Relion® 670 SERIES

Busbar protection REB670
Version 2.2 ANSI
Commissioning manual
Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/) This product includes cryptographic software written/developed by: Eric Young (eay@cryptsoft.com) and Tim Hudson (tjh@cryptsoft.com).

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series and ANSI C37.90. The DNP protocol implementation in the IED conforms to "DNP3 Intelligent Electronic Device (IED) Certification Procedure Subset Level 2", available at www.dnp.org.
Table of contents

Section 1 Introduction

1.1 This manual ... 9
1.2 Intended audience .. 9
1.3 Product documentation .. 10
1.3.1 Product documentation set ... 10
1.3.2 Document revision history .. 11
1.3.3 Related documents ... 11
1.4 Document symbols and conventions 12
1.4.1 Symbols .. 12
1.4.2 Document conventions ... 13
1.5 IEC 61850 edition 1 / edition 2 mapping 13

Section 2 Safety information

2.1 Symbols on the product .. 23
2.2 Warnings ... 23
2.3 Caution signs ... 24
2.4 Note signs .. 25

Section 3 Available functions

3.1 Main protection functions .. 27
3.2 Back-up protection functions ... 28
3.3 Control and monitoring functions .. 29
3.4 Communication ... 34
3.5 Basic IED functions ... 36

Section 4 Starting up

4.1 Factory and site acceptance testing 39
4.2 Commissioning checklist ... 39
4.3 Checking the power supply .. 40
4.4 Energizing the IED .. 40
4.4.1 Checking the IED operation ... 40
4.4.2 IED start-up sequence ... 40
4.5 Setting up communication between PCM600 and the IED ... 41
4.6 Writing an application configuration to the IED 46
4.7 Checking CT circuits .. 46
4.8 Checking VT circuits .. 47
4.9 Using the RTXP test switch .. 47
4.10 Checking the binary input/output circuits 48
4.10.1 Binary input circuits .. 48
Section 10 Testing functionality by secondary injection .. 75

10.1 Testing disturbance report .. 75
 10.1.1 Introduction ... 75
 10.1.2 Disturbance report settings .. 75
 10.1.3 Disturbance recorder (DR). ... 75
 10.1.4 Event recorder (ER) and Event list (EL). .. 76
 10.2 Identifying the function to test in the technical reference manual ... 76
 10.3 Differential protection .. 76
 10.3.1 Busbar differential protection ... 76
 10.3.1.1 General ... 77
 10.3.1.2 Operation of the differential protection from CTx input ... 77
 10.3.1.3 Stability of the busbar differential protection ... 79
 10.3.1.4 Operation of fast open CT detection algorithm ... 80
 10.3.1.5 Operation of slow open CT detection algorithm ... 81
 10.3.1.6 Completing the test ... 82
 10.3.1.7 Check of trip circuits and circuit breakers .. 82
 10.4 Current protection .. 82
 10.4.1 Directional phase overcurrent protection, four steps OC4PTOC (51_67). 82
 10.4.1.1 Verifying the settings .. 83
 10.4.1.2 Completing the test ... 84
 10.4.2 Four step single phase overcurrent protection PH4SPTOC(51) ... 84
 10.4.2.1 Verifying the settings .. 84
 10.4.2.2 Completing the test ... 84
 10.4.3 Four step residual overcurrent protection, (Zero sequence or negative sequence
 directionality) EF4PTOC (51N/67N)... 84
 10.4.3.1 Four step directional ground fault protection .. 85
 10.4.3.2 Four step non-directional ground fault protection ... 85
 10.4.3.3 Completing the test ... 85
 10.4.4 Four step negative sequence overcurrent protection NS4PTOC (46I2)............................. 85
 10.4.4.1 Completing the test ... 86
 10.4.5 Thermal overload protection, two time constants TRPTTR (49)... 86
 10.4.5.1 Checking overload protection, two time constants TRPTTR (49) 86
 10.4.5.2 Completing the test ... 87
 10.4.6 Breaker failure protection, phase segregated activation and output CCRBRF (50BF) 87

9.8.2.2 Enable forcing using TESTMODE function block... 69
9.8.3 How to change binary input/output signals using forcing.. 70
9.8.3.1 Forcing by using LHMI ... 70
9.8.3.2 Forcing by using PCM600 ... 71
9.8.4 How to undo forcing changes and return the IED to normal operation 73
9.8.4.1 Undo forcing by using TESTMODE component .. 73
9.8.4.2 Undo forcing by using LHMI ... 73
9.8.4.3 Undo forcing by using PCM600 ... 74

Table of contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.6.1</td>
<td>Checking the phase current trip value, Pickup_PH</td>
<td>88</td>
</tr>
<tr>
<td>10.4.6.2</td>
<td>Checking the residual (ground fault) current trip value Pickup_N set below Pickup_PH</td>
<td>88</td>
</tr>
<tr>
<td>10.4.6.3</td>
<td>Checking the re-trip and back-up times</td>
<td>88</td>
</tr>
<tr>
<td>10.4.6.4</td>
<td>Verifying the re-trip mode</td>
<td>89</td>
</tr>
<tr>
<td>10.4.6.5</td>
<td>Verifying the back-up trip mode</td>
<td>89</td>
</tr>
<tr>
<td>10.4.6.6</td>
<td>Verifying instantaneous back-up trip at CB faulty condition</td>
<td>90</td>
</tr>
<tr>
<td>10.4.6.7</td>
<td>Verifying the case FunctionMode = CB Pos</td>
<td>91</td>
</tr>
<tr>
<td>10.4.6.8</td>
<td>Verifying the case RetripMode = Contact</td>
<td>91</td>
</tr>
<tr>
<td>10.4.6.9</td>
<td>Verifying the case FunctionMode = Current or CB Pos</td>
<td>91</td>
</tr>
<tr>
<td>10.4.6.10</td>
<td>Verifying the external start signal has timed out</td>
<td>92</td>
</tr>
<tr>
<td>10.4.6.11</td>
<td>Verifying that backup signal is released when STALARM is reset</td>
<td>92</td>
</tr>
<tr>
<td>10.4.6.12</td>
<td>Test of FollowStart&Mode behaviour</td>
<td>92</td>
</tr>
<tr>
<td>10.4.6.13</td>
<td>Test of FollowStart behaviour</td>
<td>93</td>
</tr>
<tr>
<td>10.4.6.14</td>
<td>Completing the test</td>
<td>93</td>
</tr>
<tr>
<td>10.4.7</td>
<td>Breaker failure protection, single phase version CCSRBRF (50BF)</td>
<td>93</td>
</tr>
<tr>
<td>10.4.7.1</td>
<td>Checking the phase current operate value Pickup_PH.</td>
<td>94</td>
</tr>
<tr>
<td>10.4.7.2</td>
<td>Checking the re-trip and back-up times</td>
<td>94</td>
</tr>
<tr>
<td>10.4.7.3</td>
<td>Verifying the re-trip mode</td>
<td>94</td>
</tr>
<tr>
<td>10.4.7.4</td>
<td>Verifying the back-up trip mode</td>
<td>95</td>
</tr>
<tr>
<td>10.4.7.5</td>
<td>Verifying instantaneous back-up trip at CB faulty condition</td>
<td>95</td>
</tr>
<tr>
<td>10.4.7.6</td>
<td>Verifying the case FunctionMode = CB Pos</td>
<td>96</td>
</tr>
<tr>
<td>10.4.7.7</td>
<td>Verifying the case FunctionMode = Current or CB Pos</td>
<td>96</td>
</tr>
<tr>
<td>10.4.7.8</td>
<td>Verifying the external start signal has timed out</td>
<td>97</td>
</tr>
<tr>
<td>10.4.7.9</td>
<td>Verifying that backup signal is released when STALARM is reset</td>
<td>97</td>
</tr>
<tr>
<td>10.4.7.10</td>
<td>Test of FollowStart&Mode behaviour</td>
<td>97</td>
</tr>
<tr>
<td>10.4.7.11</td>
<td>Test of FollowStart behaviour</td>
<td>98</td>
</tr>
<tr>
<td>10.4.8</td>
<td>Completing the test</td>
<td>98</td>
</tr>
<tr>
<td>10.4.9</td>
<td>Directional underpower protection GUPPDUP (37)</td>
<td>98</td>
</tr>
<tr>
<td>10.4.9.1</td>
<td>Verifying the settings</td>
<td>98</td>
</tr>
<tr>
<td>10.4.9.2</td>
<td>Completing the test</td>
<td>100</td>
</tr>
<tr>
<td>10.4.10</td>
<td>Directional overpower protection GOPPDOP (32)</td>
<td>100</td>
</tr>
<tr>
<td>10.4.10.1</td>
<td>Verifying the settings</td>
<td>100</td>
</tr>
<tr>
<td>10.4.10.2</td>
<td>Completing the test</td>
<td>100</td>
</tr>
<tr>
<td>10.4.11</td>
<td>Capacitor bank protection CBPGAPC</td>
<td>101</td>
</tr>
<tr>
<td>10.4.11.1</td>
<td>Verifying the settings and operation of the function</td>
<td>101</td>
</tr>
<tr>
<td>10.4.11.2</td>
<td>Completing the test</td>
<td>104</td>
</tr>
<tr>
<td>10.5</td>
<td>Voltage protection</td>
<td>104</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Two step undervoltage protection UV2PTUV (27)</td>
<td>104</td>
</tr>
<tr>
<td>10.5.1.1</td>
<td>Verifying the settings</td>
<td>105</td>
</tr>
<tr>
<td>10.5.1.2</td>
<td>Completing the test</td>
<td>106</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Two step overvoltage protection OV2PTOV (59)</td>
<td>106</td>
</tr>
<tr>
<td>10.5.2.1</td>
<td>Verifying the settings</td>
<td>106</td>
</tr>
</tbody>
</table>
10.5.2.2 Extended testing...107
10.5.2.3 Completing the test..107
10.5.3 Two step residual overvoltage protection ROV2PTOV (59N)...107
10.5.3.1 Verifying the settings...107
10.5.3.2 Completing the test..108
10.5.4 Voltage differential protection VDCPTOV (60)..108
10.5.4.1 Check of undervoltage levels..108
10.5.4.2 Check of voltage differential trip and alarm levels...110
10.5.4.3 Check of trip and trip reset timers..111
10.5.4.4 Final adjustment of compensation for VT ratio differences ..112
10.5.4.5 Completing the test..112
10.5.5 Loss of voltage check LOVPTUV (27)..112
10.5.5.1 Measuring the trip limit of set values..112
10.5.5.2 Completing the test..113
10.6 Frequency protection..113
10.6.1 Underfrequency protection SAPTUF (81)..113
10.6.1.1 Verifying the settings...113
10.6.1.2 Completing the test..114
10.6.2 Overfrequency protection SAPTOF (81)...114
10.6.2.1 Verifying the settings...114
10.6.2.2 Completing the test..115
10.6.3 Rate-of-change frequency protection SAPFRC (81)..115
10.6.3.1 Verifying the settings...115
10.6.3.2 Completing the test..116
10.7 Multipurpose protection...116
10.7.1 General current and voltage protection CVGAPC...116
10.7.1.1 Built-in overcurrent feature (non-directional)...116
10.7.1.2 Overcurrent feature with current restraint...117
10.7.1.3 Overcurrent feature with voltage restraint...117
10.7.1.4 Overcurrent feature with directionality...117
10.7.1.5 Over/Undervoltage feature..118
10.7.1.6 Completing the test..118
10.8 Secondary system supervision...118
10.8.1 Fuse failure supervision FUFS PVC...118
10.8.1.1 Checking that the binary inputs and outputs trip as expected...118
10.8.1.2 Measuring the trip value for the negative sequence function...119
10.8.1.3 Measuring the trip value for the zero-sequence function...120
10.8.1.4 Measuring the *trip* value for the dead line detection function...121
10.8.1.5 Checking the operation of the dv/dt and di/dt based function..121
10.8.1.6 Completing the test..122
10.8.2 Fuse failure supervision...122
10.8.2.1 Completing the test..123
10.8.3 Voltage based delta supervision DELVSPVC...123
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8.3.1 Verifying the signals and settings</td>
<td>123</td>
</tr>
<tr>
<td>10.8.3.2 Completing the test</td>
<td>124</td>
</tr>
<tr>
<td>10.8.4 Current based delta supervision DELISPVC(7I)</td>
<td>124</td>
</tr>
<tr>
<td>10.8.4.1 Verifying the signals and settings</td>
<td>124</td>
</tr>
<tr>
<td>10.8.4.2 Completing the test</td>
<td>125</td>
</tr>
<tr>
<td>10.8.5 Delta supervision of real input DELSPVC</td>
<td>125</td>
</tr>
<tr>
<td>10.8.5.1 Verifying the signals and settings</td>
<td>125</td>
</tr>
<tr>
<td>10.8.5.2 Completing the test</td>
<td>126</td>
</tr>
<tr>
<td>10.9 Control</td>
<td>126</td>
</tr>
<tr>
<td>10.9.1 Synchrocheck, energizing check, and synchronizing SESRSYN (25)</td>
<td>126</td>
</tr>
<tr>
<td>10.9.1.1 Testing the synchronizing function</td>
<td>127</td>
</tr>
<tr>
<td>10.9.1.2 Testing the synchrocheck functionality</td>
<td>128</td>
</tr>
<tr>
<td>10.9.1.3 Testing the energizing check</td>
<td>130</td>
</tr>
<tr>
<td>10.9.1.4 Testing the voltage selection</td>
<td>131</td>
</tr>
<tr>
<td>10.9.1.5 Completing the test</td>
<td>133</td>
</tr>
<tr>
<td>10.9.2 Autorecloser for 1/2/3-phase operation SMBRREC (79)</td>
<td>133</td>
</tr>
<tr>
<td>10.9.2.1 Preparation of the verification</td>
<td>135</td>
</tr>
<tr>
<td>10.9.2.2 Switching the auto recloser to On and Off Enabled and Disabled</td>
<td>136</td>
</tr>
<tr>
<td>10.9.2.3 Verifying the auto recloser</td>
<td>136</td>
</tr>
<tr>
<td>10.9.2.4 Checking the auto reclosing conditions</td>
<td>137</td>
</tr>
<tr>
<td>10.9.2.5 Completing the test</td>
<td>138</td>
</tr>
<tr>
<td>10.9.3 Apparatus control APC</td>
<td>139</td>
</tr>
<tr>
<td>10.9.4 Single command, 16 signals SINGLECMD</td>
<td>139</td>
</tr>
<tr>
<td>10.9.5 Interlocking</td>
<td>139</td>
</tr>
<tr>
<td>10.10 Monitoring</td>
<td>139</td>
</tr>
<tr>
<td>10.10.1 Gas medium supervision SSIMG</td>
<td>139</td>
</tr>
<tr>
<td>10.10.1.1 Testing the gas medium supervision for pressure alarm and</td>
<td>140</td>
</tr>
<tr>
<td>pressure lockout conditions</td>
<td>140</td>
</tr>
<tr>
<td>10.10.1.2 Testing the gas medium supervision for temperature alarm and</td>
<td>140</td>
</tr>
<tr>
<td>temperature lockout conditions</td>
<td>140</td>
</tr>
<tr>
<td>10.10.1.3 Completing the test</td>
<td>140</td>
</tr>
<tr>
<td>10.10.2 Liquid medium supervision SSIML</td>
<td>140</td>
</tr>
<tr>
<td>10.10.2.1 Testing the liquid medium supervision for level alarm and</td>
<td>141</td>
</tr>
<tr>
<td>level lockout conditions</td>
<td>141</td>
</tr>
<tr>
<td>10.10.2.2 Testing the liquid medium supervision for temperature alarm</td>
<td>141</td>
</tr>
<tr>
<td>and temperature lockout conditions</td>
<td>141</td>
</tr>
<tr>
<td>10.10.2.3 Completing the test</td>
<td>141</td>
</tr>
<tr>
<td>10.10.3 Breaker monitoring SSCBR</td>
<td>141</td>
</tr>
<tr>
<td>10.10.3.1 Verifying the settings</td>
<td>142</td>
</tr>
<tr>
<td>10.10.3.2 Completing the test</td>
<td>143</td>
</tr>
<tr>
<td>10.10.4 Event function EVENT</td>
<td>143</td>
</tr>
<tr>
<td>10.10.5 Limit counter L4UFCNT</td>
<td>143</td>
</tr>
<tr>
<td>10.10.5.1 Completing the test</td>
<td>144</td>
</tr>
<tr>
<td>10.10.6 Current harmonic monitoring CHMMHAI(ITHD)</td>
<td>144</td>
</tr>
</tbody>
</table>
10.10.6.1 Verifying the signals and settings... 144
10.10.6.2 Completing the test... 145
10.10.7 Voltage harmonic monitoring VHMMHAI(VTHD).. 145
10.10.7.1 Verifying the signals and settings... 145
10.10.7.2 Completing the test... 145
10.11 Metering.. 146
10.11.1 Pulse-counter logic PCFCNT.. 146
10.11.2 Function for energy calculation and demand handling ETPMTR.................. 146
10.11.2.1 Verifying the settings.. 146
10.11.2.2 Completing the test.. 147
10.12 Station communication.. 147
10.12.1 Multiple command and transmit MULTICMDRCV / MULTICMDSND......... 147
10.13 Remote communication... 147
10.13.1 Binary signal transfer... 147
10.14 Basic IED functions.. 149
10.14.1 Parameter setting group handling SETGRPS... 149
10.14.1.1 Verifying the settings.. 149
10.14.1.2 Completing the test.. 150
10.15 Exit test mode... 150

Section 11 Primary injection testing... 151
11.1 Operation of the busbar differential protection.. 151
11.2 Stability of the busbar differential protection... 152

Section 12 Commissioning and maintenance of the fault clearing system.............. 155
12.1 Commissioning tests.. 155
12.2 Periodic maintenance tests.. 155
12.2.1 Visual inspection... 156
12.2.2 Maintenance tests.. 156
12.2.2.1 Preparation.. 156
12.2.2.2 Recording.. 156
12.2.2.3 Secondary injection... 157
12.2.2.4 Alarm test.. 157
12.2.2.5 Self supervision check... 157
12.2.2.6 Trip circuit check... 157
12.2.2.7 Measurement of service currents... 158
12.2.2.8 Restoring... 158

Section 13 Troubleshooting... 159
13.1 Checking the self supervision signals... 159
13.1.1 Checking the self supervision function.. 159
13.1.1.1 Determine the cause of an internal failure... 159
13.1.2 Self supervision HMI data... 159
13.1.2.1 General IED status.. 159

© Copyright 2017 ABB. All rights reserved
Section 1 Introduction

1.1 This manual

The commissioning manual contains instructions on how to commission the IED. The manual can also be used by system engineers and maintenance personnel for assistance during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service. The chapters are organized in the chronological order in which the IED should be commissioned. The relevant procedures may be followed also during the service and maintenance activities.

1.2 Intended audience

This manual addresses the personnel responsible for commissioning, maintenance and taking the IED in and out of normal service.

The commissioning personnel must have a basic knowledge of handling electronic equipment. The commissioning and maintenance personnel must be well experienced in using protection equipment, test equipment, protection functions and the configured functional logics in the IED.
1.3 Product documentation

1.3.1 Product documentation set

Figure 1: The intended use of manuals throughout the product lifecycle

The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for the engineering of protection and control functions, as well as communication engineering for IEC 61850.

The installation manual contains instructions on how to install the IED. The manual provides procedures for mechanical and electrical installation. The chapters are organized in the chronological order in which the IED should be installed.

The commissioning manual contains instructions on how to commission the IED. The manual can also be used by system engineers and maintenance personnel for assistance during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service. The chapters are organized in the chronological order in which the IED should be commissioned. The relevant procedures may be followed also during the service and maintenance activities.
The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for the monitoring, controlling and setting of the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also provide assistance for calculating settings.

The technical manual contains operation principle descriptions, and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

The communication protocol manual describes the communication protocols supported by the IED. The manual concentrates on the vendor-specific implementations.

The point list manual describes the outlook and properties of the data points specific to the IED. The manual should be used in conjunction with the corresponding communication protocol manual.

The cyber security deployment guideline describes the process for handling cyber security when communicating with the IED. Certification, Authorization with role based access control, and product engineering for cyber security related events are described and sorted by function. The guideline can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision</th>
<th>Date</th>
<th>Product revision</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>2017–05</td>
<td>2.2.0</td>
<td>First release for product version 2.2</td>
</tr>
<tr>
<td>A</td>
<td>2017-10</td>
<td>2.2.1</td>
<td>Ethernet ports with RJ45 connector added. Enhancements/updates made to GENPDIF, ZMFPDIS, and ZMFCPDIS.</td>
</tr>
<tr>
<td>B</td>
<td>2017-03</td>
<td>2.2.1</td>
<td>Document enhancements and corrections</td>
</tr>
<tr>
<td>C</td>
<td>2018-06</td>
<td>2.2.2</td>
<td>LDCM galvanic X.21 added. Function PTRSTHR added. Ordering section updated.</td>
</tr>
<tr>
<td>D</td>
<td>2018-11</td>
<td>2.2.3</td>
<td>Functions CHMMHAI, VHMMHAI, DELVSPVC, DELISPVC and DELSPVC added. Updates/enhancements made to Busbar differential protection (2 zones), CCRBRF, CCSRBRF, REALCOMP and FNKEYMDX. Ordering section updated.</td>
</tr>
<tr>
<td>E</td>
<td>2019-05</td>
<td>2.2.3</td>
<td>PTP enhancements and corrections</td>
</tr>
</tbody>
</table>

1.3.3 Related documents

<table>
<thead>
<tr>
<th>Documents related to REB670</th>
<th>Document numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application manual</td>
<td>1MRK 505 370-UUS</td>
</tr>
<tr>
<td>Commissioning manual</td>
<td>1MRK 505 372-UUS</td>
</tr>
<tr>
<td>Product guide</td>
<td>1MRK 505 373-BEN</td>
</tr>
<tr>
<td>Technical manual</td>
<td>1MRK 505 371-UUS</td>
</tr>
<tr>
<td>Type test certificate</td>
<td>1MRK 505 373-TUS</td>
</tr>
</tbody>
</table>
Document symbols and conventions

1.4.1 Symbols

- The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

- The warning icon indicates the presence of a hazard which could result in personal injury.

- The caution hot surface icon indicates important information or warning about the temperature of product surfaces.

- Class 1 Laser product. Take adequate measures to protect the eyes and do not view directly with optical instruments.

- The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

- The information icon alerts the reader of important facts and conditions.
The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. It is important that the user fully complies with all warning and cautionary notices.

1.4.2 Document conventions

- Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push button navigation in the LHMI menu structure is presented by using the push button icons. For example, to navigate between the options, use ▲ and ▼.
- HMI menu paths are presented in bold. For example, select Main menu/Settings.
- LHMI messages are shown in Courier font. For example, to save the changes in non-volatile memory, select Yes and press ▽.
- Parameter names are shown in italics. For example, the function can be enabled and disabled with the Operation setting.
- Each function block symbol shows the available input/output signal.
 - the character ^ in front of an input/output signal name indicates that the signal name may be customized using the PCM600 software.
 - the character * after an input signal name indicates that the signal must be connected to another function block in the application configuration to achieve a valid application configuration.
- Dimensions are provided both in inches and millimeters. If it is not specifically mentioned then the dimension is in millimeters.

1.5 IEC 61850 edition 1 / edition 2 mapping

Function block names are used in ACT and PST to identify functions. Respective function block names of Edition 1 logical nodes and Edition 2 logical nodes are shown in the table below.

<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEGPVOC</td>
<td>AEGGAPC</td>
<td>AEGPVOC</td>
</tr>
<tr>
<td>AGSAL</td>
<td>AGSAL</td>
<td>AGSAL</td>
</tr>
<tr>
<td>SECLLN0</td>
<td></td>
<td>AGSAL</td>
</tr>
<tr>
<td>ALMCALH</td>
<td>ALMCALH</td>
<td>ALMCALH</td>
</tr>
<tr>
<td>ALTIM</td>
<td></td>
<td>ALTIM</td>
</tr>
<tr>
<td>ALTMS</td>
<td></td>
<td>ALTMS</td>
</tr>
<tr>
<td>ALTRK</td>
<td></td>
<td>ALTRK</td>
</tr>
<tr>
<td>BCZPDIF</td>
<td>BCZPDIF</td>
<td>BCZPDIF</td>
</tr>
<tr>
<td>BCZSPDIF</td>
<td>BCZSPDIF</td>
<td>BCZSPDIF</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCZTPDIF</td>
<td>BCZTPDIF</td>
<td>BCZTPDIF</td>
</tr>
<tr>
<td>BDCGAPC</td>
<td>SWSGGIO</td>
<td>BBCSWI BDCGAPC</td>
</tr>
<tr>
<td>BDZSGAPC</td>
<td>BBS5LLN0 BDZSGAPC</td>
<td>LLN0 BDZSGAPC</td>
</tr>
<tr>
<td>BF PTRC_F01</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F02</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F03</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F04</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F05</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F06</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F07</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F08</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F09</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F10</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F11</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F12</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F13</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F14</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F15</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F16</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F17</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F18</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F19</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F20</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F21</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F22</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F23</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BF PTRC_F24</td>
<td>BF PTRC</td>
<td>BF PTRC</td>
</tr>
<tr>
<td>BICPTRC_01</td>
<td>BICPTRC</td>
<td>BICPTRC</td>
</tr>
<tr>
<td>BICPTRC_02</td>
<td>BICPTRC</td>
<td>BICPTRC</td>
</tr>
<tr>
<td>BICPTRC_03</td>
<td>BICPTRC</td>
<td>BICPTRC</td>
</tr>
<tr>
<td>BICPTRC_04</td>
<td>BICPTRC</td>
<td>BICPTRC</td>
</tr>
<tr>
<td>BICPTRC_05</td>
<td>BICPTRC</td>
<td>BICPTRC</td>
</tr>
<tr>
<td>BRCPTOC</td>
<td>BRCPTOC</td>
<td>BRCPTOC</td>
</tr>
<tr>
<td>BRPTOC</td>
<td>BRPTOC</td>
<td>BRPTOC</td>
</tr>
<tr>
<td>BTIGAPC</td>
<td>B16IFCVI</td>
<td>BTIGAPC</td>
</tr>
<tr>
<td>BUSPTRC_B1</td>
<td>BUSPTRC BUSPLLN0</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B2</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSPTRC_B3</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B4</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B5</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B6</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B7</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B8</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B9</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B10</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B11</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B12</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B13</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B14</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B15</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B16</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B17</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B18</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B19</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B20</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B21</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B22</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B23</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUSPTRC_B24</td>
<td>BUSPTRC</td>
<td>BUSPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B1</td>
<td>BUTPTRC BUTPTRC BBTPLLN0</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B2</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B3</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B4</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B5</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B6</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B7</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BUTPTRC_B8</td>
<td>BUTPTRC</td>
<td>BUTPTRC</td>
</tr>
<tr>
<td>BZISGGIO</td>
<td>BZISGGIO</td>
<td>BZISGAPC</td>
</tr>
<tr>
<td>BZITGGIO</td>
<td>BZITGGIO</td>
<td>BZITGAPC</td>
</tr>
<tr>
<td>BZNPDISF_Z1</td>
<td>BZNPDISF</td>
<td>BZNPDISF</td>
</tr>
<tr>
<td>BZNPDISF_Z2</td>
<td>BZNPDISF</td>
<td>BZNPDISF</td>
</tr>
<tr>
<td>BZNPDISF_Z3</td>
<td>BZNPDISF</td>
<td>BZNPDISF</td>
</tr>
<tr>
<td>BZNPDISF_Z4</td>
<td>BZNPDISF</td>
<td>BZNPDISF</td>
</tr>
<tr>
<td>BZNPDISF_Z5</td>
<td>BZNPDISF</td>
<td>BZNPDISF</td>
</tr>
<tr>
<td>BZNPDISF_Z6</td>
<td>BZNPDISF</td>
<td>BZNPDISF</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZNSPDIF_A</td>
<td>BZNSPDIF</td>
<td>BZASGAPC BZASPDIF BZNSGAPC BZNSPDIF</td>
</tr>
<tr>
<td>BZNSPDIF_B</td>
<td>BZNSPDIF</td>
<td>BZBSGAPC BZBSPDIF BZNSGAPC BZNSPDIF</td>
</tr>
<tr>
<td>BZNTPDIF_A</td>
<td>BZNTPDIF</td>
<td>BZATGAPC BZATPDIF BZNTGAPC BZNTPDIF</td>
</tr>
<tr>
<td>BZNTPDIF_B</td>
<td>BZNTPDIF</td>
<td>BZBTGAPC BZBTPDIF BZNTGAPC BZNTPDIF</td>
</tr>
<tr>
<td>CBPGAPC</td>
<td>CBPLLNO CBPMXXU CBPPTRC HOLPTOV HPH1PTOV PH3PTUC PH3PTUC RP3PDOP</td>
<td>CBPMXXU CBPPTRC HOLPTOV HPH1PTOV PH3PTOC PH3PTUC RP3PDOP</td>
</tr>
<tr>
<td>CCPDSC</td>
<td>CCPDSC</td>
<td>CCPRLD</td>
</tr>
<tr>
<td>CCRBRF</td>
<td>CCRBRF</td>
<td>CCRBRF</td>
</tr>
<tr>
<td>CCRWBRBF</td>
<td>CCRWBRBF</td>
<td>CCRWBRBF</td>
</tr>
<tr>
<td>CCSRBPF</td>
<td>CCSRBPF</td>
<td>CCSRBPF</td>
</tr>
<tr>
<td>CCESSPVC</td>
<td>CESSPVC</td>
<td>CCESSPVC</td>
</tr>
<tr>
<td>CMMXU</td>
<td>CMMXU</td>
<td>CMMXU</td>
</tr>
<tr>
<td>CMSQI</td>
<td>CMSQI</td>
<td>CMSQI</td>
</tr>
<tr>
<td>COUVGAPC</td>
<td>COUVLNO COUVPTOV COUVPTUV</td>
<td>COUVPTOV COUVPTUV</td>
</tr>
<tr>
<td>CVGAPC</td>
<td>GF2LLNO GF2MMXXN GF2PHAR GF2PTOV GF2PTUC GF2PTUV GF2PVOC PH1PTRC</td>
<td>GF2MMXXN GF2PHAR GF2PTOV GF2PTUC GF2PTUV GF2PVOC PH1PTRC</td>
</tr>
<tr>
<td>CVMMXN</td>
<td>CVMMXN</td>
<td>CVMMXN</td>
</tr>
<tr>
<td>D2PTOC</td>
<td>D2LLNO D2PTOC PH1PTRC</td>
<td>D2PTOC PH1PTRC</td>
</tr>
<tr>
<td>DPGAPC</td>
<td>DPGGIO</td>
<td>DPGAPC</td>
</tr>
<tr>
<td>DRPRDRE</td>
<td>DRPRDRE</td>
<td>DRPRDRE</td>
</tr>
<tr>
<td>ECPSC</td>
<td>ECPSC</td>
<td>ECPSC</td>
</tr>
<tr>
<td>ECRWPSCH</td>
<td>ECRWPSCH</td>
<td>ECRWPSCH</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF2PTOC</td>
<td>EF2LLNO EF2PTRC EF2RDIR GEN2PHAR PH1PTOC</td>
<td>EF2PTRC EF2RDIR GEN2PHAR PH1PTOC</td>
</tr>
<tr>
<td>EF4PTOC</td>
<td>EF4LLNO EF4PTRC EF4RDIR GEN4PHAR PH1PTOC</td>
<td>EF4PTRC EF4RDIR GEN4PHAR PH1PTOC</td>
</tr>
<tr>
<td>EFPIOC</td>
<td>EFPIOC</td>
<td>EFPIOC</td>
</tr>
<tr>
<td>EFRWPIOC</td>
<td>EFRWPIOC</td>
<td>EFRWPIOC</td>
</tr>
<tr>
<td>ETPMMTR</td>
<td>ETPMMTR</td>
<td>ETPMMTR</td>
</tr>
<tr>
<td>FDPSPDIS</td>
<td>FDPSPDIS</td>
<td>FDPSPDIS</td>
</tr>
<tr>
<td>FMPSPDIS</td>
<td>FMPSPDIS</td>
<td>FMPSPDIS</td>
</tr>
<tr>
<td>FRPSPDIS</td>
<td>FSRPDIS</td>
<td>FSRPDIS</td>
</tr>
<tr>
<td>FTAQFVR</td>
<td>FTAQFVR</td>
<td>FTAQFVR</td>
</tr>
<tr>
<td>FUFSVPC</td>
<td>SDDRFUF</td>
<td>FUFSVPC SDDSPVCS</td>
</tr>
<tr>
<td>GENPDIF</td>
<td>GENPDIF</td>
<td>GENPDIF GENPDIF GENPHAR GENPTRC</td>
</tr>
<tr>
<td>GOPPDOP</td>
<td>GOPPDOP</td>
<td>GOPPDOP PH1PTOC</td>
</tr>
<tr>
<td>GRPTTR</td>
<td>GRPTTR</td>
<td>GRPTTR</td>
</tr>
<tr>
<td>GSPTTR</td>
<td>GSPTTR</td>
<td>GSPTTR</td>
</tr>
<tr>
<td>GUPPDUP</td>
<td>GUPPDUP</td>
<td>GUPPDUP PH1PTOC</td>
</tr>
<tr>
<td>HZPDIF</td>
<td>HZPDIF</td>
<td>HZPDIF</td>
</tr>
<tr>
<td>INDCALCH</td>
<td>INDCALH</td>
<td>INDCALH</td>
</tr>
<tr>
<td>ITBGAPC</td>
<td>IB16FCVB</td>
<td>ITBGAPC</td>
</tr>
<tr>
<td>L3CPDIF</td>
<td>L3CPDIF</td>
<td>L3CGAPC L3CPDIF L3CPHAR L3CPTRC</td>
</tr>
<tr>
<td>L4CPDIF</td>
<td>L4CLLNO L4CPDIF L4CPTRC</td>
<td>LLNO L4CGAPC L4CPDIF L4CPSCH L4CPTRC</td>
</tr>
<tr>
<td>L4UFCNT</td>
<td>L4UFCNT</td>
<td>L4UFCNT</td>
</tr>
<tr>
<td>L6CPDIF</td>
<td>L6CPDIF</td>
<td>L6CGAPC L6CPDIF L6CPHAR L6CPTRC</td>
</tr>
<tr>
<td>LAPPGAPC</td>
<td>LAPPLLN0 LAPPPDUP LAPPPUPF</td>
<td>LAPPPDUP LAPPPUPF</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCCRPTRC</td>
<td>LCCRPTRC</td>
<td>LCCRPTRC</td>
</tr>
<tr>
<td>LCN5PTOC</td>
<td>LCN5PTOC</td>
<td>LCN5PTOC</td>
</tr>
<tr>
<td>LCN5PTOV</td>
<td>LCN5PTOV</td>
<td>LCN5PTOV</td>
</tr>
<tr>
<td>LCP3PTOC</td>
<td>LCP3PTOC</td>
<td>LCP3PTOC</td>
</tr>
<tr>
<td>LCP3PTUC</td>
<td>LCP3PTUC</td>
<td>LCP3PTUC</td>
</tr>
<tr>
<td>LCPTTR</td>
<td>LCPTTR</td>
<td>LCPTTR</td>
</tr>
<tr>
<td>LCZSPTOC</td>
<td>LCZSPTOC</td>
<td>LCZSPTOC</td>
</tr>
<tr>
<td>LCZSPTOV</td>
<td>LCZSPTOV</td>
<td>LCZSPTOV</td>
</tr>
<tr>
<td>LD0LLN0</td>
<td>LLN0</td>
<td></td>
</tr>
<tr>
<td>LDLPSCH</td>
<td>LDLPSCH</td>
<td></td>
</tr>
<tr>
<td>LDRGFC</td>
<td>STSGGIO</td>
<td>LDRGFC</td>
</tr>
<tr>
<td>LEXPDIS</td>
<td>LEXPDIS</td>
<td>LEXPDIS LEXPTRC</td>
</tr>
<tr>
<td>LFPTTR</td>
<td>LFPTTR</td>
<td>LFPTTR</td>
</tr>
<tr>
<td>LMBRFLO</td>
<td>LMBRFLO</td>
<td>LMBRFLO</td>
</tr>
<tr>
<td>LOLSPTTR</td>
<td>LOLSPTTR</td>
<td>LOLSPTTR</td>
</tr>
<tr>
<td>LOVPTUV</td>
<td>LOVPTUV</td>
<td>LOVPTUV</td>
</tr>
<tr>
<td>LP HD</td>
<td>LP HD</td>
<td></td>
</tr>
<tr>
<td>LPTTR</td>
<td>LPTTR</td>
<td>LPTTR</td>
</tr>
<tr>
<td>LT3CPDIF</td>
<td>LT3CPDIF</td>
<td>LT3CPDIF LT3CPHC LT3CPTRC</td>
</tr>
<tr>
<td>LT6CPDIF</td>
<td>LT6CPDIF</td>
<td>LT6CPDIF LT6CPHC LT6CPTRC</td>
</tr>
<tr>
<td>MVGAPC</td>
<td>MVGIO</td>
<td>MVGAPC</td>
</tr>
<tr>
<td>NS2PTOC</td>
<td>NS2LLN0 NS2PTOC NS2PTRC</td>
<td>NS2PTOC NS2PTRC</td>
</tr>
<tr>
<td>NS4PTOC</td>
<td>EF4LLN0 EF4PTRC EF4DIR GEN4PHAR PH1PTOC</td>
<td>EF4PTRC EF4DIR PH1PTOC</td>
</tr>
<tr>
<td>O2RWPTOV</td>
<td>GEN2LLN0 O2RWPTOV PH1PTRC</td>
<td>O2RWPTOV PH1PTRC</td>
</tr>
<tr>
<td>OCA4PTOC</td>
<td>OC4LLN0 GEN4PHAR PH3PTOC PH3PTRC</td>
<td>GEN4PHAR PH3PTOC PH3PTRC</td>
</tr>
<tr>
<td>OEXPVPH</td>
<td>OEXPVPH</td>
<td>OEXPVPH</td>
</tr>
<tr>
<td>OOSPPAM</td>
<td>OOSPPAM</td>
<td>OOSPPAM OOSPTC</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OV2PTOV</td>
<td>GEN2LLN0</td>
<td>OV2PTOV</td>
</tr>
<tr>
<td></td>
<td>OV2PTOV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH1PTRC</td>
<td></td>
</tr>
<tr>
<td>PAPGAPC</td>
<td>PAPGAPC</td>
<td>PAPGAPC</td>
</tr>
<tr>
<td>PCFCNT</td>
<td>PCGGIO</td>
<td>PCFCNT</td>
</tr>
<tr>
<td>PH4SPTOC</td>
<td>GEN4PHAR</td>
<td>GEN4PHAR</td>
</tr>
<tr>
<td></td>
<td>OCNDLLN0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH1BPTOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH1PTRC</td>
<td></td>
</tr>
<tr>
<td>PHPIOC</td>
<td>PHPIOC</td>
<td>PHPIOC</td>
</tr>
<tr>
<td>PSLPSCH</td>
<td>ZMRPSL</td>
<td>PSLPSCH</td>
</tr>
<tr>
<td>PSPPPAM</td>
<td>PSPPPAM</td>
<td>PSPPPAM</td>
</tr>
<tr>
<td></td>
<td>PSPPTRC</td>
<td></td>
</tr>
<tr>
<td>QCBAY</td>
<td>QCBAY</td>
<td>BAY/LLN0</td>
</tr>
<tr>
<td>QCR5V</td>
<td>QCR5V</td>
<td>QCR5V</td>
</tr>
<tr>
<td>RCHLCCH</td>
<td>RCHLCCH</td>
<td>RCHLCCH</td>
</tr>
<tr>
<td>REFPDIF</td>
<td>REFPDIF</td>
<td>REFPDIF</td>
</tr>
<tr>
<td>ROTIPHIZ</td>
<td>ROTIPHIZ</td>
<td>ROTIPHIZ ROTIPHIZ</td>
</tr>
<tr>
<td>ROV2PTOV</td>
<td>GEN2LLN0 PH1PRTC ROV2PTOV</td>
<td>PH1PRTC ROV2PTOV</td>
</tr>
<tr>
<td>SAPFRC</td>
<td>SAPFRC</td>
<td>SAPFRC</td>
</tr>
<tr>
<td>SAPTOF</td>
<td>SAPTOF</td>
<td>SAPTOF</td>
</tr>
<tr>
<td>SAPTUF</td>
<td>SAPTUF</td>
<td>SAPTUF</td>
</tr>
<tr>
<td>SCCVPTOC</td>
<td>SCCVPTOC</td>
<td>SCCVPTOC</td>
</tr>
<tr>
<td>SCHLCCH</td>
<td>SCHLCCH</td>
<td>SCHLCCH</td>
</tr>
<tr>
<td>SCILO</td>
<td>SCILO</td>
<td>SCILO</td>
</tr>
<tr>
<td>SCSWI</td>
<td>SCSWI</td>
<td>SCSWI</td>
</tr>
<tr>
<td>SDEPSDE</td>
<td>SDEPSDE</td>
<td>SDEPSDE SDEPTOC SDEPTOV SDEPTOC</td>
</tr>
<tr>
<td>SESRSYN</td>
<td>RSY1LLN0 AUT1RSYN MAN1RSYN SYNRSYN</td>
<td>AUT1RSYN MAN1RSYN SYNRSYN</td>
</tr>
<tr>
<td>SLGAPC</td>
<td>SLGGIO</td>
<td>SLGAPC</td>
</tr>
<tr>
<td>SMBRREC</td>
<td>SMBRREC</td>
<td>SMBRREC</td>
</tr>
<tr>
<td>SMPPTRC</td>
<td>SMPPTRC</td>
<td>SMPPTRC</td>
</tr>
<tr>
<td>SPI6GAPC</td>
<td>SPI6GGIO</td>
<td>SPI6GAPC</td>
</tr>
<tr>
<td>SPC8GAPC</td>
<td>SPC8GGIO</td>
<td>SPC8GAPC</td>
</tr>
<tr>
<td>SPGAPC</td>
<td>SPGGIO</td>
<td>SPGAPC</td>
</tr>
<tr>
<td>SSCBR</td>
<td>SSCBR</td>
<td>SSCBR</td>
</tr>
<tr>
<td>SSIMG</td>
<td>SSIMG</td>
<td>SSIMG</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIML</td>
<td>SSIML</td>
<td>SSIML</td>
</tr>
<tr>
<td>PTRSTHR</td>
<td>PTRSTHR</td>
<td>PTRSTHR</td>
</tr>
<tr>
<td>STBPTOC</td>
<td>STBPTOC</td>
<td>BBPMSS</td>
</tr>
<tr>
<td>STBPTOC</td>
<td></td>
<td>STBPTOC</td>
</tr>
<tr>
<td>STEFPHIZ</td>
<td>STEFPHIZ</td>
<td>STEFPHIZ</td>
</tr>
<tr>
<td>STTIPHIZ</td>
<td>STTIPHIZ</td>
<td>STTIPHIZ</td>
</tr>
<tr>
<td>SXCBR</td>
<td>SXCBR</td>
<td>SXCBR</td>
</tr>
<tr>
<td>SXSWI</td>
<td>SXSWI</td>
<td>SXSWI</td>
</tr>
<tr>
<td>T2WPDIFF</td>
<td>T2WPDIFF</td>
<td>T2WGDAPC</td>
</tr>
<tr>
<td>T2WPDIFF</td>
<td></td>
<td>T2WPHAR</td>
</tr>
<tr>
<td>T2WPDIFF</td>
<td></td>
<td>T2WPTRC</td>
</tr>
<tr>
<td>T3WPDIFF</td>
<td>T3WPDIFF</td>
<td>T3WGDAPC</td>
</tr>
<tr>
<td>T3WPDIFF</td>
<td></td>
<td>T3WPHAR</td>
</tr>
<tr>
<td>T3WPDIFF</td>
<td></td>
<td>T3WPTRC</td>
</tr>
<tr>
<td>TCLYLTC</td>
<td>TCLYLTC</td>
<td>TCLYLTC</td>
</tr>
<tr>
<td>TCLYLTC</td>
<td></td>
<td>TCLSLTC</td>
</tr>
<tr>
<td>TCMYLT C</td>
<td>TCMYLT C</td>
<td>TCMYLT C</td>
</tr>
<tr>
<td>TEIGAPC</td>
<td>TEIGGIO</td>
<td>TEIGAPC</td>
</tr>
<tr>
<td>TEILGAPC</td>
<td>TEILGGIO</td>
<td>TEILGAPC</td>
</tr>
<tr>
<td>TMAGAPC</td>
<td>TMAGGIO</td>
<td>TMAGAPC</td>
</tr>
<tr>
<td>TPIIOC</td>
<td>TPIIOC</td>
<td>TPIIOC</td>
</tr>
<tr>
<td>TRIATCC</td>
<td>TRIATCC</td>
<td>TRIATCC</td>
</tr>
<tr>
<td>TR8ATCC</td>
<td>TR8ATCC</td>
<td>TR8ATCC</td>
</tr>
<tr>
<td>TRPTTR</td>
<td>TRPTTR</td>
<td>TRPTTR</td>
</tr>
<tr>
<td>U2RWPTUV</td>
<td>GEN2LLN0 PH1PTTRC</td>
<td>PH1PTTRC U2RWPTUV</td>
</tr>
<tr>
<td>U2RWPTUV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV2PTUV</td>
<td>GEN2LLN0 PH1PTTRC U2RWPTUV</td>
<td>PH1PTTRC U2RWPTUV</td>
</tr>
<tr>
<td>VDCPTOV</td>
<td>VDCPTOV</td>
<td>VDCPTOV</td>
</tr>
<tr>
<td>VDSPVC</td>
<td>VDRFUF</td>
<td>VDSPVC</td>
</tr>
<tr>
<td>VMMXU</td>
<td>VMMXU</td>
<td>VMMXU</td>
</tr>
<tr>
<td>VMSQI</td>
<td>VMSQI</td>
<td>VMSQI</td>
</tr>
<tr>
<td>VNMMXU</td>
<td>VNMMXU</td>
<td>VNMMXU</td>
</tr>
<tr>
<td>VRPVOC</td>
<td>VRLLN0 PH1PTTRC PH1PTUV VRPVOC</td>
<td>PH1PTTRC PH1PTUV VRPVOC</td>
</tr>
<tr>
<td>VSGAPC</td>
<td>VSGGIO</td>
<td>VSGAPC</td>
</tr>
<tr>
<td>WRNCALH</td>
<td>WRNCALH</td>
<td>WRNCALH</td>
</tr>
<tr>
<td>ZC1PPSCH</td>
<td>ZPCPSCH</td>
<td>ZPCPSCH</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function block name</th>
<th>Edition 1 logical nodes</th>
<th>Edition 2 logical nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZC1WPSCH</td>
<td>ZPCWPSCH</td>
<td>ZPCWPSCH</td>
</tr>
<tr>
<td>ZCLCPSCH</td>
<td>ZCLCPLAL</td>
<td>ZCLCPSCH</td>
</tr>
<tr>
<td>ZCPSCH</td>
<td>ZCPSCH</td>
<td>ZCPSCH</td>
</tr>
<tr>
<td>ZC1WPSCH</td>
<td>ZCRWPSCH</td>
<td>ZCRWPSCH</td>
</tr>
<tr>
<td>ZCPSCH</td>
<td>ZCPSCH</td>
<td>ZCPSCH</td>
</tr>
<tr>
<td>ZGVPSOF</td>
<td>ZCVPSOF</td>
<td>ZCVPSOF</td>
</tr>
<tr>
<td>ZGVPDIS</td>
<td>ZGVLLNO PH1PTRC ZGVPDIS ZGVPTUV</td>
<td>ZGVPDIS PH1PTRC ZGVPTUV</td>
</tr>
<tr>
<td>ZMCAPDIS</td>
<td>ZMCAPDIS</td>
<td>ZMCAPDIS</td>
</tr>
<tr>
<td>ZMCPDIS</td>
<td>ZMCPDIS</td>
<td>ZMCPDIS</td>
</tr>
<tr>
<td>ZMFCPDIS</td>
<td>ZMFCLLN0 PSFPDIS ZMFDPDIS ZMFPTRC ZMMMXU</td>
<td>PSFPDIS ZMFDPDIS ZMFPTRC ZMMMXU</td>
</tr>
<tr>
<td>ZMFPDIS</td>
<td>ZMFLLN0 PSFPDIS ZMFDPDIS ZMFPTRC ZMMMXU</td>
<td>PSFPDIS PSFPDIS ZMFDPDIS ZMFPTRC ZMMMXU</td>
</tr>
<tr>
<td>ZMHDPDIS</td>
<td>ZMHDPDIS</td>
<td>ZMHDPDIS</td>
</tr>
<tr>
<td>ZMMAPDIS</td>
<td>ZMMAPDIS</td>
<td>ZMMAPDIS</td>
</tr>
<tr>
<td>ZMMPDIS</td>
<td>ZMMPDIS</td>
<td>ZMMPDIS</td>
</tr>
<tr>
<td>ZMQAPDIS</td>
<td>ZMQAPDIS</td>
<td>ZMQAPDIS</td>
</tr>
<tr>
<td>ZMQPDIS</td>
<td>ZMQPDIS</td>
<td>ZMQPDIS</td>
</tr>
<tr>
<td>ZMRAPDIS</td>
<td>ZMRAPDIS</td>
<td>ZMRAPDIS</td>
</tr>
<tr>
<td>ZMRPDIS</td>
<td>ZMRPDIS</td>
<td>ZMRPDIS</td>
</tr>
<tr>
<td>ZMRPSB</td>
<td>ZMRPSB</td>
<td>ZMRPSB</td>
</tr>
<tr>
<td>ZSMGAPC</td>
<td>ZSMGAPC</td>
<td>ZSMGAPC</td>
</tr>
</tbody>
</table>
Section 2 Safety information

2.1 Symbols on the product

All warnings must be observed.

- Read the entire manual before doing installation or any maintenance work on the product.

Class 1 Laser product. Take adequate measures to protect your eyes and do not view directly with optical instruments.

- Do not touch the unit in operation. The installation shall take into account the worst case temperature.

2.2 Warnings

Observe the warnings during all types of work related to the product.

- Only electrically skilled persons with the proper authorization and knowledge of any safety hazards are allowed to carry out the electrical installation.

- National and local electrical safety regulations must always be followed. Working in a high voltage environment requires serious approach to avoid human injuries and damage to equipment.

- Do not touch circuitry during operation. Potentially lethal voltages and currents are present.

- Always use suitable isolated test pins when measuring signals in open circuitry. Potentially lethal voltages and currents are present.
Never connect or disconnect a wire and/or a connector to or from a IED during normal operation. Hazardous voltages and currents are present that may be lethal. Operation may be disrupted and IED and measuring circuitry may be damaged.

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Always connect the IED to protective ground, regardless of the operating conditions. This also applies to special occasions such as bench testing, demonstrations and off-site configuration. This is class 1 equipment that shall be grounded.

Never disconnect the secondary connection of current transformer circuit without short-circuiting the transformer’s secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential build-up that may damage the transformer and may cause injuries to humans.

Never remove any screw from a powered IED or from a IED connected to powered circuitry. Potentially lethal voltages and currents are present.

Take adequate measures to protect the eyes. Never look into the laser beam.

The IED with accessories should be mounted in a cubicle in a restricted access area within a power station, substation or industrial or retail environment.

2.3 Caution signs

Whenever changes are made in the IED, measures should be taken to avoid inadvertent tripping.

The IED contains components which are sensitive to electrostatic discharge. ESD precautions shall always be observed prior to touching components.
Always transport PCBs (modules) using certified conductive bags.

Do not connect live wires to the IED. Internal circuitry may be damaged.

Always use a conductive wrist strap connected to protective ground when replacing modules. Electrostatic discharge (ESD) may damage the module and IED circuitry.

Take care to avoid electrical shock during installation and commissioning.

Changing the active setting group will inevitably change the IEDs operation. Be careful and check regulations before making the change.

2.4 Note signs

Observe the maximum allowed continuous current for the different current transformer inputs of the IED. See technical data.
The following tables list all the functions available in the IED. Those functions that are not exposed to the user or do not need to be configured are not described in this manual.

3.1 Main protection functions

Table 2: Example of quantities

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>= number of basic instances</td>
</tr>
<tr>
<td>0-3</td>
<td>= option quantities</td>
</tr>
<tr>
<td>3-A03</td>
<td>= optional function included in packages A03 (refer to ordering details)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUTPTRC, BCZTPDIF, BZNTPDIF, BZITGGIO, BUTSM4</td>
<td>87B</td>
<td>Busbar differential protection, 2 zones, three phase/4 bays</td>
</tr>
<tr>
<td>BUTPTRC, BCZTPDIF, BZNTPDIF, BZITGGIO, BUTSM8</td>
<td>87B</td>
<td>Busbar differential protection, 2 zones, three phase/8 bays</td>
</tr>
<tr>
<td>BUSPTRC, BCZSPDIF, BZNSPDIF, BZISGGIO, BUSSM12</td>
<td>87B</td>
<td>Busbar differential protection, 2 zones, single phase/12 bays</td>
</tr>
<tr>
<td>BUSPTRC, BCZSPDIF, BZNSPDIF, BZISGGIO, BUSSM24</td>
<td>87B</td>
<td>Busbar differential protection, 2 zones, single phase/24 bays</td>
</tr>
<tr>
<td>BDZSGAPC, BFPTRC, BICPTRC, BICNPTRC, BICZPDIF, BSMGPAC</td>
<td>87B</td>
<td>Busbar differential protection, 6 zones, single phase/24 bays</td>
</tr>
<tr>
<td>BDCGAPC</td>
<td>87B</td>
<td>Status of primary switching object for busbar protection zone selection</td>
</tr>
<tr>
<td>Busbar protection REB670 (Customized)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUSPTRC, BCZSPDIF, BZNSPDIF, BZISGGIO, BUSSM24</td>
<td>87B</td>
<td>Busbar differential protection, 2 zones, single phase/24 bays</td>
</tr>
<tr>
<td>BDZSGAPC, BFPTRC, BICPTRC, BICNPTRC, BICZPDIF, BSMGPAC</td>
<td>87B</td>
<td>Busbar differential protection, 6 zones, single phase/24 bays</td>
</tr>
<tr>
<td>BDCGAPC</td>
<td>87B</td>
<td>Status of primary switching object for busbar protection zone selection</td>
</tr>
</tbody>
</table>

© Copyright 2017 ABB. All rights reserved
3.2 Back-up protection functions

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current protection</td>
<td></td>
</tr>
<tr>
<td>OC4PTOC</td>
<td>51_67</td>
<td>Directional phase overcurrent protection, four steps</td>
<td>0-8</td>
</tr>
<tr>
<td>PH4SPTOC</td>
<td>51</td>
<td>Four step single phase overcurrent protection</td>
<td>0-24</td>
</tr>
<tr>
<td>EF4PTOC</td>
<td>51N 67N</td>
<td>Directional residual overcurrent protection, four steps</td>
<td>0-8</td>
</tr>
<tr>
<td>NS4PTOC</td>
<td>46I2</td>
<td>Four step directional negative phase sequence overcurrent protection</td>
<td>0-8</td>
</tr>
<tr>
<td>TRPTTR</td>
<td>49</td>
<td>Thermal overload protection, two time constants</td>
<td>0-2</td>
</tr>
<tr>
<td>CCRBRF</td>
<td>50BF</td>
<td>Breaker failure protection</td>
<td>0-8</td>
</tr>
<tr>
<td>CCSBRBF</td>
<td>50BF</td>
<td>Breaker failure protection, single phase version</td>
<td>0-24</td>
</tr>
<tr>
<td>GUPPDUP</td>
<td>37</td>
<td>Directional underpower protection</td>
<td>0-4</td>
</tr>
<tr>
<td>GOPPDOP</td>
<td>32</td>
<td>Directional overpower protection</td>
<td>0-4</td>
</tr>
<tr>
<td>CBPGAPC</td>
<td></td>
<td>Capacitor bank protection</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage protection</td>
<td></td>
</tr>
<tr>
<td>UV2PTUV</td>
<td>27</td>
<td>Two step undervoltage protection</td>
<td>0-2</td>
</tr>
<tr>
<td>OV2PTOV</td>
<td>59</td>
<td>Two step overvoltage protection</td>
<td>0-2</td>
</tr>
<tr>
<td>ROV2PTOV</td>
<td>59N</td>
<td>Two step residual overvoltage protection</td>
<td>0-2</td>
</tr>
<tr>
<td>VDCPTOV</td>
<td>60</td>
<td>Voltage differential protection</td>
<td>0-2</td>
</tr>
<tr>
<td>LOVPTUV</td>
<td>27</td>
<td>Loss of voltage check</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency protection</td>
<td></td>
</tr>
<tr>
<td>SAPTUF</td>
<td>81</td>
<td>Underfrequency protection</td>
<td>0-6</td>
</tr>
<tr>
<td>SAPTOF</td>
<td>81</td>
<td>Overfrequency protection</td>
<td>0-6</td>
</tr>
<tr>
<td>SAPFRC</td>
<td>81</td>
<td>Rate-of-change of frequency protection</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multipurpose protection</td>
<td></td>
</tr>
<tr>
<td>CVGAPC</td>
<td></td>
<td>General current and voltage protection</td>
<td>0-6</td>
</tr>
</tbody>
</table>

1) 67 requires voltage
2) 67N requires voltage
3.3 Control and monitoring functions

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>REB670 (Customized)</td>
</tr>
<tr>
<td>SESRSYN</td>
<td>25</td>
<td>Synchrocheck, energizing check and synchronizing</td>
<td>0-3</td>
</tr>
<tr>
<td>SMBRREC</td>
<td>79</td>
<td>Autorecloser</td>
<td>0-2</td>
</tr>
<tr>
<td>APC30</td>
<td>3</td>
<td>Control functionality for up to 6 bays, max 30 objects (6CBs), including interlocking (see Table 4)</td>
<td>0-1</td>
</tr>
<tr>
<td>QCBAY</td>
<td></td>
<td>Bay control</td>
<td>1+5/APC30</td>
</tr>
<tr>
<td>LOCREM</td>
<td></td>
<td>Handling of LR-switch positions</td>
<td>1+5/APC30</td>
</tr>
<tr>
<td>LOCREMCTRL</td>
<td></td>
<td>LHMI control of PSTO</td>
<td>1</td>
</tr>
<tr>
<td>SXCBR</td>
<td></td>
<td>Circuit breaker</td>
<td>24</td>
</tr>
<tr>
<td>SLGAPC</td>
<td></td>
<td>Logic rotating switch for function selection and LHMI presentation</td>
<td>15</td>
</tr>
<tr>
<td>VSGAPC</td>
<td></td>
<td>Selector mini switch</td>
<td>30</td>
</tr>
<tr>
<td>DPGAPC</td>
<td></td>
<td>Generic communication function for Double Point indication</td>
<td>32</td>
</tr>
<tr>
<td>SPC8GAPC</td>
<td></td>
<td>Single point generic control function 8 signals</td>
<td>5</td>
</tr>
<tr>
<td>AUTOBITS</td>
<td></td>
<td>Automation bits, command function for DNP3.0</td>
<td>3</td>
</tr>
<tr>
<td>SINGLECMD</td>
<td></td>
<td>Single command, 16 signals</td>
<td>8</td>
</tr>
<tr>
<td>I103CMD</td>
<td></td>
<td>Function commands for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103GENCMD</td>
<td></td>
<td>Function commands generic for IEC 60870-5-103</td>
<td>50</td>
</tr>
<tr>
<td>I103POSCMD</td>
<td></td>
<td>IED commands with position and select for IEC 60870-5-103</td>
<td>50</td>
</tr>
<tr>
<td>I103POSCMDV</td>
<td></td>
<td>IED direct commands with position for IEC 60870-5-103</td>
<td>50</td>
</tr>
<tr>
<td>I103IEDCMD</td>
<td></td>
<td>IED commands for IEC 60870-5-103</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on next page
Available functions

<table>
<thead>
<tr>
<th>IEC 61850 or ANSI function name</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I103USRCMD</td>
<td>Function commands user defined for IEC 60870-5-103</td>
<td>REB670 (Customized)</td>
</tr>
<tr>
<td>Second system supervision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUFSPVC</td>
<td>Fuse failure supervision</td>
<td>0-2</td>
</tr>
<tr>
<td>VDSPVC</td>
<td>Fuse failure supervision based on voltage difference</td>
<td>0-2</td>
</tr>
<tr>
<td>DELVSPVC</td>
<td>Voltage delta supervision, 2 phase</td>
<td>4</td>
</tr>
<tr>
<td>DELISPVC</td>
<td>Current delta supervision, 2 phase</td>
<td>4</td>
</tr>
<tr>
<td>DELSPVC</td>
<td>Real delta supervision, real</td>
<td>4</td>
</tr>
<tr>
<td>Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMAGAPC</td>
<td>Trip matrix logic</td>
<td>12</td>
</tr>
<tr>
<td>ALMICALH</td>
<td>Logic for group alarm</td>
<td>5</td>
</tr>
<tr>
<td>WRNCALH</td>
<td>Logic for group warning</td>
<td>5</td>
</tr>
<tr>
<td>INDICALH</td>
<td>Logic for group indication</td>
<td>5</td>
</tr>
<tr>
<td>AND, GATE, INV, LLD, OR, PULSETIMER, RSMEMORY, SRMEMORY, TIMERSET, XOR</td>
<td>Basic configurable logic blocks (see Table 3)</td>
<td>40-496</td>
</tr>
<tr>
<td>AND, GATE, INV, LLD, OR, PULSETIMER, RSMEMORY, SRMEMORY, TIMERSET, VSGAPC, XOR</td>
<td>Extension logic package (see Table 6)</td>
<td>0-1</td>
</tr>
<tr>
<td>FXDSIGN</td>
<td>Fixed signal function block</td>
<td>1</td>
</tr>
<tr>
<td>B16I</td>
<td>Boolean to integer conversion, 16 bit</td>
<td>18</td>
</tr>
<tr>
<td>BTIGAPC</td>
<td>Boolean to integer conversion with logical node representation, 16 bit</td>
<td>16</td>
</tr>
<tr>
<td>IB16</td>
<td>Integer to Boolean 16 conversion</td>
<td>18</td>
</tr>
<tr>
<td>BCTZCONN</td>
<td>Integer to Boolean conversion for six-zone busbar</td>
<td>34</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>REB670 (Customized)</td>
<td></td>
</tr>
<tr>
<td>ITBGAPC</td>
<td></td>
<td>Integer to Boolean 16 conversion with Logic Node representation</td>
<td>16</td>
</tr>
<tr>
<td>TEIGAPC</td>
<td></td>
<td>Elapsed time integrator with limit transgression and overflow supervision</td>
<td>12</td>
</tr>
<tr>
<td>INTCOMP</td>
<td></td>
<td>Comparator for integer inputs</td>
<td>30</td>
</tr>
<tr>
<td>REALCOMP</td>
<td></td>
<td>Comparator for real inputs</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3: Total number of instances for basic configurable logic blocks

<table>
<thead>
<tr>
<th>Basic configurable logic block</th>
<th>Total number of instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>328</td>
</tr>
<tr>
<td>GATE</td>
<td>64</td>
</tr>
<tr>
<td>INV</td>
<td>492</td>
</tr>
<tr>
<td>LLD</td>
<td>40</td>
</tr>
<tr>
<td>OR</td>
<td>496</td>
</tr>
<tr>
<td>PULSETIMER</td>
<td>40</td>
</tr>
<tr>
<td>RSMEMORY</td>
<td>40</td>
</tr>
<tr>
<td>SRMEMORY</td>
<td>40</td>
</tr>
<tr>
<td>TIMERSET</td>
<td>108</td>
</tr>
<tr>
<td>XOR</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 4: Number of function instances in APC30

<table>
<thead>
<tr>
<th>Function name</th>
<th>Function description</th>
<th>Total number of instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIL0</td>
<td>Interlocking</td>
<td>30</td>
</tr>
<tr>
<td>BB_ES</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>A1A2_BS</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>A1A2_DC</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ABC_BC</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BH_CONN</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BH_LINE_A</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BH_LINE_B</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DB_BUS_A</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DB_BUS_B</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DB_LINE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ABC_LINE</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>AB_TRAFO</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>SCSWI</td>
<td>Switch controller</td>
<td>30</td>
</tr>
<tr>
<td>SXSWI</td>
<td>Circuit switch</td>
<td>24</td>
</tr>
<tr>
<td>QCR5V</td>
<td>Apparatus control</td>
<td>6</td>
</tr>
<tr>
<td>RESIN1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RESIN2</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>POS_EVAL</td>
<td>Evaluation of position indication</td>
<td>30</td>
</tr>
<tr>
<td>QCAY</td>
<td>Bay control</td>
<td>5</td>
</tr>
<tr>
<td>LOCREM</td>
<td>Handling of LR-switch positions</td>
<td>5</td>
</tr>
<tr>
<td>XLNPROXY</td>
<td>Proxy for signals from switching device via GOOSE</td>
<td>42</td>
</tr>
<tr>
<td>GOOSEXLNRCV</td>
<td>GOOSE function block to receive a switching device</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 5: Total number of instances for configurable logic blocks Q/T

<table>
<thead>
<tr>
<th>Configurable logic blocks Q/T</th>
<th>Total number of instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDQT</td>
<td>120</td>
</tr>
<tr>
<td>INDCOMBSPQQT</td>
<td>20</td>
</tr>
<tr>
<td>INDEXTSPQQT</td>
<td>20</td>
</tr>
<tr>
<td>INVALIDQT</td>
<td>22</td>
</tr>
<tr>
<td>INVERTERQT</td>
<td>120</td>
</tr>
<tr>
<td>ORQT</td>
<td>120</td>
</tr>
<tr>
<td>PULSETIMERQT</td>
<td>40</td>
</tr>
<tr>
<td>RSMEMORYQT</td>
<td>40</td>
</tr>
<tr>
<td>SRMEMORYQT</td>
<td>40</td>
</tr>
<tr>
<td>TIMERSETQQT</td>
<td>40</td>
</tr>
<tr>
<td>XORQT</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 6: Total number of instances for extended logic package

<table>
<thead>
<tr>
<th>Extended configurable logic block</th>
<th>Total number of instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>220</td>
</tr>
<tr>
<td>GATE</td>
<td>49</td>
</tr>
<tr>
<td>INV</td>
<td>220</td>
</tr>
<tr>
<td>LLD</td>
<td>49</td>
</tr>
<tr>
<td>OR</td>
<td>220</td>
</tr>
<tr>
<td>PULSETIMER</td>
<td>89</td>
</tr>
<tr>
<td>RSMEMORY</td>
<td>40</td>
</tr>
<tr>
<td>SLGAPC</td>
<td>74</td>
</tr>
<tr>
<td>S1RMEMORY</td>
<td>130</td>
</tr>
<tr>
<td>TIMERSET</td>
<td>113</td>
</tr>
<tr>
<td>VSGAPC</td>
<td>120</td>
</tr>
<tr>
<td>XOR</td>
<td>89</td>
</tr>
</tbody>
</table>

IEC 61850 or function name

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>REB670 (Customized)</td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AISVBAS</td>
<td></td>
<td>General service value presentation of analog inputs</td>
<td>1</td>
</tr>
<tr>
<td>EVENT</td>
<td></td>
<td>Event function</td>
<td>20</td>
</tr>
<tr>
<td>DRPRDRE, A4RADDR</td>
<td></td>
<td>Disturbance report</td>
<td>1</td>
</tr>
<tr>
<td>SPGAPC</td>
<td></td>
<td>Generic communication function for Single Point indication</td>
<td>96</td>
</tr>
<tr>
<td>SP16GAPC</td>
<td></td>
<td>Generic communication function for Single Point indication 16 inputs</td>
<td>16</td>
</tr>
<tr>
<td>MVGAPC</td>
<td></td>
<td>Generic communication function for measured values</td>
<td>24</td>
</tr>
<tr>
<td>BINSTATREP</td>
<td></td>
<td>Logical signal status report</td>
<td>3</td>
</tr>
<tr>
<td>RANGE_XP</td>
<td></td>
<td>Measured value expander block</td>
<td>28</td>
</tr>
<tr>
<td>SSIMG</td>
<td>63</td>
<td>Insulation supervision for gas medium</td>
<td>21</td>
</tr>
<tr>
<td>SSIML</td>
<td>71</td>
<td>Insulation supervision for liquid medium</td>
<td>3</td>
</tr>
<tr>
<td>SSCBR</td>
<td></td>
<td>Circuit breaker condition monitoring</td>
<td>0-24</td>
</tr>
</tbody>
</table>

Table continues on next page
Available functions

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>I103MEAS</td>
<td></td>
<td>Measurands for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103MEASUSR</td>
<td></td>
<td>Measurands user defined signals for IEC 60870-5-103</td>
<td>3</td>
</tr>
<tr>
<td>I103AR</td>
<td></td>
<td>Function status auto-recloser for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103EF</td>
<td></td>
<td>Function status earth-fault for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103FLTPROT</td>
<td></td>
<td>Function status fault protection for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103IED</td>
<td></td>
<td>IED status for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103SUPERV</td>
<td></td>
<td>Supervision status for IEC 60870-5-103</td>
<td>1</td>
</tr>
<tr>
<td>I103USRDEF</td>
<td></td>
<td>Status for user defined signals for IEC 60870-5-103</td>
<td>20</td>
</tr>
<tr>
<td>L4UFCNT</td>
<td></td>
<td>Event counter with limit supervision</td>
<td>30</td>
</tr>
<tr>
<td>TEILGAPC</td>
<td></td>
<td>Running hour meter</td>
<td>6</td>
</tr>
<tr>
<td>CHMMHAI</td>
<td>ITHD</td>
<td>Current harmonic monitoring, 3 phase</td>
<td>0-3</td>
</tr>
<tr>
<td>VHMMHAI</td>
<td>VTHD</td>
<td>Voltage harmonic monitoring, 3 phase</td>
<td>0-3</td>
</tr>
<tr>
<td>Metering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFCNT</td>
<td></td>
<td>Pulse-counter logic</td>
<td>16</td>
</tr>
<tr>
<td>ETPMMTR</td>
<td></td>
<td>Function for energy calculation and demand handling</td>
<td>6</td>
</tr>
</tbody>
</table>

3.4 Communication

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONSPA, SPA</td>
<td></td>
<td>SPA communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>HORZCOMM</td>
<td></td>
<td>Network variables via LON</td>
<td>1</td>
</tr>
<tr>
<td>IEC 61850-8-1</td>
<td></td>
<td>IEC 61850</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Busbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOOSEINTLKRCV</td>
<td></td>
<td>Horizontal communication via GOOSE for interlocking</td>
<td>59</td>
</tr>
<tr>
<td>GOOSEBINRCV</td>
<td></td>
<td>GOOSE binary receive</td>
<td>16</td>
</tr>
<tr>
<td>GOOSEDPRCV</td>
<td></td>
<td>GOOSE function block to receive a double point value</td>
<td>64</td>
</tr>
<tr>
<td>GOOSEINTRCV</td>
<td></td>
<td>GOOSE function block to receive an integer value</td>
<td>32</td>
</tr>
<tr>
<td>GOOSEMVRCV</td>
<td></td>
<td>GOOSE function block to receive a measurand value</td>
<td>60</td>
</tr>
<tr>
<td>GOOSESPPRCV</td>
<td></td>
<td>GOOSE function block to receive a single point value</td>
<td>64</td>
</tr>
<tr>
<td>MULTICMDRCV, MULTICMDSEND</td>
<td></td>
<td>Multiple command and transmit</td>
<td>60/10</td>
</tr>
<tr>
<td>AGSAL</td>
<td></td>
<td>Generic security application component</td>
<td>1</td>
</tr>
<tr>
<td>LDOLLN0</td>
<td></td>
<td>IEC 61850 L0 LLN0</td>
<td>1</td>
</tr>
<tr>
<td>SYSSLN0</td>
<td></td>
<td>IEC 61850 SYS LLN0</td>
<td>1</td>
</tr>
<tr>
<td>LPHD</td>
<td></td>
<td>Physical device information</td>
<td>1</td>
</tr>
<tr>
<td>PCMACCS</td>
<td></td>
<td>IED configuration protocol</td>
<td>1</td>
</tr>
<tr>
<td>FSTACCS</td>
<td></td>
<td>Field service tool access</td>
<td>1</td>
</tr>
<tr>
<td>IEC 61850-9-2 Process bus communication, 8 merging units</td>
<td></td>
<td>IEC 61850-9-2 Process bus communication, 8 merging units</td>
<td>0-1</td>
</tr>
<tr>
<td>ACTIVLOG</td>
<td></td>
<td>Activity logging</td>
<td>1</td>
</tr>
<tr>
<td>ALTRK</td>
<td></td>
<td>Service tracking</td>
<td>1</td>
</tr>
<tr>
<td>PRP</td>
<td></td>
<td>IEC 62439-3 Parallel redundancy protocol</td>
<td>0-1</td>
</tr>
<tr>
<td>HSR</td>
<td></td>
<td>IEC 62439-3 High-availability seamless redundancy</td>
<td>0-1</td>
</tr>
<tr>
<td>PTP</td>
<td></td>
<td>Precision time protocol</td>
<td>1</td>
</tr>
<tr>
<td>SCHLCCH</td>
<td></td>
<td>Access point diagnostic for non-redundant Ethernet port</td>
<td>6</td>
</tr>
<tr>
<td>RCHLCC</td>
<td></td>
<td>Access point diagnostic for redundant Ethernet ports</td>
<td>3</td>
</tr>
<tr>
<td>Remote communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSignRec1_1</td>
<td></td>
<td>Binary signal transfer receive</td>
<td>3/3/6</td>
</tr>
<tr>
<td>BinSignRec1_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSignRecive2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSignTrans1_1</td>
<td></td>
<td>Binary signal transfer transmit</td>
<td>3/3/6</td>
</tr>
<tr>
<td>BinSignTrans1_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSignTransm2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSigRec1_12M</td>
<td></td>
<td>Binary signal transfer, 2Mbit receive/transmit</td>
<td>3</td>
</tr>
<tr>
<td>BinSigRec1_22M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSigTran1_12M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BinSigTran1_22M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDCMTRN</td>
<td></td>
<td>Transmission of analog data from LDCM</td>
<td>1</td>
</tr>
<tr>
<td>LDCMTRN_2M</td>
<td></td>
<td>Transmission of analog data from LDCM, 2Mbit</td>
<td>6</td>
</tr>
<tr>
<td>LDCMRcBinStat1</td>
<td></td>
<td>Receive binary status from remote LDCM</td>
<td>6/3/3</td>
</tr>
<tr>
<td>LDCMRcBinStat2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDCMRcBinStat3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDCMRcBinS2_2M</td>
<td></td>
<td>Receive binary status from LDCM, 2Mbit</td>
<td>3</td>
</tr>
<tr>
<td>LDCMRcBinS3_2M</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
3.5 Basic IED functions

Table 7: Basic IED functions

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERRSIG</td>
<td>Self supervision with internal event list</td>
</tr>
<tr>
<td>TIMESYNCHGEN</td>
<td>Time synchronization module</td>
</tr>
<tr>
<td>BININPUT, SYNCHCAN, SYNCHGPS, SYNCHCMPPS, SYNCHLON, SYNCHPPH, SYNCHPPS, SNTP, SYNCHSPA</td>
<td>Time synchronization</td>
</tr>
<tr>
<td>TIMEZONE</td>
<td>Time synchronization</td>
</tr>
<tr>
<td>IRIG-B</td>
<td>Time synchronization</td>
</tr>
<tr>
<td>SETGRPS</td>
<td>Number of setting groups</td>
</tr>
<tr>
<td>ACTVGRP</td>
<td>Parameter setting groups</td>
</tr>
<tr>
<td>TESTMODE</td>
<td>Test mode functionality</td>
</tr>
<tr>
<td>CHNGLCK</td>
<td>Change lock function</td>
</tr>
<tr>
<td>SMBI</td>
<td>Signal matrix for binary inputs</td>
</tr>
<tr>
<td>SMBO</td>
<td>Signal matrix for binary outputs</td>
</tr>
<tr>
<td>SMMI</td>
<td>Signal matrix for mA inputs</td>
</tr>
<tr>
<td>SMAI1 - SMAI12</td>
<td>Signal matrix for analog inputs</td>
</tr>
<tr>
<td>3PHSUM</td>
<td>Summation block 3 phase</td>
</tr>
<tr>
<td>ATHSTAT</td>
<td>Authority status</td>
</tr>
<tr>
<td>ATHCHCK</td>
<td>Authority check</td>
</tr>
<tr>
<td>AUTHMAN</td>
<td>Authority management</td>
</tr>
<tr>
<td>FTPACCS</td>
<td>FTP access with password</td>
</tr>
<tr>
<td>ALTMS</td>
<td>Time master supervision</td>
</tr>
<tr>
<td>ALTIM</td>
<td>Time management</td>
</tr>
<tr>
<td>COMSTATUS</td>
<td>Protocol diagnostic</td>
</tr>
</tbody>
</table>

Table 8: Local HMI functions

<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHMICTRL</td>
<td></td>
<td>Local HMI signals</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td></td>
<td>Local human machine language</td>
</tr>
<tr>
<td>SCREEN</td>
<td></td>
<td>Local HMI Local human machine screen behavior</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or function name</th>
<th>ANSI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNKEYTY1–FNKEYTY5</td>
<td></td>
<td>Parameter setting function for HMI in PCM600</td>
</tr>
<tr>
<td>FNKEYMD1–FNKEYMD5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDGEN</td>
<td></td>
<td>General LED indication part for LHMI</td>
</tr>
<tr>
<td>OPENCLOSE_LED</td>
<td></td>
<td>LHMI LEDs for open and close keys</td>
</tr>
<tr>
<td>GRP1_LED1–GRP1_LED15</td>
<td></td>
<td>Basic part for CP HW LED indication module</td>
</tr>
<tr>
<td>GRP2_LED1–GRP2_LED15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRP3_LED1–GRP3_LED15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 4 Starting up

4.1 Factory and site acceptance testing

Testing the proper IED operation is carried out at different occasions, for example:

- Acceptance testing
- Commissioning testing
- Maintenance testing

This manual describes the workflow and the steps to carry out the commissioning testing.

Factory acceptance testing (FAT) is typically done to verify that the IED and its corresponding configuration meet the requirements of the utility or industry. This test is the most complex and in depth, as it is done to familiarize the user with a new product or to verify a new configuration. The complexity of this testing depends on several factors, such as:

- New IED type
- New configuration
- Modified configuration

Site acceptance testing (SAT or commissioning testing) is typically done to verify that the installed IED is correctly set and connected to the power system. SAT requires that the acceptance testing has been performed and that the application configuration is verified.

Maintenance testing is a periodic verification that the IED is healthy and has correct settings, depending on changes in the power system. There are also other types of maintenance testing.

4.2 Commissioning checklist

Before starting up commissioning at site, check that the following items are available.

- Single line diagram
- Protection block diagram
- Circuit diagram
- Setting list and configuration
- RJ-45 Ethernet cable (CAT 5)
- Three-phase test kit or other test equipment depending on the complexity of the configuration and functions to be tested.
- PC with PCM600 installed along with the connectivity packages corresponding to the IEDs to be tested.
- Administration rights on the PC, to set up IP addresses
4.3 Checking the power supply

Do not insert anything else to the female connector but the corresponding male connector. Inserting anything else (such as a measurement probe) may damage the female connector and prevent a proper electrical contact between the printed circuit board and the external wiring connected to the screw terminal block.

Check that the auxiliary supply voltage remains within the permissible input voltage range under all operating conditions. Check that the polarity is correct before energizing the IED.

4.4 Energizing the IED

4.4.1 Checking the IED operation

Check all connections to external circuitry to ensure correct installation, before energizing the IED and carrying out the commissioning procedures.

Energize the power supply of the IED to pickup. Keep the DC power supply on until the Root menu or the selected default screen is shown on the HMI before interrupting the DC power supply again. The energization could be done in a number of ways, from energizing a whole cubicle with many IEDs to energizing each single IED one by one.

If HW (i.e. I/O and/or communication boards etc.) have been changed (i.e. removed, replaced, or added), the user should re-configure the IED by navigating in the local HMI menu to: Main menu/Configuration/Reconfigure HW modules to activate the changed hardware modules in order to enable the self-supervision function to detect possible hardware errors.

Check also the self-supervision function in Main menu/Diagnostics/IED status/General menu in local HMI to verify that the IED operates properly.

Set the IED time if no time synchronization source is configured.

To ensure that the IED is according to the delivery and ordering specifications documents delivered together with each IED, the user should also after start-up use the built in HMI to check the IED's:

- Software version, Main menu/Diagnostics/IED status/Product identifiers.
- Serial number, Main menu/Diagnostics/IED status/Product identifiers.
- Installed modules and their ordering number, Main menu/Diagnostics/IED status/Installed HW.

4.4.2 IED start-up sequence

When the IED is energized, the green LED starts flashing instantly. After approximately 55 seconds the window lights up and the window displays 'IED Startup'. The main menu is displayed and the upper row should indicate 'Available' after about 90 seconds. A steady green light indicates a successful startup.
Figure 2: Typical IED start-up sequence

1. IED energized. Green LED instantly starts flashing
2. LCD lights up and “IED startup” is displayed
3. The main menu is displayed. A steady green light indicates a successful startup.

If the upper row in the window indicates ‘Fail’ instead of ‘Available’ and the green LED flashes, an internal failure in the IED has been detected.

4.5 Setting up communication between PCM600 and the IED

The communication between the IED and PCM600 is independent of the communication protocol used within the substation or to the NCC.

The communication media is always Ethernet and the used transport layer is TCP/IP.

Each IED has an RJ-45 Ethernet interface connector on the front. The front Ethernet connector is recommended to be used for communication with PCM600.

When an Ethernet-based station protocol is used, PCM600 communication can use the same Ethernet port and IP address.

To connect PCM600 to the IED, two basic variants must be considered.

- Direct point-to-point link between PCM600 and the IED front port. The front port can be seen as a service port.
- A link via a station LAN or from remote via a network.

The physical connection and the IP address must be configured in both cases to enable communication.

The communication procedures are the same in both cases.

1. If needed, set the IP address for the IEDs.
2. Set up the PC or workstation for a direct link (point-to-point), or
3. Connect the PC or workstation to the LAN/WAN network.
4. Configure the IED IP addresses in the PCM600 project for each IED to match the IP addresses of the physical IEDs.

Setting up IP addresses

Communication between the IED and PCM600 is enabled from the LHMI. The IP address and the corresponding communication subnetwork mask must be set via the Ethernet configuration tool (ECT) for each available Ethernet interface in the IED. Each Ethernet interface has a default factory
IP address when the IED is delivered. The IP address and the subnetwork mask might have to be reset when an additional Ethernet interface is installed or an interface is replaced.

DHCP is available for the front port, and a device connected to it can thereby obtain an automatically assigned IP address via the local HMI path `Main menu/Configuration/Communication/Ethernet configuration/Front port/DHCP`.

Alternatively the default IP address for the IED front port is 10.1.150.3 and the corresponding subnetwork mask is 255.255.255.0, which can be set via the local HMI path `Main menu/Configuration/Communication/TCP-IP configuration/ETHFRNT:1Main menu/Configuration/Communication/Ethernet configuration/AP_FRONT`.

Setting up the PC or workstation for point-to-point access to IEDs front port

An ethernet cable (max 2 m length) with RJ-45 connectors is needed to connect two physical Ethernet interfaces together without a hub, router, bridge or switch in between.

If an IED is equipped with optical LC interface, a converter between RJ-45 and LC is needed.

1. Select **Search programs and files** in the **Start menu** in Windows.
Figure 3: Select: Search programs and files

2. Type **View network connections** and click on the **View network connections** icon.
3. Right-click and select **Properties**.

4. Select the TCP/IPv4 protocol from the list of configured components using this connection and click **Properties**.
Figure 6: Select the TCP/IPv4 protocol and open Properties

5. Select **Use the following IP address** and define **IP address** and **Subnet mask** if the front port is used and if the **IP address** is not set to be obtained automatically by the IED, see **Figure 7**. The IP address must be different from the IP address chosen for the IED.

Figure 7: Select: Use the following IP address

6. Use the **ping** command to verify connectivity with the IED.
7. Close all open windows and start PCM600.
The PC and IED must belong to the same subnetwork for this set-up to work.

Setting up the PC to access the IED via a network
The same method is used as for connecting to the front port.

The PC and IED must belong to the same subnetwork for this set-up to work.

4.6 Writing an application configuration to the IED

When writing a configuration to the IED with PCM600, the IED is automatically set in configuration mode. When the IED is set in configuration mode, all functions are blocked. The red LED on the IED flashes, and the green LED is lit while the IED is in the configuration mode.

When the configuration is written and completed, the IED is automatically set into normal mode. For further instructions please refer to the users manuals for PCM600.

4.7 Checking CT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

The CTs must be connected in accordance with the circuit diagram provided with the IED, both with regards to phases and polarity. The following tests shall be performed on every primary CT connected to the IED:

- Primary injection test to verify the current ratio of the CT, the correct wiring up to the protection IED and correct phase sequence connection (that is A, B, C.)
- Polarity check to prove that the predicted direction of secondary current flow is correct for a given direction of primary current flow. This is an essential test for the proper operation of the differential function and directional protection functions.
- CT secondary loop resistance measurement to confirm that the current transformer secondary loop DC resistance is within the specification for the connected protection functions. When the measured loop resistance is near the calculated value for maximum DC resistance, perform a complete burden test.
- CT excitation test in order to confirm that the current transformer is of the correct accuracy rating and that there are no shorted turns in the current transformer windings. Manufacturer’s design curves must be available for the current transformer to compare the actual results.
- Grounding check of the individual CT secondary circuits to verify that each three-phase set of main CTs is properly connected to the station ground and only at one electrical point.
- Insulation resistance check.
While the CT primary is energized, the secondary circuit shall never be open
circuited because extremely dangerous high voltages may arise.

Both the primary and the secondary sides must be disconnected from the line and
the IED when plotting the excitation characteristics.

If the CT secondary circuit ground connection is removed without the current
transformer primary being de-energized, dangerous voltages may result in the
secondary CT circuits.

4.8 Checking VT circuits

Check that the wiring is in strict accordance with the supplied connection diagram.

Correct possible errors before continuing to test the circuitry.

Test the circuitry.

- Polarity check when applicable; this test is often omitted for CVTs
- VT circuit voltage measurement (primary injection test)
- Grounding check
- Phase relationship
- Insulation resistance check

The primary injection test verifies the VT ratio and the wiring all the way from the primary system
to the IED. Injection must be performed for each phase-to-neutral circuit.

While testing VT secondary circuit and associated secondary equipment, care shall
be exercised to isolate the VT from the circuit being tested to avoid backcharging
the VT from the secondary side.

4.9 Using the RTXP test switch

The RTXP test switch is designed to provide the means of safe testing of the IED. This is achieved
by the electromechanical design of the test switch and test plug handle. When the test plug handle
is inserted, it first blocks the trip and alarm circuits then it short circuits the CT secondary circuit
and opens the VT secondary circuits making the IED available for secondary injection.

When pulled out, the test handle is mechanically stopped in half withdrawn position. In this
position, the current and voltage enter the protection, but the alarm and trip circuits are still
isolated and the IED is in test mode. Before removing the test handle, check the measured values in the IED.

Not until the test handle is completely removed, the trip and alarm circuits are restored for operation.

Verify that the contact sockets have been crimped correctly and that they are fully inserted by tugging on the wires. Never do this with current circuits in service.

Current circuit
1. Verify that the contacts are of current circuit type.
2. Verify that the short circuit jumpers are located in the correct slots.

Voltage circuit
1. Verify that the contacts are of voltage circuit type.
2. Check that no short circuit jumpers are located in the slots dedicated for voltage.

Trip and alarm circuits
1. Check that the correct types of contacts are used.

4.10 Checking the binary input/output circuits

Do not insert anything else to the female connector but the corresponding male connector. Inserting anything else (such as a measurement probe) may damage the female connector and prevent a proper electrical contact between the printed circuit board and the external wiring connected to the screw terminal block.

4.10.1 Binary input circuits

Preferably, disconnect the binary input connector from the binary input cards. Check all connected signals so that both input level and polarity are in accordance with the IED specifications.

4.10.2 Binary output circuits

Preferably, disconnect the binary output connector from the binary output cards. Check all connected signals so that both load and polarity are in accordance with IED specifications.

4.11 Checking optical connections

Check that the Tx and Rx optical connections are correct.
An IED equipped with optical connections has a minimum space requirement of 180 mm (7.2 inches) for plastic fiber cables and 275 mm (10.9 inches) for glass fiber cables. Check the allowed minimum bending radius from the optical cable manufacturer.
Section 5 Configuring the IED and changing settings

5.1 Overview

The customer specific values for each setting parameter and a configuration file have to be available before the IED can be set and configured, if the IED is not delivered with a configuration.

Use the configuration tools in PCM600 to verify that the IED has the expected configuration.

Each function included in the IED has several setting parameters, which have to be set in order to make the IED behave as intended. A factory default value is provided for each parameter. The Parameter Setting Tool in PCM600 is used when changing setting parameters.

All settings can be

- Entered manually through the local HMI.
- Written from a PC, either locally or remotely using PCM600. Front or rear port communication has to be established before the settings can be written to the IED.

Make sure that the DC supply is not turned off when the IED saves the written configuration.

The IED uses a FLASH disk for storing configuration data and process data like counters, object states, Local/Remote switch position etc. Since FLASH memory is used, measures have been taken in software to make sure that the FLASH disk is not worn out by too intensive storing of data.

This means, that to be absolutely sure that all data have been saved to FLASH, it is necessary to leave the IED with auxiliary power connected after all the commissioning is done (including setting the Local/Remote switch to the desired position) for at least one hour after the last commissioning action performed on the IED.

After that time has elapsed, it will be safe to turn the IED off, no data will be lost.

5.2 Configuring analog CT inputs

The analog input channels must be configured to get correct measurement results as well as correct protection functionality. Because all protection algorithms in the IED utilize the primary system quantities, it is extremely important to make sure that connected current transformer settings are done properly. These data are calculated by the system engineer and normally set by the commissioning personnel from the local HMI or from PCM600.

The analog inputs on the transformer input module are dimensioned for either 1A or 5A. Each transformer input module has a unique combination of current and voltage inputs. Make sure the input current rating is correct and that it matches the order documentation.
The primary CT data are entered via the HMI menu under **Main menu/Configurations/Analog modules**.

The following parameter shall be set for every current transformer connected to the IED:

<table>
<thead>
<tr>
<th>Table 9: CT configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter description</td>
</tr>
<tr>
<td>Rated CT primary current in A</td>
</tr>
</tbody>
</table>

This parameter defines the primary rated current of the CT. For two set of CTs with ratio 1000/1 and 1000/5 this parameter is set to the same value of 1000 for both CT inputs. The parameter **CTStarPoint** can be used in order to reverse the direction of the CT. This might be necessary if two sets of CTs have different neutral (WYE) point locations in relation to the protected busbar.

For main CTs with 2A rated secondary current, it is recommended to connect the secondary wiring to the 1A input.

- Take the rated permissive overload values for the current inputs into consideration.

5.3 Supervision of input/output modules

I/O modules configured with PCM600 (BIM, BOM or IOM) are supervised.

I/O modules that are not configured are not supervised.

Each logical I/O module has an error flag that indicates signal or module failure. The error flag is also set when the physical I/O module of the correct type is not detected in the connected slot.
Section 6 Establishing connection and verifying the SPA/IEC communication

6.1 Entering settings

If the IED is connected to a monitoring or control system via the rear SPA/IEC103 port, the SPA/IEC103 port has to be set either for SPA or IEC103 use.

6.1.1 Entering SPA settings

The SPA/IEC port is located on the rear side of the IED. Two types of interfaces can be used:

- plastic fibers with connector type HFBR
- glass fibers with connector type ST

When using the SPA protocol, the rear SPA/IEC port must be set for SPA use.

Procedure:

1. Set the port for SPA use on the local HMI under **Main menu / Configuration / Communication / Station communication / Port configuration / SLM optical serial port / PROTOCOL**:1. When the communication protocol is selected, the IED is automatically restarted, and the port then operates as a SPA port.
2. Set the **SlaveAddress** and **BaudRate** for the rear SPA port on the local HMI under **Main menu / Configuration / Communication / Station communication / SPA / SPA**:1. Use the same settings for these as is set in the SMS system for the IED.

6.1.2 Entering IEC settings

The SPA/IEC port is located on the rear side of the IED. Two types of interfaces can be used:

- plastic fibers with connector type HFBR
- glass fibers with connector type ST

When using the IEC protocol, the rear SPA/IEC port must be set for IEC use.

Procedure:

1. Set the port for IEC use on the local HMI under **Main menu / Configuration / Communication / Station communication / Port configuration / SLM optical serial port / PROTOCOL**:1. When the communication protocol is selected, the IED is automatically restarted, and the port then operates as an IEC port.
2. Set the **SlaveAddress** and **BaudRate** for the rear IEC port on the local HMI under **Main menu / Configuration / Communication / Station communication / IEC60870-5-103 / OPTICAL103**:1. Use the same settings for these as is set in the SMS system for the IED.
6.2 Verifying the communication

To verify that the rear communication with the SMS/SCS system is working, there are some different methods. Choose one of the following.

6.2.1 Verifying SPA communication

Procedure

1. Use a SPA-emulator and send “RF” to the IED. The answer from the IED should be the type and version of it, for example, “REL670 2.1...”.
2. Generate one binary event by activating a function, which is configured to an EVENT block where the used input is set to generate events on SPA. The configuration must be made with the PCM600 software. Verify that the event is presented in the SMS/SCS system.

During the following tests of the different functions in the IED, verify that the events and indications in the SMS/SCS system are as expected.

6.2.2 Verifying IEC communication

To verify that the IEC communication with the IEC master system is working, there are some different methods. Choose one of the following.

Procedure

1. Check that the master system time-out for response from the IED, for example after a setting change, is > 40 seconds.
2. Use a protocol analyzer and record the communication between the IED and the IEC master. Check in the protocol analyzer’s log that the IED answers the master messages.
3. Generate one binary event by activating a function that is configured to an event block where the used input is set to generate events on IEC. The configuration must be made with the PCM600 software. Verify that the event is presented in the IEC master system.

During the following tests of the different functions in the IED, verify that the events and indications in the IEC master system are as expected.

6.3 Fiber optic loop

The SPA communication is mainly used for SMS. It can include different numerical IEDs with remote communication possibilities. The fiber optic loop can contain < 20-30 IEDs depending on requirements on response time. Connection to a personal computer (PC) can be made directly (if the PC is located in the substation) or by telephone modem through a telephone network with ITU (CCITT) characteristics.

Table 10: Max distances between IEDs/nodes

<table>
<thead>
<tr>
<th>Material</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>glass</td>
<td>< 1000 m according to optical budget</td>
</tr>
<tr>
<td>plastic</td>
<td>< 25 m (inside cubicle) according to optical budget</td>
</tr>
</tbody>
</table>
6.4 Optical budget calculation for serial communication with SPA/IEC

Table 11: Example

<table>
<thead>
<tr>
<th></th>
<th>Distance 1 km Glass</th>
<th>Distance 25 m Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum attenuation</td>
<td>-11 dB</td>
<td>-7 dB</td>
</tr>
<tr>
<td>4 dB/km multi mode: 820 nm - 62.5/125 um</td>
<td>4 dB</td>
<td>-</td>
</tr>
<tr>
<td>0.16 dB/m plastic: 620 nm - 1mm</td>
<td>-</td>
<td>4 dB</td>
</tr>
<tr>
<td>Margins for installation, aging, and so on</td>
<td>5 dB</td>
<td>1 dB</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (0.5 dB/contact)</td>
<td>1 dB</td>
<td>-</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (1 dB/contact)</td>
<td>-</td>
<td>2 dB</td>
</tr>
<tr>
<td>Margin for 2 repair splices (0.5 dB/splice)</td>
<td>1 dB</td>
<td>-</td>
</tr>
<tr>
<td>Maximum total attenuation</td>
<td>11 dB</td>
<td>7 dB</td>
</tr>
</tbody>
</table>
Establishing connection and verifying the LON communication

Communication via the rear ports

LON communication

LON communication is normally used in substation automation systems. Optical fiber is used within the substation as the physical communication link.

The test can only be carried out when the whole communication system is installed. Thus, the test is a system test and is not dealt with here.

An optical network can be used within the substation automation system. This enables communication with the IEDs through the LON bus from the operator’s workplace, from the control center and also from other IEDs via bay-to-bay horizontal communication. For LON communication an SLM card should be ordered for the IEDs.

The fiber optic LON bus is implemented using either glass core or plastic core fiber optic cables.
Table 12: Specification of the fiber optic connectors

<table>
<thead>
<tr>
<th></th>
<th>Glass fiber</th>
<th>Plastic fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable connector</td>
<td>ST-connector</td>
<td>snap-in connector</td>
</tr>
<tr>
<td>Cable diameter</td>
<td>62.5/125 m</td>
<td>1 mm</td>
</tr>
<tr>
<td>Max. cable length</td>
<td>1000 m</td>
<td>10 m</td>
</tr>
<tr>
<td>Wavelength</td>
<td>820-900 nm</td>
<td>660 nm</td>
</tr>
<tr>
<td>Transmitted power</td>
<td>-13 dBm (HFBR-1414)</td>
<td>-13 dBm (HFBR-1521)</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>-24 dBm (HFBR-2412)</td>
<td>-20 dBm (HFBR-2521)</td>
</tr>
</tbody>
</table>

7.1.2 The LON Protocol

The LON protocol is specified in the LonTalkProtocol Specification Version 3 from Echelon Corporation. This protocol is designed for communication in control networks and is a peer-to-peer protocol where all the devices connected to the network can communicate with each other directly. For more information of the bay-to-bay communication, refer to the section Multiple command function.

7.1.3 Hardware and software modules

The hardware needed for applying LON communication depends on the application, but one very central unit needed is the LON Star Coupler and optical fibers connecting the star coupler to the IEDs. To interface the IEDs from the MicroSCADA with Classic Monitor, application library LIB520 is required.

The HV Control 670 software module is included in the LIB520 high-voltage process package, which is a part of the Application Software Library in MicroSCADA applications.

The HV Control 670 software module is used for control functions in the IEDs. The module contains a process picture, dialogues and a tool to generate a process database for the control application in MicroSCADA.

When using MicroSCADA Monitor Pro instead of the Classic Monitor, SA LIB is used together with 670 series Object Type files.

The HV Control 670 software module and 670 series Object Type files are used with both 650 and 670 series IEDs.

Use the LON Network Tool (LNT) to set the LON communication. This is a software tool applied as one node on the LON bus. To communicate via LON, the IEDs need to know

- The node addresses of the other connected IEDs.
- The network variable selectors to be used.

This is organized by LNT.

The node address is transferred to LNT via the local HMI by setting the parameter \textit{ServicePinMsg} = \textit{Yes}. The node address is sent to LNT via the LON bus, or LNT can scan the network for new nodes.
The communication speed of the LON bus is set to the default of 1.25 Mbit/s. This can be changed by LNT.

The LON communication setting parameters are set via the local HMI. Refer to the Technical manual for more detailed specifications.

If LON communication from the IED stops because of illegal communication parameter settings (outside the setting range) or due to other kind of disturbance, it is possible to reset the IED’s LON port.

LON communication setting parameters (Table 13) and LON node information parameters (Table 14) can only be set via the LON Network Tool (LNT).

Some of these parameters can be viewed on the local HMI under Main menu/Configuration/Communication/Station communication/Port configuration/SLM optical LON port/LONGEN:1.

Table 13: LON communication setting parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default</th>
<th>Unit</th>
<th>Parameter description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DomainID</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>Domain identification number</td>
</tr>
<tr>
<td>SubnNetAddr*</td>
<td>0 - 255, Step: 1</td>
<td>0</td>
<td>-</td>
<td>Subnet address</td>
</tr>
<tr>
<td>NodeAddr*</td>
<td>0 - 127, Step: 1</td>
<td>0</td>
<td>-</td>
<td>Node address</td>
</tr>
</tbody>
</table>

*Can be viewed on the local HMI

Table 14: LON node information parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default</th>
<th>Unit</th>
<th>Parameter description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeuronID*</td>
<td>0 - 12</td>
<td>Not loaded</td>
<td>-</td>
<td>Neuron hardware identification number in hexadecimal code</td>
</tr>
<tr>
<td>Location</td>
<td>0 - 6</td>
<td>No value</td>
<td>-</td>
<td>Location of the node</td>
</tr>
</tbody>
</table>

*Can be viewed on the local HMI

ADE settings are available on the local HMI under Main menu/Configuration/Communication/Station communication/LON/ADE:1

Table 15: ADE Non group settings (basic)

<table>
<thead>
<tr>
<th>Name</th>
<th>Values (Range)</th>
<th>Unit</th>
<th>Step</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Disabled Enabled</td>
<td>-</td>
<td>-</td>
<td>Disabled</td>
<td>Operation</td>
</tr>
<tr>
<td>TimerClass</td>
<td>Slow Normal Fast</td>
<td>-</td>
<td>-</td>
<td>Slow</td>
<td>Timer class</td>
</tr>
</tbody>
</table>

LON commands are available on the local HMI under Main menu/Configuration/Communication/Station communication/Port configuration/SLM optical LON pot/Service Pin Message/Generate service pin message
Table 16: LON commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServPinMess</td>
<td>Command with confirmation. Transfers the node address to the LON Network Tool.</td>
</tr>
</tbody>
</table>

7.2 Optical budget calculation for serial communication with LON

Table 17: Example

<table>
<thead>
<tr>
<th>Distance 1 km Glass</th>
<th>Distance 10 m Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum attenuation</td>
<td>-11 dB</td>
</tr>
<tr>
<td>4 dB/km multi mode: 820 nm - 62.5/125 um</td>
<td>4 dB</td>
</tr>
<tr>
<td>0.3 dB/m plastic: 620 nm - 1mm</td>
<td>-</td>
</tr>
<tr>
<td>Margins for installation, aging, and so on</td>
<td>5 dB</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (0.75 dB/contact)</td>
<td>1.5 dB</td>
</tr>
<tr>
<td>Losses in connection box, two contacts (1dB/contact)</td>
<td>-</td>
</tr>
<tr>
<td>Margin for repair splices (0.5 dB/splice)</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>Maximum total attenuation</td>
<td>11 dB</td>
</tr>
</tbody>
</table>
Section 8 Establishing connection and verifying the IEC 61850 communication

8.1 Overview

The rear optical Ethernet ports are used for:

- process bus (IEC/UCA 61850-9-2LE) communication
- substation bus (IEC 61850-8-1) communication

8.2 Setting the station communication

To enable IEC 61850 communication, the corresponding ports must be activated. The rear access points can be used for IEC 61850-8-1 and IEC/UCA 61850-9-2LE communication. IEC 61850-8-1 redundant communication requires the use of two Ethernet ports, when it is activated for Ethernet port the next immediate port is selected as the second Ethernet port and will become hidden.

To enable IEC 61850 station communication:

1. Activate IEC 61850-8-1 (substation bus) communication.
 Navigate to: Main menu/Configuration/Communication/Station communication/IEC61850–8–1/IEC61850–8–1:1
2. Enable operation for Access Point 1 and 3 in the Ethernet configuration tool (ECT) in PCM600.
3. Enable redundant communication for Access point 1 using ECT.
4. Enable IEC/UCA 61850-9-2LE (process bus) communication for Access point 3 by connecting it to a Merging unit in the Merging units tab in ECT.

There are no settings needed for the IEC/UCA 61850-9-2LE communication in the local HMI branch Station communication. Make sure that the optical fibers are connected correctly. Communication is enabled whenever the merging unit starts sending data.

8.3 Verifying the communication

To verify that the communication is working a test/analyzing tool, for example ITT600, can be used.

Verifying redundant IEC 61850-8-1 communication

Ensure that the IED receives IEC 61850-8-1 data on the selected Ethernet ports. Browse in the local HMI to Main menu/Diagnostics/Communication/Ethernet status/Access point/
APStatusRedundant/RCHLCCH:1 and check that ChARedStatus and ChBRedStatus are shown as Ok. Remove the optical connection to one of the Ethernet ports. Verify that either signal status (depending on which connection that was removed) is shown as Error and the that other signal is shown as Ok. Be sure to re-connect the removed connection after completed verification.
Section 9 Testing IED operation

9.1 Preparing for test

9.1.1 Requirements

IED test requirements:

- Calculated settings
- Application configuration diagram
- Signal matrix (SMT) configuration
- Terminal connection diagram
- Technical manual
- Three-phase test equipment
- Process bus, IEC/UCA 61850-9-2LE, MU test simulator, if IEC/UCA 61850-9-2LE process bus communication is used.
- PCM600

The setting and configuration of the IED must be completed before the testing can start.

The terminal diagram, available in the technical reference manual, is a general diagram of the IED. Note that the same diagram is not always applicable to each specific delivery (especially for the configuration of all the binary inputs and outputs).

Therefore, before testing, check that the available terminal diagram corresponds to the IED.

The technical manual contains application and functionality summaries, function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function.

The test equipment should be able to provide a three-phase supply of voltages and currents. The magnitude of voltage and current as well as the phase angle between voltage and current must be variable. The voltages and currents from the test equipment must be obtained from the same source and they must have minimal harmonic content. If the test equipment cannot indicate the phase angle, a separate phase-angle measuring instrument is necessary.

Prepare the IED for test before testing a particular function. Consider the logic diagram of the tested protection function when performing the test. All included functions in the IED are tested according to the corresponding test instructions in this chapter. The functions can be tested in any order according to user preferences. Only the functions that are used (Operation is set to Enabled) should be tested.

The response from a test can be viewed in different ways:

- Binary outputs signals
- Service values on the local HMI (logical signals or phasors)
- A PC with PCM600 application configuration software in work online mode

All setting groups that are used should be tested.
This IED is designed for a maximum continuous current of four times the rated current.

All references to CT and VT must be interpreted as analog values received from merging units (MU) via IEC/UCA 61850-9-2LE communication protocol, analog values received from the transformer input module, or analog values received from the LDCM.

When using a MU test simulator, make sure it is set to the correct SVID and that the system frequency is set to the same as in the IED.

Please observe the measuring accuracy of the IED, the test equipment and the angular accuracy for both of them.

Consider the configured logic from the function block to the output contacts when measuring the trip time.

After intense testing, it is important that the IED is not immediately restarted, which might cause a faulty trip due to flash memory restrictions. Some time must pass before the IED is restarted. For more information about the flash memory, refer to section “Configuring the IED and changing settings”.

If the IED is used together with a merging unit and no time synchronization is available, for example, in the laboratory test, the IED will synchronize to the SV data stream. During the re-synchronization, the protection functions will be blocked once a second for about 45 ms, and this will continue for up to 10 minutes. To avoid this, configure PTP (IEEE 1588) to On for the access point where the merging unit is configured.

9.1.2 Preparing the IED to verify settings

If a test switch is included, start preparation by making the necessary connections to the test switch. This means connecting the test equipment according to a specific and designated IED terminal diagram.

Put the IED into the test mode to facilitate the test of individual functions and prevent unwanted operation caused by other functions. The busbar differential protection is not included in the test mode and is not prevented to trip during the test operations. The test switch should then be connected to the IED.
Verify that analog input signals from the analog input module are measured and recorded correctly by injecting currents and voltages required by the specific IED.

To make testing even more effective, use PCM600. PCM600 includes the Signal monitoring tool, which is useful in reading the individual currents and voltages, their amplitudes and phase angles. In addition, PCM600 contains the Disturbance handling tool. The content of reports generated by the Disturbance handling tool can be configured which makes the work more efficient. For example, the tool may be configured to only show time tagged events and to exclude analog information and so on.

Check the disturbance report settings to ensure that the indications are correct.

For information about the functions to test, for example signal or parameter names, see the technical manual. The correct initiation of the disturbance recorder is made on pickup and/or release or trip from a function. Also check that the wanted recordings of analog (real and calculated) and binary signals are achieved.

Parameters can be entered into different setting groups. Make sure to test functions for the same parameter setting group. If needed, repeat the tests for all different setting groups used. The difference between testing the first parameter setting group and the remaining is that there is no need for testing the connections.

During testing, observe that the right testing method, that corresponds to the actual parameters set in the activated parameter setting group, is used.

Set and configure the function(s) before testing. Most functions are highly flexible and permit a choice of functional and tripping modes. The various modes are checked at the factory as part of the design verification. In certain cases, only modes with a high probability of coming into operation need to be checked when commissioned to verify the configuration and settings.

9.2 Activating the test mode

Put the IED into the test mode before testing. The test mode blocks all protection functions and some of the control functions in the IED, and the individual functions to be tested can be unblocked to prevent unwanted operation caused by other functions. In this way, it is possible to test slower back-up measuring functions without the interference from faster measuring functions. The busbar differential protection is not included in the test mode and is not prevented to trip during the test operations. The test switch should then be connected to the IED. Test mode is indicated when the yellow PickupLED flashes.

It is important that the IED function to be tested is put into test mode, even if the MU is sending data marked as "test". The IED will interpret these data as valid if it is not in test mode.

1. Browse to the **TESTMODE** menu and press **E**.
 The **TESTMODE** menu is found on the local HMI under Main menu/Test/IED test mode/TESTMODE
2. Use the up and down arrows to choose **Enabled** and press **E**.
3. Press the left arrow to exit the menu.
 The dialog box **Save changes** appears.
4. Choose **Yes**, press **E** and exit the menu.
 The yellow pickupLED above the LCD will start flashing when the IED is in test mode.
9.3 Preparing the connection to the test equipment

The IED can be equipped with a test switch of type RTXP8, RTXP18 or RTXP24 or FT. The test switch and its associated test plug handles are a part of the COMBITEST or FT system of ABB, which provides secure and convenient testing of the IED.

When using the COMBITEST, preparations for testing are automatically carried out in the proper sequence, that is, for example, blocking of tripping circuits, short circuiting of CTs, opening of voltage circuits, making IED terminals available for secondary injection. Terminals 1 and 8, 1 and 18 as well as 1 and 12 of the test switches RTXP8, RTXP18 and RTXP24 respectively are not disconnected as they supply DC power to the protection IED. When FT switch is used for testing, care shall be exercised to open the tripping circuit, ahead of manipulating the CT fingers.

The RTXH test-plug handle leads may be connected to any type of test equipment or instrument. When a number of protection IEDs of the same type are tested, the test-plug handle only needs to be moved from the test switch of one protection IED to the test switch of the other, without altering the previous connections.

Use COMBITEST test system to prevent unwanted tripping when the handle is withdrawn, since latches on the handle secure it in the half withdrawn position. In this position, all voltages and currents are restored and any re-energizing transients are given a chance to decay before the trip circuits are restored. When the latches are released, the handle can be completely withdrawn from the test switch, restoring the trip circuits to the protection IED.

If a test switch is not used, perform measurement according to the provided circuit diagrams.

Never disconnect the secondary connection of a current transformer circuit without first short-circuiting the transformer’s secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential build up that may damage the transformer and cause personal injury.

9.4 Connecting the test equipment to the IED

Connect the test equipment according to the IED specific connection diagram and the needed input and output signals for the function under test. An example of a connection is shown in figure 9.

Connect the current and voltage terminals. Pay attention to the current polarity. Make sure that the connection of input and output current terminals and the connection of the residual current conductor is correct. Check that the input and output logical signals in the logic diagram for the function under test are connected to the corresponding binary inputs and outputs of the IED under test.

To ensure correct results, make sure that the IED as well as the test equipment are properly grounded before testing.
9.5 Releasing the function to be tested

Release or unblock the function to be tested. This is done to ensure that only the function or the chain of functions to be tested are in operation and that other functions are prevented from operating. Release the tested function(s) by setting the corresponding \textit{Blocked} parameter under Function test modes to \textit{No} in the local HMI.

When testing a function in this blocking feature, remember that not only the actual function must be activated, but the whole sequence of interconnected functions (from measuring inputs to binary output contacts), including logic must be activated. Before starting a new test mode session, scroll through every function to ensure that only the function to be tested (and the interconnected ones) have the parameters \textit{Blocked} and eventually \textit{EvDisable} set to \textit{No} and \textit{Yes} respectively. Remember that a function is also blocked if the BLOCK input signal on the corresponding function block is active, which depends on the configuration. Ensure that the logical status of the BLOCK input signal is equal to 0 for the function to be tested. Event function blocks can also be individually blocked to ensure that no events are reported to a remote station during the test. This is done by setting the parameter \textit{EvDisable} to \textit{Yes}.

Any function is blocked if the corresponding setting in the local HMI under \textit{Main menu/Test/Function test modes} menu remains \textit{Enabled}, that is, the parameter \textit{Blocked} is set to \textit{Yes} and the parameter \textit{TESTMODE} under \textit{Main menu/Test/IED test mode} remains active. All functions that were blocked or released in a previous test mode session, that is, the parameter \textit{Test mode} is set to \textit{Enabled}, are reset when a new test mode session is started.

Procedure

Figure 9: Connection example of the test equipment to the IED when test equipment is connected to the transformer input module
1. Click the **Function test modes** menu. The Function test modes menu is located in the local HMI under **Main menu/Test/Function test modes**.
2. Browse to the function instance that needs to be released.
3. Set parameter **Blocked** for the selected function to **No**.

9.6 Verifying analog primary and secondary measurement

Verify that the connections are correct and that measuring and scaling is done correctly. This is done by injecting current and voltage to the IED.

Besides verifying analog input values from the merging unit via the IEC/UCA 61850-9-2LE process bus, analog values from the transformer input module can be verified as follows.

- **i**
 Apply input signals as needed according to the actual hardware and the application configuration.

1. Inject a symmetrical three-phase voltage and current at rated value.
2. Compare the injected value with the measured values. The voltage and current phasor menu in the local HMI is located under **Main menu/Measurements/Analog primary values** and **Main menu/Measurements/Analog secondary values**.
3. Compare the frequency reading with the set frequency and the direction of the power. The frequency and active power are located under **Main menu/Measurements/Monitoring/ServiceValues(MMXN)/CVMMXN:x**. Then navigate to the bottom of the list to find the frequency.
4. Inject an unsymmetrical three-phase voltage and current, to verify that phases are correctly connected.

If some setting deviates, check the analog input settings under **Main menu/Configuration/Analog modules**

9.7 Testing the protection functionality

Each protection function must be tested individually by secondary injection.

- Verify operating levels (trip) and timers.
- Verify alarm and blocking signals.
- Use the disturbance handling tool in PCM600 to evaluate that the protection function has received the correct data and responded correctly (signaling and timing).
- Use the event viewer tool in PCM600 to check that only expected events have occurred.
9.8 Forcing of binary input/output signals for testing

9.8.1 Forcing concept

Forcing of binary inputs and outputs is a convenient way to test wiring in substations as well as testing configuration logic in the IEDs. Basically it means that all binary inputs and outputs on the IED I/O modules (BOM, BIM, IOM & SOM) can be set to a value (i.e active or not-active), selected by the user, while the IED is in test mode. For inputs, this is true regardless of the actual signal voltage present on the input. For outputs, any output relay can be forced to be active or not, regardless of the current requested state of the output in the IED logic configuration.

Be observant that forcing of binary inputs and outputs on an IED, with inappropriate setup, can result in potential danger.

9.8.2 How to enable forcing

To enable forcing, the IED must first be put into IED test mode. While the IED is not in test mode, the LHMI/PCM600 menus that relate to forcing will not have any effect on the input/output status due to safety reasons.

9.8.2.1 Enable forcing by using LHMI

1. Enable IED TESTMODE by setting IEDTestMode to On under Main menu/Test/IED test mode/TESTMODE:1.

2. Exit back to the root menu.
3. Select Yes in the save dialogue box.
 Once the IED is in test mode the yellow Start LED starts to blink.

9.8.2.2 Enable forcing using TESTMODE function block
• Use the TESTMODE function block, appropriately configured in PCM600/ACT.

It may be convenient to control the input on mentioned component from, for example, an LHMI function key or similar during commissioning to quickly and easily enter IED test mode.

9.8.3 How to change binary input/output signals using forcing

Once the IED is in IED test mode, the LHMI/PCM600 menus can be used to control input/output signals freely.

9.8.3.1 Forcing by using LHMI

Editing a signal value directly

• Edit the input/output value directly to select the desired logical level, by doing following:
 1. Select the value line of the desired signal, see figure 10.
 2. Press the Enter key to edit the value.

 ![Value line of the desired signal](image)

 Figure 10: Value line of the desired signal

3. Use the up/down arrows on the LHMI to change the signal value or the appropriate menu in PCM600. The status of the signal changes automatically to Forced (i.e. there is no need to set the status to Forced manually).

On the LHMI, these edit changes have immediate effect. This means that the value changes directly when the up/down arrow is pressed (i.e. there is no need to press the Enter key to effectuate the change).

When navigating away from a LHMI forcing menu for an I/O board, the user is prompted to either leave the signals forced, or to revert all of them back to the unforced state.
It is possible to power-cycle the IED in this state without losing the forcing states and values. This means that once a signal is forced, and the IED remains in IED test mode, the input or output will appear “frozen” at the value selected by the user, even if the IED is switched off and back on again.

Freezing a signal value without changing it

- Set the status of a signal to Forced, in the forcing menu that corresponds to the I/O card in question. See example of LHMI menu in figure 11

![Example of LHMI menu using BIM3](image)

Figure 11: Example of LHMI menu using BIM3

The signal “freezes” and will not change value even if, for example, a binary input signal voltage changes level, or if a binary output is activated as the result of a protection function block activating.

9.8.3.2 Forcing by using PCM600

In PCM600 the concept is a bit different compared to LHMI. The forcing is accomplished by entering a forcing session. Within such a session, multiple signals on multiple I/O boards may be
edited and changed at the same time and has no effect on the IED. Once the user is satisfied with the forcing setup, then all the changes can be effectuated simultaneously towards the IED, potentially changing inputs and outputs on multiple I/O boards at the same time. It is also possible to abort this operation (described in step 6 below) and to undo all forcing.

1. Right click on the IED in the plant structure and select Signal Monitoring.
2. Click on the List View tab.
3. Click Forcing Session in the menu IED/Start Forcing.

4. Click Start editing signal value for forcing on the tool bar.

The Signal Monitoring menu changes and indicates the forcing values that can be edited.

5. Select and edit the values.
6. Click Acknowledge and send.
This commits the values to the IED and exits the editing session.

7. Click **Cancel** to abort the changes and revert back to actual IED values.

Regardless if the forcing changes are committed or canceled, the forcing is still active.

To force more signals, click the button **Start editing signal value for forcing** again.

9.8.4 How to undo forcing changes and return the IED to normal operation

Regardless of which input/output signals have been forced, all forced signals will return to their normal states immediately when the IED is taken out of test mode.

When the forcing is removed by exiting from IED test mode, both input and output signals may change values. This means that logic input signals may activate functions in the IED and that output relays may change state, which can be potentially dangerous.

9.8.4.1 Undo forcing by using TESTMODE component

- If the IED test mode was entered through the test mode function block:
 1. Deactivate the control input on that block.

 This immediately undoes all forcing, regardless of how it was accomplished and disabled all the way to force signals.

9.8.4.2 Undo forcing by using LHMI

- If the IED test mode was enabled to using the LHMI:
 1. Set **IEDTestMode** to **Off** in the **LHMI** menu.
 2. Exit from the menu and click **Yes** in the Save dialogue box.

 This immediately undoes all forcing, regardless of how it was accomplished and disabled.
9.8.4.3 Undo forcing by using PCM600

1. Uncheck *Forcing Session* under the menu *IED*.

 ![Forcing Session](image)

2. Click *Yes* in the confirmation dialogue box. PCM600 will revert all forced signals back to unforced and the real signal values will immediately take effect again.

 This may change both binary input values and output relay states and will undo any forcing done by using the LHMI. If the IED is left in test mode, then it is still possible to perform new forcing operations, both from LHMI and from PCM600.
Section 10 Testing functionality by secondary injection

10.1 Testing disturbance report

10.1.1 Introduction

The following sub-functions are included in the disturbance report function:

- Disturbance recorder
- Event list
- Event recorder
- Trip value recorder
- Indications

If the disturbance report is enabled, then its sub-functions are also set up and so it is not possible to only disable these sub-functions. The disturbance report function is disabled (parameter Operation = Disabled) in PCM600 or the local HMI under Main menu/Settings/IED Settings/Monitoring/Disturbance report/DRPRDRE:1.

10.1.2 Disturbance report settings

When the IED is in test mode, the disturbance report can be made active or inactive. If the disturbance recorder is turned on during test mode, recordings will be made. When test mode is switched off all recordings made during the test session are cleared.

Setting OpModeTest for the control of the disturbance recorder during test mode are located on the local HMI under Main menu/Settings/IED Settings/Monitoring/Disturbance report/DRPRDRE:1.

10.1.3 Disturbance recorder (DR)

A Manual Trig can be started at any time. This results in a recording of the actual values from all recorded channels.

The Manual Trig can be started in two ways:

1. From the local HMI under Main menu/Disturbance records.
 1.1. Enter on the row at the bottom of the HMI called Manual trig.
 A new recording begins. The view is updated if you leave the menu and return.
 1.2. Navigate to General information or to Trip values to obtain more detailed information.
2. Open the Disturbance handling tool for the IED in the plant structure in PCM600.
 2.1. Right-click and select Execute manual Trig in the window Available recordings in IED.
 2.2. Read the required recordings from the IED.
 2.3. Refresh the window Recordings and select a recording.
 2.4. Right-click and select Create Report or Open With to export the recordings to any disturbance analyzing tool that can handle Comtrade formatted files.
Evaluation of the results from the disturbance recording function requires access to a PC either permanently connected to the IED or temporarily connected to the Ethernet port (RJ-45) on the front. The PCM600 software package must be installed in the PC.

Disturbance upload can be performed by the use of PCM600 or by any third party tool with IEC 61850 protocol. Reports can automatically be generated from PCM600. Disturbance files can be analyzed by any tool reading Comtrade formatted disturbance files.

It could be useful to have a printer for hard copies. The correct start criteria and behavior of the disturbance recording function can be checked when IED protective functions are tested.

When the IED is brought into normal service it is recommended to delete all recordings, made during commissioning to avoid confusion in future fault analysis.

All recordings in the IED can be deleted in two ways:

1. in the local HMI under Main menu/Clear/Reset disturbances, or
2. in the Disturbance handling tool in PCM600 by selecting Delete all recordings in the IED... in the window Available Recordings in IED.

10.1.4 Event recorder (ER) and Event list (EL)

The result from the event recorder and event list can be viewed on the local HMI or, after upload, in PCM600 as follows:

1. on the local HMI under Main menu/Events, or in more details via
2. the Event Viewer in PCM600.
 The internal FIFO register of all events will appear when the event viewer is launched.

When the IED is brought into normal service it is recommended to delete all events resulting from commissioning tests to avoid confusion in future fault analysis. All events in the IED can be cleared in the local HMI under Main Menu//Clear/Clear internal event list or Main menu/Clear/Clear process event list. It is not possible to clear the event lists from PCM600.

When testing binary inputs, the event list (EL) might be used instead. No uploading or analyzing of registrations is then needed since the event list keeps running, independent of start of disturbance registration.

10.2 Identifying the function to test in the technical reference manual

Use the technical manual to identify function blocks, logic diagrams, input and output signals, setting parameters and technical data.

10.3 Differential protection

10.3.1 Busbar differential protection
The two-zone busbar differential protections and the six-zone busbar differential protection do share the same core features and fundamental principles of operation, although some features may differ. For the installation and commissioning, they share also the same principles and similar procedures. For presentation simplicity purpose, only the installation and commissioning of the two-zone busbar differential protection applications are described here to illustrate the principle.

10.3.1.1 General

Secondary injection testing is a normal part of the commissioning. The operating value of all protection functions, the output to the proper trip and alarm contacts and the operation of binary input signals is checked and documented for future reference.

The connection of the test set to REB670 is greatly simplified if test switch systems such as RTXP24 or FT are included. Specially with COMBIFLEX system, when the test handle RTXH 24 is inserted in the test switch, the preparations for testing are automatically carried out in the proper sequence, that is:

1. firstly blocking of the tripping circuits
2. then short-circuiting of the current circuits on the transformer side
3. then opening of current transformer circuits
4. then making IED terminals accessible from the terminals on the test plug handle.

If the REB670 is not provided with a test switch, the IED has to be tested in the proper way from external circuit terminals. Make sure that the instrument transformers are isolated from the circuits connected to the test set. The secondary phase terminals of the current transformers must be short-circuited to neutral before the circuit is opened if any current can flow on the primary side.

The testing requires a good understanding of the protection functionality of the REB670. A testing instruction is given for each type of protection function.

Note that CT inputs for the REB670 are designed for a maximum continuous current of four times rated value.

Note that the busbar differential protection functions are not included in the IED Test Mode.

10.3.1.2 Operation of the differential protection from CTx input

Before the testing, prepare the IED for verification of settings as outlined in Section "Requirements" and Section "Preparing for test" in this chapter.

The typical connection between the three-phase current test set and REB670 IEDs is shown in Figure 12.
Figure 12: Typical test connection for CTx current input when test switch is delivered together with one-phase REB670 IED

The testing will be explained from one general current input CTx (that is 1 ≤ x ≤ Nmax; where Nmax is the maximum number of used CT inputs).

Follow the following test instructions to test the operation of the differential protection function for the current input CTx:

1. Connect the test set for injection of three-phase current (or if not available one-phase current) to the current terminals of CTx input of REB670 terminal.
2. Check and write down the value for the configuration parameter CTprimx, which corresponds to the rated primary current of the CTx input.
3. Make sure that the check zone is properly set and enabled, when used.
4. Make sure the current from this current input is included into ZA measurement. Check the value for the configuration parameter ZoneSel of the CTx, and
 • energize the binary input CTRLZA, if the value of ZoneSel is CtrlIncludes, or
 • de-energize the binary input CTRLZA, if the value of ZoneSel is CtrlExcludes, or
 • go to the next step, if the value of ZoneSel is Fixed to ZA, Fixed to ZB or Fixed to ZA & -ZB.
5. Check the association status of each CT to the differential zones, from the local HMI (under Main menu/Control/Station matrix).
6. Increase the current in the phase A until the correct differential zone function (that is, either ZA or ZB) operates and observe the incoming and differential currents at the moment of operation.
7. Check that the trip and alarm contacts operate according to the scheme wiring.
8. Check that the trip information is stored in the event list (if connected).
9. Switch off the current.
10. Check that the trip reset information is stored in the event list (if connected).
11. Check the function by injecting current in the phases B and C in the similar way.
12. Inject a symmetrical three-phase current and observe the trip value (possible with three-phase test set only).
13. Connect the timer and set the current to be five times of the value for the parameter DiffOperLevel.
14. Switch on the current and observe the trip time.
15. Test the operation of the differential protection function ZB
16. Test the operation of both differential protection function ZA and ZB simultaneously.
Check the value for the configuration parameter \textit{ZoneSel} of the CTx, and
\begin{itemize}
 \item de-energize the binary input \textit{CTRLZA} and energize the binary input \textit{CTRLZB}, if the value of \textit{ZoneSel} is \textit{CtrlIncludes},
 \item energize the binary input \textit{CTRLZA} and de-energize binary input \textit{CTRLZB}, if the value of \textit{ZoneSel} is \textit{CtrlExcludes}
 \item go directly to the next step, otherwise,
\end{itemize}

16. Repeat the steps from 5 to 14 for ZB

\textbf{Test the operation of both differential protection function ZA and ZB simultaneously}

17. Make sure the current from this current input is included into both measuring zones ZA and ZB simultaneously.

Check the value for the configuration parameter \textit{ZoneSel} of the CTx, and
\begin{itemize}
 \item energize both the binary inputs \textit{CTRLZA} and \textit{CTRLZB}, if the value of \textit{ZoneSel} is \textit{CtrlIncludes},
 \item de-energize both the binary inputs \textit{CTRLZA} and \textit{CTRLZB}, if the value of \textit{ZoneSel} is \textit{CtrlExcludes},
 \item go directly to the next step, otherwise
\end{itemize}

18. Make sure that the dedicated binary output \textit{ACTIVE} from the \textit{Zone Interconnection} block has the logical value \textit{one}.

19. Repeat the steps from 5 to 14 for both ZA and ZB.

\textbf{10.3.1.3 Stability of the busbar differential protection}

For stability test one current input shall always be used as a reference input. The reference current input then shall be tested for stability against all other current inputs in the IED. It is recommended to use current input CT1 as the reference current input. The typical connection between the three-phase current test set and the IED for this type of tests is shown in Figure 13.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{en01000113_2_ansi.vsd}
\caption{Typical test connection for CT1 and CTx current inputs of the phase A when test switch is delivered together with the one-phase IED}
\end{figure}

\textit{Figure 13: Typical test connection for CT1 and CTx current inputs of the phase A when test switch is delivered together with the one-phase IED}
The connections are shown for phase A only. Similar connection shall be used for testing phase B and C also.

The test will be explained for CT1 and one general current input CTx (2 ≤ x ≤ Nmax, where Nmax is the maximum number of used CT inputs).

Follow the following test instructions to perform the stability test:

1. Connect the currents I1 and I2 from the three-phase test set to the current terminals of CT1 and CTx inputs of the IED as shown in Figure 13.
2. Make sure that current measurement from CT1 and CTx inputs are included into the same differential zone (see the previous test instruction for more details).
3. Set the current I1 (that is, the current connected to the reference current input CT1) to the nominal secondary value (normally 1A or 5A) at 0°,

\[I1 = \text{CTsec1} \]

(Equation 1)

where the configuration parameter \(CT\text{sec1} \) represents the rated secondary current of the current input CT1.

4. Set the current I2 (that is, the current connected to the current input CTx) to the value calculated as follows:

\[I2 = \text{CTsecx} \times \frac{CTx_{\text{ratio}}}{CT1_{\text{ratio}}} = \text{CTsec1} \times \frac{CT\text{primx}}{CT\text{prim1}} , \]

(Equation 2)

Where \(CTk_{\text{ratio}} = \frac{CT\text{primk}}{CT\text{seck}} \), \(k = 1 \) or \(x \). The configuration parameter \(CT\text{secx} \) represents the rated secondary current of the current input CTx, while the configuration parameter \(CT\text{primk} \) represents the rated primary current.

5. Set the phase angle of the current I2 to 180°, if both current inputs (that is, CT1 and CTx) have the same set value for TRM parameter \(CT\text{StarPointx} \) (i.e. both set to value \(To\text{Object} \) or both set to value \(From\text{Object} \)). Set the phase angle of the current I2 to 0°, otherwise.

6. Inject these two currents into the IED. Observe that differential function shall be stable. Write down the service values for incoming and differential currents for the phase A. Observe that differential current should be very small.
7. Switch off the currents.
8. Repeat the same test procedure for the phases B and C.
9. Repeat above test steps for all used CT inputs (i.e. 2 ≤ x ≤ Nmax, where Nmax is the maximum number of used CT inputs).

10.3.1.4 Operation of fast open CT detection algorithm

For fast open CT test two current inputs shall always be used. Similar to the previous section, the test will be explained for CT1 and CTx (2 ≤ x ≤ Nmax).

The connections are shown for phase A only. Similar connection shall be used for testing phase B and C also. The typical connection between the three-phase current test set and the IED for this type of tests is shown in Figure 13.

Follow the following test instructions to perform the test on the operation of fast open CT detection.
1. Connect the currents I1 and I2 from the three-phase test set to the current terminals of CT1 and CTx inputs of the IED as shown in Figure 13.
2. Make sure that the current measurement from CT1 and CTx inputs are included into the same differential zone (see the previous test instructions for more details).
3. Set the current I1 (that is, current connected to input CT1) to the nominal secondary value (normally 1A or 5A) at 0°, see the formula (Equation 1) from the previous section.
4. Set the current I2 (that is, connected to current input CTx) to the value calculated by the formula (Equation 2) from the previous section.
5. Make sure there is enough current for fast open CT algorithm to operate, when the current is disconnected later during testing, by checking that the value of the product I2 × CTprimx is bigger than the value of the product 1.1 × OCTOperLev.
6. Set the phase angle of the current I2 as explained in the previous section.
7. Inject these two currents into the IED for approximately 5s. Observe that the differential function shall be stable. Write down the service values for incoming and differential currents for phase A. Observe that the differential current should be very small.
8. Switch off the current I1 only (that is, set its magnitude back to 0A).
9. Check that open CT condition shall be detected by the IED, and the differential function behavior shall be in accordance with the value of the parameter FastOCTOper.
10. Check that open CT alarm contacts operate accordingly to the scheme wiring.
11. Check that open CT information is stored in the event list (if connected).
12. Switch off the currents.
13. Reset the open CT blocking in the reset menu of the local HMI.
14. Check that open CT reset information is stored in the event list (if connected).
15. Repeat the same test procedure for the phases B and C.

10.3.1.5 Operation of slow open CT detection algorithm

For open CT test two current inputs shall be always used. Similar to the previous section, the test will be explained for CT1 and CTx (2 ≤ x ≤ Nmax).

The connections are shown for phase A only. Similar connection shall be used for testing phase B and C also. The typical connection between the three-phase current test set and the IED for this type of tests is shown in Figure 13.

Follow the following test instructions to perform the test on the operation of slow open CT detection:

1. Connect the currents I1 and I2 from the three-phase test set to the current terminals of CT1 and CTx inputs of the IED as shown in Figure 13.
2. Make sure that the current measurement from CT1 and CTx inputs are included into the same differential zone (see the previous test instructions for more details).
3. Set the current I1 (that is, current connected to input CT1) to the nominal secondary value (normally 1A or 5A) at 0°, see the formula (Equation 1).
4. Set the current I2 (that is, connected to input CTx) to the value calculated as follows:

\[I_2 = 0.85 \times CT_{secx} \times \frac{CTx_{ratio}}{CT1_{ratio}} = 0.85 \times CT_{sec1} \times \frac{CTprimx}{CTprim1}, \]

(Equation 3)

Where \(CT_{ratio}^{k} = \frac{CTprimk}{CTseck}, \quad k = 1 \text{ or } x \). The configuration parameter \(CT_{sec} \) represents the rated secondary current of the current input CTk, while the configuration parameter \(CT_{prim} \) represents the rated primary current.
5. Make sure there is enough current for slow open CT algorithm to operate, when the current is disconnected later during testing, by checking that the value of the product \(0.15 \times I_2 \times CTprim_1\) is bigger than the value of \(OCTOperLev\). If not, increase the current into CT1 input until this condition is satisfied and change the current into input CTx accordingly.

6. Set the phase angle of the current \(I_2\), as explained in the previous sections.

7. Inject these two currents into the IED. Observe that the differential function shall be stable. Write down the service values for incoming and differential currents for the phase A. Observe that the differential current should be approximately 15% of the incoming current.

8. After pre-set time determined by parameter \(t_{Slow\ OCT}\), open CT condition shall be detected by the IED. The differential function behavior shall be in accordance with the set value of the parameter \(SlowOCTOper\).

9. Check that open CT alarm contacts operate accordingly to the scheme wiring.

10. Check that open CT information is stored in the event list (if connected).

11. Switch off the currents.

12. Reset the open CT blocking in the reset menu of the local HMI.

13. Check that open CT reset information is stored in the event list (if connected).

14. Repeat the same test procedure for the phases B and C.

10.3.1.6 Completing the test

Continue to test another function or end the test. Restore connections and settings to their original values, if they were changed for testing purposes.

10.3.1.7 Check of trip circuits and circuit breakers

The trip circuits are tested as part of the secondary/primary injection test.

Check that the circuit breakers associated with the IED protection scheme operate when the tripping outputs from the IEDs are activated. The trip outputs from the IEDs are conveniently activated by secondary injection to activate a suitable protection function. Alternatively Forcing of Binary Output Contacts from the IED under the Test Mode can be used.

10.4 Current protection

10.4.1 Directional phase overcurrent protection, four steps OC4PTOC (51_67)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

Values of the logical signals for OC4PTOC are available on the local HMI under Main menu/Tests/Function status/Current protection/PhaseOverCurrent4Step(51_67,4(3I>))/OC4PTOC(51_67;4(3I>);x), where \(x = \) instance number.

The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.
10.4.1.1 Verifying the settings

The verification of the non-directional phase overcurrent function is done as instructed below, but without applying any polarizing voltage.

1. Connect the test set for current injection to the appropriate IED phases. If there is any configuration logic that is used to enable or block any of the four available overcurrent steps, make sure that the step under test is enabled (for example, end fault protection).
 - If 1 out of 3 currents are chosen for operation: Connect the injection current to phases A and neutral.
 - If 2 out of 3 currents are chosen for operation: Connect the injection current into phase A and out from phase B.
 - If 3 out of 3 currents are chosen for operation: Connect the symmetrical three-phase injection current into phases A, B and C.
2. Connect the test set for the appropriate three-phase voltage injection to the IED phases A, B and C. The protection shall be fed with a symmetrical three-phase voltage.
3. Block higher set stages when testing lower set stages by following the procedure described below:
 3.1. Set the injected polarizing voltage larger than the set minimum polarizing voltage (default is 5% of VBase) and set the injection current to lag the appropriate voltage by an angle of about 80° if forward directional function is selected.
 - If 1 out of 3 currents are chosen for operation: The voltage angle of phase A is the reference.
 - If 2 out of 3 currents are chosen for operation: The phase angle of the phase-to-phase voltage AB is the reference for APhase.
 - If 3 out of 3 currents are chosen for operation: The voltage angle of phase A is the reference.
 If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to 260° (equal to 80° + 180°).
 3.2. Increase the injected current, note the trip value of the tested step of the function and compare it to the set value.
 3.3. Decrease the current slowly, note the reset value and compare it to the reset ratio 95%.
4. If the test has been performed by injection of current in phase A, repeat the test, injecting current into phases B and C with polarizing voltage connected to phases B, respectively C (1 out of 3 currents for operation).
5. If the test has been performed by injection of current in phases AB, repeat the test, injecting current into phases BC and CA with the appropriate phase angle of injected currents.
6. Connect a trip output contact to a timer.
7. Set the injected current to 200% of the trip level of the tested stage, switch on the current and check the time delay.
 For inverse time curves, check the trip time at a current equal to 110% of the trip current for txMin.
8. Check that all trip and pickup contacts trip according to the configuration (signal matrixes).
9. Reverse the direction of the injected current and check that the protection does not trip.
10. If 2 out of 3 or 3 out of 3 currents are chosen for operation: Check that the function will not trip with current in one phase only.
11. Repeat the above described tests for the higher set stages.
12. Check that pickup and trip information is stored in the event menu.
10.4.1.2 **Completing the test**

continue to test another function or end the test by changing the *TESTMODE* setting to *Disabled*. Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.2 **Four step single phase overcurrent protection PH4SPTOC(51)**

Prepare the IED for verification of settings outlined in section "Requirements" and section "Preparing for test" in this chapter.

Directional phase overcurrent current function

10.4.2.1 **Verifying the settings**

Procedure

1. Connect the test set for appropriate current injection to the appropriate IED terminals. If there is any configuration logic, which is used to enable or block any of 4 available overcurrent steps, make sure that step under test is enabled (that is, end fault protection).
2. Increase the injected current and note the operated value of the studied step of the function.
3. Decrease the current slowly and note the reset value.
4. Block higher set stages when testing lower set stages according to below.
5. Connect a trip output contact to a timer.
6. Set the injected current to 200% of the trip level of the tested stage, switch on the current and check the time delay. For inverse time curves, check the trip time at a current equal to 110% of the trip current for t_{min}.
7. Check that all trip and pickup contacts operate according to the configuration (signal matrixes)
8. Repeat the above described tests for the higher set stages.
9. Finally check that pickup and trip information is stored in the event menu.

10.4.2.2 **Completing the test**

continue to test another function or end the test by changing the *TESTMODE* setting to *Disabled*. Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.3 **Four step residual overcurrent protection, (Zero sequence or negative sequence directionality) EF4PTOC (51N/67N)**

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

Values of the logical signals for D2PTOC are available on the local HMI under Main menu/Tests/Function status/Current protection/ResidualOverCurr4Step(51N_67N,4(IN>))/EF4PTOC(51N_67N;4(IN>)):x, where x = instance number.

The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.
10.4.3.1 Four step directional ground fault protection

1. Connect the test set for single current injection to the appropriate IED terminals. Connect the injection current to terminals A and neutral.
2. Set the injected polarizing voltage slightly larger than the set minimum polarizing voltage (5% of Vn) and set the injection current to lag the voltage by an angle equal to the set reference characteristic angle (AngleRCA), if the forward directional function is selected. If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to RCA+ 180°.
3. Increase the injected current and note the value at which the studied step of the function trips.
4. Decrease the current slowly and note the reset value.
5. If the test has been performed by injection of current in phase A, repeat the test, injecting current into terminals B and C with a polarizing voltage connected to terminals B, respectively C.
6. Block lower set steps when testing higher set steps according to the instructions that follow.
7. Connect a trip output contact to a timer.
8. Set the injected current to 200% of the trip level of the tested step, switch on the current and check the time delay.
 For inverse time curves, check the trip time at a current equal to 110% of the trip current for txMin.
9. Check that all trip and pickup contacts trip according to the configuration (signal matrixes)
10. Reverse the direction of the injected current and check that the step does not trip.
11. Check that the protection does not trip when the polarizing voltage is zero.
12. Repeat the above described tests for the higher set steps.
13. Finally, check that pickup and trip information is stored in the event menu.

10.4.3.2 Four step non-directional ground fault protection

1. Do as described in "Four step directional ground fault protection", but without applying any polarizing voltage.

10.4.3.3 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.4 Four step negative sequence overcurrent protection NS4PTOC (46I2)

Prepare the IED for verification of settings as outlined in section "Preparing for test" in this chapter.
When inverse time overcurrent characteristic is selected, the trip time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is important to set the definite time delay for that stage to zero.

Procedure

1. Connect the test set for injection of three-phase currents and voltages to the appropriate CT and VT inputs of the IED.
2. Inject pure negative sequence current, that is, phase currents with exactly same magnitude, reversed sequence and exactly 120° phase displaced into the IED with an initial value below negative sequence current pickup level. No output signals should be activated. Check under NS4PTOC function Service Values that correct I2 magnitude is measured by the function.
3. Set the injected negative sequence polarizing voltage slightly larger than the set minimum polarizing voltage (default 5 % of Vn) and set the injection current to lag the voltage by an angle equal to the set reference characteristic angle \((180° - \text{AngleRCA})\) if the forward directional function is selected. If reverse directional function is selected, set the injection current to lag the polarizing voltage by an angle equal to RCA.
4. Increase the injected current and note the value at which the studied step of the function trip.
5. Decrease the current slowly and note the reset value.
6. Block lower set steps when testing higher set steps according to the instructions that follow.
7. Connect a trip output contact to a timer.
8. Set the injected current to 200% of the trip level of the tested step, switch on the current and check the time delay. For inverse time curves, check the trip time at a current equal to 110% of the trip current in order to test parameter \(txmin\).
9. Check that all trip and pickup contacts trip according to the configuration (signal matrixes)
10. Reverse the direction of the injected current and check that the step does not trip.
11. Check that the protection does not trip when the polarizing voltage is zero.
12. Repeat the above-described tests for the higher set steps.
13. Finally, check that pickup and trip information is stored in the event menu.

10.4.4.1 Completing the test

continue to test another function or end the test by changing the \(TESTMODE\) setting to \(Disabled\). Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.5 Thermal overload protection, two time constants TRPTTR (49)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

10.4.5.1 Checking trip and reset values
1. Connect symmetrical three-phase currents to the appropriate current terminals of the IED.
2. Set the Time constant 1 (\(\text{Tau1}\)) and Time Constant 2 (\(\text{Tau2}\)) temporarily to 1 minute.
3. Set the three-phase injection currents slightly lower than the set trip value of stage IBase1, increase the current in phase A until stage IBase1 trips and note the trip value.

![i]

Observe the maximum permitted overloading of the current circuits in the IED.

4. Decrease the current slowly and note the reset value.
 Check, in the same way, the trip and reset values of IBase1 for phases B and C.
5. Activate the cooling input signal, thus switching to base current IBase2.
6. Check the trip and reset values (for all three phases) for IBase2 in the same way as described above for stage IBase1.
7. Deactivate the input signal for stage IBase2.
8. Set the time constant for IBase1 in accordance with the setting plan.
9. Set the injection current for phase A to \(1.50 \cdot \text{IBase1}\).
10. Connect a trip output contact to the timer and monitor the output of contacts ALARM1 and ALARM2 to digital inputs in test equipment.
 Read the heat content in the thermal protection from the local HMI and wait until the content is zero.
11. Switch on the injection current and check that ALARM1 and ALARM2 contacts trip at the set percentage level and that the trip time for tripping is in accordance with the set Time Constant 1 (\(\text{Tau1}\)).
 With setting \(\text{It}_{tr} = 101\% \text{IBase1}\) and injection current \(1.50 \cdot \text{IBase1}\), the trip time from zero content in the memory shall be \(0.60 \cdot \text{Tau1}\).
12. Check that all trip and alarm contacts trip according to the configuration logic.
13. Switch off the injection current and check from the service menu readings of thermal status and LOCKOUT that the lockout resets at the set percentage of heat content.
14. Activate the cooling input signal to switch over to base current IBase2.
 Wait 5 minutes to empty the thermal memory and set Time Constant 2 (\(\text{Tau2}\)) in accordance with the setting plan.
15. Test with injection current \(1.50 \cdot \text{IBase2}\) the thermal alarm level, the trip time for tripping and the lockout reset in the same way as described for stage IBase1.
16. Finally check that pickup and trip information is stored in the event menu.

10.4.5.2 Completing the test

- Continue to test another function or end the test by changing the \(\text{TESTMODE}\) setting to \textit{Disabled}.
- Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.6 Breaker failure protection, phase segregated activation and output CCRBRF (50BF)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

The Breaker failure protection, 3-phase activation and output function CCRBRF (50BF) should normally be tested in conjunction with some other function that provides an initiate signal. An external BFI_3P signal can also be used.
To verify the settings in the most common back-up trip mode 1 out of 3, it is sufficient to test phase-to-ground faults.

At mode 2 out of 4 the phase current setting, Pickup_PH can be checked by single-phase injection where the return current is connected to the summated current input. The value of residual (ground fault) current IN set lower than Pickup_N is easiest checked in back-up trip mode 1 out of 4.

10.4.6.1 Checking the phase current trip value, Pickup_PH

The check of the Pickup_PH current level is best made in FunctionMode = Current and BuTripMode = 1 out of 3 or 2 out of 4.

1. Apply the fault condition, including BFI_3P of CCRBRF (50BF), with a current below set Pickup_PH.
2. Repeat the fault condition and increase the current in steps until a trip occurs. Note that the INITIATE signal shall be re-applied for each new current value.
3. Compare the result with the set Pickup_PH.

 If RetripMode = Off and FunctionMode = Current is set, only backup trip can be used to check set Pickup_PH.

10.4.6.2 Checking the residual (ground fault) current trip value Pickup_N set below Pickup_PH

Check the low set Pickup_N current where setting FunctionMode = Current and setting BuTripMode = 1 out of 4

1. Apply the fault condition, including BFI_3P of CCRBRF (50BF), with a current just below set Pickup_N.
2. Repeat the fault condition and increase the current in steps until trip appears. Note that the INITIATE signal shall be re-applied for each new current value.
3. Compare the result with the set Pickup_N.
4. Disconnect AC and BFI_3P input signals.

10.4.6.3 Checking the re-trip and back-up times

The check of the set times can be made in connection with the check of trip values above.

Choose the applicable function and trip mode, such as FunctionMode = Current and RetripMode = UseFunctionMode.

1. Apply the fault condition, including initiation of CCRBRF (50BF), well above the set current value. Measure time from BFI_3P of CCRBRF (50BF).
2. Check the re-trip $t1$ and back-up trip times $t2$ and $t3$.
In applicable cases, the back-up trip for multi-phase pickup \(t2MPh \) and back-up trip 2, \(t2 \) and \(t3 \) can also be checked. To check \(t2MPh \), a two-phase or three-phase initiation shall be applied.

3. Disconnect AC and BFI_3P input signals.

10.4.6.4 Verifying the re-trip mode

Choose the mode below, which corresponds to the actual case.

In the cases below it is assumed that FunctionMode = Current is selected.

Checking the case without re-trip, RetripMode = Off

1. Set RetripMode = Off.
2. Apply the fault condition, including initiation of CCRBRF (50BF), well above the set current value.
3. Verify that no re-trip, but back-up trip is achieved after set time.
4. Disconnect AC and BFI_3P input signals.

Checking the re-trip with current check, RetripMode = UseFunctionMode

1. Set RetripMode = UseFunctionMode.
2. Apply the fault condition, including initiation of CCRBRF (50BF), well above the set current value.
3. Verify that re-trip is achieved after set time \(t1 \) and back-up trip after time \(t2 \).
4. Apply the fault condition, including initiation of CCRBRF (50BF), with current below set current value.
5. Verify that no re-trip, and no back-up trip is obtained.
6. Disconnect AC and BFI_3P input signals.

Checking re-trip without current check

1. Set RetripMode = Always.
2. Apply the fault condition, including initiation of CCRBRF (50BF), well above the set current value.
3. Verify that re-trip is achieved after the set time \(t1 \), and the back-up trip after time \(t2 \).
4. Apply the fault condition, including initiation of CCRBRF (50BF), with current below set current value.
5. Verify that re-trip is achieved after set time \(t1 \), but no back-up trip is obtained.
6. Disconnect AC and BFI_3P input signals.

10.4.6.5 Verifying the back-up trip mode

In the cases below it is assumed that FunctionMode = Current is selected.

Checking that back-up tripping is not achieved at normal CB tripping

Use the actual tripping modes. The case below applies to re-trip with current check.
1. Apply the fault condition, including initiation of CCRBRF (50BF), with phase current well above set value $\text{Pickup}_{\text{PH}}$.
2. Interrupt the current, with a margin before back-up trip time, t_2. It may be made at issue of re-trip command.
3. Check that re-trip is achieved, if selected, but no back-up trip is obtained.
4. Disconnect AC and BFI_3P input signals.

The normal mode $\text{BuTripMode} = 1$ out of 3 should have been verified in the tests above. In applicable cases the modes 1 out of 4 and 2 out of 4 can be checked. Choose the mode below, which corresponds to the actual case.

Checking the case $\text{BuTripMode} = 1$ out of 4

It is assumed that the ground-fault current setting Pickup_N is below phase current setting $\text{Pickup}_{\text{PH}}$.

1. Set $\text{BuTripMode} = 1$ out of 4.
2. Apply the fault condition, including initiation of CCRBRF (50BF), with one-phase current below set $\text{Pickup}_{\text{PH}}$ but above Pickup_N. The residual ground-fault should then be above set Pickup_N.
3. Verify that back-up trip is achieved after set time. If selected, re-trip should also appear.
4. Disconnect AC and BFI_3P input signals.

Checking the case $\text{BuTripMode} = 2$ out of 4

The ground-fault current setting Pickup_N may be equal to or below phase-current setting $\text{Pickup}_{\text{PH}}$.

1. Set $\text{BuTripMode} = 2$ out of 4.
2. Apply the fault condition, including initiation of CCRBRF (50BF), with one-phase current above set $\text{Pickup}_{\text{PH}}$ and residual (ground fault) above set Pickup_N.
3. Verify that back-up trip is achieved after set time. If selected, re-trip should also appear.
4. Apply the fault condition, including initiation of CCRBRF (50BF), with at least one-phase current below set $\text{Pickup}_{\text{PH}}$ and residual (ground fault) above set Pickup_N. The current may be arranged by feeding three- (or two-) phase currents with equal phase angle (I_0-component) below $\text{Pickup}_{\text{PH}}$, but of such value that the residual (ground fault) current ($3I_0$) will be above set value Pickup_N.
5. Verify that back-up trip is not achieved.
6. Disconnect AC and BFI_3P input signals.

10.4.6.6 Verifying instantaneous back-up trip at CB faulty condition

Applies in a case where a signal from CB supervision function regarding CB being faulty and unable to trip is connected to input 52FAIL.

1. Repeat the check of back-up trip time. Disconnect current and input signals.
2. Activate the input 52FAIL. The output CBALARM (CB faulty alarm) should appear after set time t_{CBAlarm}. Keep the input activated.
3. Apply the fault condition, including initiation of CCRBRF (50BF), with current above set current value.
4. Verify that back-up trip is obtained without intentional delay, for example within 20ms from application of initiation.
5. Disconnect injected AC and BFI_3P input signals.
10.4.6.7 Verifying the case FunctionMode = CB Pos

It is assumed that re-trip without current check is selected, RetripMode = UseFunctionMode.

1. Set FunctionMode = CB Pos.
2. Apply input signal for CB closed to relevant input or inputs 52A_A, 52A_B or 52A_C.
3. Apply the input signal, or signals for the start of CCRBRF.
4. Verify that phase selection re-trip and backup trip are achieved after set times.
5. Disconnect the start signal(s). Keep the CB closed signal(s).
6. Apply input signal(s), for start of CCRBRF.
7. Arrange disconnection of CB closed signal(s) well before set backup trip time t_2.
8. Verify that backup trip is not achieved.

10.4.6.8 Verifying the case RetripMode = Contact

It is assumed that re-trip without current check is selected, RetripMode = Contact.

1. Set FunctionMode = Contact
2. Apply input signal for CB closed to relevant input or inputs 52a_A (B or C).
3. Apply input signal, or signals for initiation of CCRBRF (50BF).
4. Verify that phase selection re-trip and back-up trip are achieved after set times.
5. Disconnect the trip signal(s). Keep the CB closed signal(s).
6.
7. Apply input signal(s), for initiation of CCRBRF (50BF).
8. Arrange disconnection of CB closed signal(s) well before set back-up trip time t_2.
9. Verify that back-up trip is not achieved.
10. Disconnect injected AC and BFI_3P input signals.

10.4.6.9 Verifying the case FunctionMode= Current or CB Pos

To be made only when FunctionMode = Current or CB Pos is selected. It is suggested to make the tests in one phase only, or at three-pole trip applications for just three-pole tripping.

Checking the case with fault current above set value Pickup_PH

The operation shall be as in RetripMode = UseFunctionMode.

1. Set FunctionMode = Current or CB Pos.
2. Leave the inputs for CB close inactivated. These signals should not influence.
3. Apply the fault condition, including initiation of CCRBRF (50BF), with current above the set Pickup_PH value.
4. Check that the re-trip, if selected, and back-up trip commands are achieved.
5. Disconnect injected AC and BFI_3P input signals.

Checking the case with fault current below set value Pickup_BlkCBPos

The case shall simulate a case where the fault current is very low and operation will depend on CB position signal from CB auxiliary contact. It is suggested that retrip without current check is used, setting RetripMode = UseFunctionMode Check.
1. Set FunctionMode = Current or CB Pos.
2. Apply input signal for CB closed to relevant input or inputs 52a_A (B or C)
3. Apply the fault condition with input signal(s) for initiation of CCRBRF (50BF). The value of current should be below the set value Pickup>BlkCBPos
4. Verify that phase selection re-trip (if selected) and back-up trip are achieved after set times. Failure to trip is simulated by keeping the signal(s) CB closed activated.
5. Disconnect the AC and the BFI_3P signal(s). Keep the CB closed signal(s).
6. Apply the fault and the initiation again. The value of current should be below the set value Pickup>BlkCBPos.
7. Arrange disconnection of CB closed signal(s) well before set back-up trip time t2. It simulates a correct CB tripping.
8. Verify that back-up trip is not achieved. Re-trip can appear for example, due to selection RetripMode = Always.
9. Disconnect injected AC and BFI_3P input signals.

10.4.6.10 Verifying the external start signal has timed out

1. Set StartMode = FollowStart.
2. Set FunctionMode = Current.
3. Use default value for tStartTimeout = 1.0 s.
4. Use default value for time delay backup trip t2 = 0.150 s.
5. Leave the inputs for CB close inactivated. These signals should not influence.
6. Apply START signal, and after 1.5 s apply the current above the set IPPU value.
7. Check that STALARM signal is set after 1.0 s and backup trip is blocked.

10.4.6.11 Verifying that backup signal is released when STALARM is reset

1. Set StartMode = FollowStart.
2. Set FunctionMode = Current.
3. Use default value for tStartTimeout = 1.0 s.
4. Use default value for time delay backup trip t2 = 0.150 s.
5. Leave the inputs for CB close inactivated. These signals should not influence.
6. Apply START signal at t=0s, and after 1.5 s apply the current above the set IPPU value.
7. Check that STALARM signal is set after 1.0 s and backup trip is blocked.
8. Reset START signal after 3.5 s, ensure that STALARM reset immediately.
9. Set START after 3.6 s, ensure that backup trip is set after t2 backup trip delay has expired (3.750 s).

10.4.6.12 Test of FollowStart&Mode behaviour

1. Set StartMode = FollowStart&Mode.
2. Set FunctionMode = Current.
3. Set RetripMode = UseFunctionMode.
4. Use default value for tStartTimeout = 1.0 s.
5. Use default value for time delay backup trip t2 = 0.150 s.
6. Use default value for time delay re-trip t1 = 0.000 s.
7. Leave the inputs for CB close inactivated. These signals should not influence.
8. Apply START signal, and after 0.200 s apply the current above the set IPPU value.
9. Check that STALARM does not come and that re-trip TRRET is instantly set at 0.200 s while the backup trip TRBU set only when t2 expires at 0.200 + 0.150 s.
10.4.6.13 Test of FollowStart behaviour

1. Set StartMode = FollowStart.
2. Set FunctionMode = Current.
3. Set RetripMode = UseFunctionMode.
4. Use default value for tStartTimeout = 1.0 s.
5. Use for example the default value for time delay backup trip t2 = 0.150 s.
6. Use for example the default value for time delay retrip t1 = 0.000 s.
7. Leave the inputs for CB close inactivated. These signals should not influence.
8. Apply START signal, and after 0.200 s apply the current above the set IPPU value.
9. Check that STALARM does not come and that both re-trip TRRET and backup trip TRBU comes instantly at 0.200 s (that is, as soon as current is given to the function).

10.4.6.14 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.7 Breaker failure protection, single phase version CCSRBRF (50BF)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

The parameters for the Breaker failure protection, single phase version CCSRBRF (50BF) are set via the local HMI or PCM600.

The breaker failure protection, single phase version function CCSRBRF (50BF) must be tested in combination with some other function that provides a BFI_3P signal. An external BFI_3P signal can also be used.

CCSRBRF (50BF) has to be set and configured before the testing can start. CCSRBRF is highly flexible in that it permits a choice of functional and tripping modes (50BF). The various modes are checked at the factory as part of the design verification. In certain cases only modes with a high probability of coming into operation need to be checked, in order to verify the configuration and settings.

Testing requirements

- Calculated settings
- Valid configuration diagram for the IED
- Valid terminal diagram for the IED
- Technical reference manual
- Single phase test equipment

The technical reference manual contains application and functionality summaries, function blocks, logic diagrams, input and output signals, a list of setting parameters and technical data for the function.

The test equipment should be able to provide a single phase supply of currents. The magnitude of currents should be possible to vary.
Make sure the IED is prepared for test before starting the test session. Consider the logic diagram of the function when performing the test. The response from a test can be viewed in different ways:

- Binary output signals
- Service values in the local HMI (logical signal or phasors)
- A PC with PCM600 (configuration software) in debug mode

10.4.7.1 Checking the phase current operate value Pickup_PH

Procedure

1. Apply the fault condition, including BFI of CCSRBRF (50BF), with a current value below set `Pickup_PH`.
2. Repeat the fault condition and increase the current in steps until a trip occurs.
3. Compare the result with the set `Pickup_PH`.
4. Disconnect the AC and initiate input signals.

> If `RetripMode` is set to `Off` and `FunctionMode` is set `current`, only back-up trip can be used to check set `Pickup_PH`.

10.4.7.2 Checking the re-trip and back-up times

The check of the set times can be made in connection with the check of operate values above. Choose the applicable function and trip mode, such as `FunctMode = Current` and `RetripMode = UseFunctionMode`.

Procedure

1. Apply the fault condition, including BFI of CCSRBRF (50BF), well above the set current value.
2. Measure time from Start of CCSRBRF (50BF).
3. Check the re-trip `t1` and back-up trip times `t2` and `t3`.
4. Disconnect AC and initiate input signals.

10.4.7.3 Verifying the re-trip mode

Choose the mode below, which corresponds to the actual case. In the cases below it is assumed that `FunctionMode = Current` is selected.

Checking the case without re-trip, RetripMode = Off

Procedure

1. Set `RetripMode = Off`.
2. Apply the fault condition, including BFI of CCSRBRF (50BF), well above the set current value.
3. Verify that no re-trip, but back-up trip is achieved after the set time.
4. Disconnect AC and initiate input signals.
Checking the re-trip with current check, $\textit{RetripMode = UseFunctionMode}$

Procedure

1. Set $\textit{RetripMode = UseFunctionMode}$.
2. Apply the fault condition, including initiation of CCSRBRF (50BF), well above the set current value.
3. Verify that re-trip is achieved after set time t_1 and back-up trip after time t_2.
4. Apply the fault condition, including initiation of CCSRBRF (50BF), with current below set current value.
5. Verify that no re-trip, and no back-up trip is obtained.
6. Disconnect AC and BFI_3P input signals.

Checking re-trip without current check, $\textit{RetripMode = Always}$

Procedure

1. Set $\textit{RetripMode = Always}$.
2. Apply the fault condition, including initiation of CCSRBRF (50BF), well above the set current value.
3. Verify that re-trip is achieved after set time t_1 and back-up trip after time t_2.
4. Apply the fault condition, including initiation of CCSRBRF (50BF), with current below set current value.
5. Verify that re-trip is achieved after a set time t_1, and no back-up trip is obtained.
6. Disconnect AC and BFI_3P input signals.

10.4.7.4 Verifying the back-up trip mode

In the cases, it is assumed that $\textit{FunctionMode = Current}$ is selected.

Checking that back-up tripping is not achieved at normal CB tripping

Use the actual tripping modes. The case below applies to re-trip with current check.

Procedure

1. Apply the fault condition, including BFI of CCSRBRF (50BF), with phase current well above set value $\textit{Pickup_PH}$.
2. Arrange switching the current off, with a margin before back-up trip time, t_2. It may be made at issue of re-trip command.
3. Check that re-trip is achieved, if selected, but no back-up trip.
4. Disconnect AC and initiate input signals.

10.4.7.5 Verifying instantaneous back-up trip at CB faulty condition

Applies in a case where a signal from CB supervision function regarding CB being faulty and unable to trip is connected to input 52FAIL.

Procedure
1. Repeat the check of back-up trip time. Disconnect current and BFI_3P input signals.
2. Activate the input 52FAIL. The output CBALARM (CB faulty alarm) should appear after set time \(t_{CBAlarm} \). Keep the input activated.
3. Apply the fault condition, including BFI_3P of CCSRBRF (50BF), with current above set current value.
4. Verify that back-up trip is obtained without intentional delay, for example, within 20ms from application of BFI_3P.
5. Disconnect injected AC and input signals.

10.4.7.6 **Verifying the case FunctionMode = CB Pos**

It is assumed that re-trip without current check is selected, \(RetripMode = UseFunctionMode \).

1. Set FunctionMode = CB Pos
2. Apply input signal for CB closed to relevant input 52a.
3. Apply the BFI_3P input signal for the start of CCSRBRF (50BF). The value of current can be low.
4. Verify that phase selection re-trip and backup trip are achieved after set times.
5. Disconnect the BFI_3P signal. Keep the CB closed signal.
6. Apply BFI_3P input signal, for start of CCSRBRF (50BF). The value of current can be low.
7. Arrange disconnection of CB closed signal before set backup trip time \(t_2 \).
8. Verify that backup trip is not achieved.
9. Disconnect injected AC and BFI_3P signal.

10.4.7.7 **Verifying the case FunctionMode = Current or CB Pos**

To be made only when FunctionMode = Current or CB Pos is selected. It is suggested to make the tests in one phase only, or at three-pole trip applications for just three-pole tripping.

Checking the case with fault current above set value Pickup_PH
The operation shall be as in \(RetripMode = UseFunctionMode \).

Procedure

1. Set FunctionMode = Current or CB Pos.
2. Leave the inputs for CB close inactivated. That signal should not influence.
3. Apply the fault condition, including initiation of CCSRBRF (50BF), with current above the set Pickup_PH value.
4. Check that the re-trip, if selected, and back-up trip commands are achieved.
5. Disconnect injected AC and BFI_3P input signals.

Checking the case with fault current below set value Pickup_BlkBPos
The case shall simulate a case where the fault current is very low and operation will depend on CB position signal from CB auxiliary contact. It is suggested that retrip without current check is used, setting \(RetripMode = UseFunctionMode \) Check.

Procedure
1. Set `FunctionMode` = `Current` or `CB Pos`.
2. Apply input signal for `CB closed` to relevant input or inputs `52a`.
3. Apply the fault condition with input signal(s) for initiation of `CCRB` `50BF`. The value of current should be below the set value `Pickup>BlkCBPos`.
4. Verify that retrip (if selected) and backup trip are achieved after set times. Failure to trip is simulated by keeping the signal `CB closed` activated.
5. Disconnect the AC and the BFI_3P signal. Keep the `CB closed` signal activated.
6. Apply the fault and the initiation again. The value of current should be below the set value `Pickup>BlkCBPos`.
7. Arrange disconnection of `CB closed` signal well before set back-up trip time `t2`. It simulates a correct `CB tripping`.
8. Verify that back-up trip is not achieved. Re-trip can appear for example, due to selection `RetripMode` = `Always`.

10.4.7.8 Verifying the external start signal has timed out

1. Set `StartMode` = `FollowStart`.
2. Set `FunctionMode` = `Current`.
3. Use default value for `tStartTimeout` = 1.0 s.
4. Use default value for time delay backup trip `t2` = 0.150 s.
5. Leave the inputs for `CB close` inactivated. These signals should not influence.
6. Apply `START` signal, and after 1.5 s apply the current above the set `IPPU` value.
7. Check that `STALARM` signal is set after 1.0 s and backup trip is blocked.

10.4.7.9 Verifying that backup signal is released when STALARM is reset

1. Set `StartMode` = `FollowStart`.
2. Set `FunctionMode` = `Current`.
3. Use default value for `tStartTimeout` = 1.0 s.
4. Use default value for time delay backup trip `t2` = 0.150 s.
5. Leave the inputs for `CB close` inactivated. These signals should not influence.
6. Apply `START` signal at `t=0s`, and after 1.5 s apply the current above the set `IPPU` value.
7. Check that `STALARM` signal is set after 1.0 s and backup trip is blocked.
8. Reset `START` signal after 3.5 s, ensure that `STALARM` reset immediately.
9. Set `START` after 3.6 s, ensure that backup trip is set after `t2` backup trip delay has expired (3.750 s).

10.4.7.10 Test of FollowStart&Mode behaviour

1. Set `StartMode` = `FollowStart&Mode`.
2. Set `FunctionMode` = `Current`.
3. Set `RetripMode` = `UseFunctionMode`.
4. Use default value for `tStartTimeout` = 1.0 s.
5. Use default value for time delay backup trip `t2` = 0.150 s.
6. Use default value for time delay re-trip `t1` = 0.000 s.
7. Leave the inputs for `CB close` inactivated. These signals should not influence.
8. Apply `START` signal, and after 0.200 s apply the current above the set `IPPU` value.
9. Check that `STALARM` does not come and that re-trip `TRRET` is instantly set at 0.200 s while the backup trip `TRBU` set only when `t2` expires at 0.200 + 0.150 s.
10.4.7.11 Test of FollowStart behaviour

1. Set StartMode = FollowStart.
2. Set FunctionMode = Current.
3. Set RetripMode = UseFunctionMode.
4. Use default value for tStartTimeout = 1.0 s.
5. Use for example the default value for time delay backup trip $t_2 = 0.150$ s.
6. Use for example the default value for time delay retrip $t_1 = 0.000$ s.
7. Leave the inputs for CB close inactivated. These signals should not influence.
8. Apply START signal, and after 0.200 s apply the current above the set IPPU value.
9. Check that STALARM does not come and that both re-trip TRRET and backup trip TRBU comes instantly at 0.200 s (that is, as soon as current is given to the function).

10.4.8 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled.

Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.9 Directional underpower protection GUPPDUP (37)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

10.4.9.1 Verifying the settings

The underpower protection shall be set to values according to the real set values to be used.

The test is made by means of injection of voltage and current where the amplitude of both current and voltage and the phase angle between the voltage and current can be controlled. During the test, the analog outputs of active and reactive power shall be monitored.

1. Connect the test set for injection of voltage and current corresponding to the mode to be used in the application. If a three-phase test set is available this could be used for all the modes. If a single-phase current/voltage test set is available the test set should be connected to a selected input for one-phase current and voltage.
Table 18: Calculation modes

<table>
<thead>
<tr>
<th>Set value: Mode</th>
<th>Formula used for complex power calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C</td>
<td>(\vec{S} = \vec{V}_A \cdot \vec{I}_A^* + \vec{V}_B \cdot \vec{I}_B^* + \vec{V}_C \cdot \vec{I}_C^*)</td>
</tr>
<tr>
<td>Arone</td>
<td>(\vec{S} = \vec{V}_{AB} \cdot \vec{I}A^* - \vec{V}{BC} \cdot \vec{I}_C^*)</td>
</tr>
<tr>
<td>PosSeq</td>
<td>(\vec{S} = 3 \cdot \vec{V}{PosSeq} \cdot \vec{I}{PosSeq}^*)</td>
</tr>
<tr>
<td>AB</td>
<td>(\vec{S} = \vec{V}_{AB} \cdot (\vec{I}_A^* - \vec{I}_B^*))</td>
</tr>
<tr>
<td>BC</td>
<td>(\vec{S} = \vec{V}_{BC} \cdot (\vec{I}_B^* - \vec{I}_C^*))</td>
</tr>
<tr>
<td>CA</td>
<td>(\vec{S} = \vec{V}_{CA} \cdot (\vec{I}_C^* - \vec{I}_A^*))</td>
</tr>
</tbody>
</table>

(Equation 4)

(Equation 5)

(Equation 6)

(Equation 7)

(Equation 8)

(Equation 9)

(Equation 10)

(Equation 11)

(Equation 12)

2. Adjust the injected current and voltage to the set values in % of \(I_{Base} \) and \(V_{Base} \) (converted to secondary current and voltage). The angle between the injected current and voltage shall be set equal to the set direction \(\text{Angle1} \), angle for stage 1 (equal to 0° for low forward power protection and equal to 180° for reverse power protection). Check that the monitored active power is equal to 100% of rated power and that the reactive power is equal to 0% of rated power.

3. Change the angle between the injected current and voltage to \(\text{Angle1} + 90^\circ \). Check that the monitored active power is equal to 0% of rated power and that the reactive power is equal to 100% of rated power.
4. Change the angle between the injected current and voltage back to 0°. Decrease the current slowly until the PICKUP1 signal, pickup of stage 1, is activated.
5. Increase the current to 100% of \(I_{\text{Base}} \).
6. Switch the current off and measure the time for activation of TRIP1, trip of stage 1.
7. If a second stage is used, repeat steps 2 to 6 for the second stage.

10.4.9.2 Completing the test

continue to test another function or end the test by changing the \(\text{TESTMODE} \) setting to \(\text{Disabled} \). Restore connections and settings to their original values, if they were changed for testing purposes.

10.4.10 Directional overpower protection GOPPDOP (32)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

10.4.10.1 Verifying the settings

The overpower protection shall be set to values according to the real set values to be used. The test is made by means of injection of voltage and current where the amplitude of both current and voltage and the phase angle between the voltage and current can be controlled. During the test the analog outputs of active and reactive power shall be monitored.

1. Connect the test set for injection of voltage and current corresponding to the mode to be used in the application. If a three phase test set is available this could be used for all the modes. If a single phase current/voltage test set is available the test set should be connected to a selected input for one phase current and voltage.
2. Adjust the injected current and voltage to the set rated values in % of \(I_{\text{Base}} \) and \(V_{\text{Base}} \) (converted to secondary current and voltage). The angle between the injected current and voltage shall be set equal to the set direction \(\text{Angle1} \), angle for stage 1 (equal to 0° for low forward power protection and equal to 180° for reverse power protection). Check that the monitored active power is equal to 100% of rated power and that the reactive power is equal to 0% of rated power.
3. Change the angle between the injected current and voltage to \(\text{Angle1} + 90° \). Check that the monitored active power is equal to 0% of rated power and that the reactive power is equal to 100% of rated power.
4. Change the angle between the injected current and voltage back to \(\text{Angle1} \) value. Increase the current slowly from 0 until the PICKUP1 signal, pickup of stage 1, is activated. Check the injected power and compare it to the set value \(\text{Power1} \), power setting for stage 1 in % of \(S_{\text{base}} \).
5. Increase the current to 100% of \(I_{\text{Base}} \) and switch the current off.
6. Switch the current on and measure the time for activation of TRIP1, trip of stage 1.
7. If a second stage is used, repeat steps 2 to 6 for the second stage.

10.4.10.2 Completing the test

continue to test another function or end the test by changing the \(\text{TESTMODE} \) setting to \(\text{Disabled} \). Restore connections and settings to their original values, if they were changed for testing purposes.
10.4.11 Capacitor bank protection CBPGAPC

Prepare the IED for verification of settings as outlined in section "Preparing for test" in this chapter.

In this section it is shown how to test the capacitor bank protection function CBPGAPC for application on a 60Hz, 200MVar, 400kV SCB with 500/5A ratio CT.

As calculated in the application manual the base current for this particular SCB will be 289A on the primary side and 0.578A on the CT secondary side. Before any testing is commenced make sure that setting \textit{IBase} for this function is set to 289A (that is, setting for the base current corresponds to the rated current of the protected SCB). It will be also assumed that all other settings have values as shown in the setting example in the application manual for this SCB.

Test equipment

Connect the secondary test set to the CT inputs on the IED dedicated for the SCB currents. Single- or three-phase test equipment can be used but it may be required to have facility to vary the frequency of the injected current signal(s).

10.4.11.1 Verifying the settings and operation of the function

Reconnection inhibit feature

1. Inject SCB rated current (that is, 0.587A at 50Hz for this SCB) in at least one phase (preferably perform this test with three phase injection).
2. After couple of seconds stop injection of all currents (that is, set all currents back to 0A).
3. Check that function binary output signal RECNINH is set to logical 1 and that only resets after the set time under parameter \textit{tReconnInhibit} (for example 300s for this SCB) has expired.
4. If this binary signal is used to prevent CB closing make sure that it is properly connected/wired into the CB closing circuit.

Overcurrent feature

Note that during testing the overcurrent feature the harmonic voltage overload feature or reactive power overload feature may also give pickup and trip signals depending on their actual settings. Therefore it is best to switch them off during this test.

1. Inject current 20% bigger than the set overcurrent pickup level under setting parameter \textit{PU51} (for example, 1.2 \cdot 1.35 \cdot 0.587A = 0951A at 50Hz for this SCB) in phase A only.
2. Check that function binary output signals PU_51_A and PU_OC are set to one.
3. Check that function binary output signals TROC and TRIP are set to one after the set time under parameter \textit{tOC} (that is, 30s for this SCB) has expired.
4. If any of these signals are used for tripping, signaling and/or local/remote indication check that all relevant contacts and LEDs have operated and that all relevant GOOSE messages have been sent.

5. Check that service value from the function for current in phase A, on the local HMI under **Main menu/Test** is approximately 476A (that is, 0.951A \(\times \) (500/1) = 476A).

6. Stop injection of all currents (that is, set all currents back to 0A).

7. Check that all above mentioned function binary output signals now have logical value zero.

8. Repeat above steps 1-7 for phase B and phase C.

Note that the operation of this feature is based on current peak value. That means that this overcurrent function is also able to trip for the same current magnitude but for different injected frequencies. If required repeat this injection procedure for example for the 3rd harmonic by just simply injecting 3 \(\times \) 50 = 150Hz currents with the same magnitude. Obtain results shall be the same.

Undercurrent feature

1. Inject SCB rated current (that is, 0.587A at 50Hz for this SCB) in all three phases.

2. Lower phase A current 10% under the set value for setting parameter **PU_37** (that is, 0.9 \(\times \) 0.7 \(\times \) 0.587A = 0.370A at 50Hz for this SCB).

3. Check that function binary output signals **PU_37_A** and **PU_UC** are set to one.

4. Check that function binary output signals **TRUC** and **TRIP** are set to one after the set time under parameter **tUC** (for example, 5s for this SCB) has expired.

5. If any of these signals are used for tripping, signaling and/or local/remote indication check that all relevant contacts and LEDs have operated and that all relevant GOOSE messages have been sent.

6. Check that service value from the function for current in phase A, on the local HMI under **Main menu/Test** is approximately 185A (that is, 0.370A \(\times \) (500/1) = 185A).

7. Stop injection of all currents (that is, set all currents back to 0A).

8. Check that all above mentioned function binary output signals now have logical value zero because they will be automatically blocked by operation of built-in reconnection inhibit feature.

9. Repeat above steps 1-8 for phase B and phase C.

Reactive power overload feature

Note that during testing the reactive power overload feature the harmonic voltage overload feature or overcurrent feature may also give pickup and trip signals depending on their actual settings. Therefore it is recommended to switch them off during this test.

1. Inject current equal to the set reactive power overload pickup level under setting parameter **UP_QOL** (that is, 1.3 \(\times \) 0.587A = 0.763A at 50Hz for this SCB) in phase A only.

2. Check that function binary output signals **PU_QOL_A** and **PU_QOL** are set to one.

3. Check that function binary output signals **TRQOL** and **TRIP** are set to one after the set time under parameter **tQOL** (for example, 60s for this SCB) has expired.

4. If any of these signals are used for tripping, signaling and/or local/remote indication check that all relevant contacts and LEDs have operated and that all relevant GOOSE messages have been sent.
5. Check that service value from the function for current in phase A, on the local HMI under **Main menu/Test** is approximately 382A (that is, 0.763A · (500/1) = 382A).
6. Check that service value from the function for reactive power in phase A, on the local HMI under **Main menu/Test** is approximately 169% (that is, 1.3 · 1.3 = 1,69pu = 169%).
7. Stop injection of all currents (that is, set all currents back to 0A).
8. Check that all above mentioned function binary output signals now have logical value zero.
9. Repeat above steps 1 - 8 for phase B and phase C.

Note that operation of this feature is based on injected current and internally calculated true RMS values. That means that this feature is also able to trip for current signals with varying frequency. However due to relatively complex calculation procedure it is recommended to do secondary tests only with fundamental frequency current signals.

The following formula can be used to calculate SCB reactive power in per-unit system when current with different frequency from the rated frequency is injected.

\[
Q[pu] = \frac{f_{\text{rated}}}{f_{\text{injected}}} \cdot I^2[pu]
\]

(Equation 13)

Harmonic voltage overload feature

Note that during testing the harmonic voltage overload feature the reactive power overload feature or overcurrent feature may also give pickup and trip signals depending on their actual settings. Therefore it is recommended to switch them off during this test.

Procedure to test inverse time delayed step:

The following points on the inverse curve are defined per relevant IEC/ANSI standards for time multiplier value set to \(k_{HOL_IDMT}=1.0 \)

<table>
<thead>
<tr>
<th>UpeakRMS [pu]</th>
<th>1.15</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.7</th>
<th>2.0</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [s]</td>
<td>1800</td>
<td>300</td>
<td>60</td>
<td>15</td>
<td>1</td>
<td>0.3</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Note that operation of this feature is based on internally calculated voltage peak RMS value. That means that this feature is also able to trip for current signals with varying frequency.

Here will be shown how to test the fourth point from the above table. Other points can be tested in the similar way:
1. Inject 140% of the base current (that is, \(1.4 \cdot 0.587A = 0.822A\) at 50Hz for this SCB) in phase A only.
2. Check that function binary output signals PU_HOL_IDMT_A and PU_HOL are set to one.
3. Check that function binary output signals TRHOL and TRIP are set to one after the expected time (for example, 15s for this voltage level in accordance with the above table) has expired.
4. If any of these signals are used for tripping, signaling and/or local/remote indication, check that all relevant contacts and LEDs have operated and that all relevant GOOSE messages have been sent.
5. Check that service value for current in phase A, on the local HMI under **Main menu/Test** is approximately \(411A\) (that is, \(0.822A \cdot (500/1) = 411A\)).
6. Check that service value for voltage across SCB in phase A, on the local HMI under **Main menu/Test** is approximately 140%.
7. Stop injection of all currents (that is, set all currents back to 0A).
8. Check that all above mentioned function binary output signals now have logical value zero.
9. Repeat above steps 1 - 8 for phase B and phase C.
10. Repeat above steps 1 - 8 to test different points from the above table.

Operation of this feature is based on internally calculated peak RMS voltage value. That means that this feature is also able to trip for current signals with varying frequency. Note that for the fundamental frequency injection, internally calculated voltage in percent corresponds directly to the injected current value given in percent. However if it is required to test IDMT characteristic with a varying frequency, the magnitude of the injected current must be adjusted accordingly. The following formula can be used to calculate required current RMS value in percent at the desired injection frequency in order to archive voltage percentage value given in the above table:

\[
I_{inj} [%] = \frac{I_{inj}}{I_{rated}} \cdot V [%]
\]

(Equation 14)

Note that it is recommended to test IDMT operating times by injected current with the rated frequency.

Above procedure can also be used to test definite time step. Pay attention that IDMT step can also trip during such injection. Therefore make sure that appropriate settings are entered in order to insure correct test results for definite time step.

10.4.11.2 Completing the test

Continue to test another functions or end the test by changing the Test mode setting to *Disabled*. Restore connections and settings to their original values, if they were changed for testing purposes. Make sure that all built-in features for this function, which shall be in operation, are enabled and with correct settings.

10.5 Voltage protection

10.5.1 Two step undervoltage protection UV2PTUV (27)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.
10.5.1.1 Verifying the settings

Verification of pickup value and time delay to trip for Step 1

1. Check that the IED settings are appropriate, especially the PICKUP value, the definite time delay and the 1 out of 3 operation mode.
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the voltage in one of the phases, until the PICKUP signal appears.
4. Note the trip value and compare it with the set value.

The trip value in secondary volts is calculated according to the following equations:

For phase-to-ground measurement:

\[V_{\text{pickup}} < \frac{V_{\text{Base}} \times VT_{\text{sec}}}{100} \times \frac{VT_{\text{sec}}}{VT_{\text{prim}}} \]

(Equation 15)

For phase-to-phase measurement:

\[V_{\text{pickup}} < \frac{V_{\text{Base}} \times VT_{\text{sec}}}{100} \times \frac{VT_{\text{sec}}}{VT_{\text{prim}}} \]

(Equation 16)

5. Increase the measured voltage to rated load conditions.
6. Check that the PICKUP signal resets.
7. Instantaneously decrease the voltage in one phase to a value about 20% lower than the measured trip value.
8. Measure the time delay for the TRIP signal, and compare it with the set value.
9. Check the inverse time delay by injecting a voltage corresponding to 0.8 \times V_{\text{pickup}}<.

For example, if the inverse time curve A is selected, the trip signals TRST1 and TRIP trip after a time corresponding to the equation:

\[t(s) = \frac{TD1}{1 - \frac{V}{V_{\text{pickup}}<}} \]

(Equation 17)

where:
- t(s) Trip time in seconds
- TD1 Settable time multiplier of the function for step 1
- V Measured voltage
- V_{\text{pickup}}< Set pickup voltage for step 1
For example, if the measured voltage jumps from the rated value to 0.8 times the set pickup voltage level and time multiplier TD1 is set to 0.05 s (default value), then the TRST1 and TRIP signals trip at a time equal to 0.250 s ± tolerance.

10. The test above can be repeated to check the inverse time characteristic at different voltage levels.

11. Repeat the above described steps for Step 2 of the function.

Extended testing
The tests above can be repeated for 2 out of 3 and for 3 out of 3 operation mode.

10.5.1.2 Completing the test
continue to test another function or end the test by changing the TESTMODE setting to Disabled.

Restore connections and settings to their original values, if they were changed for testing purposes.

10.5.2 Two step overvoltage protection OV2PTOV (59)
Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

10.5.2.1 Verifying the settings

Verification of single-phase voltage and time delay to trip for Step 1

1. Apply single-phase voltage below the set value \(Pickup1 \).
2. Slowly increase the voltage until the PU_ST1 signal appears.
3. Note the trip value and compare it with the set value \(Pickup1 \).

 ![Information icon]
 The trip value in secondary volts is calculated according to the following equations:

 \[
 \frac{V_{pick\uparrow} > \sqrt{3} \frac{VT_{sec}}{VT_{prim}}}{100} \times \frac{V_{Base}}{VT_{prim}}
 \]

 (Equation 18)

 For phase-to-ground measurement:

 \[
 \frac{V_{pick\uparrow} > \frac{VT_{sec}}{VT_{prim}}}{100} \times \frac{V_{Base}}{VT_{prim}}
 \]

 (Equation 19)

4. Decrease the voltage slowly and note the reset value.
5. Set and apply about 20% higher voltage than the measured trip value for one phase.
6. Measure the time delay for the TRST1 signal and compare it with the set value.
7. Check the inverse time delay by injecting a voltage corresponding to \(1.2 \times V_{pickup} \).
8. Repeat the test to check the inverse time characteristic at different over-voltage levels.
9. Repeat the above described steps for Step 2 of the function.
10.5.2.2 Extended testing

1. The tests above can be repeated for 2 out of 3 and for 3 out of 3 operation mode.

10.5.2.3 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.5.3 Two step residual overvoltage protection ROV2PTOV (59N)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.5.3.1 Verifying the settings

1. Apply a single-phase voltage either to a single-phase voltage input or to a residual voltage input with the pickup value below the set value Pickup1.
2. Slowly increase the value until PU_ST1 appears.
3. Note the trip value and compare it with the set value.
4. Decrease the voltage slowly and note the reset value.
5. Set and apply a 20% higher voltage than the measured trip value for one phase.
6. Measure the time delay for the TRST1 signal and compare it with the set value.
7. Check the inverse time delay by injecting a voltage corresponding to 1.2 × Vpickup>.

For example, if the inverse time curve A is selected, the trip signals TRST1 and TRIP trip after a time corresponding to the equation:

\[
f(s) = \frac{k_1}{U \left(\frac{U}{U_1} - 1 \right)}
\]

(Equation 20)

\[
f(s) = \frac{TD_1}{V \left(\frac{V}{V_{pickup}} - 1 \right)}
\]

(Equation 21)

where:
- t(s) Trip time in seconds
- TD1 Settable time multiplier of the function for step 1
- V Measured voltage
Vpickup> Set pickup voltage for step 1

For example, if the measured voltage jumps from 0 to 1.2 times the set pickup voltage level and time multiplier TD1 is set to 0.05 s (default value), then the TRST1 and TRIP signals trip at a time equal to 0.250 s ± tolerance.

8. Repeat the test for Step 2 of the function.

10.5.3.2 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.5.4 Voltage differential protection VDCPTOV (60)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

10.5.4.1 Check of undervoltage levels

This test is relevant if the setting BlkDiffAtVLow = Yes.

Check of V1Low

Procedure

1. Connect voltages to the IED according to valid connection diagram and figure 14.
2. Apply voltage higher than the highest set value of VDTrip, V1Low and V2Low to the V1 three-phase inputs and to one phase of the V2 inputs according to figure 14. The voltage differential PICKUP signal is set.
Figure 14: Connection of the test set to the IED for test of V1 block level

where:
1. is three-phase voltage group1 (V1)
2. is three-phase voltage group2 (V2)

3. Decrease slowly the voltage in phase VA of the test set until the PICKUP signal resets.
4. Check V1 blocking level by comparing the voltage level at reset with the set undervoltage blocking V1Low.
5. Repeat steps 2 to 4 to check V1Low for the other phases.

The connections to V1 must be shifted to test another phase. (VA to VB, VB to VC, VC to VA)

Check of V2Low
Procedure

1. Connect voltages to the IED according to valid connection diagram and figure 15.
Figure 15: Connection of the test set to the IED for test of V2 block level

where:
1 is three-phase voltage group1 (V1)
2 is three-phase voltage group2 (V2)

2. Apply voltage higher than the highest set value of VDTrip, V1Low and V2Low to the V1 three-phase inputs and to one phase of the V2 inputs according to figure 15. The voltage differential PICKUP signal is set.
3. Decrease slowly the voltage in phase VC of the test set until the PICKUP signal resets.
4. Check V2 blocking level by comparing the voltage level at reset with the set undervoltage blocking V2Low.

10.5.4.2 Check of voltage differential trip and alarm levels

Procedure

1. Connect voltages to the IED according to valid connection diagram and figure 16.
Figure 16: Connection of the test set to the IED for test of alarm levels, trip levels and trip timer

where:

1. is three-phase voltage group1 (V1)
2. is three-phase voltage group2 (V2)

2. Apply $1.2 \cdot V_n$ (rated voltage) to the V1 and V2 inputs.
3. Decrease slowly the voltage of in phase VA of the test set until the ALARM signal is activated.

The ALARM signal is delayed with timer t_{Alarm}

4. Check the alarm operation level by comparing the differential voltage level at ALARM with the set alarm level V_{DAlarm}.
5. Continue to slowly decrease the voltage until PICKUP signal is activated.
6. Check the differential voltage operation level by comparing the differential voltage level at PICKUP with the set trip level V_{DTrip}.
7. Repeat steps 1 to 6 to check the other phases.
 Observe that the connections to V1 must be shifted to test another phase. (VA to VB, VB to VC, VC to VA)

10.5.4.3 Check of trip and trip reset timers

Procedure
1. Connect voltages to the IED according to valid connection diagram and figure 16.
2. Set Vn (rated voltage) to the V1 inputs and increase V2 voltage until differential voltage is 1.5 · operating level (VDTrip).
3. Switch on the test set. Measure the time from activation of the PICKUP signal until TRIP signal is activated.
4. Check the measured time by comparing it to the set trip time tTrip.
5. Increase the voltage until PICKUP signal resets. Measure the time from reset of PICKUP signal to reset of TRIP signal.
6. Check the measured time by comparing it to the set trip reset time tReset.

10.5.4.4 Final adjustment of compensation for VT ratio differences

Procedure

1. With the protection in test mode, view the differential voltage service values in each phase on the local HMI under Main menu/Test/Function status/Voltage protection/VoltageDiff(PTOV,60)/VDCPTOV:x.

 ! The IED voltage inputs should be connected to the VTs according to valid connection diagram.

2. Record the differential voltages.
3. Calculate the compensation factor RF_x for each phase.
 For information about calculation of the compensation factor, see the application manual.
4. Set the compensation factors on the local HMI under Main menu/Settings/Settings group N/Voltage protection/VoltageDiff(PTOV,60)/VDCPTOV:x
5. Check that the differential voltages are close to zero.

10.5.4.5 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.5.5 Loss of voltage check LOVPTUV (27)

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

10.5.5.1 Measuring the trip limit of set values

1. Check that the input logical signals BLOCK, CBOPEN and BLKU are logical zero.
2. Supply a three-phase rated voltage in all three phases and note on the local HMI that the TRIP logical signal is equal to the logical 0.
3. Switch off the voltage in all three phases. After set tTrip time a TRIP signal appears on the corresponding binary output or on the local HMI.
4. Inject the measured voltages at rated values for at least set \(t_{\text{restore}} \) time.
5. Activate the CBOPEN binary input.
6. Simultaneously disconnect all the three-phase voltages from the IED. No TRIP signal should appear.
7. Inject the measured voltages at rated values for at least set \(t_{\text{restore}} \) time.
8. Activate the BLKU binary input.
9. Simultaneously disconnect all the three-phase voltages from the IED. No TRIP signal should appear.
10. Reset the BLKU binary input.
11. Inject the measured voltages at rated values for at least set \(t_{\text{restore}} \) time.
12. Activate the BLOCK binary input.
13. Simultaneously disconnect all the three-phase voltages from the IED. No TRIP signal should appear.
14. Reset the BLOCK binary input.

10.5.5.2 Completing the test

Continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.6 Frequency protection

10.6.1 Underfrequency protection SAPTUF (81)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.6.1.1 Verifying the settings

Verification of PICKUP value and time delay to trip

1. Check that the IED settings are appropriate, for example the pickup value and the time delay.
2. Supply the IED with three-phase voltages at their rated values and initial frequency. The initial frequency is calculated using Equation 22.

 $$\text{StartFrequency} + 0.02 + \text{floor}\left[\left| \text{StartFrequency} - f\right| / 0.04 \right] \times 0.04$$

 (Equation 22)

3. Slowly decrease the voltage frequency by steps of 40 mHz until the TRIP signal appears; during each step apply the voltage signal for a time that is either at least 10% longer than \((t_{\text{delay}} + 100\text{ms}) \) or a suitable time to monitor the function.
4. Note the frequency value at which the START signal appears and compare it with the set value StartFrequency.
5. Note the frequency value at which the TRIP signal appears and compare it with the set value StartFrequency.
6. Increase the frequency until its rated value is reached.
7. Check that the PICKUP signal resets.
8. Supply the IED with three-phase voltages at their rated values and frequency 20 mHz over the set value $StartFrequency$.
9. Decrease the frequency with a 40 mHz step, applying it for a time that is at least 10% longer than $(tDelay + 100\text{ms})$.
10. Measure the time delay of the TRIP signal, and compare it with the set value $tDelay$. Note that the measured time consists of the set value of the time delay plus the minimum trip time of the pickup start function (80 - 90 ms).

Extended testing

1. The test above can be repeated to check the time to reset.
2. The tests above can be repeated to test the frequency dependent inverse time characteristic.

Verification of the low voltage magnitude blocking

1. Check that the IED settings are appropriate, for example the $PUFrequency$, $VMin$, and the $tDelay$.
2. Supply the IED with three-phase voltages at rated values.
3. Slowly decrease the magnitude of the applied voltage, until the BLKDMAGN signal appears.
4. Note the voltage magnitude value and compare it with the set value $VMin$.
5. Slowly decrease the frequency of the applied voltage, to a value below $PUFrequency$.
6. Check that the PICKUP signal does not appear.
7. Wait for a time corresponding to $tDelay$; make sure that the TRIP signal does not appear.

10.6.1.2 Completing the test

Continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.6.2 Overfrequency protection SAPTOF (81)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.6.2.1 Verifying the settings

Verification of PICKUP value and time delay to trip

1. Check that the IED settings are appropriate, for example the pickup value and the time delay.
2. Supply the IED with three-phase voltages at their rated values and initial frequency.
3. Slowly increase the frequency of the applied voltage with a 40 mHz step, applying it for a period that is 10% longer than $tDelay$.
4. Note the trip value and compare it with the set value.
5. Decrease the frequency to rated operating conditions.
6. Check that the PICKUP signal resets.
7. Set the frequency to 20 mHz under the trip value.
8. Increase the frequency with a 40 mHz step, applying it for a period that is 10% longer than \(t_{Delay} \).
9. Measure the time delay for the TRIP signal, and compare it with the set value. Note that the measured time consists of the set value for time delay plus minimum trip time of the pickup function (80 - 90 ms).

Extended testing

1. The test above can be repeated to check the time to reset.

Verification of the low voltage magnitude blocking

1. Check that the settings in the IED are appropriate, for example the \(PUFreq\) and the \(t_{Delay} \).
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the magnitude of the applied voltage, until the BLKDMAGN signal appears.
4. Note the voltage magnitude value and compare it with the set value.
5. Slowly increase the frequency of the applied voltage, to a value above \(PUFreq\).
6. Check that the PICKUP signal does not appear.
7. Wait for a time corresponding to \(t_{Delay} \), make sure that the TRIP signal does not appear.

10.6.2.2 Completing the test

Continue to test another function or end the test by changing the \(TESTMODE \) setting to \textit{Disabled}. Restore connections and settings to their original values, if they were changed for testing purposes.

10.6.3 Rate-of-change frequency protection SAPFRC (81)

Prepare the IED for verification of settings as outlined in section “\textit{Requirements}” and section “\textit{Preparing for test}” in this chapter.

10.6.3.1 Verifying the settings

PICKUP value and time delay to trip

1. Check that the settings in the IED are appropriate, especially the PICKUP value and the definite time delay. Set \textit{PickupFreqgrad}, to a rather small negative value.
2. Supply the IED with three-phase voltages at their rated values.
3. Slowly decrease the frequency of the applied voltage, with an increasing rate-of-change that finally exceeds the setting of \textit{PickupFreqgrad}, and check that the PICKUP signal appears.
4. Note the trip value and compare it with the set value.
5. Increase the frequency to rated operating conditions, and zero rate-of-change.
6. Check that the PICKUP signal resets.
7. Instantaneously decrease the frequency of the applied voltage to a value about 20% lower than the nominal value.
8. Measure the time delay for the TRIP signal, and compare it with the set value.

Extended testing
1. The test above can be repeated to check a positive setting of *PickupFreqGrad*.
2. The tests above can be repeated to check the time to reset.
3. The tests above can be repeated to test the RESTORE signal, when the frequency recovers from a low value.

10.6.3.2 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled.

Restore connections and settings to their original values, if they were changed for testing purposes.

10.7 Multipurpose protection

10.7.1 General current and voltage protection CVGAPC

Prepare the IED for verification of settings as outlined in section *Requirements* and section *Preparing for test* in this chapter.

One of the facilities within the general current and voltage protection function CVGAPC is that the value, which is processed and used for evaluation in the function, can be chosen in many different ways by the setting parameters *CurrentInput* and *VoltageInput*.

These setting parameters decide what kind of preprocessing the connected three-phase CT and VT inputs shall be subjected to. That is, for example, single-phase quantities, phase-to-phase quantities, positive sequence quantities, negative sequence quantities, maximum quantity from the three-phase group, minimum quantity from the three-phase group, difference between maximum and minimum quantities (unbalance) can be derived and then used in the function.

Due to the versatile possibilities of CVGAPC itself, but also the possibilities of logic combinations in the application configuration of outputs from more than one CVGAPC function block, it is hardly possible to define a fully covering general commissioning test.

10.7.1.1 Built-in overcurrent feature (non-directional)

Procedure

1. Go to *Main menu/Test/Function test modes/Multipurpose protection/GeneralCurrentVoltage(GAPC)/CVGAPC:* and make sure that CVGAPC to be tested is unblocked and other functions that might disturb the evaluation of the test are blocked.
2. Connect the test set for injection of three-phase currents to the appropriate current terminals of the IED.
3. Inject current(s) in a way that relevant measured current (according to setting parameter *CurrentInput*) is created from the test set. Increase the current(s) until the low set stage trips and check against the set trip value.
4. Decrease the current slowly and check the reset value.
5. Block high set stage if the injection current will activate the high set stage when testing the low set stage according to below.
6. Connect a TRIP output contact to the timer.
7. Set the current to 200% of the trip value of low set stage, switch on the current and check the time delay.
For inverse time curves, check the trip time at a current equal to 110% of the trip current at \(t_{MinTripDelay}\).

8. Check that TRIP and PICKUP contacts trip according to the configuration logic.
9. Release the blocking of the high set stage and check the trip and reset value and the time delay for the high set stage in the same way as for the low set stage.
10. Finally check that PICKUP and TRIP information is stored in the event menu.

Information on how to use the event menu is found in the operator’s manual.

10.7.1.2 Overcurrent feature with current restraint

The current restraining value has also to be measured or calculated and the influence on the operation has to be calculated when the testing of the trip value is done.

Procedure

1. **Trip value measurement**
 - The current restraining value has also to be measured or calculated and the influence on the operation has to be calculated when the testing of the trip value is done.

10.7.1.3 Overcurrent feature with voltage restraint

Procedure

1. **Connect the test set for injection of three-phase currents and three-phase voltages to the appropriate current and voltage terminals of the IED.**
2. **Inject current(s) and voltage(s) in a way that relevant measured (according to setting parameter CurrentInput and VoltageInput) currents and voltages are created from the test set.**
 - **Overall check in principal as above (non-directional overcurrent feature)**
3. **Trip value measurement**
 - The relevant voltage restraining value (according to setting parameter VoltageInput) has also to be injected from the test set and the influence on the trip value has to be calculated when testing of the trip value is done.
4. **Trip time measurement**
 - Definite times may be tested as above (non-directional overcurrent feature). For inverse time characteristics the PICKUP value (to which the overcurrent ratio has to be calculated) is the actual pickup value as got with actual restraining from the voltage restraining quantity.

10.7.1.4 Overcurrent feature with directionality

Please note that the directional characteristic can be set in two different ways either just dependent on the angle between current and polarizing voltage (setting parameter DirPrinc_OC1 or DirPrinc_OC2 set to or in a way that the trip value also is dependent on the angle between current and polarizing voltage according to the \(I \cdot \cos(\phi)\) law (setting parameter DirPrinc_OC1 or DirPrinc_OC2 set to \(I \cdot \cos(\phi)\)). This has to be known if a more detailed measurement of the directional characteristic is made, than the one described below.

Procedure
1. Connect the test set for injection of three-phase currents and three-phase voltages to the appropriate current and voltage terminals of the IED.

2. Inject current(s) and voltage(s) in a way that relevant measured (according to setting parameter CurrentInput and VoltageInput) currents and voltages are created from the test set.

3. Set the relevant measuring quantity current to lag or lead (lag for negative RCA angle and lead for positive RCA angle) the relevant polarizing quantity voltage by an angle equal to the set IED characteristic angle (rca-dir) when forward directional feature is selected and the CTWYEpoin parameter is set to ToObject.
 If reverse directional feature is selected or CTWYEpoin configuration parameter is set to FromObject, the angle between current and polarizing voltage shall be set equal to rca-dir +180°.

4. Overall check in principal as above (non-directional overcurrent feature)

5. Reverse the direction of the injection current and check that the protection does not trip.

6. Check with low polarization voltage that the feature becomes non-directional, blocked or with memory according to the setting.

10.7.1.5 Over/Undervoltage feature

Procedure

1. Connect the test set for injection three-phase voltages to the appropriate voltage terminals of the IED.

2. Inject voltage(s) in a way that relevant measured (according to setting parameter VoltageInput) voltages are created from the test set.

3. Overall check in principal as above (non-directional overcurrent feature) and correspondingly for the undervoltage feature.

10.7.1.6 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.8 Secondary system supervision

10.8.1 Fuse failure supervision FUFSVC

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

The verification is divided in two main parts. The first part is common to all fuse failure supervision options, and checks that binary inputs and outputs trip as expected according to actual configuration. In the second part the relevant set trip values are measured.

10.8.1.1 Checking that the binary inputs and outputs trip as expected
1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.

2. Connect the nominal dc voltage to the 89bS binary input.
 - The signal BLKV should appear with almost no time delay.
 - The signals BLKZ and 3PH should not appear on the IED.
 - Only the distance protection function can trip.
 - Undervoltage-dependent functions must not trip.

3. Disconnect the dc voltage from the 89b binary input terminal.

4. Connect the nominal dc voltage to the MCBOP binary input.
 - The BLKV and BLKZ signals should appear without any time delay.
 - All undervoltage-dependent functions must be blocked.

5. Disconnect the dc voltage from the MCBOP binary input terminal.

6. Disconnect one of the phase voltages and observe the logical output signals on the binary outputs of the IED.
 - BLKV and BLKZ signals should appear simultaneously whether the BLKV and BLKZ reset depends on the setting SealIn “on” or “off”. If “on” no reset, if “off” reset.

7. After more than 5 seconds disconnect the remaining two-phase voltages and all three currents.
 - There should be no change in the high status of the output signals BLKV and BLKZ.
 - The signal 3PH will appear.

8. Establish normal voltage and current operating conditions simultaneously and observe the corresponding output signals.
 - Signal 3PH after about 25ms
 - Signal BLKV after about 50ms
 - Signal BLKZ after about 200ms

10.8.1.2 Measuring the trip value for the negative sequence function

Measure the trip value for the negative sequence function, if included in the IED.

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.

2. Slowly decrease the measured voltage in one phase until the BLKV signal appears.

3. Record the measured voltage and calculate the corresponding negative-sequence voltage according to the equation (observe that the voltages in the equation are phasors):

 \[3 \cdot \overline{V_2} = \overline{V_A} + a^2 \cdot \overline{V_B} + a \cdot \overline{V_C} \]

 (Equation 23)

Where:

\[\overline{V_A}, \overline{V_B}, \overline{V_C} \]

are the measured phase voltages

\[a = 1 \cdot e^{\frac{2\pi}{3}} = -0.5 + j\frac{\sqrt{3}}{2} \]
4. Compare the result with the set value of the negative-sequence operating voltage (consider that the set value $3V_{2PU}$ is in percentage of the base voltage V_{Base}).

5. Repeat steps 1 and 2. Then slowly increase the measured current in one phase until the BLKV signal disappears.

6. Record the measured current and calculate the corresponding negative-sequence current according to the equation (observe that the currents in the equation are phasors):

$$3 \cdot I_2 = I_x + a^2 \cdot I_y + a \cdot I_c$$

(Equation 24)

Where:

I_x, I_y, and I_c are the measured phase currents

$$a = 1 \cdot e^{\frac{j \pi}{3}} = -0.5 + j \frac{\sqrt{3}}{2}$$

7. Compare the result with the set value of the negative-sequence operating current. Consider that the set value $3I_{2<}$ is in percentage of the base current I_{Base}.

10.8.1.3 Measuring the trip value for the zero-sequence function

Measure the trip value for the zero-sequence function, if included in the IED.

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.

2. Slowly decrease the measured voltage in one phase until the BLKV signal appears.

3. Record the measured voltage and calculate the corresponding zero-sequence voltage according to the equation (observe that the voltages in the equation are phasors):

$$3 \cdot V_0 = V_x + V_y + V_c$$

(Equation 25)

Where:

V_x, V_y, and V_c are the measured phase voltages

4. Compare the result with the set value of the zero-sequence tripping voltage (consider that the set value $3V_{0Pickup}$ is in percentage of the base voltage.)

5. Repeat steps 1 and 2. Then slowly increase the measured current in one phase until the BLKV signal disappears.

6. Record the measured current and calculate the corresponding zero-sequence current according to the equation (observe that the currents in the equation are phasors):

$$3 \cdot I_0 = I_A + I_B + I_C$$

(Equation 26)
Where:
I_a, I_b and I_c are the measured phase currents

7. Compare the result with the set value of the zero-sequence trip current. Consider that the set value $3I_0$ is in percentage of the base current I_{Base}.

10.8.1.4 Measuring the trip value for the dead line detection function

1. Apply three-phase voltages with their rated value and zero currents.
2. Decrease the measured voltage in one phase until the DLD1PH signal appears.
3. This is the point at which the dead line condition is detected. Check the value of the decreased voltage with the set value $VDLDPU$ ($VDLDPU$ is in percentage of the base voltage V_{Base}).
4. Apply three-phase currents with their rated value and zero voltages.
5. Decrease the measured current in one phase until the DLD1PH signal appears.
6. This is the point at which the dead line condition is detected. Check the value of the decreased current with the set value $IDLDPU$ ($IDLDPU$ is in percentage of the base current I_{Base}).

10.8.1.5 Checking the operation of the dv/dt and di/dt based function

Check the operation of the dv/dt and di/dt based function if included in the IED.

1. Simulate normal operating conditions with the three-phase currents in phase with their corresponding phase voltages and with all of them equal to their rated values.
2. Change the voltages and currents in all three phases simultaneously. The voltage change must be higher than the set value $DVPU$ and the current change must be lower than the set value $DIPU$.
 - The BLKV and BLKZ signals appear without any time delay. The BLKZ signal will be activated only if the internal deadline detection is not activated at the same time.
 - 3PH should appear after 5 seconds, if the remaining voltage levels are lower than the set $VDLDPU$ of the dead line detection function.
3. Apply normal conditions as in step 1.
The BLKV, BLKZ and 3PH signals should reset, if activated, see step 1 and 2.
4. Change the voltages and currents in all three phases simultaneously. The voltage change must be higher than the set value $DVPU$ and the current change must be higher than the set value $DIPU$.
The BLKV, BLKZ and 3PH signals should not appear.
5. Repeat step 2.
6. Connect the nominal voltages in all three phases and feed a current below the trip level in all three phases.
7. Keep the current constant. Disconnect the voltage in all three phases simultaneously. The BLKV, BLKZ and 3PH signals should not appear.
8. Change the magnitude of the voltage and current for phase 1 to a value higher than the set value $DVPU$ and $DIPU$.
9. Check that the pickup output signals $PU_{DV _A}$ and $PU_{DI _A}$ and the general pickup signals PU_{DV} or PU_{DI} are activated.
10. Check that the pickup output signals for the current and voltage phases 2 and 3 are activated by changing the magnitude of the voltage and current for phases 2 and 3.

10.8.1.6 Completing the test

continue to test another function or end the test by changing the $TESTMODE$ setting to $Disabled$. Restore connections and settings to their original values, if they were changed for testing purposes.

10.8.2 Fuse failure supervision

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

Checking the operation of binary input and output

1. Simulate normal operation conditions with three-phase voltage on the main fuse group and the pilot fuse group. Ensure the values are equal to their rated values.
2. Disconnect one of the phase voltage from the main fuse group or the pilot fuse group. Observe the binary outputs of the IED. The MAINFUF or the PILOTFUUF signals are simultaneously activated. Only the output circuit related to the open phase will be active i.e either MAINFUF or PILOTFUUF.
3. Establish a normal voltage operating condition and observe the corresponding output signals. MAINFUF or PILOTFUUF should change to 0 in about 27 ms.
4. Set normal conditions as mentioned in step 1.
5. Enable the BLOCK binary input and repeat step 2. MAINFUF or PILOTFUUF should not appear.

Checking the operation of MAINFUF and PILOTFUUF

1. Simulate normal operation conditions with three-phase voltage on the main fuse group and the pilot fuse group. Ensure the values are equal to their rated values.
2. Decrease one of the three-phase voltages on main fuse group or pilot fuse group. The voltage change must be greater than the set value for $Vdif _Main_block$ or $Vdif _Pilot_alarm$. MAINFUF or PILOTFUUF signals are activated without any time delay.
3. Set normal conditions as mentioned in step 1. MAINFUF or PILOTFUUF signals should reset.
4. Set $SealIn$ to On, $Vdif _Main_block$ to 20% of $VBase$ and $VSealIn$ to 70% of $VBase$.
5. Apply three-phase voltages with the value slightly below $VSealIn$ level.
6. Decrease one of the three-phase voltages on main fuse group. The voltage change must be greater than the set value for $Vdif _Main_block$. MAINFUF signal is activated.
7. After more than 5 seconds increase the measured voltage back to the value slightly below $VSealIn$ level. MAINFUF signal should not reset.
8. Slowly increase measured voltage to the value slightly above $VSealIn$ until MAINFUF signal resets.
9. Record the measured voltage and compare with the set value $VSealIn$.
10.8.2.1 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.8.3 Voltage based delta supervision DELVSPVC

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.8.3.1 Verifying the signals and settings

Make sure that the function is connected to SMAI function with V3P signal.

Delta supervision function has 6 different modes of operation. Proceed as follows to test the function in a particular mode.

1. Set the following parameters:
 - **Operation** = Enabled
 - **MeasMode** = Phase-to-ground
 - **Umin** = 10% of VBase
 - **DelU>** = 50% of VBase
 - **DelUang>** = 10°
 - **DeltaT** = 2
 - **tHold** = 100

2. Set the constant voltage input of UL1 = 63.5V at 0° and UL2 = 63.5V at 120° and UL3 at 63.5 -120° secondary at rated frequency.

3. Based on the mode of operation, carry out the following changes on input condition of Step 2 to detect pickup condition.
 Each mode is given for increase and decrease operation. (3-a and 3-b)

<table>
<thead>
<tr>
<th>Step No.</th>
<th>OpMode</th>
<th>Changes after step 2</th>
<th>Expected output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-a</td>
<td>Instantaneous 1 cycle or Instantaneous 2 cycle</td>
<td>Change UL1 to 20V</td>
<td>STL1, STLOW, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-b</td>
<td>Instantaneous 1 cycle or Instantaneous 2 cycle</td>
<td>Change UL1 back to 63.5V</td>
<td>STL1, STRISE, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-a</td>
<td>RMS or DFT Mag</td>
<td>Change UL1 to 20V</td>
<td>STL1, STLOW, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Step No.</th>
<th>OpMode</th>
<th>Changes after step 2</th>
<th>Expected output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-b</td>
<td>RMS or DFT Mag</td>
<td>Change UL1 back to 63.5V</td>
<td>STL1, STRISE, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-a</td>
<td>DFT Angle (vector shift)</td>
<td>Change UL1 to 63.5V at 15° without changing frequency</td>
<td>STL1, BFI_3P signal will be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-b</td>
<td>DFT Angle (Vector shift)</td>
<td>Change UL1 to 63.5V at 0° without changing frequency</td>
<td>STL1, BFI_3P signal will be TRUE for 100 ms</td>
</tr>
</tbody>
</table>

4. Repeat Step 3 with UL2 changes for different mode.

10.8.3.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.8.4 Current based delta supervision DELISPVC(7I)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.8.4.1 Verifying the signals and settings

Make sure that the function is connected to SMAI function with I3P signal.

Delta supervision function has four different modes of operation. Proceed as follows to test the function in a particular mode.

1. Set the following parameters:
 - Operation = ON
 - MeasMode = Phase-to-ground
 - Imin = 10% of IBase
 - DelI> = 80% of IBase
 - DeltaT = 2
 - tHold = 100

2. Set the constant current input of IL1 = 1A at 0° and IL2 = 1A at 120° and IL3 at -120° secondary at rated frequency.

3. Based on the mode of operation, carry out the following changes on input condition of Step 2 to detect pickup condition.
 Each mode is given for increase and decrease operation. (3-a and 3-b)
Step 3

<table>
<thead>
<tr>
<th>Step No.</th>
<th>OpMode</th>
<th>Changes after step 2</th>
<th>Expected output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-a</td>
<td>Instantaneous 1 cycle or Instantaneous 2 cycle</td>
<td>Change IL1 to 2A</td>
<td>STL1, STRISE, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-b</td>
<td>Instantaneous 1 cycle or Instantaneous 2 cycle</td>
<td>Change IL1 back to 1A</td>
<td>STL1, STLOW, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-a</td>
<td>RMS or DFT Mag</td>
<td>Change IL1 to 2A</td>
<td>STL1, STRISE, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
<tr>
<td>3-b</td>
<td>RMS or DFT Mag</td>
<td>Change IL1 back to 1A</td>
<td>STL1, STLOW, BFI_3P signal should be TRUE for 100 ms</td>
</tr>
</tbody>
</table>

4. Repeat Step 3 with IL2 changes for different mode.

10.8.4.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.8.5 Delta supervision of real input DELSPVC

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.8.5.1 Verifying the signals and settings

Make sure that the function is connected to any of the available real derived outputs, for example the P output signal of the CMMXU function.

1. Set the following parameters:
 - Operation = ON
 - MinStVal = 10
 - DelSt> = 100
 - DeltaT = 7
 - tHold = 100
2. Set a constant voltage input of UL1 = 63.5 V at 0° and UL2 = 63.5 V at 180° secondary and a current signal at IL1 = 1A at 0° and IL2 = 1A at 180°.
3. Ensure that the P output of CMMXU function has exceeded 10 MW and remains stable.
4. Change the current signal at IL1= 2A at 0° and IL2= 2A at 180°. Both START and STARTRISE signals should be active for 100 ms.
5. Change the current signal at IL1= 1A at 0° and IL2= 1A at 180°. Both START and STARTLOW signals should be active for 100 ms.
10.8.5.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.9 Control

10.9.1 Synchrocheck, energizing check, and synchronizing SESRSYN (25)

This section contains instructions on how to test the synchrocheck/synchronism check, energizing check, and synchronizing function SESRSYN (25) for single, double and breaker-and-a-half arrangements.

Prepare the IED for verification of settings as outlined in section "Requirements" and section "Preparing for test" in this chapter.

At commissioning and periodical checks, the functions shall be tested with the used settings. To test a specific function, it might be necessary to change some setting parameters, for example:

- AutoEnerg = Disabled/DLLB/DBLL/Both
- ManEnerg = Disabled
- Operation = Disabled/Enabled
- Activation of the voltage selection function if applicable

The tests explained in the test procedures below describe the settings, which can be used as references during testing before the final settings are specified. After testing, restore the equipment to the normal or desired settings.

A secondary injection test set with the possibility to alter the phase angle and amplitude of the voltage is needed. The test set must also be able to generate different frequencies on different outputs.

The description below applies for a system with a nominal frequency of 60 Hz but can be directly applicable to 50 Hz. SESRSYN (25) can be set to use different phases, phase to ground or phase to phase. Use the set voltages instead of what is indicated below.

Figure 17 shows the general test connection principle, which can be used during testing. This description describes the test of the version intended for one bay.

Figure 18 shows the general test connection for a breaker-and-a-half diameter with one-phase voltage connected to the line side.
Figure 17: General test connection with three-phase voltage connected to the line side

Figure 18: General test connection for a breaker-and-a-half diameter with one-phase voltage connected to the line side

10.9.1.1 Testing the synchronizing function

The voltage inputs used are:
Testing the frequency difference
The frequency difference test should verify that operation is achieved when the frequency difference between bus and line is less than set value of $F_{\text{FreqDiffMax}}$ and above set value of $F_{\text{FreqDiffMin}}$. The test procedure below will depend on the settings used. Input STARTSYN must be activated during the test.

- $F_{\text{FreqDiffMax}} = 50.2 \text{ Hz}$
- $F_{\text{FreqDiffMin}} = 50.01 \text{ Hz}$
- $t_{\text{Breaker}} = 0.080 \text{ s}$

1. Apply voltages
 1.1. V-Line = 100% V_{BaseLine} and f-Line = 60.0 Hz
 1.2. V-Bus = 100% V_{BaseBus} and f-Bus = 60.15 Hz
2. Check that a closing pulse is submitted at a closing angle equal to calculated phase angle value from the formula below. Modern test sets will evaluate this automatically.
 Closing Angle = |($(f_{\text{Bus}} - f_{\text{Line}}) \times t_{\text{Breaker}} \times 360 \text{ degrees}$) |
 \[f_{\text{Bus}} = \text{Bus frequency} \]
 \[f_{\text{Line}} = \text{Line frequency} \]
 \[t_{\text{Breaker}} = \text{Set closing time of the breaker} \]
3. Repeat with
 3.1. V-Bus = 100% V_{BaseBus} and f-bus = 60.25 Hz, to verify that the function does not trip when frequency difference is above limit.
4. Verify that the closing command is not issued when the frequency difference is less than the set value $F_{\text{FreqDiffMin}}$.

10.9.1.2 Testing the synchrocheck functionality
During the test of SESRSYN (25) for a single bay arrangement, these voltage inputs are used:

- V-Line VA, VB or VC line 1 voltage input on the IED according to the connection in SMT
- V-Bus V5 voltage input on the IED according to the connection in SMT

Testing the voltage difference
Set the voltage difference to 0.15 p.u. on the local HMI, and the test should check that operation is achieved when the voltage difference V_{DiffSC} is lower than 0.15 p.u.

The settings used in the test shall be final settings. The test shall be adapted to site setting values instead of values in the example below.

Test with no voltage difference between the inputs.
Test with a voltage difference higher than the set V_{DiffSC}.
1. Apply voltages V-Line (for example) = 80% $GblBaseSelLine$ and V-Bus = 80% $GblBaseSelBus$ with the same phase-angle and frequency.
2. Check that the AUTOSYOK and MANSYOK outputs are activated.
3. The test can be repeated with different voltage values to verify that the function trips within the set $VDiffSC$. Check with both V-Line and V-Bus respectively lower than the other.
4. Increase the V-Bus to 110% $GblBaseSelBus$, and the V-Line = 90% $GblBaseSelLine$ and also the opposite condition.
5. Check that the two outputs for manual and auto synchronism are not activated.

Testing the phase angle difference

The phase angle differences $PhaseDiffM$ and $PhaseDiffA$ respectively are set to their final settings and the test should verify that operation is achieved when the phase angle difference is lower than this value both leading and lagging.

Test with no voltage difference.

1. Apply voltages V-Line (for example) = 100% $GblBaseSelLine$ and V-Bus = 100% $GblBaseSelBus$, with a phase difference equal to 0 degrees and a frequency difference lower than $FreqDiffA$ and $FreqDiffM$.
2. Check that the AUTOSYOK and MANSYOK outputs are activated.
 The test can be repeated with other phase difference values to verify that the function trips for values lower than the set ones, $PhaseDiffFM$ and $PhaseDiffFA$. By changing the phase angle on the voltage connected to V-Bus, between $\pm d\phi$ degrees, the user can check that the two outputs are activated for a phase difference lower than the set value. It should not trip for other values. See figure 19.

![Phase difference diagram](en05000551_ansi.vsd)

Figure 19: Test of phase difference

3. Change the phase angle between $+d\phi$ and $-d\phi$ and verify that the two outputs are activated for phase differences between these values but not for phase differences outside, see figure 19.

Testing the frequency difference

The frequency difference test should verify that operation is achieved when the $FreqDiffA$ and $FreqDiffFM$ frequency difference is lower than the set value for manual and auto synchronizing check, $FreqDiffA$ and $FreqDiffM$ respectively and that operation is blocked when the frequency difference is greater.

Test with frequency difference = 0 mHz
Test with a frequency difference outside the set limits for manual and auto synchronizing check respectively.

1. Apply voltages V-Line equal to 100% $Gb\text{i}B\text{aseSelLine}$ and V-Bus equal to 100% $Gb\text{i}B\text{aseSelBus}$, with a frequency difference equal to 0 mHz and a phase difference lower than the set value.
2. Check that the AUTOSYOK and MANSYOK outputs are activated.
3. Apply voltage to the V-Line equal to 100% $Gb\text{i}B\text{aseSelLine}$ with a frequency equal to 50 Hz and voltage V-Bus equal to 100% $Gb\text{i}B\text{aseSelBus}$, with a frequency outside the set limit.
4. Check that the two outputs are not activated. The test can be repeated with different frequency values to verify that the function trips for values lower than the set ones. If a modern test set is used, the frequency can be changed continuously.

Testing the reference voltage

1. Use the same basic test connection as in figure 17. The voltage difference between the voltage connected to V-Bus and V-Line should be 0%, so that the AUTOSYOK and MANSYOK outputs are activated first.
2. Change the V-Line voltage connection to V-Line2 without changing the setting on the local HMI. Check that the two outputs are not activated.

10.9.1.3 Testing the energizing check

During the test of the energizing check function for a single bay arrangement, these voltage inputs are used:

<table>
<thead>
<tr>
<th>V-Line</th>
<th>VA, VB or VC line1 voltage inputs on the IED</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-Bus</td>
<td>Bus voltage input on the IED</td>
</tr>
</tbody>
</table>

General

When testing the energizing check function for the applicable bus, arrangement shall be done for the energizing check functions. The voltage is selected by activation of different inputs in the voltage selection logic.

Live voltage level is fixed to 80% $VBase$ and dead voltage level to fixed 40% $VBase$.

The test shall be performed according to the settings for the station. Test the alternatives below that are applicable.

Testing the dead line live bus (DLLB)

The test should verify that the energizing check function trips for a low voltage on the V-Line and for a high voltage on the V-Bus. This corresponds to the energizing of a dead line to a live bus.

1. Apply a single-phase voltage 100% $Gb\text{i}B\text{aseSelBus}$ to the V-Bus, and a single-phase voltage 30% $Gb\text{i}B\text{aseSelLine}$ to the V-Line.
2. Check that the AUTOENOK and MANENOK outputs are activated after set $tAutoEnerg$ respectively $tManEnerg$.
3. Increase the V-Line to 60% $Gb\text{i}B\text{aseSelLine}$ and V-Bus to be equal to 100% $Gb\text{i}B\text{aseSelBus}$. The outputs should not be activated.
4. The test can be repeated with different values on the V-Bus and the V-Line.
Testing the dead bus live line (DBLL)
The test should verify that the energizing check function trips for a low voltage on the V-Bus and for a high voltage on the V-Line. This corresponds to an energizing of a dead bus to a live line.

1. Verify the settings AutoEnerg or ManEnerg to be DBLL.
2. Apply a single-phase voltage of 30% GblBaseSelBus to the V-Bus and a single-phase voltage of 100% GblBaseSelLine to the V-Line.
3. Check that the AUTOENOK and MANENOK outputs are activated after set tAutoEnerg respectively tManEnerg.
4. Decrease the V-Line to 60% GblBaseSelLine and keep the V-Bus equal to 30% GblBaseSelBus. The outputs should not be activated.
5. The test can be repeated with different values on the V-Bus and the V-Line.

Testing both directions (DLLB or DBLL)

1. Verify the local HMI settings AutoEnerg or ManEnerg to be Both.
2. Apply a single-phase voltage of 30% GblBaseSelLine to the V-Line and a single-phase voltage of 100% GblBaseSelBus to the V-Bus.
3. Check that the AUTOENOK and MANENOK outputs are activated after set tAutoEnerg respectively tManEnerg.
4. Change the connection so that the V-Line is equal to 100% GblBaseSelLine and the V-Bus is equal to 30% GblBaseSelBus. The outputs should still be activated.
5. The test can be repeated with different values on the V-Bus and the V-Line.

Testing the dead bus dead line (DBDL)
The test should verify that the energizing check function trips for a low voltage on both the V-Bus and the V-Line, that is, closing of the breaker in a non-energized system. Test is valid only when this function is used.

1. Verify the local HMI setting AutoEnerg to be Disabled and ManEnerg to be DBLL.
2. Set the parameter ManEnergDBDL to Enabled.
3. Apply a single-phase voltage of 30% GblBaseSelBus to the V-Bus and a single-phase voltage of 30% GblBaseSelLine to the V-Line.
4. Check that the MANENOK output is activated after set tManEnerg.
5. Increase the V-Bus to 80% GblBaseSelBus and keep the V-Line equal to 30% GblBaseSelLine. The outputs should not be activated.
6. Repeat the test with ManEnerg set to DLLB with different values on the V-Bus and the V-Line voltage.

10.9.1.4 Testing the voltage selection

Testing the voltage selection for single CB arrangements
This test should verify that the correct voltage is selected for the measurement in the SESRSYN function used in a double-bus arrangement. Apply a single-phase voltage of 100% GblBaseSelLine to the V-Line and a single-phase voltage of 100% GblBaseSelBus to the V-Bus.

If the VB1/2OK inputs for the fuse failure are used, they must be activated, during tests below. Also verify that deactivation prevents operation and gives an alarm.
1. Connect the signals above to binary inputs and binary outputs.
2. Connect the voltage inputs to the analog inputs used for each bus or line depending of the type of busbar arrangement and verify that correct output signals are generated.

Testing the voltage selection for double breaker
This test should verify that correct voltage is selected for the measurement in the SESRSYN function used for a diameter in a Breaker-and-a-half arrangement. Apply a single-phase voltage of 100% GblBaseSelLine to the V-Line and a single-phase voltage of 100% GblBaseSelBus to the V-Bus. Verify that correct output signals are generated.

1. Connect the analog signals to the voltage inputs, in pair of two for V1 and V2. (Inputs V3PB1, V3PB2, V3PL1, V3PL2)
2. Activate the binary signals according to the used alternative. Verify the measuring voltage on the synchronizing check function SESRSYN (25). Normally it can be good to verify synchronizing check with the same voltages and phase angles on both voltages. The voltages should be verified to be available when selected and not available when another input is activated so connect only one voltage transformer reference at each time.
3. Record the voltage selection tests in a matrix table showing read values and AUTOSYOK/MANSYOK signals to document the test performed.

Testing the voltage selection for 1 1/2 CB arrangements
At test of the SESRSYN (25) function for a breaker-and-a-half diameter the following alternative voltage inputs can be used for the three SESRSYN (SESRSYN 1, SESRSYN 2, SESRSYN 3) functions. These three SESRSYN functions can either be in one, two or three different IEDs. Table 19 describes the scenario when SESRSYN 1, SESRSYN 2 and SESRSYN 3 all are in the same IED. If SESRSYN 3 is in another IED, WA1 will be considered as WA2 and LINE2 as LINE1. The voltage is selected by activation of different inputs in the voltage selection logic as shown in table 19 and figure 20.

Table 19: Voltage selection logic

<table>
<thead>
<tr>
<th>SESRSYN</th>
<th>CBCconfig setting</th>
<th>Section to be synchronized</th>
<th>Activated B1QCLD input on IED from</th>
<th>Activated B2QCLD input on IED from</th>
<th>Activated LN1QCLD input on IED from</th>
<th>Activated LN2QCLD input on IED from</th>
<th>Indication from SESRSYN on IED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESRSYN 1 (Operates on CB1 52)</td>
<td>breaker-and-a-half bus CB</td>
<td>Bus1 – Line1</td>
<td>LN1 989</td>
<td></td>
<td></td>
<td></td>
<td>B1SEL, LN1SEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus1 – Line2</td>
<td>CB2 252</td>
<td>LN2 989</td>
<td></td>
<td></td>
<td>B1SEL, LN2SEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus1 – Bus2</td>
<td>CB2 252</td>
<td>CB3 352</td>
<td></td>
<td></td>
<td>B1SEL, B2SEL</td>
</tr>
<tr>
<td>SESRSYN 2 (Operates on CB2 252)</td>
<td>Tie CB</td>
<td>Line1 – Line2</td>
<td>LN1 989</td>
<td>LN2 989</td>
<td>LN1SEL, LN2SEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus1 – Line2</td>
<td>CB1 52</td>
<td>LN2 989</td>
<td>LN1SEL, LN2SEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus2 – Line1</td>
<td>CB3 352</td>
<td>LN1 989</td>
<td>B2SEL, LN1SEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bus1 – Bus2</td>
<td>CB1 52</td>
<td>CB3 352</td>
<td>B1SEL, B2SEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on next page
10.9.1.5 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled.
Restore connections and settings to their original values, if they were changed for testing purposes.

10.9.2 Autorecloser for 1/2/3-phase operation SMBRREC (79)

Verification of the auto recloser for single-phase, two-phase or three-phase auto reclosing attempts can be considered to consist of two parts.
• One part to verify the internal logic and timing of the auto recloser
• One part to verify its interaction with the protection system

This section deals with verification of the auto recloser itself. However, it is practical to initiate the auto recloser by activating a protection function, for example, by secondary injection tests.

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

The purpose of verification before commissioning is to check that entered selections, setting and configuration render the intended result. The auto recloser is flexible with many options and facilities. At commissioning only the selections and settings intended for use are verified. If one chooses to reduce some time settings in order to speed up verification, be careful to set the auto recloser at intended operational values at the end of the verification procedure. One such parameter is the t_{Reset} time that must be timed out before a new test sequence can be performed.

The verification test is performed together with protection and trip functions.

Figure 21 illustrates a suggested testing arrangement, where the circuit-breaker (CB) is simulated by an external bi-stable relay (BR), for example a relay type RXMVB2 or RXMD or Breaker Simulator of ABB. The following manual switches are used:

- switch or push-button to close (SC)
- switch or push-button to trip (ST)
- switch for CB ready condition (SRY)

If no bi-stable relay or breaker simulator is available, replace it with two self-reset auxiliary relays and use a self-holding connection.

Use a secondary injection IED test set to trip the protection function. The test set shall be switched off when a trip signal is given or when the BR comes to open position to simulate real conditions.

The CB simulation can be made more elaborate, including simulation of the operating gear condition, CBREADY of either the type ready for a Close-Open (CO) cycle, or the type ready for an Open-Close -Open (OCO) cycle.

The CB condition CBREADY of a type, CO, shall be high (true) until a closing operation is performed. It then goes low (false) for a recharging time of about 5 - 10s. After that it is high again.

A CB condition CBREADY of a type, OCO shall be high (true) before and during tripping (initiate auto reclosing). During tripping it goes low for a recharging time, for example, 10s. It may thus be low at the instant of reclosing. After each Open or Close operation it may need a recharging period before it goes high again.

In the example of CB simulation arrangement, the CBREADY condition is simulated by a manual switch, SRY.

Information and material for the verification:

- Protection or control unit, IED, configured and with settings entered.
- Configuration diagram for the IED
- Terminal diagram for the IED, or plant circuit diagram including the IED
- Technical reference manual for the IED
- IED test set for secondary injection
10.9.2.1 Preparation of the verification

1. Check the function settings on the local HMI under **Main menu/Settings/IED Settings/Control/Autorecloser79,5(0→1)/SMBRREC:x(79,5(0→)):x**
If any timer settings are reduced to speed up or facilitate the testing, they shall be set to normal after testing. A temporary label on the IED can be a reminder to restore normal settings after which a verification test should be performed.

2. Decide if a synchrocheck function SESRSYN (25) shall be included in the test. If SESRSYN (25) as an internal function or external device is not operated by the injection, input signal SYNC must be connected as a permanent high signal or controlled by a switch.

3. Read and make notes of the reclosing operation counters on the local HMI under **Main menu/Test/Function status/Control/AutoRecloser79,5(0->1)/SMBRREC(79,5(0->1)):x**
 Possibly reset the counters to *Zero*. Counters are reset in the reset menu.

4. Make arrangements for the simulation of the CB, for example as in Figure 21.

5. Make arrangements for indication, recording and time measurements. The signals for ,52a, RI, CLOSECMD, READY and other relevant signals should preferably be arranged for event recording with time tagging. If that is not possible, other means of time measurement and recording should be arranged.

10.9.2.2 Switching the auto recloser to On and Off *Enabled and Disabled*

1. Set the *Operation* setting to *Disabled* and check the state.
2. Set the *Operation* setting to *Enabled* and check the state, including *SETON* and *READY*. The circuit breaker should be closed and ready.
3. If external control inputs OFF/ON are used, check that they work. Set *ExternalCtrl = Enabled* and use the control inputs to switch On and Off, and check the state of the function.

10.9.2.3 Verifying the auto recloser

Select the test cases to be run according to what is applicable to the particular application. It can be, for example,

- three-pole single-shot auto reclosing
- two-shot reclosing
- single-pole and three-pole single-shot auto reclosing

Below, a case with single-phase and three-pole single-shot auto reclosing is described.

1. Set *Operation = Enabled*.
2. If the synchrocheck SESRSYN (25) is not to be operated, ensure that the signal SYNC input is activated. If SESRSYN (25) is to be included, ensure that it is supplied with the appropriate AC quantities.
3. Simulate CB closed position by closing switch SC to make the BR relay pick-up.
4. Simulate CBREADY by closing the switch SRY, and leave it closed.
5. Inject AC quantities to give a trip, for example, a one-pole trip, to the BR and to the RI input of the auto recloser. Observe and preferably record the operation. The BR relay shall trip and reclose (pick-up). After reclosing, the SRY switch can be opened for about 5s and then closed again. The auto reclosing open time and the sequence should be checked, for example in the event recording. Check also the operation indications (disturbance report) and the operation counters on the local HMI under **Main menu/Test/Function status/Control/AutoRecloser79,5(0->1)/SMBRREC(79,5(0->1)):x**
 Should the operation not be as expected, this should be investigated. It could be caused by an inappropriate setting or missing condition such as *CBREADY*.
6. Repeat the sequence by simulating a permanent fault.
Shortly after the reclosing shot, a new fault is applied. If a single-shot auto reclosing program is selected, there shall be one reclosing operation and then blocking of the auto recloser for the set reset time.

Before a new reclosing sequence can be run, the CBREADY and 52a must be set manually.

7. Repeat the sequence by simulating a three-pole transient and permanent faults, and other applicable cases, such as signal to RI_HS and high-speed reclosing.

If just single-pole reclosing is selected, ARMode = 1ph, a check can be run to make sure that a three-pole trip does not result in any auto reclosing. Other similar cases can be checked as required.

10.9.2.4 Checking the auto reclosing conditions

When checking the influence of a releasing condition it is suggested to first run an auto reclosing sequence with the condition fulfilled. When the condition signal is removed, and a new sequence is run, it indicates that the result was due to the changed condition. In case of a blocking signal the procedure should be similar. Start without the blocking or inhibit signal, and then run a sequence with the blocking or inhibit signal added.

Checking the influence of the INHIBIT signal

1. Check that the auto recloser is operative, for example, by making a reclosing shot without the INHIBIT signal.
2. Apply a fault and thereby a RI signal. At the same time, or during the dead time, apply a signal to the input INHIBIT.
3. Check that the auto reclosing sequence is interrupted and no auto reclosing takes place.

Check closing onto a fault

1. Check that the auto recloser is operative, for example by making a reclosing shot. Keep the CBREADY signal high.
2. Set the breaker simulating relay BR in Open position.
3. Close the BR relay and immediately apply a fault and thereby a RI signal.
4. Check that no auto reclosing takes place.

Checking the influence of circuit breaker not ready for reclosing

1. Check that the auto recloser function is operative, for example by making an auto reclosing shot. Keep the CB simulator BR closed. Remove the CBREADY signal by opening SRY.
2. Apply a fault and thereby a RI signal.
3. Check that no auto reclosing takes place.

Checking the influence of synchrocheck (at three-pole reclosing)

1. Check that the auto recloser is operative, for example, by making a three-pole reclosing shot with the synchrocheck SESRSYN (25) conditions fulfilled. Set the SESRSYN (25) function to Disabled to eliminate the signal connected to input signal SYNC.
2. Apply a fault causing three-phase trip and thereby a RI and a TR3P signal to the auto recloser.
3. Wait for the tSync time-out limit. Check that no reclosing is made.
Checking the response when auto recloser is \textit{Off}

Procedure

1. Check that the auto recloser is operative, for example by making a reclosing shot. Set the autoreclosing operation to \textit{Disabled}, for example by external control. The output \textit{READY} shall be low, and \textit{PREP3P} shall be high.
2. Apply a single phase fault and thereby a \textit{RI} signal.
3. Check that a definitive three phase trip and no auto reclosing takes place.

Testing auto reclosing in a multi-breaker arrangement

The usual arrangement is to have an auto recloser per circuit-breaker. They can be in different circuit breaker related IEDs or in a common IED.

- A master auto recloser is set with \textit{Priority} = \textit{High}.
- A slave auto recloser is set with \textit{Priority} = \textit{Low}.

See the application manual for an illustration of typical interconnections.

The two auto reclosers can be checked individually by carefully applying \textit{RI}, \textit{WAIT}, and \textit{INHIBIT} signals.

It is also possible to verify the two functions together by using circuit breaker simulating equipment for two circuit breaker circuits. There should be interconnections from the master to the slave function, \textit{WFMASTER- WAIT}, and \textit{UNSUCCCL - INHIBIT}, as shown in the illustration referred to above.

Restoring equipment

After the tests, restore the equipment to normal or desired state. Check the following items in particular:

1. Check the operation counters. Reset the counters to zero, if that is the user's preference. The counter reset function is found on the local HMI under \textit{Main menu/Reset/Reset counters/AutoRecloser79,5(0->1)/SMBRREC(79,5(0->1)):x}
2. Restore settings that may have been modified for the tests back to normal.
3. Disconnect the test switch, circuit breaker simulating arrangement and test circuits. Reconnect any links or connection terminals, which may have been opened for the tests.
4. Reset indications, alarms and disturbance recordings. Clearing of the disturbance report can be done via the Disturbance Handling in PCM600 or the local HMI.

10.9.2.5 Completing the test

Continue to test another function or end the test by changing the \textit{TESTMODE} setting to \textit{Disabled}. Restore connections and settings to their original values, if they were changed for testing purposes.
10.9.3 **Apparatus control APC**

The apparatus control function consists of four types of function blocks, which are connected in a delivery-specific way between bays and to the station level. For that reason, test the total function in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system.

If a block/unblock command is sent from remote to function, while the IED is shut down, this command will not be recognized after the start up, thus the command that was sent prior to the shut down is used. In such cases, where there is a mismatch, the user is advised to make a complete cycle of block/unblock operations to align the statuses.

10.9.4 **Single command, 16 signals SINGLECMD**

For the single command function block, it is necessary to configure the output signal to corresponding binary output of the IED. The operation of the single command function (SINGLECMD) is then checked from the local HMI by applying the commands with Mode = Off, Steady or Pulse, and by observing the logic statuses of the corresponding binary output. Command control functions included in the operation of different built-in functions must be tested at the same time as their corresponding functions.

10.9.5 **Interlocking**

Prepare the IED for verification of settings as outlined in sections “Requirements” and “Preparing for test” in this chapter.

Values of the logical signals are available on the local HMI under Main menu/Tests/Function status/Control/Apparatus control/Interlocking. The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

The interlocking function consists of a bay-level part and a station-level part. The interlocking is delivery specific and is realized by bay-to-bay communication over the station bus. For that reason, test the function in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system.

10.10 **Monitoring**

10.10.1 **Gas medium supervision SSIMG**

Prepare the IED for verification of settings as outlined in Section “Preparing the IED to verify settings” in this chapter.

Values of logical signals for SSIMG protection are available on the local HMI under Main menu/Tests/Function status/Monitoring/InsulationGas(63)/SSIMG(63):x, where x = 1, 2,...,21.

The Signal Monitoring in PCM600 shows the same signals that are available on the local HMI.

Check that the input logical signal BLOCK is logical zero and that on the local HMI, the logical signals PRESALM, PRESLO, TEMPALM, TEMPLO, ALARM and LOCKOUT are logical zero.
Using service kit, prepare the IED for verification of settings as outlined in Section "Preparing the IED to verify settings" in this chapter.

10.10.1 Testing the gas medium supervision for pressure alarm and pressure lockout conditions

1. Connect binary inputs to consider gas pressure and gas density to initiate the alarms.
2. Consider the analogue pressure input SENPRES and set SENPRES to a value lower than \textit{PresAlmLimit} or activate binary input signal SENPRESALM, check that outputs PRESALM and ALARM are activated after a set time delay of \textit{tPressureAlarm}.
3. Gas pressure lockout input SETPLO can be used to set PRESLO.
4. Also, reduce further the pressure level input below \textit{PresLOLimit} or activate the binary input signal SENPRESLO, check that PRESLO signal appears after a set time delay of \textit{tPressureLO}.
5. Activate BLOCK binary input and check that the outputs PRESALM, PRESLO, ALARM and LOCKOUT disappear.
6. Reset the BLOCK binary input.
7. Make sure that pressure lockout condition exists and then activate the reset lock out input RESETLO and check that the outputs PRESLO and LOCKOUT reset.

10.10.2 Testing the gas medium supervision for temperature alarm and temperature lock out conditions

1. Consider the analogue temperature input SENTEMP and set SENTEMP to a value higher than \textit{TempAlarmLimit}, check that outputs TEMPALM and ALARM are activated after a set time delay of \textit{tTempAlarm}.
2. Temperature lockout input SETTLO can be used to set TEMPO signal.
3. Also, increase further the temperature input above \textit{TempLOLimit} and check that the outputs TEMPO and LOCKOUT appears after a set time delay of \textit{tTempLockOut}.
4. Activate BLOCK binary input and check that the outputs TEMPALM, TEMPLO, ALARM and LOCKOUT disappear.
5. Reset the BLOCK binary input.
6. Make sure that temperature lockout condition exists and then activate the reset lock out input RESETLO and check that the outputs TEMPO and LOCKOUT reset.

10.10.3 Completing the test

Continue to test another function or end the test by changing the \textit{TestMode} setting to \textit{Off}. Restore connections and settings to their original values, if they were changed for testing purposes.

10.10.2 Liquid medium supervision SSIML

Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings" in this chapter.

Values of logical signals for SSIMG protection are available on the local HMI under \textit{Main menu/Tests/Function status/Monitoring/InsulationLiquid(71)/SSIML(71):x}, where \(x = 1, 2, ..., 4\).

Check that the input logical signal BLOCK is logical zero and that on the local HMI, the logical signals LVLALM, LVLLO, TEMPALM, TEMPO, ALARM and LOCKOUT are logical zero.
10.10.2.1 Testing the liquid medium supervision for level alarm and level lockout conditions

1. Connect the binary inputs to consider liquid level to initiate the alarms.
2. Consider the analogue level input SENLEVEL and set SENLEVEL to a value lower than LevelAlmLimit or activate binary input signal SENLVLALM, check that outputs LVLALM and ALARM are activated after a set time delay of tLevelAlarm.
3. Liquid level lockout input SENLVLLO can be used to set LVLLO.
4. Also, reduce the liquid level input below LevelLOLimit or activate the binary input signal SENLVLLO, check that LVLLO signal after a set time delay of tLevelLockOut.
5. Activate BLOCK binary input and check that the outputs LVLALM, LVLLO, ALARM and LOCKOUT disappears.
6. Reset the BLOCK binary input.
7. Make sure that level lockout condition exists and then activate the reset lock out input RESETLO and check that the outputs PRESLO and LOCKOUT reset.

10.10.2.2 Testing the liquid medium supervision for temperature alarm and temperature lock out conditions

1. Consider the analogue temperature input SENTEMP and set SENTEMP to a value higher than TempAlarmLimit, check that outputs TEMPALM and ALARM are activated after a set time delay of tTempAlarm.
2. Temperature lockout input SETTLO can be used to set TEMPLO signal.
3. Also, increase further the temperature input above TempLOLimit, check that the outputs TEMPLO and LOCKOUT appears after a set time delay of tTempLockOut.
4. Activate BLOCK binary input and check that the outputs TEMPALM, TEMPLO, ALARM and LOCKOUT disappear.
5. Reset the BLOCK binary input.
6. Make sure that temperature lockout condition exists and then activate the reset lock out input RESETLO and check that the outputs TEMPLO and LOCKOUT reset.

10.10.2.3 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

10.10.3 Breaker monitoring SSCBR

Prepare the IED for verification of settings outlined in section “Testing the IED operation”.

The Signal Monitoring tool in PCM600 shows the service values that are available on the Local HMI as well.

Values of the logical signals belong to the breaker monitoring are available on the local HMI under: Main menu/Test/Function status/Monitoring/BreakerMonitoring/SSCBR:x
10.10.3.1 Verifying the settings

1. Connect the test set for the injection of a three-phase current to the appropriate current terminals of the IED.
2. If current need to be injected for a particular test, it should be done in the phase selected by the PhSel parameter.
3. Follow the sequence for positioning the auxiliary contacts before testing:

<table>
<thead>
<tr>
<th>POSCLOSE</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSOPEN</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

4. Test of CB contact travel time
 4.1. Test the set timing defined by OpenTimeCorr, CloseTimeCorr, tTrOpenAlm and tTrCloseAlm.
 4.2. Change the status of the auxiliary contacts such that travel time to open TTRVOP and travel time to close TTRVCL exceed the respective set values (tTrOpenAlm and tTrCloseAlm). The measured travel time for opening and closing is shown on TTRVOP and TTRVCL respectively.
 4.3. Check that TRVTOPAL and TRVTCLAL are activated.

5. Test of CB status
 5.1. Test the set current level defined by AccStopCurr.
 5.2. Check the CLOSEPOS output by changing the POSOPEN to 0 and POSCLOSE to 1.
 5.3. Check the OPENPOS output by changing the POSOPEN to 1 and POSCLOSE to 0 and also inject the current in the selected phase slightly lower and higher than AccStopCurr set value. Only for a current lower than set AccStopCurr should activate the output POSOPEN.
 5.4. Check the circuit breaker is in INVDPOS if auxiliary contacts read same value or CB is open and inject the current in selected phase more than AccStopCurr set value.

6. Test of remaining life of CB
 6.1. Test the set timing defined by RatedOperCurr, RatedFltCurr, OperNoRated, OperNoFault, DirCoef, CBLifeAlmLevel.
 6.2. Vary the phase current in the selected phase from below rated operated current, RatedOperCurr to above rated fault current, RatedFltCurr of a breaker.
 6.3. The remaining life of CB output CBLIFEPH is estimated when the CB is changed from closed to open position. Check that the output CBLIFEPH is decreased with a value that corresponds to the injected current.
 6.4. CBLIFEAL is activated as soon as CBLIFEPH is below the set CBLifeAlmLevel value.

7. Test of accumulated energy
 7.1. Test the actual set values defined by AccSelCal to Aux Contact, ContTrCorr and AlmAccCurrPwr.
 7.2. Inject phase current in the selected phase such that its value is greater than set AccStopCurr value.
 7.3. When the breaker goes to open position, accumulated energy IPOWPH is calculated. The calculated value can be seen on the output IPOWPH.
 7.4. Alarm signal IPOWALPH appears when IPOWPH is greater than set AlmAccCurrPwr value.
 7.5. Lockout signal IPOWLOPH appears if IPOWPH exceeds further to the threshold value LOAccCurrPwr.
 7.6. Calculation of accumulated energy IPOWPH is stopped when injected current is lower than set AccStopCurr value.

8. Test of CB operation cycles
8.1. Test the actual set values defined by OperAlmLevel and OperLOLevel.
8.2. The operation counter, NOOPER is updated for every close-open sequence of the breaker by changing the position of auxiliary contacts POSCLOSE and POSOPEN.
8.3. OPERALM is activated when NOOPER value exceeds the set OperAlmLevel value. The actual value can be read on the output NOOPER.
8.4. OPERLO is activated when NOOPER value exceeds the set OperLOLevel value.

9. Test of CB spring charge monitoring
9.1. Test the actual set value defined by SpChAlmTime.
9.2. Enable SPRCHRST input. Also activate SPRCHRD after a time greater than set time SpChAlmTime.
9.3. At this condition, SPCHALM is activated.

10. Test of CB gas pressure indication
10.1. Test the actual set value defined by tDGasPresAlm and tDGasPresLO.
10.2. The output GPRESALM is activated after a time greater than set time of tDGasPresAlm value if the input PRESALM is enabled.
10.3. The output GPRESLO is activated after a set time of tDGasPresLO value if the input PRESLO is enabled.

10.10.3.2 Completing the test
1. Continue to test another function or end the test by changing the Test mode setting to Disabled.
2. Restore connections and settings to their original values if they were changed for testing purposes.

10.10.4 Event function EVENT

Prepare the IED for verification of settings as outlined in section "Preparing for test" in this chapter.

During testing, the IED can be set when in test mode from PST. The functionality of the event reporting during test mode is set in the Parameter Setting tool in PCM600.

• Use event masks
• Report no events
• Report all events

In test mode, individual event blocks can be blocked from PCM600.

10.10.5 Limit counter L4UFCNT

The Limit counter function L4UFCNT can be tested by connecting a binary input to the counter and applying pulses to the counter. The speed of the pulses must not exceed the cycle time of the function. Normally the counter will be tested when testing the function that the counter is connected to, such as the trip function. When the function is configured, test it together with the function that operates it. Trigger the function and check that the counter result corresponds to the number of operations.
10.10.5.1 Completing the test

Continue to test another function or end the test by changing the Test mode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

10.10.6 Current harmonic monitoring CHMMHAI(ITHD)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.10.6.1 Verifying the signals and settings

The current can be injected using common test equipment.

Verifying the warning and alarm time limit of THD, WrnLimitTHD and tDelayAlmTHD

1. Supply the IED with current at rated value.
2. Apply harmonics at the numerical multiple of fundamental frequency along with the injected current signal.
3. Slowly increase the harmonic amplitudes until the THDWRN signal appears.
4. Compare the harmonic amplitude level value with the set warning limit value.
5. Continue to inject the same level of harmonics level until the THDALM signal appears and note down the time from THDWRN set to THDALM set.
6. Compare the noted time value with the set time limit value of alarm.

Verifying the warning and alarm time limit of TDD, WrnLimitTDD and tDelayAlmTDD

1. Supply the IED with current at rated value.
2. Apply harmonics at the numerical multiple of fundamental frequency along with the injected current signal.
3. Slowly increase the harmonic amplitudes until the TDDWRN signal appears.
4. Compare the harmonic amplitude level value with the set warning limit value.
5. Continue to inject the same level of harmonics level until the TDDALM signal appears and note down the time from TDDWRN set to TDDALM set.
6. Compare the noted time value with the set time limit value of alarm.

Verifying the warning and alarm time limit of individual harmonic distortions IHD, WrnLimit#HD and tDelayAlm#HD (where # = 2nd, 3rd...5th)

1. Supply the IED with current at rated value.
2. Apply 2nd order harmonic along with injected current signal.
3. Slowly increase the harmonic amplitude until the 2NDHDWRN signal appears.
4. Compare the harmonic amplitude level value with the set warning limit value.
5. Continue to inject the same level of harmonics level until the 2NDHDA#HD signal appears and note down the time from 2NDHDWRN signal set to 2NDHDA#HD signal set.
6. Compare the noted time value with the set time limit value of alarm.
7. Repeat Steps 2 to 6 for the harmonics until 5th order.
10.10.6.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.

10.10.7 Voltage harmonic monitoring VHMMHAI(VTHD)

Prepare the IED for verification of settings outlined in Section "Preparing the IED to verify settings".

10.10.7.1 Verifying the signals and settings

The voltage can be injected using common test equipment.

Verifying the warning and alarm time limit of THD, WrnLimitTHD and tDelayAlmTHD

1. Supply the IED with voltage at rated value.
2. Apply harmonics at the numerical multiple of fundamental frequency along with the injected voltage signal.
3. Slowly increase the harmonic amplitudes until the THDWRN signal appears.
4. Compare the harmonic amplitude level value with the set warning limit value.
5. Continue to inject the same level of harmonics level until the THDALM signal appears and note down the time from THDWRN set to THDALM set.
6. Compare the noted time value with the set time limit value of alarm.

Verifying the warning and alarm time limit of individual harmonic distortions IHD, WrnLimit#HD and tDelayAlm#HD (where # = 2nd, 3rd...5th)

1. Supply the IED with voltage at rated value.
2. Apply 2nd order harmonic along with injected voltage signal.
3. Slowly increase the harmonic amplitude until the 2NDHDWRN signal appears.
4. Compare the harmonic amplitude level value with the set warning limit value.
5. Continue to inject the same level of harmonics level until the 2NDHDALM signal appears and note down the time from 2NDHDWRN signal set to 2NDHDALM signal set.
6. Compare the noted time value with the set time limit value of alarm.
7. Repeat Steps 2 to 6 for the harmonics until 5th order.

10.10.7.2 Completing the test

Continue to test another function or end the test by changing the TestMode setting to Off. Restore connections and settings to their original values, if they were changed for testing purposes.
10.11 Metering

10.11.1 Pulse-counter logic PCFCNT

The test of the Pulse-counter logic function PCFCNT requires the Parameter Setting tool in PCM600 or an appropriate connection to the local HMI with the necessary functionality. A known number of pulses with different frequencies are connected to the pulse counter input. The test should be performed with settings Operation = Enable or Operation = Disable and the function blocked or unblocked. The pulse counter value is then checked in PCM600 or on the local HMI.

10.11.2 Function for energy calculation and demand handling ETPMMTR

Prepare the IED for verification of settings as outlined in section "Overview " and section "Preparing for test" in this chapter.

10.11.2.1 Verifying the settings

Common test equipment can be used to determine the injection of current and voltage and time measurement.

Verification of EAFACC & ERFACC output

1. Connect the test set for injection of three-phase currents and three-phase voltage to the appropriate current and voltage terminals of the IED.
2. Ensure the instantaneous values of active and reactive power from CVMMXN function block are connected to ETPMMTR function block active and reactive power inputs.
3. Enable the EnaAcc setting and set tEnergy as 1 minute.
4. Activate the STARTACC input and supply the IED with three-phase currents and voltages at their rated value.
5. Check that the ACCINPRG signal appears continuously.
6. Note the EAFACC and ERFACC value after 1 minute and compare it with calculated energy value.
7. Similarly check after each 1 minute whether the calculated integrated energy value and EAFACC and ERFACC outputs are matching.
8. After some time (multiple of minute) remove the current and voltage input from CVMMXN function block.
9. Check the EAFACC and ERFACC output in the next 1 minute cycle for the retaining the same value.
10. Activate STOPACC input after some time and supply the IED with same current and voltage.
11. Check that the ACCINPRG signal disappears immediately and EAFACC and ERFACC outputs also stop updating.
12. Similarly the testing can be done for EAFACC and ERFACC outputs by changing the power inputs directions through direction settings.

Verification of MAXPAFD & MAXPRFD outputs

1. Repeat the above test steps 1 to 2.
2. Set tEnergy setting as 1 minute and supply the IED with three-phase currents and voltages at their rated value till 1 minute.
3. Check the MAXPAFD and MAXPRFD outputs after 1 minute and compare it with last 1 minute average power values.
4. Increase either three-phase current or voltage above the last 1 minute value.
5. After 1 minute check the MAXPAFD and MAXPRFD whether it is showing the last 1 minute average power value as maximum.
6. Next 1 minute cycle reduce the current or voltage below previous value.
7. Check after 1 minute whether the MAXPAFD and MAXPRFD outputs are retaining the old maximum value.
8. Similarly the testing can be done for MAXPAFD and MAXPRFD outputs by changing the power inputs directions through direction settings.

Verification of EAFALM & ERFALM outputs
1. Repeat the above test steps 1 to 2.
2. Set tEnergy setting as 1 minute and supply the IED with three-phase currents and voltages at their rated value till 1 minute.
3. Ensure that the active and reactive energy values are less than the EALim and ERLim setting default values respectively.
4. Check that EAFALM and ERFALM are low.
5. Increase the supply currents or voltage in next 1 minute cycle such that the active or reactive energy values are greater than the EALim and ERLim setting default values respectively.
6. Check that EAFALM and ERFALM are high after 1 minute.
7. Similarly the testing can be done for EARALM and ERRALM outputs by changing the power inputs directions through direction settings.

10.11.2.2 Completing the test
continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.12 Station communication

10.12.1 Multiple command and transmit MULTICMDRCV / MULTICMDSND
The multiple command and transmit function (MULTICMDRCV / MULTICMDSND) is only applicable for horizontal communication.

Test of the multiple command function block and multiple transmit is recommended to be performed in a system, that is, either in a complete delivery system as an acceptance test (FAT/SAT) or as parts of that system, because the command function blocks are connected in a delivery-specific way between bays and the station level and transmit.

Command and transmit function blocks included in the operation of different built-in functions must be tested at the same time as their corresponding functions.

10.13 Remote communication

10.13.1 Binary signal transfer
Prepare the IED for verification of settings as outlined in section "Preparing the IED to verify settings".
To perform a test of the binary signal transfer functions, the hardware (LDCM) and binary input and output signals to transfer must be configured as required by the application.

There are two types of internal self-supervision of the binary signal transfer:

- The I/O-circuit board is supervised as an I/O module. For example it generates FAIL if the board is not inserted. I/O-modules not configured are not supervised.
- The communication is supervised and the signal COMFAIL is generated if a communication error is detected.

Status for inputs and outputs as well as self-supervision status are available from the local HMI under

- Self-supervision status: Main menu/Diagnostics/Internal events
- Status for inputs and outputs: Main menu/Test/Function status, browse to the function group of interest.
- Remote communication related signals: Main menu/Test/Function status/Communication/Remote communication

Test the correct functionality by simulating different kind of faults. Also check that sent and received data is correctly transmitted and read.

A test connection is shown in figure 22. A binary input signal (BI) at End1 is configured to be transferred through the communication link to End2. At End2 the received signal is configured to control a binary output (BO). Check at End2 that the BI signal is received and the BO operates.

Repeat the test for all the signals configured to be transmitted over the communication link.
10.14 Basic IED functions

10.14.1 Parameter setting group handling SETGRPS

Prepare the IED for verification of settings as outlined in section "Preparing for test" in this chapter.

10.14.1.1 Verifying the settings

1. Check the configuration of binary inputs that control the selection of the active setting group.
2. Browse to the ActiveGroup menu to achieve information about the active setting group. The ActiveGroup menu is located on the local HMI under Main menu/Test/Function status/ Setting groups/ActiveGroup
 The ActiveGroup menu is located on the PCM600 under Main menu/Test/Function status/ Setting groups/ActiveGroup
3. Connect the appropriate dc voltage to the corresponding binary input of the IED and observe the information presented on the local HMI. The displayed information must always correspond to the activated input.
4. Check that the corresponding output indicates the active group.
Operating procedures for the PC aided methods of changing the active setting groups are described in the corresponding PCM600 documents and instructions for the operators within the SCS are included in the SCS documentation.

10.14.1.2 Completing the test

continue to test another function or end the test by changing the TESTMODE setting to Disabled. Restore connections and settings to their original values, if they were changed for testing purposes.

10.15 Exit test mode

The following procedure is used to return to normal operation.

After exiting the IED test mode, make sure that the MU is returned to normal mode.

1. Navigate to the test mode folder.
2. Change the Enable setting to Disable. Press the 'E' key and the left arrow key.
3. Answer YES, press the 'E' key and exit the menus.
Section 11 Primary injection testing

Whenever it becomes necessary to work on primary equipment, it is essential that all the necessary switching, locking, grounding and safety procedures are observed and obeyed in a rigid and formalized manner. Operating and testing procedures should be strictly followed in order to avoid exposure to live equipment.

A test with primary current through the protected zone is usually a final check that the current circuits are correctly connected to the IED protection scheme. It is important to have an appropriate source, which is able to inject sufficient current in the primary circuit in order to distinguish between noise and real injected current. Therefore it is recommended that the injection current should be at least 10% of rated CT primary current.

11.1 Operation of the busbar differential protection

The primary injection tests of a differential IED consist of applying a suitable current source across the primary winding of the CT connected to the current input of the IED. The testing is normally carried out on one phase at a time. If the primary current is bigger than the set value of the DiffOperLevel parameter, the IED shall issue the trip command as well. The primary current injection test should be repeated for every CT until all current circuits in all phases are checked. The typical connection for the primary injection test is shown in figure 23.

![Diagram](ANSI05000470-2-en.vsd)

Figure 23: Typical test connection for primary injection testing

Testing will be explained from one general current input CTx (that is, x = 1, 2,..., Nmax; where Nmax is equal to the maximum number of used CT inputs).

Follow the following test instructions for all used current inputs in an IED.

Procedure
1. Connect the test set for injection primary current to the main CT connected to the current terminals of CTx input of the IED as shown in figure 23.
2. Make sure that current measurement from the CTx input are included in one of the differential zones.
3. Inject the primary current in phase A and note the incoming and differential currents on the local HMI of the IED. The values of the incoming and the differential currents shall correspond to the injected primary current.
4. Check that the current is present only in the phase being tested.
5. If the injected current is high enough, check that trip contacts operate accordingly to the scheme wiring.
6. Check that trip information is stored in the disturbance recorder and event list (if connected).
7. Switch off the current.
8. Check the function in the same way by injecting current in phases B and C.

It is recommended that each primary CB is tripped directly from the protection scheme at least once during these tests. This will confirm the trip-circuit connection between the protection scheme and the CB.

11.2 Stability of the busbar differential protection

For stability testing, one current circuit shall always be used as a reference input. The reference current circuit shall then be tested for stability against all other current circuits connected to a busbar protection scheme on a one-by-one basis. Use the current circuit connected to the CT1 current input as the reference current circuit. A typical connection for the primary current test set for this type of tests is shown in figure 24.

![Diagram of primary injection test connection](en05000307_ansi.vsd)

Figure 24: Typical test connection for primary injection, which should confirm the stability of the main CT connected to current inputs of the IED

For this type of primary injection tests a suitable current source should be applied across the primary windings of two CTs connected in series as shown in figure 24. The testing is normally...
done on one phase at the time. The currents in the secondary winding of these CTs are then opposite in phase. The differential current displayed by the IED should be negligible while the incoming current displayed should be equal to the value of the injected primary current. The IED must not issue the trip command during these tests. If it trips or the differential current has a high value it usually means that there is a wiring problem in the CT circuits connected to the current input CTx (that is, a differential current equal to twice the injection current probably indicates wrong polarity of the main CT connected to the CTx current input). This problem must be solved before the protection scheme is put in service.

Procedure

1. Connect the test set for primary current injection to the main CTs as shown in figure 24.
2. Make sure that current measurement from two used CT inputs are included in the same differential zone.
3. Inject the primary current in phase A and note the incoming and differential currents on the local HMI of the IED.
 The value of the incoming current for phase A shall correspond to the injected primary current. The value of the differential current for phase A shall be negligible.
4. Check that the current is present only in the phase being tested.
5. Switch the current off.
6. Check the function in phases B and C by injecting current in the same way.

In busbar arrangements where a disconnector replica is used, it provides the information to the busbar protection about which of the measured CT currents shall be included within different differential zones. It is necessary to verify the auxiliary contacts from each busbar disconnector.

For more information please refer to the REB670 application manual.

Proper operation of this scheme have to be checked during commissioning, by manual operation of the primary busbar disconnectors and/or circuit breakers and verification that the associated switch status function block properly operates. Proper timing of the disconnector auxiliary contacts have to be checked as well.

The protection scheme can be put in service after all these tests have been conducted.
Section 12 Commissioning and maintenance of the fault clearing system

12.1 Commissioning tests

During commissioning all protection functions shall be verified with the setting values used at each plant. The commissioning tests must include verification of all circuits by highlighting the circuit diagrams and the configuration diagrams for the used functions.

Further, the settings for protection functions are tested and recorded carefully as outlined for the future periodic maintenance tests.

The final testing includes primary verification of all directional functions where load currents is checked on the local HMI and in PCM600. The magnitudes and angles of all currents and voltages should be checked and the symmetry verified.

Directional functions have information about the measured direction and, for example, measured impedance. These values must be checked and verified as correct with the export or import of power available.

Finally, final trip tests must be performed. This involves activation of protection functions or tripping outputs with the circuit breaker closed and the tripping of the breaker verified. When several breakers are involved, each breaker must be checked individually and it must be verified that the other involved breakers are not tripped at the same time.

12.2 Periodic maintenance tests

The periodicity of all tests depends on several factors, for example the importance of the installation, environmental conditions, simple or complex equipment, static or electromechanical IEDs, and so on.

The normal maintenance practices of the user should be followed. However, ABB's recommendation is as follows:

Every second to third year

- Visual inspection of all equipment.
- Removal of dust on ventilation louvres and IEDs if necessary.
- Periodic maintenance test for protection IEDs of object where no redundant protections are provided.

Every four to six years

- Periodic maintenance test for protection IEDs of objects with redundant protection system.

First maintenance test should always be carried out after the first half year of service.
When protection IEDs are combined with built-in control, the test interval can be increased drastically, up to for instance 15 years, because the IED continuously reads service values, operates the breakers, and so on.

12.2.1 Visual inspection

Prior to testing, the protection IEDs should be inspected to detect any visible damage that may have occurred (for example, dirt or moisture deposits, overheating).

Make sure that all IEDs are equipped with covers.

12.2.2 Maintenance tests

To be made after the first half year of service, then with the cycle as proposed above and after any suspected maloperation or change of the IED setting.

Testing of protection IEDs shall preferably be made with the primary circuit de-energized. The IED cannot protect the circuit during testing. Trained personnel may test one IED at a time on live circuits where redundant protection is installed and de-energization of the primary circuit is not allowed.

ABB protection IEDs are preferably tested by aid of components from the COMBITEST testing system or FT test systems described in information B03-9510 E. Main components are RTXP 8/18/24 test switch usually located to the left in each protection IED and RTXH 8/18/24 test handle, which is inserted in test switch at secondary testing. All necessary operations such as opening of trip circuits, short-circuiting of current circuits and opening of voltage circuits are automatically performed in the right order to allow for simple and safe secondary testing even with the object in service.

Important components of FT test system are FT1, FTx, FT19, FT19RS, FR19RX switches and assemblies as well as FT-1 test plug.

12.2.2.1 Preparation

Before starting maintenance testing, the test engineers should scrutinize applicable circuit diagrams and have the following documentation available:

- Test instructions for protection IEDs to be tested
- Test records from previous commissioning and maintenance tests
- List of valid settings
- Blank test records to fill in measured values

12.2.2.2 Recording

It is of utmost importance to carefully record the test results. Special test sheets covering the frequency of test, date of test and achieved test values should be used. IED setting list and protocols from previous tests should be available and all results should be compared for differences. At component failures, spare equipment is used and set to the requested value. A note of the exchange is made and the new measured values are recorded. Test records for several years of testing should be stored in a common file for a station, or a part of a station, to give a
simple overview of the period of testing and achieved test values. These test records are valuable when analysis of service disturbances shall be done.

12.2.2.3 Secondary injection

The periodic maintenance test is done by secondary injection from a portable test set. Each protection shall be tested according to the secondary injection test information for the specific protection IED. Only the setting values adopted shall be checked for each protection function. If the discrepancy between obtained value and requested set value is too big the setting should be adjusted, the new value recorded and a note should be made in the test record.

12.2.2.4 Alarm test

When inserting the test handle of RTXP or using FT plugs, the alarm and event signalling is normally blocked. This is done in the IED by setting the event reporting to Disabled during the test. This can be done when the test handle is inserted or the IED is set to test mode from the local HMI. At the end of the secondary injection test it should be checked that the event and alarm signalling is correct by activating the events and performing some selected tests.

12.2.2.5 Self supervision check

Once secondary testing has been completed, it should be checked that no self-supervision signals are activated continuously or sporadically. Especially check the time synchronization system, GPS or other, and communication signals, both station communication and remote communication.

12.2.2.6 Trip circuit check

When the protection IED undergoes an operational check, a tripping pulse is normally obtained on one or more of the output contacts and preferably on the test switch. The healthy circuit is of utmost importance for the protection operation. If the circuit is not provided with a continuous trip-circuit supervision, it is possible to check that circuit is really closed when the test-plug handle has been removed by using a high-ohmic voltmeter and measuring between the plus and the trip output on the panel. The measurement is then done through the trip coil of the circuit breaker and therefore the complete trip circuit is checked.

Note that the breaker must be closed.

Please observe that the test system does not provide built-in security during this test. If the instrument should be set on Amp instead of Volts, the circuit breaker naturally is tripped, therefore, great care is necessary.

Trip circuit from trip IEDs to circuit breaker is often supervised by trip-circuit supervision. It can then be checked that a circuit is healthy by opening tripping output terminals in the cubicle. When the terminal is opened, an alarm shall be achieved on the signal system after a delay of some seconds.
Remember to close the circuit directly after the test and tighten the terminal carefully.

12.2.7 Measurement of service currents

After a maintenance test it is recommended to measure the service currents and service voltages recorded by the protection IED. The service values are checked on the local HMI or in PCM600. Ensure that the correct values and angles between voltages and currents are recorded. Also check the direction of directional functions such as Distance and directional overcurrent functions.

For transformer differential protection, the achieved differential current value is dependent on the tap changer position and can vary between less than 1% up to perhaps 10% of rated current. For line differential functions, the capacitive charging currents can normally be recorded as a differential current.

The zero-sequence current to ground-fault protection IEDs should be measured. The current amounts normally very small but normally it is possible to see if the current circuit is "alive".

The neutral-point voltage to an ground-fault protection IED is checked. The voltage is normally 0.1 to 1V secondary. However, voltage can be considerably higher due to harmonics. Normally a CVT secondary can have around 2.5 - 3% third-harmonic voltage.

12.2.8 Restoring

Maintenance is very important to improve the availability of the protection system by detecting failures before the protection is required to operate. There is however little point in testing healthy equipment and then putting it back into service with an open terminal, with a removed fuse or open miniature circuit breaker with an open connection, wrong setting, and so on.

Thus a list should be prepared of all items disturbed during test so that all can be put back into service quickly and without overlooking something. It should be put back into service item by item and signed by the responsible engineer.
Section 13 Troubleshooting

13.1 Checking the self supervision signals

13.1.1 Checking the self supervision function

13.1.1.1 Determine the cause of an internal failure

This procedure describes how to navigate the menus in order to find the cause of an internal failure when indicated by the flashing green LED on the HMI module.

Procedure

1. Display the general diagnostics menu.
 Navigate the menus to:
 Diagnostics/IED status/General
2. Scroll the supervision values to identify the reason for the failure.
 Use the arrow buttons to scroll between values.

13.1.2 Self supervision HMI data

13.1.2.1 General IED status

The following table shows the general IED status signals.

Table 20: Signals from the General menu in the diagnostics tree.

<table>
<thead>
<tr>
<th>Indicated result</th>
<th>Possible reason</th>
<th>Proposed action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal fail Off</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>Internal fail On</td>
<td>A failure has occurred.</td>
<td>Check the rest of the indicated results to find the fault.</td>
</tr>
<tr>
<td>Internal warning Off</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>Internal warning On</td>
<td>A warning has been issued.</td>
<td>Check the rest of the indicated results to find the fault.</td>
</tr>
<tr>
<td>Time synch Ready</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>Time synch Fail</td>
<td>No time synchronization.</td>
<td>Check the synchronization source for problems. If the problem persists, contact your ABB representative for service.</td>
</tr>
<tr>
<td>Real time clock Ready</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>Real time clock Fail</td>
<td>The real time clock has been reset.</td>
<td>Set the clock.</td>
</tr>
<tr>
<td>ADC-module OK</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
<tr>
<td>ADC-module Fail</td>
<td>The AD conversion module has failed.</td>
<td>Contact your ABB representative for service.</td>
</tr>
<tr>
<td>(Protocol name) Ready</td>
<td>No problem detected.</td>
<td>None.</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Indicated result</th>
<th>Possible reason</th>
<th>Proposed action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Protocol name) Fail</td>
<td>Protocol has failed.</td>
<td>None.</td>
</tr>
<tr>
<td>(I/O module name) Ready</td>
<td>No problem detected.</td>
<td>Check that the I/O module has been configured and connected to the IOP1- block. If the problem persists, contact your ABB representative for service.</td>
</tr>
<tr>
<td>(I/O module name) Fail</td>
<td>I/O modules has failed.</td>
<td>None.</td>
</tr>
</tbody>
</table>

13.2 Fault tracing

13.2.1 Internal fault indications

If an internal fault has occurred, the local HMI displays information under **Main menu/Diagnostics/IED status/General**

Under the Diagnostics menus, indications of a possible internal failure (serious fault) or internal warning (minor problem) are listed.

Indications regarding the faulty unit are outlined in table 21.

Table 21: Self-supervision signals on the local HMI

<table>
<thead>
<tr>
<th>HMI Signal Name:</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT Fail</td>
<td>OFF / ON</td>
<td>This signal will be active if one or more of the following internal signals are active; INT--LMDERROR, INT--WATCHDOG, INT--APPERROR, INT--RTEERROR, or any of the HW dependent signals</td>
</tr>
<tr>
<td>INT Warning</td>
<td>OFF / ON</td>
<td>This signal will be active if one or more of the following internal signals are active; INT--RTCERROR, INT--IEC61850ERROR, INT--TIMESYNCHERROR</td>
</tr>
<tr>
<td>ADMnn</td>
<td>READY / FAIL</td>
<td>Analog input module n failed. Signal activation will reset the IED</td>
</tr>
<tr>
<td>BIMnn</td>
<td>READY / FAIL</td>
<td>BIM error. Binary input module Error status. Signal activation will reset the IED</td>
</tr>
<tr>
<td>BOMn</td>
<td>READY / FAIL</td>
<td>BOM error. Binary output module Error status.</td>
</tr>
<tr>
<td>IOMn</td>
<td>READY / FAIL</td>
<td>IOM-error. Input/Output Module Error status.</td>
</tr>
<tr>
<td>MIMn</td>
<td>READY / FAIL</td>
<td>mA input module MIM1 failed. Signal activation will reset the IED</td>
</tr>
<tr>
<td>RTC</td>
<td>READY / FAIL</td>
<td>This signal will be active when there is a hardware error with the real time clock.</td>
</tr>
</tbody>
</table>
HMI Signal Name

<table>
<thead>
<tr>
<th>HMI Signal Name</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Sync</td>
<td>READY / FAIL</td>
<td>This signal will be active when the source of the time synchronization is lost, or when the time system has to make a time reset.</td>
</tr>
<tr>
<td>Application</td>
<td>READY / FAIL</td>
<td>This signal will be active if one or more of the application threads are not in the state that Runtime Engine expects. The states can be CREATED, INITIALIZED, RUNNING, etc.</td>
</tr>
<tr>
<td>RTE</td>
<td>READY / FAIL</td>
<td>This signal will be active if the Runtime Engine failed to do some actions with the application threads. The actions can be loading of settings or parameters for components, changing of setting groups, loading or unloading of application threads.</td>
</tr>
<tr>
<td>IEC61850</td>
<td>READY / FAIL</td>
<td>This signal will be active if the IEC 61850 stack did not succeed in some actions like reading IEC 61850 configuration, startup etc.</td>
</tr>
<tr>
<td>LMD</td>
<td>READY / FAIL</td>
<td>LON network interface, MIP/DPS, is in an unrecoverable error state.</td>
</tr>
<tr>
<td>LDCMxxx</td>
<td>READY / FAIL</td>
<td>Line Differential Communication Error status</td>
</tr>
<tr>
<td>OEM</td>
<td>READY / FAIL</td>
<td>Optical Ethernet Module error status</td>
</tr>
</tbody>
</table>

Also the internal signals, such as INT--FAIL and INT--WARNING can be connected to binary output contacts for signalling to a control room.

In the IED Status - Information, the present information from the self-supervision function can be viewed. Indications of failure or warnings for each hardware module are provided, as well as information about the external time synchronization and the internal clock. All according to table 21. Loss of time synchronization can be considered as a warning only. The IED has full functionality without time synchronization.

When settings are changed in the IED, the protection and control applications restart in order to take effect of the changes. During restart, internal events get generated and Runtime App error will be displayed. These events are only indications and will be for short duration during the restart.

IED will not be operational during applications restart.

13.2.2 Using front-connected PC

When an internal fault has occurred, extensive information about the fault can be retrieved from the list of internal events available in the SMS part:

TRM-STAT TermStatus - Internal Events
The list of internal events provides valuable information, which can be used during commissioning and fault tracing.

The internal events are time tagged with a resolution of 1ms and stored in a list. The list can store up to 40 events. The list is based on the FIFO principle, when it is full, the oldest event is overwritten. The list cannot be cleared and its content cannot be erased.

The internal events in this list not only refer to faults in the IED, but also to other activities, such as change of settings, clearing of disturbance reports, and loss of external time synchronization.

The information can only be retrieved from the Parameter Setting software package. The PC can be connected either to the port at the front or at the rear of the IED.

These events are logged as internal events.

Table 22: Events available for the internal event list in the IED

<table>
<thead>
<tr>
<th>Event message</th>
<th>Description</th>
<th>Generating signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT--FAIL</td>
<td>Off</td>
<td>INT--FAIL (reset event)</td>
</tr>
<tr>
<td>INT--FAIL</td>
<td></td>
<td>INT--FAIL (set event)</td>
</tr>
<tr>
<td>INT--WARNING</td>
<td>Off</td>
<td>INT--WARNING (reset event)</td>
</tr>
<tr>
<td>INT--WARNING</td>
<td></td>
<td>INT--WARNING (set event)</td>
</tr>
<tr>
<td>IOn--Error</td>
<td>Off</td>
<td>IOn--Error (reset event)</td>
</tr>
<tr>
<td>IOn--Error</td>
<td></td>
<td>IOn--Error (set event)</td>
</tr>
<tr>
<td>ADMn-Error</td>
<td>Off</td>
<td>ADMn-Error (reset event)</td>
</tr>
<tr>
<td>ADMn-Error</td>
<td></td>
<td>ADMn-Error (set event)</td>
</tr>
<tr>
<td>MIM1-Error</td>
<td>Off</td>
<td>MIM1-Error (reset event)</td>
</tr>
<tr>
<td>MIM1-Error</td>
<td></td>
<td>MIM1-Error (set event)</td>
</tr>
<tr>
<td>INT--RTC</td>
<td>Off</td>
<td>INT--RTC (reset event)</td>
</tr>
<tr>
<td>INT--RTC</td>
<td></td>
<td>INT--RTC (set event)</td>
</tr>
<tr>
<td>INT--TSYNC</td>
<td>Off</td>
<td>INT--TSYNC (reset event)</td>
</tr>
<tr>
<td>INT--TSYNC</td>
<td></td>
<td>INT--TSYNC (set event)</td>
</tr>
<tr>
<td>INT--SETCHGD</td>
<td></td>
<td>Any settings in IED changed</td>
</tr>
<tr>
<td>DRPC-CLEARED</td>
<td></td>
<td>All disturbances in Disturbance report cleared</td>
</tr>
</tbody>
</table>

The events in the internal event list are time tagged with a resolution of 1ms.

This means that, when using the PC for fault tracing, it provides information on the:

- Module that should be changed.
- Sequence of faults, if more than one unit is faulty.
- Exact time when the fault occurred.
13.2.3 Diagnosing the IED status via the LHMI hint menu

In order to help the user, there is an LHMI page labeled ‘Hints’. This page is located under **Main menu/Diagnostics/IED status/Hints**. For each activated hint there is a headline. From the headline view, an explanation page can be entered, giving the user more information and hints about the particular topic.

For example, if there is a configuration to use IEC 61850 9–2 analog data, but no data arrives on the access point, then the IED will use substituted data and most protection functions will be blocked. This condition will be indicated with a sub-menu under Hints, where details about this condition are shown. The Hint menu is a way to assist the user in troubleshooting.

The Hint menu is currently only available in English. All the entries are in English, regardless of which language is selected.

The supported list of hints are as follows:

Table 23: Hint menu

<table>
<thead>
<tr>
<th>Headline</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect setting of SyncLostMode</td>
<td>There are two explanations possible:</td>
</tr>
<tr>
<td></td>
<td>SyncLostMode is set to Block, no time source is configured to achieve the required accuracy. Unless a high accuracy time source is selected, the function dependent on high time accuracy will be blocked.</td>
</tr>
<tr>
<td></td>
<td>SyncLostMode is set to BlockOnLostUTC, but there is no UTC capable synch source (GPS, IRIG-B) used. Unless a UTC capable time source is selected, the function dependent on high time accuracy will be blocked.</td>
</tr>
<tr>
<td>Sampled value substituted</td>
<td><code><Access Point><Hardware Module Identifier><svID></code>
Where the Hardware Module Identifier is the same as given in PCM600, e.g. API1: MU1_9201 svID: <code><ABB_MU0101></code></td>
</tr>
<tr>
<td>Time diff: IED vs Sampled value</td>
<td><code><Access Point><Hardware Module Identifier><svID></code>
Where the Hardware Module Identifier is the same as given in PCM600, e.g. API1: MU1_9201 svID: <code><ABB_MU0101></code></td>
</tr>
<tr>
<td>Frequency diff: IED vs Sampled value</td>
<td><code><Access Point><Hardware Module Identifier><svID></code>
Where the Hardware Module Identifier is the same as given in PCM600, e.g. API1: MU1_9201 svID: <code><ABB_MU0101></code></td>
</tr>
<tr>
<td>Wrong cycle time for PMU report</td>
<td>Wrong cycle time on SMAI or 3PHSUM block connected to Phasor Report block. The SMAI or 3PHSUM block should have the same cycle time as that of Phasor Report.</td>
</tr>
<tr>
<td>PMU not connected to 3ph output</td>
<td>The PMU phasor report input(s) must be connected to the 3ph output of SMAI or 3PHSU.</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Headline</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid value set for PMU Parameters</td>
<td>There are two explanations possible:</td>
</tr>
<tr>
<td></td>
<td>- Check if the following parameters are set correctly on PMUREPORT: <code>ReportRate</code> or <code>SvcClass</code> or parameter <code>PRIMVAL:1.FrequencySel</code> is not set as 50Hz / 60Hz.</td>
</tr>
<tr>
<td></td>
<td>- Check if the following parameters are set correctly on PMUREPORT: <code>ReportRate</code> or <code>SvcClass</code> or <code>RptTimetag</code> or parameter <code>PRIMVAL:1.FrequencySel</code> is not set as 50Hz / 60Hz.</td>
</tr>
<tr>
<td>Invalid phase angle reference</td>
<td>The selected <code>PhaseAngleRef</code> corresponds to an analog channel that is not configured. Please configure a valid reference channel.</td>
</tr>
<tr>
<td>GOOSE is configured on a disabled port</td>
<td>At least one of the access points configured for GOOSE is disabled. The port can be disabled either through changing the access point operation to off or by unchecking the GOOSE protocol from the access point in the Ethernet configuration in PCM600 or LHMI. Please enable GOOSE on access points: AP_FRONT, AP_1</td>
</tr>
<tr>
<td>LDCM not running the application image</td>
<td><code><slot number></code> is running the factory image instead of the application image. The factory image is older and does not contain the latest updates and fixes. Please reboot the IED. If the problem persists update the LDCM firmware or replace the board.</td>
</tr>
<tr>
<td>LDCM version is not accepted</td>
<td><code><device name></code> firmware version <code><version string></code> is not accepted. The minimum accepted version is <code><version string></code>. Please update the LDCM firmware or replace the board.</td>
</tr>
<tr>
<td>OEM not running the application image</td>
<td>OEM in slot <code><slot number></code> is running the factory image instead of the application image. The factory image is older and does not contain the latest updates and fixes. Please reboot the IED. If the problem persists, update the OEM firmware or replace the board.</td>
</tr>
<tr>
<td>SFP unplugged from the slot</td>
<td>SFP has been unplugged from the slot. Please check the connection. Corresponding hardware(s) is set to fail.</td>
</tr>
<tr>
<td>SFP replaced with other type</td>
<td>Configured and the detected SFP(s) are different. Corresponding hardware(s) is set to fail. Please restart IED and consider Reconfigure HW modules to get updated hardware list.</td>
</tr>
<tr>
<td>Non ABB vendor SFP detected</td>
<td>Non ABB vendor SFP detected. Corresponding hardware(s) is set to fail. Please use ABB approved SFP’s.</td>
</tr>
</tbody>
</table>

13.2.4 Hardware re-configuration

When adding, removing or moving a hardware modules in an IED (for example, I/O modules, communication modules or time synchronization modules) a set of procedures must be followed.

Adding a new module in to an IED

Procedure:
1. Switch the IED off and insert the new module.
2. Switch the IED on, wait for it to start, and then perform a HW reconfig.
3. Perform a license update in PCM600.

The new module is now available in PCM600 and is ready to be configured.

Removing a module from an IED

Procedure:
1. Remove all existing configuration for the module in PCM, and write that configuration to the IED.
2. Switch the IED off and remove the HW module.
3. Switch the IED on, wait for it to start, and then perform a HW reconfig.
4. Perform a license update in PCM 600.

If any configuration that makes the module needed remains, then the HW reconfig will not remove the module. The module will still be needed. An error indication for the module will appear, if the module is physically removed from the IED and the IED is restarted with some part of the configuration still requiring the module.

Moving a module in an IED from one position to another

Procedure:
1. Remove all existing configuration for the module in PCM, and write that configuration to the IED.
2. Switch the IED off and move the HW module.
3. Switch the IED on, wait for it to start, and then perform a HW reconfig.
4. Perform a license update in PCM600.

The new module is now available in PCM600 at the new position and is ready to be configured.

13.3 Repair instruction

Never disconnect the secondary connection of a current transformer circuit without short-circuiting the transformer’s secondary winding. Operating a current transformer with the secondary winding open will cause a massive potential buildup that may damage the transformer and may cause injuries to humans.

Never connect or disconnect a wire and/or a connector to or from an IED during normal service. Hazardous voltages and currents are present that may be lethal. Operation may be disrupted and IED and measuring circuitry may be damaged.
An alternative is to open the IED and send only the faulty circuit board to ABB for repair. When a printed circuit board is sent to ABB, it must always be placed in a metallic, ESD-proof, protection bag. The user can also purchase separate replacement modules.

Strictly follow the company and country safety regulations.

Most electronic components are sensitive to electrostatic discharge and latent damage may occur. Please observe usual procedures for handling electronics and also use an ESD wrist strap. A semi-conducting layer must be placed on the workbench and connected to ground.

Disassemble and reassemble the IED accordingly:

1. Switch off the dc supply.
2. Short-circuit the current transformers and disconnect all current and voltage connections from the IED.
3. Disconnect all signal wires by removing the female connectors.
4. Disconnect the optical fibers.
5. Unscrew the main back plate of the IED.
6. If the transformer module is to be changed:
 • Remove the IED from the panel if necessary.
 • Remove the rear plate of the IED.
 • Remove the front plate.
 • Remove the screws of the transformer input module, both front and rear.
7. Pull out the faulty module.
8. Check that the new module has a correct identity number.
9. Check that the springs on the card rail are connected to the corresponding metallic area on the circuit board when the new module is inserted.
10. Reassemble the IED.

If the IED has been calibrated with the system inputs, the calibration procedure must be performed again to maintain the total system accuracy.

13.4 Repair support

If an IED needs to be repaired, the whole IED must be removed and sent to an ABB Logistic Center. Please contact the local ABB representative to get more details.

13.5 Maintenance

The IED is self-supervised. No special maintenance is required.

Instructions from the power network company and other maintenance directives valid for maintenance of the power system must be followed.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>ACC</td>
<td>Actual channel</td>
</tr>
<tr>
<td>ACT</td>
<td>Application configuration tool within PCM600</td>
</tr>
<tr>
<td>A/D converter</td>
<td>Analog-to-digital converter</td>
</tr>
<tr>
<td>ADBS</td>
<td>Amplitude deadband supervision</td>
</tr>
<tr>
<td>ADM</td>
<td>Analog digital conversion module, with time synchronization</td>
</tr>
<tr>
<td>AI</td>
<td>Analog input</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AR</td>
<td>Autoreclosing</td>
</tr>
<tr>
<td>ASCT</td>
<td>Auxiliary summation current transformer</td>
</tr>
<tr>
<td>ASD</td>
<td>Adaptive signal detection</td>
</tr>
<tr>
<td>ASDU</td>
<td>Application service data unit</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge standard</td>
</tr>
<tr>
<td>BBP</td>
<td>Busbar protection</td>
</tr>
<tr>
<td>BFOC/2,5</td>
<td>Bayonet fiber optic connector</td>
</tr>
<tr>
<td>BFP</td>
<td>Breaker failure protection</td>
</tr>
<tr>
<td>BI</td>
<td>Binary input</td>
</tr>
<tr>
<td>BIM</td>
<td>Binary input module</td>
</tr>
<tr>
<td>BOM</td>
<td>Binary output module</td>
</tr>
<tr>
<td>BOS</td>
<td>Binary outputs status</td>
</tr>
<tr>
<td>BR</td>
<td>External bistable relay</td>
</tr>
<tr>
<td>BS</td>
<td>British Standards</td>
</tr>
<tr>
<td>BSR</td>
<td>Binary signal transfer function, receiver blocks</td>
</tr>
<tr>
<td>BST</td>
<td>Binary signal transfer function, transmit blocks</td>
</tr>
<tr>
<td>C37.94</td>
<td>IEEE/ANSI protocol used when sending binary signals between IEDs</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network. ISO standard (ISO 11898) for serial communication</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit breaker</td>
</tr>
<tr>
<td>CBM</td>
<td>Combined backplane module</td>
</tr>
<tr>
<td>CCM</td>
<td>CAN carrier module</td>
</tr>
<tr>
<td>CCVT</td>
<td>Capacitive Coupled Voltage Transformer</td>
</tr>
</tbody>
</table>
Class C Protection Current Transformer class as per IEEE/ ANSI
CMPPS Combined megapulses per second
CMT Communication Management tool in PCM600
CO cycle Close-open cycle
Codirectional Way of transmitting G.703 over a balanced line. Involves two twisted pairs making it possible to transmit information in both directions
COM Command
COMTRADE Standard Common Format for Transient Data Exchange format for Disturbance recorder according to IEEE/ANSI C37.111, 1999 / IEC 60255-24
Contra-directional Way of transmitting G.703 over a balanced line. Involves four twisted pairs, two of which are used for transmitting data in both directions and two for transmitting clock signals
COT Cause of transmission
CPU Central processing unit
CR Carrier receive
CRC Cyclic redundancy check
CROB Control relay output block
CS Carrier send
CT Current transformer
CU Communication unit
CVT or CCVT Capacitive voltage transformer
DAR Delayed autoreclosing
DARPA Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.)
DBDL Dead bus dead line
DBLL Dead bus live line
DC Direct current
DFC Data flow control
DFT Discrete Fourier transform
DHCP Dynamic Host Configuration Protocol
DIP-switch Small switch mounted on a printed circuit board
DI Digital input
DLLB Dead line live bus
DNP Distributed Network Protocol as per IEEE Std 1815-2012
DR Disturbance recorder
DRAM Dynamic random access memory
DRH Disturbance report handler
DSP Digital signal processor
DTT Direct transfer trip scheme
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT</td>
<td>Ethernet configuration tool</td>
</tr>
<tr>
<td>EHV network</td>
<td>Extra high voltage network</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive force</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>EnFP</td>
<td>End fault protection</td>
</tr>
<tr>
<td>EPA</td>
<td>Enhanced performance architecture</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>F-SMA</td>
<td>Type of optical fiber connector</td>
</tr>
<tr>
<td>FAN</td>
<td>Fault number</td>
</tr>
<tr>
<td>FCB</td>
<td>Flow control bit; Frame count bit</td>
</tr>
<tr>
<td>FOX 20</td>
<td>Modular 20 channel telecommunication system for speech, data and protection signals</td>
</tr>
<tr>
<td>FOX 512/515</td>
<td>Access multiplexer</td>
</tr>
<tr>
<td>FOX 6Plus</td>
<td>Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers</td>
</tr>
<tr>
<td>FPN</td>
<td>Flexible product naming</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>FUN</td>
<td>Function type</td>
</tr>
<tr>
<td>G.703</td>
<td>Electrical and functional description for digital lines used by local telephone companies. Can be transported over balanced and unbalanced lines</td>
</tr>
<tr>
<td>GCM</td>
<td>Communication interface module with carrier of GPS receiver module</td>
</tr>
<tr>
<td>GDE</td>
<td>Graphical display editor within PCM600</td>
</tr>
<tr>
<td>GI</td>
<td>General interrogation command</td>
</tr>
<tr>
<td>GIS</td>
<td>Gas-insulated switchgear</td>
</tr>
<tr>
<td>GOOSE</td>
<td>Generic object-oriented substation event</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>GSAL</td>
<td>Generic security application</td>
</tr>
<tr>
<td>GSE</td>
<td>Generic substation event</td>
</tr>
<tr>
<td>HDLC protocol</td>
<td>High-level data link control, protocol based on the HDLC standard</td>
</tr>
<tr>
<td>HFBR connector type</td>
<td>Plastic fiber connector</td>
</tr>
<tr>
<td>HLV circuit</td>
<td>Hazardous Live Voltage according to IEC60255-27</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-machine interface</td>
</tr>
<tr>
<td>HSAR</td>
<td>High speed autoreclosing</td>
</tr>
<tr>
<td>HSR</td>
<td>High-availability Seamless Redundancy</td>
</tr>
<tr>
<td>HV</td>
<td>High-voltage</td>
</tr>
<tr>
<td>HVDC</td>
<td>High-voltage direct current</td>
</tr>
</tbody>
</table>
IDBS Integrating deadband supervision
IEC International Electrical Committee
IEC 60044-6 IEC Standard, Instrument transformers – Part 6: Requirements for protective current transformers for transient performance
IEC 60870-5-103 Communication standard for protection equipment. A serial master/slave protocol for point-to-point communication
IEC 61850 Substation automation communication standard
IEC 61850–8–1 Communication protocol standard
IEEE Institute of Electrical and Electronics Engineers
IEEE 802.12 A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable
IEEE P1386.1 PCI Mezzanine Card (PMC) standard for local bus modules. References the CMC (IEEE P1386, also known as Common Mezzanine Card) standard for the mechanics and the PCI specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force).
IEEE 1686 Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities
IED Intelligent electronic device
IET600 Integrated engineering tool
I-GIS Intelligent gas-insulated switchgear
IOM Binary input/output module
Instance When several occurrences of the same function are available in the IED, they are referred to as instances of that function. One instance of a function is identical to another of the same kind but has a different number in the IED user interfaces. The word “instance” is sometimes defined as an item of information that is representative of a type. In the same way an instance of a function in the IED is representative of a type of function.
IP 1. Internet protocol. The network layer for the TCP/IP protocol suite widely used on Ethernet networks. IP is a connectionless, best-effort packet-switching protocol. It provides packet routing, fragmentation and reassembly through the data link layer.
 2. Ingression protection, according to IEC 60529
IP 20 Ingression protection, according to IEC 60529, level IP20- Protected against solid foreign objects of 12.5mm diameter and greater.
IP 40 Ingression protection, according to IEC 60529, level IP40-Protected against solid foreign objects of 1mm diameter and greater.
IP 54 Ingression protection, according to IEC 60529, level IP54-Dust-protected, protected against splashing water.
IRF Internal failure signal
IRIG-B: InterRange Instrumentation Group Time code format B, standard 200
ITU International Telecommunications Union
LAN Local area network

170 Busbar protection REB670
Commissioning manual
© Copyright 2017 ABB. All rights reserved
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIB 520</td>
<td>High-voltage software module</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display</td>
</tr>
<tr>
<td>LDCM</td>
<td>Line data communication module</td>
</tr>
<tr>
<td>LDD</td>
<td>Local detection device</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>LNT</td>
<td>LON network tool</td>
</tr>
<tr>
<td>LON</td>
<td>Local operating network</td>
</tr>
<tr>
<td>MCB</td>
<td>Miniature circuit breaker</td>
</tr>
<tr>
<td>MCM</td>
<td>Mezzanine carrier module</td>
</tr>
<tr>
<td>MIM</td>
<td>Milli-ampere module</td>
</tr>
<tr>
<td>MPM</td>
<td>Main processing module</td>
</tr>
<tr>
<td>MVAL</td>
<td>Value of measurement</td>
</tr>
<tr>
<td>MVB</td>
<td>Multifunction vehicle bus. Standardized serial bus originally developed for use in trains.</td>
</tr>
<tr>
<td>NCC</td>
<td>National Control Centre</td>
</tr>
<tr>
<td>NOF</td>
<td>Number of grid faults</td>
</tr>
<tr>
<td>NUM</td>
<td>Numerical module</td>
</tr>
<tr>
<td>OCO cycle</td>
<td>Open-close-open cycle</td>
</tr>
<tr>
<td>OCP</td>
<td>Overcurrent protection</td>
</tr>
<tr>
<td>OEM</td>
<td>Optical Ethernet module</td>
</tr>
<tr>
<td>OLTC</td>
<td>On-load tap changer</td>
</tr>
<tr>
<td>OTEV</td>
<td>Disturbance data recording initiated by other event than start/pick-up</td>
</tr>
<tr>
<td>OV</td>
<td>Overvoltage</td>
</tr>
<tr>
<td>Overreach</td>
<td>A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay “sees” the fault but perhaps it should not have seen it.</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral component interconnect, a local data bus</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse code modulation</td>
</tr>
<tr>
<td>PCM600</td>
<td>Protection and control IED manager</td>
</tr>
<tr>
<td>PC-MIP</td>
<td>Mezzanine card standard</td>
</tr>
<tr>
<td>PELV circuit</td>
<td>Protected Extra-Low Voltage circuit type according to IEC60255-27</td>
</tr>
<tr>
<td>PMC</td>
<td>PCI Mezzanine card</td>
</tr>
<tr>
<td>POR</td>
<td>Permissive overreach</td>
</tr>
<tr>
<td>POTT</td>
<td>Permissive overreach transfer trip</td>
</tr>
<tr>
<td>Process bus</td>
<td>Bus or LAN used at the process level, that is, in near proximity to the measured and/or controlled components</td>
</tr>
<tr>
<td>PRP</td>
<td>Parallel redundancy protocol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PSM</td>
<td>Power supply module</td>
</tr>
<tr>
<td>PST</td>
<td>Parameter setting tool within PCM600</td>
</tr>
<tr>
<td>PTP</td>
<td>Precision time protocol</td>
</tr>
<tr>
<td>PT ratio</td>
<td>Potential transformer or voltage transformer ratio</td>
</tr>
<tr>
<td>PTT</td>
<td>Permissive underreach transfer trip</td>
</tr>
<tr>
<td>RASC</td>
<td>Synchrocheck relay, COMBIFLEX</td>
</tr>
<tr>
<td>RCA</td>
<td>Relay characteristic angle</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced instruction set computer</td>
</tr>
<tr>
<td>RMS value</td>
<td>Root mean square value</td>
</tr>
<tr>
<td>RS422</td>
<td>A balanced serial interface for the transmission of digital data in point-to-point connections</td>
</tr>
<tr>
<td>RS485</td>
<td>Serial link according to EIA standard RS485</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-time clock</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote terminal unit</td>
</tr>
<tr>
<td>SA</td>
<td>Substation Automation</td>
</tr>
<tr>
<td>SBO</td>
<td>Select-before-operate</td>
</tr>
<tr>
<td>SC</td>
<td>Switch or push button to close</td>
</tr>
<tr>
<td>SCL</td>
<td>Short circuit location</td>
</tr>
<tr>
<td>SCS</td>
<td>Station control system</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervision, control and data acquisition</td>
</tr>
<tr>
<td>SCT</td>
<td>System configuration tool according to standard IEC 61850</td>
</tr>
<tr>
<td>SDU</td>
<td>Service data unit</td>
</tr>
<tr>
<td>SELV circuit</td>
<td>Safety Extra-Low Voltage circuit type according to IEC60255-27</td>
</tr>
<tr>
<td>SFP</td>
<td>Small form-factor pluggable (abbreviation) Optical Ethernet port (explanation)</td>
</tr>
<tr>
<td>SLM</td>
<td>Serial communication module.</td>
</tr>
<tr>
<td>SMA connector</td>
<td>Subminiature version A, A threaded connector with constant impedance.</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal matrix tool within PCM600</td>
</tr>
<tr>
<td>SMS</td>
<td>Station monitoring system</td>
</tr>
<tr>
<td>SNTP</td>
<td>Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network. Each embedded node can instead synchronize with a remote clock, providing the required accuracy.</td>
</tr>
<tr>
<td>SOF</td>
<td>Status of fault</td>
</tr>
<tr>
<td>SPA</td>
<td>Strömberg Protection Acquisition (SPA), a serial master/slave protocol for point-to-point and ring communication.</td>
</tr>
<tr>
<td>SRY</td>
<td>Switch for CB ready condition</td>
</tr>
<tr>
<td>ST</td>
<td>Switch or push button to trip</td>
</tr>
<tr>
<td>Starpoint</td>
<td>Neutral/Wye point of transformer or generator</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAr compensation</td>
</tr>
<tr>
<td>TC</td>
<td>Trip coil</td>
</tr>
<tr>
<td>TCS</td>
<td>Trip circuit supervision</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed by DARPA for Internet working and encompasses both network layer and transport layer protocols. While TCP and IP specify two protocols at specific protocol layers, TCP/IP is often used to refer to the entire US Department of Defense protocol suite based upon these, including Telnet, FTP, UDP and RDP.</td>
</tr>
<tr>
<td>TEF</td>
<td>Time delayed ground-fault protection function</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>TM</td>
<td>Transmit (disturbance data)</td>
</tr>
<tr>
<td>TNC connector</td>
<td>Threaded Neill-Concelman, a threaded constant impedance version of a BNC connector</td>
</tr>
<tr>
<td>TP</td>
<td>Trip (recorded fault)</td>
</tr>
<tr>
<td>TPZ, TPY, TPX, TPS</td>
<td>Current transformer class according to IEC</td>
</tr>
<tr>
<td>TRM</td>
<td>Transformer Module. This module transforms currents and voltages taken from the process into levels suitable for further signal processing.</td>
</tr>
<tr>
<td>TYP</td>
<td>Type identification</td>
</tr>
<tr>
<td>UMT</td>
<td>User management tool</td>
</tr>
<tr>
<td>Underreach</td>
<td>A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay does not "see" the fault but perhaps it should have seen it. See also Overreach.</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time. A coordinated time scale, maintained by the Bureau International des Poids et Mesures (BIPM), which forms the basis of a coordinated dissemination of standard frequencies and time signals. UTC is derived from International Atomic Time (TAI) by the addition of a whole number of "leap seconds" to synchronize it with Universal Time 1 (UT1), thus allowing for the eccentricity of the Earth's orbit, the rotational axis tilt (23.5 degrees), but still showing the Earth's irregular rotation, on which UT1 is based. The Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.</td>
</tr>
<tr>
<td>UV</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>WEI</td>
<td>Weak end infeed logic</td>
</tr>
<tr>
<td>VT</td>
<td>Voltage transformer</td>
</tr>
<tr>
<td>X.21</td>
<td>A digital signalling interface primarily used for telecom equipment</td>
</tr>
</tbody>
</table>
$3I_0$ Three times zero-sequence current. Often referred to as the residual or the ground-fault current

$3V_0$ Three times the zero sequence voltage. Often referred to as the residual voltage or the neutral point voltage