Safe and powerful

Dry transformers for subtransmission

MARTIN CARLEN, MARIANO BERROGAIN – ABB’s recent innovative power transformer, the HiDry™, is now in operation in a number of substations around the globe. With HiDry™, ABB has paved the way for dry-type transformer use to move from distribution applications into the subtransmission voltage range. The very capable and very safe oil-free technology behind this power transformer now allows substations to be easily integrated into any building, with full peace of mind. HiDry™ is particularly beneficial for substations located in cities and busy public venues with hefty power requirements.

Title picture
Salvador da Bahia in Brazil, with the Arena Fonte Nova stadium, which contains a 69kV substation, equipped with 69kV / 25MVA dry-type transformers. Photo credit: World Cup Portal.
Safe and powerful
Announced the launch of a dry-type power transformer for the 72.5 kV voltage class – HiDry72 [1]. HiDry stands for “high-voltage dry”; the superscript “72” indicates the 72.5 kV voltage class.

Those responsible for the project were intrigued by the idea that fire- and explosion-proof dry transformer technology could now be used not only for medium-voltage (MV) applications, but also for high-voltage (HV). It also became clear that dry transformers allowed the most straightforward design and layout, provided the most cost-efficient solution and that their use would remove any safety concerns about integrating the substation into the stadium. Safety is a primary aspect in a venue attended by tens of thousands of spectators.

Dry transformer technology

In contrast to oil-insulated transformers, dry transformers are air-insulated. This has pros and cons: The dielectric strength of oil is about eight times that of air, so the dimensions of an oil-immersed transformer core and coils are smaller than the air-insulated equivalent. On the other hand, dry transformers need no bushings and oil spills cannot occur. Their major advantage, though, is the lack of inflammable oil and other combustible materials. While a typical power transformer contains several thousand liters of inflammable oil, the insulation materials used in fire class F1 dry transformers are self-extinguishing. Dry transformers also provide an alternative to gas-insulated transformers and are safer to handle.

There are a number of different technologies used for dry transformers – like vacuum cast coil (VCC), RESIBLOC® and Open Wound – with each offering different special features. \ref{fig:transformer} shows the main components of a VCC transformer.

Between the primary and secondary coil of a VCC transformer is an air duct. Since the dielectric constant of the solid insulation material around the winding is higher than that of air, the electric field is mainly taken...
up by the air in the duct. The size of the air duct needs to be large enough to withstand lightning impulse testing. Each transformer is tested for partial discharge (a partial discharge level below 10 pC is required). This guarantees that the solid insulation is of high enough quality and is free from voids.

The same air duct also provides a flow of cooling air, which enters at the bottom and creates a self-sustaining flow thanks to the chimney effect. This provides an automatic regeneration of the insulating air. Additional air ducts are located between the low-voltage (LV) coils and core legs. The HV coils are also cooled on their outer surface. For transformers with high power ratings, additional air ducts can be introduced into the LV and HV coils.

The windings can be made from an aluminum or copper conductor, depending on customer preference. Incoming cables or open busbars are directly connected to the HV coils.

Globally, there is a significant trend toward using more dry transformers. The market potential is large: While for LV applications, dry transformer technology already strongly dominates, in MV applications oil-immersed units are still the most prominent. For HV applications, besides a few units using SF₆ gas insulation, oil-immersed types predominate as well. HiDry transformers are the first series air-insulated transformers for the 72.5 kV voltage class.

HiDry characteristics and technology
HiDry is available for power ratings up to 63 MVA in either three-phase or single-phase solutions. It offers the same functionality as an oil-immersed power transformer [2, 3] – including on-load voltage regulation using a dry-type on-load tap changer (OLTC). The OLTC offers a regulation range of ±10 percent.

HiDry transformers use the same base technology as is used for MV applications and is available in ABB’s VCC and RESIBLOC dry transformer implementations. But the demands placed on transformers for subtransmission voltage levels are much higher than those placed on distribution transformers: The higher voltage, higher rated power and increased range for voltage regulation

While a typical power transformer contains several thousand liters of inflammable oil, fire class F1 dry transformers are self-extinguishing.
for which HiDry 72 is ideally suited due to its excellent fire-safety properties.

HiDry 72 transformers use an epoxy resin for the casting of the coils. Epoxy resin is a thermosetting polymer that – in contrast to thermoplastic polymers – does not melt at elevated temperatures. The resin is filled with a large amount of non-combustible silica – either small sand particles or glass fiber – which, in case of fire, takes up heat and reduces the combustion temperature. When subjected to high temperatures, the epoxy does not spontaneously ignite but, rather, degrades and starts to degas and oxidize. Once the external input of heat stops or an external fire extinguishes, this process ceases. Thus, the HiDry 72 transformer never poses a flammability risk.

Flammability testing
Transformers of fire class F1 (which is based on the IEC 60076-11:2004 standard) have restricted flammability and the
HiDry transformers offer the same functionality as oil-immersed power transformers – including on-load voltage regulation using a dry-type OLTC.

emission of toxic substances and opaque smokes is minimized. The F1 fire behavior test is performed with one complete phase of a transformer – comprising HV and LV coils, the core leg and insulation components. A container filled with ethyl alcohol is placed below the coil and the alcohol is ignited. An electrical heating panel, representing an additional external heat source, is placed along one side of the HV coil, irradiating it with 24 kW. The test is performed in a standardized test chamber and the temperature and optical transmission properties of the exhaust gas are measured.

It is very important that the exhaust gases are not of poisonous or of a highly corrosive nature since they can flow into other parts of the building or be distributed via the ventilation system and may affect a large number of people. High transparency of the smoke allows people to orient themselves and find emergency exits.

ABB’s experience of dry transformers with internal failures is that they do not explode or eject parts. Normally the coils crack, local arcing and carbonization occurs, and some smoke is generated. Depending on the fault, the system protection will then disconnect the transformer or the temperature sensor will detect a tripping temperature [4].

Abb Fonte Nova substation, Brazil

The 69 kV substation installation in the Arena Fonte Nova stadium has a redundant configuration of two transformers and two sets of HV switchgear → 4. The transformers are placed below the access area of the stadium, very close to the grandstand. Open busbars fixed to the ceiling of the electric room connect switchgear and transformers. The substation was put into operation in spring 2013, well in time for hosting 2013 FIFA Confederations Cup games.

The 25 MVA transformers connect on the secondary side to the MV switchgear → 5. They have a secondary voltage that is switchable between 11.95 kV and 13.8 kV. The transformer coils are made with VCC technology, which provides robust windings (E2 environmental class) and good protection from environmental
The RESIBLOC coils are qualified for temperatures down to -60°C. Future substations Combining gas-insulated switchgear with HiDry72 transformers allows very compact substations to be constructed and easily integrated into any building. HiDry72 transformers can deliver higher voltages and more power to urban areas without the need to build additional substations. The very positive experience achieved so far with the 72.5 kV dry power transformer suggests that the portfolio of dry transformers should be extended to the next-higher voltage class.

Seville inner-city substation, Spain

There are now many HiDry72 transformers installed around the world. In Seville, Spain, for example, Endesa, the largest electrical utility in the country, decided to replace the existing oil-filled power transformers in two substations with HiDry72 transformers in order to eliminate any related risk for the neighborhood. Each substation has two transformers. One of the 31.5 MVA, 66/22 kV, OLTC (±8 x 1.25 percent) transformers was successfully short-circuit tested at the CESI independent testing facility in Italy, against the relevant requirements of IEC 60076-5 \(\rightarrow\) 6. The OLTC was mounted on the transformer. This was the largest power rating of a dry transformer ever tested at CESI.

Similarly, the utility in Ulricehamn, Sweden needed to replace an outdoor oil-immersed transformer in a forest. The utility decided to install a 45/11 kV, 16 MVA HiDry transformer and OLTC, thus reducing the environmental risk to zero \(\rightarrow\) 7. The RESIBLOC coils are qualified for temperatures down to -60°C.

References

