then it is written to the output. If the value of Inis 1, it is written
to the output only after a time period is passed which is defined by Delay. Delay is
limited to 2097152 seconds.

Exceptional cases

In case a block input is not connected then its value is set to default value.

XOR
XOR inputs.

1
XOR

Program elements 83

Output

‘ Name Type Default value

‘Out Boolean 0]

Inputs: 2

Name Type Default value Function
Inl Boolean 0 Block input
In2 Boolean 0 Block input

Block function

Function block performs logical XOR operation with inputs.

The truth table of XOR operation:

Inl In2 Out
0 0 o
0 1 1
1 0 1
1 1 0

Output has value 1 when the inputs have different values, otherwise the output is 0.

Exceptional cases

In case a block input is not connected, the default value of the input is used in the

operation.

84

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type
designation and serial number of the unit in question. A listing of ABB sales, support and service
contacts can be found by navigating to www.abb.com/contact-centers.

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals

Your comments on our manuals are welcome. Navigate to
new.abb.com/drives/manuals-feedback-form.

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at
www.abb.com/drives/documents.

a4 (frozen)
PDF-A4
Created 2023-12-19, 09:21:55

https://new.abb.com/contact-centers
new.abb.com/service/training
new.abb.com/drives/manuals-feedback-form
www.abb.com/drives/documents

www.abb.com/drives

3AXD50000028574D

© Copyright 2023 ABB. All rights reserved.
Specifications subject to change without notice.

3AXD50000028574 Rev D (EN) 2023-12-19

	Table of contents
	Introduction to the guide
	Contents of this chapter
	Applicability
	Compatibility
	Safety instructions
	Target audience
	Related manuals

	Adaptive programming
	Contents of this chapter
	Overview of Adaptive programming
	Base program
	Sequence program
	Connecting the Adaptive program to a drive control program
	Enabling and running the Adaptive program
	Execution of the Adaptive program
	Creating a backup/restore

	Using PC tool interface
	Contents of this chapter
	Adaptive programming user interface
	Base and sequence programs
	Program tools
	Functional blocks
	Inputs
	Editing the input labels

	Outputs
	Sequence states
	State transition

	Creating an Adaptive program
	Contents of this chapter
	Creating a base program
	Creating a sequence program
	Downloading the adaptive program

	Program elements
	Contents of this chapter
	Inputs
	Constants
	Parameters
	I/O
	Actual values
	Status
	Data storage

	System outputs
	Parameters
	I/O
	Start control
	Speed control
	Frequency control
	Torque control
	Limitations
	Events
	Data storage
	Process PID

	Function block specifications
	Abs
	Output:
	Input: 1
	Block function
	Exceptional cases

	Add
	Output:
	Inputs: 2-8
	Default inputs: 2
	Block function
	Exceptional cases

	AND
	Output
	Inputs: 2-8
	Default inputs: 2
	Block function
	Exceptional cases

	Bit get
	Output
	Inputs: 2-9
	Block function
	Exceptional cases

	Bitwise AND
	Output
	Inputs: 2-8
	Block function
	Exceptional cases

	Bitwise OR
	Output
	Inputs: 2-8
	Block function
	Exceptional cases

	Bitwise XOR
	Output
	Inputs: 2
	Block function
	Exceptional cases

	Divide
	Output:
	Inputs: 2
	Block function
	Exceptional cases

	Equal
	Output
	Inputs: 2
	Block function
	Exceptional cases

	Filter
	Output:
	Inputs: 2
	Block function
	Where:
	Exceptional cases

	Greater than
	Output
	Inputs: 3
	Block function
	First:
	Second (if first is not true):
	Third (if neither are true):
	Exceptional cases

	Less than
	Output
	Inputs: 3
	Block function
	First
	Second (if first isn't true)
	Third (if neither are true)
	Exceptional cases

	Limit
	Output:
	Inputs: 3
	Block function
	Exceptional cases

	Max
	Output:
	Inputs: 2-8
	Default inputs: 2
	Block function
	Exceptional cases

	Min
	Output:
	Inputs: 2-8
	Default inputs: 2
	Block function
	Exceptional cases

	Multiply
	Output:
	Inputs: 2-8
	Default inputs: 2
	Block function
	Exceptional cases

	NOT
	Output
	Input: 1
	Block function
	Exceptional cases

	OR
	Output
	Inputs: 2-8
	Default inputs: 2
	Block function
	Exceptional cases

	PI
	Output:
	Inputs: 8
	Block function
	Exceptional cases

	Ramp
	Output
	Inputs: 7
	Block function
	Exceptional cases

	Select boolean
	Output
	Inputs: 3-9
	Default inputs: 3
	Block function
	Exceptional cases

	Select value
	Output
	Inputs: 3-9
	Default inputs: 3
	Block function
	Exceptional cases

	Set bits 0-7
	Output
	Inputs: 9
	Block function
	Exceptional cases

	Set bits 8-15
	Output
	Inputs: 9
	Block function
	Exceptional cases

	Square root
	Output
	Inputs: 1
	Block function
	Exceptional cases

	SR
	Output
	Input: 2
	Block function
	Exceptional cases

	Subtract
	Output:
	Inputs: 2
	Block function
	Exceptional cases

	Switch boolean
	Output:
	Inputs: 3-15
	Default inputs: 3
	Block function
	Example:
	Exceptional cases

	Switch value
	Output:
	Inputs: 3-15
	Default inputs: 3
	Block function
	Example:
	Exceptional cases

	Timer
	Output
	Inputs: 4-10
	Default inputs: 4
	Block funtion
	Exceptional cases

	Trigger down
	Output
	Input: 1
	Block function
	Exceptional cases

	Trigger up
	Output
	Input: 1
	Block function
	Exceptional cases

	T_off
	Output
	Inputs: 2
	Block function
	Exceptional cases

	T_on
	Output
	Inputs: 2
	Block function
	Exceptional cases

	XOR
	Output
	Inputs: 2
	Block function
	Exceptional cases

	Further information

