Maszynowe przemienniki częstotliwości ABB

Podręcznik oprogramowania
Oprogramowanie przemiennika ACS380
Lista powiązanych podręczników

<table>
<thead>
<tr>
<th>Podręczniki użytkownika i przewodniki do przenienników częstotliwości</th>
<th>Kod (język angielski)</th>
<th>Kod (polski)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive/converter/inverter safety instructions</td>
<td>3AXD50000037978</td>
<td>3AXD50000043464</td>
</tr>
<tr>
<td>ACS380 Hardware manual</td>
<td>3AXD50000029274</td>
<td>3AXD50000043464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Podręczniki użytkownika i przewodniki do oprogramowania przenienników częstotliwości</th>
<th>Kod (język angielski)</th>
<th>Kod (polski)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS380 Firmware manual</td>
<td>3AXD50000029275</td>
<td>3AXD50000043465</td>
</tr>
<tr>
<td>ACS380 Quick installation and start-up guide</td>
<td>3AXD50000018553</td>
<td>3AXD50000043109</td>
</tr>
<tr>
<td>ACS380 User interface guide</td>
<td>3AXD50000022224</td>
<td>3AXD50000043107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Podręczniki użytkownika i przewodniki do elementów opcjonalnych</th>
<th>Kod (język angielski)</th>
<th>Kod (polski)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-AP-x Assistant control panels user’s manual</td>
<td>3AUA0000085685</td>
<td></td>
</tr>
<tr>
<td>ACS-BP-S Basic control panel user’s manual</td>
<td>3AXD50000032527</td>
<td></td>
</tr>
<tr>
<td>FCAN-01 CANopen adapter module user’s manual</td>
<td>3AFE68615500</td>
<td></td>
</tr>
<tr>
<td>FECA-01 EtherCAT adapter module user’s manual</td>
<td>3AUA0000068940</td>
<td></td>
</tr>
<tr>
<td>FENA-01/-11/-21 Ethernet adapter module user’s manual</td>
<td>3AUA0000093568</td>
<td></td>
</tr>
<tr>
<td>FPBA-01 PROFIBUS DP adapter module user’s manual</td>
<td>3AFE68573271</td>
<td></td>
</tr>
<tr>
<td>FEPL-02 Ethernet POWERLINK adapter module user’s manual</td>
<td>3AUA0000123527</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Podręczniki użytkownika i przewodniki dotyczące narzędzi i konserwacji</th>
<th>Kod (język angielski)</th>
<th>Kod (polski)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive composer PC tool user’s manual</td>
<td>3AUA0000094606</td>
<td></td>
</tr>
<tr>
<td>Converter module capacitor reforming instructions</td>
<td>38FE64059629</td>
<td></td>
</tr>
<tr>
<td>Adaptive Programming Application guide</td>
<td>3AXD50000028574</td>
<td></td>
</tr>
<tr>
<td>NETA-21 remote monitoring tool user’s manual</td>
<td>3AUA0000096939</td>
<td></td>
</tr>
<tr>
<td>NETA-21 remote monitoring tool installation and start-up guide</td>
<td>3AUA0000096881</td>
<td></td>
</tr>
</tbody>
</table>

Podręczniki użytkownika i inne dokumenty są dostępne w Internecie w formacie PDF. Patrz sekcja Biblioteka dokumentów w Internecie na wewnętrznej stronie tylnej okładki. W sprawie podręczników, które nie są dostępne w bibliotece dokumentów, należy skontaktować się z lokalnym przedstawicielem firmy ABB.
Podręcznik oprogramowania

Oprogramowanie maszynowego przemiennika częstotliwości ACS380

Spis treści

3. Uruchamianie, bieg identyfikacyjny i obsługa

© 2017 ABB Oy. Wszelkie prawa zastrzeżone.

3AXD50000043465 wersja D
PL
Tłumaczenie oryginalnej instrukcji
3AXD50000029275
OBOWIĄZUJE OD: 2017-10-10
Spis treści

Lista powiązanych podręczników .. 2

1. Wprowadzenie do podręcznika

Spis treści .. 11
Zastosowanie ... 11
Instrukcje bezpieczeństwa .. 11
Odbiorcy .. 12
Przeznaczenie tego podręcznika .. 12
Zawartość podręcznika .. 12
Wyrażenia i skróty ... 13
Powiązane podręczniki ... 15
Zrzeczenie odpowiedzialności dotyczące cyberbezpieczeństwa 15

2. Panel sterowania

Spis treści .. 17
Panel sterowania ... 17
Widok główny i widok komunikatów .. 18
Menu opcji i menu główne ... 19
 Menu opcji ... 19
 Menu główne .. 19

3. Uruchamianie, bieg identyfikacyjny i obsługa

Spis treści .. 25
Uruchamianie przemieninika częstotliwości 25
Wykonanie biegu identyfikacyjnego ... 27
 Informacje ogólne .. 27
 Procedura biegu identyfikacyjnego ... 27
Uruchamianie i zatrzymywanie przemieninika 29
Zmienianie kierunku obrotów ... 29
Ustawianie wartości zadanych prędkości i częstotliwości 29
Ustawianie parametrów przemieninika .. 30
Otwieranie diagnostyki ... 30
Zmiana jednostek .. 31

4. Makro sterowania

Spis treści .. 33
Makro ABB standard .. 34
 Domyślne przyłącza sterowania makra ABB standard 35
Makro ABB ograniczone .. 37
 Domyślne przyłącza sterowania makra ABB ograniczone 37
Makro sterowania magistralą komunikacyjną 38
 Domyślne przyłącza sterowania dla makra magistrali komunikacyjnej . 38
Makro alternatywne .. 40
 Domyślne przyłącza sterowania dla makra alternatywnego 41
5. Funkcje programu

Spis treści ... 53
Lokalne i zewnętrzne miejsca sterowania 54
 Sterowanie lokalne ... 54
 Sterowanie zewnętrzne ... 55
Tryby pracy i tryby sterowania silnikiem 56
 Schemat przeglądowy hierarchii sterowania 56
 Tryb sterowania prędkością 58
 Tryb sterowania momentem ... 58
 Tryb sterowania częstotliwością 58
 Specjalne tryby sterowania 58
 Parametry i diagnostyka ... 59
Konfigurowanie i programowanie przemiennika częstotliwości 60
 Programowanie za pomocą parametrów 60
 Programowanie adaptacyjne 61
Interfejsy sterowania .. 64
 Programowalne wejścia analogowe 64
 Programowalne wyjścia analogowe 64
 Programowalne wejścia i wyjścia cyfrowe 64
 Programowalne wyjścia przekaźnikowe 65
 Sterowanie poprzez magistrale komunikacyjną 65
Sterowanie silnikiem ... 66
 Typy silników .. 66
 Identyfikacja silnika .. 66
 Przejście przez zanik napięcia zasilania 66
 Sterowanie wektorowe .. 66
 Rampy wartości zadane ... 67
 Stałe prędkości/częstotliwości 68
 Prędkości/częstotliwości krytyczne 68
 Kontrola naglego przyspieszenia 70
 Obsługa echa z enkodera .. 70
 Bieg próbny .. 70
 Dane wydajności sterowania prędkością 73
 Dane wydajności sterowania momentem 74
 Skalarne sterowanie silnikiem 75
 Krzywa obciążenia użytkownika 76
 Stosunek U/f ... 77
 Hamowanie strumieniem .. 77
 Magnesowanie DC ... 78
 Optymalizacja energii ... 80
 Częstotliwość kluczenia .. 81
 Zatrzymanie z kompensacją prędkości 82
6. Parametry

Spis treści ... 83
Makra sterowania .. 83
Regulacja PID zmiennej procesowej 83
Sterowanie hamulcem mechanicznym 86
Kontrola napięcia DC ... 93
 Kontrola nad przepięciami ... 93
 Kontrola nad zbyt niskim napięciem (przejście przez zanik napięcia zasilania) 93
 Limity dotyczące włączania i kontroli napięcia 95
 Parametry i diagnostyka ... 96
 Czopen hamowania .. 96
Sterowanie z wykorzystaniem wyjść 97
 Funkcja sterowania z wykorzystaniem wyłączników krańcowych ... 98
Ograniczenia ... 98
Wskazówki ... 99
Bezpieczeństwo i zabezpieczenia 100
 Standardowe funkcje ochrony 100
 Zatrzymanie awaryjne ... 100
 Ochrona termiczna silnika ... 101
 Programowalne funkcje zabezpieczeń 103
 Automatyczne resetowanie błędów 104
Diagnostyka ... 105
 Nadzór sygnału .. 105
 Kalkulatory oszczędności energii 105
 Analizator obciążenia .. 105
Różne ... 107
 Tworzenie i przywracanie kopii zapasowej 107
 Zestawy parametrów użytkownika 108
 Parametry magazynowania danych 108
 Potencjometr silnika .. 108
 Blokada użytkownika .. 109

6. Parametry

Spis treści ... 111
Wyrażenia i skróty ... 112
Adresy magistracji komunikacyjnej 112
Podsumowanie grup parametrów 113
Lista parametrów .. 115
 01 Wartości aktualne .. 115
 03 Wejściowe wartości zadane 119
 04 Ostrzeżenia i błędy ... 120
 05 Diagnostyka .. 121
 06 Słowa sterowania i stanu .. 124
 07 Informacje systemowe ... 130
 09 Sygnały apl. dźwigowej ... 132
 10 Standardowe DI, RO ... 134
 11 Standardowe DIO, FI, FO ... 138
 12 Standardowe AI ... 145
 13 Standardowe AO ... 150
 15 Moduł rozszerzeń .. 154
 19 Tryb pracy ... 159
Różnice w wartościach domyślnych pomiędzy ustawieniami częstotliwości zasilania 50 Hz i 60 Hz ... 382

7. Dodatkowe dane parametrów

Spis treści ... 385
Wyrażenia i skróty ... 385
Adresy magistrali komunikacyjnej ... 386
Grupy parametrów 1…9 .. 387
Grupy parametrów 10…99 ... 391
8. Śledzenie błędów

Spis treści .. 425
Bezpieczeństwo ... 425
Wskazania ... 426
 Ostrzeżenia i błędy ... 426
 Zdarzenia .. 426
Historia ostrzeżeń/błądów .. 426
 Dziennik zdarzeń ... 426
 Wyświetlanie informacji dotyczących ostrzeżeń/błądów 427
Generowanie kodów QR na potrzeby mobilnej aplikacji serwisowej 427
Komunikaty ostrzegawcze .. 428
Komunikaty o błędach ... 440

9. Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

Spis treści .. 456
Opis systemu .. 456
 Modbus ... 457
 CANopen ... 483

10. Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego

Spis treści .. 529
Opis systemu .. 529
Podstawowe informacje o interfejsie komunikacyjnym sterowania .. 531
 Słowo sterowania i słowo stanu 532
 Wartości zadane ... 534
 Wartości aktualne .. 535
 Zawartość słowa sterowania magistrali komunikacyjnej 536
 Zawartość słowa stanu magistrali komunikacyjnej 537
 Diagram stanu (ważny tylko dla profilu ABB Drives) 539
Automatyczna konfiguracja przemiennika częstotliwości pod kątem sterowania magistralą 540
 Automatycznie zmienione parametry (wszystkie adaptery) 541
 Określane parametry adaptera komunikacyjnego 541
Ręczne konfigurowanie przemiennika częstotliwości do sterowania przez magistralę komunikacyjną 543

11. Diagramy łańcucha sterowania

Zawartość tego rozdziału .. 545
Wybór wartości zadanej częstotliwości 546
Modyfikacja wartości zadanej częstotliwości 547
Wybór źródła wartości zadanej prędkości I 548
Wybór źródła wartości zadanej prędkości II 549
Rampa i krzywa wartości zadanej prędkości 550
Obliczanie błędu prędkości ... 551
Kontroler prędkości .. 552
Wybór i modyfikowanie źródła wartości zadanej momentu 553
Wybór wartości zadanej dla kontrolera momentu 554
12. Dodatek A – przemiennik ACS380 w aplikacjach dźwigowych

<table>
<thead>
<tr>
<th>Spis treści</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spis treści</td>
<td>561</td>
</tr>
<tr>
<td>Przegląd programu sterującego dźwigniem</td>
<td>562</td>
</tr>
<tr>
<td>Szybkie uruchomienie</td>
<td>563</td>
</tr>
<tr>
<td>Sterowanie przez interfejs we/wy za pomocą joysticka</td>
<td>564</td>
</tr>
<tr>
<td>Sterowanie przez interfejs we/wy za pomocą krokowego zadawania prędkości</td>
<td>568</td>
</tr>
<tr>
<td>Sterowanie przez interfejs magistrali komunikacyjnej za pomocą słowa sterowania</td>
<td>572</td>
</tr>
<tr>
<td>Konfigurowanie sprzężenia zwrotnego od prędkości za pomocą enkodera impulsowego</td>
<td>575</td>
</tr>
<tr>
<td>Konfigurowanie sterowania hamulcem mechanicznym</td>
<td>581</td>
</tr>
<tr>
<td>Sterowanie hamulcem mechanicznym dźwigu</td>
<td>583</td>
</tr>
<tr>
<td>Schemat czasowy sterowania hamulcem dźwigu</td>
<td>583</td>
</tr>
<tr>
<td>Kontrole układu hamulcowego — przegląd</td>
<td>584</td>
</tr>
<tr>
<td>Kontrole układu hamulcowego — badanie momentu</td>
<td>586</td>
</tr>
<tr>
<td>Kontrole układu hamulcowego — poślizg hamulca</td>
<td>587</td>
</tr>
<tr>
<td>Bezpieczne zamknięcie hamulca</td>
<td>588</td>
</tr>
<tr>
<td>Rozszerzony czas pracy</td>
<td>589</td>
</tr>
<tr>
<td>Dopasowanie prędkości</td>
<td>590</td>
</tr>
<tr>
<td>Maskowanie ostrzeżeń dźwigu</td>
<td>592</td>
</tr>
<tr>
<td>Funkcja strefy nieczułości</td>
<td>592</td>
</tr>
<tr>
<td>Blokada start/stop</td>
<td>593</td>
</tr>
<tr>
<td>Blokada pozycji zerowej joysticka</td>
<td>593</td>
</tr>
<tr>
<td>Blokada wartości zadanej joysticka</td>
<td>594</td>
</tr>
<tr>
<td>Funkcja limitu zatrzymania dźwigu</td>
<td>596</td>
</tr>
<tr>
<td>Funkcja zwalniania dźwigu</td>
<td>598</td>
</tr>
<tr>
<td>Zwalnianie z dwoma wejściami limitu</td>
<td>598</td>
</tr>
<tr>
<td>Szybkie zatrzymanie</td>
<td>600</td>
</tr>
<tr>
<td>Potwierdzenie włączenia zasilania</td>
<td>601</td>
</tr>
<tr>
<td>Obsługa wartości zadanej prędkości</td>
<td>604</td>
</tr>
<tr>
<td>Joysticki jednobiegunowe</td>
<td>604</td>
</tr>
<tr>
<td>Paraboliczna wartość zadana prędkości</td>
<td>604</td>
</tr>
<tr>
<td>Krokowe zadawanie prędkości</td>
<td>606</td>
</tr>
<tr>
<td>Potencjometr siłnika dźwigu</td>
<td>607</td>
</tr>
</tbody>
</table>

Dalsze informacje

<table>
<thead>
<tr>
<th>Zapytania dotyczące produktów i serwisu</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szkolenia z zakresu obsługi produktów</td>
<td>613</td>
</tr>
<tr>
<td>Przesyłanie uwag dotyczących instrukcji obsługi przemienników częstotliwości ABB</td>
<td>613</td>
</tr>
<tr>
<td>Biblioteka dokumentów w Internecie</td>
<td>613</td>
</tr>
</tbody>
</table>
Wprowadzenie do podręcznika

Spis treści
- Zastosowanie
- Instrukcje bezpieczeństwa
- Odbiorcy
- Przeznaczenie tego podręcznika
- Zawartość podręcznika
- Wyrażenia i skróty
- Powiązane podręczniki

Zastosowanie
Ten podręcznik dotyczy oprogramowania przemiennika ACS380 w wersji 2.04 lub nowszej.

Wersję oprogramowania można sprawdzić w parametrze 07.05 Wersja oprogramowania.

Instrukcje bezpieczeństwa
Należy przestrzegać wszystkich instrukcji bezpieczeństwa.
- Przed instalacją, rozruchem lub użytkowaniem przemiennika należy przeczytać pełne instrukcje dotyczące bezpieczeństwa w podręczniku przemiennika.
- Przed zmianą wartości parametrów należy przeczytać ostrzeżenia dotyczące funkcji oprogramowania sprzętowego. W rozdziale Parametry wymieniono odpowiednie parametry i związane z nimi ostrzeżenia.
Odbiorcy

W podręczniku tym założono, że czytelnik ma podstawową wiedzę na temat elektryczności, okablowania, elementów elektrycznych i symboli używanych na schematach elektrycznych.

Podręcznik jest przeznaczony dla odbiorców na całym świecie. W podręczniku używane są jednostki z układu SI, jak i imperialne.

Przeznaczenie tego podręcznika

Ten podręcznik zawiera informacje o projektowaniu, rozruchu i używaniu systemu przemiennika.

Zawartość podręcznika

- Wprowadzenie do podręcznika (ten rozdział) zawiera opis jego zastosowań, przeznaczenia i treści, a także omówienie warunków i postanowień.
- Panel sterowania (strona 17) zawiera wprowadzenie do wewnętrznego panelu sterowania.
- Uruchamianie, bieg identyfikacyjny i obsługa (strona 25) zawiera instrukcje dotyczące uruchamiania przemiennika i wykonywania biegu identyfikacyjnego, a także opisy głównych przypadków użycia.
- Makra sterowania (strona 33) zawiera krótki opis każdego makra wraz ze schematem połączenia. Makra to predefiniowane aplikacje, które przyspieszają konfigurowanie przemiennika częstotliwości przez użytkownika.
- Funkcje programu (strona 53) zawiera opisy funkcji i parametrów oprogramowania.
- Parametry (strona 111) zawiera opis parametrów używanych do programowania przemiennika częstotliwości.
- Dodatkowe dane parametrów (strona 385) zawiera szczegółowe informacje na temat parametrów.
- Śledzenie błędów (strona 425) zawiera listę ostrzeżeń i komunikatów o błądach wraz z możliwymi przyczynami oraz rozwiązaniami.
- Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB (strona 455) zawiera opis wychodzącej i przychodzącej komunikacji z siłą komunikacyjną za pomocą wbudowanego interfejsu komunikacyjnego przemiennika częstotliwości.
- Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego (strona 529) zawiera opis wychodzącej i przychodzącej komunikacji z siłą komunikacyjną za pomocą opcjonalnego modułu magistrali komunikacyjnej.
- Diagramy łańcucha sterowania (strona 545) zawiera omówienie łańcuchów wartości zadanymi dla przemiennika.
- Dodatek A – przemiennik ACS380 w aplikacjach dźwigowych (strona 561) zawiera opis funkcji specyficznych dla aplikacji z dźwigami. W razie potrzeby funkcje te można wykorzystać w innych aplikacjach.
Wyrażenia i skróty

<table>
<thead>
<tr>
<th>Wyrażenie/skrót</th>
<th>Wyjaśnienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-BP-S</td>
<td>Podstawowy panel sterowania, podstawowa klawiatura operatora do komunikacji z przemiennikiem częstotliwości.</td>
</tr>
<tr>
<td>AI</td>
<td>Analog Input, wejście analogowe; interfejs analogowych sygnałów wejściowych</td>
</tr>
<tr>
<td>AO</td>
<td>Analog Output, wyjście analogowe; interfejs analogowych sygnałów wyjściowych</td>
</tr>
<tr>
<td>AsynM</td>
<td>Silnik asynchroniczny</td>
</tr>
<tr>
<td>BAPO-01</td>
<td>Opcjonalny moduł rozszerzeń zasilania pomocniczego montowany z boku</td>
</tr>
<tr>
<td>BCAN-11</td>
<td>Interfejs CANopen</td>
</tr>
<tr>
<td>BCBL-01</td>
<td>Opcjonalny kabel USB–RJ45</td>
</tr>
<tr>
<td>BMIO-01</td>
<td>Moduł adaptera Modbus i wejść/wyjść</td>
</tr>
<tr>
<td>Czoper hamowania</td>
<td>Gdy to konieczne, przesyła nadwyżkę energii z pośredniego obwodu przemiannika częstotliwości do rezystora hamowania. Czoper jest aktywowany, gdy napięcie łącza DC przekracza określoną wartość maksymalną. Wzrost napięcia jest zazwyczaj powodowany zwalnianiem (hamowaniem) silnika o wysokiej bezwładności.</td>
</tr>
<tr>
<td>BREL-01</td>
<td>Opcjonalny moduł rozszerzeń wyjść przekaźnikowych montowany z boku</td>
</tr>
<tr>
<td>BTAC-02</td>
<td>Opcjonalny moduł interfejsu enkodera impulsowego montowany z boku</td>
</tr>
<tr>
<td>Bateria kondensatorów</td>
<td>Patrz Kondensatory łącza DC.</td>
</tr>
<tr>
<td>CCA-01</td>
<td>Opcjonalny adapter zimnej konfiguracji</td>
</tr>
<tr>
<td>Karta sterowania</td>
<td>Płytka drukowana, na której działa oprogramowanie</td>
</tr>
<tr>
<td>Łącze DC</td>
<td>Obwód DC między prostownikiem i inwerterem</td>
</tr>
<tr>
<td>Kondensatory łącza DC</td>
<td>Magazyn energii, który stabilizuje napięcie pośredniego obwodu DC</td>
</tr>
<tr>
<td>DI</td>
<td>Digital Input, wejście cyfrowe; interfejs cyfrowych sygnałów wejściowych</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Output, wyjście cyfrowe; interfejs cyfrowych sygnałów wyjściowych</td>
</tr>
<tr>
<td>Przemiennik częstotliwości</td>
<td>Przemiennik częstotliwości do sterowania silnikami AC</td>
</tr>
<tr>
<td>EFB</td>
<td>Wbudowana magistrala komunikacyjna</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>FBA</td>
<td>Adapter komunikacyjny</td>
</tr>
<tr>
<td>FCAN-01 / -01-M</td>
<td>Opcjonalny moduł adaptera CANopen</td>
</tr>
<tr>
<td>FCNA-01</td>
<td>Opcjonalny moduł adaptera ControlNet</td>
</tr>
<tr>
<td>FDNA-01</td>
<td>Opcjonalny moduł adaptera DeviceNet</td>
</tr>
<tr>
<td>FECA-01/-01-M</td>
<td>Opcjonalny moduł adaptera EtherCAT</td>
</tr>
<tr>
<td>FENA-11/-21/-21-M</td>
<td>Opcjonalny moduł adaptera Ethernet do obsługi protokołów EtherNet/IP, Modbus TCP i PROFINET IO</td>
</tr>
<tr>
<td>FEPL-02</td>
<td>Moduł adaptera Ethernet POWERLINK</td>
</tr>
<tr>
<td>FPBA-01/-01-M</td>
<td>Opcjonalny moduł adaptera PROFIBUS DP</td>
</tr>
</tbody>
</table>

Rozmiar obudowy (obudowa)

Dotyczy fizycznego rozmiaru przemiennika, na przykład R0 i R1. Informacje o obudowie można znaleźć na tabliczce znamionowej przymontowanej do przemiennika. Omówiono je w podręczniku użytkownika przemiennika.

Bieg ID

Bieg identyfikacyjny silnika. Podczas biegu identyfikacyjnego przemiennik częstotliwości identyfikuje charakterystykę silnika, aby uzyskać optymalne możliwości sterowania nim.

Szesnastkowe

Opisuje liczby binarne przy użyciu szesnastkowego systemu liczbowego. Liczby szesnastkowe są zapisywane przy użyciu cyfr 0–9 i liter A–F.

IGBT

Tranzystor bipolarny z izolowaną bramką

Obwód pośredni

Patrz Łące DC.

Inwerter

Przetwarza natężenie i napięcie prądu stałego w natężenie i napięcie prądu przemiennego.

I/O

Input/Output, wejście/wyjście

LSW

Least Significant Word, najmniej znaczące słowo

Makro

NETA-21

Opcjonalne narzędzie do zdalnego monitorowania

Sterowanie przez sieć

Na podstawie protokołów magistrali komunikacyjnej opartych na protokole Common Industrial Protocol (CIP™), takich jak DeviceNet i Ethernet/IP, oznacza sterowanie przemiennikiem przy użyciu obiektów Net Ctrl i Net Ref profilu przemiennika ODVA AC/DC. Więcej informacji można znaleźć na stronie www.odva.org i w następujących podręcznikach:

- FDNA-01 DeviceNet adapter module user’s manual
 (3AFE68573360 [j. ang.]) i
- FENA-01/-11/-21 Ethernet adapter module user’s manual
 (3AUA0000093568 [j. ang.])

Parametr

Instrukcja działania dla przemiennika częstotliwości, którą użytkownik może dostosować, lub sygnał zmierzony albo obliczony przez przemiennik
Prowadzenie do podręcznika

Powiżane podręczniki są wymienione za okładką przednią w sekcji Lista powiąza-
nych podręczników.

Zrzeczenie odpowiedzialności dotyczące cyberbezpieczeństwa

Ten produkt został zaprojektowany z myślą o podłączeniu do interfejsu sieciowego i przesyłaniu przez niego informacji oraz danych. Odpowiedzialność za zapewnienie bezpiecznego połączenia między produktem a siecią klienta lub dowolną inną siecią (o ile występuje taka konieczność) spoczywa w całości po stronie klienta. Klient powinien zadbać o wszelkie niezbędne środki (w tym, ale nie tylko, o instalację zapór sieciowych oraz aplikacji do uwierzytelniania i szyfrowania danych, instalację programów antywirusowych itp.) w celu ochrony produktu, sieci, swoich systemów i interfejsu przed wszelkimi naruszeniami bezpieczeństwa, nieuprawnionym dostępem, zakłóce-
niami pracy, włamaniami oraz wyciekami bądź kradzieżami danych lub informacji. Firma ABB i jej firmy stwarzające nie odpowiadają za szkody i/lub straty związane z takimi naruszeniami bezpieczeństwa, wszelkim nieupoważnionym dostępem, zakłóce-
niami pracy, włamaniami oraz wyciekami bądź kradzieżami danych lub informacji.

Warto również zapoznać się z sekcją Blokada użytkownika (na str. 109).

<table>
<thead>
<tr>
<th>PDO</th>
<th>Obiekt danych procesu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulator PID</td>
<td>Regulator proporcjonalno-całkująco-różniczkujący</td>
</tr>
<tr>
<td>Sterownik PLC</td>
<td>Programmable Logic Controller, programowalny sterownik logiczny</td>
</tr>
<tr>
<td>PMSM</td>
<td>Silnik synchroniczny z magnesami trwałymi</td>
</tr>
<tr>
<td>PM</td>
<td>Magnes trwały</td>
</tr>
<tr>
<td>PROFIBUS, PROFIBUS DP, PROFINET IO</td>
<td>Zastrzeżone znaki towarowe spółki PI - PROFIBUS & PROFINET International</td>
</tr>
<tr>
<td>R0, R1 itd.</td>
<td>Rozmiar obudowy (obudowa)</td>
</tr>
<tr>
<td>RCD</td>
<td>Zabezpieczenia różnicowo-prądowe</td>
</tr>
<tr>
<td>Prostownik</td>
<td>Przetwarza napięcie i napięcie prądu przemiennego w napięcie prądu stałego</td>
</tr>
<tr>
<td>RFI</td>
<td>Zakłócenia radiowe</td>
</tr>
<tr>
<td>RO</td>
<td>Relay Output, wyjście przekaźnikowe; interfejs cyfrowych sygnałów wyjściowych implementowany z użyciem przekaźnika</td>
</tr>
<tr>
<td>SDO</td>
<td>Obiekt danych usługi</td>
</tr>
<tr>
<td>SIL</td>
<td>Poziom nienaruszalności bezpieczeństwa. Patrz rozdział Funkcja bezpiecznego wyłączania momentu w podręczniku użytkownika przemiennika</td>
</tr>
<tr>
<td>STO</td>
<td>Bezpieczne wyłączanie momentu (STO). Patrz rozdział Funkcja bezpiecznego wyłączania momentu w podręczniku użytkownika przemiennika</td>
</tr>
</tbody>
</table>
Panel sterowania

Spis treści

• Panel sterowania
• Widok główny i widok komunikatów
• Menu opcji
• Menu główne
• Podmenu

Panel sterowania

Domyślnie przemiennik ACS 380 posiada zintegrowany panel sterowania. W razie potrzeby można użyć zewnętrznych paneli sterowania, takich jak panel sterowania z asystentami lub panel podstawowy. Więcej informacji podano w dokumentach ACX-AP-x assistant control panel’s user’s manual (3AUA0000085685 [j. ang.]) lub ACS-BP-S basic control panel’s user’s manual (3AXD50000032527 [j. ang.])
Panel sterowania

Widok główny i widok komunikatów

Widok główny jest widokiem podstawowym. Z poziomu widoku głównego można otworzyć menu główne i menu opcji.

Widok główny

1. Wybór sterowania — lokalne lub zdalne
2. Lokalne sterowanie uruchamianiem/zatrzymywaniem — włączone
3. Kierunek obrotu — do przodu lub do tyłu
4. Lokalne ustawienie wartości zadanych — aktywne
5. Prędkość — wartość zadana
6. Prędkość — wartość aktualna
7. Menu główne — lista menu
8. Menu opcji — menu szybkiego dostępu

Widok komunikatów zawiera komunikaty o błędach i ostrzeżeniach. Jeśli występuje aktywny błąd lub aktywne ostrzeżenie, w tym panelu jest bezpośrednio wyświetlany widok komunikatów.
Panel sterowania

Widok komunikatów można otworzyć z poziomu menu opcji lub diagnostyki.

Widok komunikatów: Błąd

Komunikaty o błędach wymagają natychmiastowej uwagi.

W celu rozwiązania problemu należy poszukać кодu w tabeli komunikatów o błędach na stronie 440.

Widok komunikatów: Ostrzeżenie

Komunikaty o ostrzeżeniach informują o potencjalnych problemach.

W celu rozwiązania problemu należy poszukać кодu w tabeli komunikatów ostrzegawczych na stronie 428.

Menu opcji i menu główne

Menu opcji

Menu opcji zapewnia szybki dostęp do funkcji.

1. Miejsce sterowania — ustawia sterowanie lokalne lub zdalne.
3. Aktywne błędy — wyświetla potencjalne błędy.
5. Aktywne ostrzeżenia — wyświetla możliwe ostrzeżenia.

Menu główne

Uwaga: Można określić, które elementy menu głównego są widoczne (patrz parametr 49.30).

1.	Dane silnika — parametry silnika
2.	Sterowanie silnikiem — ustawienia silnika
3.	Makra sterowania
4.	Diagnostyka — błędy, ostrzeżenia, dziennik błędów i stan połączenia
5.	Wydajność energetyczna — oszczędzanie energii
6.	Parametry — parametry

Podmenu

Dane silnika

| 1. Typ silnika — AsynM, PMSM, SynRM |
| 2. Tryb sterowania — Skalarny lub Wektorowy |
| 3. Moc znamionowa |
| 4. Prąd znamionowy |
| 5. Napięcie znamionowe |
| 6. Częstotliwość znamionowa |
| 7. Prędkość znamionowa |
| 8. Moment znamionowy |
| 10. Znamionowy cos fi |
| 11. Wybór jednostek — układ międzynarodowy lub imperialny |
Panel sterowania

Dane silnika: Typ silnika
1. AsynM - indukcyjny silnik asynchroniczny
2. PMSM - synchroniczny silnik z magnesami trwałymi
3. SynRM - synchroniczny silnik reluktancyjny

Dane silnika: Tryb sterowania
1. Skalarny
2. Wektorowy

Dane silnika: Kolejność faz
1. U V W
2. U W V

Dane silnika: Wybór jednostki
1. Jednostki międzynarodowe
2. Jednostki imperialne

Sterowanie silnikiem
1. Tryb startu — stały czas, automatyczny
2. Tryb zatrzymania — wybieg, rampa, trzymanie DC
3. Czas przyspieszania
4. Czas zwalniania
5. Maksymalna dopuszczalna prędkość
6. Maksymalny dopuszczalny prąd
7. Minimalna dopuszczalna prędkość

Sterowanie silnikiem:
Tryby startu
1. Stały czas
2. Automatyczny
Panel sterowania

Sterowanie silnikiem:
Tryby zatrzymania:
1. Wybieg
2. Rampa
3. Trzymanie DC

Makra sterowania:
Dostępność makr sterowania zależy od zainstalowanego modułu opcji.
1. ABB standard (2-przewodowe)
2. ABB ograniczone (2-przewodowe)
3. Alternatywne
4. Potencjometr silnika
5. PID
6. Modbus RTU
7. PROFIBUS
8. PROFINET IO
9. EthernetIP
10. Modbus TCP
11. EtherCAT
12. CANopen

Diagnostyka:
1. Aktywny błąd — kod błędu
2. Historia błędów — lista ostatnich kodów błędów (od najnowszych)
3. Aktywne ostrzeżenia — kod ostrzeżenia
4. Stan połączenia — sygnały magistrali komunikacyjnej i wejść/wyjść
Wydajność energetyczna

1. Zaoszczędzona energia (w kWh)
2. Zaoszczędzone pieniądze
3. Zaoszczędzona energia (w MW)
4. Zaoszczędzone pieniądze x 1000
5. Koszt na kWh

Parametry

1. Pełna lista parametrów — menu grup z wszystkimi parametrami i ich poziomami
2. Lista zmodyfikowanych parametrów
3. Przywrócenie parametrów — przywrócenie fabrycznych wartości domyślnych parametrów
Panel sterowania
Uruchamianie, bieg identyfikacyjny i obsługa

Spis treści

• Uruchamianie przemiennika częstotliwości
• Wykonanie biegu identyfikacyjnego
• Uruchamianie i zatrzymywanie przemiennika
• Zmienianie kierunku obrotów
• Ustawianie wartości zadanych prędkości i częstotliwości
• Ustawianie parametrów przemiennika
• Otwieranie diagnostyki
• Zmiana jednostek

Uwaga: W tym rozdziale rozruch przemiennika częstotliwości, bieg identyfikacyjny oraz inne działania są wykonywane za pomocą zintegrowanego panelu. Można je także wykonać za pomocą zewnętrznego panelu sterowania lub programu Drive Composer.

Uruchamianie przemiennika częstotliwości

1. Wybrać typ jednostek (międzynarodowe lub imperialne) i nacisnąć przycisk OK.
 Przemiennik wykrywa podłączony adapter i definiuje odpowiednie ustawienia. Może to trwać kilka sekund zależnie od adaptera.

2. W widoku *Dane silnika* ustawić typ silnika:
 - *AsynM*: Silnik asynchroniczny
 - *PMSM*: Silnik synchroniczny z magnesem trwałym
 - *SynRM*: Synchroniczny silnik reluktancyjny

3. Wybrać tryb sterowania silnikiem:

Skalarne: Zadawanie częstotliwości. Tego trybu należy użyć, gdy:
- liczba silników może ulec zmianie,
- znamionowy prąd silnika jest mniejszy niż 20% znamionowego prądu przemiennika.

Tryb skalarny nie jest zalecany w przypadku silników z magnesami trwałymi.

 - Moc znamionowa
 - Prąd znamionowy
 - Napięcie znamionowe
 - Częstotliwość znamionowa
 - Prędkość znamionowa
 - Moment znamionowy (opcjonalnie)
 - Znamionowy cos fi

5. Sprawdzić kierunek obrotów silnika.
 W razie potrzeby ustawić kierunek obrotów silnika przy użyciu ustawienia Kolejność faz lub zmieniając fizycznie kolejność faz podłączonego kabla silnika.

6. W widoku Sterowanie silnikiem ustawić tryb startu i zatrzymania.

7. Ustawić czasy przyspieszania i zwalniania.
 Uwaga: Rampy przyspieszania i zwalniania bazują na wartości parametru 46.01 Skalowanie prędkości/46.02 Skalowanie częstotliwości.

 W przypadku urządzeń z podłączonym adapterem komunikacyjnym magistrala komunikacyjna jest widoczna w widoku Makra sterowania. Konieczne jest zmodyfikowanie niektórych parametrów, na przykład numeru ID stacji. Patrz rozdział Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego.

Wykonanie biegu identyfikacyjnego

Informacje ogólne

Przemiennik automatycznie szacuje parametry silnika przy użyciu statycznego biegu identyfikacyjnego (przy pierwszym uruchomieniu przemiennika) i po zmianie jakiejkolwiek parametru silnika (grupa 99 Dane silnika). Dzieje się tak, gdy są spełnione następujące warunki:

- parametr 99.13 Żądanie biegu ident. jest ustawiony na wartość Statyczny i
- parametr 99.04 Tryb sterowania silnikiem jest ustawiony na wartość Wektorowy.

W większości zastosowań nie istnieje potrzeba wykonania osobnego biegu identyfikacyjnego. Bieg identyfikacyjny należy wybrać dla bardziej zaawansowanych zastosowań. Przykłady:

- jest używany silnik z magnesami trwałymi (PMSM),
- przemiennik częstotliwości działa w pobliżu zerowych wartości zadanych prędkości lub
- wymagana jest praca z momentem powyżej znamionowego momentu silnika w szerokim zakresie prędkości.

Uwaga: Jeśli po wykonaniu biegu identyfikacyjnego parametry silnika zostaną zmienione należy powtórzyć ten bieg.

Uwaga: Jeśli już ustawiono parametry aplikacji przy użyciu skalarnego trybu sterowania silnikiem i trzeba przejść na tryb wektorowy:

- w menu Dane silnika ustawić wartość Sterowanie silnikiem na Wektorowe lub ustawić parametr 99.04 Tryb sterowania silnikiem na Wektorowy.
- dla przemiennika częstotliwości sterowanego przez we/wy sprawdzić parametry w grupach 22 Wybór wart. zadanej prędkości, 23 Rampa wart. zad. prędkości, 12 Standardowe AI, 30 Limity i 46 Ust. monitorowania/skalowania.
- dla przemiennika sterowanego momentem sprawdzić również parametry w grupie 26 Łańcuch wart. zad. momentu.

Procedura biegu identyfikacyjnego

Ostrzeżenie! Należy upewnić się, że procedurę można wykonać w bezpieczny sposób.

1. Otworzyć menu główne.
2. Wybrać podmenu Parametry.
3. Wybrać opcję Wszystkie parametry.
4. Wybrać opcję 99 Dane silnika i nacisnąć przycisk OK.
5. Wybrać opcję **99.13 Żądanie biegu ident.**, wybrać odpowiedni tryb biegu identyfikacyjnego i nacisnąć przycisk OK.
 Przed naciśnięciem przycisku Start jest wyświetlane komunikat ostrzegawczy **AFF6 Bieg identyfikacyjny**.
 Dioda LED na panelu zaczyna migać na zielono, wskazując aktywne ostrzeżenie.

 Nie należy naciskać żadnych przycisków panelu sterowania podczas biegu identyfikacyjnego. Aby zatrzymać bieg identyfikacyjny, należy nacisnąć przycisk Stop.
 Dioda sygnalizacyjna przestaje migać po ukończeniu biegu identyfikacyjnego.

W przypadku niepowodzenia biegu identyfikacyjnego na panelu jest wyświetlany komunikat błędu **FF61 Bieg identyfikacyjny**.
Uruchamianie i zatrzymywanie przemiennika

1. Nacisnąć przycisk Start, aby uruchomić przemiennik.
2. Nacisnąć przycisk Stop, aby zatrzymać przemiennik.

Zmienianie kierunku obrotów

1. W menu opcji należy przejść, za pomocą przycisków ze strzałkami, do elementu wskazującego na kierunek obrotów.
2. Nacisnąć przycisk OK, aby zmienić kierunek obrotów.

Ustawianie wartości zadanych prędkości i częstotliwości

1. W menu opcji należy przejść do elementu wskazującego wartość zadaną prędkości lub częstotliwości, a następnie nacisnąć przycisk OK.
2. Zmienić wartość przy użyciu przycisków ze strzałkami.
3. Nacisnąć przycisk OK, aby potwierdzić nową wartość.
Ustawianie parametrów przemiennika

1. Wybrać menu główne w widoku głównym.
2. Przewinąć do pozycji Parametry i nacisnąć przycisk OK w celu otwarcia podmenu.
3. Wybrać pełną listę parametrów przy użyciu przycisków ze strzałkami i nacisnąć przycisk OK albo
4. Wybrać listę zmodyfikowanych parametrów przy użyciu przycisków ze strzałkami i nacisnąć przycisk OK.
5. Wybrać parametr i nacisnąć przycisk OK.

Parametry zostaną wyświetlone w odpowiednich grupach. Pierwsze dwie cyfry liczby parametrów reprezentują grupę parametrów. Na przykład parametry zaczynające się od liczby 30 znajdują się w grupie Limity.

Więcej informacji można znaleźć w rozdziale Parametry.

Otwieranie diagnostyki

1. Wybrać menu główne w widoku głównym.
2. Przewinąć do pozycji Diagnostyka i nacisnąć przycisk OK w celu otwarcia podmenu.
3. Wybrać ostrzeżenie lub błąd przy użyciu przycisków ze strzałkami i nacisnąć przycisk OK.

Więcej informacji można znaleźć w rozdziale Śledzenie błędów.
Zmiana jednostek

1. Wybrać menu główne w widoku głównym.
2. Przewinąć do pozycji Dane silnika i nacisnąć przycisk OK w celu otwarcia podmenu.
3. Przewinąć do pozycji wyboru rodzaju jednostek i nacisnąć przycisk OK.
4. Wybrać rodzaj jednostek przy użyciu przycisków ze strzałkami i nacisnąć przycisk OK.

Wybrany rodzaj jednostek jest widoczny w widoku głównym.
Makra sterowania

Spis treści

• *Makro ABB standard*
• *Makro ABB ograniczone*
• *Makro sterowania magistralą komunikacyjną*
• *Makro alternatywne*
• *Makro Potencjometr silnika*
• *Makro regulacji PID*
• *Makro Modbus*
• *Domyślnie wartości parametrów dla różnych makr*

Makra sterowania to zestawy domyślnych wartości parametrów odpowiadające określonym konfiguracjom sterowania. Ułatwiają i przyspieszają one konfigurowanie przemiennika.

Domyślnie makro dla przemiennika częstotliwości sterowanego przez we/wy jest ustawione jako standardowe makro ABB, a makro dla przemiennika sterowanego przez magistralę komunikacyjną — jako makro sterowania Magistrala komunikacyjna.
Makro ABB standard

Makro ABB standard jest odpowiednie dla przemiennika sterowanego przez interfejs wejść/wyjść. Wejścia cyfrowe sterują cyklem uruchamiania/zatrzymywania (sterowanie 2-przewodowe), wyborem kierunku i stałej prędkości (3 prędkości), a także wyborem rampy przyspieszania i zwalniania.

Makro można aktywować w widoku Makra sterowania lub przez ustawienie parametru 96.04 Wybór makra na wartość ABB standard.

Jest to domyślne makro dla standardowego wariantu przemiennika (ACS380-04xS) i konfigurowanego wariantu przemiennika ACS380-4xC +L538.
Domyślne przyłącza sterowania makra ABB standard

Ten schemat połączeń ma zastosowanie do standardowego wariantu przemiennika ACS380-04xS i konfigurowanego wariantu przemiennika ACS380-04xC +L538 (z wybranym makro ABB standard).

Uwagi:

Rozmiary zacisków: 0,14 mm² … 1,5 mm²

Momenty dokręcania: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND, AGND i SGND są połączone wewnętrznie do tego samego potencjału odniesienia.
Wartość zadana pochodząca z wbudowanego panelu.

1) W przypadku sterowania skalarnego (domyślnie): Patrz grupa parametrów 28 Łańcuch w. zad. częstotliwości.

W sterowaniu wektorowym: Patrz grupa parametrów 22 Wybór wart. zadanej prędkości.

Należy wybrać odpowiedni tryb sterowania w widoku Dane silnika lub przy użyciu parametru 99.04 Tryb sterowania silnikiem.

<table>
<thead>
<tr>
<th>DI3</th>
<th>DI4</th>
<th>Operacja/Parametr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Sterowanie skalane (domyślnie)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie wektorowe</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Ustawienie częstotliwości przez wejście AI1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>28.26 Stała częstotliwość 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>28.27 Stała częstotliwość 2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>28.28 Stała częstotliwość 3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>22.26 Prędkość stała 1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>22.27 Prędkość stała 2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>22.28 Prędkość stała 3</td>
</tr>
</tbody>
</table>

2) Należy uziemić obwodowo zewnętrzny ekran kabla pod zaciskiem uziemiającym na listwie uziemiającej dla kabli sterowania.

3) Wybierz jednostkę dla wejścia analogowego AI1 w parametrze 12.15 i dla AI2 w parametrze 12.25.

Sygnały wejściowe
- Wybór startu/stopu (DI1)
- Do przodu (0) / Do tyłu (1) (DI2)
- Wybór prędkości (DI3)
- Wybór prędkości (DI4)
- Wybór zestawu ramp 1 (0) / zestawu ramp 2 (1) (DIO1)
- Częstotliwość wyjściowa lub zadana prędkość silnika (AI1)

Sygnały wyjściowe
- Częstotliwość wyjściowa (AO)
- Gotowość do pracy (0) / Brak gotowości (10) (DIO2)
- Brak błędu [Błąd (-1)]
Makro ABB ograniczone

Makro ABB ograniczone jest odpowiednie do przemiennika sterowanego przez interfejs wejść/wyjść, który ma dostępną tylko minimalną liczbę wejść i wyjść.

Makro ABB ograniczone jest zapotyonalizowane na potrzeby wariantu podstawowego przemiennika (ACS380-04xN) bez podłączonych jakichkolwiek modułów opcjonalnych.

Makro można aktywować w widoku Makra sterowania lub przez ustawienie parametru 96.04 Wybór makra na wartość ABB ograniczone, 2-przewodowe.

Domyślnie przyłączca sterowania makra ABB ograniczone

To jest schemat domyślnych przyłączów sterowania dla wariantu podstawowego przemiennika (ACS380-04xN) z wybranym makrem ABB ograniczone.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Cyfrowe połączenia we/wy</td>
</tr>
<tr>
<td>DGND</td>
<td>Wyj. napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DI1</td>
<td>Wspólne złącze dla we. cyfrowych</td>
</tr>
<tr>
<td>DI2</td>
<td>Stop (0)/Start (1)</td>
</tr>
<tr>
<td>S+</td>
<td>Wybór stałej prędkości/częstotliwości</td>
</tr>
<tr>
<td>SGND</td>
<td>Bezpieczne wyłączanie momentu (STO)</td>
</tr>
<tr>
<td>S1</td>
<td>Bezpieczne wyłączanie momentu (STO). Połączenie fabryczne.</td>
</tr>
<tr>
<td>S2</td>
<td>Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości.</td>
</tr>
<tr>
<td>RC</td>
<td>Wyjście przekaźnikowe 1</td>
</tr>
<tr>
<td>RA</td>
<td>Brak błędu [Błąd (-1)]</td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>

Uwagi:

Rozmiaryzacisków: 0,14 mm² … 1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND i SGND są połączone wewnętrznie z tym samym potencjałemadanym.

Sygnały wejściowe

• Start / Stop (DI1)
• Częstotliwość wyjściowa lub zadana prędkość silnika (DI2)

Sygnały wyjściowe

• Wyjście przekaźnikowe 1: Błąd (-1)
• Brak błędu [Błąd (-1)]
Makro sterowania magistralą komunikacyjną

Makro sterowania magistralą komunikacyjną jest odpowiednie do przemiennika częstotliwości sterowanego przez taką magistralę. Domyślnie nie jest używany interfejs sygnałów wejść/wyjść.

Przy pierwszym uruchomieniu przemiennika makro sterowania Magistrala komunikacyjna aktywuje się automatycznie po wykryciu adaptera komunikacyjnego. Więcej informacji można znaleźć w sekcji *Automatyczna konfiguracja przemiennika częstotliwości pod kątem sterowania magistralą* na str. 540.

Makro można aktywować ręcznie w widoku *Makra sterowania* lub przez ustawienie parametru 96.04 *Wybór makra* na odpowiednią wartość na podstawie wybranej magistrali komunikacyjnej.

To makro ma zastosowanie dla wariantu konfigurowanego (ACS380-04xC) wyposażonego w moduł adaptera komunikacyjnego.

Domyślne przyłącza sterowania dla makra magistrali komunikacyjnej

To jest schemat domyślnych przyłączy sterowania dla wariantu konfigurowanego (ACS380-04xC) z wybranym makrem magistrali komunikacyjnej.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyfrowe połączenia we/wy</td>
<td></td>
</tr>
<tr>
<td>+24V</td>
<td>Wyj. napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjść napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Wspólne złącze dla wej. cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Resetowanie błędu</td>
</tr>
<tr>
<td>DI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>Bezpieczne wyłączanie momentu (STO)</td>
<td></td>
</tr>
<tr>
<td>S+</td>
<td>Bezpieczne wyłączanie momentu (STO).</td>
</tr>
<tr>
<td>SGND</td>
<td>Połączenie fabryczne.</td>
</tr>
<tr>
<td>S1</td>
<td>Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości.</td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>

- **Wyjście przekaźnikowe 1**
 - Brak błędu [Błąd (-1)]

- **Połączenia modułu magistrali komunikacyjnej**
 - +K457 FCAN-01-M CANopen
 - +K454 FPBA-01-M PROFIBUS DP
 - +K469 FECA-01-M EtherCAT
 - +K475 FENA-21-M Ethernet/IP, PROFINET, Modbus TCP
 - +K495 BCAN-11 interfejs CANopen

![Diagram of Makro sterowania magistralą komunikacyjną](image.png)
Uwagi:
Rozmiary zacisków: 0,14 mm² … 1,5 mm²
Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)
Zaciski DGND i SGND są połączone wewnątrznie z tym samym potencjałem zadanym.
Gdy jest podłączony moduł adaptera komunikacyjnego, oczekuje się, że sygnały sterowania przemiennikiem będą pochodzić z magistrali komunikacyjnej.
Podczas pierwszego uruchamiania przemiennika w wariancie ACS380-04xC +K495 (z modułem interfejsu BCAN-11 CANopen) zalecane jest, aby przewód nie był podłączony. Zapobiega to zakłócaniu magistrali CANopen, gdy przemiennik częstotliwości próbuje rozpoznać podłączony moduł.
Sygnały wejściowe
• Resetowanie błędu (DI1)
• Słowa sterowania i słowa wartości zadanej z modułu adaptera komunikacyjnego
Sygnały wyjściowe
• Słowa i sygnały stanu z modułu adaptera komunikacyjnego
• Brak błędu [Błąd (-1)]
Makro alternatywne

To makro udostępnia konfigurację interfejsu wejść/wyjść, w przypadku której jeden sygnał uruchamia silnik w kierunku do przodu, a drugi sygnał uruchamia silnik w kierunku do tyłu.

Makro można aktywować w widoku *Makra sterowania* lub przez ustawienie parametru *96.04 Wybór makra* na wartość *Alternatywne*.

To makro ma zastosowanie dla standardowego wariantu przemiennika częstotliwości (ACS380-04xS) i konfigurowanego wariantu przemiennika częstotliwości ACS380-04xC +L538. Można go używać z wariantem podstawowym przemiennika częstotliwości (ACS380-04xN), ale wtedy nie będzie można korzystać z wszystkich wejść i wyjść dostępnych dla makra.
Domyślne przyłącza sterowania dla makra alternatywnego

Ten schemat połączeń ma zastosowanie do przemienników częstotliwości w wariantie standardowym ACS380-04xS i konfigurowalnym ACS380-04xC +L538 (z wybieranym makrem Alternatywne).

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Wyj. napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Wspólne złącze dla we. cyfrowych</td>
</tr>
<tr>
<td>DI 1</td>
<td>Start do przodu; jeśli DI1 = DI2: stop</td>
</tr>
<tr>
<td>DI 2</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>DI 3</td>
<td>Wybór stałej prędkości/częstotliwości 1)</td>
</tr>
<tr>
<td>DI 4</td>
<td>Wybór stałej prędkości/częstotliwości 1)</td>
</tr>
<tr>
<td>DIO 1</td>
<td>Zestaw ramp 1 (0) / Zestaw ramp 2 2)</td>
</tr>
<tr>
<td>DIO 2</td>
<td>Gotowość do pracy (0) / Brak gotowości</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Wspólne złącze dla we/wy cyfrowych</td>
</tr>
<tr>
<td>AI 1</td>
<td>Częstotliwość wyjściowa / Prędkość zadana (0...10 V) 4)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>Al 2</td>
<td>Nie skonfigurowano 4)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygnałowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
</tbody>
</table>

Bezpieczne włączanie momentu (STO)

- S+ Bezp. włączanie momentu (STO)
- SGND Połączenie fabryczne
- S 1 Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości
- S 2

Wyjście przekaźnikowe

- RC Brak błędu [Błąd (-1)]
- RA
- RB EIA-485 Modbus RTU

- B+ Wbudowany adapter Modbus RTU (EIA-485)
- A- Patrz rozdział Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB.
- BGN
- Shield
- Termination

Uwagi:

Rozmiary zacisków: 0,14 mm² … 1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND, AGND i SGND są połączone wewnętrznie do tego samego potencjału odniesienia.
1) W przypadku sterowania skalarnego (domyślnie): Patrz grupa parametrów 28 Łańcuch w. zad. częstotliwości.
W sterowaniu wektorowym: Patrz grupa parametrów 22 Wybór wart. zadanej prędkości.
Należy wybrać odpowiedni tryb sterowania w widoku Dane silnika lub przy użyciu parametru 99.04 Tryb sterowania silnikiem.

<table>
<thead>
<tr>
<th>DI3</th>
<th>DI4</th>
<th>Operacja/Parametr</th>
<th>Sterowanie skalarnie (domyślnie)</th>
<th>Sterowanie wektorowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+0</td>
<td>Ustawienie częstotliwości przez wejście AI1</td>
<td>Ustawienie prędkości przez wejście AI1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>28.26 Stała częstotliwość 1</td>
<td>22.26 Prędkość stała 1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>28.27 Stała częstotliwość 2</td>
<td>22.27 Prędkość stała 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>28.28 Stała częstotliwość 3</td>
<td>22.28 Prędkość stała 3</td>
<td></td>
</tr>
</tbody>
</table>

2) W przypadku sterowania skalarnego (domyślnie): Patrz grupa parametrów 28 Łańcuch w. zad. częstotliwości.
W przypadku sterowania wektorowego: Patrz grupa parametrów 23 Rampa wart. zad. prędkości.
Należy wybrać odpowiedni tryb sterowania w widoku Dane silnika lub przy użyciu parametru 99.04 Tryb sterowania silnikiem.

<table>
<thead>
<tr>
<th>DIO2</th>
<th>Zestaw ramp</th>
<th>Parametry</th>
<th>Sterowanie skalarnie (domyślnie)</th>
<th>Sterowanie wektorowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>28.72 Czas przysp. 1 częstotliwości</td>
<td>28.72 Czas przysp. 1 częstotliwości</td>
<td>23.12 Czas przyspieszenia 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.73 Czas zwaln. 1 częstotliwości</td>
<td>28.73 Czas zwaln. 1 częstotliwości</td>
<td>23.13 Czas zwalniania 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>28.74 Czas przysp. 2 częstotliwości</td>
<td>28.74 Czas przysp. 2 częstotliwości</td>
<td>23.14 Czas przyspieszenia 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.75 Czas zwaln. 2 częstotliwości</td>
<td>28.75 Czas zwaln. 2 częstotliwości</td>
<td>23.15 Czas zwalniania 2</td>
</tr>
</tbody>
</table>

3) Należy uziemić obwodowo zewnętrzny ekran kabla pod zaciskiem uziemiającym na listwie uziemiającej dla kabli sterowania.

4) Wybierz jednostkę dla wejścia analogowego AI1 w parametrze 12.15 i dla AI2 w parametrze 12.25.

Sygnały wejściowe
- Start do przodu (DI1)
- Start do tyłu (DI2)
- Wybór stałej częstotliwości wyjściowej / prędkości silnika (DI3)
- Wybór stałej częstotliwości wyjściowej / prędkości silnika (DI4)
- Wybór zestawu ramp (DIO1)

Sygnały wyjściowe
- Częstotliwość wyjściowa lub zadana prędkość silnika (AI1)
- Częstotliwość wyjściowa (AO1)
- Brak błędu [Błąd (-1)]
Makro Potencjometr silnika

To makro umożliwia regulację prędkości przy użyciu dwóch przycisków. Jest to również ekonomiczne rozwiązanie dla układów ze sterownikiem PLC, który zadaje prędkość silnika tylko za pośrednictwem sygnałów cyfrowych.

Makro można aktywować w widoku Makra sterowania lub przez ustawienie parametru 96.04 Wybór makra na wartość Potencjometr silnika.

Więcej informacji na temat licznika potencjometru silnika zawiera sekcja Potencjometr silnika na stronie 108.

To makro ma zastosowanie dla standardowego wariantu przemiennika częstotliwości (ACS380-04xS) i konfigurowanego wariantu przemiennika częstotliwości ACS380-04xC +L538.
Domyślnie przyłącza sterowania dla makra Potencjometr silnika

Ten schemat połączeń ma zastosowanie do przemienników częstotliwości w wariantach standardowym ACS380-04xS i konfigurowalnym ACS380-04xC +L538 (z wybranym makrem Potencjometr silnika).

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Cyfrowe połączenia we/wy</td>
</tr>
<tr>
<td>DGND</td>
<td>Wyj. napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DI1</td>
<td>Wspólne złącze dla we. cyfrowych</td>
</tr>
<tr>
<td>DI2</td>
<td>Stop (0)/Start (1)</td>
</tr>
<tr>
<td>DI3</td>
<td>Do przodu (0)/Do tyłu (1)</td>
</tr>
<tr>
<td>DI4</td>
<td>Zwiększanie prędkości / częstotliwości 1)</td>
</tr>
<tr>
<td>DIO1</td>
<td>Zmniejszanie prędkości / częstotliwości 1)</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wybór stałej prędkości 1 2)</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Gotowość do pracy (0) / Brak gotowości (1)</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td></td>
<td>Wspólne złącze dla we/wy cyfrowych</td>
</tr>
</tbody>
</table>

 Analogowe we/wy

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1</td>
<td>Nie skonfigurowano 4)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AI2</td>
<td>Nie skonfigurowano 4)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygnałowego</td>
</tr>
<tr>
<td>AO</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
</tbody>
</table>

Bezpieczne wyłączanie momentu (STO)

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>S+</td>
<td>Bezpieczne wyłączanie momentu (STO)</td>
</tr>
<tr>
<td>SGND</td>
<td>Połączenie fabryczne</td>
</tr>
<tr>
<td>S1</td>
<td>Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości</td>
</tr>
<tr>
<td>S2</td>
<td>Wyjście przekaźnikowe</td>
</tr>
<tr>
<td>RC</td>
<td>Brak błędu [Błąd (-1)]</td>
</tr>
<tr>
<td>RA</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>

Uwagi:

Rozmiary zacisków: 0,14 mm² … 1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND, AGND i SGND są połączone wewnątrznie z tym samym potencjałem zadanym.

1) Gdy sygnał wejściowy jest włączony, zwiększanie i zmniejszanie prędkości/częstotliwości odbywa się zgodnie ze zdefinowanym współczynnikiem zmiany parametrów. Patrz parametry 22.75, 22.76, i 22.77. Jeśli oba wejścia DI3 i DI4 są aktywne lub nieaktywne, wartość zadana częstotliwości/prędkości pozostaje
bez zmian. Istniejąca wartość zadana częstotliwości/prędkości jest przechowywana podczas zatrzymania i wyłączenia.

2) **W przypadku sterowania skalarnego (domyślnie):** Patrz grupa parametrów **28 Łańcuch w. zad. częstotliwości**.
 W przypadku sterowania wektorowego: Patrz grupa parametrów **23 Rampa wart. zad. prędkości**.

Należy wybrać odpowiedni tryb sterowania w widoku **Dane silnika** lub przy użyciu parametru **99.04 Tryb sterowania silnikiem**.

<table>
<thead>
<tr>
<th>DIO1</th>
<th>Zestaw ramp</th>
<th>Parametry (Sterowanie skalare (domyślnie))</th>
<th>Parametry (Sterowanie wektorowe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>28.72 Czas przysp. 1 częstotliwości</td>
<td>23.12 Czas przyspieszania 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.73 Czas zwaln. 1 częstotliwości</td>
<td>23.13 Czas zwalniania 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>28.74 Czas przysp. 2 częstotliwości</td>
<td>23.14 Czas przyspieszania 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.75 Czas zwaln. 2 częstotliwości</td>
<td>23.15 Czas zwalniania 2</td>
</tr>
</tbody>
</table>

3) Należy uzemić obwodowo zewnętrzny ekran kabla pod zaciskiem uziemiającym na listwie uziemiającej dla kabli sterowania.

4) Wybierz jednostkę dla wejścia analogowego A1 w parametrze **12.15** i dla A12 w parametrze **12.25**.

Sygnały wejściowe
- Stop (0) / Start (1) (DI1)
- Do przodu (0) / Do tyłu (1) (DI2)
- Zwiększanie prędkości / częstotliwości (DI3)
- Zmniejszanie prędkości / częstotliwości (DI4)
- Wybór stałej prędkości (1, DIO1)

Sygnały wyjściowe
- Brak błędu [Błąd (-1)]
Makro regulacji PID

To makro jest przeznaczone dla aplikacji, w przypadku których przemiennik częstotliwości steruje prędkością silnika zawsze w oparciu o regulator PID, a wartość zadana pochodzi z wejścia analogowego AI1.

Makro można aktywować w widoku Makra sterowania lub przez ustawienie parametru 96.04 Wybór makra na wartość PID.

To makro ma zastosowanie dla standardowego wariantu przemiennika ACS380-04xS i konfigurowanego wariantu przemiennika ACS380-04xC +L538.

■ Domyślné przyłącza sterowania dla makra regulacji PID

Ten schemat połączeń ma zastosowanie do przemienników częstotliwości w wariantach standardowym ACS380-04xS i konfigurowalnym ACS380-04xC +L538 (z wybranym makrem regulacji PID).

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Cyfrowe połączenia we/wy</td>
</tr>
<tr>
<td>DGND</td>
<td>Wyj. napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DI 1</td>
<td>Wspólne złącze dla we. cyfrowych</td>
</tr>
<tr>
<td>DI 2</td>
<td>Stop (0)/Start (1)</td>
</tr>
<tr>
<td>DI 3</td>
<td>Wybór wewnętrznej nastawy 1 i)</td>
</tr>
<tr>
<td>DI 4</td>
<td>Wybór wewnętrznej nastawy 2 ii)</td>
</tr>
<tr>
<td>DIO 1</td>
<td>Wybór stałej prędkości/częstotliwości ci)</td>
</tr>
<tr>
<td>DIO 2</td>
<td>Wybór pary ramp</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Gotowość do pracy</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td></td>
<td>Wspólne złącze dla we/wy cyfrowych</td>
</tr>
<tr>
<td>AI 1</td>
<td>Analogowe we/wy</td>
</tr>
<tr>
<td>AGND</td>
<td>Wartość zadana PID zewnętrznego 3) 6)</td>
</tr>
<tr>
<td>AI 2</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AGND</td>
<td>Rzeczywiste sprzężenie zwrotne PID 4) 6)</td>
</tr>
<tr>
<td>AO</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AGND</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>SCR</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Ekran kabla sygnałowego</td>
</tr>
<tr>
<td>S+</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
<tr>
<td>SGND</td>
<td>Bezpieczne wyłączenie momentu (STO)</td>
</tr>
<tr>
<td>S 1</td>
<td>Bezpieczne wyłączenie momentu (STO). Połączenie fabryczne.</td>
</tr>
<tr>
<td>S 2</td>
<td>Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości</td>
</tr>
<tr>
<td>RC</td>
<td>Wyjście przekaźnikowe</td>
</tr>
<tr>
<td>RA</td>
<td>Brak błędu [Błąd (-1)]</td>
</tr>
<tr>
<td>RB</td>
<td>1...10 kohm</td>
</tr>
<tr>
<td></td>
<td>Max. 500 ohm</td>
</tr>
</tbody>
</table>
Uwagi:
Rozmiary zacisków: 0,14 mm² … 1,5 mm²
Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)
Zaciski DGND, AGND i SGND są połączone wewnętrznie do tego samego potencjału odniesienia.

1) Patrz tablica źródłowa parametrów 40.19 Zest. 1: wybór wewn. nast. 1 i 40.20 Zest. 1: wybór wewn. nast. 2.

<table>
<thead>
<tr>
<th>Źródło zdefiniowane przez par. 40.19 DI2</th>
<th>Źródło zdefiniowane przez par. 40.20 DI3</th>
<th>Aktywna nastawa wewnętrzna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Źródło nastawy: AI1 (parametr 40.16)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1 (parametr 40.21)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2 (parametr 40.22)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3 (parametr 40.23)</td>
</tr>
</tbody>
</table>

2) Wybierz odpowiedni tryb sterowania w widoku Dane silnika lub przy użyciu parametru 99.04 Tryb sterowania silnikiem.

<table>
<thead>
<tr>
<th>DI4</th>
<th>Operacja/Parametr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sterowanie skalarne (domyślnie)</td>
</tr>
<tr>
<td>0</td>
<td>Ustawienie częstotliwości przez wejście AI1</td>
</tr>
<tr>
<td>1</td>
<td>28.26 Stała częstotliwość 1</td>
</tr>
</tbody>
</table>

3) PID: Od 0 do 10 V -> od 0 do 100% nastawy PID.

4) Źródło sygnału jest zasilane zewnętrznie. Należy zapoznać się z instrukcjami producenta. Aby używać czujników zasilanych przy użyciu pomocniczego wyjścia napięcia przemiennika częstotliwości, należy zapoznać się z przykładami czujników dwu- i trzyprzewodowych w podręczniku użytkownika przemiennika.

5) Należy uziemić obwodowo zewnętrzny ekran kabla pod zaciskiem uziemiającym na listwie uziemiającej dla kabli sterowania.

6) Wybierz jednostkę dla wejścia analogowego AI1 w parametrze 12.15 i dla AI2 w parametrze 12.25.

Sygnały wejściowe
- Wartość zadana PID zewnętrznego (AI1)
- Rzeczywiste sprzężenie zwrotne z regulatora PID (AI2)
- Wybór startu/stopu (DI1)
- Stała nastawa 1 (DI2)
- Stała nastawa 2 (DI3)
- Wybór prędkości/częstotliwości (DI4)
- Wybór pary ramp (DIO1)
Sygnały wyjściowe

- Częstotliwość wyjściowa (AO)
- Brak błędu [Błąd (-1)]

Makro Modbus

Makro Modbus jest odpowiednie dla przemiennika częstotliwości sterowanego przez taką magistralę.

Makro można aktywować w widoku *Makra sterowania* lub przez ustawienie parametru 96.04 *Wybór makra* na Modbus TCP.

To makro ma zastosowanie dla standardowego wariantu przemiennika częstotliwości ACS380-04xS i konfigurowanego wariantu przemiennika częstotliwości ACS380-04xC +L538.
Domyślne przyłącza sterowania dla makra Modbus

Ten schemat połączeń ma zastosowanie do przemienników częstotliwości w wariantach standardowym ACS380-04xS i konfigurowalnym ACS380-04xC +L538 (z wybranym makrem Modbus).

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Wyj. napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocnicznych</td>
</tr>
<tr>
<td>DCOM</td>
<td>Wspólne złącze dla we. cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Resetowanie błędu</td>
</tr>
<tr>
<td>DI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DI3</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DI4</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DIO1</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DIO2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Wspólne złącze dla we/wy cyfrowych</td>
</tr>
</tbody>
</table>

Cyfrowe połączenia we/wy

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AGND</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AI2</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AGND</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AO</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>AGND</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygałowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
<tr>
<td>S+</td>
<td>Bezpieczne włączenie momentu (STO)</td>
</tr>
<tr>
<td>SGND</td>
<td>Bezpieczne włączenie momentu (STO). Połączenie fabryczne</td>
</tr>
<tr>
<td>S1</td>
<td>Oba obwody muszą być zamknięte, aby było możliwe uruchomienie</td>
</tr>
<tr>
<td>S2</td>
<td>przemiennika częstotliwości</td>
</tr>
<tr>
<td>RC</td>
<td>Wyjście przekaźnikowe</td>
</tr>
<tr>
<td>RA</td>
<td>Brak błędu [Błąd (-1)]</td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>

Bezpieczne włączanie momentu (STO)

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA-485 Modbus RTU</td>
<td>Wbudowany adapter Modbus RTU (EIA-485)</td>
</tr>
<tr>
<td></td>
<td>Patrz rozdział Sterowanie przez magistralę komunikacyjną za</td>
</tr>
<tr>
<td></td>
<td>pośrednictwem wbudowanego interfejsu komunikacyjnego EFB.</td>
</tr>
</tbody>
</table>

Uwagi:

Rozmiary zacisków: 0,14 mm² … 1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)
Zaciski DGND, AGND i SGND są połączone wewnątrznie do tego samego potencjału odniesienia.

Parametry wbudowane również ulegają zmianie. Patrz informacje o makrach wbudowanych 20.03 Źródło We1 Zew1 (Nie wybrano).

1) Wybierz jednostkę dla wejścia analogowego AI1 w parametrze 12.15 i dla AI2 w parametrze 12.25.

Sygnały wejściowe
- Resetowanie błędu (DI1)
- Wartość zadana częstotliwości/prędkości (AI1)

Sygnały wyjściowe
- Częstotliwość wyjściowa (AO)
- Brak błędu [Błąd (-1)]
Domyślne wartości parametrów dla różnych makr

Rozdział *Parametry* zawiera wartości domyślne wszystkich parametrów makra ABB standard (makro fabryczne). Niektóre parametry mają różne wartości domyślne w przypadku innych makr. Poniższa tabela zawiera wartości domyślne parametrów dla poszczególnych makr.

<table>
<thead>
<tr>
<th>Strona</th>
<th>Wybór makra</th>
<th>1 = ABB standard</th>
<th>12 = Alternatywne</th>
<th>13 = Potencjometr silnika</th>
<th>14 = PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.24</td>
<td>Źródło RO1</td>
<td>15 = Błąd (-1)</td>
<td>15 = Błąd (-1)</td>
<td>15 = Błąd (-1)</td>
<td>15 = Błąd (-1)</td>
</tr>
<tr>
<td>12.20</td>
<td>AI1 skal. do maks. AI1</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
</tr>
<tr>
<td>13.12</td>
<td>Źródło AO1</td>
<td>2 = Częstotliwość wyjściowa</td>
<td>2 = Częstotliwość wyjściowa</td>
<td>2 = Częstotliwość wyjściowa</td>
<td>2 = Częstotliwość wyjściowa</td>
</tr>
<tr>
<td>13.18</td>
<td>Maks. źródła AO1</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
<td>50,0</td>
</tr>
<tr>
<td>19.11</td>
<td>Wybór Zew1/Zew2</td>
<td>0 = Zew1</td>
<td>0 = Zew1</td>
<td>0 = Zew1</td>
<td>0 = Zew1</td>
</tr>
<tr>
<td>20.01</td>
<td>Komendy Zew1</td>
<td>2 = We1: start; We2: kierunek</td>
<td>3 = We1: st. w przód; We2: st. w tył</td>
<td>2 = We1: start; We2: kierunek</td>
<td>1 = We1: start</td>
</tr>
<tr>
<td>20.03</td>
<td>Źródło We1 Zew1</td>
<td>2 = DI1</td>
<td>2 = DI1</td>
<td>2 = DI1</td>
<td>2 = DI1</td>
</tr>
<tr>
<td>20.04</td>
<td>Źródło We2 Zew1</td>
<td>3 = DI2</td>
<td>3 = DI2</td>
<td>3 = DI2</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>20.05</td>
<td>Źródło We3 Zew1</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>20.06</td>
<td>Komendy Zew2</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>20.08</td>
<td>Źródło We1 Zew2</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>20.09</td>
<td>Źródło We2 Zew2</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>20.12</td>
<td>Źródło zezwolenia na zatrzymanie</td>
<td>1 = Wybrano</td>
<td>1 = Wybrano</td>
<td>1 = Wybrano</td>
<td>10 = DIO1</td>
</tr>
<tr>
<td>21.05</td>
<td>Źródło zatrzymania</td>
<td>1 = Nieaktywne (prawda)</td>
<td>1 = Nieaktywne (prawda)</td>
<td>1 = Nieaktywne (prawda)</td>
<td>1 = Nieaktywne (prawda)</td>
</tr>
<tr>
<td>22.11</td>
<td>W. zad. przęd. 1 Zew1</td>
<td>1 = Skalowane AI1</td>
<td>1 = Skalowane AI1</td>
<td>15 = Potencjometr</td>
<td>16 = PID</td>
</tr>
<tr>
<td>22.18</td>
<td>W. zad. przęd. 1 Zew2</td>
<td>0 = Zero</td>
<td>0 = Zero</td>
<td>0 = Zero</td>
<td>0 = Zero</td>
</tr>
<tr>
<td>22.22</td>
<td>Wybór stałej prędkości 1</td>
<td>4 = DI3</td>
<td>4 = DI3</td>
<td>10 = DIO1</td>
<td>5 = DI4</td>
</tr>
<tr>
<td>22.23</td>
<td>Wybór stałej prędkości 2</td>
<td>5 = DI4</td>
<td>5 = DI4</td>
<td>0 = Zawsze wyłączone</td>
<td>0 = Zawsze wyłączone</td>
</tr>
<tr>
<td>Strona</td>
<td>Opis</td>
<td>Wartość 1</td>
<td>Wartość 2</td>
<td>Wartość 3</td>
<td>Wartość 4</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>96.04</td>
<td>Wybór makra</td>
<td>1 = ABB standard</td>
<td>12 = Alternatywne</td>
<td>13 = Potencjometr silnika</td>
<td>14 = PID</td>
</tr>
<tr>
<td>22.71</td>
<td>Funkcja potencj. silnika</td>
<td>0 = Nieaktywne</td>
<td>0 = Nieaktywne</td>
<td>1 = Wl. (inicjowane przy wl. zasilania)</td>
<td>0 = Nieaktywne</td>
</tr>
<tr>
<td>22.73</td>
<td>Źródło górne potenc. silnika</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>4 = DI3</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>22.74</td>
<td>Źródło dolne potenc. silnika</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>5 = DI4</td>
<td>0 = Nie wybrano</td>
</tr>
<tr>
<td>23.11</td>
<td>Wybór zestawu ramp</td>
<td>10 = DIO1</td>
<td>10 = DIO1</td>
<td>0 = Czas przysp./zwaln. 1</td>
<td>0 = Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td>28.11</td>
<td>W. zad. częś. 1 Zew1</td>
<td>1 = Skalowane AI1</td>
<td>1 = Skalowane AI1</td>
<td>15 = Potencjometr silnika</td>
<td>16 = PID</td>
</tr>
<tr>
<td>28.15</td>
<td>W. zad. częś. 2 Zew1</td>
<td>0 = Zero</td>
<td>0 = Zero</td>
<td>0 = Zero</td>
<td>0 = Zero</td>
</tr>
<tr>
<td>28.22</td>
<td>Wybór stałej częstotliwości 1</td>
<td>4 = DI3</td>
<td>4 = DI3</td>
<td>10 = DIO1</td>
<td>5 = DI4</td>
</tr>
<tr>
<td>28.23</td>
<td>Wybór stałej częstotliwości 2</td>
<td>5 = DI4</td>
<td>5 = DI4</td>
<td>0 = Zawsze wyłączone</td>
<td>0 = Zawsze wyłączone</td>
</tr>
<tr>
<td>28.71</td>
<td>Wybór ust. rampy częst.</td>
<td>10 = DIO1</td>
<td>10 = DIO1</td>
<td>0 = Czas przysp./zwaln. 1</td>
<td>0 = Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td>40.07</td>
<td>Tryb pracy PID</td>
<td>0 = Wył.</td>
<td>0 = Wył.</td>
<td>0 = Wył.</td>
<td>2 = Wl. gdy przejściowy pracuje</td>
</tr>
<tr>
<td>40.16</td>
<td>Zest. 1: źródło nastawy 1</td>
<td>11 = AI1, procent</td>
<td>11 = AI1, procent</td>
<td>11 = AI1, procent</td>
<td>11 = AI1, procent</td>
</tr>
<tr>
<td>40.17</td>
<td>Zest. 1: źródło nastawy 2</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>2 = Wewnętrzna nastawa</td>
</tr>
<tr>
<td>40.19</td>
<td>Zest. 1: wybór wewn. nast. 1</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>3 = DI2</td>
</tr>
<tr>
<td>40.20</td>
<td>Zest. 1: wybór wewn. nast. 2</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>0 = Nie wybrano</td>
<td>4 = DI3</td>
</tr>
<tr>
<td>40.32</td>
<td>Zest. 1: wzmocnienie</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>40.33</td>
<td>Zest. 1: czas całkowania</td>
<td>60,0</td>
<td>60,0</td>
<td>60,0</td>
<td>60,0</td>
</tr>
</tbody>
</table>
Funkcje programu

Spis treści

- Lokalne i zewnętrzne miejsca sterowania
- Tryby pracy i tryby sterowania silnikiem
- Konfigurowanie i programowanie przemiennika częstotliwości
- Interfejsy sterowania
- Sterowanie silnikiem
- Sterowanie aplikacyjne
- Kontrola napięcia DC
- Sterowanie z wykorzystaniem wyłączników krańcowych
- Bezpieczeństwo i zabezpieczenia
- Diagnostyka
- Różne
Lokalne i zewnętrzne miejsca sterowania

Istnieją dwa główne miejsca sterowania: lokalne i zewnętrzne. Miejsce sterowanie można wybrać naciskając klawisz Loc/Rem na panelach, a także w narzędziu komputerowym Drive Composer.

Sterowanie lokalne

Gdy przemiennik częstotliwości jest w trybie sterowania lokalnego, polecenia sterowania są wydawane ze zintegrowanego panelu sterowania lub z komputera z programem Drive Composer. Sterowanie lokalne jest używane przede wszystkim podczas procesu uruchomienia urządzenia bądź dokonywania na nim prac konserwacyjnych. Gdy używane jest sterowanie lokalne, panel sterowania ma zawsze pierwszeństwo przed zewnętrznymi źródłami sygnałów sterujących.

Zmianę miejsca sterowania na lokalne można uniemogościć, używając parametru **19.17 Blokada ster. lokalnego**

Uwaga: Choć można używać jednocześnie panelu sterowania z asystentami i narzędzia Drive Composer, to sterowanie lokalne może być w danym momencie realizowane tylko przez jedno z tych rozwiązań.

Parametry i diagnostyka

Parametry: 19.17 Blokada ster. lokalnego, 49.05 Reakcja na utratę komunik.

Diagnostyka: 7081 Utrata panelu sterowania
Sterowanie zewnętrzne

Gdy przemiennik częstotliwości jest sterowany zewnętrznie, polecenia sterowania są podawane przez:

- zaciski interfejsu wejść/wyjść (wejścia cyfrowe i analogowe),
- interfejs magistrali komunikacyjnej (przez interfejs wbudowanej magistrali komunikacyjnej lub opcjonalny moduł adaptera komunikacyjnego),
- panel zewnętrzny (panel z asystentami).

Dostępne są dwa zewnętrzne miejsca sterowania, Zew1 i Zew2. Źródła poleceń startu i zatrzymania można wybrać oddzielnie dla każdego miejsca za pomocą parametrów 20.01...20.10. Dla każdego miejsca można wybrać oddzielny tryb sterowania, co pozwala na szybkie przełączenie się między różnymi trybami pracy, na przykład między sterowaniem prędkością i momentem. Wybór między miejscem EXT1 a EXT2 jest dokonywany przez dowolne źródło binarne, takie jak wejście cyfrowe lub słowo sterowania magistrali komunikacyjnej za pomocą parametru 19.11 Wybór Zew1/Zew2. Źródło wartości zadanej oraz tryb sterowania można również wybrać oddzielnie dla każdego miejsca sterowania.

Parametry i diagnostyka

Parametry: 20.01... 20.10, 19.11 Wybór Zew1/Zew2

Schemat blokowy: Źródło zezwolenia na bieg dla lokalizacji Zew1

Poniższy rysunek pokazuje parametry wyboru źródła sygnału zezwolenia na bieg dla zewnętrznej lokalizacji sterowania Zew1.

![Schemat blokowy Źródło zezwolenia na bieg dla lokalizacji Zew1](image)

Parametry i diagnostyka

Parametry: 19.11 Wybór Zew1/Zew2; 20.01…20.10.
Tryby pracy i tryby sterowania silnikiem

Przemiennik częstotliwości może pracować w wielu trybach z różnymi typami wartości zadanych. Jeśli tryb sterowania silnikiem jest ustawiony na Wektorowy (99.04), możliwy jest wybór różnego trybu pracy dla każdego dostępnego miejsca sterowania (Lokalne, Zew1, Zew2). Jeśli tryb sterowania silnikiem jest Skalarny, tryb pracy przemiennika częstotliwości jest ustawiony na tryb sterowania częstotliwością.

Poniżej znajduje się omówienie hierarchii sterowania i różnych typów wartości zadanych oraz łańcuchów sterowania.

![Diagram sterowania]

Parametry i diagnostyka

Parametry: grupa 19 Tryb pracy

- **Schemat przeglądowy hierarchii sterowania**

Poniżej przedstawiono szczegółową reprezentację typów wartości zadanych hierarchii sterowania przemiennikiem częstotliwości i łańcuchów sterowania.
Wybór źródła nastawy i sprzężenia zwrotnego regulatora PID procesu

Regulator PID procesu

Wartość zadana momentu
Wybór i modyfikowanie źródła

Wartość zadana prędkości
Wybór źródła I

Wartość zadana częstotliwości
Wybór i modyfikowanie źródła

Wybór źródła wartości zadanej prędkości II

Rampa i krzywa wartości zadanej prędkości

Obliczanie błędu prędkości

Kontroler prędkości

Wybór wartości zadanej dla kontrolera momentu

Ograniczanie momentu

Tryb wektorowy sterowania silnikiem
Tryb skalarny sterowania silnikiem

Kontroler momentu
Kontroler częstotliwości

Tryb wektorowy sterowania silnikiem
Tryb skalarny sterowania silnikiem

Kontroler momentu
Kontroler częstotliwości
Tryb sterowania prędkością

W trybie sterowania prędkością silnik dąży do zadanej prędkości podanej do przemiennika częstotliwości. Ten tryb można wykorzystywać jako sprzężenie zwrotne, prędkość szacowaną lub mierzoną.

Tryb sterowania prędkością jest dostępny zarówno w lokalnym, jak i zewnętrznym miejscu sterowania. Jest on obsługiwany tylko w trybie wektorowego sterowania silnikiem.

Sterowanie prędkością wykorzystuje łańcuch wartości zadanego prędkości. Wybierz wartość zadaną prędkości za pomocą parametrów z grupy 22 Wybór wart. zadanej prędkości na stronie 187.

Tryb sterowania momentem

W trybie sterowania momentem moment obrotowy silnika dąży do wartości zadanej podanej do przemiennika częstotliwości. Tryb sterowania momentem jest dostępny zarówno w lokalnym, jak i zewnętrznym miejscu sterowania. Jest on obsługiwany tylko w trybie wektorowego sterowania silnikiem.

Sterowanie momentem wykorzystuje łańcuch wartości zadanych momentu. Wybierz wartość zadaną momentu za pomocą parametrów z grupy 26 Łańcuch wart. zad. momentu na stronie 212.

Tryb sterowania częstotliwością

W trybie sterowania częstotliwością silnik dąży do zadanej częstotliwości wyjściowej podanej do przemiennika częstotliwości. Sterowanie częstotliwością jest dostępne zarówno w lokalnym, jak i zewnętrznym miejscu sterowania. Jest ono obsługiwane tylko w skalarnym trybie sterowania silnikiem.

Sterowanie częstotliwością wykorzystuje łańcuch wartości zadanych częstotliwości. Wybierz wartość zadaną częstotliwości za pomocą parametrów z grupy 28 Łańcuch w. zad. częstotliwości na stronie 217.

Specjalne tryby sterowania

Oprócz wyżej wymienionych dostępne są następujące specjalne tryby pracy:

• Sterowanie PID dla procesu. Więcej informacji można znaleźć w sekcji Regulacja PID zmiennej procesowej na stronie 83.
• Tryby awaryjnego zatrzymywania OFF1 i OFF3: Przemiennik częstotliwości przeprowadza zatrzymanie zgodnie ze zdefiniowaną rampą zwalniania, po czym zatrzymuje modulowanie.

• Tryb biegu próbnego: Po aktywowaniu sygnału biegu próbnego przemiennik częstotliwości jest uruchamiany i następuje przyspieszenie do zdefiniowanej prędkości. Więcej informacji można znaleźć w sekcji Bieg próbny na stronie 70.

• Magnesowanie wstępne: magnesowanie DC silnika przed uruchomieniem. Więcej informacji można znaleźć w sekcji Magnesowanie wstępne na stronie 78.

• Trzymanie prądem DC: zablokowanie wirnika przy prędkości bliskiej zeru w czasie jego normalnej pracy. Więcej informacji można znaleźć w sekcji Trzymanie DC na stronie 79.

• Nagrzewanie wstępne (nagrzewanie silnika): silnik pozostaje ciepły po zatrzymaniu przemiennika częstotliwości. Więcej informacji można znaleźć w sekcji Nagrzewanie wstępne (nagrzewanie silnika) na stronie 80.

Parametry i diagnostyka

Parametry: grupa 19 Tryb pracy, 99.04 Tryb sterowania silnikiem
Konfigurowanie i programowanie przemiennika częstotliwości

Program sterujący przemiennikiem częstotliwości składa się z dwóch części:

- program wbudowany
- program aplikacyjny

Program sterujący przemiennikiem częstotliwości

![Diagram showing program components]

Program sprzęciowy odpowiada za wykonywanie głównych funkcji sterujących, w tym funkcji umożliwiających sterowanie prędkością i momentem oraz częstotliwością, a także funkcji układu logicznego przemiennika częstotliwości (uruchamianie/zatrzymywania), interfejsu wejść/wyjść, komunikacji i zabezpieczeń. Funkcje programu sprzęciowego można konfigurować i programować za pomocą parametrów i można je rozszerzyć za pomocą programu aplikacyjnego.

Programowanie za pomocą parametrów

Parametry konfigurują wszystkie standardowe operacje przemiennika częstotliwości i można je ustawić za pomocą:

- zintegrowanego panelu — opis w rozdziale *Panel sterowania*;
- zewnętrzne panelu;
- narzędzia komputerowego Drive Composer — opis w podręczniku *Drive composer PC tool user’s manual* (3AUA0000094606, [j. ang.]);
- interfejsu magistrali komunikacyjnej — opis tej czynności zawiera rozdział "Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB i Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego."

Wszystkie ustawienia parametrów są automatycznie zapisywane w pamięci trwałej przemiennika częstotliwości. Jeśli jednak w przypadku jednostki sterującej przemiennika częstotliwości używane jest zasilanie zewnętrzne +24 V DC, zaleca się, aby po
wprowadzaniu jakichkolwiek zmian w parametrach wymusić ich zapisanie przed wyłączaniem jednostki sterującej poprzez użycie parametru 96.07 Ręczne zapisanie parametrów.

W razie konieczności można przywrócić wartości domyślne parametrów za pomocą parametru 96.06 Przywrócenie parametrów.

- Programowanie adaptacyjne

Tradycyjna metoda sterowania pracą przemiennika częstotliwości jest oparta na parametrach. Jednak standardowe parametry mają ustalony zestaw opcji do wyboru (zakres ustawień). Aby móc dodatkowo dostosować działanie przemiennika częstotliwości, można utworzyć program adaptacyjny przy użyciu zestawu bloków funkcyjnych.

Narzędzie Drive composer pro (w wersji 1.11 lub nowszej, dostępna oddzielnie) oraz Drive composer entry (w wersji 2.1 lub nowszej) są wyposażone w funkcję programowania adaptacyjnego z graficznym interfejsem użytkownika służącym do stworzenia niestandardowego programu. Bloki funkcyjne obejmują zwykle używane funkcje arytmetyczne i logiczne oraz na przykład bloki wyboru, porównania i timera.

Jako dane wejściowe programu mogą być używane wejścia fizyczne, informacje o stanie przemiennika częstotliwości, wartości aktualne, stałe i parametry. Dane wyjściowe programu mogą być używane na przykład jako sygnał startu, zdarzenie zewnętrzne lub wartość zadana albo być połączone z wyjściami przemiennika częstotliwości. W poniższej tabeli znajduje się lista dostępnych wejść i wyjść.

W przypadku podłączenia wyjścia programu adaptacyjnego do parametru wyboru będącego wskaźnikiem, parametr wyboru będzie zabezpieczony przed zapisem.

Przykład:

Jeśli parametr 31.01 Źródło zdarzenia zewnętrznego 1 jest połączony z wyjściem bloku programowania adaptacyjnego, wartość parametru jest wyświetlana jako Program adaptacyjny w panelu sterowania lub narzędziu komputerowym.

Parametr jest zabezpieczony przed zapisem (czyli nie można zmienić wyboru).

Stan programu adaptacyjnego pokazuje parametr 07.30 Stan progr. adaptacyjnego.

Więcej informacji zawiera podręcznik Adaptive programming application guide (3AXD50000028574 [j. ang.]).

<table>
<thead>
<tr>
<th>Wejścia dostępne dla programu adaptacyjnego</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>10.02 Stan DI po opóźnieniach, bit 0</td>
</tr>
<tr>
<td>DI2</td>
<td>10.02 Stan DI po opóźnieniach, bit 1</td>
</tr>
<tr>
<td>DI3</td>
<td>10.02 Stan DI po opóźnieniach, bit 2</td>
</tr>
<tr>
<td>DI4</td>
<td>10.02 Stan DI po opóźnieniach, bit 3</td>
</tr>
<tr>
<td>AI1</td>
<td>12.11 Wartość aktualna AI1 1)</td>
</tr>
<tr>
<td>AI2</td>
<td>12.21 Wartość aktualna AI2 1)</td>
</tr>
<tr>
<td>DIO1</td>
<td>11.02 Stan DIO po opóźnieniach, bit 0</td>
</tr>
<tr>
<td>DIO2</td>
<td>11.02 Stan DIO po opóźnieniach, bit 1</td>
</tr>
</tbody>
</table>
Funkcje programu

Wejścia dostępne dla programu adaptacyjnego

<table>
<thead>
<tr>
<th>Wejście</th>
<th>Źródło</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sygnały aktualne</td>
<td></td>
</tr>
<tr>
<td>Płaskość silnika</td>
<td>01.01 Użyta płaskość silnika</td>
</tr>
<tr>
<td>Częstotliwość wyjściowa</td>
<td>01.06 Częstotliwość wyjściowa</td>
</tr>
<tr>
<td>Pład silnika</td>
<td>01.07 Pład silnika</td>
</tr>
<tr>
<td>Moment silnika</td>
<td>01.10 Moment silnika</td>
</tr>
<tr>
<td>Moc na wale silnika</td>
<td>01.17 Moc na wale silnika</td>
</tr>
<tr>
<td>Stan</td>
<td></td>
</tr>
<tr>
<td>Włączone</td>
<td>06.16 Słowo stanu 1 przem., bit 0</td>
</tr>
<tr>
<td>Przerwane</td>
<td>06.16 Słowo stanu 1 przem., bit 1</td>
</tr>
<tr>
<td>Gotowość do startu</td>
<td>06.16 Słowo stanu 1 przem., bit 3</td>
</tr>
<tr>
<td>Wył. awaryjne</td>
<td>06.11 Główne słowo stanu, bit 3</td>
</tr>
<tr>
<td>W punkcie pracy</td>
<td>06.11 Główne słowo stanu, bit 8</td>
</tr>
<tr>
<td>Limitowanie</td>
<td>06.16 Słowo stanu 1 przem., bit 7</td>
</tr>
<tr>
<td>Zew1 aktywne</td>
<td>06.16 Słowo stanu 1 przem., bit 10</td>
</tr>
<tr>
<td>Zew2 aktywne</td>
<td>06.16 Słowo stanu 1 przem., bit 11</td>
</tr>
<tr>
<td>Magazyn danych</td>
<td></td>
</tr>
<tr>
<td>Magazyn danych 1 real32</td>
<td>47.01 Magazyn danych 1 real32</td>
</tr>
<tr>
<td>Magazyn danych 2 real32</td>
<td>47.02 Magazyn danych 2 real32</td>
</tr>
<tr>
<td>Magazyn danych 3 real32</td>
<td>47.03 Magazyn danych 3 real32</td>
</tr>
<tr>
<td>Magazyn danych 4 real32</td>
<td>47.04 Magazyn danych 4 real32</td>
</tr>
</tbody>
</table>

1) Dostępne tylko pod warunkiem, że są podłączone i używane moduły wejścia/wyjścia i Modbus.

Wyjścia dostępne dla programu adaptacyjnego

<table>
<thead>
<tr>
<th>Wyjście</th>
<th>Cel</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td></td>
</tr>
<tr>
<td>RO1</td>
<td>10.24 Źródło RO1</td>
</tr>
<tr>
<td>A01</td>
<td>13.12 Źródło A01 2)</td>
</tr>
<tr>
<td>DIO1</td>
<td>11.06 Źródło wyjścia DIO1 2)</td>
</tr>
<tr>
<td>DIO2</td>
<td>11.10 Źródło wyjścia DIO2 2)</td>
</tr>
<tr>
<td>Sterowanie startem</td>
<td></td>
</tr>
<tr>
<td>Wybór Zew1/Zew2</td>
<td>19.11 Wybór Zew1/Zew2</td>
</tr>
<tr>
<td>Zewolenie na bieg 1</td>
<td>20.12 Źródło zewolenia na bieg 1</td>
</tr>
<tr>
<td>Polecenie Zew1 we1</td>
<td>20.03 Źródło We1 Zew1</td>
</tr>
<tr>
<td>Polecenie Zew1 we2</td>
<td>20.04 Źródło We2 Zew2</td>
</tr>
<tr>
<td>Polecenie Zew1 we3</td>
<td>20.05 Źródło We3 Zew1</td>
</tr>
<tr>
<td>Polecenie Zew2 we1</td>
<td>20.08 Źródło We1 Zew2</td>
</tr>
<tr>
<td>Polecenie Zew2 we2</td>
<td>20.09 Źródło We2 Zew2</td>
</tr>
<tr>
<td>Polecenie Zew2 we3</td>
<td>20.10 Źródło We3 Zew2</td>
</tr>
<tr>
<td>Resetowanie błędu</td>
<td>31.11 Wybór resetu błędu</td>
</tr>
<tr>
<td>Sterowanie prędkością</td>
<td></td>
</tr>
<tr>
<td>Płaskość zadana Zew1</td>
<td>22.11 W. zad. pręd. 1 Zew1</td>
</tr>
<tr>
<td>Proporcjonalne wzmocnienie prędkości</td>
<td>25.02 Proporc. wzmocnienie prędk.</td>
</tr>
<tr>
<td>Czas całkowania prędkości</td>
<td>25.03 Czas całkowania prędkości</td>
</tr>
<tr>
<td>Czas przyspieszania 1</td>
<td>23.12 Czas przyspieszania 1</td>
</tr>
<tr>
<td>Czas zwalniania 1</td>
<td>23.13 Czas zwalniania 1</td>
</tr>
<tr>
<td>Sterowanie częstotliwością</td>
<td></td>
</tr>
<tr>
<td>Częstotliwość zadana Zew1</td>
<td>28.11 W. zad. częst. 1 Zew1</td>
</tr>
<tr>
<td>Sterowanie momentem</td>
<td></td>
</tr>
</tbody>
</table>

Wyjścia dostępne dla programu adaptacyjnego

<table>
<thead>
<tr>
<th>Wyjście</th>
<th>Cel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment zadany Zew1</td>
<td>26.11 Źródło wart. zad. momentu 1</td>
</tr>
<tr>
<td>Moment zadany Zew2</td>
<td>26.12 Źródło wart. zad. momentu 2</td>
</tr>
<tr>
<td>Funkcja limitu</td>
<td></td>
</tr>
<tr>
<td>Minimalny moment 2</td>
<td>30.21 Źródło min. momentu 2</td>
</tr>
<tr>
<td>Maksymalny moment 2</td>
<td>30.22 Źródło maks. momentu 2</td>
</tr>
<tr>
<td>Zdarzenia</td>
<td></td>
</tr>
<tr>
<td>Zdarzenie zewnętrzne 1</td>
<td>31.01 Źródło zdarzenia zewn. 1</td>
</tr>
<tr>
<td>Zdarzenie zewnętrzne 2</td>
<td>31.03 Źródło zdarzenia zewn. 2</td>
</tr>
<tr>
<td>Zdarzenie zewnętrzne 3</td>
<td>31.05 Źródło zdarzenia zewn. 3</td>
</tr>
<tr>
<td>Zdarzenie zewnętrzne 4</td>
<td>31.07 Źródło zdarzenia zewn. 4</td>
</tr>
<tr>
<td>Zdarzenie zewnętrzne 5</td>
<td>31.09 Źródło zdarzenia zewn. 5</td>
</tr>
<tr>
<td>Magazyn danych</td>
<td></td>
</tr>
<tr>
<td>Magazyn danych 1 real32</td>
<td>47.01 Magazyn danych 1 real32</td>
</tr>
<tr>
<td>Magazyn danych 2 real32</td>
<td>47.02 Magazyn danych 2 real32</td>
</tr>
<tr>
<td>Magazyn danych 3 real32</td>
<td>47.03 Magazyn danych 3 real32</td>
</tr>
<tr>
<td>Magazyn danych 4 real32</td>
<td>47.04 Magazyn danych 4 real32</td>
</tr>
<tr>
<td>Regulator PID procesu</td>
<td></td>
</tr>
<tr>
<td>Zestaw 1 nastawa 1</td>
<td>40.16 Zest. 1: źródło nastawy 1</td>
</tr>
<tr>
<td>Zestaw 1 nastawa 2</td>
<td>40.17 Zest. 1: źródło nastawy 2</td>
</tr>
<tr>
<td>Zestaw 1 sprzężenie zwrotne 1</td>
<td>40.08 Zest. 1: źródło sprz. zwrot. 1</td>
</tr>
<tr>
<td>Zestaw 1 sprzężenie zwrotne 2</td>
<td>40.09 Zest. 1: źródło sprz. zwrot. 2</td>
</tr>
<tr>
<td>Zestaw 1: wzmocnienie</td>
<td>40.32 Zest. 1: wzmocnienie</td>
</tr>
<tr>
<td>Zestaw 1: czas całkowania</td>
<td>40.33 Zest. 1: czas całkowania</td>
</tr>
<tr>
<td>Zestaw 1: wybór śledzenia</td>
<td>40.49 Zest. 1: wybór śledzenia</td>
</tr>
<tr>
<td>Zestaw 1: wartość zadana śledzenia</td>
<td>40.50 Zest. 1: wybór śledz. w. zad.</td>
</tr>
</tbody>
</table>

2) Dostępne tylko pod warunkiem, że są podłączone i używane moduły wejścia/wyjścia i Modbus.

Formaty błędów i kodów pomocniczych programu adaptacyjnego

Format kodu pomocniczego:

Jeśli numer stanu wynosi zero, ale numer bloku ma wartość, błąd jest związany z blokiem funkcyjnym w programie podstawowym. Jeśli numer stanu i numer bloku wynoszą zero, błąd jest typu ogólnego i nie jest związany z określonym blokiem.

Program sekwencyjny

Program adaptacyjny może zawierać części programu podstawowego i programów sekwencyjnych. Program podstawowy działa w sposób ciągły, gdy program adaptacyjny jest w trybie uruchomienia. Działanie programu podstawowego jest zaprogramowane przy użyciu bloków funkcyjnych oraz wejść i wyjść systemu.

Program sekwencyjny jest maszyną stanów. Oznacza to, że w danej chwili jest uruchomiony tylko jeden stan sekwencji programu. Program sekwencyjny można uruchamiać dodając stany i tworząc programy stanów przy użyciu tych samych elementów, które są stosowane w programie podstawowym. Przejścia stanu programu są realizowane przez dodawanie wyjść przejść stanu do programów stanów. Reguły przejść stanów są programowane przy użyciu bloków funkcyjnych.
Liczba aktywnych stanów programu sekwencyjnego jest zawarta w parametrze 07.31 Stan sekwencji AP.

Interfejsy sterowania

Liczba wejść i wyjść zależy od wariantu produktu oraz od tego, czy przemiennik częstotliwości jest wyposażony w dodatkowe moduły rozszerzeń wejść/wyjść.

Wariant S:
- 4 wejścia cyfrowe
- 2 wejścia/wyjścia cyfrowe
- 2 wejścia analogowe
- 1 wyjście analogowe
- 1 wyjście przekaźnikowe

Wariant C:
- 2 wejścia cyfrowe
- 1 wyjście przekaźnikowe

Programowalne wejścia analogowe

Istnieją maksymalnie dwa programowane wejścia analogowe. Za pomocą zworki znajdującej się w jednostce sterującej można niezależnie ustawić każde wejście jako wejście pracujące w trybie napięciowym (0/2…10 V) lub prądowym (0/4…20 mA). Każde wejście można filtrować, odwracać i skalować.

Parametry

Grupa 12 Standardowe AI

Programowalne wyjścia analogowe

Istnieje maksymalnie jedno analogowe wyjście prądowe (0...20 mA). Wyjście można filtrować, odwracać i skalować.

Parametry

Grupa 13 Standardowe AO

Programowalne wejścia i wyjścia cyfrowe

Istnieją maksymalnie cztery wejścia cyfrowe i dwa wejścia/wyjścia cyfrowe (dla których można wybrać tryb wejścia lub wyjścia).

Wejścia cyfrowe DI3 i DI4 mogą być używane jako wejścia częstotliwościowe, a wyjścia cyfrowe DIO1 i DIO2 jako wyjścia częstotliwościowe.
Parametry
Grupy 10 Standardowe DI, RO, 11 Standardowe DIO, FI, FO.

Programowalne wyjścia przekaźnikowe
W konfiguracji standardowej istnieje jedno wyjście przekaźnikowe. Opcja BREL-01 (moduł rozszerzenia wyjść przekaźnikowych) pozwala uzyskać cztery dodatkowe wyjścia przekaźnikowe. Za pomocą parametrów można określić sygnał przekazywany przez wyjście.

Parametry
Grupy 15 Moduł rozszerzeń, 10 Standardowe DI, RO.

Sterowanie poprzez magistralę komunikacyjną
Za pośrednictwem interfejsów magistrali komunikacyjnej można podłączyć przemienik częstotliwości do kilku różnych systemów automatyki. Patrz rozdziały Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB i Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptéra komunikacyjnego.

Parametry
Sterowanie silnikiem

- **Typy silników**
 Przemiennik częstotliwości obsługuje silniki następujących typów:
 - Asynchroniczne silniki indukcyjne AC
 - Silniki z magnesami stałymi
 - Synchroniczne silniki reluktancyjne (SynRM)

Parametry i diagnostyka

- **Parametry**: 99.03 *Typ silnika*

- **Identyfikacja silnika**
 Wydajność sterowania wektorowego jest oparta na dokładnym modelu silnika określonym podczas pierwszego uruchomienia silnika.

 Magnesowanie w celu identyfikacji silnika jest automatycznie wykonywane przy pierwszym wydaniu polecenia startu. Podczas pierwszego uruchamiania silnik jest przez kilka sekund magnesowany przy prędkości zerowej, aby umożliwić utworzenie modelu silnika. Ta metoda identyfikacji jest odpowiednia w przypadku większości zastosowań.

 W przypadku wymagających aplikacji może zostać wykonany oddzielny bieg identyfikacyjny.

- **Parametry**: 99.13 *Żądanie biegu ident.*

Przejście przez zanik napięcia zasilania

Patrz sekcja *Kontrola nad zbyt niskim napięciem (przejście przez zanik napięcia zasilania)* na str. 93.

Sterowanie wektorowe

Sterowanie wektorowe to tryb sterowania silnikiem przeznaczony do zastosowań wymagających wysokiej dokładności. Wymaga on wykonania biegu identyfikacyjnego na początku użytkowania. Sterowanie wektorowe jest dostępne tylko w niektórych zastosowaniach.

Przełączanie półprzewodników wyjściowych jest sterowane, co umożliwia uzyskanie wymaganego strumienia stojana i momentu silnika. Częstotliwość przełączania ulega zmianie tylko wtedy, gdy aktualne wartości momentu i strumienia stojana różnią się od ich wartości zadanych o wartość większą niż dozwolona histereza. Wartość zadana regulatora momentu pochodzi z regulatora prędkości lub bezpośrednio z zewnętrznego źródła wartości zadanej momentu.

Główna różnica między tradycyjnym sterowaniem a sterowaniem wektorowym polega na tym, że funkcja sterowania momentem działa na takim samym poziomie czasu jak funkcja sterowania przełączaniem mocy. Nie ma oddzielnego modulatora PWM sterowanego napięciowo i częstotliwościowo. Przełączanie modułu wyjściowego jest w pełni oparte na stanie elektromagnetycznym silnika.

Aby sterowanie silnikiem było możliwe jak najdokładniejsze, należy aktywować oddzielną bieg identyfikacyjny silnika. Patrz także sekcja *Dane wydajności sterowania prędkością* na str. 73.

Parametry

Parametry: 99.04 *Tryb sterowania silnikiem* i 99.13 *Żądanie biegu ident.*.

Rampy wartości zadanej

Czasy ramp przyspieszania i zwalniania można ustawić indywidualnie dla wartości zadanych prędkości, momentu i częstotliwości.

W przypadku wartości zadanej prędkości i częstotliwości rampy są definiowane jako czas, jaki zajmie zmiana wartości zadanej między zerem a znamionowym momentem silnika (między zerową prędkością lub częstotliwością a wartością zdefiniowaną za pomocą parametru 46.01 *Skalowanie prędkości* lub 46.02 *Skalowanie częstotliwości*). Użytkownik może przełączać się między dwoma wstępnie skonfigurowanymi zestawami ramp za pomocą binarnego, takiego jak wejściowy sygnał cyfrowy. W przypadku wartości zadanej prędkości można również sterować kształtem rampy.

W przypadku wartości zadanej momentu rampy są definiowane jako czas, jaki wartości zadanej zajmie zmiana między zerem a znamionowym momentem silnika (01.30 *Skala momentu znamion*).

Zmienne nachylenie

Funkcja zmiennej nachylenia kontroluje nachylenie rampy prędkości podczas zmiany wartości zadanej. Dzięki tej funkcji można używać stałe zmiennej rampy.

Funkcja zmiennej nachylenia jest obsługiwana tylko w przypadku sterowania zdalnego.

Parametry

Parametry: 23.28 *Zmienne nachylenie wł.* i 23.29 *Tempo zmiennej nachylenia.*
Specjalne rampy przyspieszania/zwalniania

Czasy przyspieszania/zwalniania dla funkcji biegu próbnego można zdefiniować osobno. Patrz sekcja *Bieg próbny* na stronie 70.

Istnieje możliwość dostosowania współczynnika zmiany funkcji potencjometru silnika (str. 108). Ten sam wskaźnik ma zastosowanie w obu kierunkach.

Ponadto można zdefiniować rampę zwalniania na potrzeby funkcji zatrzymania awaryjnego (tryb Off3).

Parametry

Parametry:

- Rampa prędkości zadanej od 23.11 do 23.15, 23.32, 23.33 i 46.01.
- Rampa momentu zadanego 01.30, 26.18 i 26.19.
- Rampa częstotliwości zadanej 28.71, 28.75 i 46.02.
- Bieg próbny 23.20 i 23.21.
- Potencjometr silnika 22.75.
- Zatrzymanie awaryjne (tryb Off3) 23.23 Czas zatrz. awaryjnego.

Stałe prędkości/częstotliwości

Stałe prędkości i częstotliwości są zdefiniowanymi wstępnie wartościami zadanymi, które można aktywować na przykład przy użyciu cyfrowych sygnałów wejściowych. Istnieje możliwość zdefiniowania maksymalnie 7 prędkości na potrzeby sterowania prędkością i 7 stałych częstotliwości na potrzeby sterowania częstotliwością.

OSTRZEŻENIE: prędkości i częstotliwości zastępują normalne wartości zadane bez względu na źródło wartości zadanej.

Parametry i diagnostyka

Grupy *22 Wybór wart. zadanej prędkości* i *28 Łańcuch w. zad. częstotliwości*.

Prędkości/częstotliwości krytyczne

Prędkości krytyczne można zdefiniować do zastosowania w aplikacjach, w przypadku których konkretna prędkość silnika lub zakresy prędkości są niedopuszczalne, na przykład z powodu problemów związanych z rezonansem mechanicznym.

Funkcja prędkości krytycznych zapobiega temu, aby wartość zadana pozostała w paśmie krytycznym przez zbyt długi czas. Kiedy zmienna wartość zadana wchodzi w zakres krytyczny, wyjście funkcji zostaje zablokowane do momentu, gdy wartość zadana opuści ten zakres. Każda natychmiastowa zmiana na wyjściu jest wygładzana przez funkcję rampy w łańcuchu wartości zadanej.
Gdy przemiennik częstotliwości ogranicza dozwolone prędkości/częstotliwości wyjściowe, ogranicza je do bezwzględnie najniższej prędkości krytycznej (prędkość krytyczna niska lub częstotliwość krytyczna niska) podczas przyśpieszania od zatrzymania, chyba że wartość zadana prędkości przekracza górny limit prędkości/częstotliwości krytycznej.

Przykład

Wentylator wibruję w zakresie od 540 do 690 obr./min oraz od 1380 do 1560 obr./min. Aby przemiennik częstotliwości pomijał te zakresy prędkości, należy:

• włączyć funkcję prędkości krytycznych, ustawiając wartość bitu 0 parametru 22.51 na „1” i

• ustawić zakresy prędkości krytycznych w sposób przedstawiony na rysunku poniżej.

Parametry

Parametry:

• Prędkości krytyczne 22.51...22.57.
• Częstotliwości krytyczne 28.51...28.57.
• Wejście funkcji (prędkość): 22.01.
• Wyjście funkcji (prędkość): 22.87.
• Wejście funkcji (częstotliwość) 28.96 Akt. w. zad. częstotl. 7.
• Wyjście funkcji (częstotliwość) 28.97 Nieogr. wart. zad. częst.
Kontrola nagłego przyspieszenia

Kontrola nagłego przyspieszenia jest włączana automatycznie w trybie sterowania momentem. Jeżeli silnik jest sterowany momentem, a jego obciążenie ulegnie nagłemu, gwałtownemu zmniejszeniu, silnik może przyspieszyć. Program sterujący zawiera funkcję umożliwiającą kontrolowanie nagłego przyspieszenia, która zmniejsza wartość zadaną momentu za każdym razem, gdy prędkość silnika wykracza poza ustawioną wartość minimalną lub maksymalną.

Funkcja jest oparta na regulatorze PI. Program ustawia przyrost proporcjonalny na wartość 10,0, a czas całkowania na wartość 2,0 s.

Parametry

Obsługa echa z enkodera

Połączenie jednego enkodera z kilkoma przemiennikami częstotliwości przy użyciu modułu interfejsu enkodera BTAC-02 można wykonać przez połączenie szeregowe okablowania. Oznacza to, że z enkoderem łączy się kanały A, B, Z i GND kilku modułów enkodera.

Parametry

Grupy 90 Wybór sprzężenia zwrotnego, 91 Ustawienia adaptera enkodera, 92 Konfiguracja enkodera 1

Bieg próbny

Funkcja biegu próbnego umożliwia uruchomienie silnika na krótki czas, przy wykorzystaniu monostabilnego przełącznika. Funkcja biegu próbnego jest zwykle używana
Funkcje programu do lokalnego sterowania maszynami w trakcie przeprowadzania prac uruchomieniowych lub serwisowych.

Dostępne są dwie funkcje biegu próbnego (1 i 2). Każda z nich posiada własne źródła aktywacji i wartości zadanej. Źródła sygnałów wybiera się za pomocą parametrów 20.26 i 20.27. Po aktywaniu biegu próbnego przemiennik częstotliwości zostanie uruchomiony i rozpoczęcie przyspieszanie do zdefiniowanej prędkości biegu próbnego z uwzględnieniem zdefiniowanej rampy przyspieszania biegu próbnego. Po wyłączaniu sygnału aktywacji biegu przemiennik częstotliwości rozpoczęcie zmniejszanie prędkości do zera z uwzględnieniem zdefiniowanej rampy zwalniania biegu próbnego.

Na poniższym rysunku i w poniższej tabeli przedstawiono sposób działania przemiennika częstotliwości w trakcie biegu próbnego. W tym przykładzie używany jest tryb zatrzymywania zgodnie z rampą (21.03 Tryb zatrzymania).

- Polecenie biegu próbnego = Stan źródła ustawiony za pomocą parametru 20.26 lub 20.27
- Włączanie biegu próbnego = Stan źródła ustawiony za pomocą parametru 20.25
- Polecenie startu = Stan polecenia startu przemiennika częstotliwości.

![Diagram](image)

<table>
<thead>
<tr>
<th>Faza</th>
<th>Polecenie biegu próbnego</th>
<th>Włączanie biegu próbnego</th>
<th>Polecenie startu</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości zwiększa prędkość biegu próbnego z uwzględnieniem rampy przyspieszania funkcji biegu próbnego.</td>
</tr>
<tr>
<td>2–3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości dąży do uzyskania wartości zadanej biegu próbnego.</td>
</tr>
<tr>
<td>3–4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości zmniejsza prędkość do zera z uwzględnieniem rampy zwalniania funkcji biegu próbnego.</td>
</tr>
<tr>
<td>4–5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości zostanie zatrzymany.</td>
</tr>
<tr>
<td>Faza</td>
<td>Polecenie biegu próbnego</td>
<td>Włączenie biegu próbnego</td>
<td>Poleczenie startu</td>
<td>Opis</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>5–6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości zwiększa prędkość biegu próbnego z uwzględnieniem rampy przyspieszania funkcji biegu próbnego.</td>
</tr>
<tr>
<td>6–7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości dąży do uzyskania wartości zadanej biegu próbnego.</td>
</tr>
<tr>
<td>7–8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości zmniejsza prędkość do zera z uwzględnieniem rampy zwalniania funkcji biegu próbnego.</td>
</tr>
<tr>
<td>8–9</td>
<td>0</td>
<td>1->0</td>
<td>0</td>
<td>Przemiennik częstotliwości zostanie zatrzymany. Polecenia startu są ignorowane, jeśli aktywny jest sygnał włączenia biegu próbnego. Po zdjęciu sygnału włączania biegu próbnego wymagane jest wydanie nowego polecenia startu.</td>
</tr>
<tr>
<td>9–10</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Przemiennik częstotliwości rozpoczyna przyspieszanie do wartości zadanej prędkości z uwzględnieniem wybranej rampy przyspieszania (parametry 23.11…23.15).</td>
</tr>
<tr>
<td>10–11</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Przemiennik częstotliwości dąży do uzyskania wartości zadanej prędkości.</td>
</tr>
<tr>
<td>11–12</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>Przemiennik częstotliwości rozpoczyna zwalnianie do prędkości zerowej z uwzględnieniem wybranej rampy zwalniania (parametry 23.11…23.15).</td>
</tr>
<tr>
<td>12–13</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>Przemiennik częstotliwości zostanie zatrzymany.</td>
</tr>
<tr>
<td>13–14</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Przemiennik częstotliwości rozpoczyna przyspieszanie do wartości zadanej prędkości z uwzględnieniem wybranej rampy przyspieszania (parametry 23.11…23.15).</td>
</tr>
<tr>
<td>14–15</td>
<td>x</td>
<td>0->1</td>
<td>1</td>
<td>Przemiennik częstotliwości dąży do uzyskania wartości zadanej prędkości. Sygnał włączania biegu próbnego jest ignorowany, dopóki aktywne jest polecenie startu. Jeśli sygnał włączenia biegu próbnego jest aktywny, a wydawanie polecenia startu zostanie zakończone, bieg próbny zostanie natychmiast włączony.</td>
</tr>
<tr>
<td>15–16</td>
<td>0->1</td>
<td>1</td>
<td>0</td>
<td>Wydawanie polecenia startu zostanie zakończone. Przemiennik częstotliwości rozpocznie zwalnianie z uwzględnieniem wybranej rampy zwalniania (parametry 23.11…23.15). Po rozpoczęciu wydawania polecenia biegu próbnego zwalniający przemiennik częstotliwości będzie kontynuował zwalnianie z uwzględnieniem rampy zwalniania funkcji biegu próbnego.</td>
</tr>
<tr>
<td>16–17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Przemiennik częstotliwości dąży do uzyskania wartości zadanej biegu próbnego.</td>
</tr>
<tr>
<td>17–18</td>
<td>0</td>
<td>1->0</td>
<td>0</td>
<td>Przemiennik częstotliwości zmniejsza prędkość do zera z uwzględnieniem rampy zwalniania funkcji biegu próbnego.</td>
</tr>
</tbody>
</table>
Uwagi:

- Funkcja biegu próbnego nie jest dostępna, jeśli przemiennik częstotliwości jest sterowany lokalnie.
- Nie można włączyć biegu próbnego, jeśli wydano polecenie startu przemiennika częstotliwości, lub uruchomić przemiennika, gdy funkcja biegu próbnego jest aktywna. Aby uruchomić przemiennik częstotliwości po zakończeniu biegu prób- nego należy wydać nowe polecenie startu.

OSTRZEŻENIE! Jeśli funkcja biegu próbnego została włączona i aktywowana po wydaniu polecenia startu, zostanie ona aktywowana zaraz po wyłączeniu polecenia startu.

- Jeśli aktywowano obie funkcje biegu próbnego, wyższy priorytet ma funkcja, którą aktywowano jako pierwszą.
- Bieg próbny używa sterowania wektorowego.
- Funkcje ruchu powolnego aktywowane za pośrednictwem magistrali komunikacyjnej (06.01, bity 8...9) korzystają z wartości zadanych i czasów rampy zdefiniowanych na potrzeby biegu próbnego, lecz nie wymagają podania sygnału włączenia biegu próbnego.

Parametry

Dane wydajności sterowania prędkością

Poniższa tabela zawiera typowe dane wydajności w przypadku sterowania prędkością.

<table>
<thead>
<tr>
<th>Sterowanie prędkością</th>
<th>Wydajność</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dokładność statyczna</td>
<td>20% wartości znamionowej poślizgu silnika</td>
</tr>
<tr>
<td>Dokładność dynamiczna</td>
<td><1% s przy 100% kroku momentu</td>
</tr>
</tbody>
</table>

\[
\frac{T}{T_N} = \frac{n_{act}-n_{ref}}{n_N}
\]

- \(T \) = znamionowy moment silnika
- \(T_N \) = znamionowa prędkość silnika
- \(n_{act} \) = prędkość rzeczywista
- \(n_{ref} \) = wartość zadana prędkości
Dane wydajności sterowania momentem

Przemiennik częstotliwości może przeprowadzać dokładne sterowanie momentem bez sprzężenia zwrotnego z wału silnika. Poniższa tabela zawiera typowe dane wydajności w przypadku sterowania momentem.

<table>
<thead>
<tr>
<th>Sterowanie momentem</th>
<th>Wydajność</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielinioowość</td>
<td>± 5% przy znamionowym momencie (± 20% w najbardziej wymagającym momencie pracy)</td>
</tr>
<tr>
<td>Czas narastania kroku momentu</td>
<td>< 10 ms przy znamionowym momencie</td>
</tr>
</tbody>
</table>

![Diagram]

\[
\begin{align*}
T_N & = \text{znamionowy moment silnika} \\
T_{\text{ref}} & = \text{wartość zadana momentu} \\
T_{\text{act}} & = \text{wartość rzeczywista momentu}
\end{align*}
\]
Skalarne sterowanie silnikiem

Sterowanie skalarne to domyślna metoda sterowania silnikiem. Jest ona odpowiednia do zastosowań w aplikacjach, które nie wymagają wysokiej dokładności oferowanej przez wektorowy tryb sterowania. W przypadku sterowania skalarnego kontrolowana jest wartość zadana częstotliwości wyjściowej przemiennika częstotliwości. Nie trzeba wykonywać biegu identyfikacyjnego silnika przy pierwszym uruchomieniu.

Aktywacja trybu skalarnego sterowania silnikiem jest zalecana w następujących szczególnych sytuacjach:

- W przypadku sterowania wieloma silnikami za pomocą jednego przemiennika częstotliwości: 1) jeśli obciążenie nie jest równomiernie rozkładane na silniki 2) jeśli silniki są różnych wielkości 3) jeśli silniki będą zmieniane po przeprowadzeniu identyfikacji silnika (bieg identyfikacyjny)
- Jeśli prąd znamionowy silnika nie jest większy niż 1/6 wyjściowego prądu znamionowego przemiennika częstotliwości
- Jeśli przemiennik częstotliwości jest używany bez podłączonego silnika, na przykład w celach testowych
- Jeśli przemiennik częstotliwości napędza silnik średniego napięcia za pośrednim transformatora podwyższającego

W przypadku sterowania skalarnego niektóre funkcje są niedostępne.

Patrz także sekcja Tryby pracy i tryby sterowania silnikiem na str. 56.

Kompensacja IR przy skalarnym sterowaniu silnikiem

Kompensacja IR (znana również jako podbicie napięcia) jest dostępna tylko wtedy, gdy używany jest tryb skalarnego sterowania silnikiem. Po aktywacji kompensacji IR przemiennik częstotliwości będzie dostarczał silnikowi zwiększone napięcie przy niskich prędkościach. Kompensacja IR jest przydatna w aplikacjach wymagających wysokiego momentu rozruchowego.

W przypadku sterowania wektorowego nie jest koniecznie ani możliwe używanie funkcji kompensacji IR, gdyż jest ona stosowana automatycznie.

Parametry

Parametry: grupa 28 Łącuch w. zad. częstotliwości, 97.13 Kompensacja IR i 99.04 Tryb sterowania silnikiem.
Krzywa obciążenia użytkownika

Krzywa obciążenia użytkownika zapewnia funkcję nadzoru, która monitoruje sygnał wejściowy jako funkcję częstotliwości lub prędkości i obciążenie. Krzywa ta zawiera informacje o stanie monitorowanego sygnału i może spowodować wygenerowanie ostrzeżenia lub błędu w wyniku naruszenia profilu zdefiniowanego przez użytkownika.

Krzywa obciążenia użytkownika składa się z krzywej przeciążenia i niedociążenia lub tylko jednej z tych krzywych. Każda krzywa składa się z pięciu punktów, które reprezentują monitorowany sygnał jako funkcję częstotliwości lub prędkości.

W poniższym przykładzie krzywa obciążenia użytkownika została utworzona na podstawie momentu znamionowego silnika, w przypadku którego został dodany i odjęty marginy wynoszący 10%. Krzywe marginu definiują pole działania silnika, dzięki czemu możliwe jest nadzorowanie i wykrywanie wyjścia poza ten obszar oraz mierzenie czasu takiego wyjścia.

![Diagram Moment silnika / znamionowy moment](image)

Ostrzeżenie i/lub błąd dotyczący przeciążenia można ustawić tak, aby wystąpił, gdy monitorowany sygnał pozostaje przez zdefiniowany czas nad krzywą przeciążenia. Ostrzeżenie i/lub błąd dotyczący niedociążenia można ustawić tak, aby występował, gdy monitorowany sygnał pozostaje przez zdefiniowany czas pod krzywą niedociążenia.

Przeciążenie może być na przykład używane do monitorowania, czy brzeszczot piły nie uderzył w sęk lub profile obciążenia wentylatora nie są zbyt wysokie.

Niedociążenie może być na przykład używane do monitorowania, czy nie wystąpił spadek obciążenia i przerwanie przenośnika lub łopatek wentylatora.
Funkcje programu

Parametry

Grupa 37 Krzywa obciążenia użytkownika

Stosunek U/f

Funkcja U/f jest dostępna tylko w trybie skalarnego sterowania silnikiem, który używa sterowania częstotliwością.

Funkcja ta ma dwa tryby: liniowy i kwadratowy.

W trybie liniowym stosunek napięcia do częstotliwości znajduje się stale poniżej punktu osłabienia pola. Jest on używany w zastosowaniach ze stałym momentem, gdy może być konieczne wytworzenie znamionowego momentu lub momentu bliższego znamionowemu momentowi silnika w całym zakresie częstotliwości.

W trybie kwadratowym (tryb domyślny) stosunek napięcia do częstotliwości rośnie jako kwadrat częstotliwości poniżej punktu osłabiania pola. Tryb ten jest zwykle stosowany w pompach ośrodkowych i wentylatorach. W przypadku takich zastosowań wymagany jest moment, który odpowiada stosunkowi kwadratu częstotliwości. Oznacza to, że jeśli napięcie jest różnicowane przy użyciu stosunku kwadratu, praca silnika w przypadku tych zastosowań jest bardziej wydajna i cicha.

Funkcja U/f nie może być używana wraz z optymalizacją energii. Jeśli parametr 45.11 Optymalizator energii jest ustawiony na wartość Włączone, parametr 97.20 Stosunek U/f jest ignorowany.

Hamowanie strumieniem

Przemiennik częstotliwości może wzmocnić efekt zwalniania poprzez zwiększenie poziomu magnesowania w silniku. Dzięki zwiększeniu strumienia silnika energia generowana przez silnik w trakcie hamowania jest przetwarzana na energię cieplną silnika.

![Diagram przedkość silnika i moment hamowania](image-url)
Przemiennik częstotliwości monitoruje stan silnika w sposób ciągły (także w trakcie hamowania strumieniem). Dlatego hamowanie strumieniem może być stosowane do zatrzymywania silnika i do zmiany jego prędkości. Oto inne zalety hamowania strumieniem:

- Proces hamowania rozpoczyna się natychmiast po wydaniu komendy zatrzymania. Funkcja może rozpocząć hamowanie, nie czekając na zmniejszenie strumienia.
- Chłodzenie silnika indukcyjnego jest efektywne. Prąd w obwodzie stojana zwiększa się podczas hamowania strumieniem. Nie zwiększa się przy tym prąd w obwodzie wirnika. Chłodzenie stojana jest bardziej efektywne niż chłodzenie wirnika.
- Hamowanie strumieniem może być stosowane w przypadku silników indukcyjnych i silników z magnesami trwałymi.

Dostępne są następujące dwa poziomy mocy hamowania:

- Umiarkowane hamowanie umożliwia szybsze zwalnianie niż w przypadku, gdy hamowanie strumieniem jest wyłączone. Istnieje ograniczenie poziomu strumienia silnika, co zapobiega przegrzaniu silnika.
- Pełne hamowanie wykorzystuje prawie cały dostępny prąd do przetwarzania energii mechanicznej hamowania na energię cieplną silnika. Czas hamowania jest krótszy niż w przypadku umiarkowanego hamowania. Jeśli ta metoda hamowania jest często stosowana, silnik może się mocno nagrzewać.

OSTRZEŻENIE: Silnik musi mieć znamionową możliwość pochłaniania energii cieplnej generowanej podczas hamowania strumieniem.

Parametry

Parametry: *97.05 Hamowanie strumieniem.*

- **Magnesowanie DC**

 Przemiennik częstotliwości ma różne funkcje magnesowania w przypadku różnych faz uruchamiania silnika/obracania/zatrzymywania: magnesowanie wstępne, trzymanie prądem DC, magnesowanie dodatkowe i nagrzewanie wstępne (nagrzewanie silnika).

Magnesowanie wstępne

Magnesowanie wstępne to magnesowanie DC silnika przed uruchomieniem. W celu uzyskania możliwie jak najwyższego momentu rozruchowego wynoszącego nawet do 200% znamionowego momentu silnika można zastosować magnesowanie wstępne. Metoda magnesowania wstępnego zależy od wybranego trybu startu. Dostosowanie czasu magnesowania wstępnego pozwala zsynchronizować uruchomienie silnika na przykład ze zwolnieniem hamulca mechanicznego.
Parametry

Parametry: 21.01 Tryb startu wektorowego, 21.19 Tryb startu skalarnego, 21.02 Czas magnesowania

Trzymanie DC

Magnitude dodatkowe

Uwaga: Magnesowanie dodatkowe jest dostępne tylko wtedy, gdy wybranym trybem zatrzymania jest hamowanie zgodnie z rampą.
Parametry

Nagrzewanie wstępne (nagrzewanie silnika)

Funkcja nagrzewania wstępnego utrzymuje ciepły silnik i zapobiega kondensacji w jego wnętrzu, dostarczając do niego prąd DC po zatrzymaniu przemiennika częstotliwości. Nagrzewanie może zostać aktywowane tylko wtedy, gdy przemiennik częstotliwości jest w trybie zatrzymania. Uruchomienie przemiennika częstotliwości zatrzymuje nagrzewanie.

Nagrzewanie zostaje uruchomione 60 sekund po osiągnięciu prędkości zerowej lub zatrzymaniu modulacji w celu zapobiegnięcia nadmiernemu prądowi, jeśli używane jest zatrzymanie wybiegiem.

Tę funkcję można zdefiniować tak, aby była zawsze aktywna po zatrzymaniu przemiennika częstotliwości. Może ona być też aktywowana przy użyciu wejścia cyfrowego, magistrali komunikacyjnej, funkcji czasowej lub funkcji nadzoru. Na przykład przy użyciu funkcji nadzoru sygnału ogrzewanie może być aktywowane przez sygnał pomiaru termicznego z silnika.

Prąd nagrzewania wstępnego dostarczany do silnika może zostać zdefiniowany jako 0...30% znamionowego prądu silnika.

Uwagi:

- W przypadku zastosowań, w których silnik obraca się przez długi czas po zatrzymaniu modulacji, zalecamy używanie zatrzymania zgodnie z rampą wraz z nagrzewaniem wstępnym w celu zapobiegnięcia nagłemu pociągnięciu wirnika po aktywacji nagrzewania wstępnego.
- Funkcja nagrzewania wymaga, aby funkcja STO nie była wyzwolona.
- Funkcja nagrzewania wymaga, aby przemiennik częstotliwości nie miał błędu.
- Nagrzewanie wstępne wymaga trzymania prądem DC do generowania prądu.

Parametry

Parametry: 21.14 Wybór źródła nagrz. wstępnego i 21.16 Prąd nagrzew. wstępnego

Optymalizacja energii

Ta funkcja optymalizuje strumień silnika, aby całkowite zużycie energii i poziom hałasu silnika były ograniczone, gdy przemiennik częstotliwości działa poniżej obciążenia znamionowego. Całkowita sprawność (silnika i przemiennika częstotliwości) może zostać poprawiona o 1...20% w zależności od momentu obciążenia i prędkości.

Uwaga: W przypadku silników z magnesami trwałymi i synchronicznych silników reluktancyjnych optymalizacja energii jest zawsze włączona.
Parametry
Parametry: 45.11 Optymalizator energii

Częstotliwość kluczowania

Przemiennik częstotliwości ma dwie częstotliwości kluczowania: znamionową częstotliwość kluczowania i minimalną częstotliwość kluczowania. Przemiennik częstotliwości próbuje utrzymać najwyższą dozwoloną częstotliwość kluczowania (znamionową częstotliwość kluczowania), jeśli pozwala na to temperatura. Jeśli nie, dynamicznie przełącza się między znamionową i minimalną częstotliwością kluczowania zależnie od temperatury przemiennika częstotliwości. Gdy przemiennik częstotliwości osiąnie minimalną częstotliwość kluczowania (najniższą dozwoloną częstotliwość kluczowania), zaczyna ograniczać prąd wyjściowy odpowiednio do rosnącej temperatury.

Przykłady obniżania wartości znamionowej zawierają podręcznik użytkownika przemiennika częstotliwości.

Przykład 1: Jeśli częstotliwość kluczowania ma zostać na stałe ustawiona na daną wartość, na przykład dla filtrów EMC C1 (patrz podręcznik użytkownika), tę wartość należy ustawić dla znamionowej i minimalnej częstotliwości kluczowania.

Przemiennik częstotliwości zachowa określoną częstotliwość kluczowania.

Przykład 2: Jeśli wartość znamionowa częstotliwości kluczowania wynosi 12 kHz, a minimalna częstotliwość kluczowania wynosi 1,5 kHz (lub 1 kHz), przemiennik częstotliwości utrzymuje najwyższą możliwą częstotliwość kluczowania w celu ograniczenia hałasu. Zmniejszenie częstotliwości kluczowania następuje tylko wtedy, gdy przemiennik częstotliwości zacznie się nagrzewać. Jest to przydatne na przykład w zastosowaniach, w których niski poziom hałasu jest niezbędny, a duży hałas może być tolerowany, gdy wymagany jest pełny prąd wyjściowy.

Parametry
Parametr: 97.01 W.zad. częstotliwość przeł. i 97.02 Min. częstotliwość przełącz.
Zatrzymanie z kompensacją prędkości

Zatrzymanie z kompensacją prędkości jest dostępne na przykład dla zastosowań, w przypadku których przenośnik musi pokonać pewną odległość po otrzymaniu polecenia stopu. Przy maksymalnej prędkości silnik jest zatrzymywany normalnie zgodnie ze zdefiniowaną rampą zwalniania (po zastosowaniu zdefiniowanego przez użytkownika opóźnienia w celu dostosowania przebytej odległości). Poniżej maksymalnej prędkości zatrzymanie jest dodatkowo opóźnione przez działanie przemiennika częstotliwości z bieżącą prędkością przed zatrzymaniem silnika zgodnie z rampą. Tak jak przedstawiono na rysunku w obu przypadkach odległość przebyta po wydaniu polecenia zatrzymania jest taka sama, czyli obszar A + obszar B równa się obszarowi C.

Kompensacja prędkości nie obejmuje czasów kształtu (parametry 23.32 Czas kształtu 1 i 23.33 Czas kształtu 2). Dodatnie czasy kształtu wydłużają przebytą odległość.

Możliwe jest ograniczenie kierunku obrotów dla funkcji zatrzymania z kompensacją prędkości.

Kompensacja prędkości jest obsługiwana zarówno w wektorowym, jak i skalarnym trybie sterowania silnikiem.

Parametry

Sterowanie aplikacyjne

- Makra sterowania

Makra sterowania to wstępnie zdefiniowane ustawienia parametrów i konfiguracje we/wy. Patrz rozdział *Makra sterowania*.

- Regulacja PID zmiennej procesowej

Przemiennik częstotliwości zawiera wbudowany regulator PID, Kontroler umożliwia sterowanie procesem w oparciu o ciśnienie, przepływ lub poziom płynu.

W przypadku sterowania z wykorzystaniem regulatora PID do przemiennika częstotliwości przesyłana jest wartość zadana procesu, a nie wartość zadana prędkości. Ponadto do przemiennika częstotliwości przesyłana jest wartość bieżąca (sprzężenie zwrotne procesu). Funkcja regulacji procesu PID dostosowuje informacje o prędkości przemiennika częstotliwości, co umożliwia zachowanie żadanego poziomu (nastawy) mierzonej wartości procesu (wartości bieżącej). Oznacza to, że użytkownik nie musi ustawiać wartości zadanej częstotliwości/prędkości/momentu w przemienniku częstotliwości, a przemiennik częstotliwości dostosowuje swoją pracę odpowiednio do regulatora PID procesu.

Poniższy uproszczony schemat blokowy przedstawia zasadę działania sterowania z wykorzystaniem regulatora PID procesu.

![Schemat blokowy sterowania PID](image)

Przemiennik częstotliwości zawiera dwa pełne zestawy nastaw regulatora PID procesu, które można zmieniać, gdy jest to konieczne. Patrz parametr 40.57 PID: wybór zestawu 1/2.

Uwaga: Regulacja PID procesu jest dostępna tylko przy sterowaniu zewnętrznym; patrz sekcja *Lokalne i zewnętrzne miejsca sterowania* na stronie 54.
Funkcje uśpienia i wzmocnienia dla regulatora PID procesu

Funkcja uśpienia jest odpowiednia dla aplikacji wykorzystujących regulację PID, w których zużycie medium jest zróżnicowane w czasie, na przykład: pompowe systemy zasilające. Jeśli ta funkcja zostanie aktywowana, zatrzyma ona całkowicie działanie pompy, gdy zapotrzebowanie będzie niskie. Pompa nie będzie pracowała przy niskich prędkościach poniżej zakresu efektywnego działania. W poniższym przykładzie przedstawiono zasadę działania funkcji.

Użytkownik może zwiększyć czas uśpienia regulatora PID przy użyciu funkcji wzmocnienia. Funkcja wzmocnienia zwiększa nastawę procesu przez wstępnie określony czas, zanim przemiennik częstotliwości przejdzie w tryb uśpienia.
Śledzenie

W trybie śledzenia wyjście bloku PID jest ustawiane bezpośrednio ma wartość parametru 40.50 Zest. 1: wybór śledz. w. zad. (lub 41.50 Zest. 2: wybór śledz. w. zad.). Wewnętrzny warunek I regulatora PID jest ustawiony tak, aby do wyjścia nie były przekazywane żadne wartości przejściowe, dzięki czemu po wyjściu z trybu śledzenia można łagodnie wznówić normalne działanie funkcji regulacji procesu.

Parametry

Parametry: 96.04 Wybór makra, grupy 40 PID procesu: zestaw 1 i 41 PID procesu: zestaw 2.
Sterowanie hamulcem mechanicznym

Hamulec mechaniczny umożliwia całkowite zatrzymanie silnika i sterowanego urządzańia w przypadku, gdy przemiennik częstotliwości został zatrzymany lub nie jest zasilany. Układ logiczny sterowania hamulcem monitoruje ustawienia grupy parametrów 44 Sterowanie hamulcem mechaniczny oraz kilka sygnałów zewnętrznych i na podstawie tych informacji aktywuje odpowiednie stany przedstawione na schemacie znajdującym się na stronie 87. Tabela poniżej schematu stanów zawiera szczegółowe informacje o stanach i przejściach między nimi. Schemat chronometra znajdujący się na stronie 90 to przykład sekwencji zamknij-otwórz-zamknij.

Przykład aplikacji podano w sekcji Sterowanie hamulcem mechanicznym dźwigu na stronie 583.

Wartości wejściowe dla układu logicznego sterowania hamulcem

Komenda startu przemiennika częstotliwości (bit 5 w parametrze 06.16 Słowo stanu 1 przem.) to główne źródło informacji sterujących dla układu logicznego sterowania hamulcem. Można wybrać opcjonalne źródło sygnału otwarcia/zamknięcia w parametrze 44.12 Żądanie zamknięcia hamulca. Wyniki współdziałania tych dwóch sygnałów są następujące:

- Polecenie startu = 1 ORAZ sygnał wybrany w parametrze 44.12 Żądanie zamknięcia hamulca = 0 → żądanie otwarcia hamulca
- Polecenie startu = 0 LUB sygnał wybrany w parametrze 44.12 Żądanie zamknięcia hamulca = 1 → żądanie zamknięcia hamulca

Za pomocą parametru 44.11 Trzymaj zamknięty hamulec można podłączyć kolejne źródło sygnału zewnętrznego, na przykład z nadrzędnego systemu sterowania, aby uniemożliwić wyłączenie hamulca.

Inne sygnały, które wpływają na stan układu logicznego:

- potwierdzenie stanu hamulca (opcjonalne, definiowane w parametrze 44.07 Wybór potwierdz. hamowania);
- bit 2 parametru 06.11 Główne słowo stanu (określa, czy przemiennik częstotliwości jest gotowy do dążenia do wartości zadanej, czy nie);
- bit 6 parametru 06.16 Słowo stanu 1 przem. (określa, czy przemiennik częstotliwości będzie przeprowadzał modulację, czy nie).
Wartości wyjściowe układu logicznego sterowania hamulcem

Hamulec mechaniczny jest sterowany za pomocą bitu 0 parametru 44.01 *Stan sterowania hamulcem*. Ten bit należy wybrać jako źródło wyjścia przekaźnikowego (lub wejścia/wyjścia cyfrowego w trybie wyjścia), do którego za pośrednictwem przekaźnika podłączony jest kabel siłownika hamulca. Na stronie 91 znajduje się przykładowy schemat okablowania.

Układ logiczny sterowania hamulcem w zależności od stanu będzie przesyłał do układu logicznego sterowania przemiennikiem częstotliwości żądania zatrzymania silnika, zwiększenia momentu lub zmniejszenia prędkości zgodnie z rampą. żądania można wyświetlić za pomocą parametru 44.01 *Stan sterowania hamulcem*.

Schemat stanów hamulca

<table>
<thead>
<tr>
<th>(z dowolnego stanu)</th>
<th>(z dowolnego stanu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAMULEC JEST WYŁĄCZONY</td>
<td>HAMULEC JEST ZAMKNIĘTY</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>OTWIERANIE HAMULCA</td>
<td>ZAMYKANIE HAMULCA</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OPÓźniENIE ZAMYKANIA HAMULCA</td>
<td>OCZEKIWANIE NA ZAMKNIĘCIE HAMULCA</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>HAMULEC JEST OTWARTY</td>
<td>OCZEKIWANIE NA OTWARCIE HAMULCA</td>
</tr>
<tr>
<td>OPÓźniENIE OTWIERANIA HAMULCA</td>
<td>OCZEKIWANIE NA OTWARCIE HAMULCA</td>
</tr>
</tbody>
</table>

Opisy stanów

<table>
<thead>
<tr>
<th>Nazwa stanu</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAMULEC JEST WYŁĄCZONY</td>
<td>Sterowanie hamulcem jest wyłączone (parametr 44.06 *Sterowanie hamulca wł. = 0 i 44.01 Stan sterowania hamulcem b4 = 0). Sygnał otwarcia jest aktywny (44.01 Stan sterowania hamulcem b0 = 1).</td>
</tr>
<tr>
<td>OTWIERANIE HAMULCA</td>
<td></td>
</tr>
</tbody>
</table>
Nazwa stanu | Opis
---|---
OCZEKIWANIE NA OTWARCIE HAMULCA | Zażądano otwarcia hamulca. Do układu logicznego przemiennika częstotliwości przesłano żądanie zwiększenia momentu do poziomu momentu otwierającego w celu przytrzymywania obciążenia w miejscu (44.01 Stan stawiania hamulcem $b_1 = 1$ i $b_2 = 1$). Zostanie sprawdzony stan określony w parametrze 44.11 Trzymaj zamknięty hamulec. Jeśli przed upływem określonego czasu nie zostanie ustawiona wartość 0, przemiennik częstotliwości zostanie wyłączony awaryjnie z powodu błędu 71A5 Otwarcie hamulca mechanicznego niedozwolone").

OPÓŹNIENIE OTWIERANIA HAMULCA | Spełniono warunki otwarcia. Aktywowano sygnał otwarcia (ustawiono parametr 44.01 Stan stawiania hamulcem b_0). Usunięto żądanie dotyczące momentu otwierającego (44.01 Stan stawiania hamulcem $b_1 \rightarrow 0$). Obciążenie jest przytrzymane w miejscu przez funkcję sterowania prędkością przemiennika częstotliwości do momentu, aż upłynie czas określony w parametrze 44.08 Opóźnienie otw. hamulca

Jeśli na tym etapie w parametrze 44.07 Wybór potwierd. hamowania zostanie ustawiona wartość Bez potwierdzenia, układ logiczny aktywuje stan HAMULEC JEST OTWARTY. Jeśli źródło sygnału potwierdzenia jest wybrane, jest sprawdzany jego stan. Jeśli stan jest inny niż „hamulec jest otwarty”, przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 71A3 Błąd otwierania hamulca mechanicznego").

HAMULEC JEST OTWARTY | Otwarto hamulec (44.01 Stan stawiania hamulcem $b_0 = 1$). Usunięto żądanie wstrzymania (44.01 Stan stawiania hamulcem $b_2 \rightarrow 0$) i przemiennik częstotliwości może dążyć do uzyskania wartości zadanej.

ZAMYKANIE HAMULCA | Zażądano zamknięcia hamulca. Do układu logicznego przemiennika częstotliwości przesłano żądanie zmniejszenia prędkości zgodnie z rozkładem aż do zatrzymania (44.01 Stan stawiania hamulcem $b_3 \rightarrow 0$). Sygnał otwarcia jest nadal aktywny (44.01 Stan stawiania hamulcem $b_0 = 1$). Układ logiczny hamulca będzie pozostawał w tym stanie do momentu, aż prędkość spadnie z powodu określonego w parametrze 44.14 Poziom zamk. hamulca i pozostanie taka przez czas zdefiniowany w parametrze 44.15 Poz. opóźn. zamk. hamulca.

OCZEKIWANIE NA ZAMKNIĘCIE HAMULCA | Zażądano zamknięcia hamulca. Do układu logicznego przemiennika częstotliwości przesłano żądanie zmniejszenia prędkości zgodnie z rampą aż do zatrzymania (44.01 Stan stawiania hamulcem $b_3 = 1$). Sygnał otwarcia jest nadal aktywny (44.01 Stan stawiania hamulcem $b_0 = 1$). Układ logiczny hamulca będzie pozostawał w tym stanie do momentu, aż upłynie czas określony w parametrze 44.13 Opóźnienie zamk. hamulca.

Jeśli na tym etapie w parametrze 44.07 Wybór potwierd. hamowania zostanie ustawiona wartość Bez potwierdzenia, układ logiczny aktywuje stan HAMULEC JEST ZAMKNIĘTY. W przypadku wybrania źródła sygnału potwierdzenia jego stan zostanie sprawdzony. Jeśli nie będzie to stan „hamulec jest zamknięty”, przemiennik częstotliwości wygeneruje ostrzeżenie A7A1 Błąd zamknięcia hamulca mechanicznego. Jeśli w parametrze 44.17 Funkcja błędu hamulca jest ustawiona wartość Błąd, przemiennik częstotliwości zostanie wyłączony awaryjnie z powodu błędu 71A2 Błąd zamknięcia hamulca mechanicznego po upływie czasu określonego w parametrze 44.18 Opóźnienie błędu hamulca.

OPÓŻNIENIE ZAMYKANIA HAMULCA | Spełniono warunki zamknięcia. Sygnał otwarcia został zdezaktywowany (44.01 Stan stawiania hamulcem $b_0 \rightarrow 0$). Nadal obsługiwane jest żądanie zwalniające z powodu określonej prędkości (44.01 Stan stawiania hamulcem $b_3 = 1$). Układ logiczny hamulca pozostanie w tym stanie do momentu, aż upłynie czas określony w parametrze 44.13 Opóźnienie zamk. hamulca.

Jeśli na tym etapie w parametrze 44.07 Wybór potwierd. hamowania zostanie ustawiona wartość Bez potwierdzenia, układ logiczny aktywuje stan HAMULEC JEST ZAMKNIĘTY. W przypadku wybrania źródła sygnału potwierdzenia jego stan zostanie sprawdzony. Jeśli nie będzie to stan „hamulec jest zamknięty”, przemiennik częstotliwości wygeneruje ostrzeżenie A7A1 Błąd zamknięcia hamulca mechanicznego. Jeśli w parametrze 44.17 Funkcja błędu hamulca jest ustawiona wartość Błąd, przemiennik częstotliwości zostanie wyłączony awaryjnie z powodu błędu 71A2 Błąd zamknięcia hamulca mechanicznego po upływie czasu określonego w parametrze 44.18 Opóźnienie błędu hamulca.

HAMULEC JEST ZAMKNIĘTY | Hamulec jest zamknięty (44.01 Stan stawiania hamulcem $b_0 = 0$). Przemennik częstotliwości nie musi przeprowadzać modulacji.

Uwaga dotycząca aplikacji z pętlą otwartą (bez enkodera): Jeśli hamulec jest utrzymywany w stanu zamkniętym przez żądanie zamknięcia hamulca (przez parametr 44.12) wobec przemiennika częstotliwości modulującego przez dłużej niż 5 s, wzmuszy się stan zamknięty hamulca i przemiennik jest wyłączany awaryjnie z powodu błędu 71A5 Otwarcie hamulca mechanicznego niedozwolone.

*) W parametrze 44.17 Funkcja błędu hamulca można alternatywnie określić ostrzeżenie. W takim przypadku przemiennik częstotliwości będzie kontynuował modulację i pozostanie w danym stanie.
Warunki zmiany stanu (n)

1. Wyłączone sterowanie hamulcem (parametr 44.06 Sterowanie hamulca wl. → 0).
2. 06.11 Główne słowo stanu, bit 2 = 0.
3. Zażądano otwarcia hamulca, a czas określony w parametrze 44.16 Opóź. ponownego otw. ham. upłynął.
4. Spełniono warunki otwarcia hamulca (na przykład określone w parametrze 44.10 Moment otwarcia hamulca), a w parametrze 44.11 Trzymaj zamknięty hamulec ustawiona jest wartość 0.
5. Upłynął czas określony w parametrze 44.08 Opóźnienie otw. hamulca i odebrano potwierdzenie otwarcia hamulca (jeśli wybrano odpowiednią nastawę w parametrze 44.07 Wybór potwierdz. hamowania).
7. Prędkość silnika utrzymywała się poniżej poziomu prędkości zamknięcia określonej w parametrze 44.14 Poziom zamk. hamulca przez czas określony w parametrze 44.15 Poz. opóźn. zamk. hamulca.
8. Upłynął czas określony w parametrze 44.13 Opóźnienie zamk. hamulca i odebrano potwierdzenie zamknięcia (jeśli wybrano odpowiednią nastawę w parametrze 44.07 Wybór potwierdz. hamowania).
10. Włączono sterowanie hamulcem (parametr 44.06 Sterowanie hamulca wl. → 1).
Wykres czasowy

Poniższy uproszczony wykres czasowy ilustruje działanie funkcji sterowania hamulcem. Patrz Schemat stanów hamulca na stronie 87.

T_s Moment początkowy podczas otwierania hamulca (parametr 44.03 Wart.zad.mom. dla otw.ham.)

T_{mem} Zapisana wartość momentu podczas zamykania hamulca (parametr 44.02 Pamięć momentu ham.)

t_{md} Opóźnienie magnesowania silnika

t_{od} Opóźnienie otwarcia hamulca (parametr 44.08 Opóźnienie otw. hamulca)

n_{cs} Prędkość zamknięcia hamulca (parametr 44.14 Poziom zamk. hamulca)

t_{ccd} Opóźnienie komendy zamknięcia hamulca (parametr 44.15 Poz. opóźn. zamk. hamulca)

t_{cd} Opóźnienie zamknięcia hamulca (parametr 44.13 Opóźnienie zamk. hamulca)

t_{cfd} Opóźnienie błędu zamknięcia hamulca (parametr 44.18 Opóźnienie błędu hamulca)

t_{rod} Opóźnienie ponownego otwarcia hamulca (parametr 44.16 Opóźn. ponownego otw. ham.)

BOW OCZEKIWANIE NA OTWARCIE HAMULCA

BOD OPÓŹNIEŃIE OTWIERANIA HAMULCA

BCW OCZEKIWANIE NA ZAMKNIĘCIE HAMULCA

BCD OPÓŹNIEŃIE ZAMYKANIA HAMULCA
Przykładowe okablowanie

Na poniższym rysunku przedstawiono przykładowe okablowanie układu sterowania hamulcem. Klient odpowiada za pozyskanie i zainstalowanie sprzętu umożliwiającego sterowanie hamulcem oraz wykonanie okablowania.

OSTRZEŻENIE! Należy sprawdzić, czy urządzenie, z którym zostanie zintegrowany przemiennik częstotliwości z funkcją sterowania hamulcem, spełnia wymagania określone w przepisach dotyczących bezpieczeństwa personelu. Przemiennik częstotliwości (pełny moduł przemiennika częstotliwości lub podstawowy moduł przemiennika częstotliwości zgodnie z normą IEC 61800-2) nie jest uznawany za urządzenie zapewniające bezpieczeństwo w świetle europejskiej dyrektywy maszynowej oraz norm z nią zharmonizowanych. Dlatego zasady bezpieczeństwa personelu dotyczące całej maszyny nie mogą być oparte na konkretnej funkcji przemiennika częstotliwości (na przykład funkcji sterowania hamulcem). Muszą one zostać zaimplementowane w sposób zdefiniowany w przepisach specyficznych dla danego zastosowania.

Hamulec jest sterowany za pomocą bitu 0 parametru 44.01 Stan sterowania hamulcem. Źródło sygnału powiadomiania o stanie hamulca (nadzór stanu) można wybrać za pomocą parametru 44.07 Wybór potwierdz. hamowania. W tym przykładzie:

- parametr 10.24 Źródło RO1 ma ustawioną wartość Komenda otwarcia hamulca (bit 0 parametru 44.01 Stan sterowania hamulcem),
- parametr 44.07 Wybór potwierdz. hamowania ma ustawioną wartość DIO1.
Parametry i diagnostyka

Parametry: **06.11** Główne słowo stanu, **06.16** Słowo stanu 1 przem., grupa **44** Sterowanie hamulcem mechan.

Diagnostyka: **A7A1** Błąd zamykania hamulca mechanicznego, **71A2** Błąd zamykania hamulca mechanicznego, **71A3** Błąd otwierania hamulca mechanicznego, **71A5** Otwarcie hamulca mechanicznego niedozwolone
Kontrola napięcia DC

- **Kontrola nad przepięciami**

 Kontrola nad przepięciami pośredniego łącza DC jest niezbędna zazwyczaj, gdy silnik pracuje w trybie generatorowym. Silnik może pracować w trybie generowania, gdy zwalnia lub gdy obciążenie ciągłe wał silnika, powodując szybsze obroty niż stosowana prędkość lub częstotliwość. Aby uniemożliwić przekroczenie limitu napięcia w obwodzie DC, kontroler przepięcia automatycznie zmniejsza moment generowania po osiągnięciu tego limitu. Kontroler przepięcia również zwiększa zaprogramowane czasy zwalniania, jeśli osiągnięty został limit. W celu uzyskania krótszych czasów zwalniania wymagany może być czoper lub rezystor hamujący.

- **Kontrola nad zbyt niskim napięciem (przejście przez zanik napięcia zasilania)**

 Jeśli odcięte zostanie wejściowe napięcie zasilające, przemiennik częstotliwości będzie kontynuował pracę, korzystając z energii kinetycznej obracającego się silnika. Przemiennik częstotliwości zachowa pełną funkcjonalność, jeśli silnik będzie się obracał i generował energię na potrzeby przemiennika częstotliwości. Przemiennik częstotliwości może nadal kontynuować pracę po zaistniałej przerwie, jeśli główny stytnik ciągle jest zamknięty (o ile istnieje).
Uwaga: Jednostki wyposażone w główny stycznik muszą także zawierać obwód podtrzymywania zasilania (np. UPS) umożliwiający utrzymanie zamkniętego obwodu sterowania stycznikiem podczas krótkiej przerwy w zasilaniu.

\[
\begin{array}{c|c|c}
T_M & f_{out} & U_{DC} \\
(N\cdot m) & (Hz) & (V_{dc}) \\
160 & 80 & 520 \\
120 & 60 & 390 \\
80 & 40 & 260 \\
40 & 20 & 130 \\
\end{array}
\]

\[U_{DC} = \text{napięcie obwodu pośredniego przemiennika częstotliwości},\]

\[f_{out} = \text{częstotliwość wyjściowa przemiennika częstotliwości},\]

\[T_M = \text{moment silnika}.\]

Brak napięcia zasilającego przy obciążeniu znamionowym \((f_{out} = 40 \text{ Hz})\). Napięcie DC obwodu pośredniego spada do poziomu limitu minimalnego. Kontroler utrzymuje stałe napięcie tak długo, jak długo zasilanie będzie wyłączone. Przemiennik częstotliwości pracuje w trybie generatorowym. Prędkość silnika spada, lecz przemiennik częstotliwości będzie działał, dopóki silnik będzie miał wystarczającą energię kinetyczną.

Wdrażanie kontroli nad zbyt niskim napięciem (przejście przez zanik mocy)

Funkcję kontroli nad zbyt niskim napięciem należy wdrożyć w następujący sposób:

- Sprawdzić, czy funkcja kontroli nad zbyt niskim napięciem przemiennika częstotliwości jest włączona przy użyciu parametru 30.31 Kontr. nad zbyt niskim nap..
- Parametr 21.01 Tryb startu wektorowego musi zostać ustawiony na wartość Automatyczny (w trybie wektorowym) lub parametr 21.19 Tryb startu skalarnego musi zostać ustawiony na wartość Automatyczny (w trybie skalarnym), aby umożliwić lotny start (uruchamianie przy obracającym się silniku).

Jeśli instalacja jest wyposażona w główny stycznik, należy uniemożliwić jego aktywację po przerwaniu zasilania. Można na przykład użyć przekaźnika zwloconego w obwodzie sterowania stycznika.

OSTRZEŻENIE! Należy upewnić się, że lotny start silnika nie spowoduje wystąpienia niebezpieczeństwa. W razie wątpliwości nie stosować funkcji kontroli nad zbyt niskim napięciem.
Automatyczne restartowanie

Istnieje możliwość ustawienia automatycznego restartowania przemiennika częstotliwości po krótkiej (maksymalnie 5 sekundowej) awarii zasilania. Można to zrobić przy użyciu funkcji automatycznego restartowania, umożliwiającej określenie dozwolonego czasu pracy przemiennika częstotliwości bez działających wentylatorów chłodzących (domyślnie 5 sekund).

Jeśli funkcja jest włączona, po awarii zasilania wykonane zostaną następujące działania umożliwiające pomyślny przeprowadzenie restartu:

- Błąd wystąpienia zbyt niskiego napięcia zostanie zblokowany (ale generowane jest ostrzeżenie).
- Procesy modulowania i chłodzenia zostaną zatrzymane w celu zachowania całej pozostałej energii
- Włączona zostanie funkcja wstępnego ładowania obwodu DC

Jeśli napięcie DC zostanie przywrócone przed upływem czasu zdefiniowanego w parametrze 21.18 Czas autom. restartowania i sygnał startu będzie nadal przesyłany, kontynuowane będzie normalne działanie. Jeśli jednak napięcie DC będzie zbyt niskie po jego przywróceniu, przemiennik częstotliwości zostanie wyłączony awaryjnie z powodu błędu 3220 Niedostateczne napięcie łącza DC.

OSTRZEŻENIE! Przed aktywacją funkcji należy się upewnić, że nie spowoduje to wystąpienia niebezpiecznych sytuacji. Funkcja automatycznie uruchamia ponownie przemiennik częstotliwości i kontynuuje działanie po przerwie w zasilaniu.

- Limity dotyczące wyłączania i kontroli napięcia

Limity dotyczące wyłączania i kontroli napięcia pośredniego obwodu DC zależą od napięcia zasilania i typu przemiennika częstotliwości/inwertera. Napięcie DC \(U_{DC} \) jest o około 1,35 raza większe niż zasilające napięcie międzyprzewodowe, a jego wartość można wyświetlić za pomocą parametru 01.11 Napięcie DC.

W poniższej tabeli podano wartości wybranych poziomów napięcia DC w woltach. Należy pamiętać o tym, że napięcia absolutne różnią się w zależności od typu przemiennika częstotliwości/inwertera i zakresu napięcia zasilania AC.

<table>
<thead>
<tr>
<th>Poziom napięcia DC (V)</th>
<th>Zakres napięcia zasilania (V)</th>
<th>Zakres napięcia zasilania (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrz 95.01 Napięcie zasilania.</td>
<td>380...415</td>
<td>440...480</td>
</tr>
<tr>
<td>Limit błędu przepięcia</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>Limit kontroli nad przepięciami</td>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>Limit załączenia wewnętrznych czopera hamowania</td>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>Limit wyłączenia wewnętrznych czopera hamowania</td>
<td>760</td>
<td>760</td>
</tr>
<tr>
<td>Limit ostrzeżenia o przepięciu</td>
<td>745</td>
<td>745</td>
</tr>
<tr>
<td>Limit ostrzeżenia dotyczącego zbyt niskiego napięcia</td>
<td>(0.85 \times 1.41 \times \text{wartość parametru } 95.03^{1})</td>
<td>(0.85 \times 1.41 \times 380 = 455^{2})</td>
</tr>
<tr>
<td></td>
<td>(0.85 \times 1.41 \times \text{wartość parametru } 95.03^{1})</td>
<td>(0.85 \times 1.41 \times 440 = 527^{2})</td>
</tr>
</tbody>
</table>
Parametry i diagnostyka

Parametry: **01.11 Napięcie DC**, **30.30 Kontrola przepięć**, **30.31 Kontr. nad zbyt niskim nap.**, **95.01 Napięcie zasilania** i **95.02 Adaptacyjne limity napięcia**.

Czoper hamowania

Czoper hamowania umożliwia obsługę energii generowanej przez zwalniający silnik. Gdy napięcie DC wzrośnie do odpowiedniego poziomu podczas hamowania z obciążeniem o dużej bezwładności, czoper łączy obwód DC z zewnętrznym rezystorem hamowania. Rezystor rozprasza ciepło w celu zużycia energii obwodu DC, tak aby napięcie DC zmniejszyło się do normalnego poziomu. Czoper działa na zasadzie modulowania szerokości impulsów.

Wewnętrzne czopery hamowania przemienników częstotliwości (w obudowach R0...R3) rozpoczęną przesyłanie energii, gdy napięcie łącza DC osiągnęło wartość wynoszącą około \(1,15 \times U_{D\text{Cmax}}\) Szerokość impulsu wynosi 100%, gdy napięcie osiągnęto wartość około \(1,2 \times U_{D\text{Cmax}}\) (\(U_{D\text{Cmax}}\) to napięcie DC odpowiadające wartości maksymalnej zakresu napięcia zasilania AC). Informacje dotyczące zewnętrznych czoperek hamowania zawiera ich dokumentacja.

Uwaga: kontrola nad przepięciami musi być wyłączona, aby korzystać z czopera.
Sterowanie z wykorzystaniem wyłączników krańcowych

Funkcja sterowania z wykorzystaniem wyłączników krańcowych ogranicza ruch obciążenia do przodu i do tyłu w ramach dwóch punktów granicznych. Ta funkcja obsługuje monitorowanie dwóch czujników znajdujących się na obu końcach zakresu ruchu: jednego dla punktu zwolnienia i drugiego dla punktu zatrzymania. Podczas montażu należy zainstalować czujniki (na przykład wyłączniki krańcowe) i połączyć je do przemiennika częstotliwości.

Dla kierunku do przodu funkcja umożliwia normalne działanie przemiennika częstotliwości do momentu osiągnięcia przednich punktów limitów:

- Gdy przemiennik częstotliwości otrzymuje sygnał zwolnienia ruchu do przodu, zmniejsza prędkość do wartości zwolnienia. Prędkość zwolnienia umożliwia płynne zatrzymanie w późniejszym czasie. W wektorowym trybie sterowania jest używana rampa prędkości zadanej (od 23.11 do 23.15), a w trybie sterowania skalarnego jest używana rampa częstotliwości zadanej (od 28.71 do 28.75).

- Gdy przemiennik częstotliwości otrzymuje sygnał zatrzymania ruchu do przodu, zatrzymuje silnik. Używany jest wybór trybu zatrzymania przemiennika częstotliwości (21.03). Ta funkcja umożliwia start tylko w kierunku odwrotnym.

Podczas działania w kierunku odwrotnym funkcja monitoruje sygnały zwolnienia i zatrzymywania dla tego kierunku. Tryb pracy jest analogiczny do ruchu do przodu.

Można włączyć funkcję przy użyciu parametru, a także zdefiniować źródła sygnału dla zwolnienia i zatrzymania w kierunku do przodu oraz zwolnienia i zatrzymania w kierunku do tyłu. Można też zdefiniować parametr prędkości zwolnienia.

Funkcja sterowania z wykorzystaniem wyłączników krańcowych wykrywa zmiany stanów sygnałów tylko wtedy, gdy jest ona aktywna, a obciążenie jest przenoszone przez przemiennik częstotliwości i silnik. Ta funkcja nie aktualizuje stanów sygnałów w maszynie stanów, nawet w przypadku rzeczywistych zmian stanów:

1. gdy użytkownik dezaktywował lub wyłączył tę funkcję;
2. gdy ta funkcja zatrzymała silnik, ale obciążenie zostało przesunięte przez siłę inną niż przemiennik częstotliwości i silnik (na przykład grawitację).

Przykład zastosowania podano w sekcjach Funkcja limitu zatrzymania dźwigu na stronie 596, Funkcja zwalniania dźwigu na stronie 598 i Szybkie zatrzymanie na stronie 600.
Funkcja sterowania z wykorzystaniem wyłączników krańcowych

<table>
<thead>
<tr>
<th>LIMIT-TO-LIMIT</th>
<th>PHASE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>REV-ZERO - FWD MAX</td>
<td>REV SLOW - FWD MAX</td>
</tr>
<tr>
<td>REV SLOW - FWD MAX</td>
<td>REV MAX - FWD SLOW</td>
</tr>
<tr>
<td>REV MAX - FWD MAX</td>
<td>REV MAX - FWD ZERO</td>
</tr>
</tbody>
</table>

Ograniczenia

- Zewnętrzne sygnały zatrzymania i zwolnienia (w dowolnym kierunku) nie mogą być aktywne przy pierwszym uruchomieniu funkcji sterowania z wykorzystaniem wyłączników krańcowych. Jeśli nie jest to możliwe, należy zmienić stan ręcznie, tak aby odpowiadał stanowi aktualnemu w parametrze stanu funkcji sterowania z wykorzystaniem wyłączników krańcowych (76.01).
- Gdy przemiennik częstotliwości jest zatrzymany, obciążenie nie może być przemieszczane przy użyciu sił zewnętrznych (gdzie przemiennik częstotliwości nie może monitorować kierunku). Jeśli tak się stanie, stan sterowania z wykorzystaniem wyłączników krańcowych można ręcznie zmienić na właściwy w parametrze stanu funkcji sterowania z wykorzystaniem wyłączników krańcowych (76.01).
- Zatrzymanie wybiegiem bez użycia hamulca mechanicznego może spowodować poruszenie obciążenia niezależnie od funkcji sterowania z wykorzystaniem wyłączników krańcowych (gdzie przemiennik częstotliwości nie steruje przemieszczaniem obciążenia). Jeśli tak się stanie, stan sterowania z wykorzystaniem wyłączników krańcowych można ręcznie zmienić na właściwy w parametrze stanu funkcji sterowania z wykorzystaniem wyłączników krańcowych (76.01).
• Gdy sterowanie z wykorzystaniem wyłączników krańcowych jest w trybie impulsowym, ten stan zostanie zachowany w przypadku cyklu włączenia i wyłączenia. Nie należy usuwać obciążenia, gdy przemiennik częstotliwości jest wyłączony. Jeśli tak się stanie, stan sterowania z wykorzystaniem wyłączników krańcowych można zmienić na właściwy w parametrze stanu sterowania z wykorzystaniem wyłączników krańcowych (76.01).

Wskazówki

• Sygnały zwolnienia i zatrzymania można połączyć z tym samym źródłem sygnału przez ustawienie parametrów zwolnienia i zatrzymania na to samo wejście cyfrowe (76.01 Limit zatrzymania ruchu do przodu = DI2 i 76.05 Limit zwolnienia ruchu do przodu = DI2).

• Na potrzeby konserwacji można zmienić stan maszyny stanów funkcji sterowania z wykorzystaniem wyłączników krańcowych, korzystając z parametru stanu sterowania z wykorzystaniem wyłączników krańcowych (76.01).

Ustawienia

Parametry: 21 Tryb start/stop, 23 Rampa wart. prędkości, 28 Łańcuch w. zad. częstotliwości, 76.01 Stan sterowania krańc., 76.02 Włącz sterow. krańc., 76.03 Tryb sterowania krańc., 76.04 Limit zatrzymania do przodu, 76.05 Limit zwalniania do przodu, 76.06 Limit zatrzymania do tyłu, 76.07 Limit zwalniania do tyłu, 76.08 Prędkość zwalniania, 76.09 Częstotliwość zwalniania.
Bezpieczeństwo i zabezpieczenia

Standardowe funkcje ochrony

Przetężenie
Jeśli prąd wyjściowy przekracza wewnętrzny limit przetężenia, tranzystory IGBT są natychmiast wyłączane, aby chronić przemiennik częstotliwości.

Przepięcie DC
Patrz sekcja Kontrola nad przepięciami na str. 93.

Za niskie napięcie DC
Patrz sekcja Kontrola nad zbyt niskim napięciem (przejście przez zanik napięcia zasilania) na str. 93.

Temperatura przemiennika częstotliwości
Jeśli temperatura jest wysoka, przemiennik częstotliwości najpierw rozpoczyna ograniczanie częstotliwości kluczowania, a następnie ogranicza prąd, aby zapewnić ochronę dla swoich komponentów. Jeśli przemiennik częstotliwości nadal się nagrzewa, na przykład z powodu awarii wentylatora, zostaje wygenerowany błąd nadmiernej temperatury.

Zwarcie
W przypadku wystapienia zwarcia tranzystory IGBT zostają natychmiast wyłączone w celu ochrony przemiennika częstotliwości.

Zatrymanie awaryjne
Sygnał zatrymania awaryjnego jest podłączany do wejścia wybranego przy użyciu parametru 21.05 Źródło zatrymania awar.. Sygnał zatrymania awaryjnego można również wygenerować za pośrednictwem magistrali komunikacyjnej (parametr 06.01 Główne słowo sterowania, bity 0...2).

Tryb zatrymania awaryjnego można wybrać za pomocą parametru 21.04 Tryb zatrymania awaryjnego. Dostępne są następujące tryby:

- Off1: zatrymywanie zgodnie ze standardową rampą zwalniania zdefiniowaną dla określonego używanego typu wartości zadanej
- Off2: zatrzymanie wybiegiem
- Off3: zatrymywanie zgodnie z rampą zatrymywania awaryjnego zdefiniowaną w parametrze 23.23 Czas zatrz. awaryjnego.
- Moment zatrymania.

W przypadku trybów zatrymywania Off1 lub Off3 można nadzorować zmniejszanie prędkości silnika zgodnie z rampą za pomocą parametrów 31.32 Nadzór rampy zatrymania awaryjn. i 31.33 Opóż. nadzoru rampy zatrz. awaryj.
Uwagi:

• Instalator urządzenia jest odpowiedzialny za zainstalowanie urządzeń służących do zatrzymywania awaryjnego oraz wszystkich dodatkowych urządzeń niezbędnych, aby funkcja zatrzymywania awaryjnego spełniała kryteria opisane w wymaganych kategoriach zatrzymywania awaryjnego.

• Po wykryciu sygnału zatrzymania awaryjnego nie można anulować wykonania funkcji zatrzymania awaryjnego nawet poprzez zdjęcie sygnału.

• Jeśli w przypadku limitu minimalnego (lub maksymalnego) momentu ustawiono wartość 0%, zatrzymanie przemienneika częstotliwości przy użyciu funkcji zatrzymania awaryjnego może nie być możliwe.

Parametry

Ochrona termiczna silnika

Program sterujący udostępnia dwie różne funkcje monitorujące temperaturę silnika. Źródła danych o temperaturze oraz limity dotyczące ostrzeżeń/wyłączania można ustawić dla każdej funkcji z osobna.

Temperaturę silnika można monitorować za pomocą:

• modelu ochrony termicznej silnika (szacowana temperatura przez przemiennik częstotliwości) lub

• czujników zainstalowanych w uzwojeniach. Ta metoda umożliwia uzyskanie dokładniejszych danych modelu silnika.

Model ochrony termicznej silnika

Przemiennik częstotliwości oblicza temperaturę z uwzględnieniem następujących założeń:

1. Jeśli po raz pierwszy podłączono źródło zasilania do przemiennika częstotliwości, zakłada się, że temperatura silnika jest równa temperaturze otoczenia (zdefiniowanej w parametrze 35.50 Temperatura otoczenia silnika). Jeśli źródło zasilania zostanie podłączone do przemiennika częstotliwości po raz kolejny, przyjęte zostanie założenie, że temperatura silnika jest równa oszacowanej temperaturze.

Uwaga: Z modelu cieplnego silnika można korzystać tylko wtedy, gdy do inwertera podłączony jest tylko jeden silnik.
Pomiar temperatury silnika przez standardowe wejście/wyjście

Ten rozdział opisuje możliwość pomiaru temperatury pojedynczego silnika za pomocą czujników podłączonych do interfejsu wejście/wyjście przemienne.

Temperaturę silnika można mierzyć przy użyciu czujników Pt100 lub PTC podłączonych do wejścia i wyjścia analogowego.

Ostrzeżenie Zgodnie z normą IEC 60664 do podłączenia czujnika temperatury silnika jest wymagana podwójna lub wzmocniona izolacja między czujnikiem a elementami silnika będącymi pod napięciem. Wzmocniona izolacja wiąże się z zapewnieniem odstępu (z zapasem na przesunięcia podczas pracy) 8 mm (0,3 cala) dla urządzeń o napięciu 400/500 V AC.

Jeśli układ nie spełnia tych wymagań, zaciski karty wejścia/wyjścia muszą być chronione przed kontaktem i nie mogą być podłączane do innych urządzeń, a czujnik temperatura musi być odizolowany od zacisków wejście/wyjście.

Monitorowanie temperatury za pomocą czujników Pt100

Czujniki Pt100 1…3 można podłączać szeregowo do wejścia analogowego i do wyjścia analogowego.

Wyjście analogowe dostarcza do czujnika stały prąd wzbudzania o natężeniu 9,1 mA. W miarę jak rezystancja czujnika zwiększa się wraz z temperaturą silnika, napięcie na czujniku rośnie. Funkcja pomiaru temperatury odczytuje napięcie na wejściu analogowym i konwertuje je na wartość temperatury.

Istnieje możliwość dostosowania limitów nadzoru temperatury silnika oraz wybrania sposobu, w jaki przemienny częstotliwości zareaguje w przypadku wykrycia zbyt wysokiej temperatury.

Informacje o okablowaniu czujnika zawiera rozdział Montaż elektryczny, Wejścia AI1 i AI2 jako wejścia czujników Pt100, Pt1000, Ni1000, KTY83 i KTY84 (X1) w Podręczniku użytkownika przemieninika częstotliwości.
Programowanie funkcji zabezpieczeń

Zdarzenia zewnętrzne (parametry 31.01…31.10)

Pięć różnych sygnałów zdarzeń z procesu można powiązać z wybranymi wejściami w celu wygenerowania sygnału wyłączenia awaryjnego. W przypadku utraty sygnału generowane jest zdarzenie zewnętrzne (błąd, ostrzeżenie lub zwykły wpis w dzienniku).

Wykrywanie utraty fazy silnika (parametr 31.19)

Ten parametr umożliwia wybór sposobu, w jaki przemiennik częstotliwości zareaguje w przypadku wykrycia utraty fazy silnika.

Wykrywanie zwarcia doziemnego (parametr 31.20)

Należy pamiętać, że:

- zwarcie doziemne w kablu zasilania nie spowoduje zadziałania zabezpieczenia
- w przypadku zasilania z uziemionej sieci zabezpieczenie zadziała w czasie 2 mili sekund
- w przypadku zasilania z nieuziemionej sieci pojemność elektryczna kabla zasilającego musi wynosić 1 mikrofarad lub więcej
- prądy pojemnościowe wywołane ekranowanymi kablami silnika o długości do 300 metrów nie spowodują zadziałania zabezpieczenia
- zabezpieczenie nie jest aktywne, gdy przemiennik jest zatrzymany

Wykrywanie utraty fazy zasilania (parametr 31.21)

Ten parametr umożliwia wybór sposobu, w jaki przemiennik częstotliwości zareaguje w przypadku wykrycia utraty fazy zasilania.

Wykrywanie sygnału bezpiecznego wyłączania momentu (parametr 31.22)

Przemiennik częstotliwości monitoruje stan wejść funkcji bezpiecznego wyłączania momentu. Ten parametr umożliwia wybór wskazań podawanych w przypadku utraty sygnałów. Ten parametr nie wpływa na działanie samej funkcji bezpiecznego wyłączania momentu. Więcej informacji na temat funkcji bezpiecznego wyłączania momentu zawiera podręcznik użytkownika przemiennika częstotliwości.

Wykrywanie błędnego podłączenia okablowania zasilania i silnika (parametr 31.23)

Przemiennik częstotliwości może wykryć stan, w którym kable silnika i zasilania zostały przypadkowo zamienione ze sobą (kabel zasilania został podłączony do złącza silnika przemiennika częstotliwości). Parametr umożliwia określenie, czy błąd ma być generowany, czy nie.
Zabezpieczenie przed utykiem silnika (parametry 31.24…31.28)

Przemiennik częstotliwości zabezpiecza silnik w przypadku niespodziewanego przerywania jego pracy. Istnieje możliwość dostosowania limitów nadzoru (prąd, częstotliwość i czas) oraz wybrania sposobu, w jaki przemiennik częstotliwości zareaguje na niespodziewane przerwanie pracy przez silnik.

Zabezpieczenie przed nadmiernej prędkością (parametr 31.30)

Użytkownik może ustawić limit nadmiernej prędkości (i nadmiernej częstotliwości) przez określenie marginesu dodawanego do obecnie używanych limitów maksymalnej i minimalnej prędkości (lub częstotliwości).

Wykrywanie utraty możliwości sterowania lokalnego (parametr 49.05)

Ten parametr umożliwia określenie sposobu, w jaki przemiennik częstotliwości zareaguje na przerwę w komunikacji z panelem sterowania lub oprogramowaniem komputerowym.

Nadzór AI (parametry 12.03…12.04)

Parametry umożliwiają wybór sposobu, w jaki przemiennik częstotliwości reaguje, gdy analogowy sygnał wejściowy wychodzi poza minimalny i/lub maksymalny limit określony dla wejścia.

Automatyczne resetowanie błędów

Przemiennik częstotliwości może automatycznie się zresetować po wystąpieniu błędów zewnętrznych, przepięcia oraz zbyt niskiego napięcia. Użytkownik może również określić błąd, który jest automatycznie resetowany.

Domyślnie funkcja automatycznego resetowania jest wyłączona i użytkownik może ją aktywować.

Parametry i diagnostyka

Parametry: 31.12…31.16.
Diagnostyka

- **Nadzór sygnału**

Istnieje możliwość wybrania sześciu sygnałów, które mają być nadzorowane przez tę funkcję. Za każdym razem, gdy nadzorowany sygnał przekroczy wstępnie zdefiniowane limity lub spadnie poniżej ich wartości, aktywowany jest bit w parametrze 32.01 Stan nadzoru oraz generowane jest ostrzeżenie lub błąd.

Nadzorowany sygnał jest filtrowany za pomocą filtra dolnoprzepustowego.

Parametry i diagnostyka

Parametry: grupa 32 Nadzór.

- **Kalkulatory oszczędności energii**

To narzędzie oferuje następujące funkcjonalności:

- Optymalizator energetyczny służący do dostosowywania strumienia silnika w celu zmaksymalizowania całkowitej wydajności systemu.
- Licznik służący do monitorowania zużywanej i zaoszczędzanej energii przez silnik oraz wyświetlania tych wartości wyrażonych w kWh lub w pieniądach albo jako wartość emisji CO₂
- Analizator obciążenia służący do wyświetlania profilu obciążenia przemiennika częstotliwości (patrz sekcja Analizator obciążenia na stronie 105).

Ponadto istnieją liczniki wyświetlające zużycie energii w kWh dla bieżącej i poprzedniej godziny, a także dla bieżącego i poprzedniego dnia.

Uwaga: Dokładność obliczania zaoszczędzonej energii jest bezpośrednio zależna od dokładności, z jaką wartość zadana zasilania silnika została podana w parametrze 45.19 Moc porównawcza.

Parametry i diagnostyka

Parametry: grupa 45 Wydajność energetyczna, 01.50 kWh w bieżącej godzinie, 01.51 kWh w poprzedniej godz., 01.52 kWh w bieżącym dniu i 01.53 kWh w poprzednim dniu.

- **Analizator obciążenia**

Rejestrator wartości szczycowej

Użytkownik może wybrać sygnał, który ma być monitorowany przez rejestrator wartości szczycowej. Rejestrator zapisuje wartość szczycową oraz czas jej wystąpienia, a także prąd silnika, napięcie DC i prędkość silnika w momencie wystąpienia wartości szczycowej. Wartość szczycowa jest próbkowana w odstępach 2 ms.
Rejestratory amplitudy

Program sterujący udostępnia dwa rejestratory amplitudy.

W przypadku rejestratora amplitudy 2 użytkownik może wybrać sygnał, który ma być próbkowany w odstępach 200 ms, oraz określić wartość odpowiadającą 100%. Zgromadzone próbki są sortowane według amplitudy i grupowane w ramach 10 parametrów przeznaczonych tylko do odczytu.

- Parametr 1 wskazuje, jaka część próbek znalazła się w zakresie od 0 do 10% wartości zadanej w czasie, w którym było aktywne rejestrowanie.
- Parametr 2 wskazuje, jaka część próbek znalazła się w zakresie od 10 do 20% wartości zadanej w czasie rejestrowania.
- Kolejne parametry zawierają dalsze wskazania.

Informacje te można wyświetlić na grafice w panelu sterowania z asystentami oraz w programie komputerowym Drive Composer.

Rejestrator amplitudy 1 służy tylko do monitorowania prądu silnika i nie można go zresetować. W przypadku rejestratora 1 wartość 100% odpowiada maksymalnej wartości prądu wyjściowego przemiennika częstotliwości (I_{max}). Maksymalne wartości natężenia wyjścia podano w sekcji Wartości znamionowe w Podręczniku użytkownika przemiennika częstotliwości. Mierzony prąd jest stałe rejestrowany. Rozkład próbek pokazują parametry 36.20…36.29.

Parametry i diagnostyka

Parametry: grupa 36 Analiza obciążenia.
Różne

Tworzenie i przywracanie kopii zapasowej

Kopie zapasowe ustawień można wykonywać ręcznie. Są one zapisywane w panelu sterowania z asystentami. Panel przechowuje też jedną automatyczną kopię zapasową. Kopię zapasową można przywrócić na innym przemienniku częstotliwości lub na nowym przemienniku częstotliwości zastępującym przemiennik, który uległ awarii. Obsługa tworzenia i przywracania kopii zapasowych jest możliwa przy użyciu panelu i programu komputerowego Drive Composer.

Więcej informacji o kopiach zapasowych i ustawieniach zawiera odpowiedni panel sterowania z asystentami.

Tworzenie kopii zapasowej

Ręczna kopia zapasowa

Kopię zapasową należy wykonać, gdy jest ona potrzebna, na przykład po uruchomieniu przemiennika częstotliwości lub gdy mają zostać skopiowane ustawienia na inny przemiennik częstotliwości.

Zmiany parametrów z poziomu interfejsów magistrali komunikacyjnej są ignorowane, chyba że wymuszone zapisywanie parametrów.

Automatyczna kopia zapasowa

Panel z asystentami ma miejsce na jedną automatyczną kopię zapasową. Automatyczna kopia zapasowa jest tworzona dwie godziny po ostatniej zmianie parametru. Po ukończeniu tworzenia kopii zapasowej panel czeka 24 godziny, zanim sprawdzi, czy zostały wprowadzone dodatkowe zmiany w parametrach. Jeśli zostały one wprowadzone, panel tworzy nową kopię zapasową, nadpisując poprzednią kopię po dwóch godzinach od ostatniej zmiany.

Nie można modyfikować czasu opóźnienia ani wyłączyć funkcji automatycznego tworzenia kopii zapasowej.

Zmiany parametrów z poziomu interfejsów magistrali komunikacyjnej są ignorowane, chyba że wymuszone zapisywanie parametrów.

Przywracanie

Kopie zapasowe są wyświetlane w panelu. Automatyczne i ręczne kopie zapasowe są oznaczone oddzielnie.

Uwaga: Aby można było przywrócić kopię zapasową, przemiennik częstotliwości musi być sterowany lokalnie.

Parametry i diagnostyka

Parametr 96.07 Ręczne zapisanie parametrów.
Zestawy parametrów użytkownika

Przemiennik częstotliwości obsługuje cztery zestawy parametrów użytkownika, które można zapisać w pamięci trwalej, a następnie przywołać za pomocą parametrów przemiennika częstotliwości. Ponadto można zmieniać zestawy parametrów użytkownika przy użyciu wejść cyfrowych. Aby zmienić zestaw parametrów użytkownika, należy zatrzymać przemiennik częstotliwości.

Zestaw parametrów użytkownika zawiera wszystkie edytowalne parametry zawarte w grupach od 10 do 99 z wyjątkiem:

- ustawień modułu rozszerzeń wejścia/wyjścia (15 Moduł rozszerzeń),
- parametry magazynowania danych (47 Magazyn danych),
- ustawienia magistrali komunikacyjnej (50 Adapter komunikacyjny (FBA)…53 FBA A: dane wyj. i 58 Wbud. moduł komunikacyjny).

Jeśli w zestawach parametrów użytkownika uwzględnione są nastawy silnika, przed przywołaniem zestawu użytkownika należy upewnić się, że te nastawy są odpowiednie dla silnika używanego w ramach danej aplikacji. W przypadku aplikacji, w ramach której wraz z przemiennikiem częstotliwości wykorzystywane są różne silniki, należy wykonać bieg identyfikacyjny dla każdego silnika, a wyniki zapisać w różnych zestawach użytkownika. Dzięki temu można przywołać odpowiedni zestaw parametrów po przełączeniu silnika.

Parametry i diagnostyka

Parametry: 96.10…96.13.

Parametry magazynowania danych

Parametry i diagnostyka

Parametry: grupa 47 Magazyn danych.

Potencjometr silnika

Potencjometr silnika to licznik, którego wartość można dostosować (zmniejszyć i zwiększyć) za pomocą dwóch sygnałów cyfrowych określonych przy użyciu parametrów.

Gdy ta funkcja jest włączona, potencjometr silnika przyjmuje ustaloną wartość. W zależności od wybranego trybu wartość potencjometru silnika jest albo zapisywana, albo resetowana po cyklu wyłączanie i włączenia.
Współczynnik zmiany definiuje się jako czas wymagany do zmiany z wartości minimalnej do wartości maksymalnej i na odwrót. Jeśli jednocześnie zostaną podane sygnały zmniejszenia i zwiększenia wartości, wartość potencjometru silnika nie ulegnie zmianie.

Jest wyświetlana wartość wyjściowa funkcji, którą można bezpośrednio ustawić jako źródło wartości zadanych w głównych parametrach selektora lub używać jako wejścia w przypadku innych parametrów selektora źródła.

W poniższym przykładzie pokazano, jak zmienia się wartość potencjometru silnika.

Przykład aplikacji podano w sekcji Potencjometr silnika dźwigu na stronie 607.

Parametry

Parametry: **22.71…22.80**.

- **Blokada użytkownika**

Aby zapewnić większe cyberbezpieczeństwo, można ustawić hasło główne zapobiegające na przykład zmianie wartości parametrów i/lub ładowaniu programu wbudowanego albo innych plików.

OSTRZEŻENIE! Firma ABB nie ponosi odpowiedzialności za jakiekolwiek uszkodzenia lub szkody spowodowane nieudaną aktywacją blokady użytkownika za pomocą nowego kodu. Patrz Zrzeczenie odpowiedzialności dotyczące cyberbezpieczeństwa (str. 15).

Aby po raz pierwszy aktywować blokadę użytkownika, należy wprowadzić domyślny kod, 10000000, w parametrze **96.02 Kod**. Dzięki temu będą widoczne parametry **96.100...96.102**. Następnie należy wprowadzić nowy kod w parametrze **96.100 Zmień kod użytkownika** i potwierdzić go przy użyciu parametru **96.101 Potwierdź kod**.
uż.. W parametrze 96.102 Funkcja blokady użytk. należy zdefiniować działania, których wykonywanie ma być zabronione.

Aby zamknąć blokadę użytkownika, należy wprowadzić nieważny kod w parametrze 96.02 Kod, aktywować parametr 96.08 Restart karty sterowania lub odłączyć i ponownie włączyć zasilanie przemiennika częstotliwości. Gdy blokada jest zamknięta, parametry 96.100…96.102 są ukryte.

Aby ponownie otworzyć blokadę, należy wprowadzić kod w parametrze 96.02 Kod. Po wprowadzeniu kodu parametry 96.100…96.102 będą ponownie widoczne.

Ustawienia

Parametry: 96.02 i 96.100…96.102.
Parametry

Spis treści
• Wyrażenia i skróty
• Adresy magistrali komunikacyjnej
• Podsumowanie grup parametrów
• Lista parametrów
• Różnice w wartościach domyślnych pomiędzy ustawieniami częstotliwości zasilania 50 Hz i 60 Hz
Wyrażenia i skróty

<table>
<thead>
<tr>
<th>Wyrażenie</th>
<th>Definicja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sygnał aktualny</td>
<td>Sygnał zmierzony lub obliczony przez przemiennik częstotliwości. Zwykle sygnały tego typu mogą być wyłącznie monitorowane i nie można ich korygować, jednak niektóre sygnały pochodzące z liczników można resetować.</td>
</tr>
<tr>
<td>Źródło analogowe</td>
<td>Źródło analogowe: parametr można ustawić na wartość innego parametru, wybierając opcję „Inne”, a następnie wybierając parametr źródłowy z listy. Oprócz opcji „Inne” parametr może udostępnić inne wstępnie określone ustawienia. Nie w tej wersji.</td>
</tr>
<tr>
<td>Źródło cyfrowe</td>
<td>Źródło cyfrowe: wartość parametru może być pobierana z konkretnego bitu wartości innego parametru („Inne”). Czasami wartość może być na stałe ustawiona na 0 (fałsz) lub 1 (prawda). Ponadto parametr może oferować inne wstępnie określone ustawienia. Nie w tej wersji.</td>
</tr>
<tr>
<td>Wartość domyślna</td>
<td>Wartość domyślna jest wyświetlana w tym samym wierszu co nazwa parametru. Wartość domyślna parametru makra fabrycznego. Informacje o innych wartościach parametrów określonego makra zawiera rozdział Makra sterowania.</td>
</tr>
<tr>
<td>Lista</td>
<td>Lista wyboru.</td>
</tr>
<tr>
<td>Nr</td>
<td>Numer parametru.</td>
</tr>
<tr>
<td>PB</td>
<td>Packed Boolean (lista bitowa).</td>
</tr>
<tr>
<td>Real</td>
<td>Liczba rzeczywista.</td>
</tr>
<tr>
<td>Typ</td>
<td>Typ (źródło analogowe, źródło binarne, lista, liczba części na miliard, wartość rzeczywista).</td>
</tr>
<tr>
<td>Inny</td>
<td>Wartość jest pobierana z innego parametru. Wybranie opcji „Inny” powoduje wyświetlenie listy parametrów, na której użytkownik może określić parametr źródłowy.</td>
</tr>
<tr>
<td>Parametr</td>
<td>Możliwa do ustawienia przez użytkownika instrukcja działania dla przemiennika częstotliwości lub Sygnał aktualny.</td>
</tr>
<tr>
<td>p.u.</td>
<td>Na jednostkę</td>
</tr>
<tr>
<td>[numer parametru]</td>
<td>Wartość parametru</td>
</tr>
</tbody>
</table>

Adresy magistrali komunikacyjnej

Patrz podręcznik użytkownika adaptera komunikacyjnego.
Podsumowanie grup parametrów

<table>
<thead>
<tr>
<th>Grupa</th>
<th>Spis treści</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Wartości aktualne</td>
<td>Podstawowe sygnały do monitorowania przemiennika częstotliwości.</td>
<td>115</td>
</tr>
<tr>
<td>03 Wejściowe wartości zadane</td>
<td>Wartości zadane odbierane z różnych źródeł.</td>
<td>119</td>
</tr>
<tr>
<td>04 Ostrzeżenia i błędy</td>
<td>Informacje na temat ostatnich ostrzeżeń i błędów.</td>
<td>120</td>
</tr>
<tr>
<td>05 Diagnostyka</td>
<td>Różne liczniki i pomiary rejestrujące czas pracy związane z konserwacją przemiennika częstotliwości.</td>
<td>121</td>
</tr>
<tr>
<td>06 Słowa sterowania i stanu</td>
<td>Słowa sterowania i stanu przemiennika częstotliwości.</td>
<td>124</td>
</tr>
<tr>
<td>07 Informacje systemowe</td>
<td>Informacje o elementach sprzętowych i oprogramowaniu przemiennika częstotliwości.</td>
<td>130</td>
</tr>
<tr>
<td>09 Sygnały apl. dźwigowej</td>
<td>Sygnały dotyczące aplikacji z dźwigami.</td>
<td>132</td>
</tr>
<tr>
<td>10 Standardowe DI, RO</td>
<td>Konfiguracja wejść cyfrowych i wyjść przekaźnikowych.</td>
<td>134</td>
</tr>
<tr>
<td>11 Standardowe DIO, FI, FO</td>
<td>Konfiguracja wejść/wyjść cyfrowych.</td>
<td>138</td>
</tr>
<tr>
<td>12 Standardowe AI</td>
<td>Konfiguracja standardowych wejść analogowych.</td>
<td>145</td>
</tr>
<tr>
<td>13 Standardowe AO</td>
<td>Konfiguracja standardowych wyjść analogowych.</td>
<td>150</td>
</tr>
<tr>
<td>15 Moduł rozszerzeń</td>
<td>Konfiguracja modułu rozszerzeń we/wy.</td>
<td>154</td>
</tr>
<tr>
<td>19 Tryb pracy</td>
<td>Wybór lokalnych i zewnętrznych źródeł miejsc sterowania i trybów pracy.</td>
<td>159</td>
</tr>
<tr>
<td>20 Start/stop/kierunek</td>
<td>Wybór źródeł sygnałów sterowania start/stop/kierunek oraz zezwolenia na bieg/start/bieg próbny przy użyciu dodatniej/ujemnej wartości zadanej.</td>
<td>161</td>
</tr>
<tr>
<td>21 Tryb start/stop</td>
<td>Tryby startu i stopu; tryb zatrzymania awaryjnego oraz wybór źródła sygnału; ustawienia magnesowania DC.</td>
<td>177</td>
</tr>
<tr>
<td>22 Wybór wart. zadanej prędkości</td>
<td>Wybór wartości zadanej prędkości; ustawienia potencjometru silnika.</td>
<td>187</td>
</tr>
<tr>
<td>23 Rampa wart. zad. prędkości</td>
<td>Ustawienia rampy wartości zadanej prędkości (programowanie czasu przyspieszania i zwalniania przemiennika częstotliwości).</td>
<td>201</td>
</tr>
<tr>
<td>24 Warunkowa w. zad. prędkości</td>
<td>Obliczenia błędu prędkości; konfiguracja sterowania oknem błędu prędkości; krok błędu prędkości.</td>
<td>206</td>
</tr>
<tr>
<td>25 Sterowanie prędkością</td>
<td>Ustawienia kontrolera prędkości.</td>
<td>207</td>
</tr>
<tr>
<td>26 Łańcuch wart. zad. momentu</td>
<td>Ustawienia łańcucha wartości zadanej momentu.</td>
<td>212</td>
</tr>
<tr>
<td>28 Łańcuch w. zad. częstotliwości</td>
<td>Ustawienia łańcucha wartości zadanej częstotliwości.</td>
<td>217</td>
</tr>
<tr>
<td>30 Limity</td>
<td>Limity pracy przemiennika częstotliwości.</td>
<td>232</td>
</tr>
<tr>
<td>31 Funkcje błędu</td>
<td>Konfiguracja zewnętrznych zdarzeń. Wybór działania przemiennika częstotliwości w sytuacjach wystąpienia błędu.</td>
<td>239</td>
</tr>
<tr>
<td>32 Nadzór</td>
<td>Konfiguracja funkcji nadzoru sygnału 1…3.</td>
<td>251</td>
</tr>
<tr>
<td>34 Funkcje czasowe</td>
<td>Konfiguracja funkcji czasowej.</td>
<td>259</td>
</tr>
<tr>
<td>35 Ochrona termiczna silnika</td>
<td>Ustawienia ochrony termicznej silnika, takie jak konfiguracja pomiaru temperatury, definicja krzywej obciążenia i konfiguracja sterowania wentylatora silnika.</td>
<td>266</td>
</tr>
<tr>
<td>36 Analiza obciążenia</td>
<td>Ustawienia rejestratora wartości szczycowej i amplitudy.</td>
<td>271</td>
</tr>
<tr>
<td>37 Krzywa obciążenia użytkownika</td>
<td>Ustawienia krzywej obciążenia użytkownika.</td>
<td>275</td>
</tr>
<tr>
<td>Grupa</td>
<td>Spis treści</td>
<td>Strona</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>40 PID procesu: zestaw 1</td>
<td>Wartości parametrów regulatora PID procesu.</td>
<td>279</td>
</tr>
<tr>
<td>41 PID procesu: zestaw 2</td>
<td>Drugi zestaw wartości parametrów dla regulatora PID dla procesu.</td>
<td>294</td>
</tr>
<tr>
<td>43 Czop hamowania</td>
<td>Ustawienia wewnętrznego czopera hamowania.</td>
<td>297</td>
</tr>
<tr>
<td>44 Sterowanie hamulcem mechan.</td>
<td>Konfiguracja sterowania hamulcem mechanicznym.</td>
<td>299</td>
</tr>
<tr>
<td>45 Wydajność energetyczna</td>
<td>Ustawienia dla kalkulatorów oszczędności energii.</td>
<td>307</td>
</tr>
<tr>
<td>46 Ust. monitorowania/skalowania</td>
<td>Ustawienia nadzoru prędkości, filtrowanie aktualnego sygnału, ogólne ustawienia skalowania.</td>
<td>312</td>
</tr>
<tr>
<td>47 Magazyn danych</td>
<td>Parametry magazynu danych, w których można zapisać dane i z których można odczytać dane, używając ustawień źródła i miejsca docelowego innych parametrów.</td>
<td>316</td>
</tr>
<tr>
<td>49 Port komunikacyjny panelu</td>
<td>Ustawienia komunikacji dla portu panelu sterowania przemiennika częstotliwości.</td>
<td>317</td>
</tr>
<tr>
<td>50 Adapter komunikacyjny (FBA)</td>
<td>Konfiguracja komunikacji za pomocą magistrali komunikacyjnej.</td>
<td>320</td>
</tr>
<tr>
<td>51 FBA A: ustawienia</td>
<td>Konfiguracja adaptera komunikacyjnego A.</td>
<td>325</td>
</tr>
<tr>
<td>52 FBA A: dane wej.</td>
<td>Wybór danych przesyłanych z przemiennika częstotliwości do sterownika magistrali komunikacyjnej przez adapter komunikacyjny A.</td>
<td>326</td>
</tr>
<tr>
<td>53 FBA A: dane wyj.</td>
<td>Wybór danych przesyłanych ze sterownika magistrali komunikacyjnej do przemiennika częstotliwości przez adapter komunikacyjny A.</td>
<td>327</td>
</tr>
<tr>
<td>58 Wbud. moduł komunikacyjny</td>
<td>Konfiguracja wbudowanego interfejsu magistrali komunikacyjnej (EFB).</td>
<td>328</td>
</tr>
<tr>
<td>71 Zewnętrzny regulator PID1</td>
<td>Konfiguracja zewnętrznego regulatora PID.</td>
<td>349</td>
</tr>
<tr>
<td>76 Funkcje aplikacji</td>
<td>Parametry aplikacji służące na potrzeby na przykład konfiguracji sterowania z wykorzystaniem wyłączników krańcowych.</td>
<td>351</td>
</tr>
<tr>
<td>90 Wybór sprzężenia zwrotnego</td>
<td>Konfiguracja sprzężenia zwrotnego od silnika i obciążenia.</td>
<td>356</td>
</tr>
<tr>
<td>91 Ustawienia adaptera enkodera</td>
<td>Konfiguracja modułu interfejsu enkodera.</td>
<td>358</td>
</tr>
<tr>
<td>92 Konfiguracja enkodera 1</td>
<td>Ustawienia enkodera 1.</td>
<td>358</td>
</tr>
<tr>
<td>95 Konfiguracja HW</td>
<td>Różne ustawienia związane ze sprzętem.</td>
<td>358</td>
</tr>
<tr>
<td>96 System</td>
<td>Wybór języka, poziomy dostępu, wybór makro, zapisywanie i przywracanie parametrów, ponowne uruchamianie jednostki sterującej, zestawy parametrów użytkownika, wybór jednostki, blokada użytkownika.</td>
<td>360</td>
</tr>
<tr>
<td>97 Sterowanie silnika</td>
<td>Częstotliwość kluczowania; wzmocnienie poślizgu; rezerwa napięcia; hamowanie strumieniem; zabezpieczenie przed pulsacją obrotów silnika (wstrzykienie sygnału); kompensacja IR.</td>
<td>370</td>
</tr>
<tr>
<td>98 Parametry silnika użytkownika</td>
<td>Dane silnika podane przez użytkownika, które są używane w modelu silnika.</td>
<td>373</td>
</tr>
<tr>
<td>99 Dane silnika</td>
<td>Ustawienia konfiguracji silnika.</td>
<td>375</td>
</tr>
</tbody>
</table>
Lista parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Wartości aktualne</td>
<td>Podstawowe sygnały do monitorowania przemiennika częstotliwości. Wszystkie parametry w tej grupie są tylko do odczytu, o ile nie zaznaczono inaczej. Uwaga: Wartości tych sygnałów aktualnych są filtrowane za pomocą czasu filtrowania zdefiniowanego w grupie 46 Ust. monitorowania/skalowania. Listy wyboru dla parametrów w innych grupach określają wartość nieprzetworzoną sygnału aktualnego. Jeśli na przykład wybrana jest opcja „Częstotliwość wyjściowa”, element nie wskazuje na wartość parametru 01.06 Częstotliwość wyjściowa, ale na wartość nieprzetworzoną.</td>
<td>FbEq 16</td>
</tr>
<tr>
<td>01.01</td>
<td>Użyta prędkość silnika</td>
<td>Zmierzona lub szacowana prędkość silnika w zależności od używanego typu sprzężenia zwrotnego używana w parametrze 96.01 Wybór sprz. zwr. od silnika. Stałą czasu filtrowania dla tego sygnału można zdefiniować za pomocą parametru 46.11 Czas filtru: prędk. silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000,00…30000,00 obr./min Zmierzona lub szacowana prędkość silnika.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>01.02</td>
<td>Szacowana prędkość silnika</td>
<td>Szacowana prędkość silnika w obr./min. Stałą czasu filtrowania dla tego sygnału można zdefiniować za pomocą parametru 46.11 Czas filtru: prędk. silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000,00…30000,00 obr./min Szacowana prędkość silnika.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>01.03</td>
<td>Prędkość silnika %</td>
<td>Aktualna prędkość jako procentowa wartość prędkości synchronicznej silnika. Stałą czasu filtrowania można regulować za pomocą parametru 46.11 Czas filtru: prędk. silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1000,00…1000,00% Prędkość silnika.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>01.04</td>
<td>Filtrowana prędk. enkodera 1</td>
<td>Zmierzona prędkość silnika z enkodera 1. Stałą czasu filtrowania można regulować za pomocą parametru 46.11 Czas filtru: prędk. silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000…30000 1=1</td>
<td></td>
</tr>
<tr>
<td>01.05</td>
<td>Częstotliwość wyjściowa</td>
<td>Szacowana częstotliwość wyjściowa przemiennika w Hz. Stałą czasu filtrowania dla tego sygnału można zdefiniować za pomocą parametru 46.12 Czas filtru częst. wyj..</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500,00…500,00 Hz Szacowana częstotliwość wyjściowa.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>01.07</td>
<td>Prąd silnika</td>
<td>Zmierzony (absolutny) prąd silnika w A.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…30000,00 Prąd silnika.</td>
<td>Patrz parametr 46.05</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>01.08</td>
<td>Prąd silnika % w art.znam. siln.</td>
<td>Prąd silnika (prąd wyjściowy przemiennika częstotliwości) jako procentowa wartość prądu znamionowego silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,0…1000,0%</td>
<td>Prąd silnika.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.09</td>
<td>Prąd silnika % w art.znam.przem.</td>
<td>Prąd silnika (prąd wyjściowy przemiennika częstotliwości) jako procentowa wartość prądu znamionowego przemieni- nika częstotliwości.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,0…1000,0%</td>
<td>Prąd silnika.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.10</td>
<td>Moment silnika</td>
<td>Moment silnika w procentach znamionowego momentu silnika. Patrz też parametr 01.30 Skala momentu znamion. Stałą czasu filtrowania dla tego sygnału można zdefiniować za pomocą parametru 46.13 Czas filtru mom. silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Moment silnika.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>01.11</td>
<td>Napięcie DC</td>
<td>Zmierzone napięcie pośrednie łączca DC.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…2000,00 V</td>
<td>Napięcie łączca DC.</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>01.13</td>
<td>Napięcie wyjściowe</td>
<td>Obliczone napięcie silnika w V AC.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…2000 V</td>
<td>Napięcie silnika.</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>01.14</td>
<td>Moc wyjściowa</td>
<td>Zmierzona moc wyjściowa w KW lub KM w zależności od ustawienia parametru Jednostka mocy. Stałą czasu filtrowania można regulować za pomocą parametru 46.14 Czas filtru mocy.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768,00…32767,00 kW lub KM</td>
<td>Moc wyjściowa.</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>01.15</td>
<td>Moc wyjściowa % w art.znam.siln.</td>
<td>Zmierzona moc wyjściowa w procentach znamionowej mocy silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-300,00…300,00%</td>
<td>Moc wyjściowa.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.16</td>
<td>Moc wyjściowa % w art.znam.przem.</td>
<td>Zmierzona moc wyjściowa w procentach znamionowej mocy przemiennika częstotliwości. Stałą czasu filtrowania można regulować za pomocą parametru 46.14 Czas filtru mocy.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-300,00…300,00%</td>
<td>Moc wyjściowa.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.17</td>
<td>Moc na wale silnika</td>
<td>Szacowana moc mechaniczna na wale silnika w KW lub KM. Jednostka jest wybierana za pomocą parametru 96.16 Wybór jednostki. Stałą czasu filtrowania można regulować za pomocą parametru 46.14 Czas filtru mocy.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768,00…32767,00 kW lub KM</td>
<td>Moc na wale silnika.</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>01.18</td>
<td>Licznik GWh inwertera</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych gigawatogodzinach. Wartość minimalna wynosi zero.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…65535 GWh</td>
<td>Energia w GWh.</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>01.19</td>
<td>Licznik MWh inwertera</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych megawatogodzinach. Za każdym razem, gdy licznik się przekręci, wartość parametru 01.18 Licznik GWh inwertera jest zwiększana. Wartość minimalna wynosi zero.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1000 MWh</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.20</td>
<td>Licznik kWh inwertera</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych kilowatogodzinach. Za każdym razem, gdy licznik się przekręci, wartość parametru 01.19 Licznik MWh inwertera jest zwiększana. Wartość minimalna wynosi zero.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1000 kWh</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>01.24</td>
<td>Akt. strumień %</td>
<td>Używana wartość zadana strumienia w procentach wartości znamionowej strumienia silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…200%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.30</td>
<td>Skala momentu znamion.</td>
<td>Moment znamionowy w niutonometrach, co odpowiada wartości 100%. Uwaga: Ta wartość jest kopiowana z parametru 99.12 Moment znamion. silnika, jeśli został podany. W przeciwnym przypadku jest ona obliczana na podstawie innych danych silnika.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,000…4000000 N·m lub lb·ft</td>
<td>1 = 100 jednostek</td>
</tr>
<tr>
<td>01.50</td>
<td>kWh w bieżącej godzinie</td>
<td>Zużycie energii w bieżącej godzinie. Jest to energia zużyta w ciągu ostatnich 60 minut (niekoniecznie z ciągu eksploatacji), gdy działał przemiennik częstotliwości. Nie jest to energia od ostatniej pełnej godziny. Gdy przemiennik częstotliwości zostanie uruchomiony ponownie, wartość jest ustawiana na wartość z poprzedniego cyklu zasilania.</td>
<td>- / -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…1000000,00 kWh</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>01.51</td>
<td>kWh w poprzedniej godz.</td>
<td>Zużycie energii podczas poprzedniej godziny. Wartość kWh w bieżącej godzinie jest zapisywana tutaj, gdy jej wartości były gromadzone przez 60 minut. Gdy przemiennik częstotliwości zostanie uruchomiony ponownie, wartość jest ustawiana na wartość z poprzedniego cyklu zasilania.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…1000000,00 kWh</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>01.52</td>
<td>kWh w bieżącym dni</td>
<td>Zużycie energii w bieżącym dni. Jest to energia zużyta w ciągu ostatnich 24 godzin (niekoniecznie z ciągu eksploatacji), gdy działał przemiennik częstotliwości. Nie jest to energia z dnia kalendarzowego. Gdy przemiennik częstotliwości zostanie uruchomiony ponownie, wartość jest ustawiana na wartość z poprzedniego cyklu zasilania.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…1000000,00 kWh</td>
<td>1 = 1 kWh</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.53</td>
<td>kWh w poprzednim dni</td>
<td>Zużycie energii w poprzednim dni. Gdy przemiennik częstotliwości zostanie uruchomiony ponownie, wartość jest ustawiana na wartość z poprzedniego cyklu zasilania.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…1000000,00 kWh</td>
<td>Energia.</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>01.54</td>
<td>Skumul. energia inwertera</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych kilowatogodzinach. Wartość minimalna wynosi zero.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-200000000,0…200000000,0 kWh</td>
<td>Energia w kWh.</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>01.55</td>
<td>Licznik GWh inw. (resetow.)</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych gigawatogodzinach. Możesz zresetować tę wartość, ustawiając ją na zero. Zresetowanie któregokolwiek z parametrów 01.55…01.58 spowoduje zresetowanie wszystkich tych parametrów.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…65535 GWh</td>
<td>Energia w GWh.</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>01.56</td>
<td>Licznik MWh inw. (resetow.)</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych megawatogodzinach. Za każdym razem, gdy licznik się przekręci, wartość parametru 01.55 Licznik GWh inw. (resetow.) jest zwiększana. Wartość minimalna wynosi zero. Możesz zresetować tę wartość, ustawiając ją na zero. Zresetowanie któregokolwiek z parametrów 01.55…01.58 spowoduje zresetowanie wszystkich tych parametrów.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…1000 MWh</td>
<td>Energia w MWh.</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.57</td>
<td>Licznik kWh inw. (resetow.)</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych kilowatogodzinach. Za każdym razem, gdy licznik się przekręci, wartość parametru 01.56 Licznik MWh inw. (resetow.) jest zwiększana. Wartość minimalna wynosi zero. Możesz zresetować tę wartość, ustawiając ją na zero. Zresetowanie kłoterokolwiek z parametrów 01.55…01.58 spowoduje zresetowanie wszystkich tych parametrów.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…1000 kWh</td>
<td>Energia w kWh.</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>01.58</td>
<td>Skumul. energia inw. (resetow.)</td>
<td>Ilość energii przekazanej przez przemiennik częstotliwości (w obu kierunkach) w pełnych kilowatogodzinach. Możesz zresetować tę wartość, ustawiając ją na zero. Zresetowanie kłoterokolwiek z parametrów 01.55…01.58 spowoduje zresetowanie wszystkich tych parametrów.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-200000000,0…200000000,0 kWh</td>
<td>Energia w kWh.</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>01.61</td>
<td>Użyta bezwzgl. prędk. sil.</td>
<td>Wartość bezwzględna użytej prędkości silnika 01.01 Użyta prędkość silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…30000,00 obr./min</td>
<td>1 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>01.62</td>
<td>Bezwzgl. prędk. silnika %</td>
<td>Wartość bezwzględna procentu prędkości silnika. 01.03 Prędkość silnika %</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…1000,00%</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>01.63</td>
<td>Bezwzględna częstotliwość wyj.</td>
<td>Wartość bezwzględna częstotliwości wyjściowej. 01.06 Częstotliwość wyjściowa</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…500,00 Hz</td>
<td>1 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>01.64</td>
<td>Bezwzględny moment silnika</td>
<td>Wartość bezwzględna momentu silnika 01.10 Moment silnika</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,0…1600,0%</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.65</td>
<td>Bezwzględna moc wyjściowa</td>
<td>Wartość bezwzględna mocy wyjściowej 01.14 Moc wyjściowa</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…32767,00 kW</td>
<td>1 = 1 kW</td>
<td></td>
</tr>
<tr>
<td>01.66</td>
<td>Bez. moc wyj. % wart. zn. silnika</td>
<td>Wartość bezwzględna procentu mocy wyjściowej wartości znamionowej silnika 01.15 Moc wyjściowa % wart.znam.sil..</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…300,00%</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.67</td>
<td>Bez. moc wyj. % wart. zn. przem.</td>
<td>Wartość bezwzględna procentu mocy wyjściowej wartości znamionowej przemiennika częstotliwości 01.16 Moc wyjściowa % wart.znam.przem..</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…300,00%</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.68</td>
<td>Bezwzgl. moc na wale sil.</td>
<td>Wartość bezwzględna mocy na wale silnika 01.17 Moc na wale silnika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00…30000,00 kW</td>
<td>1 = 1 kW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.01</td>
<td>Wartość zadana z panelu</td>
<td>Wartość zadana trybu lokalnego jest podawana na podstawie panelu sterowania</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-100000,00…100000,00 obr./min, Hz lub %</td>
<td>Wartość zadana panelu sterowania lub programu komputerowego.</td>
<td>1 = 10 jednostek</td>
</tr>
<tr>
<td>03.02</td>
<td>Zdalna wart. zad. z panelu</td>
<td>Wartość zadana trybu zdalnego z panelu sterowania</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-100000,00…100000,00 obr./min, Hz lub %</td>
<td>Wartość zadana panelu sterowania lub programu komputerowego.</td>
<td>1 = 10 jednostek</td>
</tr>
<tr>
<td>03.05</td>
<td>W. zad. 1 mag. kom. A</td>
<td>Skalowana magistrala komunikacyjna A, wartość zadana</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-100000,00…100000,00</td>
<td>Wartość zadana z adaptera komunikacyjnego A.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>03.06</td>
<td>W. zad. 2 mag. kom. A</td>
<td>Skalowana magistrala komunikacyjna A, wartość zadana</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-100000,00…100000,00</td>
<td>Wartość zadana 2 z adaptera komunikacyjnego A.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>03.09</td>
<td>Wart. zadana 1 EFB</td>
<td>Przeskalowana wartość zadana 1 odebrana przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Skalowanie jest określone przez parametr 58.26. EFB: typ wartości zad. 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,00…300000,00</td>
<td>Przeskalowana wartość zadana 1 odebrana przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td>1 = 10</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.10</td>
<td>Wart. zadana 2 EFB</td>
<td>Skalowana wbudowana magistrala komunikacyjna, wartość zadana 2.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00</td>
<td>Przeskalowana wartość zadana 2 odebrana przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Skalowanie jest określone przez parametr 58.27. EFB: typ wartości zad. 2</td>
<td>1 = 10</td>
</tr>
<tr>
<td>03.17</td>
<td>Wart. zad. zinteg. panelu</td>
<td>Wartość zadana trybu lokalnego podana przy użyciu zintegrowanego panelu sterowania. Jednostka (obr./min, Hz lub %) jest ustawiana na podstawie parametru</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-100000,00…100000,00 obr./min, Hz lub %</td>
<td>Wartość zadana zintegrowanego panelu sterowania.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>03.18</td>
<td>Zdalna w. zad. zinteg. panelu</td>
<td>Wartość zadana trybu zdalnego ze zintegrowanego panelu sterowania.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-100000,00…100000,00 obr./min, Hz lub %</td>
<td>Wartość zadana zintegrowanego panelu sterowania.</td>
<td>1 = 10</td>
</tr>
</tbody>
</table>

Ostrzeżenia i błędy
Informacje na temat ostatnich ostrzeżeń i błędów. Objaśnienia poszczególnych kodów ostrzeżeń i błędów zawiera rozdział *Sledzenie błędów*. Wszystkie parametry w tej grupie są tylko do odczytu, o ile nie zaznaczono inaczej.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.01</td>
<td>Błąd powodujący zatrz. awar.</td>
<td>Kod pierwszego aktywnego błędu (błędu, który spowodował awaryjne zatrzymanie przemiennika częstotliwości po jego dojściu do rejestru wyłączeń awaryjnych).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod błędu.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.02</td>
<td>Aktywny błąd 2</td>
<td>Drugi aktywny błąd w rejestrze wyłączeń awaryjnych.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod błędu.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.03</td>
<td>Aktywny błąd 3</td>
<td>Trzeci aktywny błąd w rejestrze wyłączeń awaryjnych.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod błędu.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.06</td>
<td>Aktywne ostrzeżenie 1</td>
<td>Pierwsze aktywne ostrzeżenie w rejestrze ostrzeżeń.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod ostrzeżenia.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.07</td>
<td>Aktywne ostrzeżenie 2</td>
<td>Drugie aktywne ostrzeżenie w rejestrze ostrzeżeń.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod ostrzeżenia.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.08</td>
<td>Aktywne ostrzeżenie 3</td>
<td>Trzecie aktywne ostrzeżenie w rejestrze ostrzeżeń.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod ostrzeżenia.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.11</td>
<td>Najnowszy błąd</td>
<td>Najnowszy błąd w magazynie dzienników wyłączeń awaryjnych. Magazyn dzienników wyłączeń awaryjnych jest ładowany z aktywnymi błędami w kolejności ich wystąpienia.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod błędu.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.12</td>
<td>Najnowszy błąd 2</td>
<td>Drugi błąd w magazynie dzienników wyłączeń awaryjnych.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod błędu.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.13</td>
<td>Najnowszy błąd 3</td>
<td>Trzeci błąd w magazynie dzienników wyłączeń awaryjnych.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Kod błędu.</td>
<td>1=1</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.16</td>
<td>Najnowsze ostrzeżenie</td>
<td>Najnowsze ostrzeżenie w magazynie dzienników ostrzeżeń. Magazyn dzienników ostrzeżeń jest ładowany z aktywnymi ostrzeżeniami w kolejności ich wystąpienia.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>Kod ostrzeżenia.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.17</td>
<td>Drugie ostrzeżenie w magazynie dzienników wyłączeń awaryjnych.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>Kod ostrzeżenia.</td>
<td>1=1</td>
</tr>
<tr>
<td>04.18</td>
<td>Trzecie ostrzeżenie w magazynie dzienników wyłączeń awaryjnych.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>Kod ostrzeżenia.</td>
<td>1=1</td>
</tr>
</tbody>
</table>

05 Diagnostyka

Różne liczniki i pomiary rejestrujące czas pracy, związane z konserwacją przemiennika częstotliwości. Wszystkie parametry w tej grupie są tylko do odczytu, o ile nie zaznaczono inaczej.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.01</td>
<td>Licznik czasu włączenia</td>
<td>Licznik czasu przemiennika częstotliwości. Licznik działa, gdy przemiennik częstotliwości jest włączony.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…65535 d</td>
<td>Licznik czasu (liczba dni).</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>05.02</td>
<td>Licznik czasu pracy</td>
<td>Licznik rejestrujący czas pracy silnika. Licznik działa, gdy inwerter wykonuje modulację.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…65535 d</td>
<td>Licznik rejestrujący czas pracy silnika.</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>05.03</td>
<td>Godziny pracy</td>
<td>Parametr odpowiadający wartości 05.02 Licznik czasu pracy w godzinach, tj. 24 * wartość 05.02 + ułamkowa część dnia.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,0…429496729,5 h</td>
<td>Godziny.</td>
<td>10 = 1 h</td>
</tr>
<tr>
<td>05.04</td>
<td>Licznik czasu włączenia went.</td>
<td>Czas pracy wentylatora chłodzącego przemiennika częstotliwości. Można go zresetować w panelu sterowania, przytrzymując naciśnięty przycisk Reset przez ponad 3 sekundy.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…65535 d</td>
<td>Czas pracy wentylatora chłodzącego.</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>05.10</td>
<td>Temp. karty sterowania</td>
<td>Zmierna temperatura karty sterowania</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-100…300°C lub °F</td>
<td>Temperatura w stopniach Celsjusza lub Fahrenheit.</td>
<td>1 = jednostka</td>
</tr>
<tr>
<td>05.11</td>
<td>Temperatura inwertera</td>
<td>Szacowana temperatura przemiennika częstotliwości w wartości procentowej limitu błędu. Limit błędu zależy od typu przemiennika częstotliwości. 0,0% = 0 C (32 F) 100,0% = Limit błędu</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-40,0…160,0%</td>
<td>Temperatura w procentach.</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>
Słowo diagnostyczne 3

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.22</td>
<td>Słowo diagnostyczne 3</td>
<td>Słowo diagnostyczne 3. Patrz rozdział Sledzenie błędów.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa/wartość</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Włączona moc głównego obwodu</td>
<td>1 = 1</td>
</tr>
<tr>
<td>1</td>
<td>Zewnętrzne zasilanie</td>
<td>Zarezerwowane xxxx 1 = Karta sterowania jest zasilana z zewnętrznego źródła zasilania, na przykład z zapewnionego przez użytkownika o wartości 24 V.</td>
</tr>
<tr>
<td>2</td>
<td>Urządzenie programujące</td>
<td>Zarezerwowane xxxx 1 = Karta sterowania jest zasilana z zewnętrznego źródła zasilania, na przykład z narzędzia Urządzenie programujące.</td>
</tr>
<tr>
<td>3</td>
<td>Utr. kom. portu panelu</td>
<td>xxxx 1 = Zanik komunikacji przez port komunikacyjny.</td>
</tr>
<tr>
<td>4</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wym. wył. awar. mag. kom.</td>
<td>xxxx 1 = Wylaczenie awaryjne wymuszone (zażądane) z magistrali komunikacyjnej.</td>
</tr>
<tr>
<td>6</td>
<td>Przerwanie startu</td>
<td>xxxx 1 = Start przerwany (uniemożliwiony) z powodu na przykład blokady.</td>
</tr>
<tr>
<td>7</td>
<td>Bezpieczne wył. mom.</td>
<td>xxxx 1 = Aktywny błąd funkcji bezpiecznego wyłączania momentu.</td>
</tr>
<tr>
<td>8</td>
<td>STO uszkodzone</td>
<td>xxxx 1 = Zespół obwodów bezpiecznego wyłączania momentu jest uszkodzony. Sprawdź okablowanie.</td>
</tr>
<tr>
<td>9</td>
<td>Impuls kWh</td>
<td>1 = Impuls kWh jest aktywny.</td>
</tr>
<tr>
<td>10</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Polecenie wentylatora</td>
<td>1 = Wentylator przemiennika częstotliwości obraca się z prędkością większą niż jałowa.</td>
</tr>
<tr>
<td>12...15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa/wartość</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>Słowo diagnostyczne 3.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>0...86400 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.80</td>
<td>Prędk. silnika przy błędzie</td>
<td>Wyświetla prędkość silnika (01.01) w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td> -30000,00…30000,00 obr./min</td>
<td>Prędkość silnika w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td>05.81</td>
<td>Częstotl. wył. przy błędzie</td>
<td>Wyświetla częstotliwość wyjściową (01.06) w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td> -500,00…500,00 Hz</td>
<td>Częstotliwość wyjściowa w chwili wystąpienia błędu</td>
<td>Patrz parametr 46.02</td>
<td></td>
</tr>
<tr>
<td>05.82</td>
<td>Napięcie DC przy błędzie</td>
<td>Wyświetla napięcie łącza DC (01.11) w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td> 0,00…2000,00 V</td>
<td>Napięcie DC w chwili wystąpienia błędu.</td>
<td>10 = 1 V</td>
<td></td>
</tr>
<tr>
<td>05.83</td>
<td>Prąd silnika przy błędzie</td>
<td>Wyświetla prąd silnika (01.07) w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.05</td>
</tr>
<tr>
<td> 0,00…30000,00 A</td>
<td>Prąd silnika w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.05</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>05.84</td>
<td>Mom. siln. podczas błędu</td>
<td>Wyświetla moment silnika (01.10) w chwili wystąpienia błędu</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Moment silnika w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>05.85</td>
<td>Gł. sł. stanu podczas błędu</td>
<td>Wyświetla główne słowo stanu (06.11) w chwili wystąpienia błędu. Listę bitów zawiera opis parametru 06.11Głowne słowo stanu.</td>
<td>0000h</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Główne słowo stanu w chwili wystąpienia błędu.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.86</td>
<td>Opóźn. stan wej. DI przy błędu</td>
<td>Wyświetla stan wejścia DI po opóźnieniach (10.02) w chwili wystąpienia błędu. Listę bitów zawiera opis parametru 10.02Stan DI po opóźnieniach.</td>
<td>0000h</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Stan wejścia DI po opóźnieniach w chwili wystąpienia błędu.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.87</td>
<td>Temp. inw. podczas błędu</td>
<td>Wyświetla temperaturę inwertera (05.11) w chwili wystąpienia błędu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-40…160°C</td>
<td>Temperatura inwertera w chwili wystąpienia błędu.</td>
<td>1 = 1°C</td>
</tr>
<tr>
<td>05.88</td>
<td>Uż. w. zad. podczas błędu</td>
<td>Wyświetla wartość zadaną używaną (28.01/26.73/23.01) w chwili wystąpienia błędu. Rodzaj wartości zadanej zależy od wybranego trybu pracy (19.01).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz /</td>
<td>Wartość zadana w chwili wystąpienia błędu.</td>
<td>Patrz parametr 46.02/</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%/</td>
<td></td>
<td>Patrz parametr 46.03/</td>
</tr>
<tr>
<td></td>
<td>30000,00…30000,00 obr./min</td>
<td></td>
<td>Patrz parametr 46.01</td>
</tr>
</tbody>
</table>
06 Słowa sterowania i stanu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>Słowa sterowania i stanu przemiennika częstotliwości.</td>
<td>Główné słowo sterowania przemiennika częstotliwości. Ten parametr pokazuje sygnały sterowania odbierane z wybranych źródeł (takich jak wejścia cyfrowe, interfejs magistrali komunikacyjnej czy program aplikacyjny). Przypisane bity słowa są opisane na stronie 536. Powiązane słowo stanu i schemat stanów są przedstawione na stronach 537 i 539. Ten parametr jest tylko do odczytu.</td>
<td>FbEq 16</td>
</tr>
</tbody>
</table>

06.01 Główné słowo sterowania

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Kontrola Off1</td>
</tr>
<tr>
<td>1</td>
<td>Kontrola Off2</td>
</tr>
<tr>
<td>2</td>
<td>Kontrola Off3</td>
</tr>
<tr>
<td>3</td>
<td>Bieg</td>
</tr>
<tr>
<td>4</td>
<td>Wyjście rampy: zero</td>
</tr>
<tr>
<td>5</td>
<td>Wstrzymanie rampy</td>
</tr>
<tr>
<td>6</td>
<td>Wejście rampy: zero</td>
</tr>
<tr>
<td>7</td>
<td>Reset</td>
</tr>
<tr>
<td>8</td>
<td>Ruch powolny 1</td>
</tr>
<tr>
<td>9</td>
<td>Ruch powolny 2</td>
</tr>
<tr>
<td>10</td>
<td>Komenda zdalna</td>
</tr>
<tr>
<td>11</td>
<td>Zewn. lokalizacja ster.</td>
</tr>
<tr>
<td>12</td>
<td>Bit użytkownika 0</td>
</tr>
<tr>
<td>13</td>
<td>Bit użytkownika 1</td>
</tr>
<tr>
<td>14</td>
<td>Bit użytkownika 2</td>
</tr>
<tr>
<td>15</td>
<td>Bit użytkownika 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h...FFFFh</th>
<th>Główné słowo sterowania.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>
06.11 Główne słowo stanu

Główne słowo stanu profilu przemienników częstotliwości ABB. Odzwierciedla stan przemiennika częstotliwości bez względu na źródło sterowania, czyli system magistrali komunikacyjnej, panel sterowania, narzędzie komputerowe, standardowe we/wy, program aplikacyjny lub programowanie sekwencji, oraz bez względu na aktualny profil sterowania używany do sterowania przemiennikiem częstotliwości.

Przypisania bitów są opisane na stronie 536 (Zawartość słowa sterowania magistrali komunikacyjnej). Wykres stanów (poprawny dla profilu przemienników częstotliwości ABB) znajduje się na stronie 539.

Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.11</td>
<td>Główne słowo stanu</td>
<td>Główny słowo stanu profilu przemienników częstotliwości ABB. Odzwierciedla stan przemiennika częstotliwości bez względu na źródło sterowania, czyli system magistrali komunikacyjnej, panel sterowania, narzędzie komputerowe, standardowe we/wy, program aplikacyjny lub programowanie sekwencji, oraz bez względu na aktualny profil sterowania używany do sterowania przemiennikiem częstotliwości.</td>
<td>FbEq 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gotowość do włączenia.</td>
</tr>
<tr>
<td>1</td>
<td>Gotowość do pracy</td>
</tr>
<tr>
<td>2</td>
<td>Wartość zadana gotowa</td>
</tr>
<tr>
<td>3</td>
<td>Wyłączenie awaryjne</td>
</tr>
<tr>
<td>4</td>
<td>Wył. 2 nieaktywne</td>
</tr>
<tr>
<td>5</td>
<td>Wył. 3 nieaktywne</td>
</tr>
<tr>
<td>6</td>
<td>Włączenie przerwane</td>
</tr>
<tr>
<td>7</td>
<td>Ostrzeżenie</td>
</tr>
<tr>
<td>8</td>
<td>Przy nastawie</td>
</tr>
<tr>
<td>9</td>
<td>Zdalne</td>
</tr>
<tr>
<td>10</td>
<td>Ponad limitem</td>
</tr>
<tr>
<td>11</td>
<td>Bit użytkownika 0</td>
</tr>
<tr>
<td>12</td>
<td>Bit użytkownika 1</td>
</tr>
<tr>
<td>13</td>
<td>Bit użytkownika 2</td>
</tr>
<tr>
<td>14</td>
<td>Bit użytkownika 3</td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

0000h…FFFFh Główne słowo stanu. 1 = 1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.16</td>
<td>Słowo stanu 1 przem.</td>
<td>Słowo stanu 1 przemiennika częstotliwości. Ten parametr jest tylko do odczytu.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Włączone</td>
<td>1 = Obecny jest zarówno sygnał zezwolenia na bieg (patrz parametr 20.12), jak i zezwolenia na start (20.19). Uwaga: Wystąpienie błędu nie ma wpływu na ten bit.</td>
</tr>
<tr>
<td>1</td>
<td>Przerwane</td>
<td>1 = Przerwanie startu. Aby uruchomić przemiennik częstotliwości, sygnał przerywania (patrz parametr 06.18) musi zostać usunięty, a sygnał startu wydany ponownie.</td>
</tr>
<tr>
<td>2</td>
<td>Naładowane DC</td>
<td>1 = Obwód DC jest naładowany</td>
</tr>
<tr>
<td>3</td>
<td>Gotowość do startu</td>
<td>1 = Przemiennik częstotliwości jest gotowy do odebrania polecenia startu</td>
</tr>
<tr>
<td>4</td>
<td>Zgodnie z wart. zad.</td>
<td>1 = Przemiennik częstotliwości jest gotowy do dążenia do wartości zadanej</td>
</tr>
<tr>
<td>5</td>
<td>Uruchomiony</td>
<td>1 = Przemiennik częstotliwości został uruchomiony</td>
</tr>
<tr>
<td>6</td>
<td>Modulowanie</td>
<td>1 = Przemiennik częstotliwości przeprowadza modulację (stan wyjściowy jest sterowany)</td>
</tr>
<tr>
<td>7</td>
<td>Limitowanie</td>
<td>1 = Dowolny limit (prędkość, moment itp.) jest aktywny</td>
</tr>
<tr>
<td>8</td>
<td>Sterowanie lokalne</td>
<td>1 = Przemiennik częstotliwości jest w trybie sterowania lokalnego</td>
</tr>
<tr>
<td>9</td>
<td>Sterowanie sieciowe</td>
<td>1 = Przemiennik częstotliwości jest w trybie Sterowanie przez sieć (patrz strona 14).</td>
</tr>
<tr>
<td>10</td>
<td>Zew1 aktywne</td>
<td>1 = Miejsce sterowania ZEW1 jest aktywne</td>
</tr>
<tr>
<td>11</td>
<td>Zew2 aktywne</td>
<td>1 = Miejsce sterowania ZEW2 jest aktywne</td>
</tr>
<tr>
<td>12</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Żądanie uruchomienia</td>
<td>1 = Zażądano uruchomienia. 0 = gdy sygnał zezwolenia na obracanie (patrz parametr 20.22) to 0 (obracanie silnika jest wyłączone).</td>
</tr>
<tr>
<td>14…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 0000h…FFFFh | Słowo stanu 1 przemiennika częstotliwości. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.17</td>
<td>Słowo stanu 2 przem.</td>
<td>Słowo stanu 2 przemiennika częstotliwości. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bieg ident. zakończ.</td>
<td>1 = Bieg identyfikacyjny silnika został wykonany</td>
</tr>
<tr>
<td>1</td>
<td>Namagnesowany</td>
<td>1 = Silnik został namagnesowany</td>
</tr>
<tr>
<td>2</td>
<td>Sterowanie momentem</td>
<td>1 = Tryb sterowania momentem jest aktywny</td>
</tr>
<tr>
<td>3</td>
<td>Sterowanie prędkością</td>
<td>1 = Tryb sterowania prędkością jest aktywny</td>
</tr>
<tr>
<td>4</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bezp. w. zad. aktywna</td>
<td>1 = Wartość zadana „bezpiecznej prędkości” jest stosowana przez funkcje takie jak parametry 49.05 i 50.02</td>
</tr>
<tr>
<td>6</td>
<td>Ost. prędkość aktywna</td>
<td>1 = Wartość zadana „ostatniej prędkości” jest stosowana przez funkcje takie jak parametry 49.05 i 50.02</td>
</tr>
<tr>
<td>7</td>
<td>Utrata wart. zadanej</td>
<td>1 = Sygnał zadawania został utracony</td>
</tr>
<tr>
<td>8</td>
<td>Błąd zatrz. awaryjnego</td>
<td>1 = Zatrzymanie awaryjne nie powiodło się (patrz parametry 31.32 i 31.33)</td>
</tr>
<tr>
<td>9</td>
<td>Bieg próbny aktywny</td>
<td>1 = Sygnał włączania biegu próbnego jest aktywny</td>
</tr>
<tr>
<td>10…12</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Aktywne opóźn. uruchomienia</td>
<td>1 = Opóźnienie startu jest aktywne (par. 21.22).</td>
</tr>
<tr>
<td>14…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Słowo stanu 2 przemiennika częstotliwości. 1 = 1
Parametry

Słowo stanu przerw. startu

Słowo stanu zabezpieczenia przed nieoczekiwany startem. Określa ono źródło sygnału przerwania, który zapobiega uruchomieniu przemiennika częstotliwości. Warunki oznaczone gwiazdką (*) wymagają tylko ponownego wydania sygnału startu. W przypadku wszystkich innych wystąpień warunku zabezpieczenia przed nieoczekiwanym startem musi zostać najpierw usunięty. Patrz też parametr 06.16 *Słowo stanu 1 przem.*, bit 1. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.18</td>
<td>Słowo stanu przerw. startu</td>
<td>Słowo stanu zabezpieczenia przed nieoczekiwanym startem. Określa ono źródło sygnału przerwania, który zapobiega uruchomieniu przemiennika częstotliwości. Warunki oznaczone gwiazdką (*) wymagają tylko ponownego wydania sygnału startu. W przypadku wszystkich innych wystąpień warunku zabezpieczenia przed nieoczekiwanym startem musi zostać najpierw usunięty. Patrz też parametr 06.16 Słowo stanu 1 przem., bit 1. Ten parametr jest tylko do odczytu.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Brak gotow. do pracy</td>
<td>1 = Brak napięcia DC lub przemiennik częstotliwości ma nieprawidłowo ustawione parametry. Należy sprawdzić parametry w grupie 95 i 99.</td>
</tr>
<tr>
<td>1</td>
<td>Zmiana lokaliz. ster.</td>
<td>* 1 = Miejsce sterowania zostało zmienione</td>
</tr>
<tr>
<td>2</td>
<td>Przerwanie SSW</td>
<td>1 = Program sterujący utrzymuje się w stanie przerwania</td>
</tr>
<tr>
<td>3</td>
<td>Resetowanie błędu</td>
<td>* 1 = Błąd został zresetowany</td>
</tr>
<tr>
<td>4</td>
<td>Utrata włącz. startu</td>
<td>1 = Brak sygnału zezwolenia na start</td>
</tr>
<tr>
<td>5</td>
<td>Utrata zezwol. na bieg</td>
<td>1 = Brak sygnału zezwolenia na bieg</td>
</tr>
<tr>
<td>6</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>STO</td>
<td>1 = Funkcja bezpiecznego wyłączania momentu jest aktywna</td>
</tr>
<tr>
<td>8</td>
<td>Kalibracja prądu zakończ.</td>
<td>* 1 = Proces kalibracji prądu został ukończony</td>
</tr>
<tr>
<td>9</td>
<td>Bieg ident. zakończony</td>
<td>* 1 = Bieg identyfikacyjny silnika został ukończony</td>
</tr>
<tr>
<td>10</td>
<td>Zarezerwowane</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Wyłączanie awaryjne 1</td>
<td>1 = Sygnał zatrzymania awaryjnego (tryb off1)</td>
</tr>
<tr>
<td>12</td>
<td>Wyłączanie awaryjne 2</td>
<td>1 = Sygnał zatrzymania awaryjnego (tryb off2)</td>
</tr>
<tr>
<td>13</td>
<td>Wyłączanie awaryjne 3</td>
<td>1 = Sygnał zatrzymania awaryjnego (tryb off3)</td>
</tr>
<tr>
<td>14</td>
<td>Przerwanie aut. reset.</td>
<td>1 = Funkcja automatycznego resetowania zapobiega wykonaniu operacji</td>
</tr>
<tr>
<td>15</td>
<td>Bieg próbny aktywny</td>
<td>1 = Sygnał włączania biegu próbnego zapobiega wykonaniu operacji</td>
</tr>
</tbody>
</table>

<p>| 0000h…FFFFh | Słowo stanu zabezpieczenia przed nieoczekiwanym startem. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.19</td>
<td>Słowo stanu ster. prędk.</td>
<td>Słowo stanu sterowania prędkością. Ten parametr jest tylko do odczytu.</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Prędkość zerowa</td>
<td>1 = Przemiennik częstotliwości działa poniżej limitu prędkości zerowej (par. 21.06) dla czasu zdefiniowanego przez parametr 21.07 Opóź. prędkości zerowej</td>
</tr>
<tr>
<td>1</td>
<td>Do przodu</td>
<td>1 = Przemiennik częstotliwości działa w kierunku do przodu z prędkością przekraczającą limit prędkości zerowej (parametr 21.06)</td>
</tr>
<tr>
<td>2</td>
<td>Do tyłu</td>
<td>1 = Przemiennik częstotliwości działa w kierunku do tyłu z prędkością przekraczającą limit prędkości zerowej (parametr 21.06)</td>
</tr>
<tr>
<td>3</td>
<td>Poza oknem</td>
<td>Prędkość poza oknem</td>
</tr>
<tr>
<td>4</td>
<td>Wewn.sp.zwr.od prędk.</td>
<td>Oszacowanie użyte na potrzeby sterowania silnikiem.</td>
</tr>
<tr>
<td>5</td>
<td>Sprz zwr.od enkodera 1</td>
<td>Sprężenie zwrotne od enkodera 1 używane do sterowania silnikiem.</td>
</tr>
<tr>
<td>6</td>
<td>Sprz zwr.od enkodera 2</td>
<td>Sprężenie zwrotne enkodera 2 używane do sterowania silnikiem.</td>
</tr>
<tr>
<td>7</td>
<td>Ządanie dowolnej stałej prędk.</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość, patrz parametr 06.20 poniżej.</td>
</tr>
<tr>
<td>8</td>
<td>Limit minimalny korekty prędkości urządzenia podrzednego</td>
<td>Osiągnięto minimalny limit korekcji aplikacji przemiennika podrzednego sterowanego prędkością.</td>
</tr>
<tr>
<td>9</td>
<td>Limit maksymalny korekty prędkości urządzenia podrzednego</td>
<td>Osiągnięto maksymalny limit korekcji aplikacji przemiennika podrzednego sterowanego prędkością.</td>
</tr>
<tr>
<td>10...15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | Słowo stanu sterowania prędkością. | 1 = 1 |

| 06.20 | Słowo stanu prędkości stałą | Słowo stanu stałej prędkości/częstotliwości. Wskazuje, która stała prędkość lub częstotliwość jest aktywna (jeśli jest obecna). Patrz też parametr 06.19 Słowo stanu ster. prędk., bit 7 oraz sekcja Stałe prędkości/częstotliwości. Ten parametr jest tylko do odczytu. |

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Prędkość stała 1</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 1</td>
</tr>
<tr>
<td>1</td>
<td>Prędkość stała 2</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 2</td>
</tr>
<tr>
<td>2</td>
<td>Prędkość stała 3</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 3</td>
</tr>
<tr>
<td>3</td>
<td>Prędkość stała 4</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 4</td>
</tr>
<tr>
<td>4</td>
<td>Prędkość stała 5</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 5</td>
</tr>
<tr>
<td>5</td>
<td>Prędkość stała 6</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 6</td>
</tr>
<tr>
<td>6</td>
<td>Prędkość stała 7</td>
<td>1 = Wybrano stałą prędkość lub częstotliwość 7</td>
</tr>
<tr>
<td>7...15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | Słowo stanu stałej prędkości/częstotliwości. | 1 = 1 |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.21</td>
<td>Słowo stanu 3</td>
<td>Słowo stanu 3 przemiennika częstotliwości. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Trzymanie DC aktywne</td>
<td>1 = Trzymanie prądem DC jest aktywne</td>
</tr>
<tr>
<td>1</td>
<td>Magnesow. dodatk. aktywne</td>
<td>1 = Magnesowanie dodatkowe jest aktywne</td>
</tr>
<tr>
<td>2</td>
<td>Nagrz. wst. silnika aktywne</td>
<td>1 = Nagrzewanie wstępne silnika jest aktywne</td>
</tr>
<tr>
<td>3…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh: Słowo stanu 1 przemiennika częstotliwości. 1 = 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.30</td>
<td>Wybór bitu 11 MSW</td>
<td>Wybiera źródło biname, którego stan jest przesyłany jako bit 11 (Bit użytkownika 0) z parametru 06.11 Główne słowo stanu.</td>
<td>Zewn. lokalizacja ster.</td>
</tr>
<tr>
<td></td>
<td>Falsz</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prawda</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zewn. lokalizacja ster.</td>
<td>Bit 11 parametru 06.01 Główne słowo sterowania.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.31</td>
<td>Wybór bitu 12 MSW</td>
<td>Wybiera źródło biname, którego stan jest przesyłany jako bit 12 (Bit użytkownika 1) z parametru 06.11 Główne słowo stanu.</td>
<td>Zewn. zezwol. na bieg</td>
</tr>
<tr>
<td></td>
<td>Falsz</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prawda</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zewn. zezwol. na bieg</td>
<td>Stan zewnętrznego źródła sygnału zezwolenia na bieg (patrz parametr 20.12 Źródło zezwolenia na bieg 1).</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.32</td>
<td>Wybór bitu 13 MSW</td>
<td>Wybiera źródło biname, którego stan jest przesyłany jako bit 13 (Bit użytkownika 2) z parametru 06.11 Główne słowo stanu.</td>
<td>Falsz</td>
</tr>
<tr>
<td></td>
<td>Falsz</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prawda</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.33</td>
<td>Wybór bitu 14 MSW</td>
<td>Wybiera źródło biname, którego stan jest przesyłany jako bit 14 (Bit użytkownika 3) z parametru 06.11 Główne słowo stanu.</td>
<td>Falsz</td>
</tr>
<tr>
<td></td>
<td>Falsz</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prawda</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

07 Informacje systemowe

Informacje o elementach sprzętuowych i oprogramowaniu przemiennika częstotliwości. Wszystkie parametry w tej grupie są przeznaczone tylko do odczytu.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.03</td>
<td>ID typu przemiennika</td>
<td>Typ przemiennika częstotliwości/inwertera.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0... 65535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>07.04</td>
<td>Nazwa oprogramowania</td>
<td>Identyfikacja oprogramowania.</td>
<td></td>
</tr>
<tr>
<td>07.05</td>
<td>Wersja oprogramowania</td>
<td>Numer wersji oprogramowania.</td>
<td></td>
</tr>
<tr>
<td>07.06</td>
<td>Nazwa pak. ładowania</td>
<td>Nazwa pakietu ładowującego oprogramowanie.</td>
<td></td>
</tr>
<tr>
<td>07.07</td>
<td>Wersja pak. ładowania</td>
<td>Numer wersji pakietu ładowującego oprogramowanie.</td>
<td></td>
</tr>
<tr>
<td>07.11</td>
<td>Wykorzystanie CPU</td>
<td>Obciążenie mikroprocesora w procentach.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…100%</td>
<td>Obciążenie mikroprocesora.</td>
<td></td>
</tr>
<tr>
<td>07.25</td>
<td>Nazwa pakietu dost.</td>
<td>Pierwsze pięć liter ASCII nazwy nadanej pakietowi dostosowania.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pełna nazwa jest widoczna w obszarze Informacje systemowe na panelu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sterowania lub w programie komputerowym Drive Composer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A = Brak.</td>
<td></td>
</tr>
<tr>
<td>07.26</td>
<td>Wersja pakietu dost.</td>
<td>Nr wersji pakietu dostosowania. Widoczne również w obszarze</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informacje systemowe na panelu sterowania lub w programie komputerowym</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive Composer.</td>
<td></td>
</tr>
<tr>
<td>07.30</td>
<td>Stan progr. adaptacyjnego</td>
<td>Wyświetla stan programu adaptacyjnego.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patrz sekcja Programowanie adaptacyjne na str. 61.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infosys/FbEq 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Zainicjowany</td>
<td>Program adaptacyjny zainicjowany</td>
</tr>
<tr>
<td>1</td>
<td>Edytowany</td>
<td>Program sekwencyjny w stanie edycji</td>
</tr>
<tr>
<td>2</td>
<td>Edycja zakończona</td>
<td>Edycja programu adaptacyjnego zakończona.</td>
</tr>
<tr>
<td>3</td>
<td>Praca</td>
<td>Program adaptacyjny uruchomiony</td>
</tr>
<tr>
<td>4-13</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Zmiana stanu</td>
<td>Trwa zmiana stanu w mechanizmie programu adaptacyjnego.</td>
</tr>
<tr>
<td>15</td>
<td>Błąd</td>
<td>Błąd programu adaptacyjnego.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h…FFFH</th>
<th>Stan programu adaptacyjnego</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.31</td>
<td>Stan sekwencji AP</td>
<td>Wyświetla liczbę aktywnych stanów programu sekwencyjnego,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>które są częścią programu adaptacyjnego (AP). Jeśli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>programowanie adaptacyjne nie jest uruchomione lub nie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zawiera programu sekwencyjnego, parametr ma wartość zero.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0...20</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.35</td>
<td>Konfiguracja przem. częst.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niezainicjowany

Przemienik częstotliwości nie jest skonfigurowany. Podczas następnego włączenia zasilania konfiguracja HW będzie się odbywała jako Plug and Play. 0
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jednostka podstawowa</td>
<td>Przemiennik częstotliwości jest konfigurowany na jednostkę podstawową.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>BMIO-01</td>
<td>Przemiennik częstotliwości jest skonfigurowany do używania modułu BMIO-01.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>FENA-21</td>
<td>Przemiennik częstotliwości jest skonfigurowany do używania modułu FENA-21-M.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>FECA-01</td>
<td>Przemiennik częstotliwości jest skonfigurowany do używania modułu FECA-01-M.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FPBA-01</td>
<td>Przemiennik częstotliwości jest skonfigurowany do używania modułu FPBA-01-M.</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>FCAN-01</td>
<td>Przemiennik częstotliwości jest skonfigurowany do używania modułu FCAN-01-M.</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>BCAN-11</td>
<td>Przemiennik częstotliwości jest skonfigurowany do używania modułu BCAN-11.</td>
<td>7</td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td></td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

| 09 Sygnały apl. dźwigowej | Sygnały dotyczące aplikacji z dźwigami. Wszystkie parametry w tej grupie są przeznaczone tylko do odczytu. |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.01</td>
<td>SW1 dźwigu</td>
<td>Pokazuje słowo stanu 1 dźwigu.</td>
<td>0000h</td>
</tr>
</tbody>
</table>

Bity i Opis

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Poślizg hamulca w stanie statycznym</td>
<td>1 = Funkcja dopasowania prędkości wykryła poślizg hamulca, gdy silnik nie pracował.</td>
</tr>
<tr>
<td>1</td>
<td>Włączone spowalnianie</td>
<td>1 = Polecenie spowalniania jest aktywne w kierunku do przodu lub do tyłu.</td>
</tr>
<tr>
<td>2</td>
<td>Ograniczenie spowalniania do przodu</td>
<td>1 = Polecenie spowalniania jest nieaktywne w kierunku do przodu.</td>
</tr>
<tr>
<td>3</td>
<td>Ograniczenie spowalniania do tyłu</td>
<td>1 = Polecenie spowalniania jest nieaktywne w kierunku do tyłu.</td>
</tr>
<tr>
<td>4-6</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Limit zatrzymania do przodu</td>
<td>1 = Polecenie limitu do przodu jest nieaktywne.</td>
</tr>
<tr>
<td>8</td>
<td>Limit zatrzymania do tyłu</td>
<td>1 = Polecenie limitu do tyłu jest nieaktywne.</td>
</tr>
<tr>
<td>9-11</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sprawdz. wart. zad. joysticka</td>
<td>1 = Wartość zadana jest większa niż +/- 10% minimum lub maksimum przeskalowanej wartości zadanej joysticka oraz aktywne jest wejście pozycji zerowej joysticka.</td>
</tr>
<tr>
<td>13</td>
<td>Pozycja zerowa joysticka</td>
<td>1 = Przemiennik częstotliwości nie przyjął polecenia startu z powodu nieprawidłowego stanu wejścia pozycji zerowej joysticka.</td>
</tr>
<tr>
<td>14</td>
<td>Wybrano ster. ham.</td>
<td>1 = Sterowanie hamulcem mechanicznym jest wybrane.</td>
</tr>
<tr>
<td>15</td>
<td>Badanie momentu OK</td>
<td>1 = Pomyślnie wykonano sprawdzenie momentu lub wyłączono sprawdzenie momentu.</td>
</tr>
<tr>
<td>16</td>
<td>Szybkie zatrzymanie</td>
<td>1 = Polecenie szybkiego zatrzymania jest aktywne.</td>
</tr>
<tr>
<td>17</td>
<td>Ostrz. potwierdz. wł. zasil.</td>
<td>1 = Obwód potwierdzenia włączonego zasilania jest otwarty, główny stycznik jest otwarty, wygenerowano ostrzeżenie D20B Potwierdzenie włączenia zasilania. 0 = Obwód potwierdzenia włączonego zasilania jest zamknięty, główny stycznik jest zamknięty. Patrz opis parametru 20.212 Potwierdz. włączenia zasilania (strona 175) i sekcja Potwierdzenie włączenia zasilania (strona 601).</td>
</tr>
</tbody>
</table>

<p>| 0000h...FFFFh | Słowo stanu 1 dźwigu. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.03</td>
<td>FW1 dźwigu</td>
<td>Pokazuje słowo stanu 1 dźwigu z bitami błędów.</td>
<td>0000h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit Nazwa Wart.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dopasowanie prędkości</td>
<td>1 = D105 Dopasow. prędkości (strona 453)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Błąd we/wy ograniczeń zatrzymania</td>
<td>1 = D108 Błąd I/O limit. zatrz. (strona 453)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Badanie momentu</td>
<td>1 = D100 Badanie momentu (strona 453)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Poślizg hamulca</td>
<td>1 = D101 Poślizg przy hamowaniu (strona 453)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bezp. zamkn. ham</td>
<td>1 = D102 Bezpieczne zamknięcie hamulca (strona 453)</td>
<td></td>
</tr>
<tr>
<td>9…15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000h...FFFFh Słowo stanu 1 dźwigu z bitami błędów.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>09.06</td>
<td>W. zad. prędk. dźwigu</td>
<td>Pokazuje ostateczną wartość zadaną prędkości otrzymaną ze źródła sygnału.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000,00...30000,00 obr./min</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>09.16</td>
<td>W. zad. częstotl. dźwigu</td>
<td>Pokazuje ostateczną wartość zadaną częstotliwości otrzymaną ze źródła sygnału.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500,00...500,00</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>10</td>
<td>Standardowe DI, RO</td>
<td>Konfiguracja wejść cyfrowych i wyjść przekaźnikowych.</td>
<td></td>
</tr>
<tr>
<td>10.02</td>
<td>Stan DI po opóźnieniach</td>
<td>Wyświetla stan wejść cyfrowych. Słowo jest aktualizowane tylko po opóźnieniu aktywacji/dezaktywacji.</td>
<td>0000h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit Wart.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>DI1 = Opóźniony stan wejścia cyfrowego 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DI1 = Opóźniony stan wejścia cyfrowego 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DI1 = Opóźniony stan wejścia cyfrowego 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DI1 = Opóźniony stan wejścia cyfrowego 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4…15</td>
<td>Zarezerwowane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000h...FFFFh Opóźniony stan wejść cyfrowych.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Wyniki

10.03 Wybór wymuszenia DI
Wybierz wejścia cyfrowe, których stan będzie sterowany za pomocą parametru **10.04 Wymuszone stany DI**. Bit w parametrze **10.04 Wymuszone stany DI** jest obecny dla każdego wejścia cyfrowego, a jego wartość jest stosowana zawsze, gdy odpowiedni bit w tym parametrze ma wartość 1.

Uwaga: Rozruch i cykl zasilania resetują wymuszone ustawienia (parametry **10.03 i 10.04**).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wejścia DI1 na wartość bitu 0 z parametru 10.04 Wymuszone stany DI.</td>
</tr>
<tr>
<td>1</td>
<td>1 = Wymuszenie wartości wejścia DI2 na wartość bitu 1 z parametru 10.04 Wymuszone stany DI.</td>
</tr>
<tr>
<td>2</td>
<td>1 = Wymuszenie wartości wejścia DI3 na wartość bitu 2 z parametru 10.04 Wymuszone stany DI.</td>
</tr>
<tr>
<td>3</td>
<td>1 = Wymuszenie wartości wejścia DI4 na wartość bitu 3 z parametru 10.04 Wymuszone stany DI.</td>
</tr>
<tr>
<td>4...15</td>
<td>Zarezerwowane.</td>
</tr>
</tbody>
</table>

10.04 Wymuszone stany DI
Okręsła wymuszone wartości wejść analogowych wybranych za pomocą parametru **10.03 Wybór wymuszenia DI**. Możliwe jest tylko wymuszenie wejścia, które zostało wybrane za pomocą parametru **10.03 Wybór wymuszenia DI**. Bit 0 to wymuszona wartość wejścia DI1.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wymuszone wartości wejść cyfrowych.</td>
</tr>
<tr>
<td>1</td>
<td>Ustawia stan wejścia DI1.</td>
</tr>
<tr>
<td>2</td>
<td>Ustawia stan wejścia DI2.</td>
</tr>
<tr>
<td>3</td>
<td>Ustawia stan wejścia DI3.</td>
</tr>
<tr>
<td>4...15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

10.21 Stan RO
Stan wyjść przekaźnikowych RO1. **Przykład:** 00000001b = wyjście RO1 jest zasilone.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stan wyjść przekaźnikowych.</td>
</tr>
<tr>
<td>b1...5</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

Wartość domyślna FbEq 16 0000h
10.22 Wybór wymuszenia RO

Uwaga: Rozruch i cykl zasilania resetują wymuszone ustawienia (parametry 10.22 i 10.23).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wyjścia RO1 na wartość bitu 0 z parametru 10.23 Wymuszone dane RO.</td>
<td>Nadpisanie wyboru wyjść przekaźnikowych.</td>
</tr>
<tr>
<td>1...15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>FbEq</td>
<td>Wymuszenia wartości RO.</td>
<td>0000h</td>
</tr>
<tr>
<td>23</td>
<td>Wymuszone dane RO</td>
<td>Ustawia wartość funkcji override 0=off lub 1=on dla każdego wyjścia przekaźnikowego. Działa to tylko wtedy, gdy wybrane zostanie odpowiednie wyjście RO na podstawie parametru 10.22. Umożliwia to testowanie funkcji przemiennika częstotliwości bez użycia okablowania. Przekazywane są opóźnienia Ton i Toff.</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>24</td>
<td>Źródło RO1</td>
<td>Wybiera sygnał przemiennika częstotliwości do połączenia z wyjściem przekaźnikowym RO1.</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>11</td>
<td>Główne słowo stanu</td>
<td>Gotowość do pracy</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>12</td>
<td>Główne słowo stanu 1 przem.</td>
<td>Włączono</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>13</td>
<td>Główne słowo stanu 2 przem.</td>
<td>Uruchomiony</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>14</td>
<td>Główne słowo stanu 1 przem.</td>
<td>Namagnesowany</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>15</td>
<td>Główne słowo stanu</td>
<td>Pracuje</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>16</td>
<td>Główne słowo stanu</td>
<td>Wartość zadana gotowa</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>17</td>
<td>Główne słowo stanu</td>
<td>W punkcie pracy</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>18</td>
<td>Główne słowo stanu</td>
<td>Bieg do tyłu</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>19</td>
<td>Główne słowo stanu</td>
<td>Prędkość zero</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>20</td>
<td>Główne słowo stanu</td>
<td>Powyż limitu</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>21</td>
<td>Główne słowo stanu</td>
<td>Ostrzeżenie</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>22</td>
<td>Główne słowo stanu</td>
<td>Błąd</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>23</td>
<td>Główne słowo stanu</td>
<td>Błąd (-1)</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>24</td>
<td>Główne słowo stanu</td>
<td>Błąd/Ostrzeżenie</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>25</td>
<td>Główne słowo stanu</td>
<td>Przetęgnięcie</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>26</td>
<td>Główne słowo stanu</td>
<td>Przepięcie</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Temperatura przemiennika częstotliwości</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu temperatury przemiennika częstotliwości.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Za niskie napięcie</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu niskiego napięcia.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Temperatura silnika</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu temperatury silnika.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Komenda hamowania</td>
<td>Bit 0 parametru 44.01 Stan sterowania hamulcem.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Zew2 aktywne</td>
<td>Bit 11 parametru 06.16 Słowo stanu 1 przem..</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Zdalne sterowanie</td>
<td>Bit 9 parametru 06.11 Główne słowo stanu.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>MCB</td>
<td>Przemiennik częstotliwości został naładowany za pomocą ładowania zewnętrznego.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Zarezerwowane</td>
<td>Bit 3 parametru 34.01 Stan funkcji czasowych.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Zarezerwowane</td>
<td>Bit 4 parametru 34.01 Stan funkcji czasowych.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Zarezerwowane</td>
<td>Bit 5 parametru 34.01 Stan funkcji czasowych.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Opóźnienie startu</td>
<td>Bit 13 parametru 06.17 Słowo stanu 2 przem..</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Bit 0 słowa ster. RO/DIO</td>
<td>Bit 0 parametru 10.99 Słowo sterowania RO/DIO.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Bit 1 słowa ster. RO/DIO</td>
<td>Bit 1 parametru 10.99 Słowo sterowania RO/DIO.</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Bit 2 słowa ster. RO/DIO</td>
<td>Bit 2 parametru 10.99 Słowo sterowania RO/DIO.</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10.25 Opóźnienie WL. RO1</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego RO1.</td>
<td>0.0 -</td>
</tr>
</tbody>
</table>

Diagram:

![Diagram](attachment:image.png)

$t_{On} = 10.25$ Opóźnienie WL. RO1
$t_{Off} = 10.26$ Opóźnienie WYL. RO1

0,0 … 3000,0 s Opóźnienie aktywacji wejścia RO1. 10 = 1 -
10.26 Opóźnienie WYŁ. RO1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.26</td>
<td>Opóźnienie WYŁ. RO1</td>
<td>Określa opóźnienie dezaktywacji wyjścia przekaźnikowego RO1. Patrz parametr 10.25 Opóźnienie WŁ. RO1.</td>
<td>0.0 -</td>
</tr>
<tr>
<td></td>
<td>0,0 … 3000,0 s</td>
<td>Opóźnienie dezaktywacji wejścia RO1.</td>
<td>10 = 1 -</td>
</tr>
</tbody>
</table>

10.99 Słowo sterowania RO/DIO

Parametr magazynu do sterowania wyjściami przekaźnikowymi, np. przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Aby sterować wyjściami przekaźnikowymi (RO) przemiennika częstotliwości, należy wysłać słowo sterujące z przypisaniami bitów przedstawionymi poniżej jako dane we/wy Modbus. Należy ustawić parametr wyboru elementu docelowego konkretnych danych (58.101…58.114) na Słowo sterowania RO/DIO. W parametrze wyboru elementu źródłowego wybranego wyjścia należy wybrać odpowiedni bit tego słowa.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RO1</td>
<td>Bity źródłowe dla wyjścia przekaźnikowych RO1…RO3 (zobacz parametr 10.24).</td>
</tr>
<tr>
<td>1</td>
<td>RO2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RO3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RO4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RO5</td>
<td></td>
</tr>
<tr>
<td>5...7</td>
<td>RO6-8</td>
<td></td>
</tr>
<tr>
<td>8...15</td>
<td>DIO1-8</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | Słowo sterowania RO. | 1 = 1 |

| 10.101 Licznik przełączeń RO1 | Wyświetla liczbę razy, gdy wyjście przekaźnikowe RO1 zmieniło stan. | - |
| 0…4294967000 | Licznik zmiany stanu. | 1 = 1 |

11 Standardowe DIO, FI, FO

Konfiguracja cyfrowych we/wy (DIO) do użycia jako wejścia cyfrowe

11.02 Stan DIO po opóźnieniach

Wyświetla opóźniony stan wejścia DIO2 i DIO1. To słowo jest aktualizowane tylko po opóźnieniach aktywacji/dezaktywacji (jeśli zostały zdefiniowane). **Przykład:** 0010 = DIO2 jest włączone, DIO1 jest wyłączone.

<table>
<thead>
<tr>
<th>Bit Wart.</th>
<th>Stan wejść/wyjść cyfrowych.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 = Wymuszenie wartości wejścia DIO1 na wartość bitu 0 z parametru 11.04 Wymuszenie wartości DIO.</td>
<td></td>
</tr>
<tr>
<td>1 1 = Wymuszenie wartości wejścia DIO2 na wartość bitu 1 z parametru 11.04 Wymuszenie wartości DIO.</td>
<td></td>
</tr>
<tr>
<td>2…15 Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

11.03 Wybór wymuszenia DIO

Wybiera wejścia cyfrowe, których stany będą sterowane za pomocą parametru 11.04. Bit w parametrze 11.04 jest obecny dla każdego wejścia cyfrowego, a jego wartość jest stosowana zawsze, gdy odpowiedni bit w tym parametrze ma wartość 1.

<table>
<thead>
<tr>
<th>Bit Wart.</th>
<th>Wybór wymuszenia DIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 = Wymuszenie wartości wejścia DIO1 na wartość bitu 0 z parametru 11.04 Wymuszenie wartości DIO.</td>
<td></td>
</tr>
<tr>
<td>1 1 = Wymuszenie wartości wejścia DIO2 na wartość bitu 1 z parametru 11.04 Wymuszenie wartości DIO.</td>
<td></td>
</tr>
<tr>
<td>2…15 Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>0000h...FFFFh</td>
<td>Wymuszone wybory wejść/wyjść cyfrowych.</td>
</tr>
<tr>
<td>11.04 Wymuszenie wartości DIO</td>
<td>Określa wymuszone wartości wejścia analogowych wybranych za pomocą parametru 11.03 Wybór wymuszenia DIO. Możliwe jest tylko wymuszenie wejścia, które zostało wybrane za pomocą parametru 10.03 Wybór wymuszenia DIO. Bit 0 to wymuszona wartość wejścia DIO1.</td>
</tr>
<tr>
<td>0000h...FFFFh</td>
<td>Wymuszone wartości wejść/wyjść cyfrowych.</td>
</tr>
<tr>
<td>bit 0, wejście/wyjście DIO1</td>
<td>Ustawia stan wejścia/wyjścia DIO1.</td>
</tr>
<tr>
<td>bit 1, wejście/wyjście DIO2</td>
<td>Ustawia stan wejścia/wyjścia DIO2.</td>
</tr>
<tr>
<td>2...15</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>11.05 Konfiguracja DIO1</td>
<td>Określa, czy wejście/wyjście DIO1 jest używane jako wyjście cyfrowe, wejście cyfrowe lub wyjście częstotliwościowe. Uwaga: Wejście/wyjście DIO nie mogą być używane jako wejście częstotliwościowe.</td>
</tr>
<tr>
<td>Wyjście cyfrowe</td>
<td>Wejście/wyjście DIO1 jest używane jako wyjście cyfrowe.</td>
</tr>
<tr>
<td>Wyjście</td>
<td>Wejście cyfrowe.</td>
</tr>
<tr>
<td>Wyjście częstotliwościowe</td>
<td>Wyjście DIO1 jest używane jako wyjście częstotliwościowe.</td>
</tr>
<tr>
<td>11.06 Źródło wyjścia DIO1</td>
<td>Wybiera sygnał przemiennika częstotliwości do połączenia z wejściem/wyjściem cyfrowym DIO1, gdy jest on skonfigurowany pod kątem wyjścia cyfrowego za pomocą parametru 11.05.</td>
</tr>
<tr>
<td>Nieaktywne</td>
<td>Wyjście jest wyłączone.</td>
</tr>
<tr>
<td>Aktywne</td>
<td>Wyjście jest włączone.</td>
</tr>
<tr>
<td>Gotowość do pracy</td>
<td>Stan gotowości. Bit 1 parametru 06.11 Główne słowo stanu.</td>
</tr>
<tr>
<td>Włączone</td>
<td>Włączone. Bit 0 parametru 06.16 Słowo stanu 1 przem..</td>
</tr>
<tr>
<td>Uruchomiony</td>
<td>Przemiennik częstotliwości jest uruchomiony Bit 5 parametru 06.16 Słowo stanu 1 przem..</td>
</tr>
<tr>
<td>Namagnesowany</td>
<td>Strumień silnika jest gotowy. Bit 1 parametru 06.17 Słowo stanu 2 przem..</td>
</tr>
<tr>
<td>Pracuje</td>
<td>Działa. Bit 6 parametru 06.16 Słowo stanu 1 przem..</td>
</tr>
<tr>
<td>Wartość zadana gotowa</td>
<td>Działa z wartością zadaną. Bit 2 parametru 06.11 Główne słowo stanu.</td>
</tr>
<tr>
<td>Przy nastawie</td>
<td>Działa z nastawą. Bit 8 parametru 06.11 Główne słowo stanu.</td>
</tr>
<tr>
<td>Bieg do tyłu</td>
<td>Działa do tyłu. Bit 2 parametru 06.19 Słowo stanu ster. prędk..</td>
</tr>
<tr>
<td>Prędkość zerowa</td>
<td>Działa z prędkością zerową. Bit 0 parametru 06.19 Słowo stanu ster. prędk..</td>
</tr>
<tr>
<td>Powyż limitu</td>
<td>Działa powyżej limitu. Bit 10 parametru 06.17 Słowo stanu 2 przem..</td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Ostrzeżenie jest aktywne. Bit 7 parametru 06.11 Główne słowo stanu.</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
</tr>
<tr>
<td></td>
<td>Błąd (-1)</td>
</tr>
<tr>
<td></td>
<td>Błąd/Ostrzeżenie</td>
</tr>
<tr>
<td></td>
<td>Przetępienie</td>
</tr>
<tr>
<td></td>
<td>Przepełnięcie</td>
</tr>
<tr>
<td></td>
<td>Temperatura przemiennika częstotliwości</td>
</tr>
<tr>
<td></td>
<td>Za niskie napięcie</td>
</tr>
<tr>
<td></td>
<td>Temperatura silnika</td>
</tr>
<tr>
<td></td>
<td>Komenda hamowania</td>
</tr>
<tr>
<td></td>
<td>Zew2 aktywne</td>
</tr>
<tr>
<td></td>
<td>Zdalne sterowanie</td>
</tr>
<tr>
<td></td>
<td>MCB</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
</tr>
<tr>
<td></td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td></td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td></td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
</tr>
<tr>
<td></td>
<td>Opóźnienie startu</td>
</tr>
<tr>
<td></td>
<td>Bit 0 słowa ster. RO/DIO</td>
</tr>
<tr>
<td></td>
<td>Bit 1 słowa ster. RO/DIO</td>
</tr>
<tr>
<td></td>
<td>Bit 2 słowa ster. RO/DIO</td>
</tr>
<tr>
<td>11.07</td>
<td>Opóźnienie WŁ. DIO1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11.08</td>
<td>Opóźnienie WŁ. DIO1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11.09</td>
<td>Funkcja DIO2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wejście

Wejście/wyjście DIO2 jest używane jako wejście cyfrowe.

Wyjście częstotliwościowe

Wejście/wyjście DIO2 jest używane jako wyjście częstotliwościowe.

Źródło wyjścia DIO2

Wybiera sygnał przemiennika częstotliwości do połączenia z wejściem/wyjściem cyfrowym DIO2, gdy parametr 11.09 Funkcja DIO2 ma wartość Wyjście cyfrowe. Dostępne opcje zawiera opis parametru 11.06 Źródło wyjścia DIO1.

Opóźnienie WŁ. DIO2

Okręga opóźnienie aktywacji wejścia/wyjścia cyfrowego DIO2 (gdy jest używane jako cyfrowe wyjście lub wejście).

Opóźnienie WYŁ. DIO2

Okręga opóźnienie dezaktywacji wejścia/wyjścia cyfrowego DIO2 (gdy jest używane jako cyfrowe wyjście lub wejście). Patrz parametr 11.11 Opóźnienie WŁ. DIO1.

Konfiguracja DI3

Wybiera typ wejścia cyfrowego DI3: normalne wejście cyfrowe lub wejście częstotliwościowe.

Konfiguracja DI4

Wybiera typ wejścia cyfrowego DI4: normalne wejście cyfrowe lub wejście częstotliwościowe.

Wej. częst. 1: wart. akt.

Wej. częst. 1: wart. skalow.

### Nr	Nazwa/wartość	Opis	Wartość domyślna
1 | Wejście | Wejście/wyjście DIO2 jest używane jako wejście cyfrowe. | 1
2 | Wyjście częstotliwościowe | Wejście/wyjście DIO2 jest używane jako wyjście częstotliwościowe. | 0,00 s
3 | Źródło wyjścia DIO2 | Wybiera sygnał przemiennika częstotliwości do połączenia z wejściem/wyjściem cyfrowym DIO2, gdy parametr 11.09 Funkcja DIO2 ma wartość Wyjście cyfrowe. Dostępne opcje zawiera opis parametru 11.06 Źródło wyjścia DIO1. | 0,00 s
4 | Opóźnienie WŁ. DIO2 | Okręga opóźnienie aktywacji wejścia/wyjścia cyfrowego DIO2 (gdy jest używane jako cyfrowe wyjście lub wejście). | 0,00 s
5 | Opóźnienie WYŁ. DIO2 | Okręga opóźnienie dezaktywacji wejścia/wyjścia cyfrowego DIO2 (gdy jest używane jako cyfrowe wyjście lub wejście). Patrz parametr 11.11 Opóźnienie WŁ. DIO1. | 0,00 s
6 | Konfiguracja DI3 | Wybiera typ wejścia cyfrowego DI3: normalne wejście cyfrowe lub wejście częstotliwościowe. | 0
7 | Konfiguracja DI4 | Wybiera typ wejścia cyfrowego DI4: normalne wejście cyfrowe lub wejście częstotliwościowe. | 0
8 | Wej. częst. 1: wart. akt. | Wyświetla wartość wejściowego sygnału częstotliwości 1 przed skalowaniem. Patrz parametr 11.42 Wej. częst. 1: minimum. Ten parametr jest tylko do odczytu. | -
9 | Wej. częst. 1: wart. skalow. | Wyświetla wartość wejściowego sygnału częstotliwości 1 po skalowaniu. Patrz parametr 11.42 Wej. częst. 1: minimum. Ten parametr jest tylko do odczytu. | -
10 | -32768,000...32767,000 | Skalowana wartość wejściowego sygnału częstotliwości 1. | 1 = 1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...16000 Hz</td>
<td>Częstotliwość minimalna.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.43</td>
<td>Wej. częst. 1: maksimum</td>
<td>Definiuje minimalną wartość sygnału częstotliwości dochodzącej do wejścia częstotliwościowego 1. Patrz parametr 11.42 Wej. częst. 1: minimum.</td>
<td>16000 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...16000 Hz</td>
<td>Maksymalna częstotliwość aktualna.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.44</td>
<td>Wej. częst. 1: skalow. min.</td>
<td>Określa wartość odpowiadającą aktualnej minimalnej wartości wejściowego sygnału częstotliwości określonej przez parametr 11.42 Wej. częst. 1: minimum.</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-32768,000…32767,000</td>
<td>Wartość minimalna.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.45</td>
<td>Wej. częst. 1: skalow. maks.</td>
<td>Określa wartość odpowiadającą aktualnej maksymalnej wartości wejściowego sygnału częstotliwości określonej przez parametr 11.43 Wej. częst. 1: maksimum. Patrz parametr 11.42 Wej. częst. 1: minimum.</td>
<td>1500,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-32768,000…32767,000</td>
<td>Wartość maksymalna.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.46</td>
<td>Wej. częst. 2: wart. akt.</td>
<td>Wyświetla wartość wejściowego sygnału częstotliwości 2 przed skalowaniem. Patrz parametr 11.50 Wej. częst. 2: minimum Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...16000 Hz</td>
<td>1 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>11.47</td>
<td>Wej. częst. 2: skalowane</td>
<td>Wyświetla wartość wejściowego sygnału częstotliwości 1 po skalowaniu. Patrz parametr 11.50 Wej. częst. 2: minimum. Patrz parametr 11.50 Wej. częst. 2: minimum. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-32768,000…32767,000</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>11.50</td>
<td>Wej. częst. 2: minimum</td>
<td>Definiuje minimalną wartość wejścia częstotliwościowego 2.</td>
<td>0 Hz</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>11.51</td>
<td>Wej. częst. 2: maksimum</td>
<td>Definiuje maksymalną wartość wejścia częstotliwościowego 2.</td>
<td>16000 Hz</td>
</tr>
<tr>
<td>11.52</td>
<td>Wej. częst. 2: skalow. min.</td>
<td>Określa rzeczywistą wartość odpowiadającą minimalnej wartości wejścia częstotliwościowego 2 określonej przez parametr Wej. częst. 2: minimum.</td>
<td>0</td>
</tr>
<tr>
<td>11.53</td>
<td>Wej. częst. 2: skalow. maks.</td>
<td>Określa rzeczywistą wartość odpowiadającą maksymalnej wartości wejścia częstotliwościowego 2 określonej przez parametr Wej. częst. 2: maksimum.</td>
<td>1500</td>
</tr>
<tr>
<td>11.54</td>
<td>Wyj. częst. 1: wart. akt.</td>
<td>Wyświetla wartość wyjściowego sygnału częstotliwości 1 po skalowaniu. Patrz parametr 11.58 Wyj. częst. 1: min. źródła. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>11.55</td>
<td>Wyj. częst. 1: źródło</td>
<td>Wybiera sygnał do połączenia z wyjściowym sygnałem częstotliwości 1.</td>
<td>Użyta prędkość silnika</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Użyta prędkość silnika</td>
<td>01.01 Użyta prędkość silnika</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Częstotliwość wyjściowa</td>
<td>01.06 Częstotliwość wyjściowa</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prąd silnika</td>
<td>01.07 Prąd silnika</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Moment silnika</td>
<td>01.10 Moment silnika</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Napięcie DC</td>
<td>01.11 Napięcie DC</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Moc wyjściowa</td>
<td>01.13 Moc wyjściowa</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości przed ramp.</td>
<td>23.02 W. zad. prędk. przed ramp.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości po ramp.</td>
<td>23.01 W. zad. prędk. po ramp.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. prędkości</td>
<td>24.01 Użyta wart. zad. prędkości</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Użyta wart. zad. momentu</td>
<td>26.02 Użyta wart. zad. momentu</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. częstotliwości</td>
<td>28.02 Wyjście rampy w. zad. częstotliwość</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wyjście PID procesu</td>
<td>40.04 PID procesu: akt.wart.odchyl.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>11.58</td>
<td>Wyj. częst. 1: min. źródła</td>
<td>Określa rzeczywistą wartość sygnału (wybieraną przez parametr 11.55 Wyj. częst. 1: źródło i wyświetlaną przez parametr 11.54 Wyj. częst. 1: wart. akt.), która odpowiada minimalnej wartości wyjścia częstotliwościowego 1 (określonej przez parametr 11.60 Wyj. częst. 1: min. źródła).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768...32767</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>11.59</td>
<td>Wyj. częst. 1: maks. źródła</td>
<td>Definiuje minimalną wartość wyjścia częstotliwościowego 1.</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>-32768…32767</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.60</td>
<td>Wyj. częst. 1: min. źródła</td>
<td>Określa rzeczywistą wartość odpowiadającą minimalnej wartości wyjścia częstotliwościowego 1 określonej przez parametr Wyj. częst. 1: minimum.</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td>0…16000 Hz</td>
<td></td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.61</td>
<td>Wyj. częst. 1: maks. źródła</td>
<td>Określa rzeczywistą wartość odpowiadającą maksymalnej wartości wyjścia częstotliwościowego 1 określonej przez parametr Wyj. częst. 1: maksimum.</td>
<td>16000 Hz</td>
</tr>
<tr>
<td></td>
<td>0…16000 Hz</td>
<td></td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.62</td>
<td>Wyj. częst. 2: wart. akt.</td>
<td>Nieskalowana i nieopóźniona wartość wyjścia częstotliwościowego 2.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0…16000 Hz</td>
<td></td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.66</td>
<td>Wyj. częst. 2: min. źródła</td>
<td>Definiuje minimalną wartość wyjściowego sygnału częstotliwości 2.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768…32767</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.67</td>
<td>Wyj. częst. 2: maks. źródła</td>
<td>Definiuje minimalną wartość wyjściowego sygnału częstotliwości 2.</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>-32768…32767</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.68</td>
<td>Wyj. częst. 2: min. źródła</td>
<td>Określa rzeczywistą wartość odpowiadającą minimalnej wartości wyjścia częstotliwościowego 2 określonej przez parametr Freq out o wartości 2 min.</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td>0…16000 Hz</td>
<td></td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.69</td>
<td>Wyj. częst. 2: maks. źródła</td>
<td>Określa rzeczywistą wartość odpowiadającą maksymalnej wartości wyjścia częstotliwościowego 2 określonej przez parametr Freq out o wartości 2 max.</td>
<td>16000 Hz</td>
</tr>
<tr>
<td></td>
<td>0…16000 Hz</td>
<td></td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Standardowe AI</td>
<td>Konfiguracja standardowych wejść analogowych.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.02 Wybór wymuszenia AI</td>
<td>Odczyty rzeczywiste wejść analogowych można przesłonić, np. na potrzeby testowania. Parametr wartości wymuszonej jest obecny dla każdego wejścia analogowego, a jego wartość jest stosowana zawsze, gdy odpowiedni bit w tym parametrze ma wartość 1. Uwaga: Czasy filtrów AI (parametry 12.16 Czas filtru AI1 i 12.26 Czas filtru AI2) nie mają wpływu na wymuszone wartości AI (parametry 12.13 Wartość wymuszona AI1 i 12.23 Wartość wymuszona AI2). Uwaga: Rozruch i cykl zasilania resetują wymuszone ustawienia (parametr 12.02).</td>
<td>0000h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wejścia AI1 na wartość parametru 12.13 Wartość wymuszona AI1.</td>
</tr>
<tr>
<td>1</td>
<td>1 = Wymuszenie wartości wejścia AI2 na wartość parametru 12.23 Wartość wymuszona AI2.</td>
</tr>
<tr>
<td>2…15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h…FFFFh</th>
<th>Selektor wymuszonych wartości wejść analogowych AI1 i AI2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.03 Funkcja nadzoru AI</th>
<th>Wybiera sposób, w jaki przeniener czestotliwości reaguje, gdy analogowy sygnał wejściowy wychodzi poza minimalny i/lub maksymalny limit określony dla wejścia. Wejścia i przestrzegane limity są wybierane przez parametr 12.04 Wybór nadzoru AI. Bez działania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez działania</td>
<td>Żadna czynność nie jest wykonywana.</td>
</tr>
<tr>
<td>Błąd</td>
<td>Przeniener częstotliwości jest włączany awaryjnie z powodu błędu 80A0 Nadzór AI.</td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Przeniener częstotliwości generuje ostrzeżenie A8A0 Nadzór AI.</td>
</tr>
<tr>
<td>Ostatnia prędkość</td>
<td>Przeniener częstotliwości generuje ostrzeżenie A8A0 Nadzór AI i blokuje prędkość (lub częstotliwość) na poziomie, na którym pracował. Prędkość/częstotliwość jest określana na podstawie aktualnej prędkości przy użyciu filtrowania dolnoprzepustowego 850 ms. OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji.</td>
</tr>
<tr>
<td>Bezpieczna w. zad. prędk</td>
<td>Przeniener częstotliwości generuje ostrzeżenie A8A0 Nadzór AI i ustawia prędkość na wartość określoną parametrem 22.41 Bezpieczna w. zad. prędk. (lub parametrem 28.41 Bezpieczna wart. zad. częst. w przypadku użycia wartości zadanej częstotliwości). OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji.</td>
</tr>
</tbody>
</table>
12.04 Wybór nadzoru AI

Okręsła limity wejścia analogowego, które mają być nadzorowane. Patrz parametr 12.03 Funkcja nadzoru AI.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AI1 < MIN</td>
<td>1 = Nadzór minimalnego limitu AI1 aktywny.</td>
<td>0000h</td>
</tr>
<tr>
<td>1</td>
<td>AI1 > MAX</td>
<td>1 = Nadzór maksymalnego limitu AI1 aktywny.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AI2 < MIN</td>
<td>1 = Nadzór minimalnego limitu AI2 aktywny.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AI2 > MAX</td>
<td>1 = Nadzór maksymalnego limitu AI2 aktywny.</td>
<td></td>
</tr>
<tr>
<td>4…15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-32768…32767 Skalowana wartość wejścia analogowego AI1. 1 = 1 jednostka

0000h…FFFFh Aktywacja nadzoru wejścia analogowego. 1 = 1

12.11 Wartość aktualna AI1

Wyświetla wartość wejścia analogowego AI1 w mA lub V (w zależności od tego, czy za pomocą ustawienia sprzętu wejście jest ustawione na tryb prądowy, czy napięciowy).

Ten parametr jest tylko do odczytu.

0,000…20,000 mA lub 0,000…10,000 V Wartość wejścia analogowego AI1. 1000 = 1 jednostka

12.12 Wartość skalowana AI1

Wyświetla wartość wejścia analogowego AI1 po skalowaniu. Patrz parametry 12.19 AI1 skal. do min. AI1 i 12.20 AI1 skal. do maks. AI1.

Ten parametr jest tylko do odczytu.

-32768…32767 Skalowana wartość wejścia analogowego AI1. 1 = 1

12.13 Wartość wymuszona AI1

Definiuje wartość wymuszoną, której można użyć zamiast rzeczywistego sygnału z wejścia. Patrz parametr 12.02 Wybór wymuszenia AI.

12.15 Wybór jednostki AI1

Wybiera jednostkę dla odczytów i ustawień powiązanych z wejściem analogowym AI1. Patrz domyślne przyłącza sterowania dla używanego makra w rozdziale Makra sterowania (str. 33).

<table>
<thead>
<tr>
<th>Jednostka</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Wolty.</td>
<td>0</td>
</tr>
<tr>
<td>mA</td>
<td>Miliamperey.</td>
<td>1</td>
</tr>
</tbody>
</table>
12.16 Czas filtru AI1

Definiuje stałą czasu filtrowania dla wejścia analogowego AI1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.16</td>
<td>Czas filtru AI1</td>
<td>Stała czasu filtrowania dla wejścia analogowego AI1.</td>
<td>0,100 s</td>
</tr>
</tbody>
</table>

![Diagram](image_url)

\[O = I \times (1 - e^{-t/T}) \]

- \(I \) = sygnał wejściowy filtrowania (krok)
- \(O \) = sygnał wyjściowy filtrowania
- \(t \) = czas
- \(T \) = stała czasu filtrowania

Uwaga: Sygnał jest też filtrowany w wyniku działania sprzętuowego interfejsu sygnału (stała czasu ok. 0,25 ms). Nie można tego zmienić za pomocą żadnego parametru.

0,000…30,000 s Stała czasu filtrowania. | 1000 = 1 s |

12.17 Min. AI1

Definiuje minimalną wartość lokalną dla wejścia analogowego AI1. Ustawia wartość aktualnie przesyłaną do przemiennika częstotliwości, gdy sygnał analogowy z zakłdu jest ograniczony do ustawienia minimalnego.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.17</td>
<td>Min. AI1</td>
<td>Minimalna wartość wejścia AI1.</td>
<td>4,000 mA lub 0,000 V</td>
</tr>
</tbody>
</table>

0,000…20,000 mA lub 0,000…10,00 V | Minimalna wartość wejścia AI1. | 1000 = 1 mA lub V |

12.18 Maks. AI1

Definiuje maksymalną wartość lokalną dla wejścia analogowego AI1. Ustawia wartość aktualnie przesyłaną do przemiennika częstotliwości, gdy sygnał analogowy z zakłdu jest ograniczony do ustawienia maksymalnego.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.18</td>
<td>Maks. AI1</td>
<td>Maksymalna wartość wejścia AI1.</td>
<td>20,000 mA lub 10,00 V</td>
</tr>
</tbody>
</table>

0,000…20,000 mA lub 0,000…10,00 V | Maksymalna wartość wejścia AI1. | 1000 = 1 mA lub V |
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.19</td>
<td>AI1 skal. do min. AI1</td>
<td>Określa rzeczywistą wartość wewnętrzną odpowiadającą minimalnej wartości wejścia analogowego AI1 określonej przez parametr 12.17 Min. AI1. (Zmiana ustawień polaryzacji 12.19 i 12.20 może skutecznie odwrócić wejście analogowe).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.20</td>
<td>AI1 skal. do maks. AI1</td>
<td>Określa rzeczywistą wewnętrzną wartość odpowiadającą maksymalnej wartości wejścia analogowego AI1 określonej przez parametr 12.18 Maks. AI1. Patrz rysunek przy parametrze 12.19 AI1 skal. do min. AI1.</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.21</td>
<td>Wartość aktualna AI2</td>
<td>Wyświetla wartość wejścia analogowego AI2 w mA lub V (w zależności od tego, czy za pomocą ustawienia sprzęta wejście jest ustawione na tryb prądowy, czy napięciowy). Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.22</td>
<td>Wartość skalowana AI2</td>
<td>Wyświetla wartość wejścia analogowego AI2 po skalowaniu. Patrz parametry 12.29 AI2 skal. do min. AI2 i 12.101 Wartość procentowa AI1. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.23</td>
<td>Wartość wymuszona AI2</td>
<td>Wartość wymuszona, której można użyć zamiast rzeczywistego sygnału odczytywanego przez wejście. Patrz parametr 12.02 Wybór wymuszenia Aln.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parametry

12.25 Wybór jednostki AI2
Wybiera jednostkę dla odczytów i ustawień powiązanych z wejściem analogowym AI2. Patrz domyślna przyłącza sterowania dla używanego makra w rozdziale Makra sterowania (str. 33).

<table>
<thead>
<tr>
<th>V</th>
<th>Wolty.</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>Miliampery.</td>
<td>1</td>
</tr>
</tbody>
</table>

12.26 Czas filitu AI2
Definiuje stałą czasu filtrowania dla wejścia analogowego AI2. Patrz parametr 12.16 Czas filitu AI1.

Uwaga: Sygnał jest też filtrowany w wyniku działania sprzętowego interfejsu sygnału (stała czasu ok. 0,25 ms). Nie można tego zmienić za pomocą żadnego parametru.

<table>
<thead>
<tr>
<th>Stała czasu filtrowania.</th>
<th>1000 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000…30,000 s</td>
<td></td>
</tr>
</tbody>
</table>

12.27 Min. AI2
Definiuje minimalną wartość lokalną dla wejścia analogowego AI2. Ustawia wartość aktualnie przesyłaną do przemiennika częstotliwości, gdy sygnał analogowy z zakładu jest ograniczony do ustawienia minimalnego.

<table>
<thead>
<tr>
<th>Minimalna wartość wejścia AI2.</th>
<th>1000 = 1 mA lub 0,000 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000…20,000 mA lub 0,000…10,000 V</td>
<td></td>
</tr>
</tbody>
</table>

12.28 Maks. AI2
Definiuje maksymalną wartość lokalną dla wejścia analogowego AI2. Ustawia wartość aktualnie przesyłaną do przemiennika częstotliwości, gdy sygnał analogowy z zakładu jest ograniczony do ustawienia maksymalnego.

<table>
<thead>
<tr>
<th>Maksymalna wartość wejścia AI2.</th>
<th>1000 = 1 mA lub 0,000 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000…20,000 mA lub 0,000…10,000 V</td>
<td></td>
</tr>
</tbody>
</table>

12.29 AI2 skal. do min. AI2
Definiuje rzeczywistą wartość, która odpowiada minimalnej wartości wejścia analogowego AI2 zdefiniowanej przez parametr 12.27 AI2 min. (Zmiana ustawień polaryzacji 12.29 i 12.101 może skutecznie odwrócić wejście analogowe).

<table>
<thead>
<tr>
<th>Wartość rzeczywista odpowiadająca minimalnej wartości wejścia AI2.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768,000…32767,000</td>
<td></td>
</tr>
</tbody>
</table>
12.30 Al2 skal. do maks. Al2

-32768,000…32767,000

12.101 Wartość procentowa AI1

Wartość wejścia analogowego AI1 jako wartość procentowa skalowania AI1 (12.18 Maks. Al1 – 12.17 Min. Al1).

-0,00…100,00 Wartość AI1 100 = 1%

12.102 Wartość procentowa AI2

Wartość wejścia analogowego AI2 jako wartość procentowa skalowania AI2 (12.28 Maks. Al2 – 12.27 Min. Al2).

-0,00…100,00 Wartość AI2 100 = 1%

13 Standardowe AO

Konfiguracja standardowych wyjść analogowych.

13.02 Wybór wymuszenia AO

Wybiera wyjścia analogowe, które zostaną wymuszone na wartości zdefiniowane za pomocą parametrów. Rzeczywiste sygnały źródłowe wyjść analogowych można przesłać, np. na potrzeby testowania. Parametr wartości wymuszonej jest obecny dla każdego wyjścia analogowego, a jego wartość jest stosowana zawsze, gdy odpowiedni bit w tym parametrze ma wartość 1.

Uwaga: Rozruch i cykl zasilania resetują wymuszone ustawienia (parametry 13.02 i 13.11).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wyjścia AO1 na wartość parametru 13.11 Wartość aktualna AO1.</td>
</tr>
<tr>
<td>2…15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

0000h…FFFFh Selektor wymuszonych wartości wyjścia analogowego AO1. 1 = 1

13.11 Wartość aktualna AO1

Wyświetla wartość wyjścia AO1 w mA. Ten parametr jest tylko do odczytu.

0,000…22,000 mA Wartość wyjścia AO1. 1 = 1 mA

13.12 Źródło AO1

Wybiera sygnał do połączenia z wyjściem analogowym AO1.

<table>
<thead>
<tr>
<th>Nr Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30 Al2 skal. do maks. Al2</td>
<td>Określa rzeczywistą wartość odpowiadającą maksymalnej wartości wejścia analogowego AI2 określonej przez parametr 12.28 Maks. Al2. Patrz rysunek przy parametrze 12.29 Al2 skal. do min. Al2.</td>
<td>50,000</td>
</tr>
<tr>
<td>-32768,000…32767,000</td>
<td>Wartość rzeczywista odpowiadająca maksymalnej wartości wejścia AI2.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.101 Wartość procentowa AI1</td>
<td>Wartość wejścia analogowego AI1 jako wartość procentowa skalowania AI1 (12.18 Maks. Al1 – 12.17 Min. Al1).</td>
<td>-</td>
</tr>
<tr>
<td>0,00…100,00</td>
<td>Wartość AI1</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>12.102 Wartość procentowa AI2</td>
<td>Wartość wejścia analogowego AI2 jako wartość procentowa skalowania AI2 (12.28 Maks. Al2 – 12.27 Min. Al2).</td>
<td>-</td>
</tr>
<tr>
<td>0,00…100,00</td>
<td>Wartość AI2</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>

13.13 Wartość wymuszona AO1

Selektor wymuszonych wartości wyjścia analogowego AO1. 1 = 1

0000h…FFFFh

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wyjścia AO1 na wartość parametru 13.11 Wartość aktualna AO1.</td>
</tr>
<tr>
<td>2…15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

13.11 Wartość aktualna AO1

Wyświetla wartość wyjścia AO1 w mA. Ten parametr jest tylko do odczytu.

0,000…22,000 mA Wartość wyjścia AO1. 1 = 1 mA

13.12 Źródło AO1

Wybiera sygnał do połączenia z wyjściem analogowym AO1.

<table>
<thead>
<tr>
<th>Nr Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.01 Użyta prędkość silnika</td>
<td>01.01 Użyta prędkość silnika</td>
<td>1</td>
</tr>
<tr>
<td>13.06 Częstotliwość wyjściowa</td>
<td>01.06 Częstotliwość wyjściowa</td>
<td>3</td>
</tr>
<tr>
<td>13.07 Prąd silnika</td>
<td>01.07 Prąd silnika</td>
<td>4</td>
</tr>
<tr>
<td>13.08 Prąd silnika % wart.znam.siln.</td>
<td>01.08 Prąd silnika % wart.znam.siln.</td>
<td>5</td>
</tr>
<tr>
<td>13.10 Moment silnika</td>
<td>01.10 Moment silnika</td>
<td>6</td>
</tr>
<tr>
<td>13.11 Napięcie DC</td>
<td>01.11 Napięcie DC</td>
<td>7</td>
</tr>
<tr>
<td>13.14 Moc wyjściowa</td>
<td>01.14 Moc wyjściowa</td>
<td>8</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości przed ramp.</td>
<td>23.01 W. zad. prędk. przed ramp.</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości po ramp.</td>
<td>23.02 W. zad. prędk. po ramp.</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. prędkości</td>
<td>24.01 Użyta wart. zad. prędkości</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. częstotliwości</td>
<td>28.02 Wyjście rampy w. zad. częst.</td>
</tr>
<tr>
<td></td>
<td>Wyjście PID procesu</td>
<td>40.01 PID procesu: akt.wart. wyj.</td>
</tr>
<tr>
<td></td>
<td>Wzbudzenie czujnika temp. 1</td>
<td>Wyjście jest używane do dostarczenia prądu wzbudzania do czujnika temperatury 1, patrz parametr 35.11 Źródło temperatury 1. Patrz też sekcja Ochrona termiczna silnika.</td>
</tr>
<tr>
<td></td>
<td>Wzbudzenie czujnika temp. 2</td>
<td>Wyjście jest używane do dostarczenia prądu wzbudzania do czujnika temperatury 2, patrz parametr 35.21 Źródło temperatury 2. Patrz sekcja Ochrona termiczna silnika w rozdziale Funkcje programu.</td>
</tr>
<tr>
<td></td>
<td>Użyta bezwzględna prędkość silnika</td>
<td>01.61 Użyta bezwzgl. pręd. sil.</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna prędk. silnika %</td>
<td>01.62 Bezwzględna prędk. silnika %</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna częstotl. wyj.</td>
<td>01.63 Bezwzględna częstotl. wyj.</td>
</tr>
<tr>
<td></td>
<td>Bezwzględny moment silnika</td>
<td>01.64 Bezwzględny moment silnika</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna moc wyjściowa</td>
<td>01.65 Bezwzględna moc wyjściowa</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna moc na wale sil.</td>
<td>01.68 Bezwgl. moc na wale sil.</td>
</tr>
<tr>
<td></td>
<td>Wyjście zewnętrznego PID1</td>
<td>71.01 Aktualna wart. zewn. PID</td>
</tr>
<tr>
<td></td>
<td>Magazyn danych AO1</td>
<td>13.91 Magazyn danych AO1</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
</tr>
<tr>
<td></td>
<td>13.13 Wartość wymuszona AO1</td>
<td>Wartość wymuszona, której można użyć zamiast wybranego sygnału wyjścia. Patrz parametr 13.02 Wybór wymuszenia AO.</td>
</tr>
<tr>
<td></td>
<td>13.15 Wybór jednostki AO1</td>
<td>Wybiera jednostkę dla odczytów i ustawień powiązanych z wejściem analogowym AO1. Uwaga: To ustawienie musi być zgodne z odpowiednim ustawieniem sprzętowym w jednostce sterującej przemiennej częstotliwości (patrz podręcznik użytkownika przemiennej częstotliwości). Patrz domyślne przyłącza sterowania dla używanego makra w rozdziale Makra sterowania. W celu sprawdzenia poprawności zmian ustawień sprzętu wymagany jest ponowny rozruch karty sterowania (przez wyłączenie i ponowne włączenie zasilania lub za pomocą parametru 96.08 Rozruch karty sterowania).</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Wolty.</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>Miliamperey.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13.16</td>
<td>Czas filtru AO1</td>
<td>Określa stałą czasu filtrowania dla wyjścia analogowego AO1.</td>
<td>0,100 s</td>
</tr>
</tbody>
</table>

| 0,000...30,000 s | Stała czasu filtrowania. | 1000 = 1 s |

$$O = I \times (1 - e^{-\frac{t}{T}})$$

I = sygnał wejściowy filtrowania (krok)
O = sygnał wyjściowy filtrowania
t = czas
T = stała czasu filtrowania
13.17 **Min. źródła AO1**

Określa rzeczywistą minimalną wartość sygnału (wybieraną przez parametr 13.12 **Źródło AO1**), która odpowiada minimalnej wymaganej wartości wyjścia AO1 (określonej przez parametr 13.19 **AO1 z min. źr. AO1**).

![Diagram](image)

Ustawienie parametru 13.17 jako wartości maksymalnej i parametru 13.18 jako wartości minimalnej powoduje odwrócenie wyjścia.

Wyjście AO ma automatyczne skalowanie. Za każdym razem, gdy zmieniane jest wyjście AO, zakres skalowania jest odpowiednio zmieniany. Wartości minimalne i maksymalne podane przez użytkownika zastępują wartości automatyczne.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.17</td>
<td>Min. źródła AO1</td>
<td>Określa rzeczywistą minimalną wartość sygnału (wybieraną przez parametr 13.12 Źródło AO1), która odpowiada minimalnej wymaganej wartości wyjścia AO1 (określonej przez parametr 13.19 AO1 z min. źr. AO1).</td>
<td>0,0</td>
</tr>
<tr>
<td>13.18</td>
<td>Maks. źródła AO1</td>
<td>Określa rzeczywistą maksymalną wartość sygnału (wybieraną przez parametr 13.12 Źródło AO1), która odpowiada maksymalnej wymaganej wartości wyjścia AO1 (określonej przez parametr 13.20 AO1 z maks. źr. AO1). Patrz parametr 13.17 Min. źródła AO1.</td>
<td>50,0</td>
</tr>
</tbody>
</table>

| -32768,0…32767,0 | Wartość rzeczywista sygnału odpowiadająca minimalnej wartości wyjścia AO1. | 1 = 1 |
| -32768,0…32767,0 | Wartość rzeczywista sygnału odpowiadająca maksymalnej wartości wyjścia AO1. | 1 = 1 |
13.19 AO1 z min. źr. AO1
Definiuje minimalną wartość wyjścia analogowego AO1. Patrz też rysunek przy parametrze 13.17 Min. źródła AO1.

0,00...22,00 mA
0,00...11,000 V
Minimalna wartość wyjścia AO1.

13.20 AO1 z maks. źr. AO1
Definiuje maksymalną wartość wyjścia analogowego AO1. Patrz też rysunek przy parametrze 13.17 Min. źródła AO1.

0,00...22,000 mA
0,00...11,000 V
Maksymalna wartość wyjścia AO1.

13.91 Magazyn danych AO1
Parametr magazynu do sterowania wyjściem analogowym AO1, np. przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.

W parametrze 13.12 Źródło AO1 wybierz wartość Magazyn danych AO1. Następnie należy ustawić ten parametr jako wartość docelową danych przychodzącej wartości. Przy użyciu interfejsu wbudowanej magistrali komunikacyjnej należy ustawić parametr wyboru elementu docelowego konkretnych danych (58.101...58.114 na wartość Magazyn danych AO1).

-327.68...327.67 Parametr magazynu dla wyjścia AO1.

15.01 Typ modułu rozszerzenia
Aktywuje moduł rozszerzeń we/wy (i określa jego typ). Jeśli wartość to Brak, gdy moduł rozszerzeń został zainstalowany i przemiennik częstotliwości jest zasilany, przemiennik częstotliwości automatycznie ustawia wartość na wykryty typ (= wartość parametru 15.02 Wykryty moduł rozszerzeń.). W przeciwnym razie generowane jest ostrzeżenie A7AB Błąd konfiguracji modułu rozszerzeń we/wy i należy ustawić wartość tego parametru ręcznie.

Brak Nieaktywny. 0
BREL Opcjonalny przekaźnik zewnętrzny BREL-01. 5
BAPO-01 Opcjonalny moduł rozszerzeń zasilania pomocniczego BAPO-01. 6
BTAC-02 Opcjonalny moduł interfejsu enkodera impulsowego BTAC-02. 7

15.02 Wykryty moduł rozszerzeń.
Wyświetla moduł rozszerzeń we/wy automatycznie wykryty przez program sterujący w przemienniku częstotliwości.

Brak Nieaktywny. 0
BREL Opcjonalny przekaźnik zewnętrzny BREL-01. 5
BAPO-01 Opcjonalny moduł rozszerzeń zasilania pomocniczego BAPO-01. 6
BTAC-02 Opcjonalny moduł interfejsu enkodera impulsowego BTAC-02. 7
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.04</td>
<td>Stan RO/DO</td>
<td>Wyświetla stan wyjść przekaźnikowych RO2, RO3, RO4 i RO5 w module rozszerzeń.</td>
<td>-</td>
</tr>
</tbody>
</table>

Bit | Wart. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stan wyjścia RO2 (1 = przekaźnik zamknięty, 0 = przekaźnik otwarty)</td>
</tr>
<tr>
<td>1</td>
<td>Stan wyjścia RO3 (1 = przekaźnik zamknięty, 0 = przekaźnik otwarty)</td>
</tr>
<tr>
<td>2</td>
<td>Stan wyjścia RO4 (1 = przekaźnik zamknięty, 0 = przekaźnik otwarty)</td>
</tr>
<tr>
<td>3</td>
<td>Stan wyjścia RO5 (1 = przekaźnik zamknięty, 0 = przekaźnik otwarty)</td>
</tr>
<tr>
<td>4...15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

- **0000h…FFFFh** Stan wyjść przekaźnikowych. 1 = 1

15.05 Wybór wymuszenia RO/DO
Stany elektryczne wyjść przekaźnikowych można przesłonić, np. na potrzeby testowania. Bit w parametrze 15.06 Wymuszone wart. RO/DO jest obecny dla każdego wyjścia przekaźnikowego, a jego wartość jest stosowana zawsze, gdy odpowiedni bit w tym parametrze ma wartość 1.

Uwaga: Rozruch i cykl zasilania resetują wymuszone ustawienia (parametry 15.05 i 15.06).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wyjścia RO2 na wartość bitu 0 parametru 15.06 Wymuszone wart. RO/DO.</td>
</tr>
<tr>
<td>1</td>
<td>1 = Wymuszenie wartości wyjścia RO3 na wartość bitu 1 parametru 15.06 Wymuszone wart. RO/DO.</td>
</tr>
<tr>
<td>2</td>
<td>1 = Wymuszenie wartości wyjścia RO4 na wartość bitu 2 parametru 15.06 Wymuszone wart. RO/DO.</td>
</tr>
<tr>
<td>3</td>
<td>1 = Wymuszenie wartości wyjścia RO5 na wartość bitu 3 parametru 15.06 Wymuszone wart. RO/DO.</td>
</tr>
<tr>
<td>4...15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

- **0000h…FFFFh** Nadpisanie wyboru wyjść przekaźnikowych. 1 = 1

15.06 Wymuszone wart. RO/DO
Umożliwia zmianę wartości danych wymuszonego wyjścia lub wyjścia przekaźnikowego z 0 na 1. Możliwe jest tylko wymuszenie wyjścia, które zostało wybrane za pomocą parametru 15.05 Wybór wymuszenia RO/DO. Bity 0…3 to wymuszone wartości wyjść RO2…RO5.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = Wymuszenie wartości wyjścia RO2 na wartość bitu 0 parametru 15.05 Wybór wymuszenia RO/DO.</td>
</tr>
<tr>
<td>1</td>
<td>1 = Wymuszenie wartości wyjścia RO3 na wartość bitu 1 parametru 15.05 Wybór wymuszenia RO/DO.</td>
</tr>
<tr>
<td>2</td>
<td>1 = Wymuszenie wartości wyjścia RO4 na wartość bitu 2 parametru 15.05 Wybór wymuszenia RO/DO.</td>
</tr>
<tr>
<td>3</td>
<td>1 = Wymuszenie wartości wyjścia RO5 na wartość bitu 3 parametru 15.05 Wybór wymuszenia RO/DO.</td>
</tr>
<tr>
<td>4...15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

- **0000h…FFFFh** Wymuszone wartości wyjść przekaźnikowych. 1 = 1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.07</td>
<td>Źródło RO2</td>
<td>Wybiera sygnał przemiennika częstotliwości do połączenia z wyjściem przekaźnikowym RO2.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywny</td>
<td>Wyjście nie ma zasilania.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Aktywne</td>
<td>Wyjście ma zasilanie.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Gotowość do pracy</td>
<td>Bit 1 parametru 06.11 Główne słowo stanu</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Włączone</td>
<td>Bit 0 parametru 06.16 Słowo stanu 1 przem.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Uruchomiony</td>
<td>Bit 5 parametru 06.16 Słowo stanu 1 przem.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Namagnesowany</td>
<td>Bit 1 parametru 06.17 Słowo stanu 2 przem.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Praca</td>
<td>Bit 6 parametru 06.16 Słowo stanu 1 przem.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana gotowa</td>
<td>Bit 2 parametru 06.11 Główne słowo stanu</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>W punkcie pracy</td>
<td>Bit 8 parametru 06.11 Główne słowo stanu</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Bieg do tyłu</td>
<td>Bit 2 parametru 06.19 Słowo stanu ster. prędk..</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Prędkość zerowa</td>
<td>Bit 0 parametru 06.19 Słowo stanu ster. prędk..</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Powyż limitu</td>
<td>Bit 10 parametru 06.17 Słowo stanu 2 przem.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Bit 7 parametru 06.11 Główne słowo stanu</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Bit 3 parametru 06.11 Główne słowo stanu</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Błąd (-1)</td>
<td>Odwrócony bit 3 parametru 06.11 Główne słowo stanu.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Błąd/Ostrzeżenie</td>
<td>Bit 3 parametru LUB bit 7 parametru 06.11 Główne słowo stanu.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Przetężenie</td>
<td>Przekaźnik jest zasilany, gdy przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu przetężenia.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Przepięcie</td>
<td>Przekaźnik jest zasilany, gdy przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu przepięcia.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Temperatura przemiennika częstotliwości</td>
<td>Przekaźnik jest zasilany, gdy przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu temperatury przemiennika częstotliwości.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Za niskie napięcie</td>
<td>Przekaźnik jest zasilany, gdy przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu za niskiego napięcia.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Temperatura silnika</td>
<td>Przekaźnik jest zasilany, gdy przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu temperatury silnika.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Komenda hamowania</td>
<td>Bit 0 parametru 44.01 Stan sterowania hamulcem.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Zew2 aktywne</td>
<td>Bit 11 parametru 06.16 Słowo stanu 1 przem..</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Zdalne sterowanie</td>
<td>Bit 9 parametru 06.11 Główne słowo stanu.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>MCB</td>
<td>Przekaźnik jest zasilany, gdy przemiennik częstotliwości został nalażony za pomocą ładowania zewnętrznego.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>35</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Opóźnienie startu</td>
<td>Bit 0 słowa ster. RO/DIO Bit 0 parametru 10.99 Słowo sterowania RO/DIO.</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 1 słowa ster. RO/DIO Bit 1 parametru 10.99 Słowo sterowania RO/DIO.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 2 słowa ster. RO/DIO Bit 2 parametru 10.99 Słowo sterowania RO/DIO.</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inny [bit] Wybór źródła (patrz Wyrażenia i skróty.)</td>
<td>-</td>
</tr>
<tr>
<td>15.08</td>
<td>Opóźnienie WL. RO2</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego RO2.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{WI} = 15.08 \text{ Opóźnienie WL. RO2}$ $t_{WY} = 15.09 \text{ RO2 Opóźnienie WYŁ.}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0…3000,0 s</td>
<td>Opóźnienie aktywacji wejścia RO2.</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>15.09</td>
<td>Opóźnienie WYŁ. RO2</td>
<td>Określa opóźnienie dezaktywacji wyjścia przekaźnikowego RO2.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0…3000,0 s</td>
<td>Opóźnienie dezaktywacji wejścia RO2.</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>15.10</td>
<td>Źródło RO3</td>
<td>Wybiera sygnał przemiennika częstotliwości do połączenia z wyjściem przekaźnikowym RO3.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patrz parametr 15.07 Źródło RO2 pod kątem dostępnych opcji.</td>
<td></td>
</tr>
<tr>
<td>15.11</td>
<td>Opóźnienie WL. RO3</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego RO3.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{WI} = 15.11 \text{ Opóźnienie WL. RO3}$ $t_{WY} = 15.12 \text{ Opóźnienie WYŁ. RO3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0…3000,0 s</td>
<td>Opóźnienie aktywacji wyjścia RO5.</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>15.12</td>
<td>Opóźnienie WYŁ. RO3</td>
<td>Określa opóźnienie dezaktywacji wyjścia przekaźnikowego RO5.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0…3000,0 s</td>
<td>Opóźnienie dezaktywacji wejścia RO3.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>
15.13 Źródło RO4
Wybiera sygnał przemiannika częstotliwości do połączenia z wyjściem przekaźnikowym RO4.
Patrz parametr 15.07 Źródło RO2 pod kątem dostępnych opcji.
Nieaktywne

15.14 Opóźnienie WŁ. RO4
Określa opóźnienie aktywacji wyjścia przekaźnikowego RO4.
0,0 s

15.15 Opóźnienie WYŁ. RO4
Określa opóźnienie dezaktywacji wyjścia przekaźnikowego RO4.
0,0 s

15.16 Źródło RO5
Wybiera sygnał przemiannika częstotliwości do połączenia z wyjściem przekaźnikowym RO5.
Nieaktywne
Patrz parametr 15.07 Źródło RO2 pod kątem dostępnych opcji.

15.17 Opóźnienie WŁ. RO5
Określa opóźnienie aktywacji wyjścia przekaźnikowego RO5.
0,0 s

15.18 Opóźnienie WYŁ. RO5
Określa opóźnienie dezaktywacji wyjścia przekaźnikowego RO5.
0,0 s
19 Tryb pracy

Wybór lokalnych i zewnętrznych źródeł miejsc sterowania i trybów pracy. Patrz sekcja *Tryby pracy i tryby sterowania silnikiem* w rozdziale *Funkcje programu*.

19.01 Aktualny tryb pracy

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>Zero.</td>
<td>Sterowanie prędkością (w trybie wektorowego sterowania silnikiem).</td>
<td>1</td>
</tr>
<tr>
<td>Moment</td>
<td>Sterowanie momentem (w trybie wektorowego sterowania silnikiem).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>Przełącznik momentu porównuje wyjście kontrolera prędkości (25.01) i wartość zadaną momentu (26.74), a następnie wybiera mniejszą wartość (w trybie wektorowego sterowania silnikiem).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Maks.</td>
<td>Przełącznik momentu porównuje wyjście kontrolera prędkości (25.01) i wartość zadaną momentu (26.74), a następnie wybiera większą wartość (w trybie wektorowego sterowania silnikiem).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Skalarne (Hz)</td>
<td>Sterowanie częstotliwością w trybie skalarnego sterowania silnikiem.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Wymuszone magn.</td>
<td>Silnik w trybie magnesowania.</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

19.11 Wybór Zew1/Zew2

Źródło wyboru zewnętrznego miejsca sterowania ZEW1/ZEW2. 0 = ZEW1, 1 = ZEW2

<p>| Zew1 | ZEW1 (wybór na stałe). | 0 |
| Zew2 | ZEW2 (wybór na stałe). | 1 |
| FBA A MCW bit 11 | Bit 11 słowa sterowania odebrany za pośrednictwem interfejsu magistrali komunikacyjnej A. | 2 |
| DI1 | Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). | 3 |
| DI2 | Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). | 4 |
| DI3 | Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). | 5 |
| DI4 | Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3). | 6 |
| DIO1 | Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0). | 11 |
| DIO2 | Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1) | 12 |
| Funkcja czasowa 1 | Bit 0 parametr 34.01 Stan funkcji czasowych. | 19 |
| Funkcja czasowa 2 | Bit 1 parametr 34.01 Stan funkcji czasowych. | 20 |
| Funkcja czasowa 3 | Bit 2 parametr 34.01 Stan funkcji czasowych. | 21 |
| Nadzór 1 | Bit 0 parametr 32.01 Stan nadzoru. | 25 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>EFB MCW bit 11</td>
<td>Bit 11 słowa sterowania odebrane przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Utrata komunikacji FBA A</td>
<td>Wykryta utrata komunikacji dla interfejsu magistrali komunikacyjnej A zmienia tryb sterowania na EXT2.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Utrata komunikacji EFB</td>
<td>Wykryta utrata komunikacji dla interfejsu wbudowanej magistrali komunikacyjnej zmienia tryb sterowania na EXT2.</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>19.12</td>
<td>Tryb sterowania Zew1</td>
<td>Wybiera tryb pracy dla zewnętrznego miejsca sterowania ZEW1 w trybie wektorowego sterowania silnikiem.</td>
<td>Prędkość</td>
</tr>
<tr>
<td></td>
<td>Zero</td>
<td>Brak.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Prędkość</td>
<td>Sterowanie prędkością. Używana wartość zadana momentu to 25.01 W. zad. momentu ster. prędk. (wartość wyjściowa łańcucha wartości zadanej prędkości).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Moment</td>
<td>Sterowanie momentem. Używana wartość zadana momentu to 26.74 Wyj. w. zad. mom. po ramp. (wartość wyjściowa łańcucha wartości zadanej momentu).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>Kombinacja opcji Prędkość i Moment: selektor momentu porównuje wyjście kontrolera prędkości (25.01 W. zad. momentu ster. prędk.) i wartość zadaną momentu (26.74 Wyj. w. zad. mom. po ramp.), a następnie wybiera mniejszą wartość. Jeśli błąd prędkości jest ujemny, przemiennik częstotliwości używa wyjścia kontrolera prędkości do chwili, gdy błąd prędkości będzie ponownie dodatni. Chroni to przemiennik częstotliwości przed niekontrolowanym przyspieszeniem, gdy w sterowaniu momentem obciążenie zostanie utracone.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Maksimum</td>
<td>Kombinacja opcji Prędkość i Moment: selektor momentu porównuje wyjście kontrolera prędkości (25.01 W. zad. momentu ster. prędk.) i wartość zadaną momentu (26.74 Wyj. w. zad. mom. po ramp.), a następnie wybiera większą wartość. Jeśli błąd prędkości jest dodatni, przemiennik częstotliwości używa wyjścia kontrolera prędkości do chwili, gdy błąd prędkości będzie ponownie ujemny. Chroni to przemiennik częstotliwości przed niekontrolowanym przyspieszeniem, gdy w sterowaniu momentem obciążenie zostanie utracone.</td>
<td>5</td>
</tr>
</tbody>
</table>
19.16 Tryb sterowania lokalnego
Wybiera tryb pracy dla lokalnego sterowania w wektorowym trybie sterowania silnikiem.

Prędkość
Sterowanie prędkością. Używana wartość zadana momentu to 25.01 W. zad. momentu ster. prędk. (wartość wyjściowa łańcucha wartości zadanej prędkości).

Moment
Sterowanie momentem. Używana wartość zadana momentu to 26.74 Wyj. w. zad. mom. po ramp. (wartość wyjściowa łańcucha wartości zadanej momentu).

19.17 Blokada ster. lokalnego
Włącza/wyłącza możliwość sterowania lokalnego (przyciski Start i Stop na panelu sterowania oraz sterowanie lokalne w programie komputerowym).

OSTRZEŻENIE! Przed wyłączaniem sterowania lokalnego należy się upewnić, że panel sterowania nie jest wymagany do zatrzymania przemiannika częstotliwości.

Brak
Sterowanie lokalne wyłączone. 0
Tak
Sterowanie lokalne włączone. 1

20 Start/stop/kierunek
Wybór źródła sygnałów sterowania start/stop/kierunku oraz zezwolenia na bieg/start/bieg próbny przy użyciu dodatniej/ujemnej wartości zadanej.

Wśród informacji o miejscach sterowania przedstawiono w sekcji Lokalne i zewnętrzne miejsca sterowania (str. 54).

20.01 Komendy Zew1
Wybiera źródło polecenia uruchomienia, zatrzymania i kierunku dla zewnętrznego miejsca sterowania 1 (ZEW1). Patrz też parametry 20.02...20.05. Patrz parametr 20.21, aby określić aktualny kierunek.

Nie wybrano
Nie wybrano źródeł poleceń startu lub stopu. 0
We1: start
Żródło komend startu i stopu jest wybierane przez parametr 20.03 Źródło We1 Zew1. Zmiany stanu bitów źródła są interpretowane w następujący sposób:

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.03)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1 (20.02 = Zbocze)</td>
<td>Start</td>
</tr>
<tr>
<td>1 (20.02 = Poziom)</td>
<td>Stop</td>
</tr>
</tbody>
</table>

We1: start; We2: kierunek
Żródło określone przez parametr 20.03 Źródło We1 Zew1 jest sygnałem startu. Źródło określone przez parametr 20.04 Źródło We2 Zew1 wskazuje kierunek. Zmiany stanu bitów źródła są interpretowane w następujący sposób:

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.03)</th>
<th>Stan źródła 2 (20.04)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dowolny</td>
<td>Stop</td>
</tr>
<tr>
<td>0 -> 1 (20.02 = Zbocze)</td>
<td>0</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>1 (20.02 = Poziom)</td>
<td>1</td>
<td>Start do tyłu</td>
</tr>
</tbody>
</table>
Parametry

We1: st. w przód; We2: st. w tył

źródło określone przez parametr 20.03 Źródło We1 Zew1 jest sygnałem startu do przodu. Źródło określone przez parametr 20.04 Źródło We2 Zew1 jest sygnałem startu do tyłu. Zmiany stanu bitów źródła są interpretowane w następujący sposób:

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.03)</th>
<th>Stan źródła 2 (20.04)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>0 -> 1 (20.02 = Zbocze)</td>
<td>0</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>1 (20.02 = Poziom)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0 -> 1 (20.02 = Zbocze)</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Stop</td>
</tr>
</tbody>
</table>

We1P: start; We2: stop

źródła komend startu i stopu są wybierane przez parametry 20.03 Źródło We1 Zew1 i 20.04 Źródło We2 Zew1. Zmiany stanu bitów źródła są interpretowane w następujący sposób:

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.03)</th>
<th>Stan źródła 2 (20.04)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>Start</td>
</tr>
<tr>
<td>Dowolny</td>
<td>0</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Uwagi:

- Parametr 20.02 Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.
- Gdy stan źródła 2 ma wartość 0, przyciski Start i Stop na panelu sterowania są nieaktywne.

We1P: start; We2: stop; We3: kier.

źródła komend startu i stopu są wybierane przez parametry 20.03 Źródło We1 Zew1 i 20.04 Źródło We2 Zew1. Źródło określone przez parametr 20.05 Źródło We3 Zew1 wskazuje kierunek. Zmiany stanu bitów źródła są interpretowane w następujący sposób:

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.03)</th>
<th>Stan źródła 2 (20.04)</th>
<th>Stan źródła 3 (20.05)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>0</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>1</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>Dowolny</td>
<td>0</td>
<td>Dowolny</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Uwagi:

- Parametr 20.02 Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.
- Gdy stan źródła 2 ma wartość 0, przyciski Start i Stop na panelu sterowania są nieaktywne.
Parametry 163

We1P: st. w przód; We2P: st. w tył; We3: stop

źródła komend startu i stopu są wybierane przez parametry 20.03 Źródło We1 Zew1, 20.04 Źródło We2 Zew1 i 20.05 Źródło We3 Zew1. Źródło określone przez parametr 20.05 Źródło We3 Zew1 wskaże kierunek. Zmianny stanu bitów źródła są interpretowane w następujący sposób:

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.03)</th>
<th>Stan źródła 2 (20.04)</th>
<th>Stan źródła 3 (20.05)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>Dowolny</td>
<td>1</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>Dowolny</td>
<td>0 -> 1</td>
<td>1</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>Dowolny</td>
<td>Dowolny</td>
<td>0</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Uwaga: Parametr 20.02 **Typ wyzw. startu Zew1** nie daje żadnego efektu przy tym ustawieniu.

Panel sterowania

Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą panelu sterowania, gdy miejsce sterowania 1 (ZEW1) jest aktywne. Dotyczy również narzędzia komputerowego, jeśli jest ono połączone za pośrednictwem portu panelu.

Magistrala komunikacyjna A

Polecenia startu i stopu są pobierane z adaptera komunikacyjnego A.

Uwaga: Należy również ustawić parametr 20.02 **Typ wyzw. startu Zew1** na wartość **Poziom**.

Wbudowana magistrala komunikacyjna

Polecenia startu i stopu są pobierane z interfejsu wbudowanej magistrali komunikacyjnej.

Uwaga: Należy również ustawić parametr 20.02 **Typ wyzw. startu Zew1** na wartość **Poziom**.

ATF

Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą mechanizmu ATF, gdy miejsca sterowania 1 (ZEW1) jest aktywne.

Zintegrowany panel:

Polecenia uruchomienia, zatrzymania i kierunku wykonywane z poziomu zintegrowanego panelu 20.02 **Typ wyzw. startu Zew1**

Definiuje, czy sygnał startu dla zewnętrznego miejsca sterowania ZEW1 jest wyzwalany przez zbocze, czy poziom.

Uwaga: Ten parametr nie jest używany, jeśli wybrano sygnał startu typu impulsowego. Patrz opisy opcji parametru 20.01 **Komendy Zew1**.

Zbocze

Sygnał startu jest wyzwalany przez zbocze.

Poziom

Sygnał startu jest wyzwalany przez poziom.

20.03 **Źródło We1 Zew1**

Wybiera źródło 1 dla parametru 20.01 **Komendy Zew1**.

<table>
<thead>
<tr>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>FbEq 16</td>
<td>Stan źródła 1 (20.03)</td>
</tr>
<tr>
<td>0</td>
<td>Dowolny</td>
</tr>
<tr>
<td>1</td>
<td>Dowolny</td>
</tr>
</tbody>
</table>

Wartość domyślna:

FbEq 16

20.02 **Typ wyzw. startu Zew1**

<table>
<thead>
<tr>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1</td>
<td>1 (załadowane)</td>
</tr>
<tr>
<td>DI2</td>
<td>1 (załadowane)</td>
</tr>
<tr>
<td>DI3</td>
<td>1 (załadowane)</td>
</tr>
<tr>
<td>DI4</td>
<td>1 (załadowane)</td>
</tr>
</tbody>
</table>

Opis:

- **FbEq 16:** Stan źródła 1 (20.03) | Stan źródła 2 (20.04) | Stan źródła 3 (20.05)
- **Dowolny:** Dowolny | Dowolny | Dowolny
- **Polecenie:** Start do przodu | Start do tyłu | Stop

Uwaga:

- **FbEq 16:** Stan źródła 1 (20.03) | Stan źródła 2 (20.04) | Stan źródła 3 (20.05)
- **Dowolny:** Dowolny | Dowolny | Dowolny
- **Polecenie:** Start do przodu | Start do tyłu | Stop

20.02 **Typ wyzw. startu Zew1

Definiuje, czy sygnał startu dla zewnętrznego miejsca sterowania ZEW1 jest wyzwalany przez zbocze, czy poziom. **Uwaga:** Ten parametr nie jest używany, jeśli wybrano sygnał startu typu impulsowego. Patrz opisy opcji parametru 20.01 **Komendy Zew1**.

20.03 **Źródło We1 Zew1

Wybiera źródło 1 dla parametru 20.01 **Komendy Zew1**.

Di1

- **Nie wybrano:** 0 (załadowane).
- **Wybrano:** 1 (załadowane).

20.04 **Źródło We2 Zew1

Wybiera źródło 2 dla parametru 20.01 **Komendy Zew1**.

Di2

- **Nie wybrano:** 0 (załadowane).
- **Wybrano:** 1 (załadowane).

20.05 **Źródło We3 Zew1

Wybiera źródło 3 dla parametru 20.01 **Komendy Zew1**.

Di3

- **Nie wybrano:** 0 (załadowane).
- **Wybrano:** 1 (załadowane).

20.06 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

Zintegrowany panel: Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą mechanizmu ZEW1, gdy miejsca sterowania 1 (ZEW1) jest aktywne.

Uwaga: Należy również ustawić parametr 20.02 **Typ wyzw. startu Zew1** na wartość **Poziom**.

20.07 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.08 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.09 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.10 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.11 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.12 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.13 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.14 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.15 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.16 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.17 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.18 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.19 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.20 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.21 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.22 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.

20.23 **źródła komend startu i stopu są wybrane przez parametry 20.02 **Typ wyzw. startu Zew1 nie daje żadnego efektu przy tym ustawieniu.
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FbEq 16</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>20.04</td>
<td>Źródło We2 Zew1</td>
<td>Wybiera źródło 2 dla parametru 20.01 Komendy Zew1. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1.</td>
<td>D12</td>
</tr>
<tr>
<td>20.05</td>
<td>Źródło We3 Zew1</td>
<td>Wybiera źródło 3 dla parametru 20.01 Komendy Zew1. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>20.06</td>
<td>Komendy Zew2</td>
<td>Wybiera źródło poleceń uruchomienia, zatrzymania i kierunku dla zewnętrznego miejsca sterowania 2 (ZEW2). Patrz też parametry 20.07...20.10. Patrz parametr 20.21, aby określić aktualny kierunek.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Nie wybrano źródeł poleceń startu lub stopu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>We1: start</td>
<td>Źródło komend startu i stopu jest wybierane przez parametr 20.08 Źródło We1 Zew2. Zmiany stanu bitów źródła są interpretowane w następujący sposób:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stan źródła 1 (20.08)</td>
<td>Polecenie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 -> 1 (20.07 = Zbocze)</td>
<td>Start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (20.07 = Poziom)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0</td>
<td>Stop</td>
</tr>
<tr>
<td></td>
<td>We1: start; We2:</td>
<td>Źródło określone przez parametr 20.08 Źródło We1 Zew2 jest sygnałem startu. Źródło określone przez parametr 20.09 Źródło We2 Zew2 wskazuje kierunek. Zmiany stanu bitów źródła są interpretowane w następujący sposób:</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>kierunek</td>
<td>Stan źródła 1 (20.08)</td>
<td>Stan źródła 2 (20.09)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 -> 1 (20.07 = Zbocze)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (20.07 = Poziom)</td>
<td>1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>We1: st. w przód; We2: st. w tył</td>
<td>Źródło określane przez parametr 20.08 Źródło We1 Zew2 jest sygnałem startu do przodu. Źródło określane przez parametr 20.09 Źródło We2 Zew1 jest sygnałem startu do tyłu. Zmiany stanu bitów źródła są interpretowane w następujący sposób:</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.08)</th>
<th>Stan źródła 2 (20.09)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
</tr>
<tr>
<td>0 -> 1</td>
<td>0</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>(20.07 = Zbocze)</td>
<td>(20.07 = Poziom)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 -> 1</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>(20.07 = Zbocze)</td>
<td>(20.07 = Poziom)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Stop</td>
</tr>
</tbody>
</table>

| We1P: start; We2: stop | Źródło komend startu i stopu są wybierane przez parametry 20.08 Źródło We1 Zew2 i 20.09 Źródło We2 Zew1. Zmiany stanu bitów źródła są interpretowane w następujący sposób: | 4 |

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.08)</th>
<th>Stan źródła 2 (20.09)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>Start</td>
</tr>
<tr>
<td>Dowolny</td>
<td>0</td>
<td>Stop</td>
</tr>
</tbody>
</table>

| We1P: start; We2: stop; We3: kier. | Źródło komend startu i stopu są wybierane przez parametry 20.08 Źródło We1 Zew2 i 20.09 Źródło We2 Zew1. Źródło określone przez parametr 20.10 Źródło We3 Zew2 wskazuje kierunek. Zmiany stanu bitów źródła są interpretowane w następujący sposób: | 5 |

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.08)</th>
<th>Stan źródła 2 (20.09)</th>
<th>Stan źródła 3 (20.10)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>0</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>1</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>Dowolny</td>
<td>Dowolny</td>
<td></td>
<td>Stop</td>
</tr>
</tbody>
</table>

Uwagi:
• Parametr 20.07 Typ wyzw. startu Zew2 nie daje żadnego efektu przy tym ustawieniu.
• Gdy stan źródła 2 ma wartość 0, przyciski Start i Stop na panelu sterowania są nieaktywne.

Uwagi:
• Parametr 20.07 Typ wyzw. startu Zew2 nie daje żadnego efektu przy tym ustawieniu.
• Gdy stan źródła 2 ma wartość 0, przyciski Start i Stop na panelu sterowania są nieaktywne.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.07 Typ wyzw. startu Zew2</td>
<td>Definiuje, czy sygnał startu dla zewnętrznego miejsca sterowania ZEW2 jest wyzwalany przez zbocze, czy poziom. Uwaga: Ten parametr nie jest używany, jeśli wybrano sygnał startu typu impulsowego. Patrz opisy opcji parametru 20.06 Komendy Zew2.</td>
<td>Poziom</td>
<td></td>
</tr>
<tr>
<td>20.08 Źródło We1 Zew2</td>
<td>Wybiera źródło 1 dla parametru 20.06 Komendy Zew2. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1.</td>
<td>Nie wybrano</td>
<td></td>
</tr>
<tr>
<td>20.09 Źródło We2 Zew2</td>
<td>Wybiera źródło 2 dla parametru 20.06 Komendy Zew2. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1.</td>
<td>Nie wybrano</td>
<td></td>
</tr>
</tbody>
</table>

Uwaga: Parametr 20.07 Typ wyzw. startu Zew2 nie daje żadnego efektu przy tym ustawieniu.

Panel sterowania

Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą panelu sterowania, gdy miejsce sterowania 1 (ZEW1) jest aktywne. Dotyczy również narzędzia komputerowego, jeśli jest ono połączone za pośrednictwem portu panelu.

Uwaga: Należy również ustawić parametr 20.07 Typ wyzw. startu Zew2 na wartość Poziom.

Magistrala komunikacyjna A

Polecenia startu i stopu są pobierane z adaptera komunikacyjnego A.

Uwaga: Należy również ustawić parametr 20.07 Typ wyzw. startu Zew2 na wartość Poziom.

Wbudowana magistrala komunikacyjna

Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą protokołu wbudowanego modułu komunikacyjnego, gdy miejsce sterowania 1 (ZEW1) jest aktywne.

Uwaga: Należy również ustawić parametr 20.07 Typ wyzw. startu Zew2 na wartość Poziom.

Program aplikacyjny

Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą łącza D2D, gdy miejsce sterowania 1 (ZEW1) jest aktywne.

ATF

Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą mechanizmu ATF, gdy miejsca sterowania 1 (ZEW1) jest aktywne.

Zintegrowany panel:

Polecenia uruchomienia, zatrzymania i kierunku wykonywane z poziomu zintegrowanego panelu

<table>
<thead>
<tr>
<th>Stan źródła 1 (20.08)</th>
<th>Stan źródła 2 (20.09)</th>
<th>Stan źródła 3 (20.10)</th>
<th>Polecenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>Dowolny</td>
<td>1</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>Dowolny</td>
<td>0 -> 1</td>
<td>1</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>Dowolny</td>
<td>Dowolny</td>
<td>0</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Stan źródła:

- 0: Stop
- 1: Start do przodu
- 2: Start do tyłu

<table>
<thead>
<tr>
<th>Nr Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>We1P: st. w przód; We2P: st. w tył; We3: stop</td>
<td>Źródła komend startu i stopu są wybierane przez parametry 20.08 Źródło We1 Zew2, 20.09 Źródło We2 Zew1 i 20.10 Źródło We3 Zew2. Źródło określone przez parametr 20.10 Źródło We3 Zew2 wskazuje kierunek. Zmiany stanu bitów źródła są interpretowane w następujący sposób:</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel sterowania</th>
<th>Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą panelu sterowania, gdy miejsce sterowania 1 (ZEW1) jest aktywne.</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magistrala komunikacyjna A</td>
<td>Polecenia startu i stopu są pobierane z adaptera komunikacyjnego A.</td>
<td>12</td>
</tr>
<tr>
<td>Wbudowana magistrala komunikacyjna</td>
<td>Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą protokołu wbudowanego modułu komunikacyjnego, gdy miejsce sterowania 1 (ZEW1) jest aktywne.</td>
<td>14</td>
</tr>
<tr>
<td>Program aplikacyjny</td>
<td>Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą łącza D2D, gdy miejsce sterowania 1 (ZEW1) jest aktywne.</td>
<td>21</td>
</tr>
<tr>
<td>ATF</td>
<td>Polecenia uruchomienia, zatrzymania i kierunku wykonywane za pomocą mechanizmu ATF, gdy miejsca sterowania 1 (ZEW1) jest aktywne.</td>
<td>22</td>
</tr>
<tr>
<td>Zintegrowany panel:</td>
<td>Polecenia uruchomienia, zatrzymania i kierunku wykonywane z poziomu zintegrowanego panelu</td>
<td>23</td>
</tr>
</tbody>
</table>

<p>| 20.08 Źródło We1 Zew2 | Wybiera źródło 1 dla parametru 20.06 Komendy Zew2. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1. | Nie wybrano |
| 20.09 Źródło We2 Zew2 | Wybiera źródło 2 dla parametru 20.06 Komendy Zew2. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1. | Nie wybrano |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.10</td>
<td>Źródło We3 Zew2</td>
<td>Wybiera źródło 3 dla parametru 20.06 Komendy Zew2. Dostępne opcje zawiera opis parametru 20.03 Źródło We1 Zew1.</td>
<td>Nie wybrano</td>
<td></td>
</tr>
<tr>
<td>20.11</td>
<td>Tryb zatrz. wył. zezw. na bieg</td>
<td>Wybiera sposób zatrymania silnika, gdy wyłączono sygnał zezwolenia na bieg. Źródło sygnału zezwolenia na bieg jest wybierane przez parametr 20.12 Źródło zezwolenia na bieg.</td>
<td>Wybieg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zatrymanie przez wyłączenie pólprzewodników wyjściowych przemiennika częstotliwości. Silnik zwalnia wybiegiem do zatrzymania.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSTRZEŻENIE! Jeśli używany jest hamulec mechaniczny, należy upewnić się, że zwalnianie wybiegiem do zatrzymania jest bezpieczne.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rampa</td>
<td>Zatrymanie zgodnie z aktywną rampą zwalniania. Patrz grupa parametrów 23 Rampa wart. zad. prędkości.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limit momentu</td>
<td>Zatrymanie zgodnie z limitami momentu (parametry 30.19 i 30.20).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20.12</td>
<td>Źródło zezwolenia na bieg 1</td>
<td>Wybiera źródło zewnętrznego sygnału zezwolenia na bieg. Jeśli sygnał zezwolenia na bieg jest wyłączony, przemiennik częstotliwości nie uruchomi się. Jeśli urządzenie jest już uruchomione, przemiennik częstotliwości zatryma się zgodnie z ustawieniami parametru 20.11 Tryb zatrz. wył. zezw. na bieg. 1 = Sygnał zezwolenia na bieg jest włączony. Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony. Patrz też parametr 20.19 Źródło zezwolenia na start</td>
<td>Wybrano</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nie wybrano 0. 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wybrano 1. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>--</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBA A MCW bit 3</td>
<td>Bit 3 słowa sterowania odebrane za pośrednictwem interfejsu magistrali komunikacyjnej A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB MCW bit 3</td>
<td>Bit 3 słowa sterowania odebrane przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.13</td>
<td>Zezwolenie na bieg 2</td>
<td>Wybiera źródło dodatkowego zewnętrznego sygnału zezwolenia na bieg. Jeśli sygnał zezwolenia na bieg będzie wyłączony, przemiennik częstotliwości nie uruchomi się lub zwolni wybiegiem do zatrzymania. 1 = Zezwolenie na bieg. Uwaga: Jeśli sygnał zezwolenia na bieg zostanie utracony podczas uruchomienia, przemiennik częstotliwości zostanie zatrzymany zgodnie z aktywnym trybem zatrzymania (patrz parametr Tryb zatrzymania). Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>Wybrano</td>
<td></td>
</tr>
<tr>
<td>20.14</td>
<td>Zezwolenie na bieg 3</td>
<td>Wybiera źródło dodatkowego zewnętrznego sygnału zezwolenia na bieg 2. Jeśli sygnał zezwolenia na bieg jest wyłączony, przemiennik częstotliwości nie uruchomi się lub zwolni wybiegiem do zatrzymania. 1 = Zezwolenie na bieg. Uwaga: Jeśli sygnał zezwolenia na bieg zostanie utraconi podczas uruchomienia, przemiennik częstotliwości zostanie zatrzymany zgodnie z aktywnym trybem zatrzymania (patrz parametr Tryb zatrzymania parametru). Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>Wybrano</td>
<td></td>
</tr>
<tr>
<td>20.15</td>
<td>Zezwolenie na bieg 4</td>
<td>Wybiera źródło dodatkowego zewnętrznego sygnału zezwolenia na bieg 3. Jeśli sygnał zezwolenia na bieg jest wyłączony, przemiennik częstotliwości nie uruchomi się lub zwolni wybiegiem do zatrzymania. 1 = Zezwolenie na bieg. Uwaga: Jeśli sygnał zezwolenia na bieg zostanie utraconi podczas uruchomienia, przemiennik częstotliwości zostanie zatrzymany zgodnie z aktywnym trybem zatrzymania (patrz parametr Tryb zatrzymania parametru). Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>Wybrano</td>
<td></td>
</tr>
<tr>
<td>20.19</td>
<td>Źródło zezwolenia na start</td>
<td>Wybiera źródło sygnału zezwolenia na start. 1 = Włączanie zezwolenia. Jeśli sygnał zezwolenia na start jest wyłączony, polecenie startu nie zostanie odebrane przez przemiennik. (Wyłączenie sygnału podczas pracy przemiennika częstotliwości nie spowoduje jego zatrzymania). Patrz też parametr 20.12 Źródło zezwolenia na bieg 1.</td>
<td>Wybrano</td>
<td></td>
</tr>
<tr>
<td>Nie wybrano</td>
<td>0.</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
<td>FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>20.21</td>
<td>Kierunek</td>
<td>Blokada kierunku zadanego. Definiuje kierunek przemieninika częstotliwości zamiast znaku wartości zadanej, z wyjątkiem niektórych przypadków. W tabeli przedstawiono aktualny obrót przemieninika częstotliwości jako funkcję parametru 20.21 Kierunek i polecenia zmiany kierunku (z parametru 20.01 Komendy Zew2 lub 20.06 Komendy Zew2).</td>
<td>Żądanie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Żądanie</td>
<td>Zewntrzny</td>
<td></td>
</tr>
<tr>
<td>Par. 20.21 Kierunek = Do przodu</td>
<td>Polecenie Zmiana kierunku = Do przodu</td>
<td>Polecenie Zmiana kierunku = Do tyłu</td>
<td>Polecenie Zmiana kierunku nie jest zdefiniowane</td>
<td>Do przodu</td>
</tr>
<tr>
<td>Par. 20.21 Kierunek = Do tyłu</td>
<td>Do przodu</td>
<td>Do tyłu</td>
<td>Do przodu</td>
<td></td>
</tr>
<tr>
<td>Par. 20.21 Kierunek = Żądanie</td>
<td>Do przodu, ale • Jeśli wartość zadana pochodzi z parametru Stała, Potencjometr silnika, PID, Niepowodzenie, Ostatni, Bieg próbn y lub Wartość zadana panelu, to wartość zadana jest używana w postaci niezmienionej. • Jeśli wartość zadana pochodzi z sieci, wartość zadana jest używana w postaci niezmienionej.</td>
<td>Do tyłu, ale • Jeśli wartość zadana pochodzi z parametru Stała, Potencjometr silnika, PID, Niepowodzenie, Ostatni, Bieg próbny lub Wartość zadana panelu, to wartość zadana jest używana w postaci niezmienionej. • Jeśli wartość zadana pochodzi z sieci, wartość zadana jest mnożona przez -1.</td>
<td>Do przodu</td>
<td></td>
</tr>
</tbody>
</table>

Żądanie

W sterowaniu zewnętrznym kierunek jest wybierany za pomocą polecenia kierunku (parametr 20.01 Komendy Zew2 lub 20.06 Komendy Zew2).

Jeśli wartość zadana pochodzi z parametru Stała (stałe prędkości/częstotliwości), Potencjometr silnika, PID, Niepowodzenie, Ostatni (wartość zadana ostatniej prędkości), Bieg próbn y (prędkość biegu próbnego) lub Wartość zadana panelu, wartość zadana jest używana w postaci niezmienionej.

Jeśli wartość zadana pochodzi z magistrali komunikacyjnej:
- jeśli polecenie kierunku to Do przodu, wartość zadana jest używana w postaci niezmienionej;
- jeśli polecenie kierunku to Do tyłu, wartość zadana jest mnożona przez -1.

Do przodu

Silnik obraca się do przodu bez względu na znak zewnętrznej wartości zadanej. Ujemne wartości zadane są zastępowane przez zero. Dodatnie wartości zadane są używane w niezmienionej formie.

Bieg do tyłu

Silnik obraca się do tyłu bez względu na znak zewnętrznej wartości zadanej. Ujemne wartości zadane są zastępowane przez zero. Dodatnie wartości zadane są mnożone przez -1.
Zezwolenie na obracanie

Ustawienie tego parametru na 0 zatrzymuje obracanie silnika, ale nie wpływa na żadne inne warunki obracania. Ustawienie tego parametru ponownie na 1 rozpoczyna ponowne obracanie silnika. Tego parametru można używać na przykład razem z sygnałem z zewnętrznego urządzenia, aby uniemożliwić obracanie silnika, zanim urządzenie będzie gotowe. Kiedy parametr ma wartość 0 (obracanie silnika jest wyłączone), bit 13 parametru `06.16 Słowo stanu 1 przem.` ma wartość 0.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Wybór źródła</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.22</td>
<td>Zezwolenie na obracanie</td>
<td>Ustawienie tego parametru na 0 zatrzymuje obracanie silnika, ale nie wpływa na żadne inne warunki obracania. Ustawienie tego parametru ponownie na 1 rozpoczyna ponowne obracanie silnika. Tego parametru można używać na przykład razem z sygnałem z zewnętrznego urządzenia, aby uniemożliwić obracanie silnika, zanim urządzenie będzie gotowe. Kiedy parametr ma wartość 0 (obracanie silnika jest wyłączone), bit 13 parametru <code>06.16 Słowo stanu 1 przem.</code> ma wartość 0.</td>
<td>Wybrano</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>0 (zawsze wyłączone).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>1 (zawsze włączone).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście/cyfrowe DI1 (<code>10.02 Stan DI po opóźnieniach</code>, bit 0).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście/cyfrowe DI2 (<code>10.02 Stan DI po opóźnieniach</code>, bit 1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście/cyfrowe DI3 (<code>10.02 Stan DI po opóźnieniach</code>, bit 2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście/cyfrowe DI4 (<code>10.02 Stan DI po opóźnieniach</code>, bit 3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (<code>11.02 Stan DIO po opóźniach</code>, bit 0).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (<code>11.02 Stan DIO po opóźniach</code>, bit 1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wl. biegu próbnego

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Uwagi</th>
</tr>
</thead>
</table>
| 20.25| Wl. biegu próbnego | Wybiera źródło sygnału zezwolenia na bieg próbny. (Źródła sygnałów zezwolenia na bieg próbny są wybrane przez parametry 20.26 Źródło startu biegu prób. 1 i 20.27 Źródło startu biegu prób. 2). 1 = Zezwolenia na bieg próbny włączone. 0 = Zezwolenia na bieg próbny wyłączone. | Nie wybrano | • Bieg próbny jest obsługiwany tylko w wektorowym trybie sterowania.
• Bieg próbny może być włączony tylko wtedy, gdy nie jest aktywne poleceń startu z zewnętrznego miejsca sterowania. Z drugiej strony jeśli bieg próbny jest już włączony, nie można uruchomić przemiennika częstotliwości z zewnętrznego miejsca sterowania (oprócz poleceń ruchu powolnego z magistrali komunikacyjnej). Patrz sekcja Kontrola nagłego przyspieszenia na str. 70. |

<table>
<thead>
<tr>
<th></th>
<th>Nie wybrano</th>
<th>0.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wybrano</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Wejście cyfrowe D11 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Wejście cyfrowe D12 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Wejście cyfrowe D13 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Wejście cyfrowe D14 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1O</td>
<td>Wejście/wyjście cyfrowe D1O1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1O</td>
<td>Wejście/wyjście cyfrowe D1O2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndz 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndz 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndz 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndz 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndz 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndz 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Waga:
- **Waga**:
 - Bieg próbny jest obsługiwany tylko w wektorowym trybie sterowania.
 - Bieg próbny może być włączony tylko wtedy, gdy nie jest aktywne poleceń startu z zewnętrznego miejsca sterowania. Z drugiej strony jeśli bieg próbny jest już włączony, nie można uruchomić przemiennika częstotliwości z zewnętrznego miejsca sterowania (oprócz poleceń ruchu powolnego z magistrali komunikacyjnej). Patrz sekcja Kontrola nagłego przyspieszenia na str. 70.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th></th>
</tr>
</thead>
</table>
| 20.26 | Źródło startu biegu prób. 1 | Jeśli włączane przez parametr 20.25 Wł. biegu próbnego, wybiera źródło aktywacji funkcji biegu próbnego 1. (Funkcja biegu próbnego 1 może również zostać aktywowana przez magistralę komunikacyjną bez względu na parametr 20.25).
1 = Bieg próbny 1 aktywny.
Uwagi:
• Bieg próbny jest obsługiwany tylko w wektorowym trybie sterowania.
• Jeśli aktywny jest bieg próbny 1 i 2, pierwszeństwo ma bieg próbny aktywowany jako pierwszy.
• Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony. | Nie wybrano | |

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nie wybrano</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1</td>
<td>(10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2</td>
<td>(10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3</td>
<td>(10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4</td>
<td>(10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>-----------------</td>
<td></td>
</tr>
</tbody>
</table>
| 20.27 | Źródło startu biegu prób. 2 | Jeśli włączane przez parametr 20.25 Wl. biegu próbnego, wybiera źródło aktywacji funkcji biegu próbnego 2. (Funkcja biegu próbnego 2 może również zostać aktywowana przez magistralę komunikacyjną bez względu na parametr 20.25.) 1 = Bieg próbny 2 aktywny. Dostępne opcje zawiera opis parametru 20.26 Źródło startu biegu prób. 1. **Uwagi:**
* Bieg próbny jest obsługiwany tylko w wektorowym trybie sterowania.
* Jeśli aktywny jest bieg próbný 1 i 2, pierwszeństwo ma bieg próbny aktywowany jako pierwszy.
* Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony. Dostępne opcje zawiera opis parametru 20.26 Źródło startu biegu prób. 1. | Nie wybrano |
| 20.210| Wej. szybkiego zatrzymania | Wybiera źródło aktywacji polecenia szybkiego zatrzymania. 0 = Polecenie szybkiego zatrzymania jest aktywne. 1 = Polecenie szybkiego zatrzymania jest nieaktywne (normalna praca). Gdy polecenie jest aktywne, przemiennik zwalnia zgodnie z wartością parametru 23.206 Czas zwal. szybkiego zatrzy. | Nieaktywne (prawda) |

<table>
<thead>
<tr>
<th>Aktywne (fałsz)</th>
<th>Polecenie szybkiego zatrzymania jest włączone.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nieaktywne (prawda)</td>
<td>Polecenie szybkiego zatrzymania jest wyłączone.</td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>3</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>4</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>5</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>6</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>11</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>12</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz sekcja Wyrażenia i skróty na stronie 112).</td>
<td>-</td>
</tr>
<tr>
<td>20.211</td>
<td>Tryb szybkiego zatrzymania</td>
<td>Wybiera tryb funkcji szybkiego zatrzymania.</td>
</tr>
</tbody>
</table>

Rampa
Przemiennik częstotliwości zwalnia do prędkości zerowej zgodnie z określonym czasem rampy. Gdy przemiennik osiągnie prędkość zamykania hamulca, zamyka się hamulec mechaniczny.
1

Limit momentu
Przemiennik częstotliwości zwalnia do prędkości zerowej zgodnie z ograniczeniami momentu przemiennika. Gdy przemiennik osiągnie prędkość zamykania hamulca, zamyka się hamulec mechaniczny.
2

Hamulec mechaniczny
Ta funkcja wymusza zamknięcie hamulca mechanicznego.
3
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.212</td>
<td>Potwierdz. włączenia zasilania</td>
<td>Wybiera źródło aktywacji sygnału potwierdzenia włączonego zasilania. 1 = Obwód potwierdzenia włączonego zasilania jest zamknięty, główny stycznik jest zamknięty. 0 = Obwód potwierdzenia włączonego zasilania jest otwarty, główny stycznik jest otwarty, generowane jest ostrzeżenie D20B Potwierdzenie włączenia zasilania. Więcej informacji na temat tej funkcji zawiera sekcja Potwierdzenie włączenia zasilania na stronie 601.</td>
<td>Wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Funkcja potwierdzenia włączenia zasilania została wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>Funkcja potwierdzenia włączenia zasilania została włączona.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz sekcja Wyrażenia i skróty na stronie 112).</td>
<td>-</td>
</tr>
<tr>
<td>20.213</td>
<td>Opóźn. resetu powt. zasil.</td>
<td>Definiuje czas opóźnienia zresetowania błędu po aktywowaniu sygnału potwierdzenia włączenia zasilania.</td>
<td>1000 ms</td>
</tr>
<tr>
<td></td>
<td>0…30000 ms</td>
<td>Czas opóźnienia.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>20.214</td>
<td>Pozycja zerowa joysticka</td>
<td>Wybiera źródło aktywacji wejścia pozycji zerowej joysticka. 0 = Joystick nie jest w pozycji zerowej. 1 = Joystick jest w pozycji zerowej. Więcej informacji można znaleźć w sekcji Blokada start/stop na stronie 593.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
| Nr | Nazwa/wartość | Opis | Wartość domyślna
FbEq 16 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz sekcja Wyrażenia i skróty na stronie 112).</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>20.215</td>
<td>Opóźn. ostr. joysticka</td>
<td>Definiuje opóźnienie przed wygenerowaniem ostrzeżenia D208 Sprawdz. wart. zadanej joysticka. Ostrzeżenie jest generowane, gdy parametr 20.214 Pozycja zerowa joysticka jest aktywny, a wartość zadanej prędkości jest większa niż +/- 10% minimum lub maksimum użytej przeskalowanej wartości zadanej joysticka.</td>
<td>1000 ms</td>
</tr>
<tr>
<td>0… 30000 ms</td>
<td>Czas opóźnienia.</td>
<td></td>
<td>1 = 1 ms</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.216</td>
<td>Słowo sterowania 1 dźwigu</td>
<td>Pokazuje sygnały sterowania odbierane z wybranych źródeł. Ten parametr aktualizuje się w oparciu o wybór grup parametrów 53 FBA A: dane wyj.</td>
</tr>
</tbody>
</table>

Uwaga: Te bity nie są domyślnie połączone z żadnymi funkcjami. Istnieją już nazwy bitów, dla których należy nawiązać oddzielne połączenia.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start do przodu</td>
<td>1 = Polecenie startu w kierunku do przodu.</td>
</tr>
<tr>
<td>1</td>
<td>Start do tyłu</td>
<td>1 = Polecenie startu w kierunku do tyłu.</td>
</tr>
<tr>
<td>2</td>
<td>Resetowanie błędu</td>
<td>1 = Aktywacja resetu błędu.</td>
</tr>
<tr>
<td>3</td>
<td>Tryb krokowej w. zad.</td>
<td>1 = Włącza tryb krokowej wartości zadanej.</td>
</tr>
<tr>
<td>4</td>
<td>Wybór krok. w. zad.</td>
<td>1 = Włącz wskaźnik wyboru krokowej wartości zadanej 2.</td>
</tr>
<tr>
<td>5</td>
<td>Wybór krok. w. zad.</td>
<td>1 = Włącz wskaźnik wyboru krokowej wartości zadanej 3.</td>
</tr>
<tr>
<td>6</td>
<td>Wybór krok. w. zad.</td>
<td>1 = Włącz wskaźnik wyboru krokowej wartości zadanej 4.</td>
</tr>
<tr>
<td>7</td>
<td>Zwalnianie do przodu</td>
<td>1 = Dezaktywuję polecenie zwolnienia w kierunku do przodu.</td>
</tr>
<tr>
<td>8</td>
<td>Zwalnianie do tyłu</td>
<td>1 = Dezaktywuję polecenie zwalniania w kierunku do tyłu.</td>
</tr>
<tr>
<td>9</td>
<td>Limit zatrzym. do przodu</td>
<td>1 = Dezaktywuję polecenie limitu zatrzymania do przodu.</td>
</tr>
<tr>
<td>10</td>
<td>Limit zatrzym. do tyłu</td>
<td>1 = Dezaktywuję polecenie limitu zatrzymania do tyłu.</td>
</tr>
<tr>
<td>11</td>
<td>Szybkie zatrzymanie</td>
<td>1 = Aktywuję polecenie szybkiego zatrzymania.</td>
</tr>
<tr>
<td>12</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| Wartość domyślna FbEq 16 | 0000h |

| 0000h...FFFFh | Słowo sterowania 1 programu sterującego dźwigiem. |

21 Tryb start/stop

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.01</td>
<td>Tryb startu wektorowego</td>
<td>Wybiera funkcję startu silnika dla trybu wektorowego sterowania silnika, tzn. gdy parametr 99.04 Tryb sterowania silnikiem ma ustawioną wartość Wektorowy.</td>
</tr>
</tbody>
</table>

Uwagi:

- Funkcja startu dla trybu skalarnego sterowania silnikiem jest wybierana za pomocą parametru 21.19 Tryb startu skalarnego.
- Uruchomienie obracającego się silnika nie jest możliwe, jeśli wybrano magnesowanie DC (Szybkie lub Stały czas).
- W przypadku silników z magnesami trwałymi należy użyć trybu startu Automatyczny.
- Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony. Patrz także sekcja Magnesowanie DC na str. 78.

Szybkie

Przemiennik częstotliwości magnesuje wstępnie silnik przed uruchomieniem. Czas wstępnego magnesowania jest określany automatycznie i wynosi zazwyczaj od 200 ms do 2 s w zależności od rozmiaru silnika. Należy wybrać ten tryb, jeśli wymagany jest wysoki moment rozruchowy. 0

| Wartość domyślna FbEq 16 | Stały czas |

| 21 Tryb start/stop | Tryby startu i stopu; tryb zatrzymania awaryjnego oraz wybór źródła sygnału; ustawienia magnesowania DC. |
Stały czas

Przemiennik częstotliwości magnesuje wstępnie silnik przed uruchomieniem. Czas wstępnego magnesowania jest określony przez parametr 21.02 Czas magnesowania. Ten tryb należy wybrać, jeśli wymagany jest stały czas wstępnego magnesowania (np. jeśli start silnika musi być synchronizowany ze zwolnieniem hamulca mechanicznego). To ustawienie gwarantuje również najwyższy możliwy moment rozruchowy, gdy czas wstępnego magnesowania jest wystarczająco długi.

OSTRZEŻENIE! Przemiennik częstotliwości zostanie uruchomiony po upłynięciu ustawionego czasu magnesowania, nawet jeśli magnesowanie silnika nie zostało ukończone. W aplikacjach, w których pełny moment rozruchowy jest niezbędny, należy się upewnić, że stały czas magnesowania jest wystarczająco długi do wygenerowania pełnego namagnesowania momentu.

Automatyczny

Automatyczny start w większości przypadków gwarantuje optymalne uruchomienie silnika. Obejmuje on funkcję startu lotnego (uruchomienie obracającego się silnika) i funkcję automatycznego ponownego uruchomienia. Program sterowania silnikiem przemiennika częstotliwości identyfikuje strumień, jak również stan mechaniczny silnika i uruchamia silnik natychmiast w każdym warunkach. Uwaga: Jeśli parametr 99.04 Tryb sterowania silnikiem ma ustawioną wartość Skalarné, lotny start i automatyczne ponowne uruchomienie nie są domyślnie możliwe, chyba że parametr 21.19 Tryb startu skalarnego ma wartość Automatyczny.

21.02 Czas magnesowania

Definiuje czas magnesowania wstępnego, gdy:
• parametr 21.01 Tryb startu wektorowego ma ustawioną wartość Stały czas (w trybie wektorowego sterowania silnikiem) lub
• parametr 21.19 Tryb startu skalarnego ma ustawioną wartość Stały czas (w trybie skalarnego sterowania silnikiem).

Po poleceniu startu przemiennik częstotliwości automatycznie magnesuje wstępnie silnik przez określony czas. W celu zapewnienia pełnego namagnesowania należy ustawić tę wartość na taką samą lub wyższą jak stała czasu wirnika. Jeśli wartość ta nie jest znana, należy użyć orientacyjnej wartości podanej w poniższej tabeli:

<table>
<thead>
<tr>
<th>Znamionowa moc silnika</th>
<th>Stały czas namagnesowania</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 kW</td>
<td>> 50 do 100 ms</td>
</tr>
<tr>
<td>Od 1 do 10 kW</td>
<td>> 100 do 200 ms</td>
</tr>
<tr>
<td>Od 10 do 200 kW</td>
<td>> 200 do 1000 ms</td>
</tr>
<tr>
<td>Od 200 do 1000 kW</td>
<td>> 1000 do 2000 ms</td>
</tr>
</tbody>
</table>

Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.

<p>| Stały czas magnesowania DC. | 0…10000 ms | 1 = 1 ms |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.03</td>
<td>Tryb zatrzymania</td>
<td>Wybiera sposób zatrzymania silnika po otrzymaniu polecenia stopu. Dodatkowe hamowanie jest możliwe po wybraniu hamowania strumieniem (patrz parametr 97.05 Hamowanie strumieniem).</td>
<td>Rampa</td>
</tr>
<tr>
<td></td>
<td>Wybieg</td>
<td>Zatrzymanie przez wyłączenie półprzewodników wyjściowych przemiennika częstotliwości. Silnik zwalnia wybiegiem do zatrzymania. OSTRZEŻENIE! Jeśli używany jest hamulec mechaniczny, należy upewnić się, że zwalnianie wybiegiem do zatrzymania jest bezpieczne.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rampa</td>
<td>Zatrzymanie zgodnie z aktywną rampą zwalniania. Patrz grupa parametrów 23 Rampa wart. zad. prędkości lub 28 Łącuch w. zad. częstotliwości.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Limit momentu</td>
<td>Zatrzymanie zgodnie z limitami momentu (parametry 30.19 i 30.20). Ten tryb jest dostępny tylko w trybie wektorowego sterowania silnikiem.</td>
<td>2</td>
</tr>
<tr>
<td>21.04</td>
<td>Tryb zatrzymania awaryjnego</td>
<td>Wybiera sposób zatrzymania silnika po otrzymaniu polecenia awaryjnego zatrzymania. Źródło sygnału awaryjnego zatrzymania jest wybierane przez parametr 21.05 Źródło zatrzymania awar.</td>
<td>Zatrzymanie wg rampy (Off1)</td>
</tr>
</tbody>
</table>
| | **Zatrzymanie wg rampy (Off1)** | Gdy przemiennik częstotliwości jest uruchomiony:
| | | • 1 = Normalna praca.
| | | • 0 = Normalne zatrzymanie zgodnie ze standardową rampą zwalniania zdefiniowaną dla określonego typu wartości zadanej (patrz sekcja *Rampy wartości zadanej* na stronie 67). Po zatrzymaniu przemiennika częstotliwości można go uruchomić ponownie, usuwając sygnał zatrzymania awaryjnego i zmieniając sygnał startu z wartości 0 na 1. Gdy przemiennik częstotliwości jest zatrzymany:
| | | • 1 = Uruchamianie dozwolone.
| | | • 0 = Uruchamianie niedozwolone. | 0 |
| | **Zatrzymanie wybiegiem (Off2)** | Gdy przemiennik częstotliwości jest uruchomiony:
| | | • 1 = Normalna praca.
| | | • 0 = Zatrzymanie wybiegiem. Przemiennik częstotliwości można uruchomić ponownie, przywracając sygnał blokady uruchamiania i zmieniając sygnał startu z wartości 0 na 1. Gdy przemiennik częstotliwości jest zatrzymany:
| | | • 1 = Uruchamianie dozwolone.
| | | • 0 = Uruchamianie niedozwolone. | 1 |
| | **Awar. zatr. wg rampy (Off3)** | Gdy przemiennik częstotliwości jest uruchomiony:
| | | • 1 = Normalna praca.
| | | • 0 = Zatrzymanie zgodnie z rampą zatrzymania awaryjnego zdefiniowaną w parametrze 23.23 *Czas zatrz. awaryjnego*. Po zatrzymaniu przemiennika częstotliwości można go uruchomić ponownie, usuwając sygnał zatrzymania awaryjnego i zmieniając sygnał startu z wartości 0 na 1. Gdy przemiennik częstotliwości jest zatrzymany:
| | | • 1 = Uruchamianie dozwolone
| | | • 0 = Uruchamianie niedozwolone | 2 |
21.05 Źródło zatrzymania awar.

0 = Zatrzymanie awaryjne aktywne
1 = Normalna praca

Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.05</td>
<td>Źródło zatrzymania awar.</td>
<td>Wybiera źródło sygnału awaryjnego zatrzymania. Tryb stopu jest wybierany przez parametr 21.04 Tryb zatrzymania awaryjnego. 0 = Zatrzymanie awaryjne aktywne 1 = Normalna praca Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>Nieaktywne (prawda)</td>
</tr>
</tbody>
</table>

Aktywne (fałsz)
- 0.

Nieaktywne (prawda)
- 1.

<table>
<thead>
<tr>
<th>Wejście cyfrowe DI1</th>
<th>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wejście cyfrowe DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
</tr>
<tr>
<td>Wejście cyfrowe DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
</tr>
<tr>
<td>Wejście cyfrowe DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
</tr>
<tr>
<td>Wejście cyfrowe DIO1</td>
<td>Wejście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
</tr>
<tr>
<td>Wejście cyfrowe DIO2</td>
<td>Wejście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
</tr>
</tbody>
</table>

21.06 Limit prędkości zerowej

Definiuje limit prędkości zerowej. Silnik jest zatrzymywany zgodnie z rampą prędkości (gdy wybrano zatrzymanie zgodnie z rampą lub użyto czasu zatrzymania awaryjnego) do osiągnięcia zdefiniowanego limitu prędkości zerowej. Po opóźnieniu prędkości zerowej silnik zwalnia wybiegiem do zatrzymania.

<table>
<thead>
<tr>
<th>0.00…30000,00 obr./min</th>
<th>Limit prędkości zerowej.</th>
</tr>
</thead>
</table>

Przypisy:
Patrz parametr 46.01
Definiuje opóźnienie dla funkcji opóźnienia prędkości zerowej. Funkcja jest używana w aplikacjach, w przypadku których wymagane jest płynne i szybkie ponowne uruchomienie. Podczas opóźnienia przemiennik częstotliwości zna dokładną pozycję wirnika.

Bez opóźnienia prędkości zerowej:

Przemiennik częstotliwości otrzymuje polecenie stopu i hamuje zgodnie z rampą. Gdy rzeczywista prędkość silnika spada poniżej wartości parametru **21.06 Limit prędkości zerowej**, modulacja inwertera zostaje zatrzymana i silnik zwalnia do zatrzymania.

Wartość zadana

Kontroler prędkości wyłączony: silnik zwalnia do zatrzymania.

Z opóźnieniem prędkości zerowej:

Wartość zadana

Kontroler prędkości pozostaje aktywny. Silnik zmniejsza prędkość do rzeczywistej prędkości zerowej.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.07</td>
<td>Opóź. prędkości zerowej</td>
<td>Definiuje opóźnienie dla funkcji opóźnienia prędkości zerowej. Funkcja jest używana w aplikacjach, w przypadku których wymagane jest płynne i szybkie ponowne uruchomienie. Podczas opóźnienia przemiennik częstotliwości zna dokładną pozycję wirnika. Bez opóźnienia prędkości zerowej: Przemiennik częstotliwości otrzymuje polecenie stopu i hamuje zgodnie z rampą. Gdy rzeczywista prędkość silnika spada poniżej wartości parametru 21.06 Limit prędkości zerowej, modulacja inwertera zostaje zatrzymana i silnik zwalnia do zatrzymania. Wartość zadana Kontroler prędkości wyłączony: silnik zwalnia do zatrzymania.</td>
<td>0 ms</td>
</tr>
<tr>
<td>21.06</td>
<td>Limit prędkości zerowej</td>
<td>Z opóźnieniem prędkości zerowej: Przemiennik częstotliwości otrzymuje polecenie stopu i hamuje zgodnie z rampą. Gdy rzeczywista prędkość silnika spada poniżej wartości parametru 21.06 Limit prędkości zerowej, aktywuje się funkcja opóźnienia prędkości zerowej. Podczas opóźnienia funkcja podtrzymuje działanie kontrolera prędkości: inwerter moduluje, silnik jest magnesowany, a przemiennik częstotliwości jest przygotowany do szybkiego ponownego uruchomienia. Opóźnienie prędkości zerowej może być używane np. razem z funkcją biegu próbnego. Wartość zadana Kontroler prędkości pozostaje aktywny. Silnik zmniejsza prędkość do rzeczywistej prędkości zerowej.</td>
<td>Wartość zadana</td>
</tr>
</tbody>
</table>

| Czas | 0…30000 ms | Opóźnienie prędkości zerowej. | 1 = 1 ms |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.08</td>
<td>Sterowanie prędkim DC</td>
<td>Aktywuje/dezaktywuje funkcje trzymania DC i magnesowania dodatkowego. Patrz sekcja Magnesowanie DC na str. 78. Uwaga: Magnesowanie DC powoduje nagrzewanie silnika. W zastosowaniach, w których wymagane są długie czasy magnesowania DC, należy używać silników wentylowanych zewnętrznie. Jeśli okres magnesowania DC jest długi, magnesowanie DC nie może zapobiec obracaniu wału silnika, jeśli silnik ma stałe obciążenie.</td>
<td>00b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
<th>Opcje magnesowania DC.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.09</td>
<td>Prędkość trzymania DC</td>
<td>Definiuje trzymanie prędkości DC w trybie sterowania prędkością. Patrz parametr 21.08 Sterowanie prędkim DC i sekcja Trzymanie DC (strona 79).</td>
<td>5,00 obr./min</td>
</tr>
<tr>
<td>21.10</td>
<td>Wart. zadana prędu DC</td>
<td>Definiuje pręd trzymania DC jako procentową wartość prędu znamionowego silnika. Patrz parametr 21.08 Sterowanie prędkim DC i sekcja Magnesowanie DC (strona 78).</td>
<td>30,0%</td>
</tr>
<tr>
<td>21.11</td>
<td>Czas magnesowania dodat.</td>
<td>Definiuje czas, przez jaki magnesowanie dodatkowe jest aktywne po zatrzymaniu silnika. Pręd magnesowania jest określony przez parametr 21.10 Wart. zadana prędu DC. Patrz parametr 21.08 Sterowanie prędkim DC</td>
<td>0 s</td>
</tr>
</tbody>
</table>
| 21.14 | **Wybór źródła nagrz. wstępnego** | Wybiera źródło wyzwalania wstępnego nagrzewania silnika. Stan nagrzewania jest wyświetlany jako bit 2 parametru 06.21 *Stwórz stan 3*. **Uwagi:**
• Funkcja nagrzewania wymaga, aby funkcja STO nie była wywolana.
• Funkcja nagrzewania wymaga, aby przemiennik częstotliwości nie miał błędu.
• Nagrzewanie wstępe wymaga trzymania prędem DC do generowania prędu.
Wyl. | Wyb. | 0. Nagrzewanie wstępe jest zawsze dezaktywowane. | 0 |
<p>| | 1. Nagrzewanie wstępe jest zawsze aktywowane, gdy przemiennik częstotliwości zostanie zatrzymany. | 1 |
| | Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). | 2 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td>FbEq 16</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru (patrz str. 251).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru (patrz str. 251).</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru (patrz str. 251).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych (patrz strona 259).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych (patrz strona 259).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych (patrz strona 259).</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21.16</td>
<td>Prąd nagrzew. wstępnego</td>
<td>Definiuje prąd DC służący do nagrzewania silnika. Wartość to procentowa wartość prądu znamionowego silnika.</td>
<td>0,0%</td>
</tr>
<tr>
<td>0,0…30,0%</td>
<td>Prąd nagrzewania wstępnego.</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>21.18</td>
<td>Czas autom. restartowania</td>
<td>Silnik może zostać automatycznie uruchomiony po krótkim zaniku zasilania za pomocą funkcji automatycznego ponownego uruchomienia. Patrz sekcja Automatyczne restartowanie na str. 95. Gdy wartość tego parametru wynosi 0,0 sekund, automatyczne ponowne uruchamianie jest wyłączone. W przeciwnym razie parametr definiuje maksymalny okres braku zasilania, po którym dokonywana jest próba ponownego uruchomienia. Należy pamiętać, że ten czas obejmuje również opóźnienie wstępnego ładowania DC. OSTRZEŻENIE! Przed aktywacją funkcji należy się upewnić, że nie spowoduje to wystąpienia niebezpiecznych sytuacji. Funkcja automatycznie uruchamia ponownie przemiennik częstotliwości i kontynuuje działanie po przerwie w zasilaniu.</td>
<td>10,0 s</td>
</tr>
<tr>
<td>0,0 s</td>
<td>Automatyczne ponowne uruchamianie wyłączone.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0,1…10,0 s</td>
<td>Maksymalny okres braku zasilania.</td>
<td>1 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

21.19 Tryb startu skalarnego
Wybiera funkcję startu silnika dla trybu skalarnego sterowania silnikiem, tzn. gdy parametr 99.04 Tryb sterowania silnikiem ma ustawioną wartość Skalarny.

Uwagi:
- Funkcja startu dla trybu wektorowego sterowania silnikiem jest wybierana za pomocą parametru 21.01 Tryb startu wektorowego.
- W przypadku silników z magnesami trwałymi należy użyć trybu startu Automatyczny.
- Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.

Patrz także sekcja Magnesowanie DC na str. 78.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normalny</td>
<td>Natychmiastowy start z prędkością zerową.</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Stały czas</td>
<td>Przemiennik częstotliwości magnezuje wstępnie silnik przed uruchomieniem. Czas wstępnego magnesowania jest określony przez parametr 21.02 Czas magnesowania. Ten tryb należy wybrać, jeśli wymagany jest stały czas wstępnego magnesowania (np., jeśli start silnika musi być zsynchronizowany ze zwolnieniem hamulca mechanicznego). To ustawienie gwarantuje również najwyższy możliwy moment rozruchowy, gdy czas wstępnego magnesowania jest wystarczająco długi. OSTRZEŻENIE! Przemiennik częstotliwości zostanie uruchomiony po upływie ustawionego czasu magnesowania, nawet jeśli magnesowanie silnika nie zostało ukończone. W aplikacjach, w których pełny moment rozruchowy jest niezbędny, należy się upewnić, że stały czas magnesowania jest wystarczająco długi do wygenerowania pełnego namagnesowania i momentu. Uwaga: Tego trybu nie można używać do uruchamiania obracającego się silnika.</td>
<td>Stały czas</td>
</tr>
<tr>
<td>2</td>
<td>Automatyczny</td>
<td>Przemiennik częstotliwości automatycznie wybiera prawidłową częstotliwość wyjściową, aby uruchomić obracający się silnik. Jest to przydatne do lotnych startów: jeśli silnik już się obraca, przemiennik częstotliwości wystartuje płynnie przy bieżącej częstotliwości. Uwaga: Nie można używać w systemach z wieloma silnikami.</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Wzmocnienie momentu</td>
<td>Wzmocnienie momentu jest stosowane przy uruchamianiu i kończy się, gdy częstotliwość wyjściowa przekroczy 40% częstotliwości znamionowej lub osiągnie wartość zadaną.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Automatyczny podbiecie</td>
<td>Jeśli procedura lotnego startu nie wykryje obracającego się silnika, stosowane jest wzmocnienie momentu.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Częstotliwość trzymania DC</td>
<td>Definiuje częstotliwość trzymania prądem DC, która jest użytkowana zamiast parametru 21.09 Prędkość trzymania DC, gdy używanym trybem działania jest Tryb częstotliwości skalarny. Patrz parametry 19.01 Aktualny tryb pracy, 21.08 Sterowanie prądem DC i sekcja Trzymanie DC na stronie 79.</td>
<td>5,00 Hz</td>
</tr>
<tr>
<td>6</td>
<td>0,00…1000,00 Hz</td>
<td>Częstotliwość trzymania DC.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>21.22</td>
<td>Opóźnienie startu</td>
<td>Definiuje opóźnienie startu. Po spełnieniu warunków startu przemiennik częstotliwości czeka na upłynięcie czasu opóźnienia, a następnie uruchamia silnik. Podczas opóźnienia wyświetlone jest ostrzeżenie AFE9 Opóźnienie startu. Opóźnienie startu może być używane ze wszystkimi trybami startu.</td>
<td>0,00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…60,00 s Opóźnienie startu = 1 s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieaktywne Płynny start wyłączony</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zawsze włączone Funkcja płynnego startu jest zawsze aktywna, gdy prędkość jest poniżej limitu.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tylko start Funkcja płynnego startu jest aktywna po starcie tylko wtedy, gdy prędkość jest poniżej limitu.</td>
<td>2</td>
</tr>
<tr>
<td>21.24</td>
<td>Prąd płynnego startu</td>
<td>Prąd stosowany dla silnika, gdy funkcja płynnego startu jest włączona.</td>
<td>50,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10... 100%</td>
<td>1=1%</td>
</tr>
<tr>
<td>21.25</td>
<td>Prędkość płynnego startu</td>
<td>Określ prędkość funkcji płynnego startu, gdy prąd jest stosowany.</td>
<td>10,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2... 100%</td>
<td>1=1%</td>
</tr>
<tr>
<td>21.26</td>
<td>Prąd podbicia momentu</td>
<td>Definiuje maksymalny prąd dostarczany do silnika podczas trybu uruchamiania Wzmocnienie momentu. Wartość parametru to procentowa wartość prądu znamionowego silnika. Wartość znamionowa tego parametru to 100,0%. Tryb uruchamiania Wzmocnienie momentu może zostać użyty tylko wtedy, gdy używany jest tryb skalarnego sterowania silnikiem. Wzmocnienie momentu jest stosowane tylko przy uruchamianiu i kończy się, gdy częstotliwość wyjściowa przekroczy 40% częstotliwości znamionowej lub osiągnie wartość zadaną.</td>
<td>100,0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15... 300%</td>
<td>0,01 = 1%</td>
</tr>
<tr>
<td>21.30</td>
<td>Tryb zatr. z komp. prędk.</td>
<td>Wybiera metodę używaną do zatrzymywania przemiennika częstotliwości. Patrz także sekcja Zatrzymanie z kompensacją prędkości na str. 82. Zatrzymanie z kompensacją prędkości jest aktywne tylko, jeśli • tryb pracy to nie moment oraz • parametr 21.03 Tryb zatrzymania to Rampa lub • parametr 20.11 Tryb zatr. wyl. zezw. na bieg to Rampa (w przypadku ustawienia Brak zezwolenia na bieg).</td>
<td>Wyl.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyl. Zatrzymanie zgodnie z parametrem 21.03 Tryb zatrzypmana, bez zatrzymania z kompensacją prędkości.</td>
<td>0</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>21.31</td>
<td>Opózn. zatrz. z komp. prędk.</td>
<td>To opóźnienie dodaje odległość do całkowitej odległości przebytej podczas zatrzymania z maksymalnej prędkości. Ta wartość jest używana do zmiany odległości, aby była zgodna z wymaganiami i przebyta odległość nie zależała wyłącznie od współczynnika zwalniania.</td>
<td>0,00 s</td>
</tr>
<tr>
<td>21.32</td>
<td>Próg zatrz. z komp. prędk.</td>
<td>Ten parametr ustawia próg prędkości, poniżej którego funkcja zatrzymania z kompensacją prędkości jest wyłączana. W tym zakresie prędkości nie dokonuje się próby zatrzymania z kompensacją prędkości, a przemiennik częstotliwości zatrzymuje się w normalny sposób, używając opcji rampy.</td>
<td>0…100%</td>
</tr>
<tr>
<td>21.34</td>
<td>Wymuś aut. restart.</td>
<td>Wymusza automatyczne restartowanie. Ten parametr jest używany wyłącznie, jeśli parametr 95.04 Zasilanie karty sterowania ma ustawioną wartość Zewnętrzne 24 V.</td>
<td>Włącz</td>
</tr>
<tr>
<td></td>
<td>Wyłącz</td>
<td>Wymuś wyłączenie automatycznego restartowania. Parametr 21.18 Czas autom. restartowania działa, jeśli jego wartość jest większa niż 0,0 s.</td>
<td>Wyłącz</td>
</tr>
<tr>
<td></td>
<td>Włącz</td>
<td>Wymuś włączenie automatycznego restartowania. Parametr 21.18 Czas autom. restartowania jest ignorowany. Przemiennik częstotliwości nigdy nie wyłącza się awaryjnie się przy błędzie zbyt niskiego napięcia, a sygnał startowy pozostaje cały czas włączony.Po przywróceniu napięcia DC przywracana jest normalna praca.</td>
<td>Włącz</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>22</td>
<td>Wybór wart. zadanej prędkości</td>
<td>Wybór wartości zadanej prędkości; ustawienia potencjometru silnika.</td>
<td>Patrz schematy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patrz schematy łańcucha sterowania na stronach 548…552.</td>
<td></td>
</tr>
<tr>
<td>22.01</td>
<td>Nieogr. w.zad. prędk.</td>
<td>Wyświetla wyjście bloku wyboru wartości zadanej prędkości. Patrz schemat łańcucha sterowania na stronie 548. Ten parametr jest tylko do odczytu.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…</td>
<td>Wartość wybranej prędkości zadanej.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td></td>
<td>30000,00 obr./min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>

| Panel zintegrowany (zapisana wartość zadana) |

Wartość domyślna

<table>
<thead>
<tr>
<th>Zero</th>
<th>Brak.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skalowane AI1</td>
<td>12.12 Wartość skalowana AI1.</td>
<td>1</td>
</tr>
<tr>
<td>Skalowane AI2</td>
<td>12.22 Wartość skalowana AI2.</td>
<td>2</td>
</tr>
<tr>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A</td>
<td>4</td>
</tr>
<tr>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A</td>
<td>5</td>
</tr>
<tr>
<td>W. zad. EFB 1</td>
<td>03.09 Wart. zadana 1 EFB.</td>
<td>8</td>
</tr>
<tr>
<td>EFB — wartość zadana 2</td>
<td>03.10 Wart. zadana 2 EFB.</td>
<td>9</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Parametry silnika</td>
<td>22.80 Akt. w. zad. potenc. silnika (wyjście potencjometru silnika).</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
</tr>
<tr>
<td></td>
<td>Wejście częstotliwościowe 1</td>
<td>11.38 Wej. częst. 1: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
</tr>
<tr>
<td></td>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
</tr>
<tr>
<td></td>
<td>Panel sterowania (skopiowana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
</tr>
<tr>
<td></td>
<td>Panel zintegrowany (zapisana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana).</td>
</tr>
<tr>
<td></td>
<td>Panel zintegrowany (skopiowana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
</tr>
<tr>
<td></td>
<td>Wejście częstotliwościowe 2</td>
<td>11.46 Wej. częst. 2: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
</tr>
<tr>
<td></td>
<td>Dźwig MotPot</td>
<td>Wyjście potencjometru silnika dźwigu. Patrz 22.30 Akt. wart. zad. pot. siln. dźwigu.</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
</tr>
<tr>
<td></td>
<td>Zero</td>
<td>Brak.</td>
</tr>
<tr>
<td></td>
<td>AI1 skalowane</td>
<td>12.12 Wartość skalowana AI1.</td>
</tr>
<tr>
<td></td>
<td>AI2 skalowane</td>
<td>12.22 Wartość skalowana AI2.</td>
</tr>
<tr>
<td></td>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A.</td>
</tr>
<tr>
<td></td>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A.</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>190</td>
<td>EFB — wartość zadana 1</td>
<td>03.09 Wart. zadana 1 EFB.</td>
</tr>
<tr>
<td>191</td>
<td>EFB — wartość zadana 2</td>
<td>03.10 Wart. zadana 2 EFB.</td>
</tr>
<tr>
<td>192</td>
<td>Potencjometr silnika</td>
<td>22.80 Akt. w. zad. potencji. silnika (wyjście potencjometru silnika).</td>
</tr>
<tr>
<td>193</td>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
</tr>
<tr>
<td>194</td>
<td>Wejście częstotliwościowe 1</td>
<td>11.38 Wej. częst. 1: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
</tr>
<tr>
<td>195</td>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
</tr>
<tr>
<td>196</td>
<td>Panel sterowania (skopiowana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
</tr>
<tr>
<td>197</td>
<td>Panel zintegrowany (zapisana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana).</td>
</tr>
<tr>
<td>198</td>
<td>Panel zintegrowany (skopiowana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
</tr>
<tr>
<td>199</td>
<td>Wejście częstotliwościowe 2</td>
<td>11.46 Wej. częst. 2: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
</tr>
<tr>
<td>200</td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
</tr>
<tr>
<td>201</td>
<td>Funkcja pręd. Zew1</td>
<td>Wybiera funkcję matematyczną realizowaną pomiędzy źródłami wartości zadanej wybranymi za pomocą parametrów 22.11 W. zad. pręd. 1 Zew1 i 22.12 W. zad. pręd. 2 Zew1. Patrz wykres przy parametrze 22.11 W. zad. pręd. 1 Zew1.</td>
</tr>
<tr>
<td>202</td>
<td>Wartość zadana 1</td>
<td>Sygnał wybrany za pomocą parametru 22.11 W. zad. pręd. 1 Zew1 jest używany jako wartość zadana prędkości 1 (nie jest stosowana żadna funkcja).</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Dodaj (w. zad. 1 + w. zad. 2)</td>
<td>Suma źródeł wartości zadanej jest używana jako wartość zadana prędkości 1.</td>
</tr>
<tr>
<td></td>
<td>Odejmij (w. zad. 1 - w. zad. 2)</td>
<td>Różnica ([22.11 W. zad. pręd. 1 Zew1] - [22.12 W. zad. pręd. 2 Zew1]) źródło wartości zadanej jest używana jako wartość zadana prędkości 1.</td>
</tr>
<tr>
<td></td>
<td>Pomnóż (w. zad. 1 x w. zad. 2)</td>
<td>Iloczyn źródeł wartości zadanej jest używany jako wartość zadana prędkości 1.</td>
</tr>
<tr>
<td></td>
<td>Minimum (w. zad. 1, w. zad. 2)</td>
<td>Źródło o mniejszej wartości zadanej jest używane jako wartość zadana prędkości 1.</td>
</tr>
<tr>
<td></td>
<td>Maksimum (w. zad. 1, w. zad. 2)</td>
<td>Źródło o większej wartości zadanej jest używane jako wartość zadana prędkości 1.</td>
</tr>
<tr>
<td></td>
<td>Abs (w. zad. 1)</td>
<td>Wartość bezwzględna dla źródła wartości zadanej jest używana jako wartość zadana prędkości 1</td>
</tr>
<tr>
<td></td>
<td>Skalowane AI1</td>
<td>12.12 Wartość skalowana AI1.</td>
</tr>
<tr>
<td></td>
<td>Skalowane AI2</td>
<td>12.22 Wartość skalowana AI2.</td>
</tr>
<tr>
<td></td>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A.</td>
</tr>
<tr>
<td></td>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A.</td>
</tr>
<tr>
<td></td>
<td>W. zad. EFB 1</td>
<td>03.09 Wart. zadana 1 EFB.</td>
</tr>
<tr>
<td></td>
<td>EFB — wartość zadana 2</td>
<td>03.10 Wart. zadana 2 EFB.</td>
</tr>
<tr>
<td></td>
<td>Potencjometr silnika</td>
<td>22.19 Akt. w. zad. potencj. silnika (wyjście potencjometru silnika).</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
</tr>
<tr>
<td></td>
<td>Wejście częstotliwościowe 1</td>
<td>11.38 Wej. częst. 1: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
</tr>
<tr>
<td></td>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
</tr>
</tbody>
</table>

Dokument

![Diagram](image-url)
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel sterowania (skopiowana warto zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwości/prędkość/moment/PID). W przeciwym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Panel zintegrowany (zapisana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana).</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Panel zintegrowany (skopiowana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Wejście częstotliwościowe 2</td>
<td>11.46 Wej. częst. 2: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skrót).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1</td>
<td>Sygnał wybrany za pomocą parametru W. zad. prędk. 1 Zew2 jest używany jako wartość zadana prędkości 1 (nie jest stosowana żadna funkcja).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dodaj (w. zad. 1 + w. zad. 2)</td>
<td>Suma źródeł wartości zadanej jest używana jako wartość zadana prędkości 1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Odejmij (w. zad. 1 - w. zad. 2)</td>
<td>Różnica ([22.11 W. zad. prędk. 1 Zew1] - [22.12 W. zad. prędk. 2 Zew1]) źródło wartości zadanej jest używany jako wartość zadana prędkości 1.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pomnoż (w. zad. 1 x w. zad. 2)</td>
<td>Iloczyn źródeł wartości zadanej jest używany jako wartość zadana prędkości 1.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minimum (w. zad. 1, w. zad. 2)</td>
<td>Źródło o mniejszej wartości zadanej jest używane jako wartość zadana prędkości 1.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Maksimum (w. zad. 1, w. zad. 2)</td>
<td>Źródło o większej wartości zadanej jest używane jako wartość zadana prędkości 1.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abs (w. zad. 1)</td>
<td>Wartość bezwzględna dla źródeł wartości zadanej jest używana jako wartość zadana prędkości 1</td>
<td>6</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>22.21</td>
<td>Funkcja stałej prędkości</td>
<td>Określa sposób wyboru prędkości stałych oraz to, czy sygnał kierunku obrotu jest uwzględniany podczas stosowania nowej prędkości stałej.</td>
<td>1h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tryb stałej prędkości</td>
<td>1 = Spakowane: można wybrać 7 prędkości stałych, używając trzech źródeł zdefiniowanych za pomocą parametrów 22.22, 22.23 i 22.24. 0 = Oddzielone: prędkości stałe 1, 2 i 3 są aktywowane oddzielnie przez źródła zdefiniowane odpowiednio za pomocą parametrów 22.22, 22.23 i 22.24. W przypadku konfliktu priorytet ma stała prędkość z najniższym numerem.</td>
</tr>
<tr>
<td>1</td>
<td>Kierunek włączony</td>
<td>1 = Kierunek początkowy: W celu określenia kierunku obrotu dla stałej prędkości znak ustawienia stałej prędkości (parametry 22.26...22.32) jest mnożony przez sygnał kierunku (do przodu: +1, do tyłu: -1). Dzięki temu przemiennik częstotliwości może mieć 14 prędkości stałych (7 do przodu, 7 do tyłu), jeśli wszystkie wartości w parametrach 22.26...22.32 są dodatnie. OSTRZEŻENIE: Jeśli sygnał kierunku jest określony jako „do tyłu” i aktywna stała prędkość jest ujemna, przemiennik częstotliwości będzie działał w kierunku do przodu. 0 = Zgodnie z parametrem: kierunek obrotu dla stałej częstotliwości jest określany znakiem ustawienia stałej częstotliwości (parametry 28.26...28.32).</td>
</tr>
<tr>
<td>2</td>
<td>Krok prędkości</td>
<td>1 = włączenie kroku prędkości; 0 = wyłączenie kroku prędkości</td>
</tr>
<tr>
<td>3…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh | Słowo konfiguracji stałej prędkości. | 1 = 1 |

22.22 | Wybór stałej prędkości | Kiedy 0 parametru 22.21 Funkcja stałej prędkości przyjmuje wartość 0 (Osobne), wybiera źródło aktywujące stałą prędkość 1. Kiedy bit 0 parametru 22.21 Funkcja stałej prędkości przyjmuje wartość 1 (Spakowane), ten parametr oraz parametry 22.23 Wybór stałej prędkości 2 i 22.24 Wybór stałej prędkości 3 wybierają trzy źródła, których stany aktywują stałe prędkości w następujący sposób: |

<table>
<thead>
<tr>
<th>Źródło zdefiniowane przez parametr 22.22</th>
<th>Źródło zdefiniowane przez parametr 22.23</th>
<th>Źródło zdefiniowane przez parametr 22.24</th>
<th>Prędkość stała aktywna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Brak</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Prędkość stała 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Prędkość stała 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Prędkość stała 3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Prędkość stała 4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Prędkość stała 5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Prędkość stała 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Prędkość stała 7</td>
</tr>
</tbody>
</table>

Zawsze wyłączone | 0 (zawsze wyłączone). | 0 |
Zawsze włączone | 1 (zawsze włączone). | 1 |
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02) Stan DI po opóźnieniach, bit 0.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02) Stan DI po opóźnieniach, bit 1.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02) Stan DI po opóźnieniach, bit 2.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02) Stan DI po opóźnieniach, bit 3.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02) Stan DIO po opóźnieniach, bit 0.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02) Stan DIO po opóźnieniach, bit 0.</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

22.23 Wybór stałej prędkości 2

Kiedy bit 0 parametru 22.21 Funkcja stałej prędkości przyjmuje wartość 0 (Osobne), wybiera źródło aktywujące stałą prędkość 2.
Kiedy bit 0 parametru 22.21 Funkcja stałej prędkości przyjmuje wartość 1 (Spakowane), ten parametr oraz parametry 22.22 Wybór stałej prędkości 1 i 22.24 Wybór stałej prędkości 3 wybierają trzy źródła, które są używane do aktywowania stałych prędkości.
Dostępne opcje zawiera opis parametru 22.22 Wybór stałej prędkości 1.

22.24 Wybór stałej prędkości 3

Kiedy bit 0 parametru 22.21 Funkcja stałej prędkości przyjmuje wartość 0 (Osobne), wybiera źródło aktywujące stałą prędkość 3.
Kiedy bit 0 parametru 22.21 Funkcja stałej prędkości przyjmuje wartość 1 (Spakowane), ten parametr oraz parametry 22.22 Wybór stałej prędkości 1 i 22.23 Wybór stałej prędkości 2 wybierają trzy źródła, które są używane do aktywowania stałych prędkości. Patrz tabela w opisie parametru 22.22 Wybór stałej prędkości 1.
Dostępne opcje zawiera opis parametru 22.22 Wybór stałej prędkości 1.

22.26 Prędkość stała 1

Definiuje prędkość stałą 1 (prędkość, z jaką będzie obracał się silnik po wybraniu prędkości stałej 1).

-30000,00... 30000,00 obr./min

Prędkość stała 1.

Patrz parametr 46.01
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.27</td>
<td>Prędkość stała 2</td>
<td>Definiuje prędkość stałą 2.</td>
<td>600,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Prędkość stała 2.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.28</td>
<td>Prędkość stała 3</td>
<td>Definiuje prędkość stałą 3.</td>
<td>900,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Prędkość stała 3.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.29</td>
<td>Prędkość stała 4</td>
<td>Definiuje prędkość stałą 4.</td>
<td>1200,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Prędkość stała 4.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.30</td>
<td>Prędkość stała 5</td>
<td>Definiuje prędkość stałą 5.</td>
<td>1500,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Prędkość stała 5.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.31</td>
<td>Prędkość stała 6</td>
<td>Definiuje prędkość stałą 6.</td>
<td>2400,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Prędkość stała 6.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.32</td>
<td>Prędkość stała 7</td>
<td>Definiuje prędkość stałą 7.</td>
<td>3000,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Prędkość stała 7.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.41</td>
<td>Bezpieczna w. zad. prędk.</td>
<td>Definiuje wartość zadaną bezpiecznej prędkości używaną z funkcjami nadzoru, takimi jak:</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>12.03 Funkcja nadzoru AI</td>
<td>• 12.03 Funkcja nadzoru AI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.05 Reakcja na utratę komunik.</td>
<td>• 49.05 Reakcja na utratę komunik.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.02 FBA A: funkcja utr. komun.</td>
<td>• 50.02 FBA A: funkcja utr. komun.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Wartość zadana bezpiecznej prędkości.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.42</td>
<td>W. zad. biegu próbnego 1</td>
<td>Definiuje wartość zadaną prędkości dla funkcji biegu próbnego 1. Więcej informacji na temat biegu próbnego znajduje się na stronie 70.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Wartość zadana prędkości dla funkcji biegu próbnego 1.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.43</td>
<td>W. zad. biegu próbnego 2</td>
<td>Definiuje wartość zadaną prędkości dla funkcji biegu próbnego 2. Więcej informacji na temat biegu próbnego znajduje się na stronie 70.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Wartość zadana prędkości dla funkcji biegu próbnego 2.</td>
<td>Patrz parametr 46.01</td>
</tr>
</tbody>
</table>
22.51 Funkcja prędkości krytycznej

Włącza/wyłącza funkcję prędkości krytycznych. Określa również, czy zdefiniowane zakresy obowiązują w obu kierunkach obracania. Patrz także sekcja *Prędkości/częstotliwości krytyczne* na str. 68.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.51</td>
<td>Funkcja prędkości krytycznej</td>
<td>Włącza/wyłącza funkcję prędkości krytycznych. Określa również, czy zdefiniowane zakresy obowiązują w obu kierunkach obracania. Patrz także sekcja Prędkości/częstotliwości krytyczne na str. 68.</td>
<td>FbEq 16</td>
</tr>
</tbody>
</table>

Bity i Nazywa

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Włączone</td>
<td>1 = Włączone: prędkości krytyczne aktywne. 0 = Wyłączone: prędkości krytyczne nieaktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Tryb znaku</td>
<td>1 = Stosowanie znaków: znaki parametrów 22.52… 22.57 sąbrane pod uwagę. 0 = Bezwzględne: parametry 22.52… 22.57 są obsługiwane jako wartości bezwzględne. Każdy zakres obowiązuje w obu kierunkach obrotów.</td>
</tr>
<tr>
<td>2…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| Bit konfiguracji prędkości krytycznych. | 1 = 1 |

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.52</td>
<td>Prędkość krytyczna 1 niska</td>
<td>Definiuje dolny limit zakresu prędkości krytycznej 1. Uwaga: Ta wartość musi być mniejsza lub równa wartości parametru 22.53 Prędkość krytyczna 1 wys..</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…</td>
<td>Dolny limit prędkości krytycznej 1. Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000,00 obr./min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.53</td>
<td>Prędkość krytyczna 1 wys.</td>
<td>Definiuje górny limit zakresu prędkości krytycznej 1. Uwaga: Ta wartość musi być większa lub równa wartości parametru 22.52.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…</td>
<td>Górný limit prędkości krytycznej 1. Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000,00 obr./min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.54</td>
<td>Prędkość krytyczna 2 niska</td>
<td>Definiuje dolny limit zakresu prędkości krytycznej 2. Uwaga: Ta wartość musi być mniejsza lub równa wartości parametru 22.55.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…</td>
<td>Dolny limit prędkości krytycznej 2. Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000,00 obr./min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.55</td>
<td>Prędkość krytyczna 2 wys.</td>
<td>Definiuje górny limit zakresu prędkości krytycznej 2. Uwaga: Ta wartość musi być większa lub równa wartości parametru 22.54.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…</td>
<td>Górný limit prędkości krytycznej 2. Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000,00 obr./min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.56</td>
<td>Prędkość krytyczna 3 niska</td>
<td>Definiuje dolny limit zakresu prędkości krytycznej 3. Uwaga: Ta wartość musi być mniejsza lub równa wartości parametru 22.57.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00…</td>
<td>Dolny limit prędkości krytycznej 3. Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000,00 obr./min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.57</td>
<td>Prędkość krytyczna 3 wys.</td>
<td>Definiuje górny limit zakresu prędkości krytycznej 3. Uwaga: Ta wartość musi być większa lub równa wartości 22.56.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000,00… 30000,00 obr./min</td>
<td>Górnny limit prędkości krytycznej 3.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>22.71</td>
<td>Funkcja potencjom. silnika</td>
<td>Aktywuje i wybiera tryb potencjometru silnika. Patrz sekcja Dane wydajności sterowania prędkością w rozdziale Funkcje programu.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Potencjometr silnika jest nieaktywny i jego wartość jest ustawiona na 0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wl. (inicjowane przy wl. zasilania)</td>
<td>Po aktywacji potencjometru silnika przyjmuje najpierw wartość zdefiniowaną w parametrze 22.72. Wartość można następnie zmienić za pomocą źródeł zwiększających i zmniejszających wartość zdefiniowanych parametrami 22.73 i 22.74. Wyłączenie i włączenie zasilania przemiennika częstotliwości spowoduje zresetowanie potencjometru silnika do zdefiniowanej wartości początkowej (22.72).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Włączone (zawsze wznawiaj)</td>
<td>Jak w opcji Wl. (inicjowane przy wl. zasilania), ale wartość potencjometru silnika zostaje zachowana po przeprowadzeniu ponownego zasilenia przemiennika.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Włączony z inicjowaniem do wart. akt.</td>
<td>Gdy wybrane jest inne źródło wartości zadanej, wartość potencjometru silnika jest określana na podstawie tej wartości zadanej. Po zwróceniu wartości zadanej ze źródła do potencjometru silnika jego wartość można zmienić ponownie za pomocą źródeł zwiększających i zmniejszających wartość (zdefiniowanych w parametrach 22.73 i 22.74).</td>
<td></td>
</tr>
<tr>
<td>22.72</td>
<td>Wart. pocz. potencj. silnika</td>
<td>Definiuje wartość początkową (punkt startowy) dla potencjometru silnika. Patrz opcje parametru 22.71.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-32768,00… 32767,00</td>
<td>Wartość początkowa dla potencjometru silnika.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.73</td>
<td>Źródło górne potencj. silnika</td>
<td>Wybiera źródło sygnału zwiększenia wartości potencjometru silnika. 0 = Bez zmiany. 1 = Zwiększenie wartości potencjometru silnika. (Jeśli włączone są oba źródła zwiększające i zmniejszające wartość, wartość potencjometru nie zmieni się).</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 ([10.02 Stan DI po opóźnieniach], bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 ([10.02 Stan DI po opóźnieniach], bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 ([10.02 Stan DI po opóźnieniach], bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 ([10.02 Stan DI po opóźnieniach], bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 ([11.02 Stan DIO po opóźnieniach], bit 0).</td>
<td>10</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FbEq 16</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>22.74</td>
<td>Źródło dolne potencj. silnika</td>
<td>Wybiera źródło sygnału zmniejszenia wartości potencjometru silnika.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Bez zmiany.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Zmniejszenie wartości potencjometru silnika. (Jeśli włączone są oba źródła zwiększające i zmniejszające wartość, wartość potencjometru nie zmieni się).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dostępne opcje zawiera opis parametru 22.73.</td>
<td></td>
</tr>
<tr>
<td>22.75</td>
<td>Czas rampy potencj. silnika</td>
<td>Definiuje szybkość zmiany wartości potencjometru silnika.</td>
<td>40,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten parametr określa czas wymagany przez potencjometr silnika do zmiany z wartości minimalnej (parametr 22.76) do maksymalnej (parametr 22.77). Ta sama szybkość zmiany dotyczy obu kierunków.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0…3600,0 s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>22.76</td>
<td>Wartość min. potencj. silnika</td>
<td>Definiuje minimalną wartość potencjometru silnika.</td>
<td>-50,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli używany jest tryb wektorowy sterowania, należy zmienić wartość tego parametru.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimalna wartość potencjometru silnika.</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>-32768,00… 32767,00</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>22.77</td>
<td>Wart. maks potencj. silnika</td>
<td>Definiuje maksymalną wartość potencjometru silnika.</td>
<td>50,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli używany jest tryb wektorowy sterowania, należy zmienić wartość tego parametru.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maksymalna wartość potencjometru silnika.</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>-32768,00… 32767,00</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>22.80</td>
<td>Akt. w. zad. potencj. silnika</td>
<td>Wyświetla wyjście funkcji potencjometru silnika. (Potencjometr silnika jest konfigurowany za pomocą parametrów 22.71…22.74). Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wartość potencjometru silnika.</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>-32768,00… 32767,00</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>22.86</td>
<td>Akt. wart. zad. prędkości 6</td>
<td>Wyświetla wartość zadanej prędkości (Zew1 lub Zew2), która została wydana za pomocą parametru 19.11 Wybór Zew1/Zew2. Patrz wykres 22.11 W. zad. pręd. 1 Zew1 lub schemat łącznika sterowania na stronie 548. Ten parametr jest tylko do odczytu.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wartość zadanej prędkości po zastosowaniu wartości dodawanej 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-30000,00… 30000,00 obr./min</td>
<td>Wartość zadanej prędkości po zastosowaniu wartości dodawanej 2.</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| 22.87 | Akt. wart. zad. prędkości 7 | Wyświetla wartość zadaną prędkości przed zastosowaniem prędkości krytycznych. Patrz schemat łańcucha sterowania na stronie 548. Wartość jest otrzymywana z parametru 22.86 Akt. wart. zad. prędkości 6, chyba że zostanie zastąpiona przez:
• dowolną stałą prędkość,
• wartość zadaną biegu próbnego,
• Wartość zadaną parametru sterowanie sieciowe
• wartość zdaną panelu sterowania,
• wartość zadaną bezpiecznej prędkości. Ten parametr jest tylko do odczytu. | 0,00 obr./min |
<p>| | -30000,00... 30000,00 obr./min | Wartość zadaną prędkość przed zastosowaniem prędkości krytycznych. Patrz parametr 46.01 | |
| 22.211 | Kształt w. zad. prędkości | Definiuje kształt wartości zadanej prędkości. Patrz także sekcja Paraboliczna wartość zadana prędkości na str. 604. | Liniowe |
| Liniowe | Liniowa wartość zadana prędkości. | | 0 |
| Paraboliczna 1 | Wartość zadana prędkości X². | | 1 |
| Paraboliczna 2 | Wartość zadana prędkości X³. | | 2 |
| 22.220 | Włączenie pot. siln. dźwigu | Włącza lub wybiera źródło do aktywacji funkcji potencjometru silnika dźwigu. Patrz sekcja Potencjometr silnika dźwigu na str. 607. | Nie wybrano |
| | Nie wybrano | Funkcja potencjometru silnika dźwigu jest wyłączona. | 0 |
| | Wybrano | Funkcja potencjometru silnika dźwigu jest włączona. | 1 |
| | DI1 | Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). | 2 |
| | DI2 | Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). | 3 |
| | DI3 | Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). | 4 |
| | DI4 | Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3). | 5 |
| | DIO1 | Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0). | 10 |
| | DIO2 | Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0). | 11 |
| | Funkcja czasowa 1 | Bit 0 parametru 34.01 Stan funkcji czasowych. | 18 |
| | Funkcja czasowa 2 | Bit 1 parametru 34.01 Stan funkcji czasowych. | 19 |
| | Funkcja czasowa 3 | Bit 2 parametru 34.01 Stan funkcji czasowych. | 20 |
| | Nadzór 1 | Bit 0 parametru 32.01 Stan nadzoru. | 24 |
| | Nadzór 2 | Bit 1 parametru 32.01 Stan nadzoru. | 25 |
| | Nadzór 3 | Bit 2 parametru 32.01 Stan nadzoru. | 26 |
| | Nadzór 4 | Bit 3 parametru 32.01 Stan nadzoru. | 27 |
| | Nadzór 5 | Bit 4 parametru 32.01 Stan nadzoru. | 28 |
| | Nadzór 6 | Bit 5 parametru 32.01 Stan nadzoru. | 29 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz sekcja Wyrażenia i skróty na stronie 112).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22.223</td>
<td>Wyb. przysp. pot. siln. dźwigu</td>
<td>Wybiera źródło sygnału przyspieszenia potencjometru silnika dźwigu. Patrz sekcja Potencjometr silnika dźwigu na str. 607.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Bez zmiany.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>Zwiększa wartość potencjometru silnika w zależności od wybranego kierunku. Możliwy efekt można zobaczyć w parametrze 22.225 SW pot. siln. dźwigu, bity 3 i 4.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz sekcja Wyrażenia i skróty na stronie 112).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22.224</td>
<td>Min. prędk. pot. siln. dźwigu</td>
<td>Definiuje wartość początkową (punt startowy) dla potencjometru silnika przy starcie. Patrz sekcja Potencjometr silnika dźwigu na str. 607.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00...30 000</td>
<td>Prędkość minimalna.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.225</td>
<td>SW pot. siln. dźwigu</td>
<td>Słowo stanu potencjometru silnika dźwigu.</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Włączenie pot. siln. dźwigu</td>
<td>Stan funkcji potencjometru silnika dźwigu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Włączone potencjometr silnika dźwigu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Wyłączone potencjometr silnika dźwigu.</td>
</tr>
<tr>
<td>1...2</td>
<td>Zarezerwowano</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Żr. góme pot. siln. dźwigu</td>
<td>Służy jako źródło dla czterech wejść potencjometru silnika w celu zwiększenia wartości wyjściowej.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Potencjometr silnika dźwigu ze zwiększona wartością zadaną wyjścia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Potencjometr silnika dźwigu bez zwiększonej wartości zadanej wyjścia.</td>
</tr>
<tr>
<td>4</td>
<td>Żr. dolne pot. siln. dźwigu</td>
<td>Służy jako źródło dla czterech wejść potencjometru silnika w celu zmniejszenia wartości wyjściowej.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Potencjometr silnika dźwigu ze zmniejszoną wartością zadaną wyjścia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Potencjometr silnika dźwigu bez zmniejszonej wartości zadanej wyjścia.</td>
</tr>
<tr>
<td>5...15</td>
<td>Zarezerwowano</td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh	Słowo stanu.	1 = 1	
22.226	Min. wart. pot. siln. dźwigu	Definiuje minimalną wartość potencjometru silnika dźwigu.	-50,00
30000,00...30000,00	Wartość minimalna	1=1	
22.227	Maks. wart. pot. siln. dźwigu	Definiuje maksymalną wartość potencjometru silnika dźwigu.	50,00
30000,00...30000,00	Wartość maksimalna	1 = 1	
22.230	Akt. wart. zad. pot. siln. dźwigu	Wyświetla wyjście funkcji potencjometru silnika.	0,00
30000,00...30000,00		1 = 1	

23 Rampa wart. zad. prędkości

Ustawienia rampy wartości zadanej prędkości (programowanie czasu przyspieszania i zwalniania przemiennika częstotliwości).
Patrz schemat łańcucha sterowania na stronie 550.

23.01 W. zad. prędk. przed ramp.

Wyświetla użytą wartość zadanej prędkości (w obr./min) przed wejściem w funkcje określania rampy i kształtu.
Patrz schemat łańcucha sterowania na stronie 550.
Ten parametr jest tylko do odczytu.

<p>| -30000,00...30000,00 obr./min | Wartość zadana prędkości przed określaniem rampy i kształtu. | Patrz parametr 46.01 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.02</td>
<td>W. zad. prędk. po ramp.</td>
<td>Wyświetla wartość zadaną prędkości po określaniu rampy i kształtu w obr./min. Patrz schemat łańcucha sterowania na stronie 550. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Wartość zadana prędkości po określaniu rampy i kształtu. Patrz parametr 46.01</td>
<td></td>
</tr>
<tr>
<td>23.11</td>
<td>Wybór zestawu ramp</td>
<td>Wybiera źródło przełączania między dwoma zestawami czasów przyspieszenia/zwalniania zdefiniowanymi przez parametry 23.12…23.15 0 = Czas przyspieszenia 1 i czas zwalniania 1 są aktywne 1 = Czas przyspieszenia 2 i czas zwalniania 2 są aktywne Wartość domyślna to DIO1.</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td></td>
<td>Czas przsp./zwaln. 1</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Czas przsp./zwaln. 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>FBA A</td>
<td>Tylko dla profili Transparentny 16 lub Transparentny 32. Bit słowa sterowania profilu Transparentny 16 lub Transparentny 32 odebrany przez interfejs magistrali komunikacyjnej A.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>EFB DCU CW bit 10</td>
<td>Tylko dla profilu DCU. Bit 10 słowa sterowania DCU odebrany przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>23.12</td>
<td>Czas przyspieszenia 1</td>
<td>Definiuje czas przyspieszenia 1 jako czas wymagany, aby prędkość zmieniła wartość od zera do prędkości określonej za pomocą parametru 46.01 Skalowanie prędkości (nie do parametru 30.12 Maks. prędkość). Jeśli wartość zadana prędkości zwiększa się szybciej niż ustawiony współczynnik przyspieszenia, prędkość silnika będzie podążać za współczynnikiem przyspieszenia. Jeśli wartość zadana prędkości zwiększa się wolniej niż ustawiony współczynnik przyspieszenia, prędkość silnika będzie podążać za wartością zadaną. Jeśli ustawiono zbyt krótki czas przyspieszenia, przemienik częstotliwości automatycznie wydłuży przyspieszenie, aby nie przekroczyć limitów momentu przemiennika częstotliwości.</td>
<td>3,000 s</td>
</tr>
<tr>
<td></td>
<td>0,000…1800,000 s</td>
<td>Czas przyspieszenia 1.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>23.13</td>
<td>Czas zwalniania 1</td>
<td>Definiuje czas zwalniania 1 jako czas wymagany, aby prędkość zmieniła wartość od prędkości określonej za pomocą parametr (46.01 \text{ Skalowanie prędkości}) (nie do parametr (30.12 \text{ Maks. prędkość})) do zera. Jeśli wartość zadana prędkości zmniejsza się wolniej niż ustawiony współczynnik zwalniania, prędkość silnika będzie podążać za wartością zadaną. Jeśli wartość zadana zmienia się szybciej niż ustawiony współczynnik zwalniania, prędkość silnika będzie podążać za współczynnikiem zwalniania. Jeśli ustawiono zbyt niski współczynnik zwalniania, przemiennik częstotliwości automatycznie wydłuży zwalnianie, aby nie zostały przekroczone limity momentu przemiennika częstotliwości (i nie zostało przekroczone bezpieczne napiecie łącza DC). Jeśli istnieją jakiekolwiek wątpliwości dotyczące zbyt krótkiego czasu zwalniania, należy upewnić się, czy włączona jest kontrola przepięć DC (parametr (30.30 \text{ Kontrola przepięć})). Uwaga: Jeśli krótki czas zwalniania jest wymagany przez aplikacje o dużej bezwładności, przemiennik częstotliwości powinien być wyposażony w takie elementy hamowania jak czoper hamowania i rezystor hamowania.</td>
<td>3,000 s</td>
</tr>
<tr>
<td>23.14</td>
<td>Czas przyspieszenia 2</td>
<td>Definiuje czas przyspieszenia 2. Patrz parametr (23.12 \text{ Czas przyspieszenia 1}).</td>
<td>60,000 s</td>
</tr>
<tr>
<td>23.15</td>
<td>Czas zwalniania 2</td>
<td>Definiuje czas zwalniania 2. Patrz parametr (23.13 \text{ Czas zwalniania 1}).</td>
<td>60,000 s</td>
</tr>
<tr>
<td>23.20</td>
<td>Czas przysp. dla biegu prób.</td>
<td>Definiuje czas przyspieszenia dla funkcji biegu próbnego, tzn. czas wymagany, aby prędkość zmieniła wartość od zera do prędkości określonej za pomocą parametr (46.01 \text{ Skalowanie prędkości}). Patrz sekcja (\text{Kontrola nagłego przyspieszenia}) na str. 70.</td>
<td>60,000 s</td>
</tr>
<tr>
<td>23.21</td>
<td>Czas zwaln. dla biegu prób.</td>
<td>Definiuje czas zwalniania dla funkcji biegu próbnego, tzn. czas wymagany, aby prędkość zmieniła wartość od prędkości określonej za pomocą parametr (46.01 \text{ Skalowanie prędkości}) do zera. Patrz sekcja (\text{Kontrola nagłego przyspieszenia}) na str. 70.</td>
<td>60,000 s</td>
</tr>
</tbody>
</table>

<p>| 0,000…1800,000 s | Czas zwalniania 1. | 10 = 1 s |
| 0,000…1800,000 s | Czas przyspieszenia 2. | 10 = 1 s |
| 0,000…1800,000 s | Czas zwalniania 2. | 10 = 1 s |
| 0,000…1800,000 s | Czas przyspieszenia na potrzeby biegu próbnego. | 10 = 1 s |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
</table>
| 23.23| Czas zatrzymania awaryjnego | Definiuje czas, w którym przemiennik częstotliwości zostaje zatrzymany po aktywacji zatrzymania awaryjnego Off3 (tzn. czas wymagany, aby prędkość zmieniła wartość od prędkości określonej za pomocą parametru 46.01 Skalowanie prędkości lub 46.02 Skalowanie częstotliwości do zera). Tryb zatrzymania awaryjnego oraz źródło aktywacji są wybierane odpowiednio za pomocą parametrów 21.04 Tryb zatrzymania awaryjnego i 21.05 Źródło zatrzymania awaryjne. Zatrzymanie awaryjne można również aktywować przez magistralę komunikacyjną. Uwaga:
• Zatrzymanie awaryjne Off1 wykorzystuje standardową rampę zwalniania zdefiniowaną przez parametry 23.11…23.15.
• Ta sama wartość parametru jest używana również w trybie sterowania częstotliwością (parametry rampy 28.71…28.75). | 3,000 s |
| | | ---| |
| 0,000…1800,000 s | Czas zwalniania dla zatrzymania awaryjnego Off3. | 10 = 1 s | |
| 23.28 | Zmienne nachylenie włączone | Aktywuje funkcję zmiennego nachylania, która kontroluje nachylenie rampy prędkości podczas zmiany wartości zadanej prędkości. Pozwala to na wygenerowanie stałe zmiennego wskaźnika rampy zamiast generowania dwóch standardowych ramp, które są zazwyczaj dostępne. Jeśli odstęp aktualizacji sygnału z zewnętrznego systemu sterującego oraz współczynnik zmiennego nachylenia (23.32 Tempo zmiennego nachyl.) są równe, wartość zadana prędkości (23.02 W. zad. prędk. po ramp.) jest linią prostą. Typ zmiennego nachylania dostępne są: Wybierz WYŁ, ZMIANY NACHYLENIE: WŁ. |
| | | ---| Wyl. |
| | | ---| |
| | | Wybierz WYŁ, ZMIANY NACHYLENIE: WŁ. | |

![Diagram](attachment:diagram.png)

- t = odstęp aktualizacji sygnału z zewnętrznego systemu sterującego
- A = zmiana wartości zadanej prędkości podczas t

Ta funkcja jest aktywna tylko przy sterowaniu zdalnym.

<table>
<thead>
<tr>
<th>WTy</th>
<th>Zmienne nachylenie wył. 0</th>
<th>Zmienne nachylenie włączone (niedostępne przy sterowaniu lokalnym).</th>
<th>1</th>
</tr>
</thead>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.29</td>
<td>Tempo zmiennego nachyl.</td>
<td>Definiuje współczynnik zmiany wartości zadanej prędkości, gdy zmiennie nachylenie jest włączone za pomocą parametru 23.28 Zmienne nachylenie wł. W celu osiągnięcia najlepszych wyników należy wprowadzić w tym parametrze okres aktualizacji wartości zadanej.</td>
<td>50 ms</td>
</tr>
<tr>
<td></td>
<td>2…30000 ms</td>
<td>Współczynnik zmiennego nachylenia.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>23.32</td>
<td>Czas kształtu 1</td>
<td>Definiuje kształt ramp przyspieszania i zwalniania używanych z zestawem 1. 0,000 s: Rampa liniowa. Ustawienie przystosowane do stałego przyspieszenia lub zwalniania oraz wolnych ramp. 0,001…1000,000 s: Rampa z krzywą typu S. Rampy z krzywą typu S idealnie nadają się do aplikacji związanych z podnoszeniem. Krzywa typu S składa się z symetrycznych krzywych na obu końcach rampy oraz części liniowej pośrodku. Przyspieszenie:</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa liniowa: Wartość zadana 23.32 = 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa z krzywą typu S: Wartość zadana 23.32 > 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Czas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa liniowa: Wartość zadana 23.32 = 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa z krzywą typu S: Wartość zadana 23.32 > 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zwalnianie:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa liniowa: Wartość zadana 23.32 = 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa z krzywą typu S: Wartość zadana 23.32 > 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Czas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa liniowa: Wartość zadana 23.32 = 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rampa z krzywą typu S: Wartość zadana 23.32 > 0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,100…1800,000 s Kształt rampy na początku i końcu zwalniania i przyspieszania.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>23.33</td>
<td>Czas kształtu 2</td>
<td>Definiuje kształt ramp przyspieszania i zwalniania używanych z zestawem 2. Patrz parametr 23.32 Czas kształtu 1.</td>
<td>0,100 s</td>
</tr>
<tr>
<td></td>
<td>0,100…1800,000 s</td>
<td>Kształt rampy na początku i końcu zwalniania i przyspieszania.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>23.201</td>
<td>Czas przys. 1 pot. siln. dźwigu</td>
<td>(Widoczne tylko wtedy, gdy wybrano parametr 22.220) Definiuje czas przyspieszania 1 jako czas wymagany, aby prędkość zmieniła wartość od zera do prędkości określonej za pomocą parametru 46.01 Skalowanie prędkości (nie do parametru 30.12 Maks. prędkość).</td>
<td>40,000 s</td>
</tr>
<tr>
<td></td>
<td>0,00…3600,000 s</td>
<td>Czas przyspieszenia 1.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>23.202</td>
<td>Czas zwaln. 1 pot. siln. dźwigu</td>
<td>(Widoczne tylko wtedy, gdy wybrano parametr 22.220) Definiuje czas zwalniania 1 jako czas wymagany, aby prędkość zmieniła wartość od prędkości określonej za pomocą parametru 46.01 Skalowanie prędkości (nie do parametru 30.12 Maks. prędkość) do zera.</td>
<td>40,000 s</td>
</tr>
<tr>
<td></td>
<td>0,00…3600,000 s</td>
<td>Czas zwalniania 1.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>23.206</td>
<td>Czas zwal. szybkiego zatrz.</td>
<td>Określa czas, w którym przemiennik częstotliwości zatrzyma się, jeśli otrzyma polecenie szybkiego zatrzymania (20.210 Wej. szybkiego zatrzymania).</td>
<td>0,500 s</td>
</tr>
<tr>
<td></td>
<td>0,00…3000,000 s</td>
<td>Czas zwalniania przy szybkim zatrzymaniu.</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

24 Warunkowa w. zad. prędkości

Obliczenia błędu prędkości; konfiguracja sterowania oknem błędu prędkości; krok błędu prędkości. Patrz schemat łącucha sterowania na stronie 548.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Patrz parametr</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.01</td>
<td>Użyta wart. zad. prędkości</td>
<td>Wyświetla wartość zadaną prędkość z określoną rampą i skorygowaną (przed obliczeniem błędu prędkości). Patrz schemat łącucha sterowania na stronie 548. Ten parametr jest tylko do odczytu.</td>
<td>46.01</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Wartość zadaną prędkość używana do obliczeń błędu prędkości.</td>
<td>46.01</td>
</tr>
<tr>
<td>24.02</td>
<td>Użyte sprz. zwr. od prędkości</td>
<td>Wyświetla sprzężenie zwrotne prędkości używane do obliczeń błędu prędkości. Patrz schemat łącucha sterowania na stronie 548. Ten parametr jest tylko do odczytu.</td>
<td>46.01</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 obr./min</td>
<td>Sprzężenie zwrotne prędkości używane do obliczeń błędu prędkości.</td>
<td>46.01</td>
</tr>
<tr>
<td>24.03</td>
<td>Filtrowany błąd prędkości</td>
<td>Wyświetla filtrowany błąd prędkości. Patrz schemat łącucha sterowania na stronie 548. Ten parametr jest tylko do odczytu.</td>
<td>46.01</td>
</tr>
<tr>
<td></td>
<td>-30000,0…30000,0 obr./min</td>
<td>Filtrowany błąd prędkości.</td>
<td>46.01</td>
</tr>
<tr>
<td>24.04</td>
<td>Odwrócony błąd prędkości</td>
<td>Wyświetla odwrócony (niefiltrowany) błąd prędkości. Patrz schemat łącucha sterowania na stronie 548. Ten parametr jest tylko do odczytu.</td>
<td>46.01</td>
</tr>
<tr>
<td></td>
<td>-30000,0…30000,0 obr./min</td>
<td>Odwrócony błąd prędkości.</td>
<td>46.01</td>
</tr>
</tbody>
</table>
24.11 Korekcja prędkości

Definiuje korekcję wartości zadanej prędkości, tzn. wartość dodawaną do istniejącej wartości zadanej pomiędzy rampą i ograniczeniem. Jest to przydatne do dostrojenia prędkości w razie potrzeby, na przykład aby dostosować ciągnięcie pomiędzy sekcjami maszyny papierniczej. Patrz schemat łańcucha sterowania na stronie 548.

<table>
<thead>
<tr>
<th>Wartość domyślna</th>
<th>0,00 obr./min</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Przestawienie</th>
<th>-10000,00…10000,00 obr./min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opis</td>
<td>Korekta wartości zadanej prędkości.</td>
</tr>
</tbody>
</table>

24.12 Czas filtr. błędu prędk.

<table>
<thead>
<tr>
<th>Wartość</th>
<th>0 ms</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Przestawienie</th>
<th>0…10000 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opis</td>
<td>Stała czasu filtrowania błędu prędkości. 0 = filtrowanie wyłączone.</td>
</tr>
</tbody>
</table>

25 Sterowanie prędkością

Ustawienia kontrolera prędkości. Patrz schemat łańcucha sterowania na stronie 552.

25.01 W. zad. momentu ster. prędk.

Wyświetla wartości wyjściowe kontrolera prędkości, które są przekazywane do kontrolera momentu. Patrz schemat łańcucha sterowania na stronie 552. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Przestawienie</th>
<th>-1600,0…1600,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opis</td>
<td>Moment wyjściowy kontrolera ograniczonej prędkości.</td>
</tr>
</tbody>
</table>

| Patrz parametr | 46.03 |

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.11</td>
<td>Korekcja prędkości</td>
<td>Definiuje korekcję wartości zadanej prędkości, tzn. wartość dodawaną do istniejącej wartości zadanej pomiędzy rampą i ograniczeniem. Jest to przydatne do dostrojenia prędkości w razie potrzeby, na przykład aby dostosować ciągnięcie pomiędzy sekcjami maszyny papierniczej. Patrz schemat łańcucha sterowania na stronie 548.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td>24.12</td>
<td>Czas filtr. błędu prędk.</td>
<td>Definiuje stałą czasu filtru dolnoprzepustowego błędu prędkości. Jeśli używana wartość zadana prędkości zmienia się szybko, ewentualne zakłócenia pomiarów prędkości można odfiltrować za pomocą filtru błędu prędkości. Ograniczenie falowania za pomocą tego filtra może spowodować problemy z dostosowaniem kontrolera prędkości. Długa stała czasu filtrowania i szybki czas przyspieszenia są sprzeczne. Bardzo długi czas filtrowania powoduje niesprawne sterowanie.</td>
<td>0 ms</td>
</tr>
<tr>
<td>25</td>
<td>Sterowanie prędkością</td>
<td>Ustawienia kontrolera prędkości. Patrz schemat łańcucha sterowania na stronie 552.</td>
<td></td>
</tr>
<tr>
<td>25.01</td>
<td>W. zad. momentu ster. prędk.</td>
<td>Wyświetla wartości wyjściowe kontrolera prędkości, które są przekazywane do kontrolera momentu. Patrz schemat łańcucha sterowania na stronie 552. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>25.01</td>
<td>Moment wyjściowy kontrolera ograniczonej prędkości.</td>
<td></td>
<td>Patrz parametr 46.03</td>
</tr>
</tbody>
</table>
Definiuje proporcjonalny przyrost \((K_p)\) wartości kontrolera prędkości. Zbyt wysoki przyrost może spowodować oscylację prędkości. Poniższy rysunek przedstawia wyjście kontrolera prędkości po wystąpieniu kroku błędu, gdy błąd pozostaje stały.

Jeśli przyrost jest ustawiony na 1, 10% zmiana w wartości błędu (wartość zadana − wartość aktualna) powoduje zmianę wyjścia kontrolera prędkości o 10%, tzn. wartość wyjściowa to wejście \(\times\) przyrost.
Definiuje czas całkowania kontrolera prędkości. Czas całkowania definiuje współczynnik, według którego wyjście kontrolera zmienia się, gdy wartość błędu jest stała, proporcjonalny przyrost kontrolera prędkości wynosi 1. Im krótszy czas całkowania, tym szybciej poprawiana jest ciągła wartość błędu. Ta stała czasowa musi być ustalona w tym samym rzędzie wielkości co stała czasowa (czas reakcji) sterowanego systemu mechanicznego. Niedopelnienie tego warunku może spowodować niestabilność systemu.

Ustawienie czasu całkowania na zero wyłącza część całkującą kontrolera. Jest to przydatne podczas dostrajania przyrostu proporcjonalnego. Najpierw należy dostosować przyrost proporcjonalny, a następnie przywrócić czas całkowania.

System zabezpieczający przed nadmiernym wzrostem zatrzymuje moduł całkujący (który całkuje do wartości 100%), jeśli wyjście kontrolera jest ograniczone. Patrz parametr 06.05 Słowo limitu 1.

Poniższy rysunek przedstawia wyjście kontrolera prędkości po wystąpieniu kroku błędu, gdy błąd pozostaje stały.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.03</td>
<td>Czas całkowania</td>
<td>Definiuje czas całkowania kontrolera prędkości. Czas całkowania definiuje współczynnik, według którego wyjście kontrolera zmienia się, gdy wartość błędu jest stała, proporcjonalny przyrost kontrolera prędkości wynosi 1. Im krótszy czas całkowania, tym szybciej poprawiana jest ciągła wartość błędu. Ta stała czasowa musi być ustalona w tym samym rzędzie wielkości co stała czasowa (czas reakcji) sterowanego systemu mechanicznego. Niedopelnienie tego warunku może spowodować niestabilność systemu. Ustawienie czasu całkowania na zero wyłącza część całkującą kontrolera. Jest to przydatne podczas dostrajania przyrostu proporcjonalnego. Najpierw należy dostosować przyrost proporcjonalny, a następnie przywrócić czas całkowania. System zabezpieczający przed nadmiernym wzrostem zatrzymuje moduł całkujący (który całkuje do wartości 100%), jeśli wyjście kontrolera jest ograniczone. Patrz parametr 06.05 Słowo limitu 1. Poniższy rysunek przedstawia wyjście kontrolera prędkości po wystąpieniu kroku błędu, gdy błąd pozostaje stały.</td>
<td>2,50 s</td>
</tr>
</tbody>
</table>

0,00…1000,00 s Czas całkowania dla kontrolera prędkości. 10 = 1 s
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.04</td>
<td>Czas różniczkowania prędk.</td>
<td>Definiuje czas różniczkowania kontrolera prędkości. Opcje różniczkowania zwiększa wartość wyjściową kontrolera, jeśli wartość błędu zmienia się. Im dłuższy czas różniczkowania, tym bardziej zwiększana jest wartość wyjściowa kontrolera prędkości podczas zmiany. Jeśli czas różniczkowania jest ustawiony na zero, kontroler działa jako regulator PI. W przeciwnym razie działa jako regulator PID. Różniczkowanie sprawia, że kontroler lepiej reaguje na zakłócenia. W prostych aplikacjach (zazwyczaj bez enkodera impulsowego) czas różniczkowania nie jest zazwyczaj wymagany i należy pozostawić wartość zero. Różniczkowanie błędu prędkości musi być filtrowane za pomocą filtra dolnoprzepustowego, aby wyeliminować zakłócenia. Poniższy rysunek przedstawia wyjście kontrolera prędkości po wystąpieniu kroku błędu, gdy błąd pozostaje stały.</td>
<td>0,000 s</td>
</tr>
</tbody>
</table>

![Diagram](image.png)

Przyrost = $K_p = 1$
$T_I = czas całkowania > 0$
$T_D = czas różniczkowania > 0$
$T_s = okres czasu próbkowania = 250 µs$
$\Delta e = zmiana wartości błędu pomiędzy dwoma próbками$

<table>
<thead>
<tr>
<th>0,000…10,000 s</th>
<th>Czas różniczkowania dla kontrolera prędkości.</th>
<th>1000 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.05</td>
<td>Czas filtru różniczkowania</td>
<td>Definiuje stałą czasu filtrowania różniczkowania. Patrz parametr 25.04 Czas różniczkowania prędk.</td>
</tr>
<tr>
<td>0…10000 ms</td>
<td>Stała czasu filtrowania różniczkowania.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>25.06</td>
<td>Czas różnicz. komp. przysp.</td>
<td>Definiuje czas różniczkowania dla kompensacji przyspieszania/zwalniania. W celu kompensacji obciążenia o dużej bezwładności podczas przyspieszania różnica wartości zadanej jest dodawana do wyjścia kontrolera prędkości. Zasada działania operacji różniczkowania jest opisana w parametrze 25.04 Czas różniczkowania prędk.</td>
</tr>
<tr>
<td>25.07</td>
<td>Czas filtr. komp. przysp</td>
<td>Definiuje stałą czasu filtrowania kompensacji przyspieszania lub zwalniania. Patrz parametry 25.04 Czas różniczkowania prędk. i 25.06 Czas różnicz. komp. przysp..</td>
</tr>
<tr>
<td>25.15</td>
<td>Wzmoc. prop. stopu bezp.</td>
<td>Definiuje proporcjonalny przyrost dla kontrolera prędkości, gdy aktywne jest zatrzymanie awaryjne. Patrz parametr 25.02 Proporc. wzmocnienie prędk..</td>
</tr>
</tbody>
</table>

Brak kompensacji przyspieszania:

![Brak kompensacji przyspieszania]

Kompensacja przyspieszania:

![Kompensacja przyspieszania]

<table>
<thead>
<tr>
<th>Wartość zadana prędkości</th>
<th>Aktualna prędkość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość zadana prędkości</td>
<td>Aktualna prędkość</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Czas różniczkowania kompensacji przyspieszania</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00…1000,00 s</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Czas filtrowania kompensacji przyspieszania/zwalniania</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0…1000,0 ms</td>
<td>1 = 1 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Przyrost proporcjonalny dla zatrzymania awaryjnego</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00…250,00</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>
212 Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.53</td>
<td>Moment.: w. zad. proporcj.</td>
<td>Wyświetla wyświetlenie części proporcjonalnej (P) kontrolera prędkości. Patrz schemat łańcucha sterowania na stronie 552. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,0…30000,0%</td>
<td>Wyjście części P kontrolera prędkości.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>25.54</td>
<td>W. zad. momentu członu całk.</td>
<td>Wyświetla wyjście części całkowania (I) kontrolera prędkości. Patrz schemat łańcucha sterowania na stronie 552. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,0…30000,0%</td>
<td>Wyjście części I kontrolera prędkości.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>25.55</td>
<td>W. zad. momentu członu różn.</td>
<td>Wyświetla wyjście części różniczkowania (D) kontrolera prędkości. Patrz schemat łańcucha sterowania na stronie 552. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,0…30000,0%</td>
<td>Wyjście części D kontrolera prędkości.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>25.56</td>
<td>Kompensacja przysp. momentu</td>
<td>Wyświetla wyjście funkcji kompensacji przyspieszania. Patrz schemat łańcucha sterowania na stronie 552. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000,0…30000,0%</td>
<td>Wyjście funkcji kompensacji przyspieszania.</td>
<td>Patrz parametr 46.03</td>
</tr>
</tbody>
</table>

26 Łańcuch wart. zad. momentu Ustawienia łańcucha wartości zadanej momentu. Patrz schematy łańcucha sterowania na stronach 553 i 554.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.01</td>
<td>Wart. zad. momentu do TC</td>
<td>Wyświetla końcową wartość zadany momentu podaną do kontrolera momentu (w procentach). Ta wartość zadana jest następnie stosowana przez różne końcowe ograniczniki, takie jak mocy, momentu, obciążenia itp. Patrz schematy łańcucha sterowania na stronach 553 i 554. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość zadana momentu na potrzeby sterowania momentem.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.02</td>
<td>Użyta wart. zad. momentu</td>
<td>Wyświetla końcową wartość zadaną momentu (w procentach w stosunku do momentu znamionowego silnika) przekazywaną do kontrolera momentu i występuje po ograniczeniu częstotliwości, napięcia i momentu. Patrz schemat łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość zadana momentu na potrzeby sterowania momentem.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>26.08</td>
<td>Min. wart. zad. momentu</td>
<td>Definiuje wartość zadaną minimalnego momentu. Umożliwia lokalne ograniczenie wartości zadanej momentu przed przekazaniem go do kontrolera momentu rampy. Informacje o bezwzględnym ograniczeniu momentu podano w opisie parametru 30.19 Min. moment 1.</td>
<td>-300,0%</td>
</tr>
<tr>
<td></td>
<td>-1000,0…0,0%</td>
<td>Minimalna wartość zadana momentu.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.09</td>
<td>Maks. wart. zad. momentu</td>
<td>Definiuje wartość zadaną maksymalnego momentu. Umożliwia lokalne ograniczenie wartości zadanej momentu przed przekazaniem go do kontrolera momentu rampy. Informacje o bezwzględnym ograniczeniu momentu podano w opisie parametru 30.20 Maks. moment 1.</td>
<td>300,0%</td>
</tr>
<tr>
<td></td>
<td>0,0…1000,0%</td>
<td>Maksymalna wartość zadana momentu.</td>
<td>Patrz parametr 46.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

<table>
<thead>
<tr>
<th>Zero</th>
<th>Brak.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1 skalowane</td>
<td>12.12 Wartość skalowana AI1 (patrz strona 146).</td>
<td>1</td>
</tr>
<tr>
<td>Skalowane AI2</td>
<td>12.22 Wartość skalowana AI2 (patrz strona 148).</td>
<td>2</td>
</tr>
<tr>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A (patrz strona 119).</td>
<td>4</td>
</tr>
<tr>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A (patrz strona 119).</td>
<td>5</td>
</tr>
<tr>
<td>W. zad. EFB 1</td>
<td>03.09 Wart. zadana 1 EFB (patrz strona 119).</td>
<td>8</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>EFB — wartość zadana 2</td>
<td>03.10 Wart. zadana 2 EFB (patrz strona 120).</td>
<td>9</td>
</tr>
<tr>
<td>Potencjometr silnika</td>
<td>22.80 Akt. w. zad. potencj. silnika (wyjście potencjometru silnika).</td>
<td>15</td>
</tr>
<tr>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
<td>16</td>
</tr>
<tr>
<td>Wejście częstotliwościowe</td>
<td>11.38 Wej. częst. 1: wart. akt. (wyjście potencjometru silnika).</td>
<td>17</td>
</tr>
<tr>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
<td>18</td>
</tr>
<tr>
<td>Panel sterowania (skopiowana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
<td>19</td>
</tr>
<tr>
<td>Panel zintegrowany (zapisana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana)</td>
<td>20</td>
</tr>
<tr>
<td>Panel zintegrowany (skopiowana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
<td>21</td>
</tr>
<tr>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>Wartość zadana 1</td>
<td>Sygnał wybrany za pomocą parametru 26.11 Źródło wart. zad. momentu 1 jest używany jako wartość zadana momentu 1 (nie jest stosowana żadna funkcja).</td>
<td>0</td>
</tr>
</tbody>
</table>
Dodaj (w. zad. 1 + w. zad. 2)

Suma źródeł wartości zadanej jest używana jako wartość zadana momentu 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dodaj (w. zad. 1 + w. zad. 2)</td>
<td>Suma źródeł wartości zadanej jest używana jako wartość zadana momentu 1.</td>
<td>1</td>
</tr>
</tbody>
</table>

Odejmij (w. zad. 1 - w. zad. 2)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Odejmij (w. zad. 1 - w. zad. 2)</td>
<td>Różnica ([26.11 Źródło wart. zad. momentu 1] - [26.12 Źródło wart. zad. momentu 2]) źródło wartości zadanej jest używana jako wartość zadana momentu 1.</td>
<td>2</td>
</tr>
</tbody>
</table>

Pomnóż (w. zad. 1 x w. zad. 2)

Iloczyn źródeł wartości zadanej jest używany jako wartość zadana momentu 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Pomnóż (w. zad. 1 x w. zad. 2)</td>
<td>Iloczyn źródeł wartości zadanej jest używany jako wartość zadana momentu 1.</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum (w. zad. 1, w. zad. 2)

Źródło o mniejszej wartości zadanej jest używane jako wartość zadana momentu 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Minimum (w. zad. 1, w. zad. 2)</td>
<td>Źródło o mniejszej wartości zadanej jest używane jako wartość zadana momentu 1.</td>
<td>4</td>
</tr>
</tbody>
</table>

Maksimum (w. zad. 1, w. zad. 2)

Źródło o większej wartości zadanej jest używane jako wartość zadana momentu 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Maksimum (w. zad. 1, w. zad. 2)</td>
<td>Źródło o większej wartości zadanej jest używane jako wartość zadana momentu 1.</td>
<td>5</td>
</tr>
</tbody>
</table>

26.14 Wybór w. zad. momentu 1/2

Wartość zadana momentu 1

0 = Wartość zadana momentu 1.

1 = Wartość zadana momentu 2.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wartość zadana momentu 1</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Zgodnie z wyborem Zew1/Zew2

<table>
<thead>
<tr>
<th>Nr</th>
<th>Zgodnie z wyborem Zew1/Zew2</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Zgodnie z wyborem Zew1/Zew2</td>
<td>Wartość zadana momentu 1 jest używana, gdy aktywne jest zewnętrzne miejsce sterowania ZEW1. Wartość zadana momentu 2 jest używana, gdy aktywne jest zewnętrzne miejsce sterowania ZEW2. Zobacz również parametr 19.11 Wybór Zew1/Zew2.</td>
<td>2</td>
</tr>
</tbody>
</table>

DI1

Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).

<table>
<thead>
<tr>
<th>Nr</th>
<th>DI1</th>
<th>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0)</td>
<td>3</td>
</tr>
</tbody>
</table>

DI2

Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).

<table>
<thead>
<tr>
<th>Nr</th>
<th>DI2</th>
<th>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1)</td>
<td>4</td>
</tr>
</tbody>
</table>

DI3

Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).

<table>
<thead>
<tr>
<th>Nr</th>
<th>DI3</th>
<th>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2)</td>
<td>5</td>
</tr>
</tbody>
</table>

DI4

Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).

<table>
<thead>
<tr>
<th>Nr</th>
<th>DI4</th>
<th>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3)</td>
<td>6</td>
</tr>
</tbody>
</table>

DIO1

Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).

<table>
<thead>
<tr>
<th>Nr</th>
<th>DIO1</th>
<th>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td>11</td>
</tr>
</tbody>
</table>

DIO2

Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).

<table>
<thead>
<tr>
<th>Nr</th>
<th>DIO2</th>
<th>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>12</td>
</tr>
</tbody>
</table>

Inny [bit]

Wybór źródła (patrz Wyrażenia i skróty).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Inny [bit]</th>
<th>Wybór źródła (patrz Wyrażenia i skróty)</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty)</td>
<td>-</td>
</tr>
</tbody>
</table>

26.17 Czas filtru w. zad. momentu

Definiuje stałą czasu filtru dolnoprzepustowego dla wartości zadanej momentu.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Czas filtru w. zad. momentu</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Czas filtru w. zad. momentu</td>
<td>Definiuje stałą czasu filtru dolnoprzepustowego dla wartości zadanej momentu.</td>
<td>0,000 s</td>
</tr>
<tr>
<td>2</td>
<td>Czas filtru w. zad. momentu</td>
<td>Stała czasu filtru dla wartości zadanej momentu.</td>
<td>0,000…30,000 s</td>
</tr>
<tr>
<td>3</td>
<td>Czas filtru w. zad. momentu</td>
<td>Stała czasu filtru dla wartości zadanej momentu.</td>
<td>1000 = 1 s</td>
</tr>
</tbody>
</table>

26.18 Czas wzrostu rampy mom.

Definiuje czas przyrostu rampy wartości zadanej momentu, tzn. czas, przez jaki wartość zadana wzrasta od zera do wartości znamionowej momentu silnika.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Czas wzrostu rampy mom.</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Czas wzrostu rampy mom.</td>
<td>Definiuje czas przyrostu rampy wartości zadanej momentu, tzn. czas, przez jaki wartość zadana wzrasta od zera do wartości znamionowej momentu silnika.</td>
<td>0,000 s</td>
</tr>
<tr>
<td>2</td>
<td>Czas wzrostu rampy mom.</td>
<td>Czas przyrostu rampy wartości zadanej momentu.</td>
<td>0,000…60,000 s</td>
</tr>
<tr>
<td>3</td>
<td>Czas wzrostu rampy mom.</td>
<td>Czas przyrostu rampy wartości zadanej momentu.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>26.19</td>
<td>Czas spadku rampy mom.</td>
<td>Definiuje czas spadku rampy wartości zadanej momentu, tzn. czas, przez jaki wartość zadana spada z wartości znamionowej momentu silnika do zera.</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>W. zad. mom.: ster. momentem</td>
<td>Wartość zadana momentu z łańcucha momentu.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skrót).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Zad. moment: ster. prędkością</td>
<td>Wartość zadana momentu z łańcucha prędkości.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skrót).</td>
<td>-</td>
</tr>
<tr>
<td>26.70</td>
<td>Akt. w. zad. momentu 1</td>
<td>Wyświetla wartość źródła wartości zadanej momentu 1 (wybranego za pomocą parametru 26.11 Źródło wart. zad. momentu 1). Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość źródła wartości zadanej momentu 1.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.71</td>
<td>Akt. w. zad. momentu 2</td>
<td>Wyświetla wartość źródła wartości zadanej momentu 2 (wybranego za pomocą parametru 26.12 Źródło wart. zad. momentu 2). Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość źródła wartości zadanej momentu 2.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.72</td>
<td>Akt. w. zad. momentu 3</td>
<td>Wyświetla wartość zadaną momentu po zastosowaniu funkcji określonej przez parametr 26.13 Funkcja w. zad. momentu 1 (jeśli dotyczy) i po dokonaniu wyboru (26.14 Wybór w. zad. momentu 1/2). Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość zadaną momentu po wybraniu opcji.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.73</td>
<td>Akt. w. zad. momentu 4</td>
<td>Wyświetla wartość zadaną momentu po uwzględnieniu wartości dodawanej 1. Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość zadaną momentu po uwzględnieniu wartości dodawanej 1.</td>
<td>Patrz parametr 46.03</td>
</tr>
</tbody>
</table>
28 Łańcuch w. zad. częstotliwości

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.01</td>
<td>Wejście rampy w. zad. częst.</td>
<td>Wyświetla używaną wartość zadaną częstotliwości przed zastosowaniem rampy. Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wartość zadana częstotliwości przed zastosowaniem rampy.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.02</td>
<td>Wyjście rampy w. zad. częst.</td>
<td>Wyświetla końcową wartość zadaną częstotliwości (po dokonaniu wyboru, ograniczeniu i określaniu rampy). Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Końcowa wartość zadana częstotliwości.</td>
<td>Patrz parametr 46.02</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.74</td>
<td>Wyj. w. zad. mom. po ramp.</td>
<td>Wyświetla wartość zadaną momentu po ograniczeniu i uwzględnieniu rampy. Patrz wykres łańcucha sterowania na stronie 553. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość zadana momentu po ograniczeniu i uwzględnieniu rampy.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.75</td>
<td>Akt. w. zad. momentu 5</td>
<td>Wyświetla wartość zadaną momentu po wybraniu trybu sterowania. Patrz wykres łańcucha sterowania na stronie 554. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Wartość zadana momentu po wybraniu trybu sterowania.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>26.81</td>
<td>Wzmoc.dla kontr.nagł.przysp</td>
<td>Warunek przyrostu kontrolera naglego przyspieszenia. Patrz sekcja Kontroła naglego przyspieszenia (str. 70).</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>0,0…10000,0</td>
<td>Przyrost kontrolera naglego przyspieszenia (0,0 = wyłączony).</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.82</td>
<td>Czas całk.dla kontr.nagł.przysp</td>
<td>Warunek czasu całkowania kontrolera naglego przyspieszenia.</td>
<td>2,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0…10,0 s</td>
<td>Czas całkowania kontrolera naglego przyspieszenia (0,0 = wyłączony).</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>
28.11 W. zad. częst. 1 Zew1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>Brak.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Skalowane AI1</td>
<td>12.12 Wartość skalowana AI1 (patrz strona 146).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AI2 skalowane</td>
<td>12.22 Wartość skalowana AI2 (patrz strona 148).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A (patrz strona 119).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A (patrz strona 119).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>W. zad. EFB 1</td>
<td>03.09 Wart. zadana 1 EFB (patrz strona 119).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>EFB — wartość zadana 2</td>
<td>03.10 Wart. zadana 2 EFB (patrz strona 120).</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Potencjometr silnika</td>
<td>22.80 Akt. w. zad. potenc. silnika (wyjście potencjometru silnika).</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Wejście częstotliwościowe 1</td>
<td>11.38 Wej. częst. 1: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla miejsca, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Panel sterowania (skopiowana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Panel zintegrowany (zapisana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana).</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Panel zintegrowany (skopiowana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Wejście częstotliwościowe 2</td>
<td>11.46 Wej. częst. 2: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Dźwig MotPot</td>
<td>Wyjście potencjometru silnika dźwigu. Patrz 22.230.</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Zero</td>
<td>Brak.</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AI1 skalowane</td>
<td>12.12 Wartość skalowana AI1 (patrz strona 146).</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AI2 skalowane</td>
<td>12.22 Wartość skalowana AI2 (patrz strona 148).</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A (patrz strona 119).</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A (patrz strona 119).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>EFB — wartość zadana 1</td>
<td>03.09 Wart. zadana 1 EFB (patrz strona 119).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>EFB — wartość zadana 2</td>
<td>03.10 Wart. zadana 2 EFB (patrz strona 120).</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Potencjometr silnika</td>
<td>22.80 Akt. w. zad. potencj. silnika (wyjście potencjometru silnika).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Wejście częstotliwościowe 1</td>
<td>11.38 Wej. częst. 1: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana. Dokument</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel sterowania (skopiowana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana. Dokument</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Panel zintegrowany (zapisana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana).</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Panel zintegrowany (skopiowana wartość zadana)</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Wejście częstotliwościowe 2</td>
<td>11.46 Wej. częst. 2: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
</tbody>
</table>

Wartość zadana 1

- **Dodaj (w. zad. 1 + w. zad. 2)**

 Suma źródeł wartości zadanej jest używana jako wartość zadana częstotliwości 1.

 Wartość: 0

- **Odejmij (w. zad. 1 - w. zad. 2)**

 Wartość: 2

- **Pomnóż (w. zad. 1 x w. zad. 2)**

 Iloczyn źródeł wartości zadanej jest używany jako wartość zadana częstotliwości 1.

 Wartość: 3

- **Minimum (w. zad. 1, w. zad. 2)**

 Źródło o mniejszej wartości zadanej jest używane jako wartość zadana częstotliwości 1.

 Wartość: 4

- **Maksimum (w. zad. 1, w. zad. 2)**

 Źródło o większej wartości zadanej jest używane jako wartość zadana częstotliwości 1.

 Wartość: 5

- **Abs (w. zad. 1)**

 Wartość bezwzględnna dla źródeł wartości zadanej jest używana jako wartość zadana częstotliwości 1.

 Wartość: 6

28.15 ** **W. zad. częst. 1 Zew2

- **W. zad. 1 mag. kom. A**

 03.05 W. zad. 1 mag. kom. A (patrz strona 119).

 Wartość: 4

- **W. zad. 2 mag. kom. A**

 03.06 W. zad. 2 mag. kom. A (patrz strona 119).

 Wartość: 5

- **W. zad. EFB 1**

 03.09 Wart. zadana 1 EFB (patrz strona 119).

 Wartość: 8

- **EFB — wartość zadana 2**

 03.10 Wart. zadana 2 EFB (patrz strona 120).

 Wartość: 9

- **Potencjometr silnika**

 22.80 Akt. w. zad. potenc. silnika (wyjącie potencjometru silnika).

 Wartość: 15

- **PID**

 40.01 PID procesu: akt.wart. wyj. (wyjącie regulatora PID procesu).

 Wartość: 16

- **Wejście częstotliwościowe 1**

 11.38 Wej. częst. 1: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).

 Wartość: 17
Panel sterowania (zapisana wartość zadana)

Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest użytwana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel sterowania (skopiowana wartość zadana)

Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest używana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Patrz wyżej Panel sterowania (zapisana wartość zadana).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Patrz wyżej Panel sterowania (skopiowana wartość zadana).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wejście częstotliwościowe 2

11.46 Wej. częst. 2: wart. akt. (gdy wejście DI3 lub DI4 jest używane jako wejście częstotliwościowe).

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W. zad. częst. 2 Zew2

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Funkcja częstotliwości. Zew2

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Wartość zadana 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wartość zadana 1

Sygnał wybrany za pomocą parametru 28.15 W. zad. częst. 1 Zew2 jest używany jako wartość zadana częstotliwości 1 (nie jest stosowana żadna funkcja).

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dodaj (w. zad. 1 + w. zad. 2)

Suma źródeł wartości zadanej jest używana jako wartość zadana częstotliwości 1.

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Odejmij (w. zad. 1 - w. zad. 2)

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pomnóż (w. zad. 1 x w. zad. 2)

Iloczyn źródeł wartości zadanej jest używany jako wartość zadana częstotliwości 1.

Opis

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dokument

- Wartość zadana Zew1
- Wartość zadana Zew2
- Aktywna wartość zadana
- Nieaktywna wartość zadana
Minimum (w. zad. 1, w. zad. 2) Źródło o mniejszej wartości zadanej jest używane jako wartość zadana częstotliwości 1.

Maksimum (w. zad. 1, w. zad. 2) Źródło o większej wartości zadanej jest używane jako wartość zadana częstotliwości 1.

Abs (w. zad. 1) Wybiera funkcję matematyczną realizowaną pomiędzy źródłami wartości zadanej częstotliwości.

28.21 Funkcja stałej częstotliwości Określa sposób wyboru stałych częstotliwości oraz to, czy sygnał kierunku obrotu jest uwzględniany podczas stosowania nowej częstotliwości stałej.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tryb stałej częst.</td>
<td>1 = Spakowane: 7 stałych częstotliwości można wybrać, używając trzech źródeł zdefiniowanych za pomocą parametrów 28.22, 28.23 i 28.24. 0 = Oddzielone: Stale częstotliwości 1, 2 i 3 są aktywowane oddzielnie przez źródła zdefiniowane odpowiednio za pomocą parametrów 28.22, 28.23 i 28.24. W przypadku konfliktu priorytet ma stała częstotliwość z najniższym numerem.</td>
</tr>
<tr>
<td>1</td>
<td>Kierunek włączony</td>
<td>1 = Kierunek początkowy: w celu określenia kierunku obrotu dla stałej częstotliwości znak ustawienia stałej częstotliwości (parametry 28.26...28.32) jest mnożony przez sygnał kierunku (do przodu: +1, do tyłu: -1). Dzięki temu przemiennik częstotliwości może mieć 14 stałych częstotliwości (7 do przodu, 7 do tyłu), jeśli wszystkie wartości w parametrach 28.26...28.32 są dodatnie. OSTRZEŻENIE: Jeśli sygnał kierunku jest określony jako „do tyłu” i aktywna stała częstotliwość jest ujemna, przemiennik częstotliwości będzie działał w kierunku do przodu. 0 = Zgodnie z parametrem: kierunek obrotu dla stałej częstotliwości jest określany znakiem ustawienia stałej częstotliwości (parametry 28.26...28.32).</td>
</tr>
<tr>
<td>2</td>
<td>Krok częstotliwości</td>
<td>Krok częstotliwości: 1 = włączenie kroku częstotliwości; 0 = wyłączenie kroku częstotliwości</td>
</tr>
<tr>
<td>3...15</td>
<td>Zarezerwowano</td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh Słowo konfiguracji stałej częstotliwości. 1 = 1
28.22 Wybór stałej częstotliwości 1

Kiedy bit 0 parametru przyjmuje wartość 0 (Osobne), wybiera źródło aktywujące stałą częstotliwość 1.
Kiedy bit 0 parametru przyjmuje wartość 1 (Spakowane), ten parametr oraz parametry 28.23 Wybór stałej częstotliwości 2 i 28.24 Wybór stałej częstotliwości 3 wybierają trzy źródła, których stany aktywują stałą częstotliwość w następujący sposób:

<table>
<thead>
<tr>
<th>Źródło zdefiniowane przez par. 28.22</th>
<th>Źródło zdefiniowane przez par. 28.23</th>
<th>Źródło zdefiniowane przez par. 28.24</th>
<th>Aktywna stała częstotliwość</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Brak</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stała częstotliwość 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Stała częstotliwość 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Stała częstotliwość 3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Stała częstotliwość 4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Stała częstotliwość 5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Stała częstotliwość 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Stała częstotliwość 7</td>
</tr>
</tbody>
</table>

Zawsze wyłączone 0 (zawsze wyłączone). 0
Zawsze włączone 1 (zawsze włączone). 1

DI1 Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). 2
DI2 Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). 3
DI3 Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). 4
DI4 Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3). 5
DIO1 Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0). 10
DIO2 Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 0). 11

Funkcja czasowa 1 Bit 0 parametru 34.01 Stan funkcji czasowych. 18
Funkcja czasowa 2 Bit 1 parametru 34.01 Stan funkcji czasowych. 19
Funkcja czasowa 3 Bit 2 parametru 34.01 Stan funkcji czasowych. 20

Nadzór 1 Bit 0 parametru 32.01 Stan nadzoru. 24
Nadzór 2 Bit 1 parametru 32.01 Stan nadzoru. 25
Nadzór 3 Bit 2 parametru 32.01 Stan nadzoru. 26
Nadzór 4 Bit 3 parametru 32.01 Stan nadzoru. 27
Nadzór 5 Bit 4 parametru 32.01 Stan nadzoru. 28
Nadzór 6 Bit 5 parametru 32.01 Stan nadzoru. 29

Inny [bit] Wybór źródła (patrz Wyrażenia i skróty). -
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.26</td>
<td>Stała częstotliwość 1</td>
<td>Definiuje stałą częstotliwość 1 (częstotliwość, z jaką będzie obracał się silnik po wybraniu stałej częstotliwości 1).</td>
<td>5,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 1.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.27</td>
<td>Stała częstotliwość 2</td>
<td>Definiuje stałą częstotliwość 2.</td>
<td>10,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 2.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.28</td>
<td>Stała częstotliwość 3</td>
<td>Definiuje stałą częstotliwość 3.</td>
<td>15,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 3.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.29</td>
<td>Stała częstotliwość 4</td>
<td>Definiuje stałą częstotliwość 4.</td>
<td>20,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 4.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.30</td>
<td>Stała częstotliwość 5</td>
<td>Definiuje stałą częstotliwość 5.</td>
<td>25,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 5.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.31</td>
<td>Stała częstotliwość 6</td>
<td>Definiuje stałą częstotliwość 6.</td>
<td>40,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 6.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>28.32</td>
<td>Stała częstotliwość 7</td>
<td>Definiuje stałą częstotliwość 7.</td>
<td>50,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Stała częstotliwość 7.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.41</td>
<td>Bezpieczna wart. zad. częst.</td>
<td>Definiuje wartość zadaną bezpiecznej częstotliwości używaną z funkcjami nadzorującymi, takimi jak: 12.03 Funkcja nadzoru AI, 49.05 Reakcja na utratę komunik, 50.02 FBA A: funkcja utr. komun.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Wartość zadana bezpiecznej częstotliwości.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.51</td>
<td>Funkcja częst. krytycznej</td>
<td>Włącza/wyłącza funkcję częstotliwości krytycznych. Określa również, czy zdefiniowane zakresy obowiązują w obu kierunkach obracania. Patrz także sekcja Prędkości/częstotliwości krytyczne na str. 68.</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Częst. kryt.</td>
<td>1 = Włączone: częstotliwości krytyczne włączone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Wyłączone: częstotliwości krytyczne wyłączone.</td>
</tr>
<tr>
<td>1</td>
<td>Tryb znaku</td>
<td>1 = Zgodnie z parametrem: Znaki parametrów 28.52…28.57 są brane pod uwagę.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Bezwzględne: Parametry 28.52…28.57 są obsługiwane jako wartości bezwzględne. Każdy zakres obowiązuje w obu kierunkach obrotów.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.52</td>
<td>Częst. krytyczna 1 niska</td>
<td>Definiuje dolny limit częstotliwości krytycznej 1. Uwaga: Ta wartość musi być mniejsza lub równa wartości 28.53 Częst. krytyczna 1 wysoka.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Dolny limit częstotliwości krytycznej 1.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.53</td>
<td>Częst. krytyczna 1 wysoka</td>
<td>Definiuje górny limit częstotliwości krytycznej 1. Uwaga: Ta wartość musi być większa lub równa wartości 28.52 Częst. krytyczna 1 niska.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Górnny limit częstotliwości krytycznej 1.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.54</td>
<td>Częst. krytyczna 2 niska</td>
<td>Definiuje dolny limit częstotliwości krytycznej 2. Uwaga: Ta wartość musi być mniejsza lub równa wartości 28.55 Częst. krytyczna 2 wysoka.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Dolny limit częstotliwości krytycznej 2.</td>
<td>Patrz parametr 46.02</td>
</tr>
</tbody>
</table>

0000h…FFFFh Słowo konfiguracji częstotliwości krytycznych. 1 = 1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.55</td>
<td>Częst. krytyczna 2 wysoka</td>
<td>Definiuje górny limit częstotliwości krytycznej 2. Uwaga: Ta wartość musi być większa lub równa wartości 28.54 Częst. krytyczna 2 niska.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Górny limit częstotliwości krytycznej 2.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.56</td>
<td>Częst. krytyczna 3 niska</td>
<td>Definiuje dolny limit częstotliwości krytycznej 3. Uwaga: Ta wartość musi być mniejsza lub równa wartości 28.57 Częst. krytyczna 3 wysoka.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Dolny limit częstotliwości krytycznej 3.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.57</td>
<td>Częst. krytyczna 3 wysoka</td>
<td>Definiuje górny limit częstotliwości krytycznej 3. Uwaga: Ta wartość musi być większa lub równa wartości 28.56 Częst. krytyczna 3 niska.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,00…500,00 Hz</td>
<td>Górny limit częstotliwości krytycznej 3.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>28.71</td>
<td>Wybór ust. rampy częst.</td>
<td>Wybiera źródło przełączania między dwoma zestawami czasów przyspieszania/zwalniania zdefiniowanymi przez parametry 28.72…28.75. 0 = Obowiązują czas przyspieszenia 1 i czas zwalniania 1 1 = Obowiązują czas przyspieszenia 2 i czas zwalniania 2 Czas przysp./zwaln. 1</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Czas przysp./zwaln. 1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Czas przysp./zwaln. 2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>FBA A</td>
<td>Tylko dla profili Transparentny 16 lub Transparentny 32. Bit słowa sterowania profilu Transparentny 16 lub Transparentny 32 odebrany przez interfejs magistrali komunikacyjnej A.</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>EFB DCU CW bit 10</td>
<td>Tylko dla profili DCU. Bit 10 słowa sterowania DCU odebrany przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
28.72 Czas przys. 1 częstotliwości
Definiuje czas przyspieszania 1 jako czas wymagany, aby częstotliwość zmieniła wartość od zera do częstotliwości określonej za pomocą parametru 46.02 Skalowanie częstotliwości. Po osiągnięciu częstotliwości przyspieszenie jest kontynuowane przy takim samym współczynniku do wartości zdefiniowanej parametrem 30.14 Maks. częstotliwość.

<table>
<thead>
<tr>
<th>Czas przyspieszenia 1</th>
<th>3,000 s</th>
</tr>
</thead>
</table>

| 0,000…1800,000 s | Czas przyspieszenia 1. 10 = 1 s |

28.73 Czas zwaln. 1 częstotliwości
Definiuje czas zwalniania 1 jako czas wymagany, aby częstotliwość zmieniła wartość od częstotliwości określonej za pomocą parametru 46.02 Skalowanie częstotliwości (nie parametru 30.14 Maks. częstotliwość) do zera.

Jeśli istnieją jakiekolwiek wątpliwości dotyczące zbyt krótkiego czasu zwalniania, należy upewnić się, czy włączona jest kontrola przepięć DC (parametr 30.30 Kontrola przepięć).

Uwaga: Jeśli krótki czas zwalniania jest wymagany przez aplikacje o dużej bezwładności, przemiennik częstotliwości powinien być wyposażony w takie elementy hamowania jak czoper hamowania i rezystor hamowania.

<table>
<thead>
<tr>
<th>Czas zwalniania 1</th>
<th>3,000 s</th>
</tr>
</thead>
</table>

| 0,000…1800,000 s | Czas zwalniania 1. 10 = 1 s |

28.74 Czas przys. 2 częstotliwości
Definiuje czas przyspieszania 2. Patrz parametr 28.72 Czas przysp. 1 częstotliwości.

<table>
<thead>
<tr>
<th>Czas przyspieszenia 2.</th>
<th>60,000 s</th>
</tr>
</thead>
</table>

| 0,000…1800,000 s | Czas przyspieszenia 2. 10 = 1 s |

28.75 Czas zwaln. 2 częstotliwości
Definiuje czas zwalniania 2. Patrz parametr 28.73 Czas zwaln. 1 częstotliwości.

<table>
<thead>
<tr>
<th>Czas zwalniania 2.</th>
<th>60,000 s</th>
</tr>
</thead>
</table>

| 0,000…1800,000 s | Czas zwalniania 2. 10 = 1 s |

28.76 Źródło wart. zero. wej. rampy
Wybiera źródło wymuszające zmianę wartości zadanej częstotliwości na zero.

0 = Wymuszenie wartości zadanej częstotliwości równej zero.
1 = Normalna praca.

<table>
<thead>
<tr>
<th>Nieaktywne</th>
<th>1.</th>
</tr>
</thead>
</table>

Aktywne

| 0. |

DI1

| 10.02 Stan DI po opóźnieniach, bit 0. |

| 2. |

DI2

| 10.02 Stan DI po opóźnieniach, bit 1. |

| 3. |

DI3

| 10.02 Stan DI po opóźnieniach, bit 2. |

<p>| 4. |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
28.82 **Kształt rampy 1**

Definiuje kształt ramp przyspieszania i zwalniania używanych z zestawem 1. 0,000 s: Rampa liniowa. Ustawienie przystosowane do stałego przyspieszenia lub zwalniania oraz wolnych ramp. 0,001…1000,000 s: Rampa z krzywą typu S. Rampy z krzywą typu S idealnie nadają się do aplikacji związanych z podnoszeniem. Krzywa typu S składa się z symetrycznych krzywych na obu końcach rampy oraz części liniowej pośrodku.

Przyspieszenie:

![Diagram przyspieszenia]

Zwalnianie:

![Diagram zwalniania]

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.82</td>
<td>Kształt rampy 1</td>
<td>Definiuje kształt ramp przyspieszania i zwalniania używanych z zestawem 1. 0,000 s: Rampa liniowa. Ustawienie przystosowane do stałego przyspieszenia lub zwalniania oraz wolnych ramp. 0,001…1000,000 s: Rampa z krzywą typu S. Rampy z krzywą typu S idealnie nadają się do aplikacji związanych z podnoszeniem. Krzywa typu S składa się z symetrycznych krzywych na obu końcach rampy oraz części liniowej pośrodku. Przyspieszenie:</td>
<td>0,000 s</td>
</tr>
</tbody>
</table>

| 0,000…1800,000 s | Kształt rampy na początku i końcu zwalniania i przyspieszania. | 10 = 1 s |

| 28.83 | Kształt rampy 2 | Definiuje kształt ramp przyspieszania i zwalniania używanych z zestawem 2. Patrz parametr **28.82 Czas kształtu 1.** | 0,000 s |

| 0,000…1800,000 s | Kształt rampy na początku i końcu zwalniania i przyspieszania. | 10 = 1 s |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.92</td>
<td>Akt. w. zad. częstot. 3</td>
<td>Wyświetla wartość zadaną częstotliwości po zastosowaniu funkcji określonej przez parametr 28.13 Funkcja częstotliwości Zew1 (jeśli dotyczy) i opcji (19.11 Wybór Zew1/Zew2). Patrz schemat łańcucha sterowania na stronie 546. Ten parametr jest tylko do odczytu.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500,00…500,00 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wyświetla wartość zadaną częstotliwości po wybraniu opcji.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.96</td>
<td>Akt. w. zad. częstot. 7</td>
<td>Wyświetla wartość zadaną częstotliwości po zastosowaniu stałych częstotliwości, wartości zadanej panelu sterowania itp. Patrz schemat łańcucha sterowania na stronie 546. Ten parametr jest tylko do odczytu.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500,00…500,00 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wyświetla wartość zadaną częstotliwości 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.97</td>
<td>Nieogr. wart. zad. częst.</td>
<td>Wyświetla wartość zadaną częstotliwości po zastosowaniu częstotliwości krytycznych, ale przed określeniem rampy i limitów. Patrz schemat łańcucha sterowania na stronie 546. Ten parametr jest tylko do odczytu.</td>
<td>0,00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500,00…500,00 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wyświetla wartość zadaną częstotliwości przed zastosowaniem rampy i limitów.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.211</td>
<td>Kształt w. zad. częstot.</td>
<td>Definiuje kształt wartości zadanej częstotliwości.</td>
<td>Liniowe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liniowe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liniowa wartość zadana częstotliwości.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paraboliczna 1 Wartość zadana częstotliwości X².</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paraboliczna 2 Wartość zadana częstotliwości X³.</td>
<td>2</td>
</tr>
</tbody>
</table>
30 Limity

Limity pracy przemiennika częstotliwości.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.01</td>
<td>Słowo limitu 1</td>
<td>Wyświetla słowo limitu 1. Ten parametr jest tylko do odczytu.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Limit momentu</td>
<td>1 = Moment przemiennika częstotliwości jest ograniczony przez sterowanie silnikiem (kontrola niewystarczającego napięcia, prądu, kąta obciążenia i momentu krytycznego) lub limity momentu zdefiniowane przez parametry.</td>
</tr>
<tr>
<td>1...2</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Maks. w.zad. momentu</td>
<td>1 = Wartość zadana momentu jest ograniczona przez parametr 26.09 Maks. wart. zad. momentu lub 30.20 Maks. moment 1</td>
</tr>
<tr>
<td>4</td>
<td>Min. w.zad. momentu</td>
<td>1 = Wartość zadana momentu jest ograniczona przez parametr 26.08 Min. wart. zad. momentu lub 30.19 Min. moment 1</td>
</tr>
<tr>
<td>5</td>
<td>Lim max wart mom</td>
<td>1 = Wartość zadana momentu jest ograniczona przez kontrolę nagłego przyspieszenia z powodu limitu maksymalnej prędkości (30.12 Maks. prędkość)</td>
</tr>
<tr>
<td>6</td>
<td>Lim min wart mom</td>
<td>1 = Wartość zadana momentu jest ograniczona przez kontrolę nagłego przyspieszenia z powodu limitu minimalnej prędkości (30.11 Min. prędkość)</td>
</tr>
<tr>
<td>7</td>
<td>W.zad. pr.: limit maks.</td>
<td>1 = Wartość zadana prędkości jest ograniczona przez parametr 30.12 Maks. prędkość</td>
</tr>
<tr>
<td>8</td>
<td>W.zad. pr.: limit min.</td>
<td>1 = Wartość zadana prędkości jest ograniczona przez parametr 30.11 Min. prędkość</td>
</tr>
<tr>
<td>9</td>
<td>W.zad. częst.: lim.maks.</td>
<td>1 = Wartość zadana częstotliwości jest ograniczona przez parametr 30.14 Maks. częstotliwość</td>
</tr>
<tr>
<td>10</td>
<td>W.zad. częst.: limit min.</td>
<td>1 = Wartość zadana częstotliwości jest ograniczona przez parametr 30.13 Min. częstotliwość</td>
</tr>
<tr>
<td>11…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh | Słowo limitu 1. | 1 = 1 |
Parametry

30.02 Moment: stan limitu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.02</td>
<td>Moment: stan limitu</td>
<td>Wyświetla słowo stanu ograniczenia kontrolera momentu. Ten parametr jest tylko do odczytu.</td>
</tr>
</tbody>
</table>

Bity i nazwy

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Za niskie napięcie</td>
<td>*1 = Niedostateczne napięcie pośredniego obwodu DC</td>
</tr>
<tr>
<td>1</td>
<td>Przępienie</td>
<td>*1 = Przępienie w pośrednim obwodzie DC</td>
</tr>
<tr>
<td>2</td>
<td>Moment minimalny</td>
<td>*1 = Moment jest ograniczony przez parametr 30.19 Min. moment 1, 30.26 Limit mocy napędowej lub 30.27 Limit mocy generowanej</td>
</tr>
<tr>
<td>3</td>
<td>Maks. moment</td>
<td>*1 = Moment jest ograniczony przez parametr 30.20 Maks. moment 1, 30.26 Limit mocy napędowej lub 30.27 Limit mocy generowanej</td>
</tr>
<tr>
<td>4</td>
<td>Prąd wewnętrzny</td>
<td>1 = Limit prądu inwertera (określony przez bity 8…11) jest aktywny</td>
</tr>
<tr>
<td>5</td>
<td>Kąt obciążenia</td>
<td>(Tylko w przypadku silników synchronicznych z magnesami trwałymi i silników reluktancyjnych) 1 = Limit kąta obciążenia jest aktywny, tzn. silnik nie może wytworzyć większego momentu</td>
</tr>
<tr>
<td>6</td>
<td>Lim mom krytyczn</td>
<td>(Tylko w przypadku silników asynchronicznych) Limit momentu krytycznego silnika jest aktywny, tzn. silnik nie może wytworzyć większego momentu</td>
</tr>
<tr>
<td>7</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Limit termiczny</td>
<td>1 = Prąd wejściowy jest ograniczony przez główny limit termiczny obwodu</td>
</tr>
<tr>
<td>9</td>
<td>Maks. prąd</td>
<td>*1 = Maksymalny prąd wyjściowy (I_{MAX}) jest ograniczany</td>
</tr>
<tr>
<td>10</td>
<td>Lim prąd użyty</td>
<td>*1 = Prąd wyjściowy jest ograniczony przez parametr 30.17 Maks. prąd</td>
</tr>
<tr>
<td>11</td>
<td>Termiczne IGBT</td>
<td>*1 = Prąd wyjściowy jest ograniczony przez obliczoną wartość termiczną prądu</td>
</tr>
<tr>
<td>12...15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

*Tylko jeden z bitów 0…3 i jeden z bitów 9…11 może być włączony jednocześnie. Bit zazwyczaj wskazuje ograniczenie przekraczane jako pierwsze.

| 0000h…FFFFh | Słowo stanu ograniczenia momentu. | 1 = 1 |

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
</table>

Nr Nazwa/wartość

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.11</td>
<td>Min. prędkość</td>
<td>-1500,00 obr./min</td>
<td></td>
</tr>
<tr>
<td>30.12</td>
<td>Maks. prędkość</td>
<td>30000,00 obr./min</td>
<td></td>
</tr>
</tbody>
</table>

Tablica

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.11</td>
<td>Min. prędkość</td>
<td>Minimalna dopuszczalna prędkość.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>30.12</td>
<td>Maks. prędkość</td>
<td>Prędkość maksymalna.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>30.14</td>
<td>Maks. częstotliwość</td>
<td>Razem z parametrem 30.13 Min. częstotliwość definiuje dozwolony zakres częstotliwości. Patrz 30.13 Min. częstotliwość. OSTRZEŻENIE! Wartość bezwzględna parametru 30.14 Maks. częstotliwość nie może być mniejsza niż wartość parametru 30.13 Min. częstotliwość. OSTRZEŻENIE! Tylko w trybie sterowania częstotliwością.</td>
<td>50,00 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.14</td>
<td>Maks. częstotliwość</td>
<td>Razem z parametrem 30.13 Min. częstotliwość definiuje dozwolony zakres częstotliwości. Patrz 30.13 Min. częstotliwość. OSTRZEŻENIE! Wartość bezwzględna parametru 30.14 Maks. częstotliwość nie może być mniejsza niż wartość parametru 30.13 Min. częstotliwość. OSTRZEŻENIE! Tylko w trybie sterowania częstotliwością.</td>
<td>50,00 Hz</td>
</tr>
</tbody>
</table>

OSTRZEŻENIE! Wartość bezwzględna parametru 30.13 Min. częstotliwość nie może być większa niż wartość parametru 30.14 Maks. częstotliwość. **OSTRZEŻENIE!** tylko w trybie sterowania częstotliwością.

Częstotliwość minimalna. **Patrz parametr 46.02**

Częstotliwość maksymalna. **Patrz parametr 46.02**
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.17</td>
<td>Maks. prąd</td>
<td>Definiuje maksymalny dopuszczalny prąd silnika.</td>
<td>3,20 A</td>
</tr>
<tr>
<td></td>
<td>0,00…3,20 A</td>
<td>Maksymalny prąd silnika.</td>
<td></td>
</tr>
<tr>
<td>30.18</td>
<td>Wybór lim. momentu</td>
<td>Wybiera źródło przełączania między dwoma różnymi zdefiniowanymi wstępnies zestawami limitów minimalnego momentu.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Limit minimalnego momentu zdefiniowany za pomocą parametru 30.19 i limit maksymalnego momentu zdefiniowany za pomocą parametru 30.20 są aktywne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Limit minimalnego momentu wybrany za pomocą parametru 30.21 i limit maksymalnego momentu zdefiniowany za pomocą parametru 30.22 są aktywne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Użytkownik może zdefiniować dwa zestawy limitów momentów i przełącać się między dwoma zestawami za pomocą źródła binarnego, takiego jak wejście cyfrowe.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ustawiony limit momentu 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ustawiony limit momentu 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
</tbody>
</table>

Uwaga: Oprócz limitów zdefiniowanych przez użytkownika moment może być ograniczony z innych powodów (takich jak np. ograniczenie mocy). Patrz też schemat blokowy na stronie 481.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>EFB</td>
<td>Tylko dla profilu DCU. Bit 15 służy sterowania DCU odebrany przy użyciu interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30.19 Min. moment 1</td>
<td>Definiuje limit minimalnego momentu dla przemiennika częstotliwości (jako procent momentu znamionowego silnika). Patrz wykres przy parametrze 30.18 Wybór lim. momentu. Limit obowiązuje, gdy • źródło określone przez parametr 30.18 Wybór lim. momentu ma wartość 0 lub • 30.18 ma ustawioną wartość Ustawiony limit momentu 1. OSTRZEŻENIE! Nie wolno używać minimalnego momentu do zatrzymywania obrotów silnika w odwrotnym kierunku. Użycie ograniczenia minimalnego momentu uniemożliwia przemiennikowi osiągnięcie zerowej prędkości i nie zatrzymuje silnika.</td>
<td>-300,0%</td>
<td></td>
</tr>
<tr>
<td>-1600,0…0,0%</td>
<td>Limit minimalnego momentu 1.</td>
<td>Patrz parametr 46.03</td>
<td></td>
</tr>
<tr>
<td>30.20 Maks. moment 1</td>
<td>Definiuje limit maksymalnego momentu dla przemiennika częstotliwości (jako procent momentu znamionowego silnika). Patrz wykres przy parametrze 30.18 Wybór lim. momentu. Limit obowiązuje, gdy • źródło określone przez parametr 30.18 Wybór lim. momentu ma wartość 0 lub • 30.18 ma ustawioną wartość Ustawiony limit momentu 1.</td>
<td>300,0%</td>
<td></td>
</tr>
<tr>
<td>0,0…1600,0%</td>
<td>Maks. moment 1</td>
<td>Patrz parametr 46.03</td>
<td></td>
</tr>
<tr>
<td>30.21 Źródło min. momentu 2</td>
<td>Definiuje źródło limitu minimalnego momentu dla przemiennika częstotliwości (jako procent momentu znamionowego silnika), gdy • źródło określone przez parametr 30.18 Wybór lim. momentu ma wartość 1 lub • 30.18 ma ustawioną wartość Ustawiony limit momentu 2. Patrz wykres przy parametrze 30.18 Wybór lim. momentu. Uwaga: Wszystkie wartości dodatnie otrzymane z wybranego źródła są odwrócone.</td>
<td>Min. moment 2</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>Brak.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AI1 skalowane</td>
<td>12.12 Wartość skalowana AI1 (patrz strona 146).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AI2 skalowane</td>
<td>12.22 Wartość skalowana AI2 (patrz strona 148).</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Min. moment 2</td>
<td>30.23 Minimalny moment 2.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30.22 Źródło maks. momentu 2</td>
<td>Definiuje źródło limitu maksymalnego momentu dla przemiennika częstotliwości (jako procent momentu znamionowego silnika), gdy • źródło określone przez parametr 30.18 Wybór lim. momentu ma wartość 1 lub • 30.18 ma ustawioną wartość Ustawiony limit momentu 2. Patrz wykres przy parametrze 30.18 Wybór lim. momentu. Uwaga: Wszystkie wartości ujemne otrzymane z wybranego źródła są odwrócone.</td>
<td>Maks. moment 2</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>Brak.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AI1 skalowane</td>
<td>12.12 Wartość skalowana AI1 (patrz strona 146).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AI2 skalowane</td>
<td>12.22 Wartość skalowana AI2 (patrz strona 148).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>40.01 PID procesu: akt.wart. wyj. (wyjście regulatora PID procesu).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Maks. moment 2</td>
<td>30.24 Maksymalny moment 2.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30.23 Minimalny moment 2</td>
<td>Definiuje limit minimalnego momentu dla przemiennika częstotliwości (jako procent momentu znamionowego silnika), gdy • źródło określone przez parametr 30.18 Wybór lim. momentu ma wartość 1 lub • 30.18 ma ustawioną wartość Ustawiony limit momentu 2 i • 30.21 Źródło min. momentu 2 ma ustawioną wartość Min. moment 2. Patrz wykres przy parametrze 30.18 Wybór lim. momentu. Uwaga: Wszystkie wartości ujemne otrzymane z wybranego źródła są odwrócone.</td>
<td>-300,0%</td>
<td></td>
</tr>
<tr>
<td>-1600,0...0,0%</td>
<td>Limit minimalnego momentu 2.</td>
<td>Patrz parametr 46.03</td>
<td></td>
</tr>
<tr>
<td>30.24 Maksymalny moment 2</td>
<td>Definiuje limit maksymalnego momentu dla przemiennika częstotliwości (jako procent momentu znamionowego silnika), gdy Limit obowiązuje, gdy • źródło określone przez parametr 30.18 Wybór lim. momentu ma wartość 1 lub • 30.18 ma ustawioną wartość Ustawiony limit momentu 2 i • 30.22 Źródło maks. momentu 2 ma ustawioną wartość Maks. moment 2. Patrz wykres przy parametrze 30.18 Wybór lim. momentu.</td>
<td>300,0%</td>
<td></td>
</tr>
<tr>
<td>0,0...1600,0%</td>
<td>Limit maksymalnego momentu 2.</td>
<td>Patrz parametr 46.03</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>30.26</td>
<td>Limit mocy napędowej</td>
<td>Definiuje maksymalną dopuszczalną moc podawaną przez inwerter do silnika jako procent znamionowej mocy silnika.</td>
<td>300,00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…600,00% Maksymalna moc silnika.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>30.27</td>
<td>Limit mocy generowanej</td>
<td>Definiuje maksymalną dopuszczalną moc podawaną przez silnik do inwertera jako procent znamionowej mocy silnika.</td>
<td>-300,00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-600,00…0,00% Maksymalna moc generowania.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>30.30</td>
<td>Kontrola przepięć</td>
<td>Umożliwia kontrolę nad przepięciami pośredniego łącza DC. Szybkie hamowanie obciążeń o dużej bezwładności powoduje wzrost napięcia do limitu kontroli przepięć. Aby uniemożliwić przekroczenie limitu przez napięcie DC, kontroli przepięcia automatycznie zmniejsza moment hamowania. Uwaga: Jeśli przemiennik częstotliwości jest wyposażony w czoper i rezystor hamowania lub regeneracyjny moduł zasilający, kontroler musi być włączony.</td>
<td>Włącz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieaktywne Kontrola przepięć wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Włącz Kontrola przepięć włączona.</td>
<td>1</td>
</tr>
<tr>
<td>30.31</td>
<td>Kontr. nad zbyt niskim nap.</td>
<td>Umożliwia kontrolę nad zbyt niskim napięciem pośredniego łącza DC. Jeśli napięcie DC spadnie z powodu odcięcia mocy wejściowej, kontroler niedostatecznego napięcia automatycznie zmniejsza moment silnika w celu utrzymania napięcia powyżej dolnego poziomu. Zmniejszenie momentu silnika spowoduje, że dzięki bezwładności obciążenia silnik będzie generował energię do przemiennika częstotliwości, podtrzymując zasilanie łącza DC i uniemożliwiając spadek napięcia do czasu zwolnienia silnika do zatrzymania. To rozwiązanie działa jako funkcja przejścia przez zanik zasilania w systemach z dużą bezwładnością, takich jak wiórówka lub wentylator. Uwaga: Jeśli przemiennik częstotliwości jest wyposażony w czoper i rezystor hamowania lub regeneracyjny moduł zasilający, kontroler musi być włączony.</td>
<td>Włącz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieaktywne Kontrola nad zbyt niskim napięciem wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Włącz Kontrola nad zbyt niskim napięciem włączona.</td>
<td>1</td>
</tr>
<tr>
<td>30.203</td>
<td>Strefa nieczuł. do przodu</td>
<td>Definiuje obszar nieczułości dla dodatniej prędkości zadanej, gdy prędkość zadana jest pobierana z wejścia analogowego.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…100,00% 10=1%</td>
<td></td>
</tr>
<tr>
<td>30.204</td>
<td>Strefa nieczuł. do tyłu</td>
<td>Definiuje obszar nieczułości dla ujemnej prędkości zadanej, gdy prędkość zadana jest pobierana z wejścia analogowego.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…100,00% 10=1%</td>
<td></td>
</tr>
</tbody>
</table>

31 Funkcje błędu

Konfiguracja zewnętrznych zdarzeń. Wybór działania przemiennika częstotliwości w sytuacjach wystąpienia błędu.

31.01 Źródło zdarzenia zewn. 1

Definiuje źródło zdarzenia zewnętrznego 1. Zobacz również parametr 31.02 **Typ zdarzenia zewn. 1.**

<table>
<thead>
<tr>
<th>Aktywne (fasz)</th>
<th>Nieaktywne (prawda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Nieaktywne (prawda)
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31.02 Typ zdarzenia zewn. 1</td>
<td>Wybiera typ zdarzenia zewnętrznego 1.</td>
<td>Błąd</td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Zdarzenie zewnętrzne generuje błąd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Zdarzenie zewnętrzne generuje ostrzeżenie.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31.03 Źródło zdarzenia zewn. 2</td>
<td>Definiuje źródło zdarzenia zewnętrznego 2. Zobacz również parametr 31.04 Typ zdarzenia zewn. 2. Dostępne opcje zawiera opis parametru 31.01 Źródło zdarzenia zewn. 1.</td>
<td>Nieaktywne (prawda)</td>
<td></td>
</tr>
<tr>
<td>31.04 Typ zdarzenia zewn. 2</td>
<td>Wybiera typ zdarzenia zewnętrznego 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Zdarzenie zewnętrzne generuje błąd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Zdarzenie zewnętrzne generuje ostrzeżenie.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31.05 Źródło zdarzenia zewn. 3</td>
<td>Definiuje źródło zdarzenia zewnętrznego 3. Zobacz również parametr 31.06 Typ zdarzenia zewn. 3. Dostępne opcje zawiera opis parametru 31.01 Źródło zdarzenia zewn. 1.</td>
<td>Nieaktywne (prawda)</td>
<td></td>
</tr>
<tr>
<td>31.06 Typ zdarzenia zewn. 3</td>
<td>Wybiera typ zdarzenia zewnętrznego 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Zdarzenie zewnętrzne generuje błąd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Zdarzenie zewnętrzne generuje ostrzeżenie.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31.07 Źródło zdarzenia zewn. 4</td>
<td>Definiuje źródło zdarzenia zewnętrznego 4. Zobacz również parametr 31.08 Typ zdarzenia zewn. 4. Dostępne opcje zawiera opis parametru 31.01 Źródło zdarzenia zewn. 1.</td>
<td>Nieaktywne (prawda)</td>
<td></td>
</tr>
<tr>
<td>31.08 Typ zdarzenia zewn. 4</td>
<td>Wybiera typ zdarzenia zewnętrznego 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Zdarzenie zewnętrzne generuje błąd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Zdarzenie zewnętrzne generuje ostrzeżenie.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31.09 Źródło zdarzenia zewn. 5</td>
<td>Definiuje źródło zdarzenia zewnętrznego 5. Zobacz również parametr 31.10 Typ zdarzenia zewn. 5. Dostępne opcje zawiera opis parametru 31.01 Źródło zdarzenia zewn. 1.</td>
<td>Nieaktywne (prawda)</td>
<td></td>
</tr>
<tr>
<td>31.10 Typ zdarzenia zewn. 5</td>
<td>Wybiera typ zdarzenia zewnętrznego 5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Zdarzenie zewnętrzne generuje błąd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Zdarzenie zewnętrzne generuje ostrzeżenie.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>31.11</td>
<td>Wybór resetu błędu</td>
<td>Wybiera źródło zewnętrznego sygnału resetowania błędu. Sygnał resetuje przemiennik częstotliwości po wystąpieniu sytuacji awaryjnej, jeśli przyczyna błędu już nie występuje. 0 -> 1 = Reset</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>0</td>
<td>Nie wybrano</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Wybrano</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
</tbody>
</table>

Uwaga: Resetowanie błędu z interfejsu magistrali komunikacyjnej jest zawsze monitorowane bez względu na ustawienia tego parametru.
Wybór autoresetu

Wybiera błędy, które są resetowane automatycznie. Parametr jest 16-bitowym słowem, w którym każdy bit odpowiada typowi błędu. Jeśli bit jest ustawiony na wartość 1, powiązany błąd jest automatycznie resetowany.

OSTRZEŻENIE! Przed aktywacją funkcji należy się upewnić, że nie spowoduje to wystąpienia niebezpiecznych sytuacji. Funkcja automatycznie uruchamia ponownie przemiennik częstotliwości i kontynuuje działanie po błędzie. Bity tej wartości binarnej odpowiadają następującym błędom:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Błąd</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Przetężenie</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Przepięcie</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Za niskie napięcie</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Błąd nadzoru AI</td>
<td></td>
</tr>
<tr>
<td>4-9</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Wybrany błąd (patrz parametr 31.13 Błąd wybieralny)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Błąd zewnętrzny 1 (ze źródła wybranego za pomocą parametru 31.01 Źródło zdarzenia zewn. 1)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Błąd zewnętrzny 2 (ze źródła wybranego za pomocą parametru 31.03 Źródło zdarzenia zewn. 2)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Błąd zewnętrzny 3 (ze źródła wybranego za pomocą parametru 31.05 Źródło zdarzenia zewn. 3)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Błąd zewnętrzny 4 (ze źródła wybranego za pomocą parametru 31.07 Źródło zdarzenia zewn. 4)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Błąd zewnętrzny 5 (ze źródła wybranego za pomocą parametru 31.09 Źródło zdarzenia zewn. 5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h…FFFFh</th>
<th>Słowo konfiguracji automatycznego resetowania.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.13</td>
<td>Błąd wybieralny</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Za pomocą parametru 31.12 Wybór autoresetu, bit 10, definiuje błąd, który można automatycznie zresetować. Błędy wymienione w rozdziale Śledzenie błędów (str. 425). Uwaga: Kody błędów są zapisane w formacie szesnastkowym. Dla tego parametru wybrany kod musi zostać przekonwertowany na liczbę dziesiętną.</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h…FFFFh</th>
<th>Kod błędu.</th>
<th>10 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.14</td>
<td>Liczba prób</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definiuje liczbę wystąpień automatycznego resetowania błędów wykonany przez przemiennik częstotliwości w czasie zdefiniowanym za pomocą parametru 31.15 Łączny czas prób.</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0…5</th>
<th>Liczba wystąpień automatycznego resetowania.</th>
<th>10 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.15</td>
<td>Łączny czas prób</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definiuje czas, przez jaki funkcja automatycznego resetowania będzie próbować zresetować przemiennik częstotliwości. Podczas tego czasu funkcja wykona automatyczne resetowanie tyle razy, ile określono w parametrze 31.14 Liczba prób.</td>
<td>30,0 s</td>
</tr>
</tbody>
</table>

| 1,0…600,0 s | Czas dla automatycznego resetowania. | 10 = 1 s |

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>31.16</td>
<td>Czas opóźnienia</td>
<td>Definiuje czas po wystąpieniu błędu, który przemiennik częstotliwości odczuje przed próbą automatycznego resetowania. Patrz parametr 31.12 Wybór autoresetu.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0…120,0 s Opóźnienie automatycznego resetowania.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>31.19</td>
<td>Utrata fazy silnika</td>
<td>Wybiera sposób, w jaki przemiennik częstotliwości reaguje w przypadku wykrycia utraty fazy silnika.</td>
<td>Błąd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bez działania Żadna czynność nie jest wykonywana.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Błąd Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 3381 Utrata fazy wyjściowej.</td>
<td>1</td>
</tr>
<tr>
<td>31.20</td>
<td>Błąd doziemienia</td>
<td>Wybiera sposób, w jaki przemiennik częstotliwości reaguje na wykryty błąd uziemienia lub asymetrię prądu w silniku lub kablu silnika.</td>
<td>Błąd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bez działania Żadna czynność nie jest wykonywana.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ostrzeżenie Przemiennik częstotliwości generuje ostrzeżenie A2B3 Zwarcie doziemne.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Błąd Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 2330 Zwarcie doziemne.</td>
<td>2</td>
</tr>
<tr>
<td>31.21</td>
<td>Utrata fazy zasilania</td>
<td>Wybiera sposób, w jaki przemiennik częstotliwości reaguje w przypadku wykrycia utraty fazy zasilania.</td>
<td>Błąd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bez działania Żadna czynność nie jest wykonywana.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Błąd Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 3130 Utrata fazy wejściowej.</td>
<td>1</td>
</tr>
</tbody>
</table>
Wybiera, które wskazania są podawane, gdy jeden lub oba sygnały bezpiecznego włączania momentu (STO) są wyłączone lubutracone. Wskazania zależą również od tego, czy przemiennik częstotliwości działa, czy jest zatrzymany w momencie zdarzenia.

Tabele w poniższych opisach opcji przedstawiają wskazania wygenerowane dla określonych ustawień.

Uwagi:

- Ten parametr nie wpływa na obsługę samej funkcji STO. Funkcja STO będzie działała bez względu na ustawienie tego parametru: uruchomiony przemiennik częstotliwości zatrzyma się po usunięciu jednego lub obu sygnałów STO i nie zostanie uruchomiony do momentu przywrócenia obu sygnałów STO i zresetowania wszystkich błędów.
- Utrata tylko jednego sygnału STO generuje błąd, który jest interpretowany jako nieprawidłowe działanie.

Więcej informacji o funkcji STO można znaleźć w rozdziale *Funkcja bezpiecznego wyłączania momentu* w podręczniku użytkownika przemiennika częstotliwości.

Wskazanie STO praca/zatr.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
</table>
| 31.22| Wskazanie STO praca/zatr. | Wybiera, które wskazania są podawane, gdy jeden lub oba sygnały bezpiecznego włączania momentu (STO) są wyłączone lubutracone. Wskazania zależą również od tego, czy przemiennik częstotliwości działa, czy jest zatrzymany w momencie zdarzenia. Tabele w poniższych opisach opcji przedstawiają wskazania wygenerowane dla określonych ustawień. **Uwagi:**
- Ten parametr nie wpływa na obsługę samej funkcji STO. Funkcja STO będzie działała bez względu na ustawienie tego parametru: uruchomiony przemiennik częstotliwości zatrzyma się po usunięciu jednego lub obu sygnałów STO i nie zostanie uruchomiony do momentu przywrócenia obu sygnałów STO i zresetowania wszystkich błędów.
- Utrata tylko jednego sygnału STO generuje błąd, który jest interpretowany jako nieprawidłowe działanie.
| | | Więcej informacji o funkcji STO można znaleźć w rozdziale *Funkcja bezpiecznego wyłączania momentu* w podręczniku użytkownika przemiennika częstotliwości. | |

Błąd/Błąd

<table>
<thead>
<tr>
<th>Wejścia</th>
<th>Wskazanie (bieg lub zatrzymanie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1</td>
<td>IN2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Błąd/Ostrzeżenie

<table>
<thead>
<tr>
<th>Wejścia</th>
<th>Praca</th>
<th>Zatrzymanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1</td>
<td>IN2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Błąd 5091 Bezpieczne włączanie momentu</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Błąd FA81 Bezpieczne włączanie momentu 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Błąd FA82 Bezpieczne włączanie momentu 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(Normalna praca)</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>245</td>
<td>Błąd/Zdarzenie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wejścia</th>
<th>Wskazanie</th>
<th>Zatrzymanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1 IN2</td>
<td>Praca</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>Błąd 5091 Bezpieczne włączanie momentu</td>
<td>Zdarzenie B5A0 Bezpieczne włączanie momentu</td>
</tr>
<tr>
<td>0 1</td>
<td>Błąd FA81 Bezpieczne włączanie momentu 1</td>
<td>Błąd FA81 Bezpieczne włączanie momentu 1</td>
</tr>
<tr>
<td>1 0</td>
<td>Błąd FA82 Bezpieczne włączanie momentu 2</td>
<td>Błąd FA82 Bezpieczne włączanie momentu 2</td>
</tr>
<tr>
<td>1 1</td>
<td>(Normalna praca)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ostrzeżenie/ Ostrzeżenie</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wejścia</td>
<td>Wskazanie (bieg lub zatrzymanie)</td>
<td></td>
</tr>
<tr>
<td>IN1 IN2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>Ostrzeżenie A5A0 Bezpieczne włączanie momentu</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Błąd FA81 Bezpieczne włączanie momentu 1</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td>Błąd FA82 Bezpieczne włączanie momentu 2</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>(Normalna praca)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zdarzenie/Zdarzenie</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wejścia</td>
<td>Wskazanie (bieg lub zatrzymanie)</td>
<td></td>
</tr>
<tr>
<td>IN1 IN2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>Zdarzenie B5A0 Bezpieczne włączanie momentu</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Zdarzenie B5A0 Bezpieczne włączanie momentu i błąd FA81 Bezpieczne włączanie momentu 1</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td>Zdarzenie B5A0 Bezpieczne włączanie momentu i błąd FA82 Bezpieczne włączanie momentu 2</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>(Normalna praca)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bez wskazania/ bez wskazania</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wejścia</td>
<td>Wskazanie (bieg lub zatrzymanie)</td>
<td></td>
</tr>
<tr>
<td>IN1 IN2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>Brak</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Błąd FA81 Bezpieczne włączanie momentu 1</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td>Błąd FA82 Bezpieczne włączanie momentu 2</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>(Normalna praca)</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.23</td>
<td>Błąd okablow. lub doziemie.</td>
<td>Wybiera sposób, w jaki przemiennik częstotliwości reaguje na nieprawidłowe podłączenie kabli zasilania i kabli silnika (tzn. kabel zasilania wejścia jest podłączony do złącza silnika przemiennika częstotliwości).</td>
<td>Błąd</td>
</tr>
</tbody>
</table>

Bez działania
- Żadna czynność nie jest wykonywana. | 0 |
Błąd
- Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 3181 Połączenie krzyżowe. | 1 |

Funkcja utyku

Wybiera sposób, w jaki przemiennik częstotliwości reaguje na niespodziewane przerwanie pracy przez silnik (utyk).

Utyk silnika jest zdefiniowany w następujący sposób:
- Przemiennik częstotliwości przekracza limit prądu utyku (31.25 Limit prądu f. utyku) i
- częstotliwość wyjściowa jest poniżej poziomu określonego parametrem 31.27 Limit częstotliwości futyku lub prędkość silnika jest poniżej poziomu określonego parametrem 31.26 Limit prędkości f. utyku i
- powyższe warunki występowyły dłużej niż przez okres określony parametrem 31.28 Czas utyku.

Bez działania
- Brak (nadzór nad utykiem silnika wyłączony). | 0 |
Ostrzeżenie
- Przemiennik częstotliwości generuje ostrzeżenie A780 Utyk silnika. | 1 |
Błąd
- Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 7121 Utyk silnika. | 2 |

Limit prądu f. utyku

Limit prądu utyku silnika jest określany jako procentowa wartość prądu znamionowego silnika. Patrz parametr 31.24 Funkcja utyku.

- 0,0…1600,0% Limit prądu utyku silnika. -

Limit prędkości f. utyku

Limit prędkości utyku silnika w obr./min. Patrz parametr 31.24 Funkcja utyku.

- 0,00…10000,00 obr./min Limit prędkości utyku silnika. | Patrz parametr 46.01 |

Limit częstotliwości futyku

Uwaga: Ustawienie limitu poniżej 10 Hz nie jest zalecane.

- 0,00…1000,00 Hz Limit częstotliwości utyku silnika. | Patrz parametr 46.02 |

Czas utyku

Czas utyku silnika. Patrz parametr 31.24 Funkcja utyku.

- 0…3600 s Czas utyku silnika. -
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
</table>
| 31.30 | Marg. wył. dla przekr. prędk. | Razem z parametrami 30.11 Min. prędkość i 30.12 Maks. prędkość definiuje maksymalną dopuszczalną prędkość silnika (ochrona przed nadmierną prędkością). Jeśli prędkość (24.02 Użyte sprz. zwr. od prędkości) przekracza limit prędkości zdefiniowany w parametrze 30.11 lub 30.12 o wartość większą niż określona w tym parametrze, przemiennik częstotliwości zostaje awaryjnie wyłączony z powodu błędu 7310 Za duża prędkość. **OSTRZEŻENIE!** Ta funkcja nadzoruje tylko prędkość w trybie wektorowego sterowania silnikiem. Funkcja nie działa w trybie skalarnego sterowania silnikiem. **Przykład:** Jeśli maksymalna prędkość to 1420 obr./min i margines wyłączenia awaryjnego przemiennika częstotliwości to 300 obr./min, przemiennik częstotliwości zostanie wyłączony awaryjnie przy prędkości 1720 obr./min. ****Prędkość (24.02)***
| | | **0,00…** 10000,00 obr./min Margines wyłączenia awaryjnego z powodu nadmiernej prędkości. Patrz parametr 46.01 | 500,00 obr./min |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.31</td>
<td>Marg. wyl. dla przekr.czest.</td>
<td>Razem z parametrami 30.13 Min. częstotliwość i 30.14 Maks. częstotliwość definiuje maksymalną dopuszczalną częstotliwość silnika. Jeśli prędkość (28.01 Wejście rampy w. zad. częst.) przekracza limit częstotliwości zdefiniowany w parametrze 30.13 lub 30.14 o wartość większą niż określona w tym parametrze, przemiennik częstotliwości zostaje awaryjnie wyłączony z powodu błędu 73F0 Za duża częstotliwość. OSTRZEŻENIE! Ta funkcja nadzoruje tylko prędkość w trybie skalarnego sterowania silnikiem. Funkcja nie działa w trybie wektorowego sterowania silnikiem. Przykład: Jeśli maksymalna prędkość to 40 Hz i margines wyłączenia awaryjnego przemienika częstotliwości to 10 Hz, przemiennik częstotliwości wyłącza się awaryjnie przy prędkości 50 Hz. Prędkość (28.02)</td>
<td>50,00 Hz</td>
</tr>
</tbody>
</table>

![Diagram](image)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.02</td>
<td>Patrz parametr</td>
<td>0,00…10000,00 Hz Margines wyłączenia awaryjnego z powodu zbyt dużej częstotliwości.</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
</table>
 • obserwację czasu, w jakim hamuje silnik, lub
 • porównanie aktualnych i oczekiwanych współczynników zwalniania. Jeśli ten parametr ustawiono na 0%, maksymalny czas zatrymania jest ustawiany bezpośrednio w parametrze 31.33. W przeciwnym razie parametr 31.32 definiuje maksymalne dopuszczalne odchylenie od oczekiwанego współczynnika zwalniania, który jest obliczany na podstawie parametrów 23.11… 23.15 (Off1) lub 23.23 Czas zatr. awaryjnego (Off3). Jeśli rzeczywisty współczynnik zwalniania (24.02) odbiega zbytnio od oczekiwанego współczynnika, przemiennik częstotliwości zostaje awaryjnie wyłączony z powodu błędu 73B0 Błąd rampy zatr. awar., ustawia bit 8 parametru 06.17 Słowo stanu 2 przem. i zwalnia wybiegiem do zatrymania. Jeśli parametr 31.32 jest ustawiony na 0% i parametr 31.33 jest ustawiony na 0 s, nadzór rampy zatrymania awaryjnego jest wyłączony. Zobacz również parametr 21.04 Tryb zatrymania awaryjnego. | 0% |
| 31.33 | Opóź. nadzoru rampy zatr. awaryj. | Jeśli parametr 31.32 Nadzór rampy zatrz. awaryjn. jest ustawiony na 0%, ten parametr definiuje maksymalny czas zatrymania awaryjnego (tryb Off1 lub Off3). Jeśli silnik nie zatrzymał się po upływie tego czasu, przemiennik częstotliwości zostaje wyłączany awaryjnie z powodu błędu 73B0 Błąd rampy zatr. awar., ustawia bit 8 parametru 06.17 Słowo stanu 2 przem. i zwalnia wybiegiem do zatrymania. Jeśli parametr 31.32 ustawiono na wartość inną niż 0%, ten parametr definiuje opóźnienie pomiędzy otrzymaniem polecenia zatrymania awaryjnego i aktywacją nadzoru. Zaleca się określenie krótkiego opóźnienia, aby umożliwić stabilizację współczynnika zmiany prędkości. | 0 s |

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…100 s</td>
<td>Maksymalny czas spadku rampy lub opóźnienie aktywacji nadzoru.</td>
<td>Maksymalne odchylenie od oczekiwanej wartości współczynnika zwalniania.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>
31.205 Maskowanie ostrz. dźwigu

Wybiera ostrzeżenia dźwigu wywołujące zdarzenia na silniku. Gdy bit tego parametru ma wartość 1, powiązane ostrzeżenie może wyzwolić zdarzenie. Gdy bit ma wartość 0, ostrzeżenie nie pojawi się w rejestratorze zdarzeń ani na panelu sterowania, a ostrzeżenie będzie można odczytać tylko z parametrów 09.01 SW1 dźwigu. Bity tej wartości binarnej odpowiadają następującym ostrzeżeniom:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Poślizg hamulca w stanie statycznym</td>
<td>D200 Poślizg hamulca w stanie statycznym</td>
</tr>
<tr>
<td>1</td>
<td>Spowolnienie do przodu/do tyłu</td>
<td>D201 Ograniczenie spowalniania do przodu, D202 Ograniczenie spowalniania do tyłu</td>
</tr>
<tr>
<td>2</td>
<td>Zarezerwowano</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ograniczenie zatrzymujące do przodu/do tyłu</td>
<td>D205 Ograniczenie zatrzymujące do przodu, D206 Ograniczenie zatrzymujące do tyłu</td>
</tr>
<tr>
<td>5</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kontrola wartości zadanej joysticka</td>
<td>D208 Kontrola wartości zadanej joysticka</td>
</tr>
<tr>
<td>7</td>
<td>Pozycja zerowa joysticka</td>
<td>D209 Pozycja zerowa joysticka</td>
</tr>
<tr>
<td>8</td>
<td>Potwierdzenie zasilania</td>
<td>D20B Potwierdzenie zasilania</td>
</tr>
<tr>
<td>9</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Szybkie zatrzymanie</td>
<td>D20A Szybkie zatrzymanie</td>
</tr>
<tr>
<td>11..15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh Maskujące słowo stanu ostrzeżenia o dźwigu

<table>
<thead>
<tr>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFFFFFFh</td>
<td></td>
</tr>
</tbody>
</table>
Nadzór

32.01 Stan nadzoru

Słowo stanu nadzoru sygnału.
Wskazuje, czy wartości monitorowane przez funkcje nadzoru sygnału znajdują się w obrębie odpowiednich limitów lub poza nimi.

Uwaga: To słowo jest niezależne od czynności przemiennika częstotliwości zdefiniowanych przez parametry 32.06, 32.16, 32.26, 32.36, 32.46 i 32.56.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nadzór 1 aktywny</td>
<td>1 = Sygnał wybrany za pomocą parametru 32.07 znajduje się poza limitami.</td>
</tr>
<tr>
<td>1</td>
<td>Nadzór 2 aktywny</td>
<td>1 = Sygnał wybrany za pomocą parametru 32.17 znajduje się poza limitami.</td>
</tr>
<tr>
<td>2</td>
<td>Nadzór 3 aktywny</td>
<td>1 = Sygnał wybrany za pomocą parametru 32.27 znajduje się poza limitami.</td>
</tr>
<tr>
<td>3</td>
<td>Nadzór 4 aktywny</td>
<td>1 = Sygnał wybrany za pomocą parametru 32.37 znajduje się poza limitami.</td>
</tr>
<tr>
<td>4</td>
<td>Nadzór 5 aktywny</td>
<td>1 = Sygnał wybrany za pomocą parametru 32.47 znajduje się poza limitami.</td>
</tr>
<tr>
<td>5</td>
<td>Nadzór 6 aktywny</td>
<td>1 = Sygnał wybrany za pomocą parametru 32.57 znajduje się poza limitami.</td>
</tr>
<tr>
<td>6…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh Słowo stanu nadzoru sygnału. 1 = 1

32.05 Funkcja nadzoru 1
Wybiera tryb funkcji nadzoru sygnału 1. Określa sposób, w jaki monitorowany sygnał (patrz parametr 32.07) jest porównywany z dolnymi i górnymi limitami (odpowiednio 32.09 i 32.10). Czynność, która ma zostać wykonana, gdy warunek jest spełniony, jest określona parametrem 32.06.

Nieaktywne

Poniżej
Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu.

Powyżej
Czynność jest wykonywana, gdy sygnał wzrośnie powyżej górnego limitu.

Bezwzgl. poniżej
Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględного) dolnego limitu.

Bezwzgl. powyżej
Czynność jest wykonywana, gdy wartość bezwzględna sygnału wzrośnie powyżej (bezwzględnego) górnego limitu.

Obie
Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu lub wzrośnie powyżej górnego limitu.

Bezwzgl. obie
Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu lub wzrośnie powyżej (bezwzględnego) górnego limitu.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.06</td>
<td>Działanie nadzoru 1</td>
<td>Określa, czy przemiennik generuje błąd, generuje ostrzeżenie czy nie generuje żadnego zdarzenia, gdy wartości monitorowane przez funkcję nadzoru sygnału 1 wykracza poza limity. Uwaga: Ten parametr nie wpływa na stan wskazywany przez parametr 32.01 Stan nadzoru.</td>
<td>Bez działania</td>
</tr>
<tr>
<td></td>
<td>Bez działania</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Wygenerowano ostrzeżenie 8B00 Nadzór sygnału.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Błąd jest uruchomiony</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału, jeśli jest uruchomiony.</td>
<td>3</td>
</tr>
<tr>
<td>32.07</td>
<td>Sygnał nadzoru 1</td>
<td>Wybiera sygnał, który ma być monitorowany przez funkcję nadzoru sygnału 1.</td>
<td>Częstotliwość</td>
</tr>
<tr>
<td></td>
<td>Zero</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana</td>
<td>01.01 Użyta prędkość silnika.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Częstotliwość</td>
<td>01.06 Częstotliwość wyjściowa.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prąd</td>
<td>01.07 Prąd silnika.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Moment</td>
<td>01.10 Moment silnika.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Napięcie DC</td>
<td>01.11 Napięcie DC.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Moc wyjściowa</td>
<td>01.14 Moc wyjściowa.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AI1</td>
<td>12.11 Wartość aktualna AI1.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>AI2</td>
<td>12.21 Wartość aktualna AI2.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości przed ramp.</td>
<td>23.01 W. zad. prędk. przed ramp..</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości po ramp.</td>
<td>23.02 W. zad. prędk. po ramp..</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. prędkości</td>
<td>24.01 Użyta wart. zad. prędkości.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Użyta wart. zad. momentu</td>
<td>26.02 Użyta wart. zad. momentu.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. częstotliwości</td>
<td>28.02 Wyjście rampy w. zad. częst.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Temperatura inwertera</td>
<td>05.11 Temperatura inwertera.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Wyjście PID procesu</td>
<td>40.01 PID procesu: akt.wart. wyj..</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Sprężenie zwrotne PID procesu</td>
<td>40.02 PID procesu: akt.wart.sprz.zw..</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Aktualna wart. nastawy</td>
<td>40.03 PID procesu: akt.wart.nastawy.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Aktualna wart. uchybu</td>
<td>40.04 PID procesu: akt.wart.odchył.</td>
<td>27</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>32.08</td>
<td>Czas filtru nadzoru 1</td>
<td>Definiuje stałą czasu filtru dla sygnału monitorowanego przez nadzór sygnału 1.</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td>0,000 ... 30,000 s</td>
<td>Czas filtru sygnału.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.09</td>
<td>Nadzór 1: dolny limit</td>
<td>Definiuje dolny limit nadzoru sygnału 1.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-21474830,00... 21474830,00</td>
<td>Dolny limit.</td>
<td>-</td>
</tr>
<tr>
<td>32.10</td>
<td>Nadzór 1: górny limit</td>
<td>Definiuje górny limit nadzoru sygnału 1.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-21474830,00... 21474830,00</td>
<td>Górnny limit.</td>
<td>-</td>
</tr>
<tr>
<td>32.11</td>
<td>Histereza nadzoru 1</td>
<td>Definiuje histerezę dla sygnału monitorowanego przez funkcję nadzoru sygnału 1.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00...100000,00</td>
<td>Histereza.</td>
<td>-</td>
</tr>
<tr>
<td>32.15</td>
<td>Funkcja nadzoru 2</td>
<td>Wybiera tryb funkcji nadzoru sygnału 2. Określa sposób, w jaki monitorowany sygnał (patrz parametr 32.17) jest porównywany z dolnymi i górnymi limitami (odpowiednio 32.19 i 32.20). Czynność, która ma zostać wykonana, gdy warunek jest spłyniony, jest określana parametrem 32.16.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Nadzór sygnału 2 nie jest używany.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poniżej</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Powyżej</td>
<td>Czynność jest wykonywana, gdy sygnał wzrośnie powyżej górnego limitu.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. poniżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. powyżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Obie</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu lub wzrośnie powyżej górnego limitu.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. obie</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu lub wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Histereza</td>
<td>Działanie wykonywane, gdy sygnał wzrośnie powyżej wartości zdefiniowanej jako +0,5 · zakres histerezy (32.21 Histereza nadzoru 2). Działanie wykonywane, gdy sygnał spadnie poniżej wartości zdefiniowanej jako -0,5 · zakres histerezy.</td>
<td>7</td>
</tr>
<tr>
<td>32.16</td>
<td>Działanie nadzoru 2</td>
<td>Określa, czy przemiennik generuje błąd, generuje ostrzeżenie czy nie generuje żadnego zdarzenia, gdy wartości monitorowane przez funkcję nadzoru sygnału 2 wykraczaą poza limity. Uwaga: Ten parametr nie wpływa na stan wskazywany przez parametr 32.01 Stan nadzoru.</td>
<td>Bez działania</td>
</tr>
<tr>
<td></td>
<td>Bez działania</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Wygenerowano ostrzeżenie A8B0 Nadzór sygnału.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemieniarka częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału.</td>
<td>2</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Błąd, jeśli jest uruchomiony</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału, jeśli jest uruchomiony.</td>
<td>3</td>
</tr>
<tr>
<td>32.17</td>
<td>Sygnał nadzoru 2</td>
<td>Wybiera sygnał, który ma być monitorowany przez funkcję nadzoru sygnału 2. Dostępne opcje zawiera opis parametru 32.07 Sygnał nadzoru 1.</td>
<td>Pęd</td>
</tr>
<tr>
<td>32.18</td>
<td>Czas filtru nadzoru 2</td>
<td>Definiuje stałą czasu filtru dla sygnału monitorowanego przez nadzór sygnału 2.</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,000 ... 30,000 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Czas filtru sygnału.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.19</td>
<td>Nadzór 2: dolny limit</td>
<td>Definiuje dolny limit nadzoru sygnału 2.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21474830,00... 21474830,00</td>
<td>-</td>
</tr>
<tr>
<td>32.20</td>
<td>Nadzór 2: górny limit</td>
<td>Definiuje górny limit nadzoru sygnału 2.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21474830,00... 21474830,00</td>
<td>-</td>
</tr>
<tr>
<td>32.21</td>
<td>Histereza nadzoru 2</td>
<td>Definiuje histerezę dla sygnału monitorowanego przez funkcję nadzoru sygnału 2.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00...100000,00</td>
<td>-</td>
</tr>
<tr>
<td>32.25</td>
<td>Funkcja nadzoru 3</td>
<td>Wybiera tryb funkcji nadzoru sygnału 3. Określa sposób, w jaki monitorowany sygnał (patrz parametr 32.27) jest porównywany z dolnymi i górnymi limitami (właściwie 32.29 i 32.30). Czynność, która ma zostać wykonana, gdy warunki są spełnione, jest określana parametrem 32.26.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieaktywne Nadzór sygnału 3 nie jest używany.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poniżej</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Powyżej</td>
<td>Czynność jest wykonywana, gdy sygnał wzrośnie powyżej górnego limitu.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. poniżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględne) dolnego limitu.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. powyżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału wzrośnie powyżej (bezwzględne) górnego limitu.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Obie</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu lub wzrośnie powyżej górnego limitu.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. obie</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględne) dolnego limitu lub wzrośnie powyżej (bezwzględne) górnego limitu.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Histereza</td>
<td>Działanie wykonywane, gdy sygnał wzrośnie powyżej wartości zdefiniowane jako +0,5 · zakres histerezy (32.31 Histereza nadzoru 3). Działanie wykonywane, gdy sygnał spadnie poniżej wartości zdefiniowane jako -0,5 · zakres histerezy.</td>
<td>7</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.26</td>
<td>Działanie nadzoru 3</td>
<td>Określa, czy przemiennik generuje błąd, generuje ostrzeżenie czy nie generuje żadnego zdarzenia, gdy wartości monitorowane przez funkcję nadzoru sygnału 3 wykraczać poza limity. Uwaga: Ten parametr nie wpływa na stan wskazywany przez parametr 32.01 Stan nadzoru.</td>
<td>Bez działania</td>
</tr>
<tr>
<td></td>
<td>Bez działania</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Wygenerowano ostrzeżenie A8B0 Nadzór sygnału.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Błąd jest uruchomiony</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału, jeśli jest uruchomiony.</td>
<td>3</td>
</tr>
<tr>
<td>32.27</td>
<td>Sygnał nadzoru 3</td>
<td>Wybiera sygnał, który ma być monitorowany przez funkcję nadzoru sygnału 3. Dostępne opcje zawiera opis parametru 32.07 Sygnał nadzoru 1.</td>
<td>Moment</td>
</tr>
<tr>
<td>32.28</td>
<td>Czas filtru nadzoru 3</td>
<td>Definiuje stałą czasu filtru dla sygnału monitorowanego przez nadzór sygnału 3.</td>
<td>0,00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…30,000 s</td>
<td>Czas filtru sygnału.</td>
</tr>
<tr>
<td>32.29</td>
<td>Nadzór 3: dolny limit</td>
<td>Definiuje dolny limit nadzoru sygnału 3.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21474830,00…21474830,00</td>
<td>Dolny limit.</td>
</tr>
<tr>
<td>32.30</td>
<td>Nadzór 3: górny limit</td>
<td>Definiuje górny limit nadzoru sygnału 3.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21474830,00…21474830,00</td>
<td>Górný limit.</td>
</tr>
<tr>
<td>32.31</td>
<td>Histereza nadzoru 3</td>
<td>Definiuje histerezę dla sygnału monitorowanego przez funkcję nadzoru sygnału 3.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00…100000,00</td>
<td>Histereza.</td>
</tr>
<tr>
<td>32.35</td>
<td>Funkcja nadzoru 4</td>
<td>Wybiera tryb funkcji nadzoru sygnału 4. Określa sposób, w jaki monitorowany sygnał (patrz parametr 32.37) jest porównywany z dolnymi i górnymi limitami (odpowiednio 32.39 i 32.30). Czynność, która ma zostać wykonana, gdy warunek jest spełniony, jest określana parametrem 32.36.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Nadzór sygnału 4 nie jest używany.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poniżej</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Powyżej</td>
<td>Czynność jest wykonywana, gdy sygnał wzrośnie powyżej górnego limitu.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. poniżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. powyżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Obie</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu lub wzrośnie powyżej górnego limitu.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. obie</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu lub wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>6</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Histereza</td>
<td>Działanie wykonywane, gdy sygnał wzrośnie powyżej wartości zdefiniowanej jako +0,5 · zakres histerezy (32.41 Histereza nadzoru 4). Działanie wykonywane, gdy sygnał spadnie poniżej wartości zdefiniowanej jako -0,5 · zakres histerezy.</td>
<td>7</td>
</tr>
<tr>
<td>32.36</td>
<td>Działanie nadzoru 4</td>
<td>Określa, czy przemiennik generuje błąd, generuje ostrzeżenie czy nie generuje żadnego zdarzenia, gdy wartości monitorowane przez funkcję nadzoru sygnału 4 wykraczać za limity. Uwaga: Ten parametr nie wpływa na stan wskazywany przez parametr 32.01 Stan nadzoru.</td>
<td>Bez działania</td>
</tr>
<tr>
<td>Bez działania</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Wygenerowano ostrzeżenie A8B0 Nadzór sygnału.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Błąd jest uruchomiony</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału, jeśli jest uruchomiony.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32.37</td>
<td>Sygnał nadzoru 4</td>
<td>Wybiera sygnał, który ma być monitorowany przez funkcję nadzoru sygnału 4. Dostępne opcje zawiera opis parametru 32.07 Sygnał nadzoru 1.</td>
<td>Zero</td>
</tr>
<tr>
<td>32.38</td>
<td>Czas filtu nadzoru 4</td>
<td>Definiuje stałą czasu filtra dla sygnału monitorowanego przez nadzór sygnału 4.</td>
<td>0,000 s</td>
</tr>
<tr>
<td>32.39</td>
<td>Nadzór 4: dolny limit</td>
<td>Definiuje dolny limit nadzoru sygnału 4.</td>
<td>0,00</td>
</tr>
<tr>
<td>-21474830,00...21474830,00</td>
<td>Dolny limit.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>32.40</td>
<td>Nadzór 4: górny limit</td>
<td>Definiuje górny limit nadzoru sygnału 4.</td>
<td>0,00</td>
</tr>
<tr>
<td>-21474830,00...21474830,00</td>
<td>Górný limit.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>32.41</td>
<td>Histereza nadzoru 4</td>
<td>Definiuje histerezę dla sygnału monitorowanego przez funkcję nadzoru sygnału 4.</td>
<td>0,00</td>
</tr>
<tr>
<td>0,00...100000,00</td>
<td>Histereza.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>32.45</td>
<td>Funkcja nadzoru 5</td>
<td>Wybiera tryb funkcji nadzoru sygnału 5. Określa sposób, w jaki monitorowany sygnał (patrz parametr 32.47) jest porównywany z dolnymi i górnymi limitami (odpowiednio 32.49 i 32.40). Czynność, która ma zostać wykonana, gdy warunek jest spełniony, jest określana parametrem 32.46.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td>Nieaktywne</td>
<td>Nadzór sygnału 5 nie jest używany.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Poniżej</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Powyżej</td>
<td>Czynność jest wykonywana, gdy sygnał wzrośnie powyżej górnego limitu.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bezwzgl. poniżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględną sygnału spadnie poniżej (bezwzględnego) dolnego limitu.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bezwzgl. powyżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględną sygnału wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Obie</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu lub wzrośnie powyżej górnego limitu.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. obie</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględną sygnału spadnie poniżej (bezwzględnego) dolnego limitu lub wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Histereza</td>
<td>Działanie wykonywane, gdy sygnał wzrośnie powyżej wartości zdefiniowanej jako $+0,5 \cdot$ zakres histerezy (32.51 Histereza nadzoru 5). Działanie wykonywane, gdy sygnał spadnie poniżej wartości zdefiniowanej jako $-0,5 \cdot$ zakres histerezy.</td>
<td>7</td>
</tr>
<tr>
<td>32.46</td>
<td>Działanie nadzoru 5</td>
<td>Określa, czy przemiennik generuje błąd, generuje ostrzeżenie czy nie generuje żadnego zdarzenia, gdy wartości monitorowane przez funkcję nadzoru sygnału 5 wykraczają poza limity. Uwaga: Ten parametr nie wpływa na stan wskazywany przez parametr 32.01 Stan nadzoru.</td>
<td>Bez działania</td>
</tr>
<tr>
<td></td>
<td>Bez działania</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Wygenerowano ostrzeżenie A8B0 Nadzór sygnału.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Błąd jest uruchomiony</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału, jeśli jest uruchomiony.</td>
<td>3</td>
</tr>
<tr>
<td>32.47</td>
<td>Sygnał nadzoru 5</td>
<td>Wybiera sygnał, który ma być monitorowany przez funkcję nadzoru sygnału 5. Dostępne opcje zawiera opis parametru 32.07 Sygnał nadzoru 1.</td>
<td>Zero</td>
</tr>
<tr>
<td>32.48</td>
<td>Czas filtru nadzoru 5</td>
<td>Definiuje stałą czasu filtru dla sygnału monitorowanego przez nadzór sygnału 5.</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td>0,000…30,000 s</td>
<td>Czas filtru sygnału.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.49</td>
<td>Nadzór 5: dolny limit</td>
<td>Definiuje dolny limit nadzoru sygnału 5.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-21474830,00…21474830,00</td>
<td>Dolny limit.</td>
<td>-</td>
</tr>
<tr>
<td>32.50</td>
<td>Nadzór 5: górny limit</td>
<td>Definiuje górny limit nadzoru sygnału 5.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-21474830,00…21474830,00</td>
<td>Górnym limit.</td>
<td>-</td>
</tr>
<tr>
<td>32.51</td>
<td>Histereza nadzoru 5</td>
<td>Definiuje histerezę dla sygnału monitorowanego przez funkcję nadzoru sygnału 5.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00…100000,00</td>
<td>Histereza.</td>
<td>-</td>
</tr>
<tr>
<td>32.55</td>
<td>Funkcja nadzoru 6</td>
<td>Wybiera tryb funkcji nadzoru sygnału 6. Określa sposób, w jaki monitorowany sygnał (patrz parametr 32.57) jest porównywany z dolnymi i górnymi limitami (odpowiednio 32.59 i 32.50). Czynność, która ma zostać wykonana, gdy warunek jest spełniony, jest określana parametrem 32.56.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Nadzór sygnału 6 nie jest używany.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Poniżej</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Powyżej</td>
<td>Czynność jest wykonywana, gdy sygnał wzrośnie powyżej górnego limitu.</td>
<td>2</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bezwzgl. poniżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. powyżej</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Obie</td>
<td>Czynność jest wykonywana, gdy sygnał spadnie poniżej dolnego limitu lub wzrośnie powyżej górnego limitu.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bezwzgl. obie</td>
<td>Czynność jest wykonywana, gdy wartość bezwzględna sygnału spadnie poniżej (bezwzględnego) dolnego limitu lub wzrośnie powyżej (bezwzględnego) górnego limitu.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Histereza</td>
<td>Działanie wykonywane, gdy sygnał wzrośnie powyżej wartości zdefiniowanej jako +0,5 · zakres histerezy (32.61 Histereza nadzoru 6). Działanie wykonywane, gdy sygnał spadnie poniżej wartości zdefiniowanej jako -0,5 · zakres histerezy.</td>
<td>7</td>
</tr>
<tr>
<td>32.56</td>
<td>Działanie nadzoru 6</td>
<td>Określa, czy przemiennik generuje błąd, generuje ostrzeżenie czy nie generuje żadnego zdarzenia, gdy wartości monitorowane przez funkcję nadzoru sygnału 6 wykraczać poza limity. Uwaga: Ten parametr nie wpływa na stan wskazywany przez parametr 32.01 Stan nadzoru.</td>
<td>Bez działania</td>
</tr>
<tr>
<td>Bezdziałania</td>
<td>Bez działania</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Ostrzeżenie</td>
<td>Wygenerowano ostrzeżenie A8B0 Nadzór sygnału.</td>
<td>1</td>
</tr>
<tr>
<td>Błąd</td>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału.</td>
<td>2</td>
</tr>
<tr>
<td>Błąd jest uruchomiony</td>
<td>Błąd jest uruchomiony</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 80B0 Nadzór sygnału, jeśli jest uruchomiony.</td>
<td>3</td>
</tr>
<tr>
<td>32.57</td>
<td>Sygnał nadzoru 6</td>
<td>Wybiera sygnał, który ma być monitorowany przez funkcję nadzoru sygnału 6. Dostępne opcje zawiera opis parametru 32.07 Sygnał nadzoru 1.</td>
<td>Zero</td>
</tr>
<tr>
<td>32.58</td>
<td>Czas filtru nadzoru 6</td>
<td>Definiuje stałą czasu filtru dla sygnału monitorowanego przez nadzór sygnału 6.</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td>0,000…30,000 s</td>
<td>Czas filtru sygnału.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.59</td>
<td>Nadzór 6: dolny limit</td>
<td>Definiuje dolny limit nadzoru sygnału 6.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-21474830,00…21474830,00</td>
<td>Dolny limit.</td>
<td>-</td>
</tr>
<tr>
<td>32.60</td>
<td>Nadzór 6: górny limit</td>
<td>Definiuje górny limit nadzoru sygnału 6.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-21474830,00…21474830,00</td>
<td>Górnny limit.</td>
<td>-</td>
</tr>
<tr>
<td>32.61</td>
<td>Histereza nadzoru 6</td>
<td>Definiuje histerezę dla sygnału monitorowanego przez funkcję nadzoru sygnału 6.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00…100000,00</td>
<td>Histereza.</td>
<td>-</td>
</tr>
</tbody>
</table>
34 Funkcje czasowe

Konfiguracja funkcji czasowej.

34.01 Stan funkcji czasowych

Stan funkcji czasowych. Stan funkcji czasowej to funkcja logiczna LUB wszystkich podłączonych do niej timerów. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Funkcja czasowa 1</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Funkcja czasowa 2</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>2</td>
<td>Funkcja czasowa 3</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>3...15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…0FFFFh Stan łącznych timerów 1…3.

1 = 1

34.02 Stan timera

Stan timerów 1…12.
Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Timer 1</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Timer 2</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>2</td>
<td>Timer 3</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>3</td>
<td>Timer 4</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>4</td>
<td>Timer 5</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>5</td>
<td>Timer 6</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>6</td>
<td>Timer 7</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>7</td>
<td>Timer 8</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>8</td>
<td>Timer 9</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>9</td>
<td>Timer 10</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>10</td>
<td>Timer 11</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>11</td>
<td>Timer 12</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>12…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Stan timera.

1 = 1
Parametry

34.04 Stan okr. czas./dni wyj. wyjątku

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stan okresu 1</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Stan okresu 2</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>2</td>
<td>Stan okresu 3</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>3</td>
<td>Stan okresu 4</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>4…9</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Stan z wyjątkiem dnia powszedniego</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>11</td>
<td>Stan z wyjątkiem świąta</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>12…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | Stan okresów z wyjątkiem dnia powszedniego i z wyjątkiem świąta. | 1 = 1 |

34.10 Włączenie funkcji czasowych

Wybiera źródło sygnału zezwolenia na funkcje czasowe. 0 = Wyłączone. 1 = Włączone.

Uwaga: Przemiennik ACS380 nie ma wbudowanego licznika czasu. Czas musi być dostarczany za pośrednictwem zewnętrznego panelu sterowania z asystentami lub sterownika PLC.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stan okresu 1</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Stan okresu 2</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>2</td>
<td>Stan okresu 3</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>3</td>
<td>Stan okresu 4</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>4…9</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Stan z wyjątkiem dnia powszedniego</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>11</td>
<td>Stan z wyjątkiem świąta</td>
<td>1 = Aktywne.</td>
</tr>
<tr>
<td>12…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

Nie wybrano 0. 0

Wybrano 1. 1

DI1

Wejście cyfrowe DI1
(10.02 Stan DI po opóźnieniach, bit 0).

2

DI2

Wejście cyfrowe DI2
(10.02 Stan DI po opóźnieniach, bit 1).

3

DI3

Wejście cyfrowe DI3
(10.02 Stan DI po opóźnieniach, bit 2).

4

DI4

Wejście cyfrowe DI4
(10.02 Stan DI po opóźnieniach, bit 3).

5

DIO1

Wejście/wyjście cyfrowe DIO1
(11.02 Stan DIO po opóźnieniach, bit 0).

10

DIO2

Wejście/wyjście cyfrowe DIO2
(11.02 Stan DIO po opóźnieniach, bit 1).

11

Inny [bit]

Wybór źródła (patrz Wyrażenia i skróty).
-
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.11</td>
<td>Konfiguracja timera 1</td>
<td>Definiuje, kiedy timer 1 jest aktywny.</td>
<td>0000011110 000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Poniedziałek</td>
<td>1 = Poniedziałek to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>1</td>
<td>Wtorek</td>
<td>1 = Wtorek to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>2</td>
<td>Środa</td>
<td>1 = Środa to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>3</td>
<td>Czwartek</td>
<td>1 = Czwartek to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>4</td>
<td>Piątek</td>
<td>1 = Piątek to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>5</td>
<td>Sobota</td>
<td>1 = Sobota to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>6</td>
<td>Niedziela</td>
<td>1 = Niedziela to aktywny dzień rozpoczęcia.</td>
</tr>
<tr>
<td>7</td>
<td>Okres 1</td>
<td>1 = Timer jest aktywny w okresie 1.</td>
</tr>
<tr>
<td>8</td>
<td>Okres 2</td>
<td>1 = Timer jest aktywny w okresie 2.</td>
</tr>
<tr>
<td>9</td>
<td>Okres 3</td>
<td>1 = Timer jest aktywny w okresie 3.</td>
</tr>
<tr>
<td>10</td>
<td>Okres 4</td>
<td>1 = Timer jest aktywny w okresie 4.</td>
</tr>
<tr>
<td>11</td>
<td>Wyjątki</td>
<td>0 = Dni wyjątków są wyłączone. 1 = Dni wyjątków są włączone. Bity 12 i 13 sąbrane pod uwagę.</td>
</tr>
<tr>
<td>12</td>
<td>Święta</td>
<td>0 = Timer jest nieaktywny w dniach wyjątków skonfigurowanych jako „Święto”. 1 = Timer jest aktywny w dniach wyjątków skonfigurowanych jako „Święto”.</td>
</tr>
<tr>
<td>13</td>
<td>Dni powszednie</td>
<td>0 = Timer jest nieaktywny w dniach wyjątków skonfigurowanych jako „Dzień powszedni”. 1 = Timer jest aktywny w dniach wyjątków skonfigurowanych jako „Dzień powszedni”.</td>
</tr>
<tr>
<td>14–15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | Konfiguracja timera 1. | 1 = 1 |
| 34.12 | **Czas startu timera 1** | Definiuje codzienną godzinę uruchomienia timera 1. Czas można zmienić z dokładnością do sekundy. Timer można uruchomić o innej godzinie niż godzina uruchomienia. Jeśli na przykład czas działania timera to wcześniej niż jeden dzień i w tym czasie rozpoczyna się aktywna sesja, timer jest uruchamiany o godzinie 00:00 i jest zatrzymywany, gdy czas działania upłynie. | 00:00:00 |

| 00:00:00…23:59:59 | Codzienna godzinę uruchomienia timera. | 1 = 1 |
| 34.13 | **Czas trwania timera 1** | Definiuje czas działania timera 1. Czas działania można zmienić z dokładnością do minuty. Czas działania może przekroczyć zmianę dnia, ale jeśli dzień wyjątku staje się aktywny, okres zostaje przerwany o północy. W taki sam sposób okres rozpoczęty w dniu wyjątku pozostaje aktywny tylko do końca dnia, nawet jeśli czas działania jest dłuższy. Po przerwie timer będzie kontynuował działanie, jeśli pozostał czas działania. | 00:00:00 |

<p>| 00 00:00…07 00:00 | Czas działania timera. | 1 = 1 |
| 34.14 | Konfiguracja timera 2 | Patrz 34.11 Konfiguracja timera 1. | 0000011110 000000 |
| 34.15 | Czas startu timera 2 | Patrz 34.12 Czas startu timera 1. | 00:00:00 |
| 34.16 | Czas trwania timera 2 | Patrz 34.13 Czas trwania timera 1. | 00:00:00 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna Fb Eq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.17</td>
<td>Konfiguracja timer 3</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.18</td>
<td>Czas startu timer 3</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.19</td>
<td>Czas trwania timer 3</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.20</td>
<td>Konfiguracja timer 4</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.21</td>
<td>Czas startu timer 4</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.22</td>
<td>Czas trwania timer 4</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.23</td>
<td>Konfiguracja timer 5</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.24</td>
<td>Czas startu timer 5</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.25</td>
<td>Czas trwania timer 5</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.26</td>
<td>Konfiguracja timer 6</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.27</td>
<td>Czas startu timer 6</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.28</td>
<td>Czas trwania timer 6</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.29</td>
<td>Konfiguracja timer 7</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.30</td>
<td>Czas startu timer 7</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.31</td>
<td>Czas trwania timer 7</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.32</td>
<td>Konfiguracja timer 8</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.33</td>
<td>Czas startu timer 8</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.34</td>
<td>Czas trwania timer 8</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.35</td>
<td>Konfiguracja timer 9</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.36</td>
<td>Czas startu timer 9</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.37</td>
<td>Czas trwania timer 9</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.38</td>
<td>Konfiguracja timer 10</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.39</td>
<td>Czas startu timer 10</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.40</td>
<td>Czas trwania timer 10</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.41</td>
<td>Konfiguracja timer 11</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.42</td>
<td>Czas startu timer 11</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.43</td>
<td>Czas trwania timer 11</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.44</td>
<td>Konfiguracja timer 12</td>
<td>Patrz 34.11 Konfiguracja timer 1.</td>
<td>0000011110 000000</td>
</tr>
<tr>
<td>34.45</td>
<td>Czas startu timer 12</td>
<td>Patrz 34.12 Czas startu timer 1.</td>
<td>00:00:00</td>
</tr>
<tr>
<td>34.46</td>
<td>Czas trwania timer 12</td>
<td>Patrz 34.13 Czas trwania timer 1.</td>
<td>00:00:00</td>
</tr>
</tbody>
</table>
Parametry 263

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.60</td>
<td>Dzień rozpoczęcia okresu 1</td>
<td>Definiuje datę rozpoczęcia okresu 1 w formacie dd.mm, gdzie dd to numer dnia, a mm to numer miesiąca. Okres zmienia się o północy. Tylko jeden okres może być jednocześnie aktywny. Timery są uruchamiane w dniach wyjątku, nawet jeśli nie trwa okres aktywny. Daty początku okresu (1...4) muszą być podawane w kolejności rosnącej, aby użyte zostały wszystkie okresy. Wartość domyślna jest interpretowana jako informacja, że okres nie został skonfigurowany. Jeśli daty rozpoczęcia okresu nie są podane w kolejności rosnącej i wartość jest inna niż wartość domyślna, generowane jest ostrzeżenie o konfiguracji okresu.</td>
<td></td>
</tr>
<tr>
<td>01,01…31,12</td>
<td>Dzień rozpoczęcia okresu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.61</td>
<td>Dzień rozpoczęcia okresu 2</td>
<td>Definiuje datę rozpoczęcia okresu 2. Patrz 34.60 Dzień rozpoczęcia okresu 1.</td>
<td>01,01.</td>
</tr>
<tr>
<td>34.62</td>
<td>Dzień rozpoczęcia okresu 3</td>
<td>Definiuje datę rozpoczęcia okresu 3. Patrz 34.60 Dzień rozpoczęcia okresu 1.</td>
<td>01,01.</td>
</tr>
<tr>
<td>34.63</td>
<td>Dzień rozpoczęcia okresu 4</td>
<td>Definiuje datę rozpoczęcia okresu 4. Patrz 34.60 Dzień rozpoczęcia okresu 1.</td>
<td>01,01.</td>
</tr>
<tr>
<td>34.70</td>
<td>Liczba aktywnych wyjątków</td>
<td>Definiuje liczbę aktywnych wyjątków, określając ostatni aktywny wyjątek. Wszystkie wcześniejsze wyjątki są aktywne. Wyjątki 1…3 to okresy (można zdefiniować czas działania), a wyjątki 4…16 to dni (czas działania to zawsze 24 godziny). Przykład: Jeśli wartość to 4, aktywne są wyjątki 1…4, a wyjątki 5…16 są nieaktywne.</td>
<td></td>
</tr>
<tr>
<td>0…16</td>
<td>Liczba aktywnych okresów lub dni wyjątku.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>34.71</td>
<td>Typy wyjątków</td>
<td>Definiuje typy wyjątków 1…16 jako dzień powszedni lub święto. Wyjątki 1…3 to okresy (można zdefiniować czas działania), a wyjątki 4…16 to dni (czas działania to zawsze 24 godziny).</td>
<td></td>
</tr>
<tr>
<td>Bit</td>
<td>Nazwa</td>
<td>Opis</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Wyjątek 1</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Wyjątek 2</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wyjątek 3</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wyjątek 4</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wyjątek 5</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wyjątek 6</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wyjątek 7</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wyjątek 8</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wyjątek 9</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Wyjątek 10</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Wyjątek 11</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Wyjątek 12</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Wyjątek 13</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Wyjątek 14</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Wyjątek 15</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Wyjątek 16</td>
<td>0 = Dzień powszedni. 1 = Święto</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Typy okresów lub dni wyjątku. 1 = 1
34.72 Start wyjatku 1
Definiuje datę rozpoczęcia okresu wyjątku w formacie dd.mm, gdzie dd to numer dnia, a mm to numer miesiąca. Timer uruchomiony w dniu wyjątku jest zawsze zatrzymywany o godzinie 23:59:59, nawet jeśli pozostał jeszcze czas działania. Tę samą datę można skonfigurować jako święto i dzień powszedni. Data jest aktywna, jeśli aktywny jest dowolny dzień wyjątku.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.72</td>
<td>Start wyjatku 1</td>
<td>Definiuje datę rozpoczęcia okresu wyjątku w formacie dd.mm, gdzie dd to numer dnia, a mm to numer miesiąca. Timer uruchomiony w dniu wyjątku jest zawsze zatrzymywany o godzinie 23:59:59, nawet jeśli pozostał jeszcze czas działania. Tę samą datę można skonfigurować jako święto i dzień powszedni. Data jest aktywna, jeśli aktywny jest dowolny dzień wyjątku.</td>
<td>01.01.</td>
</tr>
</tbody>
</table>

| 01.01….31.12. | Data rozpoczęcia okresu wyjątku 1. |

34.73 Czas trwania wyjątku 1
Definiuje długość okresu wyjątku w dniach. Okres wyjątku jest obsługiwany w taki sam sposób, jak liczba kolejnych dni wyjątku.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.73</td>
<td>Czas trwania wyjątku 1</td>
<td>Definiuje długość okresu wyjątku w dniach. Okres wyjątku jest obsługiwany w taki sam sposób, jak liczba kolejnych dni wyjątku.</td>
</tr>
</tbody>
</table>

| 0…60 | Długość okresu wyjątku 1. |

34.74 Start wyjatku 2
Patrz 34.72 Start wyjatku 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.74</td>
<td>Start wyjatku 2</td>
<td>Patrz 34.72 Start wyjatku 1.</td>
</tr>
</tbody>
</table>

34.75 Czas trwania wyjątku 2
Patrz 34.73 Czas trwania wyjątku 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.75</td>
<td>Czas trwania wyjątku 2</td>
<td>Patrz 34.73 Czas trwania wyjątku 1.</td>
</tr>
</tbody>
</table>

34.76 Start wyjatku 3
Patrz 34.72 Start wyjatku 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.76</td>
<td>Start wyjatku 3</td>
<td>Patrz 34.72 Start wyjatku 1.</td>
</tr>
</tbody>
</table>

34.77 Czas trwania wyjątku 3
Patrz 34.73 Czas trwania wyjątku 1.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.77</td>
<td>Czas trwania wyjątku 3</td>
<td>Patrz 34.73 Czas trwania wyjątku 1.</td>
</tr>
</tbody>
</table>

34.78 Dzień wyjątku 4
Definiuje datę dnia wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.78</td>
<td>Dzień wyjątku 4</td>
<td>Definiuje datę dnia wyjątku 4.</td>
</tr>
</tbody>
</table>

34.79 Dzień wyjątku 5
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.79</td>
<td>Dzień wyjątku 5</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.80 Dzień wyjątku 6
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.80</td>
<td>Dzień wyjątku 6</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.81 Dzień wyjątku 7
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.81</td>
<td>Dzień wyjątku 7</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.82 Dzień wyjątku 8
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.82</td>
<td>Dzień wyjątku 8</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.83 Dzień wyjątku 9
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.83</td>
<td>Dzień wyjątku 9</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.84 Dzień wyjątku 10
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.84</td>
<td>Dzień wyjątku 10</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.85 Dzień wyjątku 11
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.85</td>
<td>Dzień wyjątku 11</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.86 Dzień wyjątku 12
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.86</td>
<td>Dzień wyjątku 12</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.87 Dzień wyjątku 13
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.87</td>
<td>Dzień wyjątku 13</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.88 Dzień wyjątku 14
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.88</td>
<td>Dzień wyjątku 14</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.89 Dzień wyjątku 15
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.89</td>
<td>Dzień wyjątku 15</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>

34.90 Dzień wyjątku 16
Patrz 34.79 Dzień wyjątku 4.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.90</td>
<td>Dzień wyjątku 16</td>
<td>Patrz 34.79 Dzień wyjątku 4.</td>
</tr>
</tbody>
</table>
Parametry 265

34.100 Timer łączony 1
Definiuje, które timery są podłączone do funkcji czasowej 1.
0 = Niepodłączone.
1 = Podłączone.
Patrz parametr 34.01 Stan funkcji czasowych.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Timer 1</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Timer 2</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>2</td>
<td>Timer 3</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>3</td>
<td>Timer 4</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>4</td>
<td>Timer 5</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>5</td>
<td>Timer 6</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>6</td>
<td>Timer 7</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>7</td>
<td>Timer 8</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>8</td>
<td>Timer 9</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>9</td>
<td>Timer 10</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>10</td>
<td>Timer 11</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>11</td>
<td>Timer 12</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>12…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Timery podłączone do funkcji czasowej 1. 1 = 1

34.101 Timer łączony 2
Definiuje, które timery są podłączone do funkcji czasowej 2.
Patrz 34.01 Stan funkcji czasowych.

34.102 Timer łączony 3
Definiuje, które timery są podłączone do funkcji czasowej 3.
Patrz 34.01 Stan funkcji czasowych.

34.110 Funkcja czasu dodatk.
Definiuje, które funkcje czasowe (tzn. timery, które są podłączone do funkcji czasowych) są aktywowane z funkcją czasu dodatkowego.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Funkcja czasowa 1</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Funkcja czasowa 2</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>2</td>
<td>Funkcja czasowa 3</td>
<td>0 = Nieaktywne. 1 = Aktywne.</td>
</tr>
<tr>
<td>3…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Funkcje czasowe z wzmocnieniem timera. 1 = 1

34.111 Źródło aktyw. funk. czasu dod.
Wybiera źródło sygnału wzmocnienia czasu dodatkowego.
0 = Wyłączone.
1 = Włączone.

<p>| Wyl. | 0. | 0 |
| Wł. | 1. | 1 |
| DI1 | Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). | 2 |
| DI2 | Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). | 3 |
| DI3 | Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). | 4 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34.112 Długość czasu dodatk.</td>
<td>Definiuje czas, w którym czas dodatkowy jest dezaktywowany po tym, jak sygnał aktywacji czasu dodatkowego zostaje wyłączony. Przykład: Jeśli parametr 34.111 Źródło aktyw. funk. czasu dod. źródło jest ustawiony na wartość DI1, a parametr 34.112 jest ustawiony na wartość 00 01:30, czas dodatkowy jest aktywny przez 1 godzinę i 30 minut po dezaktywacji wejścia cyfrowego DI.</td>
<td>00 00:00</td>
<td></td>
</tr>
<tr>
<td>00 00:00…00 00:00</td>
<td>Długość czasu dodatkowego.</td>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>

35 Ochrona termiczna silnika

Ustawienia ochrony termicznej silnika, takie jak konfiguracja pomiaru temperatury, definicja krzywej obciążenia i konfiguracja sterowania wentylatora silnika. Warto również zapoznać się z sekcją Ochrona termiczna silnika (na str. 101).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.01 Szacowana temperatura silnika</td>
<td>Wyświetla temperaturę silnika na podstawie szacunkowych wartości dla wewnętrznego modelu ochrony termicznej silnika (patrz parametry 35.50...35.55). Jednostka jest wybierana przez parametr 96.16 Wybór jednostki.</td>
<td>-</td>
</tr>
<tr>
<td>-60…1000°C lub -76…1832°F</td>
<td>Szacowana temperatura silnika.</td>
<td>1 = 1°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.02 Zmierzona temperatura 1</td>
<td>Wyświetla temperaturę otrzymaną ze źródła zdefiniowanego parametrem 35.11 Źródło temperatury 1. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki. Uwaga: W przypadku czujnika PTC wyświetlana jest wartość 0 Ω (temperatura normalna) lub wartość parametru 35.12 Limit błędu temp. 1 (nadmierna temperatura). Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>-10…1000°C lub 14…1832°F, 0 Ω lub [35.12] Ω</td>
<td>Zmierzona temperatura 1.</td>
<td>1 = 1 jednostka</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.03 Zmierzona temperatura 2</td>
<td>Wyświetla temperaturę otrzymaną ze źródła zdefiniowanego parametrem 35.21 Źródło temperatury 2. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki. Uwaga: W przypadku czujnika PTC wyświetlana jest wartość 0 Ω (temperatura normalna) lub wartość parametru 35.22 Limit błędu temp. 2 (nadmierna temperatura). Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>-10…1000°C lub 14…1832°F, 0 Ω lub [35.22] Ω</td>
<td>Zmierzona temperatura 2.</td>
<td>1 = 1 jednostka</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.11</td>
<td>Źródło temperatury 1</td>
<td>Wybiera źródło, z którego odczytywana jest zmierzona temperatura 1. Zazwyczaj źródłem jest czujnik podłączony do silnika sterowanego przemiennikiem częstotliwości, ale można go użyć do monitorowania temperatury z innych urządzeń procesu, jeśli tylko jest stosowany odpowiedni czujnik z listy.</td>
<td>Szacowana temperatura</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyłączone</td>
<td>Brak. Funkcja monitorowania temperatury 1 jest wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Szacowana temperatura</td>
<td>Szacowana temperatura silnika (patrz parametr 35.01 Szacowana temperatura silnika). Temperatura jest szacowana na podstawie wewnętrznych obliczeń przemiennika częstotliwości. Ważne jest, aby ustawić temperaturę otoczenia silnika w parametrze 35.50 Temperatura otoczenia silnika.</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
| | 1 x Pt100 analogowe we/wy | Czujnik Pt100 podłączony do standardowego wejścia analogowego określonego parametrem 35.14 Źródło AI temperatury 1 oraz wyjścia analogowego. Wymagane są następujące ustawienia:
 - Ustawić zworkę sprzętów lub przełącznik związany z wejściem analogowym na pozycję U (napięcie). Wszelkie zmiany należy zatwierdzić przez ponowne uruchomienie jednostki sterującej.
 - Ustawić odpowiedni parametr opcji jednostki wejścia analogowego w grupie parametrów 12 Standardowe AI na V (wolty).
 - W grupie parametrów 13 Standardowe AO ustawić parametr wyboru źródła wyjścia analogowego na „Wzbudzenie czujnika temp. 1". Wyjście analogowe zasila czujnik prądem stałym. W miarę jak rezystancja czujnika zwiększa się wraz z jego temperaturą, napięcie w czujniku rośnie. Napięcie jest odczytywane z wejścia analogowego i jest konwertowane na temperaturę w stopniach. | | 5 |
| | 2 x Pt100 analogowe we/wy | Jak w przypadku opcji 1 x Pt100 analogowe we/wy, ale z dwoma czujnikami połączonymi szeregowo. Użycie wielu czujników znacznie poprawia dokładność pomiaru. | | 6 |
| | 3 x Pt100 analogowe we/wy | Jak w przypadku opcji 1 x Pt100 analogowe we/wy, ale z trzema czujnikami połączonymi szeregowo. Użycie wielu czujników znacznie poprawia dokładność pomiaru. | | 7 |
| | Temperatura bezpośrednia | Temperatura jest pobierana ze źródła określonego parametrem 35.14. Zakłada się, że wartość źródła jest podawana w stopniach Celsjusza. | | 11 |
| 35.12 | Limit błędu temp. 1 | Definiuje limit błędu dla funkcji nadzoru temperatury 1. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki.
Uwaga: W przypadku czujnika PTC jednostką jest Ω. | | 130°C lub 266°F |
| | -10…1000°C lub 14…1832°F | Limit błędu dla funkcji monitorowania temperatury 1. | | 1 = 1 jednostka |
| 35.13 | Limit ostrzeżenia temp. 1 | Definiuje limit ostrzeżenia dla funkcji nadzoru temperatury 1. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki.
Uwaga: W przypadku czujnika PTC jednostką jest Ω. | | 110°C lub 230°F |
<p>| | -10…1000°C lub 14…1832°F | Limit ostrzeżenia dla funkcji monitorowania temperatury 1. | | 1 = 1 jednostka |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.14</td>
<td>Źródło AI temperatury 1</td>
<td>Wybiera wejście dla opcji parametru 35.11 Źródło temperatury 1: 1 x Pt100 analogowe we/wy, 2 x Pt100 analogowe we/wy i Temperatura bezpośrednia.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna AI1</td>
<td>Wejście analogowe AI1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna AI2</td>
<td>Wejście analogowe AI2.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>35.21</td>
<td>Źródło temperatury 2</td>
<td>Wybiera źródło, z którego odczytywana jest zmierzona temperatura 2.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Zazwyczaj źródłem jest czujnik podłączony do silnika sterowanego przemiennikiem częstotliwości, ale można go użyć do monitorowania temperatury z innych urządzeń procesu, jeśli tylko jest stosowany odpowiedni czujnik z listy.</td>
<td>Niaktywne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Brak. Funkcja monitorowania temperatury 2 jest wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Szacowana temperatura</td>
<td>Szacowana temperatura silnika (patrz parametr 35.01 Szacowana temperatura silnika). Temperatura jest szacowana na podstawie wewnętrznych obliczeń przemiennika częstotliwości. Ważne jest, aby ustawić temperaturę otoczenia silnika w parametrze 35.50 Temperatura otoczenia silnika.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Temperatura bezpośrednia</td>
<td>Temperatura jest pobierana ze źródła określonego parametrem 35.24 Źródło AI temperatury 2. Zakłada się, że wartość źródła jest podawana w stopniach Celsjusza.</td>
<td>11</td>
</tr>
<tr>
<td>35.22</td>
<td>Limit błędu temp. 2</td>
<td>Definiuje limit błędu dla funkcji nadzoru temperatury 2. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki. Uwaga: W przypadku czujnika PTC jednostką jest Ω.</td>
<td>130°C lub 266°F</td>
</tr>
<tr>
<td></td>
<td>-10…1000°C lub 14…1832°F</td>
<td>Limit błędu dla funkcji monitorowania temperatury 2.</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.23</td>
<td>Limit ostrzeżenia temp. 2</td>
<td>Definiuje limit ostrzeżenia dla funkcji nadzoru temperatury 2. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki. Uwaga: W przypadku czujnika PTC jednostką jest Ω.</td>
<td>110°C lub 230°F</td>
</tr>
<tr>
<td></td>
<td>-10…1000°C lub 14…1832°F</td>
<td>Limit ostrzeżenia dla funkcji monitorowania temperatury 2.</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.24</td>
<td>Źródło AI temperatury 2</td>
<td>Wybiera wejście dla opcji parametru 35.21 Źródło temperatury 2: Temperatura bezpośrednia.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna AI1</td>
<td>Wejście analogowe AI1 jednostki sterującej.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna AI2</td>
<td>Wejście analogowe AI2 jednostki sterującej.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
</tbody>
</table>
Parametry ochrony termicznej silnika

35.50 Temperatura otoczenia silnika
Definiuje temperaturę otoczenia silnika dla modelu ochrony termicznej silnika. Jednostka jest wybierana przez parametr **96.16 Wybór jednostki**. Model ochrony termicznej silnika oszacowuje temperaturę silnika na podstawie parametrów **35.50...35.55**. Temperatura silnika wzrasta, jeśli działa on w obszarze powyżej krzywej obciążenia i maleje, jeśli działa w obszarze poniżej krzywej obciążenia.

OSTRZEŻENIE! Model nie może chronić silnika, jeśli nie jest on prawidłowo chłodzony z powodu kurzu, brudu itp.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.50</td>
<td>Temperatura otoczenia silnika</td>
<td>Definiuje temperaturę otoczenia silnika dla modelu ochrony termicznej silnika.</td>
<td>20°C lub 68°F</td>
</tr>
<tr>
<td>-60...100°C lub -75...212°F</td>
<td>Temperatura otoczenia.</td>
<td>1 = 1°</td>
<td></td>
</tr>
</tbody>
</table>

35.51 Krzywa obciążenia silnika
Definiuje krzywą obciążenia silnika razem z parametrami **35.52 Obciążenie przy zerowej prędk.** i **35.53 Punkt przejęcia**. Krzywa obciążenia jest używana przez model ochrony termicznej silnika, aby oszacować temperaturę silnika.

Kiedy parametr jest ustawiony na 100%, maksymalne obciążenie jest równe wartości parametru **99.06 Prąd znamionowy silnika** (wyższe obciążenia nagrzewają silnik).

Poziom krzywej obciążenia powinien być dostosowany, jeśli temperatura otoczenia różni się od wartości znamionowej ustawionej za pomocą parametru **35.50 Temperatura otoczenia silnika**.

<table>
<thead>
<tr>
<th>l/l_N (%)</th>
<th>i = Prąd silnika</th>
<th>l_N = Znamionowy prąd silnika</th>
</tr>
</thead>
<tbody>
<tr>
<td>50...150%</td>
<td>Maksymalne obciążenie dla krzywej obciążenia silnika.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>35.52</td>
<td>Obciążenie przy zerowej prędk.</td>
<td>Definiuje krzywą obciążenia silnika razem z parametrami 35.51 Krzywa obciążenia silnika i 35.53 Punkt przejęcia. Definiuje maksymalne obciążenie silnika przy zerowej prędkości krzywej obciążenia. Wyższa wartość może być używana, jeśli silnik ma zewnętrzny wentylator poprawiający chłodzenie. Należy zapoznać się z zaleceniami producenta. Patrz parametr 35.51 Krzywa obciążenia silnika.</td>
</tr>
<tr>
<td>25...150%</td>
<td>Obciążenie zerowej prędkości dla krzywej obciążenia silnika.</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.53</td>
<td>Punkt przegięcia</td>
<td>Definiuje krzywą obciążenia silnika razem z parametrami 35.51 Krzywa obciążenia silnika i 35.52 Obciążenie przy zerowej prędk.. Definiuje częstotliwość punktu przegięcia krzywej obciążenia, tzn. punktu, w którym krzywa obciążenia silnika rozpoczyna zmniejszanie wartości z wartości parametru 35.51 Krzywa obciążenia silnika do wartości parametru 35.52 Obciążenie przy zerowej prędk.. Patrz parametr 35.51 Krzywa obciążenia silnika.</td>
<td>45,00 Hz</td>
</tr>
<tr>
<td>1,00…500,00 Hz</td>
<td>Punkt przegięcia dla krzywej obciążenia silnika.</td>
<td></td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>35.54</td>
<td>Nominalny przyrost temp. siln.</td>
<td>Definiuje wzrost temperatury silnika ponad temperaturę otoczenia, gdy silnik jest obciążony prądem znamionowym. Należy zapoznać się z zaleceniami producenta. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki.</td>
<td>80°C lub 176°F</td>
</tr>
</tbody>
</table>

![Diagram](image)

Wzrost znamionowej temperatury silnika

Temperatura

Temperatura otoczenia

Czas

| 0…300°C lub 32…572°F | Wzrost temperatury. | 1 = 1° |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.55</td>
<td>Term. stała czasowa silnika</td>
<td>Definiuje stałą czasu cieplnego silnika wykorzystywaną w modelu ochrony termicznej silnika, zdefiniowaną jako czas, w którym temperatura osiąga 63% temperatury znamionowej silnika. Należy zapoznać się z zaleceniami producenta.</td>
<td>256 s</td>
</tr>
</tbody>
</table>

![Prąd silnika](image)

Wzrost temperatury

100…10000 s Stała czasu cieplnego silnika. 1 = 1 s

36 Analiza obciążenia

Ustawienia rejestratora wartości szczytowej i amplitudy. Patrz też sekcja Analizator obciążenia (strona 105).

<table>
<thead>
<tr>
<th>36.01</th>
<th>PVL: źródło sygnału</th>
<th>Wybiera sygnał, który ma być monitorowany przez rejestrator wartości szczytowej. Sygnał jest filtrowany przy użyciu czasu filtrowania określonego w parametrze 36.02 PVL: czas filtru. Wartość szczytowa jest zapisywana razem z innymi wybranymi wcześniej sygnałami w parametrach 36.10 …36.15. Rejestrator wartości szczytowej można zresetować za pomocą parametru 36.09 Reset rejestratorów. Data i godzina ostatniego resetu jest zapisana odpowiednio w parametrach 36.16 i 36.17.</th>
<th>Moc wyjściowa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak (rejestrator wartości szczytowej wyłączony).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Użyta prędkość silnika</td>
<td>01.01 Użyta prędkość silnika.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Częstotliwość wyjściowa</td>
<td>01.06 Częstotliwość wyjściowa.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prąd silnika</td>
<td>01.07 Prąd silnika.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Moment silnika</td>
<td>01.10 Moment silnika.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Napięcie DC</td>
<td>01.11 Napięcie DC.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Moc wyjściowa</td>
<td>01.14 Moc wyjściowa.</td>
<td>8</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W. zad. prędkości przed ramp.</td>
<td>23.01 W. zad. prędk. przed ramp.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości po ramp.</td>
<td>23.02 W. zad. prędk. po ramp.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. prędkości</td>
<td>24.01 Użyta wart. zad. prędkości.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Użyta wart. zad. momentu</td>
<td>26.02 Użyta wart. zad. momentu.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. częstotliwości</td>
<td>28.02 Wyjście rampy w. zad. częst.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wyjście PID procesu</td>
<td>40.01 PID procesu: akt.wart. wyj.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>36.02</td>
<td>PVL: czas filtru</td>
<td>Czas filtrowania rejestratora wartości szczytowej. Patrz parametr 36.01 PVL: źródło sygnału.</td>
<td>2,00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,00…120,00 s Czas filtrowania rejestratora wartości szczytowej. 100 = 1 s</td>
</tr>
<tr>
<td></td>
<td>Patrz parametr 36.01 pod kątem dostępnych opcji.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.07</td>
<td>AL2: skalowanie sygnału</td>
<td>Definiuje wartość sygnału monitorowanego rejestratora amplitudy AL2, która odpowiada amplitudzie 100% wartości próbkowania.</td>
<td>100,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wartość sygnału odpowiadająca 100%.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.09</td>
<td>Reset rejestratorów</td>
<td>Resetuje rejestrator wartości szczytowej i/lub rejestrator amplitudy 2. (Rejestratora amplitudy 1 nie można zresetować).</td>
<td>Gotowe</td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Zakończone resetowanie lub nie wystąpiło żądanie resetu (normalna praca).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wszystko</td>
<td>Resetuje rejestrator wartości szczytowej i rejestrator amplitudy 2.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PVL</td>
<td>Resetuje rejestrator wartości szczytowej.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AL2</td>
<td>Resetuje rejestrator amplitudy 2.</td>
<td>3</td>
</tr>
<tr>
<td>36.10</td>
<td>PVL: wartość szczytowa</td>
<td>Wyświetla wartość szczytową zarejestrowaną przez rejestrator wartości szczytowej.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wartość szczytowa.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>36.11</td>
<td>PVL: data wart. szczytowej</td>
<td>Wyświetla datę zarejestrowania wartości szczytowej.</td>
<td>01.01.1980</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Data wystąpienia wartości szczytowej.</td>
<td></td>
</tr>
<tr>
<td>36.12</td>
<td>PVL: godz. wart. szczytowej</td>
<td>Wyświetla godzinę zarejestrowania wartości szczytowej.</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Godzina wystąpienia wartości szczytowej.</td>
<td></td>
</tr>
<tr>
<td>36.13</td>
<td>PVL: prąd w szczycie</td>
<td>Wyświetla prąd silnika w chwili zarejestrowania wartości szczytowej.</td>
<td>0,00 A</td>
</tr>
<tr>
<td></td>
<td>-32768,00…32767,00 A</td>
<td>Prąd silnika w chwili osiągnięcia wartości szczytowej.</td>
<td>1 = 1 A</td>
</tr>
<tr>
<td>36.14</td>
<td>PVL: nap. DC w szczycie</td>
<td>Wyświetla napięcie w pośrednim obwodzie DC przemieni-nika częstotliwości w chwili zarejestrowania wartości szczytowej.</td>
<td>0,00 V</td>
</tr>
<tr>
<td></td>
<td>0,00…2000,00 V</td>
<td>Napięcie DC w chwili osiągnięcia wartości szczytowej.</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>36.15</td>
<td>PVL: prędkość w szczycie</td>
<td>Wyświetla prędkość silnika w chwili zarejestrowania wartości szczytowej.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>-30000…30000 obr./min</td>
<td>Prędkość silnika w chwili osiągnięcia wartości szczytowej.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>36.16</td>
<td>PVL: data resetu</td>
<td>Wyświetla datę ostatniego resetu rejestratora wartości szczytowej.</td>
<td>01.01.1980</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Data ostatniego resetu rejestratora wartości szczytowej.</td>
<td></td>
</tr>
<tr>
<td>36.17</td>
<td>PVL: godzina resetu</td>
<td>Wyświetla godzinę ostatniego resetu rejestratora wartości szczytowej.</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Godzina ostatniego resetu rejestratora wartości szczytowej.</td>
<td>-</td>
</tr>
<tr>
<td>36.20</td>
<td>AL1 0 do 10%</td>
<td>Wyświetla procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 0 do 10%. Wartość 100% odpowiada wartości I_max podanej w tabeli wartości znamionowych w rozdziale Dane techniczne w podręczniku użytkownika.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 1 pomiędzy 0 i 10%.</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>36.21</td>
<td>AL1 10 do 20%</td>
<td>Wyświetla procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 10 do 20%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 1 pomiędzy 10 i 20%.</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>36.22</td>
<td>AL1 20 do 30%</td>
<td>Wyświetla procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 20 do 30%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 1 pomiędzy 20 i 30%.</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>36.23</td>
<td>AL1 30 do 40%</td>
<td>Wyświetla procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 30 do 40%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 1 pomiędzy 30 i 40%.</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>36.24</td>
<td>AL2 40 do 50%</td>
<td>Wyświetla procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 40 do 50%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 1 pomiędzy 40 i 50%.</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>36.25</td>
<td>AL1 60 do 70%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 50 do 60%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 1 pomiędzy 50 i 60%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.26</td>
<td>AL1 60 do 70%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 60 do 70%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 1 pomiędzy 60 i 70%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.27</td>
<td>AL1 70 do 80%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 70 do 80%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 1 pomiędzy 70 i 80%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.28</td>
<td>AL1 80 do 90%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które znajdują się w przedziale od 80 do 90%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 1 pomiędzy 80 i 90%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.29</td>
<td>AL1 ponad 90%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 1, które przekraczają wartość 90%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 1 powyżej 90%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.40</td>
<td>AL2 0 do 10%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 0 do 10%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 0 i 10%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.41</td>
<td>AL2 10 do 20%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 10 do 20%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 10 i 20%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.42</td>
<td>AL2 20 do 30%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 20 do 30%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 20 i 30%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.43</td>
<td>AL2 30 do 40%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 30 do 40%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 30 i 40%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.44</td>
<td>AL2 40 do 50%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 40 do 50%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 40 i 50%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.45</td>
<td>AL2 50 do 60%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 50 do 60%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 50 i 60%.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>36.46</td>
<td>AL2 60 do 70%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 60 do 70%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbkis rejestratora amplitudy 2 pomiędzy 60 i 70%.</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>
37 Krzywa obciążenia użytkownika

Ustawienia krzywej obciążenia użytkownika. Warto również zapoznać się z sekcją Krzywa obciążenia użytkownika (na str. 76).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.47</td>
<td>AL2 70 do 80%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 70 do 80%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 2 pomiędzy 70 i 80%.</td>
<td></td>
</tr>
<tr>
<td>36.48</td>
<td>AL2 80 do 90%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które znajdują się w przedziale od 80 do 90%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 2 pomiędzy 80 i 90%.</td>
<td></td>
</tr>
<tr>
<td>36.49</td>
<td>AL2 ponad 90%</td>
<td>Procentowy udział próbek zarejestrowanych przez rejestrator amplitudy 2, które przekraczają wartość 90%.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>0,00…100,00%</td>
<td>Próbki rejestratora amplitudy 2 powyżej 90%.</td>
<td></td>
</tr>
<tr>
<td>36.50</td>
<td>AL2: data reset</td>
<td>Data ostatniego resetu rejestratora amplitudy 2.</td>
<td>01.01.1980</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Godzina ostatniego resetu rejestratora amplitudy 2.</td>
<td></td>
</tr>
<tr>
<td>36.51</td>
<td>AL2: godzina reset</td>
<td>Godzina ostatniego resetu rejestratora amplitudy 2.</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>Godzina ostatniego resetu rejestratora amplitudy 2.</td>
<td></td>
</tr>
</tbody>
</table>

37.01 Słowo stanu wyjścia ULC

Wyświetla stan monitorowanego sygnału (37.02).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Poniżej limitu obciążenia</td>
<td>1 = Sygnał poniżej krzywej niedociągnięcia.</td>
</tr>
<tr>
<td>1</td>
<td>W zakresie obciążenia</td>
<td>1 = Sygnał pomiędzy krzywą niedociągnięcia i przeciżenia.</td>
</tr>
<tr>
<td>2</td>
<td>Limit przeciżenia</td>
<td>1 = Sygnał powyżej krzywej przeciżenia.</td>
</tr>
<tr>
<td>3…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Poniżej limitu obciążenia</td>
<td>1 = Sygnał poniżej krzywej niedociągnięcia.</td>
</tr>
<tr>
<td>1</td>
<td>W zakresie obciążenia</td>
<td>1 = Sygnał pomiędzy krzywą niedociągnięcia i przeciżenia.</td>
</tr>
<tr>
<td>2</td>
<td>Limit przeciżenia</td>
<td>1 = Sygnał powyżej krzywej przeciżenia.</td>
</tr>
<tr>
<td>3…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Stan monitorowanego sygnału. 1 = 1

37.02 ULC — sygnał nadzoru

Określa sygnał, który będzie nadzorowany. Moment silnika %

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nie wybrano</td>
<td>Nie wybrano sygnału. Wyłączone ULC.</td>
</tr>
<tr>
<td>1</td>
<td>Prędkość silnika %</td>
<td>01.03 Prędkość silnika %.</td>
</tr>
<tr>
<td>2</td>
<td>Prąd silnika %</td>
<td>01.08 Prąd silnika % wart.znam.siln..</td>
</tr>
<tr>
<td>3</td>
<td>Moment silnika %</td>
<td>01.10 Moment silnika.</td>
</tr>
<tr>
<td>4</td>
<td>% mocy wyjściowej względem wartości znamionowej silnika</td>
<td>01.15 Moc wyjściowa % wart.znam.siln..</td>
</tr>
<tr>
<td>4</td>
<td>% mocy wyjściowej względem wartości znamionowej przemiennika częstotliwości</td>
<td>01.16 Moc wyjściowa % wart.znam.przem..</td>
</tr>
</tbody>
</table>

Inny Wybór źródła (patrz Wyrażenia i skróty).
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.03</td>
<td>ULC - działania przeci.</td>
<td>Wybiera działanie podejmowane, jeśli sygnał (37.02) pozostaje powyżej krzywej przeciżenia przez zdefiniowany czas.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Przemiennik częstotliwości generuje bląd A8C1 ULC — ostrzeżenie dotyczące przeciżenia, jeśli sygnał pozostaje ciągłe powyżej krzywej przeciżenia przez czas zdefiniowany w parametrze 37.41 ULC — timer przeciżenia.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości generuje błąd 8002 ULC — błąd przeciżenia, jeśli sygnał pozostaje ciągłe powyżej krzywej przeciżenia przez czas zdefiniowany w parametrze 37.41 ULC — timer przeciżenia.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie/Błąd</td>
<td>Przemiennik częstotliwości generuje ostrzeżenie A8C1 ULC — ostrzeżenie dotyczące przeciżenia, jeśli sygnał pozostaje ciągłe powyżej krzywej przeciżenia przez połowę czasu zdefiniowanego w parametrze 37.41 ULC — timer przeciżenia.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Przemiennik częstotliwości generuje bląd 8002 ULC — błąd przeciżenia, jeśli sygnał pozostaje ciągłe powyżej krzywej przeciżenia przez czas zdefiniowany w parametrze 37.41 ULC — timer przeciżenia.</td>
<td></td>
</tr>
<tr>
<td>37.04</td>
<td>ULC - działania niedost.obc.</td>
<td>Wybiera działanie podejmowane, jeśli sygnał (37.02) pozostaje poniżej krzywej niedociążenia przez zdefiniowany czas.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Brak wygenerowanego ostrzeżenia lub błędu.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Przemiennik częstotliwości generuje bląd A8C4 ULC — ostrzeżenie dotyczące niedociążenia, jeśli sygnał pozostaje ciągłe poniżej krzywej niedociążenia przez czas zdefiniowany w parametrze 37.42 ULC — timer niedociążenia.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości generuje błąd 8001 ULC — błąd niedociążenia, jeśli sygnał pozostaje ciągłe poniżej krzywej niedociążenia przez czas zdefiniowany w parametrze 37.42 ULC — timer niedociążenia.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie/Błąd</td>
<td>Przemiennik częstotliwości generuje ostrzeżenie A8C4 ULC — ostrzeżenie dotyczące niedociążenia, jeśli sygnał pozostaje ciągłe poniżej krzywej niedociążenia przez połowę czasu zdefiniowanego w parametrze 37.42 ULC — timer niedociążenia.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Przemiennik częstotliwości generuje bląd 8001 ULC — błąd niedociążenia, jeśli sygnał pozostaje ciągłe poniżej krzywej niedociążenia przez czas zdefiniowany w parametrze 37.42 ULC — timer niedociążenia.</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>37.11</td>
<td>ULC - tabela prędk.: pkt 1</td>
<td>Definiuje pierwszy z pięciu punktów prędkości na osi X krzywej obciążenia użytkownika. Wartości parametrów muszą spełniać warunki: -30000,0 obr./min < 37.11 ULC - tabela prędk.: pkt 1 < 37.12 ULC - tabela prędk.: pkt 2 < 37.13 ULC - tabela prędk.: pkt 3 < 37.14 ULC - tabela prędk.: pkt 4 < 37.15 ULC - tabela prędk.: pkt 5 < 30000,0 obr./min. Punkty prędkości są używane, jeśli parametr 99.04 Tryb sterowania silnikiem jest ustawiony na Wektorowy lub jeśli parametr 99.04 Tryb sterowania silnikiem jest ustawiony na Skalarny, a jednostką wartości zadanej są obr./min.</td>
<td>150,0 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prędkość.</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>37.12</td>
<td>ULC - tabela prędk.: pkt 2</td>
<td>Definiuje drugi punkt prędkości. Patrz parametr 37.11 ULC - tabela prędk.: pkt 1.</td>
<td>750,0 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prędkość.</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>37.13</td>
<td>ULC - tabela prędk.: pkt 3</td>
<td>Definiuje trzeci punkt prędkości. Patrz parametr 37.11 ULC - tabela prędk.: pkt 1.</td>
<td>1290,0 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prędkość.</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>37.14</td>
<td>ULC - tabela prędk.: pkt 4</td>
<td>Definiuje czwarty punkt prędkości. Patrz parametr 37.11 ULC - tabela prędk.: pkt 1.</td>
<td>1500,0 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prędkość.</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>37.15</td>
<td>ULC - tabela prędk.: pkt 5</td>
<td>Definiuje piąty punkt prędkości. Patrz parametr 37.11 ULC - tabela prędk.: pkt 1.</td>
<td>1800,0 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prędkość.</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>37.16</td>
<td>ULC - tabela częst.: pkt 1</td>
<td>Definiuje pierwszy z pięciu punktów częstotliwości na osi X krzywej obciążenia użytkownika. Wartości parametrów muszą spełniać warunki: -500,0 Hz < 37.16 ULC - tabela częst.: pkt 1 < 37.17 ULC - tabela częst.: pkt 2 < 37.18 ULC - tabela częst.: pkt 3 < 37.19 ULC - tabela częst.: pkt 4 < 37.20 ULC - tabela częst.: pkt 5 < 500,0 Hz. Punkty częstotliwości są używane, jeśli parametr 99.04 Tryb sterowania silnikiem jest ustawiony na Skalarny, a jednostką wartości zadanej jest Hz.</td>
<td>5,0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Częstotliwość.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>37.17</td>
<td>ULC - tabela częst.: pkt 2</td>
<td>Definiuje drugi punkt częstotliwości. Patrz parametr 37.16 ULC - tabela częst.: pkt 1.</td>
<td>25,0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Częstotliwość.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>37.18</td>
<td>ULC - tabela częst.: pkt 3</td>
<td>Definiuje trzeci punkt częstotliwości. Patrz parametr 37.16 ULC - tabela częst.: pkt 1.</td>
<td>43,0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Częstotliwość.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>37.19</td>
<td>ULC - tabela częst.: pkt 4</td>
<td>Definiuje czwarty punkt częstotliwości. Patrz parametr 37.16 ULC - tabela częst.: pkt 1.</td>
<td>50,0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Częstotliwość.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>37.20</td>
<td>ULC - tabela częst.: pkt 5</td>
<td>Definiuje piąty punkt częstotliwości. Patrz parametr 37.16 ULC - tabela częst.: pkt 1.</td>
<td>60,0 Hz</td>
</tr>
<tr>
<td></td>
<td>-500,0…500,0 Hz</td>
<td>Częstotliwość.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt niedociążenia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.22</td>
<td>ULC - niedociążenie: pkt 2</td>
<td>Definiuje drugi punkt niedociążenia. Patrz parametr 37.21 ULC - niedociążenie: pkt 1.</td>
<td>15,0%</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt niedociążenia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.23</td>
<td>ULC - niedociążenie: pkt 3</td>
<td>Definiuje trzeci punkt niedociążenia. Patrz parametr 37.21 ULC - niedociążenie: pkt 1.</td>
<td>25,0%</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt niedociążenia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.24</td>
<td>ULC - niedociążenie: pkt 4</td>
<td>Definiuje czwarty punkt niedociążenia. Patrz parametr 37.21 ULC - niedociążenie: pkt 1.</td>
<td>30,0%</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt niedociążenia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.25</td>
<td>ULC - niedociążenie: pkt 5</td>
<td>Definiuje piąty punkt niedociążenia. Patrz parametr 37.21 ULC - niedociążenie: pkt 1.</td>
<td>30,0%</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt niedociążenia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.31</td>
<td>ULC - przeciżenie: pkt 1</td>
<td>Definiuje pierwszy z pięciu punktów prędkości na osi Y, który razem z odpowiednim punktem na osi X (37.11 ULC - tabela prędk.: pkt 1…37.15 ULC - tabela częst.: pkt 5 lub 37.15 ULC - tabela częst.: pkt 5…37.20 ULC - tabela częst.: pkt 5) definiuje krzywą przeciżenia (wartość wysoką). W każdym z pięciu punktów wartość punktu krzywej niedociążenia musi być równa lub niższa niż wartość punktu krzywej przeciżenia. Patrz parametr 37.21 ULC - niedociążenie: pkt 1.</td>
<td>300,0%</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt przeciżenia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.32</td>
<td>ULC - przeciżenie: pkt 2</td>
<td>Definiuje drugi punkt przeciżenia. Patrz parametr 37.31 ULC - przeciżenie: pkt 1.</td>
<td>300,0%</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Punkt przeciżenia.</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>
37.33 ULC - przeciżenie: pkt 3
Definiuje trzeci punkt przeciżenia. Patrz parametr 37.31 ULC - przeciżenie: pkt 1.
-1600,0…1600,0% Punkt przeciżenia. 1 = 1%

37.34 ULC - przeciżenie: pkt 4
Definiuje czwarty punkt przeciżenia. Patrz parametr 37.31 ULC - przeciżenie: pkt 1.
-1600,0…1600,0% Punkt przeciżenia. 1 = 1%

37.35 ULC - przeciżenie: pkt 5
Definiuje piąty punkt przeciżenia. Patrz parametr 37.31 ULC - przeciżenie: pkt 1.
-1600,0…1600,0% Punkt przeciżenia. 1 = 1%

37.41 ULC — timer przeciżenia
Definiuje okres, w którym monitorowany sygnał musi pozostać ciągle powyżej krzywej przeciżenia.
-0,0…10000,0 s Czas. 1 = 1 s

37.42 ULC — timer niedociżenia
Definiuje okres, w którym monitorowany sygnał musi pozostać ciągle poniżej krzywej niedociżenia.
-0,0…10000,0 s Czas. 1 = 1 s

40 PID procesu: zestaw 1
Wartości parametrów regulacji PID procesu. Wyjście przemiennika częstotliwości może być sterowane za pomocą PID procesu. Kiedy włączone jest sterowanie przez PID procesu, przemiennik częstotliwości steruje sprzężeniem zwrotnym procesu do wartości zadanej. Dla PID procesu można zdefiniować dwa różne zestawy parametrów. W danej chwili jest używany tylko jeden zestaw parametrów. Pierwszy zestaw składa się z parametrów 40.07…40.50, a drugi zestaw jest zdefiniowany przez parametry w grupie 41 PID procesu: zestaw 2. Źródło binarne definujące, które zestawy są aktywne, jest określone za pomocą parametru 40.57 PID: wybór zestawu 1/2. Patrz także diagramy łańcucha sterowania PID w rozdziale Diagramy łańcucha sterowania.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.01</td>
<td>PID procesu: akt.wart. wyj.</td>
<td>Wyświetla wyjście regulatora PID procesu. Patrz wykres łańcucha sterowania na stronie 557. Ten parametr jest tylko do odczytu.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-200000,00…200000,00%</td>
<td>Wyjście regulatora PID procesu.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>40.02</td>
<td>PID procesu: akt.wart.sprz.zw.</td>
<td>Wyświetla wartość sprzężenia zwrotnego od procesu po wybraniu źródła, funkcji matematycznej (parametr 40.10 Zest. 1: funkcja sprz. zwrot.) oraz filtrowania. Patrz wykres łańcucha sterowania na stronie 557. Ten parametr jest tylko do odczytu.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-200000,00…200000,00 jednostek klienta PID</td>
<td>Sprzężenie zwrotne procesu.</td>
<td>1 = 1 jednostka klienta PID</td>
</tr>
</tbody>
</table>
Parametry

40.03 PID procesu: akt.wart.nastawy

Wyświetla wartość nastawy PID dla procesu po wybraniu źródła, funkcji matematycznej (40.18 Zest. 1: funkcja nastawy), ograniczenia oraz określeniu rampy. Patrz wykres łańcucha sterowania na stronie 557. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>-200000,00…200000,00 jednostek klienta PID</th>
<th>Nastawa dla regulatora PID procesu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1 = 1 jednostka klienta PID</td>
</tr>
</tbody>
</table>

40.04 PID procesu: akt.wart.odchyl.

Wyświetla wartość uchybu regulacji dla regulatora PID dla procesu. Według domyślnych ustawień ta wartość jest równa wartości nastawa — sprzężenie zwrotne, ale odchylenie można odwrócić za pomocą parametru 40.31 Zest. 1: odwr. różniczk.. Patrz wykres łańcucha sterowania na stronie 557. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>-200000,00…200000,00 jednostek klienta PID</th>
<th>Uchyb regulacji PID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1 = 1 jednostka klienta PID</td>
</tr>
</tbody>
</table>

40.06 PID procesu: słowo stanu

Wyświetla informacje o stanie regulacji PID dla procesu. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.03</td>
<td>PID procesu: akt.wart.nastawy</td>
<td>Wyświetla wartość nastawy PID dla procesu po wybraniu źródła, funkcji matematycznej (40.18 Zest. 1: funkcja nastawy), ograniczenia oraz określeniu rampy. Patrz wykres łańcucha sterowania na stronie 557. Ten parametr jest tylko do odczytu.</td>
<td>0,00</td>
</tr>
<tr>
<td>-200000,00…200000,00 jednostek klienta PID</td>
<td>Nastawa dla regulatora PID procesu.</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>40.04</td>
<td>PID procesu: akt.wart.odchyl.</td>
<td>Wyświetla wartość uchybu regulacji dla regulatora PID dla procesu. Według domyślnych ustawień ta wartość jest równa wartości nastawa — sprzężenie zwrotne, ale odchylenie można odwrócić za pomocą parametru 40.31 Zest. 1: odwr. różniczk.. Patrz wykres łańcucha sterowania na stronie 557. Ten parametr jest tylko do odczytu.</td>
<td>0,00</td>
</tr>
<tr>
<td>-200000,00…200000,00 jednostek klienta PID</td>
<td>Uchyb regulacji PID.</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>40.06</td>
<td>PID procesu: słowo stanu</td>
<td>Wyświetla informacje o stanie regulacji PID dla procesu. Ten parametr jest tylko do odczytu.</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PID aktywny</td>
<td>1 = Regulacja PID dla procesu aktywna.</td>
</tr>
<tr>
<td>1</td>
<td>Nastawa zablokowana</td>
<td>1 = Nastawa PID dla procesu zablokowana.</td>
</tr>
<tr>
<td>2</td>
<td>Wyjście zablokowane</td>
<td>1 = Wyjście regulatora PID procesu zablokowane.</td>
</tr>
<tr>
<td>3</td>
<td>Tryb uśpienia PID</td>
<td>1 = Tryb uśpienia aktywny.</td>
</tr>
<tr>
<td>4</td>
<td>Wzmocnienie uśpienia</td>
<td>1 = Zwiększenie uśpienia aktywne.</td>
</tr>
<tr>
<td>5</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tryb śledzenia</td>
<td>1 = Funkcja śledzenia aktywna.</td>
</tr>
<tr>
<td>7</td>
<td>Wyjście: górny limit</td>
<td>1 = Wyjście PID jest ograniczone przez parametr 40.37.</td>
</tr>
<tr>
<td>8</td>
<td>Wyjście: dolny limit</td>
<td>1 = Wyjście PID jest ograniczone przez parametr 40.36</td>
</tr>
<tr>
<td>9</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PID: ustawienie</td>
<td>0 = Zestaw parametrów 1 jest używany. 1 = Zestaw parametrów 2 jest używany.</td>
</tr>
<tr>
<td>11</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Aktywna nastawa wewnętrzna</td>
<td>1 = Aktywna nastawa wewnętrzna (patrz parametry 40.16…40.16)</td>
</tr>
<tr>
<td>13…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | Słowo stanu regulacji PID dla procesu. | 1 = 1 |

40.07 Tryb pracy PID

Aktywuje/deaktywuje regułację PID dla procesu. **Uwaga**: Regulacja PID procesu jest dostępna tylko przy sterowaniu zewnętrznym; patrz sekcja Lokalne i zewnętrzne miejsca sterowania (str. 54).

<p>| Wyl. | Regulacja PID dla procesu nieaktywna. | 0 |
| Wł. | Regulacja PID dla procesu aktywna. | 1 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wł. gdy przemiennik pracuje</td>
<td>Regulacja PID dla procesu jest aktywna, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>2</td>
</tr>
<tr>
<td>40.08</td>
<td>Zest. 1: źródło sprz. zwrot. 1</td>
<td>Wybiera podstawowe źródło sprzężenia zwrotnego od procesu. Patrz wykres łańcucha sterowania na stronie 556.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Skalowane AI1</td>
<td>12.12 Wartość skalowana AI1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Skalowane AI2</td>
<td>12.22 Wartość skalowana AI2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wej. częst.: skalowane</td>
<td>11.39 Wej. częst. 1: wart. skalow.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AI1, procent</td>
<td>12.101 Wartość procentowa AI1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AI2, procent</td>
<td>12.102 Wartość procentowa AI2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Magazyn sprz. zwrotnego</td>
<td>40.91 Magazyn danych sprzężenia zwrotnego</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>40.09</td>
<td>Zest. 1: źródło sprz. zwrot. 2</td>
<td>Wybiera drugie źródło sprzężenia zwrotnego od procesu. Drugie źródło jest używane tylko, gdy funkcja nastawy wymaga dwóch wejść. Dostępne opcje zawiera opis parametru 40.08 Zest. 1: źródło sprz. zwrot. 1.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>40.10</td>
<td>Zest. 1: funkcja sprz. zwrot.</td>
<td>Definiuje sposób, w jaki obliczane jest sprzężenie zwrotne od procesu na podstawie dwóch źródeł sprzężenia zwrotnego określonych przez parametry 40.08 Zest. 1: źródło sprz. zwrot. 1 i 40.09 Zest. 1: źródło sprz. zwrot. 2.</td>
<td>We1</td>
</tr>
<tr>
<td></td>
<td>We1</td>
<td>Źródło 1.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>We1+We2</td>
<td>Suma źródeł 1 i 2.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>We1-We2</td>
<td>Źródło 2 jest odejmowane od źródła 1.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>We1*We2</td>
<td>Źródło 1 mnożone przez źródło 2.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>We1/We2</td>
<td>Źródło 1 dzielone przez źródło 2.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MIN(We1,We2)</td>
<td>Mniejsze z dwóch źródeł.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MAX(We1,We2)</td>
<td>Większe z dwóch źródeł.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AVE(We1,We2)</td>
<td>Średnia z dwóch źródeł.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1)</td>
<td>Pierwiastek kwadratowy ze źródła 1.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1-We2)</td>
<td>Pierwiastek kwadratowy z wartości (źródło 1 - źródło 2).</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1+We2)</td>
<td>Pierwiastek kwadratowy z wartości (źródło 1 + źródło 2).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1)+sqrt(We2)</td>
<td>Pierwiastek kwadratowy ze źródła 1 + pierwiastek kwadratowy ze źródła 2.</td>
<td>11</td>
</tr>
<tr>
<td>40.11</td>
<td>Zest. 1: czas filtru sprz. zwrot.</td>
<td>Definiuje stałą czasu filtru dla sprzężenia zwrotnego od procesu.</td>
<td>0,000 s</td>
</tr>
<tr>
<td></td>
<td>0,000…30,000 s</td>
<td>Czas filtru sprzężenia zwrotnego.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>
Definiuje, razem z parametrem 40.15 Zest. 1: skal. wyjścia, ogólny współczynnik skalowania dla łańcucha regulacji PID dla procesu.

Gdy parametr ma wartość zero, włączane jest automatyczne skalowanie nastawy. Odpowiednia skala nastawy jest wówczas obliczana odpowiednio do wybranego źródła nastawy. Rzeczywista skala nastawy jest pokazywana w parametrze 40.61 W. akt. skalow. nastawy.

Skalowanie można wykorzystać, gdy na przykład nastawa procesu jest wejściem w Hz, a wyjście regulatora PID jest używane jako wartość obr./min w sterowaniu prędkością. W takim przypadku parametr może być ustawiony na 50, a parametr 40.15 na prędkość znamionową silnika przy 50 Hz.

W rzeczywistości wyjście regulatora PID = [40.15], gdy odchylenie (nastawa - sprzężenie zwrotne) = [40.14] i [40.32] = 1.

Uwaga: Skalowanie opiera się na współczynniku stosunku pomiędzy parametrami 40.14 i 40.15. Na przykład wartości 50 i 1500 powodują takie samo skalowanie co 1 i 30.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.14</td>
<td>Zest. 1: skal. nastawy</td>
<td>Definiuje, razem z parametrem 40.15 Zest. 1: skal. wyjścia, ogólny współczynnik skalowania dla łańcucha regulacji PID dla procesu. Gdy parametr ma wartość zero, włączane jest automatyczne skalowanie nastawy. Odpowiednia skala nastawy jest wówczas obliczana odpowiednio do wybranego źródła nastawy. Rzeczywista skala nastawy jest pokazywana w parametrze 40.61 W. akt. skalow. nastawy. Skalowanie można wykorzystać, gdy na przykład nastawa procesu jest wejściem w Hz, a wyjście regulatora PID jest używane jako wartość obr./min w sterowaniu prędkością. W takim przypadku parametr może być ustawiony na 50, a parametr 40.15 na prędkość znamionową silnika przy 50 Hz. W rzeczywistości wyjście regulatora PID = [40.15], gdy odchylenie (nastawa - sprzężenie zwrotne) = [40.14] i [40.32] = 1. Uwaga: Skalowanie opiera się na współczynniku stosunku pomiędzy parametrami 40.14 i 40.15. Na przykład wartości 50 i 1500 powodują takie samo skalowanie co 1 i 30.</td>
<td>0,00</td>
</tr>
<tr>
<td>-200000,00…200000,00</td>
<td>Skalowanie.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.15</td>
<td>Zest. 1: skal. wyjścia</td>
<td>Patrz parametr 40.14 Zest. 1: skal. nastawy. Jeśli parametr ma wartość zero, skalowanie jest automatyczne:</td>
<td>0,00</td>
</tr>
<tr>
<td>Tryb pracy (patrz par. 19.01)</td>
<td>Skalowanie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterowanie prędkością</td>
<td>46.01 Skalowanie prędkości</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterowanie częstotliwością</td>
<td>46.02 Skalowanie częstotliwości</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-200000,00…200000,00</td>
<td>Podstawa wyjścia regulatora PID procesu.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.16</td>
<td>Zest. 1: źródło nastawy 1</td>
<td>Wybiera podstawowe źródło nastawy PID dla procesu. Patrz wykres łańcucha sterowania na stronie 556.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>Nie wybrano</td>
<td>Brak.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wewnętrzna nastawa</td>
<td>Nastawa wewnętrzna. Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 1.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Skalowane Al1</td>
<td>12.12 Wartość skalowana Al1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Skalowane Al2</td>
<td>12.22 Wartość skalowana Al2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Potencjometr silnika</td>
<td>22.80 Akt. w. zad. potencj. silnika (wyjście potencjometru silnika).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Wej. częst.: skalowane</td>
<td>11.39 Wej. częst.: wartość skalow.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Al1, procent</td>
<td>12.101 Wartość procentowa Al1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Al2, procent</td>
<td>12.102 Wartość procentowa Al2</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Panel sterowania (zapisana wartość zadana)

Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.

Panel sterowania (skopiowana wartość zadana)

Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest użytowana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Panel sterowania (zapisana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) zapisana przez system sterowania dla lokalizacji, gdzie zwracane wartości sterowania są używane jako wartość zadana.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Panel sterowania (skopiowana wartość zadana)</td>
<td>Wartość zadana panelu (03.01 Wartość zadana z panelu, patrz strona 119) dla poprzedniej lokalizacji sterowania jest użytowana, gdy lokalizacja sterowania zmienia się, jeśli wartości zadane dla dwóch lokalizacji są tego samego typu (np. częstotliwość/prędkość/moment/PID). W przeciwnym razie aktualny sygnał jest używany jako nowa wartość zadana.</td>
<td></td>
</tr>
</tbody>
</table>

W. zad. 1 mag. kom. A 03.05 W. zad. 1 mag. kom. A 15
W. zad. 2 mag. kom. A 03.06 W. zad. 2 mag. kom. A 16
EFB — wartość zadana 1 03.09 Wart. zadana 1 EFB 19
EFB — wartość zadana 2 03.10 Wart. zadana 2 EFB 20
Magazyn danych nastawy 40.92 Magazyn danych nastawy 24
Panel zintegrowany (zapisana wartość zadana) Patrz wyżej Panel sterowania (zapisana wartość zadana). 26
Panel zintegrowany (skopiowana wartość zadana) Patrz wyżej Panel sterowania (skopiowana wartość zadana). 27

Inny Wybór źródła (patrz Wyrażenia i skróty). -

40.17 Zest. 1: źródło nastawy 2 Wybiera drugie źródło nastawy procesu. Drugie źródło jest używane tylko, gdy funkcja nastawy wymaga dwóch wejść. Dostępne opcje zawiera opis parametru 40.16 Zest. 1: źródło nastawy 1. Nie wybrano

40.18 Zest. 1: funkcja nastawy Wybiera funkcję pomiędzy źródłami nastawy wybranymi przez parametry 40.16 Zest. 1: źródło nastawy 1 i 40.17 Zest. 1: źródło nastawy 2. We1

We1 Źródło 1. 0
We1+We2 Suma źródeł 1 i 2. 1
We1-We2 Źródło 2 jest odejmowane od źródła 1. 2
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>We1*We2</td>
<td>Źródło 1 mnożone przez źródło 2.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>We1/We2</td>
<td>Źródło 1 dzielone przez źródło 2.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MIN(We1,We2)</td>
<td>Mniejsze z dwóch źródeł.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MAX(We1,We2)</td>
<td>Większe z dwóch źródeł.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AVE(We1,We2)</td>
<td>Średnia z dwóch źródeł.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1)</td>
<td>Pierwiastek kwadratowy ze źródła 1.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1-We2)</td>
<td>Pierwiastek kwadratowy z wartości (źródło 1 - źródło 2).</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1+We2)</td>
<td>Pierwiastek kwadratowy z wartości (źródło 1 + źródło 2).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1)+sqrt(We2)</td>
<td>Pierwiastek kwadratowy ze źródła 1 + pierwiastek kwadratowy ze źródła 2.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>MIN(We1,We2)</td>
<td>Mniejsze z dwóch źródeł.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MAX(We1,We2)</td>
<td>Większe z dwóch źródeł.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AVE(We1,We2)</td>
<td>Średnia z dwóch źródeł.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1)</td>
<td>Pierwiastek kwadratowy ze źródła 1.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1-We2)</td>
<td>Pierwiastek kwadratowy z wartości (źródło 1 - źródło 2).</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1+We2)</td>
<td>Pierwiastek kwadratowy z wartości (źródło 1 + źródło 2).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>sqrt(We1)+sqrt(We2)</td>
<td>Pierwiastek kwadratowy ze źródła 1 + pierwiastek kwadratowy ze źródła 2.</td>
<td>11</td>
</tr>
</tbody>
</table>

Zest. 1: wybór wewn. nast. 1

Wybiera, razem z parametrem 40.20 Zest. 1: wybór wewn. nast. 2, nastawę wewnętrzną spośród ustawień wstępnich zdefiniowanych przez parametry 40.21...40.23.

Uwaga: Parametry 40.16 Zest. 1: źródło nastawy 1 i 40.17 Zest. 1: źródło nastawy 2 muszą być ustawione na wartość Wewnętrzna nastawa.

<table>
<thead>
<tr>
<th>Źródło zdefiniowane przez par. 40.19</th>
<th>Źródło zdefiniowane przez par. 40.20</th>
<th>Aktywna nastawa wewnętrzna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Źródło nastawy</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1 (par. 40.21)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2 (par. 40.22)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3 (par. 40.23)</td>
</tr>
</tbody>
</table>

Nie wybrano 0. 0

Wybrano 1. 1

DI1 Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).

DI2 Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).

DI3 Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).

DI4 Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).

DIO1 Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).

DIO2 Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).

Funkcja czasowa 1 Bit 0 parametru 34.01 Stan funkcji czasowych.

Funkcja czasowa 2 Bit 1 parametru 34.01 Łączny stan timera.

Funkcja czasowa 3 Bit 2 parametru 34.01 Łączny stan timera.

Nadzór 1 Bit 0 parametru 32.01 Stan nadzoru.

Nadzór 2 Bit 1 parametru 32.01 Stan nadzoru.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>40.20 Zest. 1: wybór wewn. nast. 2</td>
<td>Wybiera, razem z parametrem 40.19 Zest. 1: wybór wewn. nast. 1, używaną nastawę wewnętrzną spośród trzech nastaw wewnętrznych zdefiniowanych przez parametry 40.21…40.23. Patrz tabela w opisie parametru 40.19 Zest. 1: wybór wewn. nast. 1.</td>
<td>Nie wybrano</td>
<td></td>
</tr>
<tr>
<td>Nie wybrano</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wybrano</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40.21 Zest. 1: wewn. nastawa 1</td>
<td>Wewnętrzna nastawa procesu 1 Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 11.</td>
<td>0,00 jednostek klienta PID</td>
<td></td>
</tr>
<tr>
<td>-200000,00...200000,00 jednostek klienta PID</td>
<td>Wewnętrzna nastawa procesu 1</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>40.22 Zest. 1: wewn. nastawa 2</td>
<td>Wewnętrzna nastawa procesu 2 Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 1.</td>
<td>0,00 jednostek klienta PID</td>
<td></td>
</tr>
<tr>
<td>-200000,00...200000,00 jednostek klienta PID</td>
<td>Wewnętrzna nastawa procesu 2.</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>40.23 Zest. 1: wewn. nastawa 3</td>
<td>Wewnętrzna nastawa procesu 3 Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 1.</td>
<td>0,00 jednostek klienta PID</td>
<td></td>
</tr>
<tr>
<td>-200000,00...200000,00 jednostek klienta PID</td>
<td>Wewnętrzna nastawa procesu 3.</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>40.24</td>
<td>Zest. 1: wewn. nastawa 0</td>
<td>Wewnętrzna nastawa procesu 0. Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 1.</td>
<td>0,00 jednostek klienta PID</td>
</tr>
<tr>
<td></td>
<td>-200000,00…200000,00 jednostek klienta PID</td>
<td>Wewnętrzna nastawa procesu 0.</td>
<td>1 = 1 jednostka klienta PID</td>
</tr>
<tr>
<td>40.26</td>
<td>Zest. 1: min. nastawy</td>
<td>Definiuje minimalny limit nastawy regulatora PID procesu.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>-200000,00…200000,00</td>
<td>Minimalny limit nastawy regulatora PID procesu.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.27</td>
<td>Zest. 1: maks. nastawy</td>
<td>Definiuje maksymalny limit nastawy regulatora PID procesu.</td>
<td>200000,00</td>
</tr>
<tr>
<td></td>
<td>-200000,00…200000,00</td>
<td>Maksymalny limit nastawy regulatora PID procesu.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.28</td>
<td>Zest. 1: czas zwiększ. nast.</td>
<td>Definiuje minimalny czas zwiększenia nastawy z 0% do 100%.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0…1800,0 s</td>
<td>Czas zwiększenia nastawy.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.29</td>
<td>Zest. 1: czas zmniejsz. nast.</td>
<td>Definiuje minimalny czas spadku wartości nastawy z 100% do 0%.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0…1800,0 s</td>
<td>Czas spadku nastawy.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.30</td>
<td>Zest. 1: wl. blokow. nastawy</td>
<td>Blokuje lub definiuje źródło, które może być użyte do blokowania nastawy regulatora PID procesu. Ta funkcja jest przydatna, gdy wartość zadana opiera się na sprzężeniu zwrotnym procesu połączonym z wejściem analogowym, a należy wykonać pewne czynności serwisowe na czujniku bez zatrzymywania procesu. 1 = Nastawa regulatora PID procesu zablokowana. Patrz też parametr 40.38. Zest. 1: blokov. wyjścia wł.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nie wybrano Nastawa regulatora PID procesu nie jest zablokowana.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wybrano Nastawa regulatora PID procesu jest zablokowana.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>23</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40.31 Zest. 1: odwr. różniczk.</td>
<td>Odwraca wyjście regulatora PID procesu. 0 = Odchylenie nie jest odwrócone (Odchylenie = Nastawa - Sprzężenie zwrotne) 1 = Odwrócone odchylenie (Sprzężenie zwrotne - Nastawa) Patrz też sekcja Funkcje uśpienia i wzmocnienia dla regulatora PID procesu (strona 84).</td>
<td>Bez odwrócenia (W zad - sp zwr)</td>
<td></td>
</tr>
<tr>
<td>Bez odwrócenia (W zad - sp zwr)</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Z odwróceniem (Sp zwr - W zad)</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40.32 Zest. 1: wzmocnienie</td>
<td>Definiuje wzmocnienie dla regulatora PID procesu. Patrz parametr 40.33 Zest. 1: czas całkowania.</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>0,10…100,00</td>
<td>Wzmocnienie dla regulatora PID procesu.</td>
<td>100 = 1</td>
<td></td>
</tr>
<tr>
<td>40.33 Zest. 1: czas całkowania</td>
<td>Definiuje czas całkowania dla regulatora PID procesu. Ta stała czasowa musi być ustawiona w tym samym zakresie wielkości co czas reakcji sterowanego procesu. Niedopełnienie tego warunku może spowodować niestabilność systemu.</td>
<td>60,0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Błąd / wyjście regulatora</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G x I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G x I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I = wejście regulatora (błąd)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O = wyjście regulatora</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G = przyrost</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti = czas całkowania</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uwaga: Ustawienie tej wartości na 0 wyłącza część „I”, zmieniając regulator PID w regulator PD.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0…9999,0 s</td>
<td>Czas całkowania.</td>
<td>1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.34 Zest. 1: czas różniczk.</td>
<td>Definiuje czas różniczkowania regulatora PID procesu. Składnica różniczkowania na wyjściu regulatora jest obliczana na podstawie dwóch kolejnych wartości błędów ((E_{K-1} \text{ i } E_K)) zgodnie z następującym wzorem: (\text{PID DERIV TIME} \times (E_K - E_{K-1})/T_S), w którym: (T_S) = czas próbkowania 2 ms (E = \text{błąd} = \text{wartość zadana procesu - sprzężenie zwrotne procesu.})</td>
<td>0,000 s</td>
<td></td>
</tr>
<tr>
<td>0,000…10,000 s</td>
<td>Czas różniczkowania.</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| 40.35| Zest. 1: czas filtru różniczk. | Definiuje stałą czasu filtru pierwszego rzędu używanego do
wygladzenia składowej różniczkowania dla regulatora PID procesu. | 0,0 s |
| | | ![Diagram](image) | |
| | | O = I × (1 - e^{-t/T}) | |
| | | I = sygnał wejściowy filtrowania (krok) | |
| | | O = sygnał wyjściowy filtrowania | |
| | | t = czas | |
| | | T = stała czasu filtrowania | |
| | 0,0…10,0 s | Stała czasu filtrowania. | 10 = 1 s |
| 40.36| Zest. 1: min. wyjście | Definiuje minimalny limit wyjścia regulatora PID procesu. Za pomocą limitów minimalnych i maksymalnych możliwe
jest ograniczenie zakresu pracy. | 0,00 |
| | -200000,00…200000,00 | Minimalny limit wyjścia regulatora PID procesu. | 1 = 1 |
| 40.37| Zest. 1: maks. wyjście | Definiuje maksymalny limit wyjścia regulatora PID procesu. Patrz parametr 40.36 Zest. 1: min. wyjście. | 100,00 |
| | -200000,00…200000,00 | Maksymalny limit wyjścia regulatora PID procesu. | 1 = 1 |
| 40.38| Zest. 1: blokow. wyjścia wł. | Blokuje (lub definiuje źródło, które może być użyte do blo- | Nie wybrano |
| | | kowania) wyjście regulatora PID procesu, zachowując wartość wyjścia występującą przed włączeniem blokowania. Ta
funkcja może być użyta, gdy na przykład należy wykonać pewne czynności serwisowe na czujniku sprzężenia zwrotnego bez
zatrzymywania procesu. 1 = wyjście regulatora PID dla procesu zablokowane Patrz też parametr 40.30 Zest. 1: wł. blokow. nastawy. | |
<p>| | Nie wybrano | Wyjście regulatora PID procesu nie jest zablokowane. | 0 |
| | Wybrano | Wyjście regulatora PID procesu jest zablokowane. | 1 |
| | DI1 | Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). | 2 |
| | DI2 | Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). | 3 |
| | DI3 | Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). | 4 |
| | DI4 | Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3). | 5 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td>10</td>
<td>FbEq 16</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40.39 Zest. 1: zakres strefy nieczuł.</td>
<td>Definiuje strefę nieczułości wokół nastawy. Gdy sprzężenie zwrotne procesu wchodzi w strefę nieczułości, uruchomiony zostaje timer opóźnienia. Jeśli sprzężenie zwrotne pozostanie w strefie nieczułości dłużej niż przez okres opóźnienia (40.40 Zest. 1: opóź. strefy nieczuł.), wyjście regulatora PID zostaje zablokowane. Normalna obsługa jest przywracana, gdy wartość sprzężenia zwrotnego opuści strefę nieczułości.</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

40.39 Zest. 1: zakres strefy nieczuł.

Nastawa

Sprzężenie zwrotne

Wyjście kontrolera PID

Zablokowane wyjście kontrolera PID

40.40 Zest. 1: opóź. strefy nieczuł.

Czas

0......200000,0 Zakres strefy nieczułości. 1 = 1

40.40 Zest. 1: opóź. strefy nieczuł. Opóźnienie dla strefy nieczułości. Patrz parametr 40.39 Zest. 1: zakres strefy nieczuł.. 0,0 s

0,0…..3600,0 s Opóźnienie dla obszaru strefy nieczułości. 1 = 1 s

40.43 Zest. 1: poziom uśpienia Definiuje limit startu dla funkcji uśpienia. Jeśli wartość to 0,0, Zest. 1: tryb uśpienia jest wyłączony. Funkcja uśpienia porównuje prędkość silnika z wartością tego parametru. Jeśli prędkość silnika pozostaje poniżej tej wartości dłużej niż przez okres opóźnienia uśpienia zdefiniowany w parametrze 40.44 Zest. 1: opóź. uśpienia, przemiannik częstotliwości przechodzi w tryb uśpienia i zatrzymuje silnik. 0,0

0,0…200000,0 Poziom początkowy uśpienia. 1 = 1
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.44</td>
<td>Zest. 1: opóź. uśpienia</td>
<td>Definiuje opóźnienie, po jakim funkcja uśpienia jest włączana, aby zapobiec przypadkowemu uśpieniu. Timer opóźnienia jest uruchamiany, gdy tryb uśpienia zostaje włączony przy użyciu parametru 40.43 Zest. 1: poziom uśpienia, a następnie resetuje się, gdy tryb uśpienia zostaje wyłączony.</td>
<td>60,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0…3600,0 s Opóźnienie początku uśpienia. 1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.45</td>
<td>Zest. 1: czas wzm. uśpienia</td>
<td>Definiuje czas zwiększenia dla kroku zwiększenia uśpienia. Patrz parametr 40.46 Zest. 1: krok wzm. uśpienia.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0…3600,0 s Czas zwiększenia uśpienia. 1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.46</td>
<td>Zest. 1: krok wzmac. uśpienia</td>
<td>Kiedy przemiennik częstotliwości przechodzi w tryb uśpienia, nastawa procesu jest zwiększona o taka wartość dla czasu zdefiniowanego przez parametr 40.45 Zest. 1: czas wzm. uśpienia. Jeśli funkcja jest aktywna, zwiększenie uśpienia jest anulowane po wznowieniu pracy przemiennika częstotliwości.</td>
<td>0,0 jednostek klienta PID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0 = 200000,0 jednostek klienta PID Krok zwiększenia uśpienia. 1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
</tbody>
</table>
| 40.47 | **Zest. 1: odchyl. przebudz.** | Definiuje poziom wznowienia pracy jako różnicę pomiędzy nastawą procesu i sprzężeńiem zwoistym. Gdy odchylenie przekracza wartość tego parametru i pozostaje w tym zakresie przez okres opóźnienia wznowienia pracy (40.48 **Zest. 1: opóźn. przebudz.**), przemieni
 nik częstotliwości wznowia pracę. Patrz też parametr 40.31 **Zest. 1: odwr. różniczk.**. | 0,00 jednostek klienta PID |
<p>| | | -200000,00... 200000,0 jednostek PID klienta Poziom wznowienia pracy (jako różnica pomiędzy nastawą procesu i sprzężeńiem zwoistym). | 1 = 1 jednostka klienta PID |
| 40.48 | Zest. 1: opóźn. przebudz. | Definiuje opóźnienie wznowienia pracy dla funkcji uśpienia, aby uniemocnić przypadkowe wznowienia. Patrz parametr 40.47 Zest. 1: odchyl. przebudz.. Timer opóźnienia jest uruchamiany, gdy odchylenie przekracza poziom wznowienia pracy (40.47 Zest. 1: odchyl. przebudz.) i jest resetowany, jeśli odchylenie spadnie ponizżej poziomu wznowienia pracy. | 0,50 s |
| | | 0,00…60,00 s Opóźnienie wznowienia pracy. 1 = 1 s | |
| 40.49 | Zest. 1: tryb śledzenia | Aktywuje tryb śledzenia (lub wybiera źródło, które go aktywuje). W trybie śledzenia wartość wybrana przez parametr 40.50 Zest. 1: wybór śledz. w. zad. zastępuje wartość wyjściową regulatora PID. Warto również zapoznać się z sekcją Śledzenie (na str. 85). 1 = Tryb śledzenia włączony Nie wybrano |
| | | Nie wybrano 0. | |
| | | Wybrano 1. | |
| | | DI1 Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). | 2 |
| | | DI2 Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). | 3 |
| | | DI3 Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). | 4 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40.50 Zest. 1: wybór śledz. w. zad.</td>
<td>Wybiera źródło wartości dla trybu śledzenia. Patrz parametr 40.49 Zest. 1: tryb śledzenia.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>AI1 skalowane</td>
<td>12.12 Wartość skalowana AI1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AI2 skalowane</td>
<td>12.22 Wartość skalowana AI2.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>W. zad. 1 mag. kom. A</td>
<td>03.05 W. zad. 1 mag. kom. A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>W. zad. 2 mag. kom. A</td>
<td>03.06 W. zad. 2 mag. kom. A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40.57 PID: wybór zestawu 1/2</td>
<td>Wybiera źródło określające, czy używany jest zestaw parametrów 1 PID procesu (parametry 40.07...40.50), czy zestaw 2 (grupa 41 PID procesu: zestaw 2).</td>
<td>PID: zestaw 1</td>
</tr>
<tr>
<td></td>
<td>PID: zestaw 1</td>
<td>PID, zestaw 1.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PID: zestaw 2</td>
<td>PID, zestaw 2.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>40.58</td>
<td>Zest. 1: zwiększ zabez.</td>
<td>Zapobieganie zwiększeniu warunku całkowania PID dla zest. 1 PID.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Zapobieganie przed zwiększeniem nie jest używane.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Limitowanie</td>
<td>Warunek całkowania PID nie jest zwiększany, jeśli osiągnięta maksymalna wartość wyjścia PID. Ten parametr ma zastosowanie do zestawu 1 PID.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Min. lim. zew. PID</td>
<td>Warunek całkowania PID procesu nie jest zwiększany, gdy wyjście zewnętrznego PID osiągnęło limit minimalny. W takiej konfiguracji zewnętrzny PID jest używany jako źródło PID procesu. Ten parametr ma zastosowanie do zestawu 1 PID.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Maks. lim. zew. PID</td>
<td>Warunek całkowania PID procesu nie jest zwiększany, gdy wyjście zewnętrznego PID osiągnęło limit maksymalny. W takiej konfiguracji zewnętrzny PID jest używany jako źródło PID procesu. Ten parametr ma zastosowanie do zestawu 1 PID.</td>
<td>3</td>
</tr>
<tr>
<td>40.59</td>
<td>Zest. 1: zmniejsz zabez.</td>
<td>Zapobieganie zmniejszeniu warunku całkowania PID dla zest. 1 PID.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Zapobieganie przed zmniejszeniem nie jest używane.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Limitowanie</td>
<td>Warunek całkowania PID nie jest zmniejszany, jeśli osiągnięta minimalna wartość wyjścia PID. Ten parametr ma zastosowanie do zestawu 1 PID.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Min. lim. zew. PID</td>
<td>Warunek całkowania PID procesu nie jest zmniejszany, gdy wyjście zewnętrznego regulatora PID osiągnęło limit minimalny. W takiej konfiguracji zewnętrzny PID jest używany jako źródło PID procesu. Ten parametr ma zastosowanie do zestawu 1 PID.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Maks. lim. zew. PID</td>
<td>Warunek całkowania PID procesu nie jest zmniejszany, gdy wyjście zewnętrznego regulatora PID osiągnęło limit maksymalny. W takiej konfiguracji zewnętrzny PID jest używany jako źródło PID procesu. Ten parametr ma zastosowanie do zestawu 1 PID.</td>
<td>3</td>
</tr>
<tr>
<td>40.60</td>
<td>Zestaw 1: ź. aktyw. PID</td>
<td>Wybiera źródło aktywacji zestawu 1 PID procesu.</td>
<td>Wł.</td>
</tr>
<tr>
<td></td>
<td>Wył.</td>
<td>Źródło aktywacji zestawu 1 PID jest wyłączone.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wł.</td>
<td>Źródło aktywacji zestawu 1 PID jest włączone.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>3</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty, str. 112).</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>40.61</td>
<td>W. akt. skalow. nastawy</td>
<td>Rzeczywiste skalowanie nastawy. Patrz parametr 40.14 Zest. 1: skal. nastawy.</td>
<td>0,00</td>
</tr>
<tr>
<td>-200000,00... 200000,00 jednostek PID klienta</td>
<td>Skalowanie.</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>40.62</td>
<td>Wewn. akt. wart. nast. PID</td>
<td>Wyświetla wartość nastawy wewnętrznzej. Patrz wykres łańcucha sterowania na stronie 556. Ten parametr jest tylko do odczytu.</td>
<td>0,00 jednostki PID 1</td>
</tr>
<tr>
<td>-200000,00... 200000,00 jednostek PID klienta</td>
<td>Nastawa wewnętrzna PID procesu.</td>
<td>1 = 1 jednostka klienta PID</td>
<td></td>
</tr>
<tr>
<td>40.80</td>
<td>Zest. 1: źródło min. wart. wyj. PID</td>
<td>Wybiera źródło dla minimum wyjścia zestawu 1 PID. Zest. 1: min. wyjście</td>
<td></td>
</tr>
<tr>
<td>Brak</td>
<td>Brak.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zest. 1: min. wyjście</td>
<td>40.36 Zest. 1: min. wyjście.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40.81</td>
<td>Zest. 1: źródło maks. wart. wyj. PID</td>
<td>Wybiera źródło dla maksimum wyjścia zestawu 1 PID. Zest. 1: maks. wyjście</td>
<td></td>
</tr>
<tr>
<td>Brak</td>
<td>Brak.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zest. 1: maks. wyjście</td>
<td>40.37 Zest. 1: maks. wyjście</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40.89</td>
<td>Zest. 1: mnożnik nastawy</td>
<td>Definiuje mnożnik, za pomocą którego mnożony jest wynik funkcji określonej przez parametr 40.18 Zest. 1: funkcja nastawy.</td>
<td>1,00</td>
</tr>
<tr>
<td>-200000,00... 200000,00</td>
<td>Mnożnik.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.90</td>
<td>Zest. 1: mnożnik sprz. zwr.</td>
<td>Definiuje mnożnik, za pomocą którego mnożony jest wynik funkcji określonej przez parametr 40.10 Zest. 1: funkcja sprz. zwrot.</td>
<td>1,00</td>
</tr>
<tr>
<td>-200000,00... 200000,00</td>
<td>Mnożnik.</td>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>
40.91 Magazyn danych sprzężenia zwrotnego

Parametr magazynu do otrzymywania sprzężenia zwrotnego od procesu, np. przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Wartość może być przesłana do przemiennika częstotliwości jako dane we/wy Modbus. Należy ustawić parametr wyboru elementu docelowego konkretnych danych (58.101…58.114) na Magazyn danych sprzężenia zwrotnego. W 40.08 Zest. 1: źródło sprz. zwrot. 1 (lub 40.09 Zest. 1: źródło sprz. zwrot. 2) należy wybrać Magazyn sprz. zwrotnego.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.91</td>
<td>Magazyn danych sprzężenia zwrotnego</td>
<td>Parametr magazynu do otrzymywania sprzężenia zwrotnego od procesu, np. przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Wartość może być przesłana do przemiennika częstotliwości jako dane we/wy Modbus. Należy ustawić parametr wyboru elementu docelowego konkretnych danych (58.101…58.114) na Magazyn danych sprzężenia zwrotnego. W 40.08 Zest. 1: źródło sprz. zwrot. 1 (lub 40.09 Zest. 1: źródło sprz. zwrot. 2) należy wybrać Magazyn sprz. zwrotnego.</td>
<td>0,00</td>
</tr>
</tbody>
</table>

-327,68…327,67 Parametr magazynu dla sprzężenia zwrotnego procesu. 100 = 1

40.92 Magazyn danych nastawy

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.96</td>
<td>% wyjścia z PID procesu</td>
<td>Skalowany wartością procentową sygnał parametru 40.01 PID procesu: akt.wart.sprz.zw.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>-100,00…100,00%</td>
<td>Procent.</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>40.97</td>
<td>% sprz. zwr. z PID procesu</td>
<td>Skalowany wartością procentową sygnał parametru 40.02 PID procesu: akt.wart.sprz.zw.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>-100,00…100,00%</td>
<td>Procent.</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>40.98</td>
<td>% nastawy PID procesu</td>
<td>Skalowany wartością procentową sygnał parametru 40.03 PID procesu: akt.wart.nastawy</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>-100,00…100,00%</td>
<td>Procent.</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>40.99</td>
<td>% odchylenia PID procesu</td>
<td>Skalowany wartością procentową sygnał parametru 40.04 PID procesu: akt.wart.odchyl.</td>
<td>0,00%</td>
</tr>
<tr>
<td></td>
<td>-100,00…100,00%</td>
<td>Procent.</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>

41 PID procesu: zestaw 2

Drugi zestaw wartości parametrów dla regulatora PID dla procesu. Wybór pomiędzy tym zestawem i pierwszym zestawem (grupa parametrów 40 PID procesu: zestaw 1) dokonywany jest za pomocą parametru 40.57 PID: wybór zestawu 1/2. Patrz też parametry 40.01…40.06 i schematy łańcucha sterowania na stronach 556 i 557.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.08</td>
<td>Zest. 2: źródło sprz. zwrot. 1</td>
<td>Patrz parametr 40.08 Zest. 1: źródło sprz. zwrot. 1.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.09</td>
<td>Zest. 2: źródło sprz. zwrot. 2</td>
<td>Patrz parametr 40.09 Zest. 1: źródło sprz. zwrot. 2.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.10</td>
<td>Zest. 2: funkcja sprz. zwrot.</td>
<td>Patrz parametr 40.10 Zest. 1: funkcja sprz. zwrot.</td>
<td>We1</td>
</tr>
<tr>
<td>41.11</td>
<td>Zest. 2: czas filtru sprz. zwrot.</td>
<td>Patrz parametr 40.11 Zest. 1: czas filtru sprz. zwrot.</td>
<td>0,000 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>41.14</td>
<td>Zest. 2: skal. nastawy</td>
<td>Patrz parametr 40.14 Zest. 1: skal. nastawy.</td>
<td>0,00</td>
</tr>
<tr>
<td>41.15</td>
<td>Zest. 2: skal. wyjścia</td>
<td>Patrz parametr 40.15 Zest. 1: skal. wyjścia.</td>
<td>0,00</td>
</tr>
<tr>
<td>41.16</td>
<td>Zest. 2: źródło nastawy 1</td>
<td>Patrz parametr 40.16 Zest. 1: źródło nastawy 1.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.17</td>
<td>Zest. 2: źródło nastawy 2</td>
<td>Patrz parametr 40.17 Zest. 1: źródło nastawy 2.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.18</td>
<td>Zest. 2: funkcja nastawy</td>
<td>Patrz parametr 40.18 Zest. 1: funkcja nastawy.</td>
<td>We1</td>
</tr>
<tr>
<td>41.19</td>
<td>Zest. 2: wybór wewn. nast. 1</td>
<td>Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 1.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.20</td>
<td>Zest. 2: wybór wewn. nast. 2</td>
<td>Patrz parametr 40.20 Zest. 1: wybór wewn. nast. 2.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.21</td>
<td>Zestaw 2: wewn. nastawa 1</td>
<td>Patrz parametr 40.21 Zest. 1: wewn. nastawa 1.</td>
<td>0,00 jednostek klienta PID</td>
</tr>
<tr>
<td>41.22</td>
<td>Zestaw 2: wewn. nastawa 2</td>
<td>Patrz parametr 40.22 Zest. 1: wewn. nastawa 2.</td>
<td>0,00 jednostek klienta PID</td>
</tr>
<tr>
<td>41.23</td>
<td>Zestaw 2: wewn. nastawa 3</td>
<td>Patrz parametr 40.23 Zest. 1: wewn. nastawa 3.</td>
<td>0,00 jednostek klienta PID</td>
</tr>
<tr>
<td>41.24</td>
<td>Zest. 2: wewn. nastawa 0</td>
<td>40.24 Zest. 1: wewn. nastawa 0.</td>
<td>0,00 jednostek klienta PID</td>
</tr>
<tr>
<td>41.26</td>
<td>Zest. 2: min. nastawy</td>
<td>Patrz parametr 40.26 Zest. 1: min. nastawy.</td>
<td>0,00</td>
</tr>
<tr>
<td>41.27</td>
<td>Zest. 2: maks. nastawy</td>
<td>Patrz parametr 40.27 Zest. 1: maks. nastawy.</td>
<td>200000,00</td>
</tr>
<tr>
<td>41.28</td>
<td>Zest. 2: czas zwiększ. nast.</td>
<td>Patrz parametr 40.28 Zest. 1: czas zwiększ. nast..</td>
<td>0,0 s</td>
</tr>
<tr>
<td>41.29</td>
<td>Zest. 2: czas zmniejsz. nast.</td>
<td>Patrz parametr 40.29 Zest. 1: czas zmniejsz. nast..</td>
<td>0,0 s</td>
</tr>
<tr>
<td>41.30</td>
<td>Zest. 2: blokow. nastawy wł.</td>
<td>Patrz parametr 40.30 Zest. 1: wł. blokow. nastawy.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.31</td>
<td>Zest. 2: odwr. różniczk.</td>
<td>Patrz parametr 40.31 Zest. 1: odwr. różniczk..</td>
<td>Bez odwrócenia (W zad - sp zwr)</td>
</tr>
<tr>
<td>41.32</td>
<td>Zest. 2: wzmocnienie</td>
<td>Patrz parametr 40.32 Zest. 1: wzmocnienie.</td>
<td>1,00</td>
</tr>
<tr>
<td>41.33</td>
<td>Zest. 2: czas całkowania</td>
<td>Patrz parametr 40.33 Zest. 1: czas całkowania.</td>
<td>60,0 s</td>
</tr>
<tr>
<td>41.34</td>
<td>Zest. 2: czas różniczk.</td>
<td>Patrz parametr 40.34 Zest. 1: czas różniczk..</td>
<td>0,000 s</td>
</tr>
<tr>
<td>41.35</td>
<td>Zest. 2: czas filtru różniczk.</td>
<td>Patrz parametr 40.35 Zest. 1: czas filtru różniczk..</td>
<td>0,0 s</td>
</tr>
<tr>
<td>41.36</td>
<td>Zest. 2: min. wyjście</td>
<td>Patrz parametr 40.36 Zest. 1: min. wyjście.</td>
<td>0,00</td>
</tr>
<tr>
<td>41.37</td>
<td>Zest. 2: maks. wyjście</td>
<td>Patrz parametr 40.37 Zest. 1: maks. wyjście.</td>
<td>100,00</td>
</tr>
<tr>
<td>41.38</td>
<td>Zest. 2: wł. blokow. wyjścia</td>
<td>Patrz parametr 40.38 Zest. 1: wł. blokow. wyjścia wł..</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>41.39</td>
<td>Zest. 2: zakres strefy nieczuż.</td>
<td>Patrz parametr 40.39 Zest. 1: zakres strefy nieczuż..</td>
<td>0,0</td>
</tr>
<tr>
<td>41.40</td>
<td>Zest. 2: opóź. strefy nieczuż.</td>
<td>Patrz parametr 40.40 Zest. 1: opóź. strefy nieczuż..</td>
<td>0,0 s</td>
</tr>
<tr>
<td>41.43</td>
<td>Zest. 2: poziom uśpienia</td>
<td>Patrz parametr 40.43 Zest. 1: poziom uśpienia.</td>
<td>0,0</td>
</tr>
<tr>
<td>41.44</td>
<td>Zest. 2: opóź. uśpienia</td>
<td>Patrz parametr 40.44 Zest. 1: opóź. uśpienia.</td>
<td>60,0 s</td>
</tr>
<tr>
<td>41.45</td>
<td>Zest. 2: czas wz. uśpienia</td>
<td>Patrz parametr 40.45 Zest. 1: czas wz. uśpienia.</td>
<td>0,0 s</td>
</tr>
<tr>
<td>41.46</td>
<td>Zest. 2: krok wzmac. uśpienia</td>
<td>Patrz parametr 40.46 Zest. 1: krok wzmac. uśpienia.</td>
<td>0,0 jednostek klienta PID</td>
</tr>
<tr>
<td>41.47</td>
<td>Zest. 2: odchyl. przebudz.</td>
<td>Patrz parametr 40.47 Zest. 1: odchyl. przebudz..</td>
<td>0,00 jednostek klienta PID</td>
</tr>
<tr>
<td>41.48</td>
<td>Zest. 2: opóźni. przebudz.</td>
<td>Patrz parametr 40.48 Zest. 1: opóźni. przebudz..</td>
<td>0,50 s</td>
</tr>
<tr>
<td>41.49</td>
<td>Zest. 2: tryb śledzenia</td>
<td>Patrz parametr 40.49 Zest. 1: tryb śledzenia.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.50</td>
<td>Zest. 2: wybór śledz. w. zad.</td>
<td>Patrz parametr 40.50 Zest. 1: wybór śledz. w. zad..</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>41.58</td>
<td>Zest. 2: zwiększ bezpiec.</td>
<td>Patrz parametr 40.58 Zest. 1: zwiększ bezpiec..</td>
<td>Brak</td>
</tr>
<tr>
<td>41.59</td>
<td>Zest. 2: zmniejsz bezpiec.</td>
<td>Patrz parametr 40.59 Zest. 1: zmniejsz bezpiec..</td>
<td>Brak</td>
</tr>
<tr>
<td>41.60</td>
<td>Zestaw 2: źr. aktyw. PID</td>
<td>Patrz parametr 40.60 Zestaw 1: źr. aktyw. PID.</td>
<td>Wł.</td>
</tr>
<tr>
<td>41.80</td>
<td>Zest. 2: źródło min. wart. wyj. PID</td>
<td>Wybiera źródło dla minimum wyjścia zestawu 2 PID.</td>
<td>Zest. 2: min. wyjście</td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td>41.36</td>
<td>Zest. 2: min. wyjście</td>
<td>Brak.</td>
<td>1</td>
</tr>
<tr>
<td>41.81</td>
<td>Zest. 2: źródło maks. wart. wyj. PID</td>
<td>Wybiera źródło dla maksimum wyjścia zestawu 2 PID.</td>
<td>Zest. 2: maks. wyjście</td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td>41.89</td>
<td>Zest. 2: mnożnik nastawy</td>
<td>Patrz parametr 40.89 Zest. 1: mnożnik nastawy..</td>
<td>1,00</td>
</tr>
<tr>
<td>41.90</td>
<td>Zest. 2: mnożnik sprz. zwr.</td>
<td>Definiuje mnożnik k używany we wzorach parametru 41.10 Zest. 2: funkcja sprz. zwrot.. Patrz parametr 40.90 Zest. 1: mnożnik sprz. zwr..</td>
<td>1,00</td>
</tr>
</tbody>
</table>
43 Czoper hamowania

- **Temp. rezystora hamowania**
 - Wyświetla szacowaną temperaturę rezystora hamowania lub informuje o tym, ile brakuje do naddmiernego nagrzania tego rezystora.
 - Wartość jest podawana jako procentowa, gdzie 100% to końcowa temperatura, jaką rezystor osiągnął po odpowiednio długim obciążeniu o wartości swojego maksymalnego obciążenia znamionowego (43.09 Maks. moc ciągu rez. ham.).
 - Oszacowanie temperatury jest oparte na wartości parametrów 43.08, 43.09 i 43.10 oraz przyjętym założeniu, że rezystor został zainstalowany w sposób wskazany przez producenta (czyli jego temperatura spada w sposób zgodny z oczekiwaniami).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Ustawienia wewnętrznego czopera hamowania.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

43.01 Temp. rezystora hamowania

- **0,0…120,0%** Szacowana temperatura rezystora hamowania.
- **1 = 1%**

43.06 Funk. czopera hamowania

- **Uwaga:** Przed aktywacją sterowania czoperem hamowania należy zapewnić, że:
 - rezystor hamowania jest podłączony;
 - kontrola przepięć jest wyłączona (parametr 30.30 Kontrola przepięć);
 - zakres napięcia zasilania (parametr 95.01 Napięcie zasilania) został wybrany prawidłowo.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Ustawienia wewnętrznego czopera hamowania.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

43.06 Funk. czopera hamowania

- **Nieaktywne** Sterowanie czoperem hamowania jest wyłączone.
- **0**

Wł. z modelem termicznym

- Sterowanie czoperem hamowania włączone z ochroną rezystora hamowania na podstawie modelu termicznego.
- Jeśli ta opcja zostanie wybrana, konieczne jest również określenie wartości wymaganych przez model, czyli parametrów 43.08, 43.09, 43.10, 43.11 i 43.12. Należy zapoznać się z arkuszem danych producenta rezystora.
- **1**

Wł. bez modelu termicznego

- Sterowanie czoperem hamowania jest włączone bez ochrony rezystora przed przegrzaniem na podstawie modelu termicznego, jeśli rezystor jest wyposażony w wyłącznik termiczny podłączony w taki sposób, aby otwierał główny stycznik przemiennika częstotliwości, gdy rezystor się przegrzeje.
- Więcej informacji zawiera rozdział *Hamowanie rezystorowe* w podręczniku użytkownika.
- **2**
Ochrona przed przepięciem

Sterowanie czoperem hamowania jest włączone w przypadku przepięci. To ustawienie jest przeznaczone do stosowania w następujących sytuacjach:
- Czoper hamowania nie jest wymagany do pracy, czyli do rozpraszania energii bezwładności silnika.
- Uzwojenia silnika mogą przechowywać dużą ilość energii magnetycznej.
- Silnik może zostać zatrzymany wybiegiem celowo lub przypadkowo.

W takich sytuacjach może potencjalnie wystąpić wyładowanie z silnika w stronę przemiennika częstotliwości ilości energii, która może wywołać uszkodzenia. Aby umożliwić ochronę przemiennika częstotliwości, można użyć czopera hamowania o małym rezystorze, którego wymiary umożliwiają obsługę energii magnetycznej (nie energii bezwładności) silnika. To ustawienie aktywuje czoper hamowania tylko wtedy, gdy napięcie DC przekracza limit przepięcia. Podczas normalnego użytkowania czopera hamowania nie działa.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ochrona przed przepięciem</td>
<td>Sterowanie czoperem hamowania jest włączone w przypadku przepięcia.</td>
<td>3</td>
</tr>
</tbody>
</table>

43.07 Zezwolenie na pracę czopera

Wybiera źródło szybkiego włączania/wyłączania czopera hamowania.

- Wył. 0
- Wt. 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

43.08 Term. stała czas. rez. ham.

Definiuje termiczną stałą czasową rezystora hamowania dla modelu termicznego rezystora hamowania.

<table>
<thead>
<tr>
<th>Wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s</td>
<td>Termiczna stała czasowa rezystora hamowania, czyli czas znamionowy wymagany do osiągnięcia 63% temperatury.</td>
</tr>
</tbody>
</table>

43.09 Maks. moc ciągła rez. ham.

Definiuje maksymalne ciągłe obciążenie rezystora hamowania, które ostatecznie spowoduje wzrost temperatury rezystora do maksymalnej dozwolonej wartości (jest to równe zdolności rezystora w zakresie rozpraszania ciepła w kW), ale nie powyżej tej wartości. Wartość ta jest użytkowana w ochronie rezystora przed przegrzaniem na podstawie modelu termicznego. Patrz parametr 43.06 Funk. czopera hamowania.

<table>
<thead>
<tr>
<th>Wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 kW</td>
<td>Maksymalne obciążenie ciągłe rezystora hamowania.</td>
</tr>
</tbody>
</table>

43.10 Rezystancja rezystora

Definiuje wartość rezystancji rezystora hamowania. Wartość jest użytkowana w ochronie rezystora hamowania na podstawie modelu termicznego. Patrz parametr 43.06 Funk. czopera hamowania.

<table>
<thead>
<tr>
<th>Wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 Ω</td>
<td>Wartość rezystancji rezystora hamowania.</td>
</tr>
</tbody>
</table>
Parametry

43.11 Limit błędu rez. ham.
Wybiera limit błędów ochrony rezystora hamowania na podstawie modelu termicznego. Patrz parametr 43.06 Funk. czopera hamowania.
Po przekroczeniu limitu przemiennik częstotliwości wyzwala błąd 7183 Nadmierna temp. rezystora hamow. Wartość jest podawana jako procentowa część temperatury, jaką rezystor osiąga po obciążeniu mocą zdefiniowaną parametrem 43.09 Maks. moc ciągu rez. ham.

<table>
<thead>
<tr>
<th>Wartość</th>
<th>Stan</th>
<th>Limity temperatury rezystora hamowania</th>
<th>1 = 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…150%</td>
<td></td>
<td>Limit błędu temperatury rezystora hamowania.</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>

43.12 Limit ostrz. rez. ham.
Wybiera limit ostrzeżeń ochrony rezystora hamowania na podstawie modelu termicznego. Patrz parametr 43.06 Funk. czopera hamowania.
Po przekroczeniu limitu przemiennik częstotliwości generuje ostrzeżenie A793 Nadmierna temp. rezystora hamow. Wartość jest podawana jako procentowa część temperatury, jaką rezystor osiąga po obciążeniu mocą zdefiniowaną parametrem 43.09 Maks. moc ciągu rez. ham.

<table>
<thead>
<tr>
<th>Wartość</th>
<th>Stan</th>
<th>Limity temperatury rezystora hamowania</th>
<th>1 = 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…150%</td>
<td></td>
<td>Limit ostrzeżenia temperatury rezystora hamowania.</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>

44 Sterowanie hamulcem mechan.
Konfiguracja sterowania hamulcem mechanicznym. Patrz też grupa parametrów 40 PID procesu: zestaw 1 i 41 PID procesu: zestaw 2.

44.01 Stan sterowania hamulcem
Wyświetla słowo stanu sterowania hamulcem mechanicznym. Ten parametr jest tylko do odczytu.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Polecenie otwarcia</td>
<td>Polecenie zamknięcia/otwarcia silnika hamulca (0 = zamknięty, 1 = otwarty). Ten bit należy połączyć z wybranym wyjściem.</td>
</tr>
<tr>
<td>1</td>
<td>Zadanie mom. dla otw.</td>
<td>1 = Moment otwierający, którego żądanie przesłano z układu logicznego przemiennika częstotliwości</td>
</tr>
<tr>
<td>2</td>
<td>Wstr. zatrzym. żąd.</td>
<td>1 = Wstrzymanie, którego żądanie przesłano z układu logicznego przemiennika częstotliwości</td>
</tr>
<tr>
<td>3</td>
<td>Rampa do zatrzym.</td>
<td>1 = Hamowanie rampą do prędkości zerowej, którego żądanie przesłano z układu logicznego przemiennika częstotliwości</td>
</tr>
<tr>
<td>4</td>
<td>Włączone</td>
<td>1 = Sterowanie hamulcem jest włączone</td>
</tr>
<tr>
<td>5</td>
<td>Zamknięte</td>
<td>1 = Układ logiczny sterowania hamulcem w stanie HAMULEC JEST ZAMKNIĘTY</td>
</tr>
<tr>
<td>6</td>
<td>Otwieranie</td>
<td>1 = Układ logiczny sterowania hamulcem w stanie OTWIERANIE HAMULCA</td>
</tr>
<tr>
<td>7</td>
<td>Otwarta</td>
<td>1 = Układ logiczny sterowania hamulcem w stanie HAMULEC JEST OTWARTY</td>
</tr>
<tr>
<td>8</td>
<td>Zamykanie</td>
<td>1 = Układ logiczny sterowania hamulcem w stanie ZAMYKANIE HAMULCA</td>
</tr>
<tr>
<td>9…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wartość</th>
<th>Stan</th>
<th>Słowo stanu sterowania hamulcem mechanicznym</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h…FFFFh</td>
<td></td>
<td>Słowo stanu sterowania hamulcem mechanicznym.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
300 Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.02</td>
<td>Pamięć momentu ham.</td>
<td>Wyświetla moment (w procentach) w chwili wydania poprzedniego polecenia zamknięcia hamulca. Ta wartość może być użyta jako wartość zadana dla momentu otwarcia hamulca. Patrz parametry 44.09 Źródło mom. otw. hamulca i 44.10 Moment otwarcia hamulca.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600.0…1600,0%</td>
<td>Moment przy zamknięciu hamulca.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>44.03</td>
<td>Wart. zad. mom. dla otw. ham.</td>
<td>Wyświetla bieżący aktywny moment otwarcia hamulca. Patrz parametry 44.09 Źródło mom. otw. hamulca i 44.10 Moment otwarcia hamulca. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600,0…1600,0%</td>
<td>Bieżący aktywny moment otwarcia hamulca.</td>
<td>Patrz parametr 46.03</td>
</tr>
<tr>
<td>44.06</td>
<td>Sterowanie hamulca wl.</td>
<td>Aktywuje/dezaktywuje (lub określa źródło, które aktywuje/dezaktywuje) logikę sterowania hamulcem mechanicznym. 0 = Sterowanie hamulcem nieaktywne 1 = Sterowanie hamulcem aktywne</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nie wybrano Funkcja kontroli hamowania jest wyłączona. 0 Wybrano Funkcja kontroli hamowania jest włączona. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.07</td>
<td>Wybór potwierdz. hamowania</td>
<td>Aktywuje/dezaktywuje (lub określa źródło, które aktywuje/dezaktywuje) nadzór stanu (potwierdzenia) otwarcia/zamknięcia hamulca. Gdy wykryty zostanie błąd sterowania hamulcem (nieoczekiwany stan sygnału potwierdzenia), przemiennik częstotliwości reaguje zgodnie z ustawieniami określonymi parametrem 44.17 Funkcja błędu hamulca. 0 = Hamulec zamknięty, 1 = Hamulec otwarty</td>
<td>Bez potwierdzenia</td>
</tr>
</tbody>
</table>

Wybór potwierdzienia hamowania

	Funkcja potwierdzenia hamowania jest wyłączona.	0
Wł.	Funkcja potwierdzenia hamowania jest włączona.	1
Bez potwierdzenia	Nadzór otwarcia/zamknięcia hamulca wyłączony.	2

Wejście cyfrowe:

- DI1: (10.02 Stan DI po opóźnieniach, bit 0). 3
- DI2: (10.02 Stan DI po opóźnieniach, bit 1). 4
- DI3: (10.02 Stan DI po opóźnieniach, bit 2). 5
- DI4: (10.02 Stan DI po opóźnieniach, bit 3). 6
- DIO1: (11.02 Stan DIO po opóźnieniach, bit 0). 11
- DIO2: (11.02 Stan DIO po opóźnieniach, bit 1). 12

Inny [bit]: Wybór źródła (patrz Wyrażenia i skróty).

- **Opóźnienie otw. hamulca**

<table>
<thead>
<tr>
<th>Wartość domyślna</th>
<th>0,00 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment otwarcia hamulca</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

Opóźnienie otwierania hamulca

0,00…5,00 s

Moment otwarcia hamulca

Zero	Zero.	0
Al1 skalowane	12.12 Wartość skalowana Al1.	1
Al2 skalowane	12.22 Wartość skalowana Al2.	2
W. zad. 1 mag. kom. A	03.05 W. zad. 1 mag. kom. A.	3
W. zad. 2 mag. kom. A	03.06 W. zad. 2 mag. kom. A.	4
302 Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.02</td>
<td>Pamięć momentu hamowania</td>
<td>Parametr 44.02 Pamięć momentu ham.</td>
<td>7</td>
</tr>
<tr>
<td>44.10</td>
<td>Moment otwarcia hamulca</td>
<td>Parametr 44.10 Moment otwarcia hamulca.</td>
<td>8</td>
</tr>
</tbody>
</table>

44.10 Moment otwarcia hamulca

Definiuje znak (tzn. kierunek obrotów) oraz minimalną wartość bezwzględną momentu otwarcia hamulca (moment silnika wymagany podczas zwolnienia hamulca wyrażony jako procentowa wartość znamionowego momentu silnika). Wartość źródła wybranym parametrem 44.09 Źródło mom. otw. hamulca jest używana jako moment otwarcia hamulca tylko wtedy, gdy ma ten sam znak co ten parametr i ma większą wartość bezwzględną.

Uwaga: Ten parametr nie ma zastosowania w trybie skalarnego sterowania silnikiem.

-1600,0…1600,0% Minimalny moment przy zwolnieniu hamulca.

-1600,0…1600,0% Minimalny moment przy zwolnieniu hamulca. Patrz parametr 46.03

44.11 Trzymaj zamknięty hamulce

Wybiera źródło, które uniemożliwia otwarcie hamulca. 0 = Normalna obsługa hamulca 1 = Utrzymanie zamkniętego hamulca

Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.

<table>
<thead>
<tr>
<th>Wybór źródła</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nie wybrano</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td>Wybrano</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 ([10.02 Stan DI po opóźnieniach, bit 0].)</td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 ([10.02 Stan DI po opóźnieniach, bit 1]).</td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 ([10.02 Stan DI po opóźnieniach, bit 2]).</td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 ([10.02 Stan DI po opóźnieniach, bit 3]).</td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 ([11.02 Stan DIO po opóźnieniach, bit 0]).</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 ([11.02 Stan DIO po opóźnieniach, bit 1]).</td>
<td>11</td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>44.12</td>
<td>Żądanie zamknięcia hamulca</td>
<td>Wybiera źródło zewnętrznego sygnału żądania zamknięcia hamulca. Kiedy parametr jest włączony, sygnał zastępuje wewnętrzny układ logiczny i zamyka hamulce. 0 = Normalna obsługa/nie podłączono zewnętrznego sygnału zamknięcia. 1 = Zamknięcie hamulca. Uwagi: - Jeśli w przypadku aplikacji w pętli otwartej (bez enkoder) hamulce pozostaje zamknięty w wyniku żądania zamknięcia hamulca, gdy przemiennik częstotliwości przeprowadza modulację przez dłużej niż 5 sekund, zostaje wymuszone zamknięcie hamulca, a przemiennik częstotliwości zostaje wyłączony awaryjnie z powodu błędu 71A5 Otwarcie hamulca mechanicznego niedozwolone. - Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 ([10.02 Stan DI po opóźnieniach, bit 0].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 ([10.02 Stan DI po opóźnieniach, bit 1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 ([10.02 Stan DI po opóźnieniach, bit 2].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/WS cyfrowe DIO1 ([11.02 Stan DIO po opóźnieniach, bit 0].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/WS cyfrowe DIO2 ([11.02 Stan DIO po opóźnieniach, bit 1].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru [34.01 Stan funkcji czasowych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru [34.01 Stan funkcji czasowych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru [34.01 Stan funkcji czasowych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru [32.01 Stan nadzoru.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru [32.01 Stan nadzoru.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru [32.01 Stan nadzoru.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru [32.01 Stan nadzoru.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru [32.01 Stan nadzoru.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru [32.01 Stan nadzoru.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
</tr>
<tr>
<td>44.13</td>
<td>Opóźnienie zamk. hamulca</td>
<td>Określa opóźnienie pomiędzy komendą zamknięcia (gdy wyjście sterowania hamulcem nie jest zasilane) i gdy przemiennik częstotliwości zatrzyma modulację. Ma to na celu utrzymanie pracy i sterowania silnika do momentu faktycznego zamknięcia hamulca. Ten parametr należy ustawić na wartość określoną przez producenta hamulca jako czas przygotowania mechanicznego hamulca.</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>0,00…60,00 s</td>
<td>Opóźnienie zamykania hamulca.</td>
<td></td>
</tr>
<tr>
<td>44.14 Poz. zamk. hamulca</td>
<td>Definiuje prędkość zamykania hamulca jako wartość bezwzględną. Gdy prędkość silnika spadnie do tego poziomu, wydawane jest polecenie zamknięcia.</td>
<td>10,00 obr./min</td>
</tr>
<tr>
<td>0,00…1000,00 obr./min</td>
<td>Prędkość zamykania hamulca.</td>
<td></td>
</tr>
<tr>
<td>44.15 Poz. opóź. zamk. hamulca</td>
<td>Definiuje opóźnienie poziomu zamykania hamulca. Patrz parametr 44.14 Poz. zamk. hamulca.</td>
<td>0,00 s</td>
</tr>
<tr>
<td>0,00…10,00 s</td>
<td>Opóźnienie poziomu zamykania hamulca.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>44.16 Opóź. ponownego otw. ham.</td>
<td>Definiuje minimalny czas pomiędzy zamknięciem hamulca i kolejnym poleceniem otwarcia.</td>
<td>0,00 s</td>
</tr>
<tr>
<td>0,00…10,00 s</td>
<td>Opóźnienie ponownego otwarcia hamulca.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>44.17 Funkcja błędu hamulca</td>
<td>Określa sposób, w jaki przemiennik częstotliwości reaguje na błąd sterowania hamulcem mechanicznym. Uwaga: Jeżeli parametr 44.07 Wybór potwierdzenia. hamowania ma ustawioną wartość Bez potwierdzenia, nadzór stanu potwierdzenia jest wyłączony i nie generuje ostrzeżeń ani błędów. Warunki otwarcia hamulca są jednak zawsze nadzorowane.</td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awarijnie z powodu błędu 71A2 Błąd zamykania hamulca mechanicznego</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Przemiennik częstotliwości wyzwala błąd 71A5 Otwarcie hamulca mechanicznego niedozwolone, jeśli nie można spełnić warunków otwarcia hamulca (na przykład wymagany moment startowy silnika nie został osiągnięty).</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Przemiennik częstotliwości generuje ostrzeżenie 71A1 Błąd zamykania hamulca mechanicznego</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Przemiennik częstotliwości wyzwala ostrzeżenie 71A5 Otwarcie hamulca mechanicznego niedozwolone, jeśli nie można spełnić warunków otwarcia hamulca (na przykład wymagany moment startowy silnika nie został osiągnięty).</td>
<td></td>
</tr>
<tr>
<td>Otwarty błąd</td>
<td>Po zamknięciu hamulca przemiennik częstotliwości generuje ostrzeżenie 71A1 Błąd zamykania hamulca mechanicznego, jeśli stan powiadomienia nie odpowiada stanowi założonemu przez układ logiczny sterowania hamulcem. Przemiennik częstotliwości wyzwala błąd 71A5 Otwarcie hamulca mechanicznego niedozwolone, jeśli nie można spełnić warunków otwarcia hamulca (na przykład wymagany moment startowy silnika nie został osiągnięty).</td>
<td>2</td>
</tr>
<tr>
<td>44.18 Opóźnienie błędu hamulca</td>
<td>Definiuje opóźnienie błędu zamknięcia, tzn. czas pomiędzy zamknięciem hamulca i wyzwoleniem błędu zamknięcia hamulca.</td>
<td>0,00 s</td>
</tr>
<tr>
<td>0,00…60,00 s</td>
<td>Opóźnienie błędu zamykania hamulca.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>44.202</td>
<td>Badanie momentu</td>
<td>Określa, czy sprawdzanie momentu obrotowego (test elektryczny) jest aktywne, czy nie. Więcej informacji na temat tej funkcji zawiera sekcja Kontrole układu hamulcowego — badanie momentu na stronie 586. Uwaga: Do skalarnego sterowania silnikiem wyłączyć funkcje Badanie momentu oraz Moment otwarcia hamulca. Wybierz następujące opcje: 44.09 Źródło mom. otw. hamulca = Zero 44.10 Moment otwarcia hamulca = 0% 44.202 Badanie momentu = Nie wybrano</td>
</tr>
</tbody>
</table>

Nie wybrano Badanie momentu jest nieaktywne. 0

Wybrano Badanie momentu jest aktywne. 1

DI1 Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0). 2

DI2 Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1). 3

DI3 Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2). 4

DI4 Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3). 5

DIO1 Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0). 10

DIO2 Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1) 11

Funkcja czasowa 1 Bit 0 parametru 34.01 Stan funkcji czasowych. 18

Funkcja czasowa 2 Bit 1 parametru 34.01 Stan funkcji czasowych. 19

Funkcja czasowa 3 Bit 2 parametru 34.01 Stan funkcji czasowych. 20

Nadzór 1 Bit 0 parametru 32.01 Stan nadzoru. 21

Nadzór 2 Bit 1 parametru 32.01 Stan nadzoru. 22

Nadzór 3 Bit 2 parametru 32.01 Stan nadzoru. 23

Nadzór 4 Bit 3 parametru 32.01 Stan nadzoru. 24

Nadzór 5 Bit 4 parametru 32.01 Stan nadzoru. 25

Nadzór 6 Bit 5 parametru 32.01 Stan nadzoru. 26

Inny [bit] Wybór źródła (patrz Wyrażenia i skróty, str. 112). -

| 44.203 | W. zad. badania momentu | Określa wartość zadaną badania momentu (testu elektrycznego) używaną przy włączonej funkcji Badanie momentu. 25,0% |

| 44.204 | Czas sprawdz. syst. ham. | Definiuje opóźnienie czasowe, podczas którego badanie momentu obrotowego jest aktywne, a testy elektryczne i mechaniczne układu dźwigu są przeprowadzane na zamkniętym hamulcu. Jeśli podczas kontroli rzeczywisty moment obrotowy nie może zostać osiągnięty, przemiennik częstotliwości jest włączany awaryjnie z powodu błędu D100 Badanie momentu. 0,30 s |

<p>| 0,10...30,00 s | Czas opóźnienia. 1000 = 1 s |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.205</td>
<td>Limit prędkości poślizgu ham.</td>
<td>Definiuje limit prędkości używany do badania układy poślizgu hamulca podczas badania momentu (test mechaniczny). Więcej informacji na temat tej funkcji zawiera sekcja Kontrole układu hamulcowego — poślizg hamulca na stronie 587.</td>
<td>30,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>0,00… 30000,00 obr./min</td>
<td>Limit prędkości poślizgu hamulca. 1 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>44.206</td>
<td>Opózn. błędu poślizgu ham.</td>
<td>Definiuje czas opóźnienia przed wyłączeniem awaryjnym przemiennika z powodu błędu D101 Poślizg przy hamowaniu w czasie badania momentu (test mechaniczny). Jeżeli w czasie kontroli systemu zostanie wykryty poślizg hamulca (44.204 Czas sprawdz. syst. ham.), błąd zostanie wygenerowany natychmiast, nawet jeśli nie upłynął jeszcze czas kontroli.</td>
<td>300 ms</td>
</tr>
<tr>
<td></td>
<td>0… 30000 ms</td>
<td>Czas opóźnienia. 1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>44.207</td>
<td>Wybór bezp. zamykania</td>
<td>Określa, czy funkcja bezpiecznego zamknięcia hamulca jest aktywna, czy nie. Więcej informacji na temat tej funkcji zawiera sekcja Bezp. zamknięcie hamulca na stronie 588.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Funkcja bezpiecznego zamknięcia hamulca jest nieaktywna.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>Funkcja bezpiecznego zamknięcia hamulca jest aktywna.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01 Stan funkcji czasowych.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01 Stan funkcji czasowych.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01 Stan funkcji czasowych.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01 Stan nadzoru.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01 Stan nadzoru.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01 Stan nadzoru.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01 Stan nadzoru.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01 Stan nadzoru.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01 Stan nadzoru.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty, str. 112).</td>
<td>-</td>
</tr>
<tr>
<td>44.208</td>
<td>Prędkość bezp. zamykania</td>
<td>Definiuje limit prędkości dla funkcji bezpiecznego zamknięcia hamulca.</td>
<td>50,00 obr./min</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>0,00…30000,00 obr./min</td>
<td>Prędkość bezpiecznego zamknięcia hamulca.</td>
<td>1 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>44.209</td>
<td>Opóźnienie bezp. zamykania</td>
<td>Definiuje czas opóźnienia przed wyłączeniem awaryjnym przemiennika z powodu błędu D102 Bezpieczne zamknięcie hamulca.</td>
<td>2000 ms</td>
</tr>
<tr>
<td>0…30000 ms</td>
<td>Czas opóźnienia.</td>
<td>1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>44.211</td>
<td>Rozszerzony czas pracy</td>
<td>Definiuje czas po zamknięciu hamulca, podczas którego przemiennik będzie utrzymywał namagnetyzowanie silnika. Funkcja Rozszerzony czas pracy jest włączona, jeśli wartość ta jest mniejsza niż 3600 sekund lub większa niż 0 sekund. Uwaga: Funkcja Rozszerzony czas pracy jest aktywna tylko wtedy, gdy spełnione są wszystkie poniższe warunki: • przemiennik ma ustawiony wektorowy tryb sterowania silnikiem (patrz str. 56) • przemiennik częstotliwości pracuje w trybie zdalnego sterowania OSTRZEŻENIE: Rozszerzony czas pracy może spowodować przegrzanie silnika. Gdy wymagane jest długie magnesowanie, należy stosować silniki z zewnętrzną wentylacją.</td>
<td>0,0 s</td>
</tr>
<tr>
<td>0,0…3600,0 s</td>
<td>Czas.</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>44.212</td>
<td>SW rozszerz. czasu pracy</td>
<td>Wyświetla stan funkcji Rozszerzony czas pracy. Ten parametr jest tylko do odczytu.</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rozszerzona praca w działaniu</td>
<td>0 = Rozszerzony czas pracy jest aktywny. 1 = Rozszerzony czas pracy jest nieaktywny.</td>
</tr>
<tr>
<td>1</td>
<td>Rozszerz. uruchom. wł.</td>
<td>1 = Funkcja Rozszerzony czas pracy jest aktywna. 0 = Funkcja Rozszerzony czas pracy jest nieaktywna.</td>
</tr>
<tr>
<td>2…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>0000h…FFFFh</td>
<td>Stan funkcji Rozszerzony czas pracy.</td>
<td></td>
</tr>
</tbody>
</table>

45 Wydajność energetyczna

Ustawienia dla kalkulatorów oszczędności energii. Patrz też sekcja *Kalkulatory oszczędności energii* (strona 105).

45.01 Zaoszczędzone GWh

Zaoszczędzona energia w GWh w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Parametr jest zwiększany, gdy osiągnięty zostanie maksymalny zakres parametru 45.02 Zaoszczędzone MWh. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).

<p>| 0…65535 GWh | Oszczędność energii w GWh. | 1 = 1 GWh |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.02</td>
<td>Zaoszczędzone MWh</td>
<td>Zaoszczędzona energia w MWh w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Parametr jest zwiększany, gdy osiągnięty zostanie maksymalny zakres parametru 45.03 Zaoszczędzone kWh. Gdy osiągnięty zostanie maksymalny zakres tego parametru, zwiększany jest parametr 45.01 Zaoszczędzone GWh. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td>0…999 MWh</td>
<td>Oszczędność energii w MWh.</td>
<td></td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>45.03</td>
<td>Zaoszczędzone kWh</td>
<td>Zaoszczędzona energia w kWh w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Jeśli włączony jest wewnętrzny czoper hamowania przemiennika częstotliwości, zakłada się, że cała energia przekazywana z silnika do przemiennika podczas hamowania przekształczana jest na ciepło, ale obliczenia wciągają rejestrować oszczędności wynikające ze sterowania prędkością. Jeśli czoper jest wyłączony, ponownie wygenerowana energia z silnika jest również tutaj rejestrowana. Gdy osiągnięty zostanie maksymalny zakres tego parametru, zwiększany jest parametr 45.02 Zaoszczędzone MWh. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td>0,0…999,9 kWh</td>
<td>Oszczędność energii w kWh.</td>
<td></td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>45.04</td>
<td>Zaoszczędzona energia</td>
<td>Zaoszczędzona energia w kWh w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td>0,0…214748364,7 kWh</td>
<td>Oszczędność energii w kWh.</td>
<td></td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>45.05</td>
<td>Zaoszcz. pieniądze x 1000</td>
<td>Oszczędności pieniężne w tysiącach w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Parametr jest zwiększany, gdy osiągnięty zostanie maksymalny zakres parametru 45.06 Zaoszcz. pieniądze. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td>0…4294967295 tysięcy</td>
<td>Oszczędności pieniężne w tysiącach jednostek.</td>
<td></td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>45.06</td>
<td>Zaoszczędzone pieniądzę</td>
<td>Oszczędności pieniężne w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Ta wartość jest obliczana przez pomnożenie oszczędzonej energii w kWh przez bieżącą aktywną taryfę energetyczną (45.14 Wybór taryfy). Gdy osiągnięty zostanie maksymalny zakres tego parametru, zwiększany jest parametr 45.05 Zaoszcz. pieniądze x 1000. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td>0,00…999,99 jednostek</td>
<td>Oszczędności pieniężne.</td>
<td></td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>45.07</td>
<td>Zaoszczędzona kwota</td>
<td>Oszczędności pieniężne w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Ta wartość jest obliczana przez pomnożenie oszczędzonej energii w kWh przez bieżącą aktywną taryfę energetyczną (45.14 Wybór taryfy). Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oszczędności pieniężne.</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>45.08</td>
<td>Redukcja CO2 w kilotonach</td>
<td>Ograniczenie emisji CO₂ w kilotonach metrycznych w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Wartość jest zwiększana, gdy osiągnięty zostanie maksymalny zakres parametru 45.09 Redukcja CO₂ w tonach. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ograniczenie emisji CO₂ w kilotonach metrycznych.</td>
<td>1 = 1 kilotona metryczna</td>
</tr>
<tr>
<td>45.09</td>
<td>Redukcja CO2 w tonach</td>
<td>Ograniczenie emisji CO₂ w tonach metrycznych w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Wartość jest obliczana przez pomnożenie oszczędzonej energii w MWh przez wartość parametru 45.18 Współcz. konwersji CO₂ (domyślnie 0,5 tony metrycznej / MWh). Gdy osiągnięty zostanie maksymalny zakres tego parametru, zwiększany jest parametr 45.08 Redukcja CO₂ w kilotonach. Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ograniczenie emisji CO₂ w tonach metrycznych.</td>
<td>1 = 1 tona</td>
</tr>
<tr>
<td>45.10</td>
<td>Łącznie zaoszczędzone CO2</td>
<td>Ograniczenie emisji CO₂ w tonach metrycznych w porównaniu z bezpośrednim połączeniem silnika do sieci (bez przemiennika częstotliwości). Wartość jest obliczana przez pomnożenie oszczędzonej energii w MWh przez wartość parametru 45.18 Współcz. konwersji CO₂ (domyślnie 0,5 tony metrycznej / MWh). Ten parametr jest przeznaczony tylko do odczytu (patrz parametr 45.21 Reset kalkulacji energii).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ograniczenie emisji CO₂ w tonach metrycznych.</td>
<td>1 = 1 tona</td>
</tr>
<tr>
<td>45.11</td>
<td>Optymalizator energii</td>
<td>Włącza/wyłącza funkcję optymalizacji energii. Funkcja optymalizuje strumień silnika, aby całkowite zużycie energii i poziom hałasu silnika były ograniczone, gdy przemiennik częstotliwości działa poniżej obciążenia znamionowego. Całkowita sprawność (silnika i przemiennika częstotliwości) może zostać poprawiona o 1...20% w zależności od momentu obciążenia i prędkości. Uwaga: W przypadku silnika z magnesami trwałymi lub synchronicznego silnika reluktancyjnego optymalizacja energii jest zawsze włączona, bez względu na ten parametr.</td>
<td>Wyłącz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Włącza/wyłącza funkcję optymalizacji energii.</td>
<td>Wyłącz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optymalizacja energii wyłączona.</td>
<td>0</td>
</tr>
</tbody>
</table>
Parametry

Włącz
Optymalizacja energii włączona.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.12</td>
<td>Taryfa energetyczna 1</td>
<td>Definiuje taryfę energetyczną 1 (cenę energii na kWh). Zależnie od ustawienia parametru 45.14 Wybór taryfy ta wartość lub wartość 45.13 Taryfa energetyczna 2 jest używana jako wartość zadana, gdy obliczane są oszczędności pieniężne. Uwaga: Taryfy są przeznaczone tylko do odczytu w momencie wyboru i nie mają zastosowania wstecz.</td>
<td>0,100 jednostki</td>
</tr>
<tr>
<td>0,000…4294967,295 jednostek</td>
<td>Taryfa energetyczna 1.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>45.13</td>
<td>Taryfa energetyczna 2</td>
<td>Definiuje taryfę energetyczną 2 (cenę energii na kWh). Patrz parametr 45.12 Taryfa energetyczna 1.</td>
<td>0,200 jednostki</td>
</tr>
<tr>
<td>0,000…4294967,295 jednostek</td>
<td>Taryfa energetyczna 2.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>45.14</td>
<td>Wybór taryfy</td>
<td>Wybiera (lub definiuje źródło, które wybiera), która zdefiniowana taryfa energetyczna jest używana. 0 = 45.12 Taryfa energetyczna 1 1 = 45.13 Taryfa energetyczna 2</td>
<td>Taryfa energetyczna 1</td>
</tr>
<tr>
<td>Taryfa energetyczna 1</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Taryfa energetyczna 2</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>45.18</td>
<td>Współcz. konwersji CO2</td>
<td>Definiuje współczynnik przekształcania oszczędzonej energii na emisje CO₂ (kg/kWh lub t/MWh). Przykładem może być 45.10 Łącznie zaoszczędzone CO₂ = 45.02 Zaoszczędzone kWh × 45.18 Współcz. konwersji CO₂ (t/MWh).</td>
<td>0,500 t/MWh</td>
</tr>
<tr>
<td>0,000…65,535 t/MWh</td>
<td>Współczynnik przekształcania oszczędzonej energii na emisje CO₂.</td>
<td>1 = 1 t/MWh</td>
<td></td>
</tr>
<tr>
<td>45.19</td>
<td>Moc porównawcza</td>
<td>Aktualna moc, którą pobiera silnik, gdy jest podłączony bezpośrednio do sieci podczas obsługi aplikacji. Wartość jest używana jako wartość zadana, gdy obliczane są oszczędności energii. Uwaga: Dokładność obliczeń oszczędności energii zależy bezpośrednio od dokładności tej wartości. Jeśli nie zostało tu wprowadzona żadna wartość, w obliczeniach używana jest moc znamionowa silnika, ale może to zwiększyć rejestrowaną oszczędność energii, ponieważ wiele silników nie pobiera mocy znamionowej.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td>0,00…100000,00 kW</td>
<td>Moc silnika.</td>
<td>1 = 1 kW</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>45.21</td>
<td>Reset kalkulacji energii</td>
<td>Resetuje parametry licznika oszczędności 45.01…45.10.</td>
<td>Gotowe</td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Nie wystąpiło żądanie resetu (normalna praca) lub zakończone resetowanie.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Reset</td>
<td>Resetuje parametry licznika oszczędności. Zostaje automatycznie przywrócona wartość Gotowe.</td>
<td>1</td>
</tr>
<tr>
<td>45.24</td>
<td>Wart. mocy szczyt.: godzina</td>
<td>Wartość mocy szczytowej w ciągu ostatniej godziny, czyli ostatnich 60 minut po włączeniu przemiennika częstotliwości. Parametr jest aktualizowany raz na 10 minut, chyba że szczyt godzinowy zostanie odnaleziony w zakresie ostatnich 10 minut. W takim przypadku wartość zostanie wyświetlona natychmiast.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-3000,00…3000,00kW</td>
<td>Wartość mocy szczytowej.</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.25</td>
<td>Godz. mocy szczyt.: godzina</td>
<td>Moment osiągnięcia mocy szczytowej w ciągu ostatniej godziny.</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>Czas</td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>45.26</td>
<td>Godzinna całk. energia (reset.)</td>
<td>Łączny pobór mocy w ciągu ostatniej godziny (czyli ostatnich 60 minut). Możesz zresetować tę wartość, ustawiając ją na zero.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-3000,00…3000,00 kWh</td>
<td>Całkowita energia.</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>45.27</td>
<td>Wart. mocy szczyt. (resetowalna): dzień</td>
<td>Wartość mocy szczytowej od północy dziś. Możesz zresetować tę wartość, ustawiając ją na zero.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-3000,00…3000,00kW</td>
<td>Wartość mocy szczytowej.</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.28</td>
<td>Godz. mocy szczyt.: dzień</td>
<td>Godzina osiągnięcia mocy szczytowej od północy dziś.</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>Czas</td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>45.29</td>
<td>Dzienna całk. energia (reset.)</td>
<td>Łączny pobór mocy od północy dziś. Możesz zresetować tę wartość, ustawiając ją na zero.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 kWh</td>
<td>Całkowita energia.</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>45.30</td>
<td>Całkow. energia: ost. dzień</td>
<td>Łączny pobór mocy w czasie poprzedniego dnia, tj. od półmocy poprzedniego dnia do półmocy bieżącego dnia</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-30000,00…30000,00 kWh</td>
<td>Całkowita energia.</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>45.31</td>
<td>Wart. mocy szczyt. (resetowalna): miesiąc</td>
<td>Wartość mocy szczytowej w czasie bieżącego miesiąca, tj. od półmocy pierwszego dnia bieżącego miesiąca. Możesz zresetować tę wartość, ustawiając ją na zero.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-3000,00…3000,00kW</td>
<td>Wartość mocy szczytowej.</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.32</td>
<td>Data mocy szczyt.: miesiąc</td>
<td>Data mocy szczytowej w czasie bieżącego miesiąca.</td>
<td>1/1/1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1/1980…6/5/2159</td>
<td>nd.</td>
</tr>
<tr>
<td>45.33</td>
<td>Godz.mocy szczyt.: miesiąc</td>
<td>Godzina osiągnięcia mocy szczytowej w bieżącym miesiącu.</td>
<td>00:00:00</td>
</tr>
<tr>
<td></td>
<td>Czas</td>
<td>nd.</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.34</td>
<td>Miesięczna całk. energia (reset.)</td>
<td>Łączny pobór mocy w czasie bieżącego miesiąca. Możesz zresetować tę wartość, ustawiając ją na zero.</td>
<td>0,00 kWh</td>
</tr>
<tr>
<td></td>
<td>-1000000,00…1000000,00 kWh</td>
<td>Całkowita energia.</td>
<td>0,01 = 1 kWh</td>
</tr>
<tr>
<td>45.35</td>
<td>Całkow. energia: ost. mies.</td>
<td>Łączny pobór mocy w czasie poprzedniego miesiąca, tj. od północy pierwszego dnia poprzedniego miesiąca do północy pierwszego dnia bieżącego miesiąca.</td>
<td>0,00 kWh</td>
</tr>
<tr>
<td></td>
<td>-1000000,00…1000000,00 kWh</td>
<td></td>
<td>0,01 = 1 kWh</td>
</tr>
<tr>
<td>45.36</td>
<td>Wart. mocy szczyt.: zawsze</td>
<td>Wartość mocy szczytowej w całym czasie eksploatacji przemiennika częstotliwości.</td>
<td>0,00 kW</td>
</tr>
<tr>
<td></td>
<td>-3000,00…3000,00 kW</td>
<td>Wartość mocy szczytowej.</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.37</td>
<td>Data mocy szczyt.: zawsze</td>
<td>Data osiągnięcia mocy szczytowej w całym czasie eksploatacji przemiennika częstotliwości.</td>
<td>1/1/1980</td>
</tr>
<tr>
<td>45.38</td>
<td>Godz. mocy szczyt.: zawsze</td>
<td>Godzina osiągnięcia mocy szczytowej w całym czasie eksploatacji przemiennika częstotliwości.</td>
<td>00:00:00</td>
</tr>
</tbody>
</table>

Ust. monitorowania/skalowanie

<table>
<thead>
<tr>
<th>46 Ust. monitorowania/skalowania</th>
<th>Ustawienia nadzoru prędkości, aktualne filtrowanie sygnału, ogólne ustawienia skalowania.</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.01 Skalowanie prędkości</td>
<td>Definiuje wartość maksymalnej prędkości używaną do zdefiniowania współczynnika rampy przyspieszania oraz początkową wartość prędkości używaną do zdefiniowania rampy zwalniania (patrz grupa parametrów 23 Rampa wart. zad. prędkości). Rampy przyspieszania i zwalniania są więc związane z tą wartością (a nie z parametrem 30.12 Maks. prędkość). Określa również 16-bitowe skalowanie parametrów związanych z prędkością. Wartość tego parametru odpowiada wartości 20000, np. w komunikacji przez magistralę komunikacyjną.</td>
</tr>
<tr>
<td></td>
<td>1500,00 obr./min</td>
</tr>
<tr>
<td>46.02 Skalowanie częstotliwości</td>
<td>Definiuje wartość maksymalnej częstotliwości używaną do zdefiniowania współczynnika rampy przyspieszania oraz początkową wartość częstotliwości używaną do zdefiniowania rampy zwalniania (patrz grupa parametrów 28 Łańcuch w. zad. częstotliwości). Rampy przyspieszania i zwalniania są więc związane z tą wartością (a nie z parametrem 30.14 Maks. częstotliwość). Określa również 16-bitowe skalowanie parametrów związanych z częstotliwością. Wartość tego parametru odpowiada wartości 20000, np. w komunikacji przez magistralę komunikacyjną.</td>
</tr>
<tr>
<td></td>
<td>50,00 Hz</td>
</tr>
</tbody>
</table>

Wartości domyślna

- **FbEq 16**: 0.10…30000,00 obr./min
- **16**: 0.10…1000,00 Hz
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.03</td>
<td>Skalowanie momentu</td>
<td>Określa 16-bitowe skalowanie parametrów momentu. Wartość tego parametru (jako procentowa część znaniowego momentu silnika) odpowiada wartości 10000, np. w komunikacji przez magistralę komunikacyjną.</td>
<td>100,0%</td>
</tr>
<tr>
<td></td>
<td>0,1…1000,0%</td>
<td>Moment odpowiadający wartości 10 000 w magistrali komunikacyjnej.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>46.04</td>
<td>Skalowanie mocy</td>
<td>Określa wartość mocy wyjściowej odpowiadającej wartości 10000, np. w komunikacji przez magistralę komunikacyjną. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki.</td>
<td>1000,0 kW lub KM</td>
</tr>
<tr>
<td></td>
<td>0,1…30000,0 kW lub 0,1…40214,5 KM</td>
<td>Moc odpowiadająca wartości 10 000 w magistrali komunikacyjnej.</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>46.05</td>
<td>Skalowanie prądu</td>
<td>Definiuje 16-bitowe skalowanie parametrów prądu. Wartość tego parametri odpowiada wartości 10000, np. w komunikacji przez magistralę komunikacyjną.</td>
<td>10000 A</td>
</tr>
<tr>
<td></td>
<td>0…30000 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.06</td>
<td>Skal. zerowej wart. zad. prędk.</td>
<td>Definiuje prędkość odpowiadającą zerowej wartości zadannej odebranej z magistrali komunikacyjnej (interfejsu wbudowanej magistrali komunikacyjnej lub interfejsu FBA A). Na przykład w przypadku ustawienia 500 zakres wartości zadannej magistrali komunikacyjnej 0…20000 odpowiada prędkości 500…[46.07] obr./min. Uwaga: Ten parametr ma zastosowanie tylko w przypadku profilów komunikacyjnych przemianników częstotliwości firmy ABB.</td>
<td>0,00 obr./min</td>
</tr>
<tr>
<td></td>
<td>0,00…30000,0 obr./min</td>
<td>Prędkość odpowiadająca minimalnej wartości zadanej magistrali komunikacyjnej.</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>46.11</td>
<td>Czas filtru: prędk. silnika</td>
<td>Definiuje czas filtru dla sygnałów 01.01 Użyta prędkość silnika i 01.02 Szacowana prędkość silnika.</td>
<td>500 ms</td>
</tr>
<tr>
<td></td>
<td>2…20000 ms</td>
<td>Czas filtru sygnału prędkości silnika.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.12</td>
<td>Czas filtru częst. wyj.</td>
<td>Definiuje czas filtru dla sygnału 01.06 Częstotliwość wyjściowa.</td>
<td>500 ms</td>
</tr>
<tr>
<td></td>
<td>2…20000 ms</td>
<td>Czas filtru sygnału częstotliwości wyjściowej.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.13</td>
<td>Czas filtru mom. silnika</td>
<td>Definiuje czas filtru dla sygnału 01.10 Moment silnika.</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td>2…20000 ms</td>
<td>Czas filtru sygnału momentu silnika.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.14</td>
<td>Czas filtru mocy</td>
<td>Definiuje czas filtru dla sygnału 01.14 Moc wyjściowa.</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td>2…20000 ms</td>
<td>Czas filtru sygnału mocy wyjściowej.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>46.21</td>
<td>Przy histerezie prędkości</td>
<td>Definiuje limity „w punkcie pracy” w celu sterowania prędkością przemiennika częstotliwości. Jeśli różnica pomiędzy wartością zadaną (22.87 Akt. wart. zad. prędkości) i prędkością (24.02 Użyte sprz. zwr. od prędkości) jest mniejsza niż 46.21 Przy histerezie prędkości, uważa się, że przemiennik częstotliwości znajduje się „w punkcie pracy”. Wskazuje na to bit 8 parametru 06.11 Główne słowo stanu.</td>
<td>50,00 obr./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.02 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 + 46.21 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 - 46.21 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 obr./min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.02 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 + 46.21 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.87 - 46.21 (obr./min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 obr./min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 obr./min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 + 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 - 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 + 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 - 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00...1000,00 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit dla wskaźnika „w punkcie pracy” w sterowaniu częstotliwością.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>46.22</td>
<td>Przy histerezie częstotliwości</td>
<td>Definiuje limity „w punkcie pracy” w celu sterowania częstotliwością przemiennika częstotliwości. Jeśli bezwzględna różnica pomiędzy wartością zadaną (28.96 Rampa wartość zadanej częstotliwości) i aktualną częstotliwością (01.06 Częstotliwość wyjściowa) jest mniejsza niż 46.22 Przy histerezie częstotliwości, uważa się, że przemiennik częstotliwości znajduje się „w punkcie pracy”. Wskazuje na to bit 8 parametru 06.11 Główne słowo stanu.</td>
<td>2,00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01.06 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 + 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 - 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 + 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 - 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 + 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.96 - 46.22 (Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00...1000,00 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limit dla wskaźnika „w punkcie pracy” w sterowaniu częstotliwością.</td>
<td>Patrz parametr 46.02</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>46.23</td>
<td>Przy histerezie momentu</td>
<td>Definiuje limity „w punkcie pracy” w celu sterowania momentem przemiennika częstotliwości. Jeśli bezwzględna różnica pomiędzy wartością zadaną (26.73 Akt. w. zad. momentu 4) i aktualnym momentem (01.10 Moment silnika) jest mniejsza niż wartość 46.23 Przy histerezie momentu, uważa się, że przemiennik częstotliwości znajduje się „w punkcie pracy”. Wskazuje na to bit 8 parametru 06.11 Główne słowo stanu</td>
<td>5,0%</td>
</tr>
</tbody>
</table>

0,0…300,0% Limit dla wskaźnika „w punkcie pracy” w sterowaniu momentem. Patrz parametr 46.03

- **26.73**: Przemiennik częstotliwości w punkcie pracy (06.11 bit 8 = 1)
- **46.23**: Przemiennik częstotliwości w punkcie pracy (06.11 bit 8 = 1)

| 46.31| Powyżej limitu prędkości | Definiuje poziom wyzwalania dla wskaźnika „ponad limitem” w sterowaniu prędkością. Kiedy aktualna prędkość przekracza limit, jest ustawiony bit 10 parametru 06.17 Słowo stanu 2 przem. | 0,00 obr./min |

0,00…30000,00 obr./min Poziom wyzwolenia wskaźnika „ponad limitem” dla sterowania prędkością. Patrz parametr 46.01

| 46.32| Powyżej limitu częstotliwości. | Definiuje poziom wyzwalania dla wskaźnika „ponad limitem” w sterowaniu częstotliwością. Kiedy aktualna częstotliwość przekracza limit, jest ustawiony bit 10 parametru 06.17 Słowo stanu 2 przem. | 0,00 Hz |

0,00…1000,00 Hz Poziom wyzwolenia wskaźnika „ponad limitem” dla sterowania częstotliwością. Patrz parametr 46.02

| 46.33| Powyżej limitu momentu | Definiuje poziom wyzwalania dla wskaźnika „ponad limitem” w sterowaniu momentem. Kiedy aktualny moment przekracza limit, jest ustawiony bit 10 parametru 06.17 Słowo stanu 2 przem. | 0,0% |

0,0…1600,0% Poziom wyzwolenia wskaźnika „ponad limitem” dla sterowania momentem. Patrz parametr 46.03

| 46.41| Skalowanie impulsów kWh | Definiuje poziom wyzwalania dla wskaźnika „impuls kWh” na 50 ms. Wyjście impulsu to bit 9 parametru 05.22 Słowo diagnostyczne 3. | 1,000 kWh |

0,001…1000,000 kWh „Impuls kWh” poziomu wyzwalania. 1 = 1 kWh
47 Magazyn danych

Parametry magazynu danych, w których można zapisać dane i z których można odczytać dane, używając ustawień źródłowych i docelowych innych parametrów. Należy pamiętać, że istnieją różne parametry magazynu dla różnych typów danych.

Patrz też sekcja *Parametry magazynowania danych* (strona 108).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.01</td>
<td>Magazyn danych 1 real32</td>
<td>Parametr magazynu danych 1.</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>-2147483,008…2147483,008</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.02</td>
<td>Magazyn danych 2 real32</td>
<td>Parametr magazynu danych 2.</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>-2147483,008…2147483,008</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.03</td>
<td>Magazyn danych 3 real32</td>
<td>Parametr magazynu danych 3.</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>-2147483,008…2147483,008</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.04</td>
<td>Magazyn danych 4 real32</td>
<td>Parametr magazynu danych 4.</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>-2147483,008…2147483,008</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.11</td>
<td>Magazyn danych 1 int32</td>
<td>Parametr magazynu danych 9.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648…2147483647</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.12</td>
<td>Magazyn danych 2 int32</td>
<td>Parametr magazynu danych 10.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648…2147483647</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.13</td>
<td>Magazyn danych 1 int32</td>
<td>Parametr magazynu danych 11.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648…2147483647</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.14</td>
<td>Magazyn danych 4 int32</td>
<td>Parametr magazynu danych 12.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648…2147483647</td>
<td>Dane 32-bitowe.</td>
<td>-</td>
</tr>
<tr>
<td>47.21</td>
<td>Magazyn danych 1 int16</td>
<td>Parametr magazynu danych 17.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768…32767</td>
<td>Dane 16-bitowe.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.22</td>
<td>Magazyn danych 2 int16</td>
<td>Parametr magazynu danych 18.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768…32767</td>
<td>Dane 16-bitowe.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.23</td>
<td>Magazyn danych 3</td>
<td>Parametr magazynu danych 19.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>int16</td>
<td>-32768…32767</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.24</td>
<td>Magazyn danych 4</td>
<td>Parametr magazynu danych 20.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>int16</td>
<td>-32768…32767</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

49 Port komunikacyjny panelu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.01</td>
<td>Numer ID wężła</td>
<td>Określa identyfikator wężła przemiennika częstotliwości. Wszystkie urządzenia podłączone do sieci muszą mieć unikalny identyfikator wężła. Uwaga: W przypadku przemienników częstotliwości pracujących w sieci zaleca się zarezerwować identyfikator o wartości 1 dla zapasowych/zastępczych przemienników częstotliwości.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1…32</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.03</td>
<td>Szybkość transmisji</td>
<td>Definiuje szybkość transmisji połączenia.</td>
<td>115,2 kb/s</td>
</tr>
<tr>
<td></td>
<td>9,6 kb/s</td>
<td>9,6 kbit/s.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38,4 kb/s</td>
<td>38,4 kbit/s.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>57,6 kb/s</td>
<td>57,6 kbit/s.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>86,4 kb/s</td>
<td>86,4 kbit/s.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>115,2 kb/s</td>
<td>115,2 kbit/s.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>230,4 kb/s</td>
<td>230,4 kbit/s.</td>
<td>5</td>
</tr>
<tr>
<td>49.04</td>
<td>Czas utraty komunikacji</td>
<td>Określa limit czasu dla komunikacji panelu sterowania (lub programu komputerowego). Jeśli przerwa w komunikacji trwa dłużej niż limit czasu, podejmowane zostaje działanie określone parametrem 49.05 Reakcja na utratę komunik.</td>
<td>10,0 s</td>
</tr>
<tr>
<td></td>
<td>0,1…3000,0 s</td>
<td>Limit czasu utraty komunikacji panelu sterowania/programu komputerowego.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>49.05</td>
<td>Reakcja na utratę komunik.</td>
<td>Określa sposób, w jaki przemiennik częstotliwości reaguje na przerwę w komunikacji z paneliem sterowania (lub programem komputerowym).</td>
<td>Błąd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bez działania</td>
<td>Żadna czynność nie jest wykonywana.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 7081 Utrata panelu sterowania.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ostatnia prędkość</td>
<td>Przemiennik częstotliwości generuje ostrzeżenie A7EE Utrata panelu i blokuje prędkość na poziomie, na którym pracował. Prędkość jest określana na podstawie aktualnej prędkości przy użyciu filtrowania dolnoprzepustowego 850 ms. OSTRZEŻENIE: Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji.</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Bezpieczna w. zad. prędk</td>
<td>Przemiennik częstotliwości generuje ostrzeżenie A7EE Ultra panelu i ustawi prędkość na wartość określoną parametrem 22.41 Bezpieczna w. zad. prędk. (lub 28.41 Bezpieczna wart. zad. częst., jeśli używana jest wartość zadana częstotliwości). OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji.</td>
<td>3</td>
</tr>
<tr>
<td>49.06</td>
<td>Odśwież ustawienia</td>
<td>Dotyczy ustawień parametrów 49.01…49.05. Uwaga: Odświeżanie może spowodować przerwę w komunikacji, więc wymagane może być ponowne połączenie przemiennika częstotliwości.</td>
<td>Gotowe</td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Wykonano odświeżanie lub nie zażądano odświeżenia.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Konfiguruj</td>
<td>Odświeżanie parametrów 49.01…49.05. Zostaje automatycznie przywrócona wartość Gotowe.</td>
<td>1</td>
</tr>
<tr>
<td>49.19</td>
<td>Widok gł. 1 panelu podst.</td>
<td>Wybiera parametry wyświetlane w widoku głównym 1 panelu zintegrowanego lub panelu podstawowego (ACS-BP-S).</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Zero</td>
<td>Wyświetla domyślne parametry fabryczne.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Użyta prędkość silnika</td>
<td>01.01 Użyta prędkość silnika</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wyście częstotliwościowe</td>
<td>01.06 Częstotliwość wyjściowa</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prąd silnika</td>
<td>01.07 Prąd silnika</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Procent wartości znamionowej prądu silnika</td>
<td>01.08 Prąd silnika % wart.znam.siln.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Moment silnika</td>
<td>01.10 Moment silnika</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Napięcie DC</td>
<td>01.11 Napięcie DC</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Moc wyjściowa</td>
<td>01.14 Moc wyjściowa</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości przed ramp.</td>
<td>23.01 W. zad. prędk. przed ramp.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>W. zad. prędkości po ramp.</td>
<td>23.02 W. zad. prędk. po ramp.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. prędkości</td>
<td>24.01 Użyta wart. zad. prędkości</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Używana w. zad. częstotliwości</td>
<td>28.02 Wyście rampy w. zad. częst.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wyście PID procesu</td>
<td>40.01 PID procesu: akt.wart. wy.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Wzbudzenie czujnika temp. 1</td>
<td>Wyścicie jest używane do dostarczenia prądu wzbudzania do czujnika temperatury 1, patrz parametr 35.11 Temperatura 1: źródło Patrz też sekcja Ochrona termiczna silnika (strona 101).</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Wzbudzenie czujnika temp. 2</td>
<td>Wyścicie jest używane do dostarczenia prądu wzbudzania do czujnika temperatury 2, patrz parametr 35.21 Temperatura 2: źródło Patrz też sekcja Ochrona termiczna silnika (strona 101).</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Użyta bezwzględna prędkość silnika</td>
<td>01.61 Użyta bezwzgl. pręd. sil.</td>
<td>26</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Procent bezwzględnej prędkości silnika</td>
<td>01.62 Bezwzględna pręd. silnika %</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna częstotliwość wyjściowa</td>
<td>01.63 Bezwzględna częstotl. wyj.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Bezwzględny moment silnika</td>
<td>01.64 Bezwzględny moment silnika</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna moc wyjściowa</td>
<td>01.66 Bezwzględna moc wyjściowa</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Bezwzględna moc na wale silnika</td>
<td>01.68 Bezwgl. moc na wale sil.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Wyjście zewnętrznego regulatora PID1</td>
<td>71.01 Aktualna wart. zewn. PID</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Magazyn danych AO1</td>
<td>13.91 Magazyn danych AO1.</td>
<td>37</td>
</tr>
<tr>
<td>49.20</td>
<td>Widok gł. 2 panelu podst.</td>
<td>Wybiera parametry wyświetlane w widoku głównym 2 panelu zintegrowanego lub panelu podstawowego (ACS-BP-S). Patrz parametr 49.19 pod kątem dostępnych opcji.</td>
<td></td>
</tr>
<tr>
<td>49.21</td>
<td>Widok gł. 3 panelu podst.</td>
<td>Wybiera parametry wyświetlane w widoku głównym 3 panelu zintegrowanego lub panelu podstawowego (ACS-BP-S). Patrz parametr 49.19 pod kątem dostępnych opcji.</td>
<td></td>
</tr>
<tr>
<td>49.30</td>
<td>Ukryw. menu panelu podst.</td>
<td>Parametry służące do ukrywania menu poziomu głównego panelu zintegrowanego lub panelu podstawowego (ACS-BP-S). Wartości to: 0 = Menu widoczne, 1 = Menu ukryte</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dane silnika</td>
</tr>
<tr>
<td>1</td>
<td>Sterowanie silnikiem</td>
</tr>
<tr>
<td>2</td>
<td>Makra sterowania</td>
</tr>
<tr>
<td>3</td>
<td>Diagnostyka</td>
</tr>
<tr>
<td>4</td>
<td>Wydajność energetyczna</td>
</tr>
<tr>
<td>5</td>
<td>Parametry</td>
</tr>
<tr>
<td>6...15</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | 1=1 |

Inny
50 Adapter komunikacyjny (FBA)

Konfiguracja komunikacji za pomocą magistri komunikacyjnej. Patrz też rozdział Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego (str. 529).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.01</td>
<td>Włączenie FBA A</td>
<td>Włącza/wyłącza komunikację pomiędzy przemiennikiem częstotliwości i adapterem komunikacyjnym A oraz określa złącze, w którym instalowany jest adapter.</td>
<td>Wyłącz</td>
</tr>
<tr>
<td>Włączone</td>
<td>Komunikacja pomiędzy przemiennikiem częstotliwości i adapterem komunikacyjnym A wyłączona.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Wykrywanie przerwy w komunikacji aktywne. Po wystąpieniu przerwy w komunikacji przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 7510 Komunikacja przez adapt. kom. A i zwalnia wybierami do zatrzymańia.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ostatnia prędkość</td>
<td>Wykrywanie przerwy w komunikacji aktywne. Po wystąpieniu przerwy w komunikacji przemiennik częstotliwości generuje ostrzeżenie (A7C1 Komunikacja przez adapt. kom. A) i blokuje prędkość na poziomie, na którym pracowało. Prędkość jest określana na podstawie aktualnej prędkości przy użyciu filtrowania dolnoprzepustowego 850 ms. OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bezpieczna w. zad. prędk.</td>
<td>Wykrywanie przerwy w komunikacji aktywne. Po wystąpieniu przerwy w komunikacji przemiennik częstotliwości generuje ostrzeżenie (A7C1 Komunikacja przez adapt. kom. A) i ustawia prędkość na wartość określoną parametrem 22.41 Bezpieczna w. zad. prędk. (lub 28.41 Bezpieczna wart. zad. częst.), jeśli używana była wartość zadana częstotliwości). OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Zawsze błąd</td>
<td>Jednostka sterująca maszyn jest wyłączana awaryjnie z powodu błędu komunikacji nawet wtedy, gdy sterowanie przy użyciu magistrali komunikacyjnej nie jest oczekiwane.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Jednostka sterująca maszyn generuje ostrzeżenie dotyczące komunikacji nawet wtedy, gdy sterowanie przy użyciu magistrali komunikacyjnej nie jest oczekiwane.</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Parametry FbEq 16

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.03</td>
<td>FBA A: lim. czas. utr.</td>
<td>Definiuje czas opóźnienia, po którym podejmowane jest działanie zdefiniowane parametrem 50.02 FBA A: funkcja utr. komun. Timer jest uruchamiany, gdy łącze komunikacyjne nie zaktualizuje pomyślnie komunikatu. Uwaga: Po włączeniu zasilania występuje 60-sekundowe opóźnienie uruchomienia. Podczas opóźnienia wyłączone jest monitorowanie przerwy w komunikacji (ale sama komunikacja może być aktywna).</td>
<td>0,3 s</td>
</tr>
<tr>
<td></td>
<td>kom.</td>
<td>Czas opóźnienia.</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>50.04</td>
<td>FBA A: typ wart. zad. 1</td>
<td>Wybiera typ i skalowanie wartości zadanej 1 odebranej z adaptera komunikacyjnego A. Skalowanie wartości zadanej jest definiowane przy użyciu parametrów 46.01…46.04 w zależności od tego, jaki typ wartości zadanej wybrano za pomocą tego parametru. Prędkość lub częstotliwość Typ i skalowanie są wybierane automatycznie zgodnie z aktywnym trybem pracy w następujący sposób:</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tryb pracy (patrz par. 19.01)</td>
<td>Typ wartości zadanej 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie prędkością</td>
<td>Prędkość</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie momentem</td>
<td>Prędkość</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie częstotliwością</td>
<td>Częstotliwość</td>
</tr>
<tr>
<td></td>
<td>Transparentne</td>
<td>Skalowanie nie jest stosowane.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ogólna</td>
<td>Ogólna wartość zadana bez konkretnej jednostki.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Moment</td>
<td>Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prędkość</td>
<td>Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Częstotliwość</td>
<td>Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</td>
<td>5</td>
</tr>
<tr>
<td>50.05</td>
<td>FBA A: typ wart. zad. 2</td>
<td>Wybiera typ i skalowanie wartości zadanej 2 odebranej z adaptera komunikacyjnego A. Skalowanie wartości zadanej jest definiowane przy użyciu parametrów 46.01…46.04 w zależności od tego, jaki typ wartości zadanej wybrano za pomocą tego parametru. Prędkość lub częstotliwość Typ i skalowanie są wybierane automatycznie zgodnie z aktywnym trybem pracy w następujący sposób:</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tryb pracy (patrz par. 19.01)</td>
<td>Typ wartości zadanej 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie prędkością</td>
<td>Moment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie momentem</td>
<td>Moment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sterowanie częstotliwością</td>
<td>Moment</td>
</tr>
<tr>
<td></td>
<td>Transparentne</td>
<td>Skalowanie nie jest stosowane.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ogólna</td>
<td>Ogólna wartość zadana bez konkretnej jednostki.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Moment</td>
<td>Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.06</td>
<td>FBA A: wybór słowa stanu</td>
<td>Określa źródło słowa stanu przesłanego do sieci magistrali komunikacyjnej za pomocą adaptera komunikacyjnego A.</td>
<td>Auto</td>
</tr>
<tr>
<td>50.07</td>
<td>FBA A: typ wart. akt. 1</td>
<td>Wybiera typ i skalowanie wartości aktualnej 1 przesłanej do sieci magistrali komunikacyjnej przez adapter komunikacyjny A. Skalowanie wartości jest definiowane przy użyciu parametrów 46.01…46.04 w zależności od tego, jaki typ wartości aktualnej wybrano za pomocą tego parametru.</td>
<td>Prędkość lub częstości</td>
</tr>
<tr>
<td>50.08</td>
<td>FBA A: typ wart. akt. 2</td>
<td>Wybiera typ i skalowanie wartości aktualnej 2 przesłanej do sieci magistrali komunikacyjnej przez adapter komunikacyjny A. Skalowanie wartości jest definiowane przy użyciu parametrów 46.01…46.04 w zależności od tego, jaki typ wartości aktualnej wybrano za pomocą tego parametru.</td>
<td>Prędkość lub częstości</td>
</tr>
</tbody>
</table>

Typy pracy (patrz par. 19.01)

<table>
<thead>
<tr>
<th>Tryb pracy</th>
<th>Typ wartości aktualnej 1 (źródło)</th>
<th>Skalowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterowanie prędkością</td>
<td>Prędkość (01.01 Użyta prędkość silnika)</td>
<td>46.01 Skalowanie prędkości</td>
</tr>
<tr>
<td>Sterowanie momentem</td>
<td>Częstość (01.06 Częstość wyjściowa)</td>
<td>46.02 Skalowanie częstości</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tryb pracy</th>
<th>Tył</th>
<th>Skalowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparentne</td>
<td>Skalowanie nie jest stosowane.</td>
<td>1</td>
</tr>
<tr>
<td>Ogólne</td>
<td>Ogólna wartość zadana bez konkretnej jednostki.</td>
<td>2</td>
</tr>
<tr>
<td>Moment</td>
<td>Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
<tr>
<td>Prędkość</td>
<td>Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>4</td>
</tr>
<tr>
<td>Częstość</td>
<td>Skalowanie jest określone przez parametr 46.02 Skalowanie częstości.</td>
<td>5</td>
</tr>
</tbody>
</table>

Tryb pracy (patrz par. 19.01)

<table>
<thead>
<tr>
<th>Tryb pracy</th>
<th>Tył</th>
<th>Skalowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparentne</td>
<td>Skalowanie nie jest stosowane.</td>
<td>1</td>
</tr>
<tr>
<td>Ogólne</td>
<td>Ogólna wartość zadana bez konkretnej jednostki.</td>
<td>2</td>
</tr>
<tr>
<td>Moment</td>
<td>Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
<tr>
<td>Prędkość</td>
<td>Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>4</td>
</tr>
<tr>
<td>Częstość</td>
<td>Skalowanie jest określone przez parametr 46.02 Skalowanie częstości.</td>
<td>5</td>
</tr>
<tr>
<td>50.08</td>
<td>FBA A: typ wart. akt. 2</td>
<td>Wybiera typ i skalowanie wartości aktualnej 2 przesłanej do sieci magistrali komunikacyjnej przez adapter komunikacyjny A. Skalowanie wartości jest definiowane przy użyciu parametrów 46.01…46.04 w zależności od tego, jaki typ wartości aktualnej wybrano za pomocą tego parametru.</td>
</tr>
<tr>
<td>Prędkość lub częstość</td>
<td>Typ i skalowanie są wybierane automatycznie zgodnie z aktywnym trybem pracy w następujący sposób:</td>
<td>0</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tryb pracy (patrz par. 19.01)</th>
<th>Typ wartości aktualnej 2</th>
<th>Skalowanie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterowanie prędkością</td>
<td>Prędkość</td>
<td>46.01 Skalowanie prędkości</td>
</tr>
<tr>
<td>Sterowanie momentem</td>
<td>Częstotliwość (01.06 Częstotliwość wyjściowa)</td>
<td>46.02 Skalowanie częstotliwości</td>
</tr>
</tbody>
</table>

| Wartość wybrana parametrem 50.11 FBA A: źródło transp. w. akt. 2 jest przesyłana jako wartość aktualna 2. Nie jest stosowane skalowanie (skalowanie 16-bitowe to 1=1 jednostka). |
|-----------------------------|--------------------------|

<table>
<thead>
<tr>
<th>Ogólne</th>
<th>Wartość wybrana parametrem 50.11 FBA A: źródło transp. w. akt. 2 jest przesyłana jako aktualna wartość 2 ze skalowaniem 16-bitowym 100=1 jednostka (tzn. liczba całkowita i dwa miejsca dziesiętne).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Moment</th>
<th>Parametr 01.01 Użyta prędkość silnika jest przesylany jako wartość aktualna 2. Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wartość zadana</th>
<th>Parametr 01.01 Użyta prędkość silnika jest przesylany jako wartość aktualna 2. Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Częstotliwość</th>
<th>Parametr 01.06 Częstotliwość wyjściowa jest przesylany jako wartość aktualna 2. Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>50.09 FBA A: źródło transp. śl. stanu</th>
<th>Określa źródło słowa stanu magistrali komunikacyjnej, gdy parametr 50.06 FBA A: wybór słowa stanu ma ustawioną wartość Tryb transparentny.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nie wybrano</th>
<th>Nie wybrano źródła.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inny</th>
<th>Wybór źródła (patrz Wyrażenia i skróty).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>50.10 FBA A: źródło transp. w. akt. 1</th>
<th>Gdy parametr 50.07 FBA A: typ wart. akt. 1 ma ustawioną wartość Transparentne, ten parametr określa źródło wartości bieżącej 1 przesyłane do sieci magistrali komunikacyjnej za pomocą adaptera komunikacyjnego A.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nie wybrano</th>
<th>Nie wybrano źródła.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inny</th>
<th>Wybór źródła (patrz Wyrażenia i skróty).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>50.11 FBA A: źródło transp. w. akt. 2</th>
<th>Gdy parametr 50.08 FBA A: typ wart. akt. 2 ma ustawioną wartość Transparentne, ten parametr określa źródło wartości bieżącej 2 przesyłane do sieci magistrali komunikacyjnej za pomocą adaptera komunikacyjnego A.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nie wybrano</th>
<th>Nie wybrano źródła.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inny</th>
<th>Wybór źródła (patrz Wyrażenia i skróty).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>50.12 Tryb debugowania FBA A</th>
<th>Ten parametr włącza tryb debugowania. Wyświetla nie przetworzone dane otrzymane z adaptera komunikacyjnego A i wysyłanych do niego w parametrach 50.13…50.18.</th>
</tr>
</thead>
</table>

Włącz	Tryb debugowania wyłączony.
Szybkie Tryb debugowania włączony

Aktualizacja danych cyklicznych jest tak szybka, jak to możliwe, co zwiększa obciążenie CPU w przemienniku częstotliwości.

Nr Nazwa/wartość | Opis | Wartość domyślna

<table>
<thead>
<tr>
<th>50.13 FBA A: słowo sterowania</th>
<th>Wyświetla nieprzetworzone słowo sterowania wysłane z jednostki nadrzędnej (PLC) do adaptera komunikacyjnego A, jeśli włączono debugowanie parametrem 50.12 Tryb debugowania FBA A. Ten parametr jest tylko do odczytu.</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000h… FFFFFFFFh</td>
<td>Słowo sterowania przesłane przez jednostkę nadrzędną do adaptera komunikacyjnego A.</td>
<td>-</td>
</tr>
<tr>
<td>50.14 FBA A: wartość zadana 1</td>
<td>Wyświetla nieprzetworzoną wartość zadaną 1 wyslaną z przemieninika nadrzędnego (PLC) do adaptera komunikacyjnego A, jeśli włączono debugowanie parametrem 50.12 Tryb debugowania FBA A. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>-2147483648… 2147483647</td>
<td>Wartość zadaną 1 przesłana przez przemienik nadrzędnego do adaptera komunikacyjnego A.</td>
<td>-</td>
</tr>
<tr>
<td>50.15 FBA A: wartość zadana 2</td>
<td>Wyświetla nieprzetworzoną wartość zadaną 2 wyslaną z jednostki nadrzędnjej (PLC) do adaptera komunikacyjnego A, jeśli włączono debugowanie parametrem 50.12 Tryb debugowania FBA A. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>-2147483648… 2147483647</td>
<td>Nieprzetworzona wartość zadaną 2 przesłana przez przemienik nadrzędnego do adaptera komunikacyjnego A.</td>
<td>-</td>
</tr>
<tr>
<td>50.16 FBA A: słowo stanu</td>
<td>Wyświetla nieprzetworzone słowo stanu wysłane z adaptora komunikacyjnego A do jednostki nadrzędnjej (PLC), jeśli włączono debugowanie parametrem 50.12 Tryb debugowania FBA A. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>00000000h… FFFFFFFFh</td>
<td>Słowo stanu przesłane z adaptera komunikacyjnego A do przemieninika nadrzędnego.</td>
<td>-</td>
</tr>
<tr>
<td>50.17 FBA A: aktualna wartość 1</td>
<td>Wyświetla nieprzetworzoną wartość rzeczywistą 1 wysłaną z adaptera komunikacyjnego A do przemieninika nadrzędnego (PLC), jeśli włączono debugowanie parametrem 50.12 Tryb debugowania FBA A. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>-2147483648… 2147483647</td>
<td>Nieprzetworzona wartość aktualną 1 przesłana przez adapter komunikacyjny A do jednostki nadrzędnjej.</td>
<td>-</td>
</tr>
<tr>
<td>50.18 FBA A: aktualna wartość 2</td>
<td>Wyświetla nieprzetworzoną wartość rzeczywistą 2 wysłaną z adaptera komunikacyjnego A do przemieninika nadrzędnego (PLC), jeśli włączono debugowanie parametrem 50.12 Tryb debugowania FBA A. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>-2147483648… 2147483647</td>
<td>Nieprzetworzona wartość aktualną 2 przesłana przez adapter komunikacyjny A do jednostki nadrzędnjej.</td>
<td>-</td>
</tr>
</tbody>
</table>
Parametry 325

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>FBA A: ustawienia</td>
<td>Konfiguracja adaptera komunikacyjnego A.</td>
<td></td>
</tr>
</tbody>
</table>

51.01 FBA A: typ

Wyświetla typ podłączonemu modulu adaptera komunikacyjnego.

- 0 = nie znaleziono modułu, moduł nie jest prawidłowo podłączony lub wyłączone go parametrem 50.01 *Włączenie FBA A*;
- 1 = PROFIBUS DP;
- 32 = CANopen;
- 37 = DeviceNet;
- 128 = Ethernet;
- 132 = PROFINET IO;
- 135 = EtherCAT;
- 136 = ETHERPWLINK;
- 485 = RS-485 comm;
- 101 = ControlNet;

Ten parametr jest tylko do odczytu.

51.02 FBA A: parametr 2

Parametry 51.02…51.26 są przeznaczone dla konkretnych modułów adaptera. Więcej informacji znajduje się w dokumentacji modułu adaptera komunikacyjnego. Należy pamiętać, że nie wszystkie te parametry są zawsze używane.

- 0…65535 Parametr konfiguracji adaptera komunikacyjnego. 1 = 1

51.26 FBA A: parametr 26

Patrz parametr 51.02 FBA A: parametr 2.

- 0…65535 Parametr konfiguracji adaptera komunikacyjnego. 1 = 1

51.27 FBA A: odśw. param.

Sprawdza poprawność zmienionych ustawień konfiguracji modułu adaptera komunikacyjnego. Po odświeżení zostaje automatycznie przywrócona wartość **Gotowe**.

- **Uwaga:** Tego parametru nie można zmienić, gdy przemienik częstotliwości jest uruchomiony.

<table>
<thead>
<tr>
<th>Gotowe</th>
<th>Wykonano odświeżenie.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Skonfiguruj</td>
<td>Odświeżenie.</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

51.28 FBA A: wersja pliku param.

Wyświetla przegląd tabeli parametrów pliku mapowania modułu adaptera komunikacyjnego (zapisanego w pamięci przemienikha częstotliwości).

W formacie axyz, gdzie ax = numer głównego przeglądu tabeli; yz = numer podrzędnego przeglądu tabeli. Ten parametr jest tylko do odczytu.

- Przegląd tabeli parametrów modułu adaptera.

51.29 FBA A: kod typu przemien.

Wyświetla kod typu przemienikha częstotliwości w pliku mapowania modułu adaptera komunikacyjnego (zapisanego w pamięci przemienikha częstotliwości).

Ten parametr jest tylko do odczytu.

- 0…65535 Kod typu przemienikha częstotliwości zapisany w pliku mapowania. 1 = 1

51.30 FBA A: wersja pliku odwz.

Wyświetla przegląd pliku mapowania modułu adaptera komunikacyjnego zapisanego w pamięci przemienikha częstotliwości w formacie dziesiętnym.

Ten parametr jest tylko do odczytu.

- 0…65535 Wersja pliku mapowania. 1 = 1

51.31 D2FBA A: stan komunikacji

Wyświetla stan komunikacji modułu adaptera komunikacyjnego.

- **Nie skonfigurowano**

<table>
<thead>
<tr>
<th>Nie skonfigurowano</th>
<th>Adapter nie jest skonfigurowany.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Inicjowanie</td>
<td>Adapter jest inicjowany.</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limit czasu</td>
<td>Przekroczone limit czasu w komunikacji pomiędzy adapterem i przemiennikiem częstotliwości.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Błąd konfiguracji</td>
<td>Błąd konfiguracji adaptera: nie znaleziono pliku mapowania w systemie plików przemiennika częstotliwości lub przesyłanie pliku mapowania zakończyło się niepowodzeniem więcej niż trzy razy.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Offline</td>
<td>Komunikacja przez magistralę komunikacyjną odbywa się w trybie off-line.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Online</td>
<td>Komunikacja przez magistralę komunikacyjną odbywa się w trybie on-line lub adapter komunikacyjny został skonfigurowany tak, aby nie wykrywał przerw w komunikacji. Więcej informacji znajduje się w dokumentacji adaptera komunikacyjnego.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Reset</td>
<td>Adapter wykonuje resetowanie sprzętu.</td>
<td>6</td>
</tr>
<tr>
<td>51.32</td>
<td>FBA A: wersja oprog. kom.</td>
<td>Wyświetla wersję programu wspólnego dla modułu adaptera w formacie axyz, gdzie a = numer głównej wersji, xy = numer podrzędnej wersji, z = numer lub litera korekty. Przykład: 190A = wersja 1.90A.</td>
<td>-</td>
</tr>
<tr>
<td>51.33</td>
<td>FBA A: wersja opr.aplikacji</td>
<td>Wyświetla wersję programu aplikacyjnego dla modułu adaptera w formacie axyz, gdzie a = numer głównej wersji, xy = numer podrzędnej wersji, z = numer lub litera korekty. Przykład: 190A = wersja 1.90A.</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>FBA A: dane wej.</td>
<td>Wybór danych przesyłanych z przemiennika częstotliwości do sterownika magistrali komunikacyjnej przez adapter komunikacyjny A. Uwaga: Wartości 32-bitowe wymagają dwóch kolejnych parametrów. Gdy wartość 32-bitowa zostaje wybrana w parametrze danych, następny parametr jest rezerwowany automatycznie.</td>
<td>Brak</td>
</tr>
<tr>
<td>52.01</td>
<td>FBA A: dane wej. 1</td>
<td>Parametry 52.01...52.12 wybierają dane przesyłane z przemiennika częstotliwości do sterownika magistrali komunikacyjnej przez adapter komunikacyjny A.</td>
<td>Brak</td>
</tr>
<tr>
<td>Brak</td>
<td></td>
<td>Brak.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania</td>
<td>Słowo sterowania (16 bity)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16-bitowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1</td>
<td>Wartość zadana 1 (16 bity)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16-bitowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 2</td>
<td>Wartość zadana 2 (16 bity)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16-bitowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Słowo stanu 16-bitowe</td>
<td>Słowo stanu (16 bity)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16-bitowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 1</td>
<td>Wartość aktualna 1 (16 bity)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16-bitowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 2</td>
<td>Wartość aktualna 2 (16 bity)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16-bitowa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania 32-bitowe</td>
<td>Słowo sterowania (32 bity)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>32-bitowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1 32-bitowa</td>
<td>Wartość zadana 1 (32 bity)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 2 32-bitowa</td>
<td>Wartość zadana 2 (32 bity)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Słowo stanu 32-bitowe</td>
<td>Słowo stanu (32 bity)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 1 32-bitowa</td>
<td>Wartość aktualna 1 (32 bity)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 2 32-bitowa</td>
<td>Wartość aktualna 2 (32 bity)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Słowo stanu 2 16-bitowe</td>
<td>Słowo stanu 2 (16 bitów)</td>
<td>24</td>
</tr>
<tr>
<td>Inny</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.12</td>
<td>FBA A: dane wej. 12</td>
<td>Patrz parametr 52.01 FBA A: dane wej. 1.</td>
<td>Brak</td>
</tr>
</tbody>
</table>

53 FBA A: dane wyj.

Wybór danych przesyłanych ze sterownika magistrali komunikacyjnej do przemiennika częstotliwości przez adapter komunikacyjny A.

Uwaga: Wartości 32-bitowe wymagają dwóch kolejnych parametrów. Gdy wartość 32-bitowa zostaje wybrana w parametrze danych, następny parametr jest rezerwowany automatycznie.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.01</td>
<td>FBA A: dane wyj. 1</td>
<td>Parametry 53.01…53.12 wybierają dane przesyłane ze sterownika magistrali komunikacyjnej do przemiennika częstotliwości przez adapter komunikacyjny A.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Brak</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania 16-bitowe</td>
<td>Słowo sterowania (16 bity)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1 16-bitowa</td>
<td>Wartość zadana 1 (16 bity)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 2 16-bitowa</td>
<td>Wartość zadana 2 (16 bity)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania 32-bitowe</td>
<td>Słowo sterowania (32 bity)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1 32-bitowa</td>
<td>Wartość zadana 1 (32 bity)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 2 32-bitowa</td>
<td>Wartość zadana 2 (32 bity)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania 2 16-bitowe</td>
<td>Słowo sterowania 2 (16 bitów)</td>
<td>21</td>
</tr>
<tr>
<td>Inny</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.12</td>
<td>FBA: dane wyj. 12</td>
<td>Patrz parametr 53.01 FBA A: dane wyj. 1.</td>
<td>Brak</td>
</tr>
</tbody>
</table>
58 Wbud. moduł komunikacyjny

Konfiguracja wbudowanego interfejsu komunikacyjnego (EFB). Patrz rozdział Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB.

UWAGA: Różne wbudowane protokoły magistrali komunikacyjnej (Modbus lub CANopen) wymagają różnych opcji sprzętowych.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.01</td>
<td>Włączenie protokołu</td>
<td>Włącza/wyłącza interfejs wbudowanej magistrali komunikacyjnej i wybiera używany protokół.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Brak (komunikacja wyłączona).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Modbus RTU</td>
<td>Interfejs wbudowanej magistrali komunikacyjnej jest włączony i używa protokołu Modbus RTU.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CANopen</td>
<td>Interfejs wbudowanej magistrali komunikacyjnej jest włączony i używa protokołu CANopen.</td>
<td>3</td>
</tr>
<tr>
<td>58.02</td>
<td>ID protokołu</td>
<td>Wyświetla ID protokołu i wersję. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ID protokołu i wersja.</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.03</td>
<td>Adres węzła</td>
<td>Definiuje adres węzła przemiennika częstotliwości w łączu magistrali komunikacyjnej. Dopuszczalne są wartości 1…247. Dwa urządzenia o takim samym adresie nie są dopuszczalne jednocześnie on-line. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawnienia). Uwaga: Jeśli parametr 58.01 to [3] CANopen, nazwa tego parametru 58.03 to Identyfikator węzła (patrz poniżej).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Adres węzła (dopuszczalne są wartości 1…247).</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.03</td>
<td>Identyfikator węzła</td>
<td>Definiuje adres węzła przemiennika częstotliwości w magistrali CANopen. Dopuszczalne są wartości 1…127. Dwa urządzenia o takim samym adresie nie są dopuszczalne jednocześnie on-line. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawnienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, nazwa tego parametru 58.03 to Adres węzła (patrz powyżej).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Adres węzła (dopuszczalne są wartości 1…127).</td>
<td></td>
<td>1=1</td>
</tr>
</tbody>
</table>
Parametry

58.04 Szybkość transmisji
Definiuje szybkość transmisji łącza magistrali komunikacyjnej Modbus.
Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.04</td>
<td>Szybkość transmisji</td>
<td>Definiuje szybkość komunikacji magistrali CANopen. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametu 58.06 Sterowanie komunikacją (Odśwież ustawienia).</td>
<td>19.2 kb/s</td>
</tr>
<tr>
<td>4.8 kb/s</td>
<td>4.8 kbit/s.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9.6 kb/s</td>
<td>9.6 kbit/s.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>19.2 kb/s</td>
<td>19.2 kbit/s.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>38.4 kb/s</td>
<td>38.4 kbit/s.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>57.6 kb/s</td>
<td>57.6 kbit/s.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>76.8 kb/s</td>
<td>76.8 kbit/s.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>115.2 kb/s</td>
<td>115.2 kbit/s.</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>58.05</td>
<td>Parzystość</td>
<td>Określa typ bitu parzystości oraz liczbę bitów stopu. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). W przypadku CANopen, ten parametr jest ukryty.</td>
<td>8 PARZY- STOŚĆ 1</td>
</tr>
<tr>
<td>8 BRAK 1</td>
<td>Osiem bitów danych, brak bitu parzystości, jeden bit stopu.</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>8 BRAK 2</td>
<td>Osiem bitów danych, brak bitu parzystości, dwa bity stopu.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8 PARZYSTOŚĆ 1</td>
<td>Osiem bitów danych, bit parzystości, jeden bit stopu.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8 NIEPARZYSTOŚĆ 1</td>
<td>Osiem bitów danych, bit nieparzystości, jeden bit stopu.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>58.06</td>
<td>Sterowanie komunikacją</td>
<td>Wprowadza zmiany ustawień EFB lub aktywuje tryb wyciszony. Włączone</td>
<td></td>
</tr>
<tr>
<td>Włączone</td>
<td>Normalna praca.</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Odśwież ustawienia</td>
<td>Odświeża ustawienia (parametry Modbus 58.01...58.05, 58.14...58.17, 58.25, 58.28...58.34, parametry CANopen 58.03, 58.04, 58.06, 58.14, 58.23...58.29, 58.70...58.93 i 58.101...58.124) i wprowadza zmiany używanych ustawień konfiguracji EFB. Zostaje automatycznie przywrócona wartość Włączone.</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Tryb wyciszony</td>
<td>Aktywuje tryb wyciszony (nie są przekazywane komunikaty). Tryb wyciszony można przerwać, aktywując wybór Odśwież ustawienia tego parametru. Uwaga: Jeśli parametr 58.01 to [3] CANopen, ta opcja nie jest dostępna.</td>
<td>2</td>
</tr>
<tr>
<td>58.07</td>
<td>Diagnostyka komunikacji</td>
<td>Wyświetla stan komunikacji EFB. Ten parametr jest tylko do odczytu. Należy zauważyć, że nazwa jest widoczna tylko wtedy, gdy występuje błąd (wartość bitu to 1). Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Inicjalizacja nieudana</td>
<td>1 = Inicjalizacja EFB nieudana</td>
</tr>
<tr>
<td>1</td>
<td>Błąd konf. adres.</td>
<td>1 = Adres węzła niedopuszczalny przez protokół</td>
</tr>
<tr>
<td>2</td>
<td>Tryb wyciszony</td>
<td>1 = Transmisja przemiennika częstotliwości niedopuszczalna 0 = Transmisja przemiennika częstotliwości dopuszczalna</td>
</tr>
<tr>
<td>3</td>
<td>Auto. szybkość trans.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Błąd okablowania</td>
<td>1 = Wykryto błędy (możliwość zamiany kabli A/B)</td>
</tr>
<tr>
<td>5</td>
<td>Błąd parzystości</td>
<td>1 = Wykryto błąd: sprawdź parametry 58.04 i 58.05</td>
</tr>
<tr>
<td>6</td>
<td>Błąd szybkości trans.</td>
<td>1 = Wykryto błąd: sprawdź parametry 58.05 i 58.04</td>
</tr>
<tr>
<td>7</td>
<td>Brak akt. magistrali</td>
<td>1 = Odebrano 0 bajtów podczas ostatnich 5 sekund</td>
</tr>
<tr>
<td>8</td>
<td>Brak pakietów</td>
<td>1 = Wykryto 0 pakietów (adresowanych do dowolnego urządzenia) podczas ostatnich 5 sekund</td>
</tr>
<tr>
<td>9</td>
<td>Szum lub błąd adres.</td>
<td>1 = Wykryto błędy (zakłócenia lub inne urządzenie on-line z tym samym adresem)</td>
</tr>
<tr>
<td>10</td>
<td>Utrata kom.</td>
<td>1 = Otrzymano 0 pakietów zaadresowanych do przemiennika częstotliwości w ramach limitu czasu (58.16)</td>
</tr>
<tr>
<td>11</td>
<td>Utrata sł. ster./w. zad.</td>
<td>1 = Brak słowa sterowania lub wartości zadanych w ramach limitu czasu (58.16)</td>
</tr>
<tr>
<td>12</td>
<td>Nieaktywne</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>13</td>
<td>Protokół 1</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>14</td>
<td>Protokół 2</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>15</td>
<td>Błąd wewnętrzny</td>
<td>1 = Wykryto błędy wewnętrzne</td>
</tr>
</tbody>
</table>

0000h…FFFFh Stan komunikacji EFB. 1 = 1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.08</td>
<td>Odebrane pakiety</td>
<td>Wyświetla liczbę prawidłowych pakietów zaadresowanych do przemiennika częstotliwości. Podczas normalnej pracy ta liczba stałe rośnie. Można go zresetować w panelu sterowania, przytrzymując naciśnięty przycisk Reset przez ponad 3 sekundy.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>Liczba odebranych pakietów zaadresowanych do przemiennika częstotliwości.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.09</td>
<td>Przesłane pakiety</td>
<td>Wyświetla liczbę prawidłowych pakietów przesłanych do przemiennika częstotliwości. Podczas normalnej pracy ta liczba stałe rośnie. Można go zresetować w panelu sterowania, przytrzymując naciśnięty przycisk Reset przez ponad 3 sekundy.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>Liczba przesłanych pakietów.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.10</td>
<td>Wszystkie pakiety</td>
<td>Wyświetla licznik prawidłowych pakietów zaadresowanych do dowolnego urządzenia na magistrali. Podczas normalnej pracy ta liczba stałe rośnie. Można go zresetować w panelu sterowania, przytrzymując naciśnięty przycisk Reset przez ponad 3 sekundy.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>Liczba wszystkich odebranych pakietów.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.11</td>
<td>Błędy UART</td>
<td>Wyświetla liczbę błędów znaków odebranych przez przemiennik częstotliwości. Rosnący licznik wskazuje na problem konfiguracyjny w magistrali. Można go zresetować w panelu sterowania, przytrzymując naciśnięty przycisk Reset przez ponad 3 sekundy.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>Liczba błędów UART.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.12</td>
<td>Błędy CRC</td>
<td>Wyświetla liczbę pakietów z błędami CRC odebranych przez przemiennik częstotliwości. Rosnący licznik wskazuje na zakłócenia w magistrali. Można go zresetować w panelu sterowania, przytrzymując naciśnięty przycisk Reset przez ponad 3 sekundy.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>Liczba błędów CRC.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>58.14</td>
<td>Reakcja na utratę komunik.</td>
<td>Określa sposób, w jaki przemiennik częstotliwości reaguje na przerwę w komunikacji EFB. Przemieniartek częstotliwości nie jest wyzwalany, jeśli z EFB została otrzymana tylko wartość zadana i wystąpiła utrata komunikacji. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Patrz też parametry 58.15 Tryb utraty komunikacji i 58.16 Czas utraty komunikacji.</td>
<td>Błąd</td>
<td></td>
</tr>
</tbody>
</table>

Bruka	0	Brak działania (monitorowanie wyłączone). Tylko w przypadku adaptera Modbus.	
Bezdziałania	0	Brak działania (monitorowanie wyłączone). Tylko w przypadku adaptera CANopen.	
Błąd	1	Przemieniartek częstotliwości jest wyłączany awaryjnie z powodu błędu 6681 Utrata komunikacji EFB. Ma to miejsce tylko wtedy, gdy sterowanie w aktywnej lokalizacji sterowania jest oczekiwane z EFB.	

| Ostatnia prędkość | 2 | Przemieniartek częstotliwości generuje ostrzeżenie A7CE Utrata komunikacji EFB i blokuje prędkość na poziomie, na którym pracował. Prędkość jest określana na podstawie aktualnej prędkości przy użyciu filtrowania dolnoprzepustowego 850 ms. Ma to miejsce tylko wtedy, gdy jest oczekiwane sterowanie przy użyciu EFB. OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji. | |

| Bezpieczna w. zad. prędk | 3 | Przemieniartek częstotliwości generuje ostrzeżenie A7CE Utrata komunikacji EFB i ustawia prędkość na wartość określoną parametrem 22.41 Bezpieczna w. zad. prędk. (lub 28.41 Bezpieczna wart. zad. częst., jeśli używana jest wartość zadana częstotliwości). Ma to miejsce tylko wtedy, gdy jest oczekiwane sterowanie przy użyciu komunikacji EFB. OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji. | |

| Zawsze błąd | 4 | Przemieniartek częstotliwości jest wyłączany awaryjnie z powodu błędu 6681 Utrata komunikacji EFB. Dzieje się tak, nawet gdy przemienniartek częstotliwości działa w lokalizacji sterowania, gdzie nie jest używany start/stop EFB lub stosowana jest wartość zadana. | |

| Ostrzeżenie | 5 | Przemieniartek częstotliwości generuje ostrzeżenie A7CE Utrata komunikacji EFB. Ma to miejsce nawet wtedy, gdy sterowanie przy użyciu EFB nie jest oczekiwane. OSTRZEŻENIE! Należy upewnić się, że można bezpiecznie kontynuować pracę w przypadku przerwy w komunikacji. | |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.15</td>
<td>Tryb utraty komunikacji</td>
<td>Definiuje, które typy komunikatów resetują licznik przekroczenia limitu czasu w celu wykrycia utraty komunikacji EFB. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Patrz również parametry 58.14 Reakcja na utratę komunik. i 58.16 Czas utraty komunikacji. Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td>Sl. ster. / Zad1 / Zad2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowolny komunikat Dowolny komunikat zaadresowany do przemiennika częstotliwości resetuje limit czasu.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sł. ster. / Zad1 / Zad2 Zapis słowa sterowania lub wartości zadanej resetuje limit czasu.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>58.16</td>
<td>Czas utraty komunikacji</td>
<td>Określa limit czasu dla komunikacji EFB. Jeśli przerwa w komunikacji trwa dłużej niż limit czasu, podejmowane zostaje działanie określone parametrem 58.14 Reakcja na utratę komunik. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Zobacz również parametr 58.15 Tryb utraty komunikacji. Uwaga: Po włączeniu zasilania występuje 30-sekundowe opóźnienie uruchomienia. Podczas opóźnienia wyłączone jest monitorowanie przerwy w komunikacji (ale sama komunikacja może być aktywna).</td>
<td>30,0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0…6000,0 s Limit czasu komunikacji EFB.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.17</td>
<td>Opóźnienie transmisji</td>
<td>Definiuje minimalne opóźnienie odpowiedzi oprócz stałego opóźnienia narzuconego protokołem. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.</td>
<td>0 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…65535 ms Minimalne opóźnienie odpowiedzi.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.18</td>
<td>Słowo sterowania EFB</td>
<td>Wyświetla niezmodyfikowane słowo stanu przesłane przez przemiennik częstotliwości do sterownika Modbus. Do celów debugowania. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…FFFFFFFFFh Słowo sterowania przesłane przez sterownik do przemiennika częstotliwości.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>58.19</td>
<td>Słowo stanu EFB</td>
<td>Wyświetla niezmodyfikowane słowo sterowania w celu debugowania. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…FFFFFFFFFh Słowo sterowania przesłane przez przemiennik częstotliwości do sterownika.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>58.22</td>
<td>Stan NMT CANopen</td>
<td>Ten parametr określa stan CANopen NMT przemienika częstotliwości. Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>Niezainicjowany</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>58.23</td>
<td>Lokalizacja konfiguracji</td>
<td>Ten parametr definiuje miejsce, z którego pochodzi konfiguracja komunikacji urządzenia. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>Obiekty CAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>58.24</td>
<td>Skalow. transparentne 16</td>
<td>Określa wartość skalowania dla profilu komunikacyjnego Transparent 16. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0...65535</td>
<td></td>
</tr>
<tr>
<td>58.25</td>
<td>Profil sterowania</td>
<td>Definiuje profil komunikacji używany przez protokół. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).</td>
<td>ABB Drives</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transparentna wartość 32-bitowa</td>
<td>Transparentny profil sterowania (z 32-bitowym słowem sterującym)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>58.26</td>
<td>EFB: typ wartości zad. 1</td>
<td>Określa typ i skalowanie wartości zadanej 1 odebranej przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Skalowana wartość zadana jest wyświetlana przez parametr 03.09 Wart. zadana 1 EFB.</td>
<td>Prędkość lub częstotliwość</td>
<td></td>
</tr>
<tr>
<td>Prędkość lub częstotliwość</td>
<td>Typ i skalowanie są wybierane automatycznie zgodnie z aktywnym trybem pracy w następujący sposób:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tryb pracy (patrz par. 19.01)</td>
<td>Typ wartości zadanej 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sterowanie prędkością</td>
<td>Prędkość</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sterowanie momentem</td>
<td>Prędkość</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sterowanie częstotliwością</td>
<td>Częstotliwość</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparentne</td>
<td>Skalowanie nie jest stosowane.</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ogólna</td>
<td>Ogólna wartość zadana bez konkretnej jednostki. Skalowanie: 1 = 100.</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Moment</td>
<td>Wartość zadana momentu. Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Prędkość</td>
<td>Wartość zadana prędkości. Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Częstotliwość</td>
<td>Wartość zadana częstotliwości. Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>58.27</td>
<td>EFB: typ wartości zad. 2</td>
<td>Określa typ i skalowanie wartości zadanej 2 odebranej przy użyciu interfejsu wbudowanej magistrali komunikacyjnej. Skalowana wartość zadana jest wyświetlana przez parametr 03.10 Wart. zadana 2 EFB.</td>
<td>Moment</td>
<td></td>
</tr>
<tr>
<td>58.28</td>
<td>EFB: typ wartości akt. 1</td>
<td>Określa typ/prędkość i skalowanie wartości aktualnej 1 przesyłane do sieci magistrali komunikacyjnej za pomocą interfejsu wbudowanej magistrali komunikacyjnej.</td>
<td>Prędkość lub częstotliwość</td>
<td></td>
</tr>
<tr>
<td>Prędkość lub częstotliwość</td>
<td>Typ i skalowanie są wybierane automatycznie zgodnie z aktywnym trybem pracy w następujący sposób:</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tryb pracy (patrz par. 19.01)</td>
<td>Typ aktualny 1 (źródło)</td>
<td>Skalowanie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sterowanie prędkością</td>
<td>Prędkość</td>
<td>(01.01 Użyta prędkość silnika)</td>
<td>46.01 Skalowanie prędkości</td>
</tr>
<tr>
<td></td>
<td>Sterowanie momentem</td>
<td>Częstotliwość</td>
<td>(01.06 Częstotliwość wyjściowa)</td>
<td>46.02 Skalowanie częstotliwości</td>
</tr>
<tr>
<td>Transparentne</td>
<td>Wartość wybrana parametrem 58.31 EFB: źródło transp. w. akt. 1 jest przesyłana jako wartość aktualna 1. Nie jest stosowane skalowanie (skalowanie 16-bitowe to 1 = 1 jednostka).</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Ogólna Wartość wybrana parametrem 58.31 EFB: źródło transp. w. akt. 1

- **Moment**: Parametr **01.10 Moment silnika** jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr **46.03 Skalowanie momentu**.

- **Prędkość**: Parametr **01.01 Użyta prędkość silnika** jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr **46.01 Skalowanie prędkości**.

- **Częstotliwość**: Parametr **01.06 Częstotliwość wyjściowa** jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr **46.02 Skalowanie częstotliwości**.

Ogólna Wartość wybrana parametrem 58.32 EFB: źródło transp. w. akt. 2

- **Moment**: Parametr **01.06 Częstotliwość wyjściowa** jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr **46.02 Skalowanie częstotliwości**.

Częstotliwość lub przepływ wody

- **Typ/źródło**: Typ/źródło są wybierane automatycznie zgodnie z aktywnym trybem pracy w następujący sposób:

Nr Nazwa/wartość Opis Wartość domyślna FbEq 16

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Prędkość</td>
<td>Parametr 01.01 Użyta prędkość silnika jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>3</td>
</tr>
<tr>
<td>02</td>
<td>Częstotliwość</td>
<td>Parametr 01.06 Częstotliwość wyjściowa jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</td>
<td>5</td>
</tr>
<tr>
<td>03</td>
<td>Moment</td>
<td>Parametr 01.10 Moment silnika jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>Wartość zadana</td>
<td>Parametr 01.01 Użyta prędkość silnika jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>4</td>
</tr>
<tr>
<td>05</td>
<td>Częstotliwość</td>
<td>Parametr 01.06 Częstotliwość wyjściowa jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</td>
<td>5</td>
</tr>
<tr>
<td>06</td>
<td>Moment</td>
<td>Parametr 01.10 Moment silnika jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
<tr>
<td>07</td>
<td>Wartość zadana</td>
<td>Parametr 01.01 Użyta prędkość silnika jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>4</td>
</tr>
<tr>
<td>08</td>
<td>Częstotliwość</td>
<td>Parametr 01.06 Częstotliwość wyjściowa jest przesyłany jako wartość aktualna 1. Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</td>
<td>5</td>
</tr>
</tbody>
</table>

Tryb pracy

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Transparentne</td>
<td>Wartość wybrana parametrem 58.32 EFB: źródło transp. w. akt. 2 jest przesyłana jako wartość aktualna 2. Nie jest stosowane skalowanie (skalowanie 16-bitowe to 1 = 1 jednostka).</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>Ogólna</td>
<td>Wartość wybrana parametrem 58.32 EFB: źródło transp. w. akt. 2 jest przesyłana jako wartość aktualna 2. Nie jest stosowane skalowanie (skalowanie 16-bitowe to 1 = 1 jednostka).</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>Moment</td>
<td>Parametr 01.10 Moment silnika jest przesyłany jako wartość aktualna 2. Skalowanie jest określone przez parametr 46.03 Skalowanie momentu.</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>Wartość zadana</td>
<td>Parametr 01.01 Użyta prędkość silnika jest przesyłany jako wartość aktualna 2. Skalowanie jest określone przez parametr 46.01 Skalowanie prędkości.</td>
<td>4</td>
</tr>
<tr>
<td>05</td>
<td>Częstotliwość</td>
<td>Parametr 01.06 Częstotliwość wyjściowa jest przesyłany jako wartość aktualna 2. Skalowanie jest określone przez parametr 46.02 Skalowanie częstotliwości.</td>
<td>5</td>
</tr>
</tbody>
</table>

Inny

- **Nie wybrano**: Brak. | 0 |

- **Inny**: Wybór źródła (patrz Wyrażenia i skróty). | - |
### Nr	Nazwa/wartość	Opis	Wartość domyślna	FbEq 16
58.32 | EFB: źródło transp. w. akt. 2 | Określa źródło wartości aktualnej 1, gdy parametr 58.29 EFB: typ wartości akt. 2 jest ustawiony na wartość Transparentne. | Inny (par. 01.07 Prąd silnika) |

| Nie wybrano | Brak. | 0 |
| Inny | Wybór źródła (patrz Wyrażenia i skróty). | - |

58.33 Tryb adresowania
Definiuje mapowanie pomiędzy parametrami oraz przechwowującymi je rejestrami w zakresie rejestrów Modbus 400101…465535. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.

Tryb 0
Wartości 16-bitowe (grupy 1…99, indeksy 1…99):
Adres rejestru = 400000 + 100 × grupa parametrów + indeks parametru. Na przykład parametr 22.80 byłby mapowany w rejestrze w następujący sposób: 400000 + 2200 + 80 = 402280.

Wartości 32-bitowe (grupy 1…99, indeksy 1…99):
Adres rejestru = 420000 + 200 × grupa parametrów + 2 × indeks parametru. Na przykład parametr 22.80 byłby mapowany w rejestrze w następujący sposób: 420000 + 4400 + 160 = 424560.

Tryb 1
Wartości 16-bitowe (grupy 1…255, indeksy 1…255):
Adres rejestru = 400000 + 256 × grupa parametrów + indeks parametru. Na przykład parametr 22.80 byłby mapowany w rejestrze w następujący sposób: 400000 + 5632 + 80 = 405712.

Tryb 2
Wartości 32-bitowe (grupy 1…127, indeksy 1…255):
Adres rejestru = 400000 + 512 × grupa parametrów + 2 × indeks parametru. Na przykład parametr 22.80 byłby mapowany w rejestrze w następujący sposób: 400000 + 11264 + 160 = 411424.

58.34 Kolejność słów
Wybiera kolejność, w jakiej przekazywane są 16-bitowe rejesty 32-bitowych parametrów. Dla każdego rejestru pierwszy bajt zawiera bajt górny, a drugi bajt zawiera bajt dolny. Zmiany w tym parametrze zaczynają obowiązywać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [3] CANopen, ten parametr jest ukryty.

<p>| WYS-NIS | Pierwszy rejestr zawiera słowo górne, a drugi bajt zawiera słowo dolne. | 0 |
| NIS-WYS | Pierwszy rejestr zawiera słowo dolne, a drugi bajt zawiera słowo górne. | 1 |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.70</td>
<td>EFB: tryb debugowania</td>
<td>Ten parametr włącza tryb debugowania. Tworzone jest echo danych nieprzetworzonych parametru przemiennika częstotliwości 58.18 Słowo sterowania EFB, 58.71 EFB: wartość zadana 1, 58.72 EFB: wartość zadana 2, 58.19 Słowo stanu EFB, 58.73 EFB: wartość aktualna 1 i 58.74 EFB: wartość aktualna 2. Zmiany w tym parametrze zaczynają obwijać po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nieaktywne</td>
<td></td>
<td>Tryb debugowania wyłączony. Parametry 58.18 Słowo sterowania EFB, 58.71 EFB: wartość zadana 1, 58.72 EFB: wartość zadana 2, 58.19 Słowo stanu EFB, 58.73 EFB: wartość aktualna 1 i 58.74 EFB: wartość aktualna 2 nie są aktualizowane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Włączone</td>
<td></td>
<td>Tryb debugowania włączony. Parametry 58.18 Słowo sterowania EFB, 58.71 EFB: wartość zadana 1, 58.72 EFB: wartość zadana 2, 58.19 Słowo stanu EFB, 58.73 EFB: wartość aktualna 1 i 58.74 EFB: wartość aktualna 2 są aktualizowane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.71</td>
<td>EFB: wartość zadana 1</td>
<td>Wyświetla nieprzetworzoną (niezmodyfikowaną) wartość zadanną 1 w celu debugowania. Ten parametr jest tylko do odczytu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100000…100000</td>
<td>Wartość zadana 1</td>
<td>1=1</td>
<td></td>
</tr>
<tr>
<td>58.72</td>
<td>EFB: wartość zadana 2</td>
<td>Wyświetla nieprzetworzoną (niezmodyfikowaną) wartość aktualną 2 w celu debugowania. Ten parametr jest tylko do odczytu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100000…100000</td>
<td>Wartość zadana 2</td>
<td>1=1</td>
<td></td>
</tr>
<tr>
<td>58.73</td>
<td>EFB: wartość aktualna 1</td>
<td>Wyświetla nieprzetworzoną (niezmodyfikowaną) wartość aktualną 1 w celu debugowania. Ten parametr jest tylko do odczytu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100000…100000</td>
<td>Wartość aktualna 1</td>
<td>1=1</td>
<td></td>
</tr>
<tr>
<td>58.74</td>
<td>EFB: wartość aktualna 2</td>
<td>Wyświetla nieprzetworzoną (niezmodyfikowaną) wartość aktualną 2 w celu debugowania. Ten parametr jest tylko do odczytu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100000…100000</td>
<td>Wartość aktualna 2</td>
<td>1=1</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna</td>
<td>FbEq</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 58.76 | RPDO1 COB-ID | Ustaw identyfikator COB-ID biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości, po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty. | | |
| 0...7FFh | COB-ID. | COB-ID.
0 = RPDO wyłączone, 1 = użyj identyfikatora COB-ID z predefiniowanego zestawu połączeń CiA 301, <inna wartość> = użyj wybranego identyfikatora COB-ID. | 1=1 | |
| 58.77 | Typ transmisji RPDO1 | Ustaw typ transmisji biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości, po ponownym uruchomieniu jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty. | 255 | |
| 0...255 | Typ transmisji. | Typ transmisji.
0 = synchroniczne cyklicznie
1...240 = synchroniczne cyklicznie
252 = tylko synchroniczny element RTR
253 = tylko asynchroniczny element RTR
254...255 = asynchroniczny | 1=1 | |
| 58.78 | Timer zdarzeń RPDO1 | Ustaw timer zdarzenia biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty. | 0 | |
| 0...65535 | Definiuje wartość limitu czasu biblioteki PDO.
0 = brak limitu czasu
inny = jeśli ta biblioteka PDO jest włączona i nie zostanie odebrana przez milisekundy timera zdarzeń, wykonywana jest operacja 58.14 Czas utraty komunikacji.

Uwaga: Nadzór limitu czasu jest aktywowany po pomyślnym odebraniu elementu RPDO. | 1=1 ms | |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.79</td>
<td>TPDO1 COB-ID</td>
<td>Ustaw identyfikator COB-ID biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1=1</td>
</tr>
<tr>
<td>0...7FFh</td>
<td>COB-ID</td>
<td>0 = RPDO wyłączone, 1 = użyj identyfikatora COB-ID z predefiniowanego zestawu połączeń CiA 301, <inna wartość> = użyj wybranego identyfikatora COB-ID.</td>
<td>1=1</td>
</tr>
<tr>
<td>58.80</td>
<td>Typ transmisji TPDO1</td>
<td>Ustaw typ transmisji biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1=1</td>
</tr>
<tr>
<td>0...255</td>
<td>Typ transmisji</td>
<td>0 = synchroniczne cyklicznie 1...240 = synchroniczne cyklicznie 252 = tylko synchroniczny element RTR 253 = tylko asynchroniczny element RTR 254...255 = asynchroniczny</td>
<td>1=1</td>
</tr>
<tr>
<td>58.81</td>
<td>Timer zdarzeń TPDO1</td>
<td>Ustaw timer zdarzenia biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1=1 ms</td>
</tr>
<tr>
<td>0...65535</td>
<td>Timer zdarzenia</td>
<td>0 = brak limitu czasu inny = jeśli ta biblioteka PDO jest włączona i nie zostanie przesłana przez milisekundy timera zdarzeń, transmisja zostanie wymuszona</td>
<td>1=1 ms</td>
</tr>
</tbody>
</table>
58.82 RPDO6 COB-ID
Ustaw identyfikator COB-ID biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

<table>
<thead>
<tr>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...7FFh COB-ID. 0 = RPDO wyłączone, 1 = użyj identyfikatora COB-ID z predefiniowanego zestawu połączeń CiA 301, <inna wartość> = użyj wybranego identyfikatora COB-ID.</td>
</tr>
</tbody>
</table>

1=1

58.83 Typ transmisji RPDO6
Ustaw typ transmisji biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

<table>
<thead>
<tr>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...255 Typ transmisji. 0 = synchroniczne cyklicznie 1...240 = synchroniczne cyklicznie 252 = tylko synchroniczny element RTR 253 = tylko asynchroniczny element RTR 254…255 = asynchroniczny</td>
</tr>
</tbody>
</table>

255

1=1

58.84 Timer zdarzeń RPDO6
Ustaw timer zdarzenia biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

<table>
<thead>
<tr>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535 Definiuje wartość limitu czasu biblioteki PDO. 0 = brak limitu czasu inny = jeśli ta biblioteka PDO jest włączona i nie zostanie odebrana przez milisekundy timera zdarzeń, wykonywana jest operacja 58.14 Czas utraty komunikacji. Uwaga: Nadzór limitu czasu jest aktywowany po pomyślnym odebraniu elementu RPDO.</td>
</tr>
</tbody>
</table>

0

1=1 ms
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.85</td>
<td>TPDO6 COB-ID</td>
<td>Ustaw identyfikator COB-ID biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...7FFh COB-ID. 0 = RPDO wyłączone, 1 = użyj identyfikatora COB-ID z predefiniowanego zestawu połączeń CiA 301, <inna wartość> = użyj wybranego identyfikatora COB-ID.</td>
<td></td>
</tr>
<tr>
<td>58.86</td>
<td>Typ transmisji TPDO6</td>
<td>Ustaw typ transmisji biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...255 Typ transmisji. 0 = synchroniczne cyklicznie 1...240 = synchroniczne cyklicznie 252 = tylko synchroniczny element RTR 253 = tylko asynchroniczny element RTR 254...255 = asynchroniczny</td>
<td>1=1</td>
</tr>
<tr>
<td>58.87</td>
<td>Timer zdarzeń TPDO6</td>
<td>Ustaw timer zdarzenia biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td>1=1 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...65535 Timer zdarzenia 0 = brak limitu czasu inny = jeśli ta biblioteka PDO jest włączona i nie zostanie przesłana przez milisekundy timera zdarzeń, transmisja zostanie wymuszona</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

- **58.88 RPDO21 COB-ID**

 Ustaw identyfikator COB-ID biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość **Parametry przemiennika częstotliwości** i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśnież ustawienia).

 Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...7FFh</td>
<td>COB-ID.</td>
<td>0 = RPDO wyłączone, 1 = użyj identyfikatora COB-ID z predefiniowanego zestawu połączeń CiA 301, <inna wartość> = użyj wybranego identyfikatora COB-ID.</td>
<td>1=1</td>
<td></td>
</tr>
</tbody>
</table>

- **58.89 Typ transmisji RPDO21**

 Ustaw typ transmisji biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość **Parametry przemiennika częstotliwości** i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśnież ustawienia).

 Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...255</td>
<td>Typ transmisji.</td>
<td>0 = synchroniczne cyklicznie 1...240 = synchroniczne cyklicznie 252 = tylko synchroniczny element RTR 253 = tylko asynchroniczny element RTR 254...255 = asynchroniczny</td>
<td>1=1</td>
<td></td>
</tr>
</tbody>
</table>

- **58.90 Timer zdarzeń RPDO21**

 Ustaw timer zdarzenia biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość **Parametry przemiennika częstotliwości** i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśnież ustawienia).

 Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...65535</td>
<td>Definiuje wartość limitu czasu biblioteki PDO.</td>
<td>0 = brak limitu czasu inny = jeśli ta biblioteka PDO jest włączona i nie zostanie odebrana przez milisekundy timera zdarzeń, wykonywana jest operacja 58.14 Czas utraty komunikacji. Uwaga: Nadzór limitu czasu jest aktywowany po pomyślnym odebraniu elementu RPDO.</td>
<td>0</td>
<td>1=1 ms</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>58.91</td>
<td>RPDO21 COB-ID</td>
<td>Ustaw identyfikator COB-ID biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty. 0...7FFh</td>
<td>1=1</td>
<td></td>
</tr>
<tr>
<td>58.92</td>
<td>Typ transmisji TPDO21</td>
<td>Ustaw typ transmisji biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty. 0...255</td>
<td>1=1</td>
<td></td>
</tr>
<tr>
<td>58.93</td>
<td>Timer zdarzeń TPDO21</td>
<td>Ustaw timer zdarzenia biblioteki PDO. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia). Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty. 0...65535</td>
<td>1=1 ms</td>
<td></td>
</tr>
</tbody>
</table>
Dane I/O 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
</table>

TPDO1: słowo 1

Wybiera parametr odwzorowany na słowo 1 elementu TPDO1. Zmiany w tym parametrze zaczynają obowiązywać tylko wtedy, gdy parametr 58.23 Lokalizacja konfiguracji ma wartość Parametry przemiennika częstotliwości i będzie miało miejsce ponowne uruchomienie jednostki sterującej lub gdy poprawność nowych ustawień zostanie sprawdzona za pomocą parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brak</td>
<td>Słowo sterowania 1 16-bitowe</td>
<td>ABB Drives, CiA402 i 16-bitowe profile transparentne: 16-bitowe słowo sterowania; Profil DCU: dolne 16 bitów słowa sterowania DCU</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1 16-bitowa</td>
<td>Wartość zadana 1 (16 bity)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 2 16-bitowa</td>
<td>Wartość zadana 2 (16 bity)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Słowo stanu 16-bitowe</td>
<td>Profil ABB Drives: 16-bitowe słowo stanu przemiennika częstotliwości ABB; Profil DCU: dolne 16 bitów słowa stanu DCU</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 1 16-bitowa</td>
<td>Wartość aktualna 1 (16 bity)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 2 16-bitowa</td>
<td>Wartość aktualna 2 (16 bity)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania 32-bitowe</td>
<td>Słowo sterowania (32 bity)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 1 32-bitowa</td>
<td>Wartość zadana 1 (32 bity)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana 2 32-bitowa</td>
<td>Wartość zadana 2 (32 bity)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Słowo stanu 32-bitowe</td>
<td>Słowo stanu (32 bity)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 1 32-bitowa</td>
<td>Wartość aktualna 1 (32 bity)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Wartość aktualna 2 32-bitowa</td>
<td>Wartość aktualna 2 (32 bity)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania 2 16-bitowe</td>
<td>Profil ABB Drives, CANopen: nieużywany; Profil DCU: górn 16 bitów słowa sterowania DCU</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Słowo stanu 2 16-bitowe</td>
<td>CANopen: Kod błędu Profil ABB Drives: nieużywany / zawsze zero; Profil DCU: górn 16 bitów słowa stanu DCU.</td>
<td>24</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Słowo sterowania RO/DIO</td>
<td>CANopen: nieużywany. Parametr 10.99 Słowo sterowania RO/DIO.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Magazyn danych AO1</td>
<td>CANopen: nieużywany. Parametr 13.91 Magazyn danych AO1.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Magazyn danych sprzężenia zwrotnego</td>
<td>CANopen: nieużywany. Parametr 40.91 Magazyn danych sprzężenia zwrotnego.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Magazyn danych nastawy</td>
<td>CANopen: nieużywany. Parametr 40.92 Magazyn danych nastawy</td>
<td>41</td>
</tr>
<tr>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

58.102 Dane I/O 2
Definiuje adres w przemienniku częstotliwości, do którego uzyskuje dostęp urządzenie nadrzędne na magistrali Modbus podczas odczytu lub zapisu pod adresem rejestru 400002. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.

TPDO1: słowo 2
Wybiera parametr odwzorowany na słowo 2 elementu TPDO1. Dostępne opcje zawiera opis parametru 58.101 TPDO1: słowo 1.
Wartość domyślna 16-bitowa

58.103 Dane I/O 3
Definiuje adres w przemienniku częstotliwości, do którego uzyskuje dostęp urządzenie nadrzędne na magistrali Modbus podczas odczytu lub zapisu pod adresem rejestru 400003. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.

TPDO1: słowo 3
Wybiera parametr odwzorowany na słowo 3 elementu TPDO1. Dostępne opcje zawiera opis parametru 58.101 TPDO1: słowo 1.
Wartość domyślna 16-bitowa

58.104 Dane I/O 4
Definiuje adres w przemienniku częstotliwości, do którego uzyskuje dostęp urządzenie nadrzędne na magistrali Modbus podczas odczytu lub zapisu pod adresem rejestru 400004. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.

TPDO1: słowo 4
Wybiera parametr odwzorowany na słowo 4 elementu TPDO1. Dostępne opcje zawiera opis parametru 58.101 TPDO1: słowo 1.
Słowo stanu 16-bitowe

58.105 Dane I/O 5
Definiuje adres w przemienniku częstotliwości, do którego uzyskuje dostęp urządzenie nadrzędne na magistrali Modbus podczas odczytu lub zapisu pod adresem rejestru 400005. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.

RPDO1: słowo 1
Wybiera parametr odwzorowany na słowo 1 elementu RPDO1. Dostępne opcje zawiera opis parametru 58.101 RPDO1: słowo 1.
Słowo sterowania 16-bitowe

58.106 Dane I/O 6
Definiuje adres w przemienniku częstotliwości, do którego uzyskuje dostęp urządzenie nadrzędne na magistrali Modbus podczas odczytu lub zapisu pod adresem rejestru 400006. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.

RPDO1: słowo 2
Wybiera parametr odwzorowany na słowo 2 elementu RPDO1. Dostępne opcje zawiera opis parametru 58.101 RPDO1: słowo 1.
Wartość domyślna 16-bitowa
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna/FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.107</td>
<td>Dane I/O 7</td>
<td>Selektor parametru dla adresu rejestru Modbus 400007. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.108</td>
<td>Dane I/O 8</td>
<td>Selektor parametru dla adresu rejestru Modbus 400008. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>RPDO1: słowo 4</td>
<td>Wybiera parametr odwzorowany na słowo 4 elementu RPDO1. Dostępne opcje zawiera opis parametru 58.101 TPDO1: słowo 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.109</td>
<td>Dane I/O 9</td>
<td>Selektor parametru dla adresu rejestru Modbus 400009. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.110</td>
<td>Dane I/O 10</td>
<td>Selektor parametru dla adresu rejestru Modbus 400010. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.111</td>
<td>Dane I/O 11</td>
<td>Selektor parametru dla adresu rejestru Modbus 400011. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.112</td>
<td>Dane I/O 12</td>
<td>Selektor parametru dla adresu rejestru Modbus 400012. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.113</td>
<td>Dane I/O 13</td>
<td>Selektor parametru dla adresu rejestru Modbus 400013. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>RPDO6: słowo 1</td>
<td>Wybiera parametr odwzorowany na słowo 1 elementu RPDO6. Dostępne opcje zawiera opis parametru 58.101 TPDO1: słowo 1.</td>
<td>Brak</td>
</tr>
<tr>
<td>58.114</td>
<td>Dane I/O 14</td>
<td>Selektor parametru dla adresu rejestru Modbus 400014. Dostępne opcje zawiera opis parametru 58.101 Dane I/O 1.</td>
<td>Brak</td>
</tr>
</tbody>
</table>

Uwaga: Jeżeli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.</td>
<td></td>
</tr>
</tbody>
</table>
Parametry 349

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
</table>

Uwaga: Jeśli parametr 58.01 to [1] Modbus RTU, ten parametr jest ukryty.

71 Zewnętrzny regulator PID1

Konfiguracja zewnętrznego PID.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.01</td>
<td>Aktualna wart. zewn. PID</td>
<td>Patrz parametr 40.01 PID procesu: akt.wart. wyj.</td>
<td>-</td>
</tr>
<tr>
<td>71.02</td>
<td>Akt. wart. sprzężenia zwr.</td>
<td>Patrz parametr 40.02 PID procesu: akt.wart.sprz.zw.</td>
<td>-</td>
</tr>
<tr>
<td>71.03</td>
<td>Aktualna wart. nastawy</td>
<td>Patrz parametr 40.03 PID procesu: akt.wart.nastawy.</td>
<td>-</td>
</tr>
<tr>
<td>71.04</td>
<td>Aktualna wart. uchybu</td>
<td>Patrz parametr 40.04 PID procesu: akt.wart.odchyl.</td>
<td>-</td>
</tr>
<tr>
<td>71.06</td>
<td>Słowo stanu PID</td>
<td>Wyświetla informacje o stanie regulacji zewnętrznego PID dla procesu.</td>
<td>Ten parametr jest tylko do odczytu.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PID aktywny</td>
<td>1 = Regulacja PID dla procesu aktywna.</td>
</tr>
<tr>
<td>1</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wyjście zablokowane</td>
<td>1 = Wyjście regulatora PID procesu zablokowane. Bit jest ustawiony, jeśli parametr 71.38 Aktywacja zamrożenia wyj. ma wartość PRAWDA lub aktywna jest funkcja strefy nieczułości (bit 9 jest ustawiony).</td>
</tr>
<tr>
<td>3…6</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wyjście: górny limit</td>
<td>1 = Wyjście PID jest ograniczone przez parametr 40.37.</td>
</tr>
<tr>
<td>8</td>
<td>Wyjście: dolny limit</td>
<td>1 = Wyjście PID jest ograniczone przez parametr 40.36.</td>
</tr>
<tr>
<td>9</td>
<td>Strefa nieczułości aktywna</td>
<td>1 = Strefa nieczułości jest aktywna.</td>
</tr>
<tr>
<td>10…11</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Aktywna nastawa wewnętrzna</td>
<td>1 = Aktywna nastawa wewnętrzna (patrz par. 40.16…40.16)</td>
</tr>
<tr>
<td>13…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Słowo stanu regulacji PID dla procesu. 1 = 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.07</td>
<td>Tryb pracy regulatora PID</td>
<td>Patrz parametr 40.07 Tryb pracy PID.</td>
<td>Wył.</td>
</tr>
<tr>
<td>71.08</td>
<td>Źródło sprzężenia zwr. 1</td>
<td>Patrz parametr 40.08 Zest. 1: źródło sprz. zwrot. 1.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>71.11</td>
<td>Czas filtru sprzężenia zwr.</td>
<td>Patrz parametr 40.11 Zest. 1: czas filtru sprz. zwrot.</td>
<td>0,000 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>71.14</td>
<td>Skalowanie nastawy</td>
<td>Definiuje (razem z parametrem 71.15 Skalowanie wyjścia) ogólny współczynnik skalowania dla zewnętrznego łańcucha regulacji PID. Skalowanie można wykorzystać, gdy na przykładow nastawa procesu jest wejściem w Hz, a wyjście regulatora PID jest używane jako wartość obr./min w sterowaniu prędkością. W takim przypadku parametr może być ustawiony na 50, a parametr 71.15 na prędkość znamionową silnika przy 50 Hz. W rezultacie otrzymywane jest wyjście regulatora PID [71.15], gdy odchylenie (nastawa - sprzężenie zwrotne) = [71.14] i [71.32] = 1. Uwaga: Skalowanie opiera się na współczynniku stosunku pomiędzy parametrami 71.14 i 71.15. Na przykład wartości 50 i 1500 powodują takie samo skalowanie co 1 i 3.</td>
<td>1500,00</td>
</tr>
</tbody>
</table>

71.15	Skalowanie wyjścia	Patrz parametr 71.14 Skalowanie nastawy.	1500,00
71.16	Źródło nastawy 1	Patrz parametr 40.16 Zest. 1: źródło nastawy 1.	1 = 1
71.19	Wybór 1 wewn. nastawy	Patrz parametr 40.19 Zest. 1: wybór wewn. nast. 1.	Nie wybrano
71.20	Wybór 2 wewn. nastawy	Patrz parametr 40.20 Zest. 1: wybór wewn. nast. 2.	Nie wybrano
71.21	Wewnętrzna nastawa 1	Patrz parametr 40.21 Zest. 1: wewn. nastawa 1.	0,00 jednostek klienta PID
71.22	Wewnętrzna nastawa 2	Patrz parametr 40.22 Zest. 1: wewn. nastawa 2.	0,00 jednostek klienta PID
71.23	Wewnętrzna nastawa 3	Patrz parametr 40.23 Zest. 1: wewn. nastawa 3.	0,00 jednostek klienta PID
71.26	Min. nastawy	Patrz parametr 40.26 Zest. 1: min. nastawy.	0,00
71.27	Maks. nastawy	Patrz parametr 40.27 Zest. 1: maks. nastawy.	32767,00
71.31	Odwrócenie uchybu regul.	Patrz parametr 40.31 Zest. 1: odwr. różniczk..	Bez odwrócenia (W zad - sp zwr)
71.32	Wzmocnienie	Patrz parametr 40.32 Zest. 1: wzmocnienie.	1,00
71.33	Czas całkowania	Patrz parametr 40.33 Zest. 1: czas całkowania.	60,0 s
71.34	Czas różniczkowania	Patrz parametr 40.34 Zest. 1: czas różniczk..	0,000 s
71.35	Czas filtru różniczkowania	Patrz parametr 40.35 Zest. 1: czas filtru różniczk..	0,0 s
71.36	Min. wyjście	Patrz parametr 40.36 Zest. 1: min. wyjście.	-32768,0
71.37	Maks. wyjście	Patrz parametr 40.37 Zest. 1: maks. wyjście.	32767,0
71.38	Aktywacja zamrożenia wyj.	Patrz parametr 40.38 Zest. 1: blokow. wyjścia wł.	Nie wybrano

 NR-32768,00… 32767,00 Podstawa nastawy procesu. 1 = 1

-32768,00… 32767,00 Podstawa wyjścia regulatora PID procesu. 1 = 1

-32768,00… 32767,00 Podstawa nastawy procesu. 1 = 1

-32768,00… 32767,00 Podstawa wyjścia regulatora PID procesu. 1 = 1

Nr Nazwa/wartość

Opis

Wartość domyślna FbEq 16
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.39</td>
<td>Zakres strefy nieczułości</td>
<td>Program sterujący porównuje wartość bezwzględną metarametru 71.04 Aktualna wart. uchybu ze strezą nieczułości zdefiniowaną tym parametrem. Jeśli wartość bez-względna znajduje się w strefie nieczułości dla okresu zdefiniowanego parametrem 71.40 Opóźnienie strefy nieczułości, tryb strefy nieczułości PID jest aktywowany i ustawiany jest bit 9 słowa 71.06 Słowo stanu PID dla parametru Strefa nieczułości aktywna. Następnie blokowane jest wyjście PID i ustawiany jest bit 2 słowa 71.06 Słowo stanu PID dla parametru Wyjście zablokowane. Jeśli wartość bezwzględną jest równa lub większa niż strefa nieczułości, tryb strefy nieczułości jest dezaktywowany.</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>0,0…32767,0</td>
<td>Zakres</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.40</td>
<td>Opóźnienie strefy nieczułości</td>
<td>Definiuje opóźnienie strefy nieczułości dla funkcji strefy nieczułości. Patrz parametr 71.39 Zakres strefy nieczułości.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0…3600,0 s</td>
<td>Opóźnienie</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>71.58</td>
<td>Zwiększ zabezpieczenie</td>
<td>Patrz parametr 40.58 Zest. 1: zwiększ zabezp..</td>
<td>Brak</td>
</tr>
<tr>
<td>71.59</td>
<td>Zmniejsz zabezpieczenie</td>
<td>Patrz parametr 40.59 Zest. 1: zmniejsz zabezp..</td>
<td>Brak</td>
</tr>
<tr>
<td>71.62</td>
<td>Akt. wart. nastawy wewn.</td>
<td>Patrz parametr 40.62 Wewn. akt. wart. nast. PID.</td>
<td>-</td>
</tr>
</tbody>
</table>

76 Funkcje aplikacji

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.01</td>
<td>Stan sterowania krańcowe</td>
<td>Wyświetla stan aparatu stanów sterowania krańcowego.</td>
<td>Niezainicjowany</td>
</tr>
<tr>
<td></td>
<td>Niezainicjowany</td>
<td>Wartość początkowa maszyny stanów.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Prędkość: do tyłu zero, do przodu maksymalna</td>
<td>Prędkość do tyłu jest ograniczona do zero, a prędkość do przodu nie jest ograniczona przez sterowanie zakresem limitów.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Prędkość: do tyłu bezpieczna, do przodu maksymalna</td>
<td>Prędkość do tyłu jest ograniczona do prędkości bezpiecznej, a prędkość do przodu nie jest ograniczona przez sterowanie zakresem limitów.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Prędkość: do tyłu maksymalna, do przodu maksymalna</td>
<td>Prędkość do tyłu jest ograniczona do prędkości bezpiecznej i prędkość do przodu jest ograniczona przez sterowanie zakresem limitów.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prędkość: do tyłu maksymalna, do przodu bezpieczna</td>
<td>Prędkość do tyłu jest ograniczona do prędkości bezpiecznej przez sterowanie zakresem limitów.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Do tyłu bezp., do przodu zero</td>
<td>Prędkość do tyłu jest ograniczona do prędkości bezpiecznej przez sterowanie zakresem limitów.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Do przodu zero</td>
<td>Prędkość do tyłu jest ograniczona do prędkości bezpiecznej przez sterowanie zakresem limitów.</td>
<td>6</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Do tyłu zero, Do przodu bezp</td>
<td>Prędkość do tyłu jest ograniczona do zera, a prędkość do przodu jest ograniczona do prędkości bezpiecznej przez sterowanie krańcowe.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Do tyłu bezp, Do przodu bezp</td>
<td>Prędkość do tyłu i do przodu jest ograniczona do prędkości bezpiecznej przez sterowanie krańcowe.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Do tyłu zero, Do przodu zero</td>
<td>Prędkość do tyłu i do przodu jest ograniczona do zera przez sterowanie krańcowe.</td>
<td>9</td>
</tr>
<tr>
<td>0...9</td>
<td></td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.02</td>
<td>Włącz sterow. krań.</td>
<td>Włącza sterowanie krańcowe lub wybiera źródła funkcji sterowania krańcowego. Więcej informacji na temat tej funkcji zawiera sekcja Sterowanie z wykorzystaniem wyłączników krańcowych na stronie 97.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Funkcja sterowania krańcowego została wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>Funkcja sterowania krańcowego została włączona.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście/cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście/cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście/cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście/cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście/cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście/cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01. Stan funkcji czasowych</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01. Stan funkcji czasowych</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01. Stan funkcji czasowych</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01. Stan nadzoru</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01. Stan nadzoru</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01. Stan nadzoru</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01. Stan nadzoru</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01. Stan nadzoru</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01. Stan nadzoru</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
<tr>
<td>76.03</td>
<td>Tryb sterowania krań.</td>
<td>Wybór typu wyzwolenia sterowania krańcowego.</td>
<td>Zbocze rosnące</td>
</tr>
<tr>
<td></td>
<td>Zbocze rosnące</td>
<td>Limity bezpieczeństwa i zatrzymywania są obsługiwane jako impulsy. Aparat stanów krańcowych zmienia stan na podstawie rosnących zbocz.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Zbocze opadające</td>
<td>Limity bezpieczeństwa i zatrzymywania są obsługiwane jako impulsy. Aparat stanów krańcowych zmienia stan na podstawie opadających zbocz.</td>
<td>1</td>
</tr>
</tbody>
</table>
Parametry 353

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wysoki poziom</td>
<td>Limity bezpieczeństwa i zatrzymywania są obsługiwane jako sygnały statyczne. Aparat stanów krańcowych zmienia stan na podstawie wysokiego poziomu sygnału.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Niski poziom</td>
<td>Limity bezpieczeństwa i zatrzymywania są obsługiwane jako sygnały statyczne. Aparat stanów krańcowych zmienia stan na podstawie niskiego poziomu sygnału.</td>
<td>3</td>
</tr>
<tr>
<td>76.04</td>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>Nie wybrano</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.04</td>
<td>Limit zatrzymania do przodu</td>
<td>Wybiera źródło do aktywacji funkcji limitu zatrzymania w ruchu do przodu. Po włączeniu polecenia ograniczenia górnego zatrzymującego funkcja aktywuje polecenie zatrzymania w kierunku do przodu, a przemiennik częstotliwości zatrzyma się zgodnie z trybem zatrzymania zdefiniowanym w parametrze 76.12. Więcej informacji na temat tej funkcji zawiera sekcja Funkcja limitu zatrzymania dźwigu na stronie 596.</td>
<td>Nie wybrano</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1</td>
<td>Wejście cyfrowe DI1</td>
<td>(10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2</td>
<td>(10.02 Stan DI po opóźnieniach, bit 1).</td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3</td>
<td>(10.02 Stan DI po opóźnieniach, bit 2).</td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4</td>
<td>(10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1</td>
<td>(11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2</td>
<td>(11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>11</td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01. Stan funkcji czasowych</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01. Stan funkcji czasowych</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01. Stan funkcji czasowych</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01. Stan nadzoru</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01. Stan nadzoru</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01. Stan nadzoru</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01. Stan nadzoru</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01. Stan nadzoru</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01. Stan nadzoru</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>76.05</td>
<td>Limit zwalniania do przodu</td>
<td>Wybiera źródło do aktywacji funkcji zwalniania do przodu. Gdy polecenie jest aktywne, przemiennik ogranicza wartość zadaną prędkości do wartość parametru 76.08 Prędkość zwalniania. Częstotliwość zwalniania jest odczytywana z parametru 76.09 Częstotliwość zwalniania. Więcej informacji na temat tej funkcji zawiera sekcja Funkcja zwalniania dźwigu na stronie 598.</td>
<td>Nie wybrano</td>
</tr>
</tbody>
</table>

Nie wybrano
- Wyłącza funkcję zwalniania, jeśli tryb sterowania krańcowego (76.03) to Zbocze lub Poziom wysoki. Włącza tę funkcję, jeśli trybem sterowania jest Poziom lub Poziom niski.

Wybrano
- Włącza funkcję zwalniania, jeśli tryb sterowania krańcowego (76.03) to Zbocze lub Poziom wysoki. Wyłącza tę funkcję, jeśli trybem sterowania jest Poziom lub Poziom niski.

<table>
<thead>
<tr>
<th>DI1</th>
<th>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI2</td>
<td>Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1)</td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2)</td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3)</td>
<td>5</td>
</tr>
<tr>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0)</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)</td>
<td>11</td>
</tr>
<tr>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01. Stan funkcji czasowych</td>
<td>18</td>
</tr>
<tr>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru 34.01. Stan funkcji czasowych</td>
<td>19</td>
</tr>
<tr>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru 34.01. Stan funkcji czasowych</td>
<td>20</td>
</tr>
<tr>
<td>Nadzór 1</td>
<td>Bit 0 parametru 32.01. Stan nadzoru</td>
<td>24</td>
</tr>
<tr>
<td>Nadzór 2</td>
<td>Bit 1 parametru 32.01. Stan nadzoru</td>
<td>25</td>
</tr>
<tr>
<td>Nadzór 3</td>
<td>Bit 2 parametru 32.01. Stan nadzoru</td>
<td>26</td>
</tr>
<tr>
<td>Nadzór 4</td>
<td>Bit 3 parametru 32.01. Stan nadzoru</td>
<td>27</td>
</tr>
<tr>
<td>Nadzór 5</td>
<td>Bit 4 parametru 32.01. Stan nadzoru</td>
<td>28</td>
</tr>
<tr>
<td>Nadzór 6</td>
<td>Bit 5 parametru 32.01. Stan nadzoru</td>
<td>29</td>
</tr>
<tr>
<td>Inny [bit]</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td>-</td>
</tr>
</tbody>
</table>

76.06 **Limit zatrzymania do tyłu**
- Wybiera źródło do aktywacji funkcji limitu zatrzymania w ruchu do tyłu. Gdy polecenie jest włączone, funkcja aktywuje polecenie zatrzymania w kierunku do tyłu, a przemiennik częstotliwości zatrzyma się zgodnie z trybem zatrzymania zdefiniowanym w parametrze 76.12. Więcej informacji na temat tej funkcji zawiera sekcja *Funkcja limitu zatrzymania dźwigu* na stronie 596.

Nie wybrano
- Dostępne opcje zawiera opis parametru 76.04 *Limit zatrzymania do przodu*. |
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.07</td>
<td>Limit zwalniania do tyłu</td>
<td>Wybiera źródło do aktywacji funkcji zwalniania do tyłu. Gdy polecenie jest aktywne, przemiennik ogranicza wartość zadaną prędkości do wartość parametru 76.08 Prędkość zwalniania. Częstotliwość zwalniania jest odczytywana z parametru 76.09 Częstotliwość zwalniania. Więcej informacji na temat tej funkcji zawiera sekcja Funkcja zwalniania dźwigu na stronie 598.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>76.08</td>
<td>Prędkość zwalniania</td>
<td>Definiuje prędkość zwalniania.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00…30000,00 obr./min</td>
<td>Prędkość zwalniania</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.09</td>
<td>Częstotliwość zwalniania</td>
<td>Definiuje częstotliwość zwalniania.</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00…500,00 Hz</td>
<td>Częstotliwość zwalniania</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.11</td>
<td>Tryb zatrzymania limitu</td>
<td>Wybiera tryb zatrzymania według rampy po aktywacji polecenia limitu zatrzymania.</td>
<td>Tryb normalnego zatrzymania</td>
</tr>
<tr>
<td></td>
<td>Tryb normalnego zatrzymania</td>
<td>Silnik realizuje ten sam tryb zatrzymania co tryb ustawiony w parametrze 21.03 Tryb zatrzymania.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tryb zatrzym. wg limitu rampy</td>
<td>Silnik realizuje tryb zatrzymania według rampy. Czas rampy jest definiowany w parametrze 76.12 Czas rampy zatrzymania limitu.</td>
<td>1</td>
</tr>
<tr>
<td>76.12</td>
<td>Czas rampy zatrzymania limitu</td>
<td>Określa czas, w którym przemiennik częstotliwości zostać zatrzymany, jeśli parametr 76.11 ma wartość Tryb zatrzym. wg limitu rampy. Jest to czas wymagany, aby prędkość zmieniła wartość od prędkości określonej za pomocą parametru 46.01 Skalowanie prędkości lub 46.02 Skalowanie częstotliwości do zera.</td>
<td>3,000 s</td>
</tr>
<tr>
<td></td>
<td>0,000…3000,000 s</td>
<td></td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>76.31</td>
<td>Dopasowanie prędk. silnika</td>
<td>Włącza funkcję dopasowania prędkości lub wybiera źródło dla sygnału włączenia/wyłączenia.</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td></td>
<td>Nie wybrano</td>
<td>Funkcja dopasowywania prędkości silnika jest wyłączona.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wybrano</td>
<td>Funkcja dopasowywania prędkości silnika jest włączona.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Funkcja czasowa 1</td>
<td>Bit 0 parametru 34.01. Stan funkcji czasowych</td>
<td>18</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>34.01</td>
<td>Funkcja czasowa 2</td>
<td>Bit 1 parametru [34.01. Stan funkcji czasowych]</td>
<td>19</td>
</tr>
<tr>
<td>34.01</td>
<td>Funkcja czasowa 3</td>
<td>Bit 2 parametru [34.01. Stan funkcji czasowych]</td>
<td>20</td>
</tr>
<tr>
<td>32.01</td>
<td>Nadzór 1</td>
<td>Bit 0 parametru [32.01. Stan nadzoru]</td>
<td>24</td>
</tr>
<tr>
<td>32.01</td>
<td>Nadzór 2</td>
<td>Bit 1 parametru [32.01. Stan nadzoru]</td>
<td>25</td>
</tr>
<tr>
<td>32.01</td>
<td>Nadzór 3</td>
<td>Bit 2 parametru [32.01. Stan nadzoru]</td>
<td>26</td>
</tr>
<tr>
<td>32.01</td>
<td>Nadzór 4</td>
<td>Bit 3 parametru [32.01. Stan nadzoru]</td>
<td>27</td>
</tr>
<tr>
<td>32.01</td>
<td>Nadzór 5</td>
<td>Bit 4 parametru [32.01. Stan nadzoru]</td>
<td>28</td>
</tr>
<tr>
<td>32.01</td>
<td>Nadzór 6</td>
<td>Bit 5 parametru [32.01. Stan nadzoru]</td>
<td>29</td>
</tr>
<tr>
<td>76.32</td>
<td>Inny</td>
<td>Wybór źródła (patrz Wyrażenia i skróty).</td>
<td></td>
</tr>
<tr>
<td>34.01</td>
<td>Poziom odchylenia stałej prędkości silnika</td>
<td>Definiuje dopuszczalny poziom odchylenia prędkości silnika (jako wartość bezwzględną) przy pracy w stanie ustalonym (silnik uruchomiony i pracujący).</td>
<td>30,00</td>
</tr>
<tr>
<td>34.01</td>
<td>Poziom odchylenia rampy prędkości silnika</td>
<td>Definiuje dopuszczalny poziom odchylenia prędkości silnika (jako wartość bezwzględną) przy pracy według rampy (przyspieszanie/zwalnianie; silnik uruchomiony i pracujący).</td>
<td>70,00</td>
</tr>
<tr>
<td>34.01</td>
<td>Opóźn. błędu dopas. prędk.</td>
<td>Definiuje opóźnienie przed wygenerowaniem błędu D105 Dopasow. prędkości i ostrzeżenia D200 Poślizg ham. w tr. Statyczny 2.</td>
<td>1000 ms</td>
</tr>
<tr>
<td>90</td>
<td>Wybór sprzężenia zwrotnego</td>
<td>Konfiguracja sprzężenia zwrotnego od silnika i obciążenia. Patrz też sekcje Kontrola nagłego przyspieszenia (str. 70) i Bieg próbný (str. 70).</td>
<td></td>
</tr>
<tr>
<td>90.01</td>
<td>Prędkość silnika do ster.</td>
<td>Wyświetla szacowaną i zmierzoną prędkość silnika, która jest używana do sterowania silnikiem, tzn. końcowe sprzężenie zwrotne od prędkości silnika wybrane za pomocą parametru 90.41 Wybór sprz. zwr. od silnika i filtrowane przy użyciu parametru 90.42 Czas filtru prędk. silnika. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>90.01</td>
<td>Prędkość silnika do ster.</td>
<td>Wyświetla szacowaną i zmierzoną prędkość silnika, która jest używana do sterowania silnikiem, tzn. końcowe sprzężenie zwrotne od prędkości silnika wybrane za pomocą parametru 90.41 Wybór sprz. zwr. od silnika i filtrowane przy użyciu parametru 90.42 Czas filtru prędk. silnika. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>90.02</td>
<td>Pozycja silnika</td>
<td>Wyświetla pozycję silnika otrzymaną ze źródła określonego parametrem 90.41 Wybór sprz. zwr. od silnika. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>90.02</td>
<td>Pozycja silnika</td>
<td>Wyświetla pozycję silnika otrzymaną ze źródła określonego parametrem 90.41 Wybór sprz. zwr. od silnika. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>90.02</td>
<td>Pozycja silnika</td>
<td>Wyświetla pozycję silnika otrzymaną ze źródła określonego parametrem 90.41 Wybór sprz. zwr. od silnika. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>90.10</td>
<td>Prędkość enkodera 1</td>
<td>Wyświetla prędkość enkodera 1 w obr./min. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768,00…32767,00 obr./min</td>
<td>Prędkość enkodera 1.</td>
<td>Patrz parametr 46.01</td>
</tr>
<tr>
<td>90.11</td>
<td>Pozycja enkodera 1</td>
<td>Wyświetla aktualną pozycję enkodera 1 z dokładnością do jednego obrotu. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,00000000…1,00000000 obr.</td>
<td>Pozycja enkodera 1 z dokładnością do jednego obrotu. 32767 = 1 obr.</td>
<td>-</td>
</tr>
<tr>
<td>90.13</td>
<td>Enkoder 1: rozszerz. obr.</td>
<td>Wyświetla rozszerzenie licznika obrotów dla enkodera 1. W przypadku enkodera jednobrotnego licznik jest zwiększany, gdy pozycja enkodera (parametr 90.11) zmienia się w kierunku dodatnim, i zmniejszany, gdy zmienia się w kierunku ujemnym. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-2147483648…2147483647</td>
<td>Rozszerzenie licznika obrotów enkodera 1.</td>
<td>-</td>
</tr>
<tr>
<td>90.41</td>
<td>Wybór sprz. zwr. od silnika</td>
<td>Wybiera wartość sprzężenia zwrotnego od prędkości silnika używaną w sterowaniu silnikowym. Oszacowanie</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Użyte zostanie obliczone oszacowanie prędkości wygenerowane ze sterowania wektorowego.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enkoder 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aktualna prędkość zmierzona przez enkodera 1. Enkoder jest konfigurowany w parametrach w grupie 92 Konfiguracja enkodera 1.</td>
<td>-</td>
</tr>
<tr>
<td>90.42</td>
<td>Czas filtru prędk. silnika</td>
<td>Definiuje czas filtru dla sprzężenia zwrotnego od prędkości silnika używany do sterowania (90.01 Prędkość silnika do ster.).</td>
<td>3 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Czas filtru prędkości silnika.</td>
<td>1=1</td>
</tr>
<tr>
<td>90.45</td>
<td>Błąd sprz. zwr. od silnika</td>
<td>Wybiera sposób, w jaki przemiennik częstotliwości reaguje na utratę zmierzonego sprzężenia zwrotnego od silnika. Błąd</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu błędu 7301 Sprzężenie zwrotne od prędkości silnika lub 7381 Enkoder.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ostrzeżenie</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Przemiennik częstotliwości generuje ostrzeżenie A7B0 Sprzężenie zwrotne od pr. silnika lub A7E1 Enkoder i kontynuuje działanie przy użyciu szacowanych sprzężeń zwrotnych. Uwaga: Przed użyciem tego ustawienia należy przetestować stabilność pętli sterowania prędkością z szacowanym sprzężeniem zwrotnym, uruchamiając przemiennik częstotliwości przy użyciu szacowanego sprzężenia zwrotnego (patrz 90.41 Wybór sprz. zwr. od silnika).</td>
<td>-</td>
</tr>
<tr>
<td>90.46</td>
<td>Wymuś pętlę otwartą</td>
<td>Definiuje sprzężenie zwrotne od prędkości używane przez wektorowy model silnika. Brak</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Model silnika używa sprzężenia zwrotnego wybranego parametrem 90.41 Wybór sprz. zwr. od silnika.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Model silnika używa wartości szacunkowej obliczonej prędkości (bez względu na ustawienie 90.41 Wybór sprz. zwr. od silnika, które w tym przypadku wybiera tylko źródło sprzężenia zwrotnego dla kontrolera prędkości).</td>
<td>1</td>
</tr>
</tbody>
</table>
90 Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.47</td>
<td>Wł. wykr. dryfu enkod. silnika</td>
<td>Włącza/wyłącza wykrywanie dryfu enkodera silnika. Gdy dryf zostanie wykryty, zostanie ustawiony błąd 7301 Sprzeżenie zwrotnie od prędkości silnika i kod AUX 4: Wykryto dryf.</td>
<td>Brak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brak</td>
<td>Wykrywanie dryfu jest wyłączone.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tak</td>
<td>Wykrywanie dryfu jest włączone.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

91 Ustawienia adaptera enkodera

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.10</td>
<td>Odśwież. param. enkodera</td>
<td>Sprawdza zmienione parametry modułu interfejsu enkodera. Jest to wymagane do zastosowania zmian w parametrach z grup 90...93. Po odświeżeniu zostaje automatycznie przywrócona wartość Gotowe. Uwaga: Parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>Gotowe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Odświeżanie zostało zakończone.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odśwież</td>
<td>Trwa odświeżanie.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

92 Konfiguracja enkodera 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.10</td>
<td>Impulsy/obr.</td>
<td>(Widoczne, gdy wybrano enkoder TTL, TTL + HTL lub HTL) Definiuje liczbę impulsów na obrót.</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...65535</td>
<td>Liczba impulsów.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

95 Konfiguracja HW

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatycznie / nie wybrano</td>
<td>nie wybrano zakresu napięcia. Przemiennik częstotliwości nie rozpocznie modulacji przed wyborem zakresu, chyba że parametr 95.02 Adaptacyjne limity napięcia ma wartość Wyłącz. W takiej sytuacji przemiennik częstotliwości samodzielnie szacuje napięcie zasilania.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200…240 V</td>
<td>200…240 V, dostępne dla przemienników częstotliwości ACS380-04-xxxx-1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

359

380…480 V 380…480 V, dostępowe dla przemienników częstotliwości
ACS380-04-xxxx-4

95.02 Adaptacyjne limity napięcia
Aktywuje limity napięcia adaptacyjnego. Limity napięcia adaptacyjnego mogą być używane na przykład jeśli moduł zasilający IGBT jest używany do podniesienia poziomu napięcia DC. Jeśli komunikacja pomiędzy inwerterem i modułem zasilającym IGBT jest aktywna, limity napięcia są powiązane z wartością zadaną napięcia DC z modułem zasilającym IGBT. W przeciwnym razie limity są obliczane na podstawie zmierzonego napięcia DC na koniec sekwencji wstępnego ładowania.
Ta funkcja jest również przydatna, jeśli napięcie zasilania AC jest wysokie, ponieważ poziomy ostrzeżenia są odpowiednio zwiększane.

Włącz
Wyłączone limity napięcia adaptacyjnego. 0

Wyłączenie limity napięcia adaptacyjnego. 1

95.03 Szac. napięcie zasilania AC
Napięcie zasilania AC szacowane za pomocą obliczeń. Oszacowanie jest wykonywane za każdym razem, gdy włączane jest zasilanie przemiennika częstotliwości i opiera się na prędkości wzrostu poziomu napięcia szyny DC, gdy przemiennik częstotliwości zasila szynę DC.

0,0…1000,0 V Napięcie. 10 = 1 V

95.04 Zasilanie karty sterowania
Określa sposób, w jaki zasilana jest karta sterowania przemiennika częstotliwości.

Wewnętrzne 24 V Karta sterowania przemiennika częstotliwości jest zasilana z jednostki zasilającej przemiennika częstotliwości, do której jest podłączona. 0

Zewnętrzne 24 V Karta sterowania przemiennika częstotliwości jest zasilana z zewnętrznego źródła zasilania. 1

95.15 Specjalne ustawienia sprzętu
Zawiera ustawienia dotyczące sprzętu, które można włączać i wyłączać, przełączając określone bity.

Uwaga: Instalacja sprzętu określonego przez ten parametr może wymagać obniżenia wartości znamionowych wyjścia przemiennika częstotliwości lub ustawienia innych ograniczeń. Więcej informacji zawiera podręcznik użytkownika przemiennika częstotliwości.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Zarezerwowane</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Filtr sinusoidalny ABB</td>
<td>1 = Filtr sinusoidalny ABB jest połączony z wyjściem przemiennika częstotliwości/inwertera.</td>
</tr>
<tr>
<td>2...15</td>
<td>Zarezerwowane</td>
<td>-</td>
</tr>
</tbody>
</table>

0…1 Słowo konfiguracji opcji związanych z elementami sprzęgowymi. 1 = 1
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.20</td>
<td>Słowo opcji sprzę托owych 1</td>
<td>Określa opcje związane z elementami sprzętowymi, które wymagają zróżnicowanych wartości domyślnych parametrów. Przywrócenie parametrów nie działa na ten parametr.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Częstotliwość zasilania 60 Hz</td>
<td>Jeśli zostanie zmieniona wartość tego bitu, należy całkowicie zresetować przemiennik częstotliwości po wprowadzeniu zmiany. Po zresetowaniu należy wybrać ponownie używane makro. Patrz sekcja Różnice w wartościach domyślnych pomiędzy ustawieniami częstotliwości zasilania 50 Hz i 60 Hz na str. 382. 0 = 50 Hz. 1 = 60 Hz.</td>
</tr>
<tr>
<td>1…12</td>
<td>Zarezerwowano</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Aktywacja filtru du/dt</td>
<td>Aktywny zewnętrzny filtr du/dt jest połączony z wyjściem przemiennika częstotliwości/falownika. To ustawienie ograniczy częstotliwość kluczowania wyjścia i wymusi pełną prędkość wentylatora modułu przemiennika częstotliwości/falownika. 0 = filtr du/dt nieaktywny. 1 = filtr du/dt aktywny.</td>
</tr>
<tr>
<td>14…15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | Słowo konfiguracji opcji związanych z elementami sprzę托owymi. | 1 = 1 |

| 96 System | Wybór języka, poziomy dostępu, wybór makro, zapisywanie i przywracanie parametrów, ponowne uruchamianie jednostki sterującej, zestawy parametrów użytkownika, wybór jednostki, blokada użytkownika. |

| 96.01 Język | Wybiera język interfejsu parametrów i innych informacji wyświetlanych na panelu sterowania. **Uwagi:**
- Nie wszystkie języki wymienione poniżej muszą być obsługiwane.
- Ten parametr nie wpływa na języki widoczne w programie komputerowym Drive Composer. (Ustawienia te określono w obszarze *Widok – Ustawienia – Domyślny język przemiennika częstotliwości*). |

Nie wybrano	Wybierz język.	0
English	Angielski.	1033
Deutsch	Niemiecki.	1031
Italiano	Włoski.	1040
Español	Hiszpański.	3082
Portugues	Portugalski.	2070
Nederlands	Holenderski.	1043
Français	Francuski.	1036
Suomi	Fiński.	1035
Svenska	Szwedzki.	1053
Russki	Rosyjski.	1049
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polski</td>
<td>Polski.</td>
<td></td>
<td>1045</td>
</tr>
<tr>
<td>Türkçe</td>
<td>Turecki.</td>
<td></td>
<td>1055</td>
</tr>
<tr>
<td>Chinese (Simplified, PRC)</td>
<td>Chiński uproszczony.</td>
<td></td>
<td>2052</td>
</tr>
</tbody>
</table>

96.02 Kod

W tym parametrze można wprowadzić kody dostępu, aby aktywować dalsze poziomy dostępu, na przykład dodatkowe parametry, blokadę parametru itd. Patrz parametr 96.03 Stan poziomu dostępu.

Wprowadzenie wartości „358” przełącza blokadę parametru. Zapobiega to zmianie wszystkich pozostałych parametrów w panelu sterowania lub programie komputerowym Drive Composer.

Wprowadzenie kodu użytkownika (domyślnie „10000000”) włącza parametry 96.100…96.102, których można użyć do zdefiniowania nowego kodu użytkownika i wybrania działań, którym należy zapobiec.

Wprowadzenie nieprawidłowego kodu spowoduje zamknięcie blokady użytkownika, jeśli jest otwarta, tzn. ukryje parametry 96.100…96.102. Po wprowadzeniu kodu należy sprawdzić, czy parametry są faktycznie ukryte.

Uwaga: Zalecamy zainwestowanie w nowy kod użytkownika.

Warto również zapoznać się z sekcją *Blokada użytkownika* (na str. 109).

| 0…99999999 | Kod hasła. | - |

96.03 Stan poziomu dostępu

Wyświetla, które poziomy dostępu zostały aktywowane za pomocą kodów dostępu podanych w parametrze 96.02 Kod.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Użytkownik końcowy</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Serwis</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Użytkownicy zaawansowani</td>
<td></td>
</tr>
<tr>
<td>3…10</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Poziom dostępu OEM 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Poziom dostępu OEM 2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Poziom dostępu OEM 3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Blokada parametru</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
<td></td>
</tr>
</tbody>
</table>

| 000b…111b | Aktywne poziomy dostępu. | - |
96.04 Wybór makra

Wybiera makro sterowania. Więcej informacji można znaleźć w rozdziale *Makra sterowania*. Po dokonaniu wyboru automatycznie przywracana jest wartość parametru *Gotowe*.

Uwaga: Po zmianie domyślnych wartości parametrów makra nowe ustawienia zaczynają od razu obowiązywać i są ważne nawet wtedy, gdy zasilanie przemiennika częstotliwości zostanie wyłączone i włączone. Dostępna jest jednak kopia zapasowa domyślnych ustawień parametrów (ustawienia fabryczne) każdego makra standardowego.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.04</td>
<td>Wybór makra</td>
<td>Wybiera makro sterowania. Więcej informacji można znaleźć w rozdziale Makra sterowania. Po dokonaniu wyboru automatycznie przywracana jest wartość parametru Gotowe. Uwaga: Po zmianie domyślnych wartości parametrów makra nowe ustawienia zaczynają od razu obowiązywać i są ważne nawet wtedy, gdy zasilanie przemiennika częstotliwości zostanie wyłączone i włączone. Dostępna jest jednak kopia zapasowa domyślnych ustawień parametrów (ustawienia fabryczne) każdego makra standardowego.</td>
<td>Gotowe</td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Zakończono wybór makra; normalna obsługa.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABB standard</td>
<td>Makro ABB standard. Do skalarnego sterowania silnikiem.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABB ograniczone, 2-przewodowe</td>
<td>ABB ograniczone, makro 2-przewodowe</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AC500 Modbus RTU</td>
<td>AC500 Modbus RTU</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Profibus</td>
<td>PROFIBUS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Profinet IO</td>
<td>PROFINET IO</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Ethernet IP</td>
<td>Ethernet IP</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Modbus TCP</td>
<td>Modbus TCP</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>EtherCAT</td>
<td>EtherCAT</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Alternatywne</td>
<td>Makro alternatywne</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Potencjometr silnika</td>
<td>Makro Potencjometr silnika</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>Makro regulacji PID</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Wbudowany adapter CANopen</td>
<td>Wbudowany adapter CANopen</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CANopen</td>
<td>CANopen</td>
<td>16</td>
</tr>
<tr>
<td>96.05</td>
<td>Macro aktywne</td>
<td>Wyświetla, które makro sterujące jest obecnie wybrane. Więcej informacji można znaleźć w rozdziale Makra sterowania. Aby zmienić makro, należy użyć parametru 96.04 Wybór makra.</td>
<td>ABB standard</td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Zakończono wybór makra; normalna obsługa.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ABB standard</td>
<td>Makro ABB standard. Do skalarnego sterowania silnikiem.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ABB ograniczone, 2-przewodowe</td>
<td>ABB ograniczone, makro 2-przewodowe</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AC500 Modbus RTU</td>
<td>AC500 Modbus RTU</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Profibus</td>
<td>PROFIBUS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Profinet IO</td>
<td>PROFINET IO</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Ethernet IP</td>
<td>Ethernet IP</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Modbus TCP</td>
<td>Modbus TCP</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>EtherCAT</td>
<td>EtherCAT</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Alternatywne</td>
<td>Makro alternatywne</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Potencjometr silnika</td>
<td>Makro Potencjometr silnika</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>Makro regulacji PID</td>
<td>14</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Wbudowany adapter CANopen</td>
<td>Wbudowany adapter CANopen</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CANopen</td>
<td>CANopen</td>
<td>16</td>
</tr>
<tr>
<td>96.06</td>
<td>Przywrócenie parametrów</td>
<td>Przywraca oryginalne ustawienia programu sterującego, tzn. wartości domyślne parametrów. Uwaga: Tego parametru nie można zmienić, gdy prze- miennik częstotliwości jest uruchomiony.</td>
<td>Gotowe</td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Zakończone przywracanie.</td>
<td>0</td>
</tr>
</tbody>
</table>
| | Przywróć domyślne | Przywracane są wartości domyślne wszystkich edytowalnych wartości parametrów, z wyjątkiem:
| | | • danych silnika oraz wyników bieu identyfikacyjnego;
| | | • ustawień modułu rozszerzeń we/wy;
| | | • tekstów użytkownika, takich jak niestandardowe ostrzeżenia i błędy (błędy zewnętrzne i zmiany) oraz nazwa przemiennika częstotliwości;
| | | • ustawień komunikacji panelu sterowania/komputera;
| | | • ustawień adaptera komunikacyjnego;
| | | • wybranego makra sterowania i implementowanych przez nie wartości domyślnych parametru;
| | | • parametru 95.20 Słowo opcji sprzętówych 1 i implementowanych przez niego zróżnicowanych wartości domyślnych.
| | | • parametrów konfiguracji blokady użytkownika 96.100…96.102. | 8 |
| | Wyczyść wszystko | Przywracane są wartości domyślne wszystkich edytowalnych wartości parametrów, z wyjątkiem:
| | | • tekstów użytkownika, takich jak niestandardowe ostrzeżenia i błędy (błędy zewnętrzne i zmiany) oraz nazwa przemiennika częstotliwości;
| | | • ustawień komunikacji panelu sterowania/komputera;
| | | • ustawień adaptera komunikacyjnego (usuwa wszystkie istniejące ustawienia)
| | | • wybranego makra sterowania i implementowanych przez nie wartości domyślnych parametru;
| | | • parametru 95.20 Słowo opcji sprzętówych 1 i implementowanych przez niego zróżnicowanych wartości domyślnych.
| | | • parametrów konfiguracji blokady użytkownika 96.100…96.102. | 62 |
| | Komunikacja z programem komputerowym jest przerywana podczas przywracania. | | |
| | Resetuj wszystkie ust. mag. kom | Wszystkie ustawienia związane z magistralą komunikacyjną i komunikacją są przywracane do wartości domyślnych.
| | | *Uwaga:* Komunikacja z magistralą komunikacyjną, panelem sterowania i programem komputerowym jest przerywana podczas przywracania. | 32 |
| | Resetuj widok główny | Przywraca domyślne wartości parametrów układu widoku głównego zdefiniowane przez używane makro sterowania. | 512 |
| | Resetuj teksty użytk. końcowego | Przywracane są wartości domyślne wszystkich tekstów użytkownika końcowego, w tym nazwa przemiennika, informacje kontaktowe, dostosowane teksty komunikatów o błędach i ostrzeżeń, jednostka PID oraz jednostka waluty. | 1024 |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resetuj dane silnika</td>
<td>Przywracane są wszystkie domyślnie wartości znamionowe silników i wyniki biegów identyfikacyjnych.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resetuj wszystko do ustawień fabrycznych</td>
<td>Przywracane są początkowe ustawienia fabryczne wszystkich parametrów i ustawień przemiennika oprócz parametru 95.20 Słowo opcji sprzętu: 1 i implementowanych przez niego zróżnicowanych wartości domyślnych.</td>
<td>34560</td>
<td></td>
</tr>
<tr>
<td>96.07</td>
<td>Ręczne zapisanie parametrów</td>
<td>Zapisuje prawidłowe wartości parametrów w pamięci trwałe karty sterownia przemiennika częstotliwości, aby zapewnić możliwość kontynuacji po wyłączaniu i włączeniu zasilania. Należy zapisać parametry za pomocą tego parametru, aby zapisać wartości przesłane z magistrali komunikacyjnej podczas używania zewnętrznego zasilania +24 V DC do jednostki sterującej. Pozwala to zapisać zmiany parametrów przed wyłączeniem jednostki sterującej. Zasilanie ma bardzo krótki czas trzymania po wyłączeniu. Uwaga: Nowa wartość parametru jest automatycznie zapisywana podczas zmiany z programu komputerowego lub panelu sterowania, ale nie podczas zmiany przez połączenie adaptera komunikacyjnego.</td>
<td>Gotowe</td>
<td></td>
</tr>
<tr>
<td>Gotowe</td>
<td>Zakończono zapisywanie.</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zapisz</td>
<td>Zapisywanie w toku.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.08</td>
<td>Restart karty sterowania</td>
<td>Zmiana wartości tego parametru na 1 powoduje ponowne uruchomienie jednostki sterującej (bez potrzeby przeprowadzania cyklu włączania/wyłączania całego modułu przemiennika częstotliwości). Zostaje automatycznie przywrócona wartość 0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Bez działania</td>
<td>1 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ponowne uruchomienie jednostki sterującej.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.10</td>
<td>Zestaw użytk.: stan</td>
<td>Wyświetla stan zestawów parametrów użytkownika. Ten parametr jest tylko do odczytu. Patrz też sekcja Zestawy parametrów użytkownika (strona 108).</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nie dotyczy</td>
<td>Żadne zestawy parametrów użytkownika nie zostały zapisane.</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ładowanie</td>
<td>Zestaw użytkownika jest ładowany.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zapisywanie</td>
<td>Zestaw użytkownika jest zapisywany.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Błąd</td>
<td>Nieprawidłowy lub pusty zestaw parametrów.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktywne we/wy użytkownika1</td>
<td>Zestaw użytkownika 1 został wybrany za pomocą parametrów 96.12 Zest. użytk.: tryb I/O we1 i 96.13 Zest. użytk.: tryb I/O we2.</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktywne we/wy użytkownika2</td>
<td>Zestaw użytkownika 2 został wybrany za pomocą parametrów 96.12 Zest. użytk.: tryb I/O we1 i 96.13 Zest. użytk.: tryb I/O we2.</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktywne we/wy użytkownika3</td>
<td>Zestaw użytkownika 3 został wybrany za pomocą parametrów 96.12 Zest. użytk.: tryb I/O we1 i 96.13 Zest. użytk.: tryb I/O we2.</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aktywne we/wy użytkownika4
Zestaw użytkownika 4 został wybrany za pomocą parametrów 96.12 Zest. użytk.: tryb I/O we1 i 96.13 Zest. użytk.: tryb I/O we2.

Kopia zapasowa użytkownika1
Zestaw użytkownika 1 został zapisany lub załadowany.

Kopia zapasowa użytkownika2
Zestaw użytkownika 2 został zapisany lub załadowany.

Kopia zapasowa użytkownika3
Zestaw użytkownika 3 został zapisany lub załadowany.

Kopia zapasowa użytkownika4
Zestaw użytkownika 4 został zapisany lub załadowany.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.11</td>
<td>Zest. użytk.: zapisz/załadowaj</td>
<td>Umożliwia zapisanie lub przywrócenie do czterech nie-standardowych zestawów ustawień parametrów. Zestaw, który był używany przed wyłączeniem zasilania przemiennika częstotliwości, jest używany po kolejnym włączeniu. Uwagi:
• Niektóre ustawienia konfiguracji sprzętu, takie jak moduł rozszerzeń we/wy, parametry konfiguracji magistrali komunikacyjnej i enkodera (grupy 4…16, 47, 50…58 i 92…93), nie są zawarte w zestawach parametrów użytkownika.
• Zmiany parametrów dokonane po wczytaniu zestawu nie są automatycznie zapisywane — muszą zostać zapisane za pomocą tego parametru.
• Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td>Bez działania</td>
</tr>
<tr>
<td>0</td>
<td>Bez działania</td>
<td>Zakończono operację ładowania lub zapisywania; normalna praca.</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Tryb I/O wybrany przez użytk.</td>
<td>Ładowanie zestawu parametrów użytkownika za pomocą parametrów 96.12 Zest. użytk.: tryb I/O we1 i 96.13 Zest. użytk.: tryb I/O we2.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Ładuj zest1</td>
<td>Ładowanie zestawu parametrów użytkownika 1.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Ładuj zest2</td>
<td>Ładowanie zestawu parametrów użytkownika 2.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Ładuj zest3</td>
<td>Ładowanie zestawu parametrów użytkownika 3.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Ładuj zest4</td>
<td>Ładowanie zestawu parametrów użytkownika 4.</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>Zapisz w zestawie 1</td>
<td>Zapisanie zestawu parametrów użytkownika 1.</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>Zapisz w zestawie 2</td>
<td>Zapisanie zestawu parametrów użytkownika 2.</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>Zapisz w zestawie 3</td>
<td>Zapisanie zestawu parametrów użytkownika 3.</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>Zapisz w zestawie 4</td>
<td>Zapisze zestawu parametrów użytkownika 4.</td>
<td>21</td>
</tr>
</tbody>
</table>
Jeśli parametr 96.11 Zest. użytk.: zapisz/załadowy ma ustawić wartość Tryb I/O wybrany przez użytk., wybiera zestaw parametrów użytkownika razem z parametrem 96.13 Zest. użytk.: tryb I/O we2 w następujący sposób:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.12 Zest. użytk.: tryb I/O we1</td>
<td>Jeśli parametr 96.11 Zest. użytk.: zapisz/załadowy ma ustawić wartość Tryb I/O wybrany przez użytk., wybiera zestaw parametrów użytkownika razem z parametrem 96.13 Zest. użytk.: tryb I/O we2 w następujący sposób:</td>
<td></td>
<td>Nie wybrano</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stan źródła zdefiniowany przez par. 96.12</th>
<th>Stan źródła zdefiniowany przez par. 96.13</th>
<th>Wybrany zestaw parametrów użytkownika</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Zestaw 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Zestaw 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Zestaw 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Zestaw 4</td>
</tr>
</tbody>
</table>

Nie wybrano 0. 0
Wybrano 1. 1

- DI1 Wejście cyfrowe DI1 (10.02 Stan DI po opóźnieniach, bit 0).
- DI2 Wejście cyfrowe DI2 (10.02 Stan DI po opóźnieniach, bit 1).
- DI3 Wejście cyfrowe DI3 (10.02 Stan DI po opóźnieniach, bit 2).
- DI4 Wejście cyfrowe DI4 (10.02 Stan DI po opóźnieniach, bit 3).
- DIO1 Wejście/wyjście cyfrowe DIO1 (11.02 Stan DIO po opóźnieniach, bit 0).
- DIO2 Wejście/wyjście cyfrowe DIO2 (11.02 Stan DIO po opóźnieniach, bit 1)
- Funkcja czasowa 1 Bit 0 parametru 34.01. Stan funkcji czasowych
- Funkcja czasowa 2 Bit 1 parametru 34.01. Stan funkcji czasowych
- Funkcja czasowa 3 Bit 2 parametru 34.01. Stan funkcji czasowych
- Nadzór 1 Bit 0 parametru 32.01. Stan nadzoru
- Nadzór 2 Bit 1 parametru 32.01. Stan nadzoru
- Nadzór 3 Bit 2 parametru 32.01. Stan nadzoru
- Nadzór 4 Bit 3 parametru 32.01. Stan nadzoru
- Nadzór 5 Bit 4 parametru 32.01. Stan nadzoru
- Nadzór 6 Bit 5 parametru 32.01. Stan nadzoru

96.13 Zest. użytk.: tryb I/O we2 Patrz parametr 96.12 Zest. użytk.: tryb I/O we1. Nie wybrano
Wybór jednostki

Wybiera jednostkę parametrów wskazujących moc, temperaturę i moment.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jednostka mocy</td>
<td>0 = kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = KM</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jednostka temperatury</td>
<td>0 = °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = °F</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Jednostka momentu</td>
<td>0 = Nm (N·m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = lbft (lb·ft)</td>
<td></td>
</tr>
<tr>
<td>5…15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh Słowo wyboru jednostki. 1 = 1

Podst. źródło synchr. czasu

Definiuje zewnętrzne źródło o najwyższym priorytecie na potrzeby synchronizacji godziny i daty przemiennika częstotliwości.

Wewnętrzne	Nie wybrano zewnętrznego źródła.	0
Magistrala kom. A	Interfejs magistrali komunikacyjnej A.	3
Wbudowana mag. komunikacyjna	Interfejs wbudowanej magistrali komunikacyjnej.	6
Łącze panelu	Panel sterowania lub program Drive Composer połączony z panelem sterowania.	8
Łącze narzędzia Ethernet	Program Drive Composer przez moduł FENA.	9

Czyść rej. błędów i zdarzeń

Brak czynności. Dodaj wartość do parametru.

| 0 | 1 |

Wyłącz prog. adaptacyjny

Wybiera, czy program adaptacyjny jest włączony, czy wyłączony

| Nr | Program adaptacyjny jest włączony. Program adaptacyjny jest ustawiany w tryb uruchamiania automatycznie, gdy zasilanie przemiennika częstotliwości zostanie włączone. Wydanie polecenia programowi adaptacyjnemu, aby został ustawiony w trybie uruchamiania, jest możliwe za pomocą narzędzia komputerowego. | 0 |
| | Program adaptacyjny jest wyłączony. Ustawienie programu adaptacyjnego w tryb uruchamiania nie jest możliwe. Jeśli program adaptacyjny był uruchomiony po wyłączeniu, program adaptacyjny zostanie zatrzymany i ustawiony na stan inicjowania. | 1 |
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.100</td>
<td>Zmień kod użytkownika</td>
<td>(Widoczne, gdy blokada użytkownika jest otwarta) Aby zmienić bieżący kod użytkownika, wprowadź nowy kod do tego parametru, jak również do 96.101 Potwierdź kod uż.. Ostrzeżenie będzie aktywne do momentu potwierdzenia nowego kodu. Aby anulować zmianę kodu, zamknij blokadę użytkownika bez potwierdzenia. Aby zamknąć blokadę, wprowadź nieprawidłowy kod w parametrze 96.02 Kod, aktywuj parametr 96.08 Restart karty sterowania lub wyłącz i włącz zasilanie. Warto również zapoznać się z sekcją Blokada użytkownika (na str. 109).</td>
<td>10000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nowy kod użytkownika.</td>
<td>-</td>
</tr>
<tr>
<td>96.101</td>
<td>Potwierdź kod uż.</td>
<td>(Widoczne, gdy blokada użytkownika jest otwarta) Potwierdza nowy kod użytkownika wprowadzony w 96.100 Zmień kod użytkownika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potwierdzenie nowego kodu użytkownika.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.100</td>
<td>Zmień kod użytkownika</td>
<td>(Widoczne, gdy blokada użytkownika jest otwarta) Aby zmienić bieżący kod użytkownika, wprowadź nowy kod do tego parametru, jak również do 96.101 Potwierdź kod uż.. Ostrzeżenie będzie aktywne do momentu potwierdzenia nowego kodu. Aby anulować zmianę kodu, zamknij blokadę użytkownika bez potwierdzenia. Aby zamknąć blokadę, wprowadź nieprawidłowy kod w parametrze 96.02 Kod, aktywuj parametr 96.08 Restart karty sterowania lub wyłącz i włącz zasilanie. Warto również zapoznać się z sekcją Blokada użytkownika (na str. 109).</td>
<td>10000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nowy kod użytkownika.</td>
<td>-</td>
</tr>
<tr>
<td>96.101</td>
<td>Potwierdź kod uż.</td>
<td>(Widoczne, gdy blokada użytkownika jest otwarta) Potwierdza nowy kod użytkownika wprowadzony w 96.100 Zmień kod użytkownika.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potwierdzenie nowego kodu użytkownika.</td>
<td>-</td>
</tr>
</tbody>
</table>
Funkcja blokady użytk.

(Widoczne, gdy blokada użytkownika jest otwarta) Wybiera działania lub funkcje chronione blokadą użytkownika. Należy zauważyć, że zmiany zostaną wprowadzone tylko wtedy, gdy blokada użytkownika jest zamknięta. Patrz parametr 96.02 Kod.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.102</td>
<td>Funkcja blokady użytk.</td>
<td>(Widoczne, gdy blokada użytkownika jest otwarta) Wybiera działania lub funkcje chronione blokadą użytkownika. Należy zauważyć, że zmiany zostaną wprowadzone tylko wtedy, gdy blokada użytkownika jest zamknięta. Patrz parametr 96.02 Kod.</td>
<td>0000h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Informacja</th>
<th>Nr Nazwa/wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wyłącz poziomy dostępu ABB</td>
<td>1 = Poziomy dostępu ABB (serwis, zaawansowany programista itp.; patrz 96.03) wyłączone</td>
<td>96.102</td>
</tr>
<tr>
<td>1</td>
<td>Zamróz stan blokady parametrów</td>
<td>1 = Uniemożliwienie zmiany stanu blokady parametrów, tzn. kod 358 nie działa</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wyłącz pobieranie plików</td>
<td>1 = Uniemożliwienie pobierania plików na przemiennik częstotliwości. Dotyczy to • aktualizacji programów wbudowanych • przywrócenia parametrów • ładowania programów adaptacyjnych i aplikacyjnych • zmiany widoku głównego panelu sterowania • edycji tekstów przemiennika częstotliwości • edycji listy ulubionych parametrów panelu sterowania • ustawień konfiguracyjnych dokonanych przez panel sterowania, takich jak format czasu/daty i włączenie/wyłączenie wyświetlania zegara.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wyłączanie zapisywania magistrali w przypadku ukrycia</td>
<td>1 = Wyłącz zapisywanie magistrali komunikacyjnej w zamkniętym poziomie dostępu.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wyłącz tworzenie kopii zapasowych</td>
<td>1 = Wyłącz pobieranie plików kopii zapasowych.</td>
<td></td>
</tr>
<tr>
<td>5...10</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Wyłącz poziom dostępu OEM 1</td>
<td>1 = Wyłącz poziom dostępu OEM 1.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Wyłącz poziom dostępu OEM 2</td>
<td>1 = Wyłącz poziom dostępu OEM 2.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Wyłącz poziom dostępu OEM 3</td>
<td>1 = Wyłącz poziom dostępu OEM 3.</td>
<td></td>
</tr>
<tr>
<td>14, 15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh Wybór działań chronionych blokadą użytkownika.
97 Sterowanie silnikiem

Częstotliwość kluczowania; wzmocnienie poślizgu; rezerwa napięcia; hamowanie strumieniem; zabezpieczenie przed pulsacją obrotów silnika (wstrzykiwanie sygnału); kompensacja IR.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wzad. częstotliwość przel.</th>
<th>Min. częstotliwość przełącz.</th>
<th>Wzmocnienie poślizgu</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.01</td>
<td>Definiuje częstotliwość kluczowania przemiennika częstotliwości, która jest używana, gdy przemiennik częstotliwości nie nagrzewa się mocno. Patrz sekcja Częstotliwość kluczowania na str. 81. W systemach wielosilnikowych nie należy zmieniać wartości domyślnej częstotliwości kluczowania.</td>
<td>Najniższa dopuszczalna częstotliwość kluczowania. Zależy od rozmiaru obudowy.</td>
<td>Definiuje wzmocnienie poślizgu używane do poprawy szacowanego poślizgu silnika. 100% oznacza pełne wzmocnienie poślizgu; 0% oznacza brak wzmocnienia poślizgu. Wartość domyślna to 100%. Innych wartości można używać, jeśli błąd prędkości statycznej jest wykrywany pomimo ustawienia pełnego wzmocnienia poślizgu. Przykład (dla znamionowego obciążenia i znamionowego poślizgu 40 obr./min): Wartość zadana prędkości stałej 1000 obr./min jest przekazywana do przemiennika częstotliwości. Pomimo pełnego wzmocnienia poślizgu (= 100%) pomiar ręcznego obrotomierza na osi silnika daje wartość 998 obr./min. Błąd prędkości statycznej to 1000 obr./min - 998 obr./min = 2 obr./min. W celu skompensowania błędu należy zwiększyć wzmocnienie poślizgu do 105% (2 obr./min / 40 obr./min = 5%).</td>
</tr>
<tr>
<td>4 kHz</td>
<td>4 kHz.</td>
<td>4 kHz.</td>
<td>4 kHz.</td>
</tr>
<tr>
<td>8 kHz</td>
<td>8 kHz.</td>
<td>8 kHz.</td>
<td>8 kHz.</td>
</tr>
<tr>
<td>12 kHz</td>
<td>12 kHz.</td>
<td>12 kHz.</td>
<td>12 kHz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 Sterowanie silnikiem</td>
<td>Częstotliwość kluczowania; wzmocnienie poślizgu; rezerwa napięcia; hamowanie strumieniem; zabezpieczenie przed pulsacją obrotów silnika (wstrzykiwanie sygnału); kompensacja IR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna FbEq 16</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>97.04</td>
<td>Rezerwa napięcia</td>
<td>Definiuje minimalną dopuszczalną rezerwę napięcia. Kiedy wartość rezerwy napięcia spadnie do określonej wartości, przemiennik częstotliwości wchodzi w obszar osłabienia pola. Uwaga: To jest parametr poziomu eksperckiego i nie powinien być zmieniany bez odpowiednich umiejętności. Jeśli napięcie DC obwodu pośredniego $U_{dc} = 550$ V i rezerwa napięcia wynosi 5%, wartość skuteczna maksymalnego napięcia wyjściowego podczas obsługi w stanie stałym wynosi 0.95×550 V / $\sqrt{2} = 369$ V. Wydajność dynamiczna sterowania silnikiem w obszarze osłabienia pola może zostać poprawiona poprzez zwiększenie wartości rezerwy napięcia, ale przemiennik częstotliwości wcześniej wchodzi w obszar osłabienia pola. Uwaga: To jest parametr poziomu eksperckiego i nie powinien być zmieniany bez odpowiednich umiejętności.</td>
<td>-2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4…50% Rezerwa napięcia.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.05</td>
<td>Hamowanie strumieniem</td>
<td>Definiuje poziom mocy hamowania strumieniem. (Inne tryby zatrzymywania i hamowania można skonfigurować w grupie parametrów 21 Tryb start/stop) Uwaga: To jest parametr poziomu eksperckiego i nie powinien być zmieniany bez odpowiednich umiejętności.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieaktywne Hamowanie strumieniem jest wyłączone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Średnie Poziom strumienia jest ograniczony podczas hamowania. Czas hamowania jest dłuższy w porównaniu do pełnego hamowania.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pełne Maksymalna moc hamowania. Prawie cały dostępny prąd jest zużywany do przetworzenia energii hamowania mechanicznego na energię cieplną w silniku. OSTRZEŻENIE! Używanie pełnego hamowania strumieniem nagrzewa silnik, zwłaszcza przy obsłudze cyklicznej. Przy zastosowaniach cyklicznych należy upewnić się, że silnik może to wytrzymać.</td>
<td>2</td>
</tr>
<tr>
<td>97.10</td>
<td>Wprowadzanie sygnału</td>
<td>Włącza funkcję zabezpieczającą przed pulsacją obrotów silnika: sygnał przemienny wysokiej częstotliwości jest wstrzykiwany do silnika w zakresie niskiej prędkości, aby poprawić stabilność sterowania momentem. Powoduje to eliminację pulsacyjnych obrotów, które czasami można zaobserwować, gdy wirnik przekracza bieguny magnetyczne silnika. Zabezpieczenie przed pulsacją obrotów silnika można włączyć z różnymi poziomami amplitudy. Uwagi: • To jest parametr poziomu eksperckiego i nie powinien być zmieniany bez odpowiednich umiejętności. • Należy użyć najniższego możliwego poziomu, który zapewnia wystarczającą wydajność. • Wstrzykiwania sygnału nie można stosować w silnikach asynchronicznych.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nieaktywne Zabezpieczenie przed pulsacją obrotów silnika wyłączone.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Włączone (5%) Zabezpieczenie przed pulsacją obrotów silnika włączone z poziomem amplitudy 5%.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Włączone (10%) Zabezpieczenie przed pulsacją obrotów silnika włączone z poziomem amplitudy 10%.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Włączone (15%) Zabezpieczenie przed pulsacją obrotów silnika włączone z poziomem amplitudy 15%.</td>
<td>3</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Wartość domyślna/FbEq 16</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Włączone (20%)</td>
<td>Zabezpieczenie przed pulsacją obrotów silnika włączone z poziomem amplitudy 20%.</td>
<td>4</td>
</tr>
<tr>
<td>97.11</td>
<td>Dostrajanie TR</td>
<td>Dostrzeżenie stałej czasowej wirnika. Tego parametru można użyć, aby poprawić dokładność momentu sterowania silnikiem indukcyjnym w zamkniętej pętli. Zazwyczaj bejg identyfikacyjny zapewnia wystarczającą dokładność momentu, ale można zastosować ręczne dostrzeżenie w przypadku wyjątkowo wymagających aplikacji, aby osiągnąć optymalną wydajność. Uwaga: To jest parametr poziomu eksperckiego i nie powinien być zmieniany bez odpowiednich umiejętności.</td>
<td>100%</td>
</tr>
<tr>
<td>97.13</td>
<td>Kompensacja IR</td>
<td>Określa zwiększenie względnego napięcia wyjściowego przy prędkości zerowej (kompensacja IR). Ta funkcja jest przydatna w zastosowaniach z wysokim momentem rozruchowym, gdzie nie można zastosować sterowania wektorowego.</td>
<td>3,50%</td>
</tr>
<tr>
<td>97.15</td>
<td>Przystosowanie temp. modelu silnika</td>
<td>Określa, czy parametry zależne od temperatury (takie jak rezystancja stojana i wirnika) modelu silnika przystosowują się do aktualnej (mierzonej lub szacowanej) temperatury. Informacje o dostępnych źródłach zmierzonej temperatury zawiera grupa parametrów 35 Ochrona termiczna silnika. Nieaktywne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nieaktywne</td>
<td>Przystosowanie temperatury modelu silnika wyłączone.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Szacowana temperatura</td>
<td>Szacowana temperatura (35.01 Szacowana temperatura silnika) używana na potrzeby przystosowania modelu silnika.</td>
<td>1</td>
</tr>
<tr>
<td>97.16</td>
<td>Współczynnik temp. stojana</td>
<td>Dostrajanie zależności temperatury silnika od parametrów stojana (rezystancja stojana).</td>
<td>50</td>
</tr>
</tbody>
</table>

Względne napięcie wyjściowe. Kompensacja IR ustawiona na 15%.

![Diagram](#)

Patrz także sekcja *Kompensacja IR przy skalarnym sterowaniu silnikiem* na str. 75.
Parametry silnika użytkownika

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00...200,00%</td>
<td>Współczynnik dostrajania.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.17</td>
<td>Współcz. temp. wirnika</td>
<td>Dostrajanie zależności temperatury silnika od parametrów wirnika (rezystancja wirnika).</td>
<td>100</td>
</tr>
<tr>
<td>0,00...200,00%</td>
<td>Współczynnik dostrajania.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.20</td>
<td>Stosunek U/f</td>
<td>Wybiera formę współczynnika U/f (napięcie do częstotliwości) poniżej punktu osłabienia pola. Tylko do sterowania skalarne.</td>
<td>Nieaktywne</td>
</tr>
<tr>
<td>Liniowe</td>
<td>Współczynnik liniowy do zastosowania ze stałym momentem.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kwadratowy</td>
<td>Współczynnik kwadratowy do zastosowań pompy wirowej i wentylatora. Przy kwadratowym stosunku U/f poziom szumów jest niższy dla większości częstotliwości roboczych. Niezalecane w przypadku silników z magnesami trwałymi.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

98 Parametry silnika użytkownika

Dane silnika podane przez użytkownika, które są używane w modelu silnika.
Te parametry są przydatne w przypadku silników niestandardowych lub w celu zapewnienia dokładniejszego sterowania silnikiem w systemie. Lepszy model silnika zawsze poprawia wydajność pracy wału napędowego.

- **Tryb modelu silnika użytk.**
 - Aktywuje parametry modelu silnika 98.02…98.12 i 98.14. **Nie wybrano**
 - **Uwagi:**
 - Wartość parametru jest ustawiana automatycznie na zero, gdy bieg identyfikacyjny jest wybrany za pomocą parametru 99.13 Żądanie biegu ident. Wartości parametrów 98.02…98.12 są następnie aktualizowane zgodnie z charakterystyką silnika określona podczas biegu identyfikacyjnego.
 - Pomiary dokonane bezpośrednio na zaciskach silnika podczas biegu identyfikującego mogą dać inne wartości niż wartości znamionowe podane przez producenta silnika.
 - Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wartość domyślna</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>98.01</td>
<td>Nie wybrano</td>
<td>Parametry 98.02…98.12 są nieaktywne.</td>
</tr>
<tr>
<td>98.02</td>
<td>Rs użytkownika</td>
<td>Wartości parametrów 98.02…98.12 są używane jako model silnika.</td>
</tr>
<tr>
<td>98.03</td>
<td>Rr użytkownika</td>
<td>Określa rezystancję stojaną R_S w modelu silnika. W przypadku silnika podłączonego w układzie gwiazdy R_S jest rezystancją jednego uzwojenia. W przypadku silnika podłączonego w układzie trójkąta R_S jest rezystancją jednego uzwojenia.</td>
</tr>
<tr>
<td></td>
<td>0,00000…0,50000 na jednostkę</td>
<td>Rezystancja stojana na jednostkę.</td>
</tr>
<tr>
<td>98.03</td>
<td>Rr użytkownika</td>
<td>Określa rezystancję wirnika R_R w modelu silnika. Uwaga: Ten parametr obowiązuje wyłącznie w przypadku silników asynchronicznych.</td>
</tr>
<tr>
<td></td>
<td>0,00000…0,50000 na jednostkę</td>
<td>Rezystancja wirnika na jednostkę.</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>98.04</td>
<td>Lm użytkownika</td>
<td>Określa główną indukcyjność L_M w modelu silnika. Uwaga: Ten parametr obowiązuje wyłącznie w przypadku silników asynchronicznych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Główna indukcyjność na jednostkę.</td>
</tr>
<tr>
<td>98.05</td>
<td>SigmaL użytkownika</td>
<td>Definiuje indukcyjność upływową σL_S. Uwaga: Ten parametr obowiązuje wyłącznie w przypadku silników asynchronicznych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indukcyjność upływowa na jednostkę.</td>
</tr>
<tr>
<td>98.06</td>
<td>Ld użytkownika</td>
<td>Określa indukcyjność bezpośredniej osi (synchroniczną). Uwaga: Ten parametr obowiązuje wyłącznie w silnikach z magnesami trwałymi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indukcyjność bezpośredniej osi na jednostkę.</td>
</tr>
<tr>
<td>98.07</td>
<td>Lq użytkownika</td>
<td>Określa indukcyjność osi kwadratury (synchroniczną). Uwaga: Ten parametr obowiązuje wyłącznie w silnikach z magnesami trwałymi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indukcyjność bezpośredniej osi na jednostkę.</td>
</tr>
<tr>
<td>98.08</td>
<td>Strumień PM użytkownika</td>
<td>Określa strumień magnesu stałego. Uwaga: Ten parametr obowiązuje wyłącznie w silnikach z magnesami trwałymi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strumień magnesu trwałego na jednostkę.</td>
</tr>
<tr>
<td>98.09</td>
<td>Rs użytkownika w SI</td>
<td>Określa rezystancję stojana R_S w modelu silnika. Uwaga: Ten parametr obowiązuje wyłącznie w silnikach z magnesami trwałymi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rezystancja stojana.</td>
</tr>
<tr>
<td>98.10</td>
<td>Rs użytkownika w SI</td>
<td>Określa rezystancję wirnika R_R w modelu silnika. Uwaga: Ten parametr obowiązuje wyłącznie w przypadku silników asynchronicznych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rezystancja wirnika.</td>
</tr>
<tr>
<td>98.11</td>
<td>Lm użytkownika w SI</td>
<td>Określa główną indukcyjność L_M w modelu silnika. Uwaga: Ten parametr obowiązuje wyłącznie w przypadku silników asynchronicznych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Główna indukcyjność.</td>
</tr>
<tr>
<td>98.12</td>
<td>SigmaL użytkownika w SI</td>
<td>Definiuje indukcyjność upływową σL_S. Uwaga: Ten parametr obowiązuje wyłącznie w przypadku silników asynchronicznych.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indukcyjność upływowa.</td>
</tr>
<tr>
<td>98.13</td>
<td>Ld użytkownika w SI</td>
<td>Określa indukcyjność bezpośredniej osi (synchroniczną). Uwaga: Ten parametr obowiązuje wyłącznie w silnikach z magnesami trwałymi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indukcyjność bezpośredniej osi.</td>
</tr>
</tbody>
</table>
Parametry

98.14 Lq użytkownika w SI
Określa indukcyjność osi kwadratury (synchroniczną). **Uwaga:** Ten parametr obowiązuje wyłącznie w silnikach z magnesami trwałymi.
<table>
<thead>
<tr>
<th>Wartość domyślna FbEq 16</th>
<th>0,00 mH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indukcyjność osi kwadratury.</td>
<td>1 = 10000 mH</td>
</tr>
</tbody>
</table>

99 Dane silnika
Ustawienia konfiguracji silnika.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.03</td>
<td>Typ silnika</td>
<td>Wybiera typ silnika.</td>
<td>Silnik asynchroniczny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silnik asynchroniczny Standardowy indukcyjny silnik klatkowy AC (asynchroniczny silnik indukcyjny).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silnik z magnesami trwałymi Silnik z magnesami trwałymi. Trójfazowy silnik synchroniczny AC z wirnikiem z magnesami trwałymi i sinusoidalnym napięciem BackEMF. Uwaga: Przy silnikach z magnesami trwałymi należy zwrócić szczególną uwagę na prawidłowe ustawienie wartości znamionowych silnika w grupie parametrów (99 Dane silnika). Należy użyć sterowania wektorowego. Jeśli znamionowe napięcie BackEMF silnika nie jest dostępne, należy wykonać pełny bieg identyfikacyjny w celu poprawy wydajności.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silnik SynRM Synchroniczny silnik reluktancyjny. Trójfazowy silnik synchroniczny AC z wirnikiem o utajonych biegunach bez magnesów trwałych.</td>
<td></td>
</tr>
<tr>
<td>99.04</td>
<td>Tryb sterowania silnikiem</td>
<td>Wybiera tryb sterowania silnikiem.</td>
<td>Skalarny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: W sterowaniu wektorowym przemiennik częstotliwości wykonywa bieg identyfikacyjny przy zatrzymaniu podczas pierwszego uruchomienia, jeśli nie został on wcześniej wykonany. Po wykonaniu biegu identyfikacyjnego przy zatrzymaniu wymagane jest nowe polecenie startu. Uwaga: Aby osiągnąć lepszą wydajność sterowania silnikiem, można wykonać normalny bieg identyfikacyjny bez obciążenia. Warto również zapoznać się z sekcją Tryby pracy i tryby sterowania silnikiem (na str. 56).</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.04</td>
<td>Tryb sterowania silnikiem</td>
<td>Wybiera tryb sterowania silnikiem.</td>
<td>Skalarny</td>
</tr>
<tr>
<td></td>
<td>Wektorowy</td>
<td>Sterowanie wektorowe. Sterowanie wektorowe ma większą dokładność niż sterowanie skalarne, ale nie może być używane we wszystkich sytuacjach (patrz poniższa sekcja Skalarny). Wymaga biegu identyfikacyjnego silnika. Patrz parametr 99.13 Żądanie biegu ident. Uwaga: W sterowaniu wektorowym przemiennik częstotliwości wykonywa bieg identyfikacyjny przy zatrzymaniu podczas pierwszego uruchomienia, jeśli nie został on wcześniej wykonany. Po wykonaniu biegu identyfikacyjnego przy zatrzymaniu wymagane jest nowe polecenie startu. Uwaga: Aby osiągnąć lepszą wydajność sterowania silnikiem, można wykonać normalny bieg identyfikacyjny bez obciążenia. Warto również zapoznać się z sekcją Tryby pracy i tryby sterowania silnikiem (na str. 56).</td>
<td>0</td>
</tr>
</tbody>
</table>
Skalarny Sterowanie skalare. Odpowiednie do większości zastosowań, jeśli nie jest wymagana najwyższa wydajność. Nie jest wymagany bieg identyfikacyjny silnika.

Uwaga: Nie należy stosować sterowania skalarnego w następujących sytuacjach:

- przy aplikacjach z wieloma silnikami 1) jeśli obciążenie nie jest rozłożone równomiernie pomiędzy silnikami, 2) jeśli silniki są różnych rozmiarów lub 3) jeśli silniki zostaną zmienione po identyfikacji silników (bieg identyfikacyjny);
- jeśli prąd znamionowy silnika nie jest większy niż 1/6 wyjściowego prądu znamionowego przemiennika częstotliwości;
- jeśli przemiennik częstotliwości jest używany bez podłączonego silnika (na przykład w celach testowych).

Uwaga: Prawidłowe działanie silnika wymaga, aby prąd magnesujący silnika nie przekraczał 90% znamionowego prądu inwertera.

Patrz też sekcja **Dane wydajności sterowania prędkością** (strona 73) i sekcja **Tryby pracy i tryby sterowania silnikiem** (strona 56).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
</table>
| 99.06 | Prąd znamionowy silnika | Definiuje znamionowy prąd silnika. Wartość musi być równa wartości na tabliczce znamionowej silnika. Jeśli do przemiennika częstotliwości podłączonych jest wiele silników, należy wprowadzić łączny prąd silników. **Uwagi:**

- Prawidłowe działanie silnika wymaga, aby prąd magnesujący silnika nie przekraczał 90% znamionowego prądu przemiennika częstotliwości.
- Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.** |
<p>| 0,0…6400,0 A | Znamionowy prąd silnika. Dozwolony zakres wynosi 1/6…2 × I_N przemiennika częstotliwości (0…2×I_N w skalarnym trybie sterowania). | 1 = 1 A |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.07</td>
<td>Napięcie znam. silnika</td>
<td>Definiuje napięcie znamionowe silnika do silnika. To ustawienie musi odpowiadać wartości na tabliczce znamionowej silnika.</td>
<td>0,0 Eq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwagi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• W przypadku silnika synchronicznego z magnesami trwałymi napięcie znamionowe jest napięciem Back EMF przy prędkości znamionowej silnika. Jeśli napięcie jest podane w jednostce V/obr./min (np. 60 V na 1000 obr./min), napięcie przy prędkości znamionowej 3000 obr./min wynosi 3 × 60 V = 180V.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Obciążenie izolacji silnika zawsze zależy od napięcia zasilania przemiennika częstotliwości. Dotyczy to również przypadków, gdy napięcie znamionowe silnika jest niższe niż napięcie przemiennika częstotliwości i zasilania.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.</td>
<td></td>
</tr>
<tr>
<td>99.08</td>
<td>Częstotliwość znam. silnika</td>
<td>Definiuje znamionową częstotliwość silnika. To ustawienie musi odpowiadać wartości na tabliczce znamionowej silnika.</td>
<td>50,0 Hz</td>
</tr>
<tr>
<td>99.09</td>
<td>Prędkość znam. silnika</td>
<td>Definiuje znamionową prędkość silnika. To ustawienie musi odpowiadać wartości na tabliczce znamionowej silnika.</td>
<td>0 obr./min</td>
</tr>
<tr>
<td>99.10</td>
<td>Moc znamionowa silnika</td>
<td>Definiuje znamionową moc silnika. To ustawienie musi odpowiadać wartości na tabliczce znamionowej silnika. Jeśli do przemiennika częstotliwości podłączonych jest wiele silników, należy wprowadzić ich łączną moc. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki.</td>
<td>0,00 kW lub KM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0…800,0</td>
<td>Znamionowe napięcie silnika.</td>
<td>10 = 1 V</td>
<td></td>
</tr>
<tr>
<td>0,0…500,0 Hz</td>
<td>Znamionowa częstotliwość silnika.</td>
<td>10 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>0…30000 obr./min</td>
<td>Znamionowa prędkość silnika.</td>
<td>1 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>-10000,00…10000,00 kW lub -13404,83…13404,83 KM</td>
<td>Znamionowa moc silnika.</td>
<td>1 = 1 jednostka</td>
<td></td>
</tr>
</tbody>
</table>
Parametry

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
</table>
| 99.11| Znamionowy cos φ silnika | Określa wartość cos φ silnika, aby uzyskać bardziej dokładny model silnika. Wartość ta nie jest obowiązkowa, ale jest użyteczna w przypadku silników asynchronicznych, szczególnie podczas wykonywania statycznego biegu identyfikacyjnego. W przypadku silnika z magnesami trwałymi lub synchronicznego silnika reluctanceowego wartość ta nie jest wymagana. **Uwagi**:
• Nie należy wprowadzać szacowanej wartości. Jeśli dokładnie wartość nie jest znana,
• należy zostawić zerową wartość parametru.
• Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony. | 0,00 |
| | 0,00…1,00 | Cos φ silnika. | |
| 99.12| Moment znamion. silnika | Określa znamionowy moment wału silnika, aby uzyskać bardziej dokładny model silnika. Nieobowiązkowe. Jednostka jest wybierana przez parametr 96.16 Wybór jednostki. **Uwaga**: Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony. | 0,000 Nm lub lb ft |
| | 0.000… | Znamionowy moment silnika. | 1 = 100 jednostek |
| | Nm lub lb ft | | |
Wybiera rodzaj biegu identyfikacyjnego silnika wykonywanego podczas następnego uruchomienia przemiennika częstotliwości. Podczas biegu identyfikacyjnego przemiennik częstotliwości identyfikuje charakterystykę silnika, aby uzyskać optymalne możliwości sterowania nim. Jeśli nie wykonano jeszcze biegu identyfikacyjnego lub przywrócono wartości domyślne za pomocą parametru 96.06 Przywrócenie parametrów, ten parametr jest automatycznie ustawiany na wartość Staticzny, co oznacza, że należy wykonać bieg identyfikacyjny. Po biegu identyfikacyjnym przemiennik częstotliwości zostaje zatrzymany i parametr jest automatycznie ustawiany na Brak.

Uwagi:

- Aby zapewnić prawidłowy przebieg identyfikacyjny, limity przemiennika częstotliwości w grupie 30 Limity (maksymalna i minimalna prędkość oraz maksymalny i minimalny moment) muszą być wystarczające duże (zakres określony limitami musi być wystarczające sze roki). Jeśli np. limity prędkości są niższe niż prędkość znamiona silnika, nie można wykonać biegu identyfikacyjnego.
- Dla biegu identyfikacyjnego Zaawansowany maszyna musi zawsze zostać odłączona od silnika.
- W przypadku silnika z magnesami trwałymi lub synchronicznego silnika reluktancyjnego wymogiem biegu identyfikacyjnego Normalny, Zredukowany lub Statyczny jest to, że wał silnika NIE MOŻE być zablokowany, a moment obciążenia musi być mniejszy niż 10%.
- Po aktywacji biegu identyfikacyjnego można go anulować, zatrzymując przemiennik częstotliwości.
- Należy zapewnić, aby obwody bezpiecznego wyłączania momentu i zatrzymania awaryjnego (jeśli istnieją) były podczas biegu identyfikacyjnego zamknięte.
- Hamulec mechaniczny (jeśli istnieje) nie jest otwierany przez układ logiczny na potrzeby biegu identyfikacyjnego.
- Tego parametru nie można zmienić, gdy przemiennik częstotliwości jest uruchomiony.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.13</td>
<td>Żądanie biegu ident.</td>
<td>Wybiera rodzaj biegu identyfikacyjnego silnika wykonywanego podczas następnego uruchomienia przemiennika częstotliwości. Podczas biegu identyfikacyjnego przemiennik częstotliwości identyfikuje charakterystykę silnika, aby uzyskać optymalne możliwości sterowania nim. Jeśli nie wykonano jeszcze biegu identyfikacyjnego lub przywrócono wartości domyślne za pomocą parametru 96.06 Przywrócenie parametrów, ten parametr jest automatycznie ustawiany na wartość Staticzny, co oznacza, że należy wykonać bieg identyfikacyjny. Po biegu identyfikacyjnym przemiennik częstotliwości zostaje zatrzymany i parametr jest automatycznie ustawiany na Brak.</td>
<td>Brak</td>
</tr>
<tr>
<td>Brak</td>
<td>Nie zażądano uruchomienia biegu identyfikacyjnego silnika. Ten tryb można wybrać tylko wtedy, gdy uruchomiono już raz bieg identyfikacyjny (Normalny/Zredukowany/Statyczny/Zaawansowany).</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Normalny

Uwagi:
- Jeśli moment obciążenia jest wyższy o 20% od momentu znamionowego silnika lub gdy maszyna nie wytrzyma chwilowego znamionowego momentu obrotowego podczas wykonywania biegu identyfikacyjnego, napędzane urządzenie musi być odłączone od silnika podczas normalnego biegu identyfikacyjnego.
- Przed uruchomieniem biegu identyfikacyjnego należy sprawdzić kierunek obrotów silnika. Podczas biegu silnik będzie obracał się w kierunku do przodu.

OSTRZEŻENIE! Podczas biegu identyfikacyjnego silnik będzie działał przy 50…100% prędkości znamionowej. PRZED WYKONANIEM BIEGU IDENTYFIKACYJNEGO NALEŻY ZAPEWNIĆ, ABY URUCHOMIENIE SILNIKA BYŁO BEZPIECZNE!

Zredukowany

Zredukowany bieg identyfikacyjny. Ten tryb należy wybrać zamiast ustawienia Normalny lub Zaawansowany biegu identyfikacyjnego, jeśli:
- straty mechaniczne są wyższe niż 20% (tzn. nie można odłączyć silnika od napędzanego urządzenia) lub
- zredukowany strumień nie jest dopuszczalny, gdy działa silnik (tzn. w przypadku silnika ze zintegrowanym hamulcem zasilanym z zacisków silnika).

Podczas tego biegu identyfikacyjnego sterowanie w obszarze osłabienia pola przy wysokich momentach nie zawsze jest tak dokładne, jak w przypadku sterowania silnikiem po normalnym biegu identyfikacyjnym. Zredukowany bieg identyfikacyjny jest wykonywany szybciej niż normalny bieg identyfikacyjny (< 90 sekund).

Uwaga: Przed uruchomieniem biegu identyfikacyjnego należy sprawdzić kierunek obrotów silnika. Podczas biegu silnik będzie obracał się w kierunku do przodu.

OSTRZEŻENIE! Podczas biegu identyfikacyjnego silnik będzie działał przy 50…100% prędkości znamionowej. PRZED WYKONANIEM BIEGU IDENTYFIKACYJNEGO NALEŻY ZAPEWNIĆ, ABY URUCHOMIENIE SILNIKA BYŁO BEZPIECZNE!

Statyczny

Statyczny bieg identyfikacyjny. Do silnika wstrzykiwany jest prąd DC. W przypadku silnika indukcyjnego AC (asynchronicznego) wał silnika nie obraca się. W przypadku silnika z magnesami trwałymi wał może się obrać o pół obrotu.

Uwaga: Ten tryb należy wybrać, jeśli bieg identyfikacyjny Normalny, Zredukowany lub Zaawansowany nie jest możliwy z powodu ograniczeń spowodowanych przez podłączone elementy mechaniczne (np. w przypadku zastosowań z podnośnikami lub dźwigami).
Zaawansowany

Gwarantuje najlepszą możliwą dokładność sterowania. Ukończenie biegu identyfikacyjnego zajmuje bardzo dużo czasu. Ten tryb należy wybrać, jeśli wymagana jest najwyższa wydajność w całym obszarze roboczym.

Uwaga: Napędzane urządzenie musi być odłączone od silnika, ponieważ stosowany jest wysoki moment i prędkości przejściowe.

OSTRZEŻENIE! Podczas biegu identyfikacyjnego silnik może osiągać maksymalną (dodatnią) i minimalną (ujemną) dopuszczalną prędkość. Wykonywane jest kilka przyspieszeń i zwolnień. Wykorzystane mogą być: maksymalny moment, prąd i prędkość dopuszczalne przez parametry limitu. **PRZED WYKONANIEM BIEGU IDENTYFIKACYJNEGO NALEŻY ZAPEWNIĆ, ABY URUCHOMIENIE SILNIKA BYŁO BEZPIECZNE!**

<table>
<thead>
<tr>
<th>NR</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Wartość domyślna</th>
<th>FbEq 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.14</td>
<td>Ostatni wykonany bieg ident.</td>
<td>Wyświetla typ biegu identyfikacyjnego, który ostatnio wykonano.</td>
<td>Brak</td>
<td></td>
</tr>
<tr>
<td>Brak</td>
<td>Nie wykonano biegu identyfikacyjnego.</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalny</td>
<td>Normalny Bieg identyfikacyjny.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zredukowany</td>
<td>Zredukowany Bieg identyfikacyjny.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statyczny</td>
<td>Statyczny Bieg identyfikacyjny.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zaawansowany</td>
<td>Zaawansowany Bieg identyfikacyjny.</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.15</td>
<td>Obl. ilość par bieg. siln.</td>
<td>Obliczona liczba par biegunów w silniku.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0…1000</td>
<td>Liczba par biegunów.</td>
<td>1 = 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 99.16 | Kolejność faz silnika | Przełączca kierunek obrotów silnika. Tego parametru można użyć, jeśli silnik obraca się w nieprawidłowym kierunku (na przykład z powodu nieprawidłowej kolejności faz kabla silnika) i korekta okablowania jest niepraktyczna. **Uwagi:**

- Zmiana tego parametru nie wpływa na polaryzację wartości zadanych prędkości, więc dodatnia wartość zadana prędkości będzie obracać silnik „do przodu". Wybór kolejności faz zapewnia, że kierunek „do przodu” jest prawidłowym kierunkiem. | U V W |
| U V W | Normalne. | 0 |
| U W V | Odwrotny kierunek obrotów. | 1 |
Różnice w wartościach domyślnych pomiędzy ustawieniami częstotliwości zasilania 50 Hz i 60 Hz

Parametr 95.20 Słowo opcji sprzętownych 1, bit 0 zmienia domyślne wartości parametrów przemiennika częstotliwości zgodnie z częstotliwością zasilania — 50 Hz lub 60 Hz. Bit jest ustalany zgodnie z wymogami rynku, na który dostarczany jest przemiennik częstotliwości.

Jeśli potrzebna jest zmiana z 50 Hz na 60 Hz lub odwrotnie, należy zmienić wartość bitu, a następnie wykonać pełny reset przemiennika częstotliwości (96.06 Przywrócenie parametrów). Następnie należy wybrać ponownie używane makro.

Poniższa tabela przedstawia parametry, których wartości domyślne zależą od ustawienia częstotliwości zasilania. Ustawienie częstotliwości zasilania razem z kodem typu przemiennika częstotliwości wpływa również na wartości parametrów grupy 99 Dane silnika (niewymienione w tabeli).

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>95.20 Słowo opcji sprzętownych 1 bit 0 Częstotliwość zasilania 60 Hz = 50 Hz</th>
<th>95.20 Słowo opcji sprzętownych 1 bit 0 Częstotliwość zasilania 60 Hz = 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.45</td>
<td>Wej. częst. 1: skalow. maks.</td>
<td>1500,00</td>
<td>1800,00</td>
</tr>
<tr>
<td>12.20</td>
<td>A/1 skal. do maks. A/2</td>
<td>1500,00</td>
<td>1800,00</td>
</tr>
<tr>
<td>13.18</td>
<td>Maks. źródła AO1</td>
<td>1500,0</td>
<td>1800,0</td>
</tr>
<tr>
<td>22.26</td>
<td>Prędkość stała 1</td>
<td>300,00 obr./min</td>
<td>360,00 obr./min</td>
</tr>
<tr>
<td>22.27</td>
<td>Prędkość stała 2</td>
<td>600,00 obr./min</td>
<td>720,00 obr./min</td>
</tr>
<tr>
<td>22.28</td>
<td>Prędkość stała 3</td>
<td>900,00 obr./min</td>
<td>1080,00 obr./min</td>
</tr>
<tr>
<td>22.29</td>
<td>Prędkość stała 4</td>
<td>1200,00 obr./min</td>
<td>1440,00 obr./min</td>
</tr>
<tr>
<td>22.30</td>
<td>Prędkość stała 5</td>
<td>1500,00 obr./min</td>
<td>1800,00 obr./min</td>
</tr>
<tr>
<td>22.31</td>
<td>Prędkość stała 6</td>
<td>2400,00 obr./min</td>
<td>2880,00 obr./min</td>
</tr>
<tr>
<td>22.32</td>
<td>Prędkość stała 7</td>
<td>3000,00 obr./min</td>
<td>3600,00 obr./min</td>
</tr>
<tr>
<td>28.26</td>
<td>Stała częstotliwość 1</td>
<td>5,00 Hz</td>
<td>6,00 Hz</td>
</tr>
<tr>
<td>28.27</td>
<td>Stała częstotliwość 2</td>
<td>10,00 Hz</td>
<td>12,00 Hz</td>
</tr>
<tr>
<td>28.28</td>
<td>Stała częstotliwość 3</td>
<td>15,00 Hz</td>
<td>18,00 Hz</td>
</tr>
<tr>
<td>28.29</td>
<td>Stała częstotliwość 4</td>
<td>20,00 Hz</td>
<td>24,00 Hz</td>
</tr>
<tr>
<td>28.30</td>
<td>Stała częstotliwość 5</td>
<td>25,00 Hz</td>
<td>30,00 Hz</td>
</tr>
<tr>
<td>28.31</td>
<td>Stała częstotliwość 6</td>
<td>40,00 Hz</td>
<td>48,00 Hz</td>
</tr>
<tr>
<td>28.32</td>
<td>Stała częstotliwość 7</td>
<td>50,00 Hz</td>
<td>60,00 Hz</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>95.20 Słowo opcji sprzę托owych</td>
<td>95.20 Słowo opcji sprzę托owych</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bit 0 Częstotliwość zasilania</td>
<td>bit 0 Częstotliwość zasilania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 Hz = 50 Hz</td>
<td>60 Hz = 60 Hz</td>
</tr>
<tr>
<td>30.11</td>
<td>Min. prędkość</td>
<td>-1500,00 obr./min</td>
<td>-1800,00 obr./min</td>
</tr>
<tr>
<td>30.12</td>
<td>Maks. prędkość</td>
<td>1500,00 obr./min</td>
<td>1800,00 obr./min</td>
</tr>
<tr>
<td>30.13</td>
<td>Min. czestotliwość</td>
<td>-50,00 Hz</td>
<td>-60,00 Hz</td>
</tr>
<tr>
<td>30.14</td>
<td>Maks. czestotliwość</td>
<td>50,00 Hz</td>
<td>60,00 Hz</td>
</tr>
<tr>
<td>31.26</td>
<td>Limit prędkości f. utyku</td>
<td>150,00 obr./min</td>
<td>180,00 obr./min</td>
</tr>
<tr>
<td>31.27</td>
<td>Limit częstotliwości futyku</td>
<td>15,00 Hz</td>
<td>18,00 Hz</td>
</tr>
<tr>
<td>31.30</td>
<td>Marg. wył. dla przekr. prędk.</td>
<td>500,00 obr./min</td>
<td>500,00 obr./min</td>
</tr>
<tr>
<td>46.01</td>
<td>Skalowanie prędkości</td>
<td>1500,00 obr./min</td>
<td>1800,00 obr./min</td>
</tr>
<tr>
<td>46.02</td>
<td>Skalowanie częstotliwości</td>
<td>50,00 Hz</td>
<td>60,00 Hz</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

Spis treści

- *Wyrażenia i skróty*
- *Adresy magistrali komunikacyjnej*
- *Grupy parametrów 1…9*
- *Grupy parametrów 10…99*

Wyrażenia i skróty

<table>
<thead>
<tr>
<th>Wyrażenie</th>
<th>Definicja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktualny sygnał</td>
<td>Sygnał zmierzony lub obliczony przez przemiennik częstotliwości. Zwykle sygnały tego typu mogą być wyłącznie monitorowane i nie można ich korygować, jednak niektóre sygnały pochodzące z liczników można resetować.</td>
</tr>
<tr>
<td>Źródło analogowe</td>
<td>Źródło analogowe: parametr można ustawić na wartość innego parametru, wybierając opcję „Inne”, a następnie wybierając parametr źródłowy z listy. Oprócz opcji „Inne” parametr może udostępniać inne wstępnie określone ustawienia.</td>
</tr>
<tr>
<td>Źródło cyfrowe</td>
<td>Źródło cyfrowe: wartość parametru może być pobierana z konkretnego bitu wartości innego parametru („Inne”). Czasami wartość może być na stałe ustawiona na 0 (falsz) lub 1 (prawda). Ponadto parametr może oferować inne wstępnie określone ustawienia.</td>
</tr>
<tr>
<td>Dane</td>
<td>Parametr danych.</td>
</tr>
</tbody>
</table>
Adresy magistrali komunikacyjnej

Patrz podręcznik użytkownika adaptera komunikacyjnego.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Wartości aktualne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.01</td>
<td>Użyta prędkość silnika</td>
<td>Real</td>
<td>-30000,00...30000,00 obr./min</td>
<td>100 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>01.02</td>
<td>Szacowana prędkość silnika</td>
<td>Real</td>
<td>-30000,00...30000,00 obr./min</td>
<td>100 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>01.03</td>
<td>Prędkość silnika %</td>
<td>Real</td>
<td>-1000,00...1000,00 %</td>
<td>100 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.04</td>
<td>Filtrowana prędk. enkodera 1</td>
<td>Real</td>
<td>-30000...30000 obr./min</td>
<td>100 = 1</td>
<td></td>
</tr>
<tr>
<td>01.06</td>
<td>Częstotliwość wyjściowa</td>
<td>Real</td>
<td>-500,00...500,00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>01.07</td>
<td>Prąd silnika</td>
<td>Real</td>
<td>0,00...300000,00 A</td>
<td>100 = 1 A</td>
<td></td>
</tr>
<tr>
<td>01.08</td>
<td>Prąd silnika % wart.znam.siln.</td>
<td>Real</td>
<td>0,0...1000,0 %</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.09</td>
<td>Prąd silnika % wart.znam.przem.</td>
<td>Real</td>
<td>0,0...1000,0 %</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.10</td>
<td>Moment silnika</td>
<td>Real</td>
<td>-1600,0...1600,0 %</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.11</td>
<td>Napięcie DC</td>
<td>Real</td>
<td>0,00...2000,00 V</td>
<td>100 = 1 V</td>
<td></td>
</tr>
<tr>
<td>01.13</td>
<td>Napięcie wyjściowe</td>
<td>Real</td>
<td>0...2000 V</td>
<td>1 = 1 V</td>
<td></td>
</tr>
<tr>
<td>01.14</td>
<td>Moc wyjściowa</td>
<td>Real</td>
<td>-32768,00...32767,00 kW lub KM</td>
<td>100 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>01.15</td>
<td>Moc wyjściowa % wart.znam.siln.</td>
<td>Real</td>
<td>-300,00...300,00 %</td>
<td>100 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.16</td>
<td>Moc wyjściowa % wart.znam.przem.</td>
<td>Real</td>
<td>-300,00...300,00 %</td>
<td>100 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.17</td>
<td>Moc na wale silnika</td>
<td>Real</td>
<td>-32768,00...32767,00 kW lub KM</td>
<td>100 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>01.18</td>
<td>Licznik GWh inwertera</td>
<td>Real</td>
<td>0...65535 GWh</td>
<td>1 = 1 GWh</td>
<td></td>
</tr>
<tr>
<td>01.19</td>
<td>Licznik MWh inwertera</td>
<td>Real</td>
<td>0...1000 MWh</td>
<td>1 = 1 MWh</td>
<td></td>
</tr>
<tr>
<td>01.20</td>
<td>Licznik kWh inwertera</td>
<td>Real</td>
<td>0...1000 kWh</td>
<td>1 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.24</td>
<td>Akt. strumień %</td>
<td>Real</td>
<td>0...200 %</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>01.30</td>
<td>Skala momentu znamion.</td>
<td>Real</td>
<td>0,000...4000000 Nm lub lb ft</td>
<td>1000 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>01.50</td>
<td>kWh w bieżącej godzinie</td>
<td>Real</td>
<td>-21474836,48...21474836,47 kWh</td>
<td>100 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.51</td>
<td>kWh w poprzedniej godz.</td>
<td>Real</td>
<td>-21474836,48...21474836,47 kWh</td>
<td>100 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.52</td>
<td>kWh w bieżącym dni</td>
<td>Real</td>
<td>-21474836,48...21474836,47 kWh</td>
<td>100 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.53</td>
<td>kWh w poprzednim dni</td>
<td>Real</td>
<td>-21474836,48...21474836,47 kWh</td>
<td>100 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.54</td>
<td>Skumul. energia inwertera</td>
<td>Real</td>
<td>-2000000000,0...200000000,0 kWh</td>
<td>1 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.55</td>
<td>Licznik GWh inw. (resetow.)</td>
<td>Real</td>
<td>0...65535 GWh</td>
<td>1 = 1 GWh</td>
<td></td>
</tr>
<tr>
<td>01.56</td>
<td>Licznik MWh inw. (resetow.)</td>
<td>Real</td>
<td>0...1000 MWh</td>
<td>1 = 1 MWh</td>
<td></td>
</tr>
<tr>
<td>01.57</td>
<td>Licznik kWh inw. (resetow.)</td>
<td>Real</td>
<td>0...1000 kWh</td>
<td>1 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>01.58</td>
<td>Skumul. energia inw. (resetow.)</td>
<td>Real</td>
<td>-2000000000,0...200000000,0 kWh</td>
<td>1 = 1 kWh</td>
<td></td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.61</td>
<td>Użyta bezwzgl. pręd. sil.</td>
<td>Real</td>
<td>0.00… 30000.00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>01.62</td>
<td>Bezwzględna prędk. silnika %</td>
<td>Real</td>
<td>0,00…100,00% %</td>
<td>100 = 1 %</td>
<td></td>
</tr>
<tr>
<td>01.63</td>
<td>Bezwzględna częstotl. wyj.</td>
<td>Real</td>
<td>0,00… 500,00 Hz Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>01.64</td>
<td>Bezwzględny moment silnika</td>
<td>Real</td>
<td>0,00… 1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>01.65</td>
<td>Bezwzględna moc wyjściowa</td>
<td>Real</td>
<td>0,00… 32767,00 kW</td>
<td>100 = 1 kW</td>
<td></td>
</tr>
<tr>
<td>01.66</td>
<td>Bez. moc wyjśc. % wart. znam. silnika</td>
<td>Real</td>
<td>0,00…300,00 %</td>
<td>100 = 1 %</td>
<td></td>
</tr>
<tr>
<td>01.67</td>
<td>Bez. moc wyjśc. % wart. zn. przem.</td>
<td>Real</td>
<td>0,00…300,00 %</td>
<td>100 = 1 %</td>
<td></td>
</tr>
<tr>
<td>01.68</td>
<td>Bezwzgl. moc na wale sil.</td>
<td>Real</td>
<td>0,00… 30000,00 kW</td>
<td>100 = 1 kW</td>
<td></td>
</tr>
</tbody>
</table>

03 Wejściowe wartości zadane

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.01</td>
<td>Wartość zadana z panelu</td>
<td>Real</td>
<td>-100000,00…100000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.02</td>
<td>Zdalna wart. zad. z panelu</td>
<td>Real</td>
<td>-100000,00…100000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.05</td>
<td>W. zad. 1 mag. kom. A</td>
<td>Real</td>
<td>-100000,00…100000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.06</td>
<td>W. zad. 2 mag. kom. A</td>
<td>Real</td>
<td>-100000,00…100000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.09</td>
<td>Wart. zadana 1 EFB</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.10</td>
<td>Wart. zadana 2 EFB</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.17</td>
<td>Wart. zad. zinteg. panelu</td>
<td>Real</td>
<td>-100000,00…100000,00</td>
<td>-</td>
</tr>
<tr>
<td>03.18</td>
<td>Zdalna w. zad. zinteg. panelu</td>
<td>Real</td>
<td>-100000,00…100000,00</td>
<td>-</td>
</tr>
</tbody>
</table>

04 Ostrzeżenia i błędy

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.01</td>
<td>Błąd powodujący zatrz. awar.</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.02</td>
<td>Aktywny błąd 2</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.03</td>
<td>Aktywny błąd 3</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.06</td>
<td>Aktywne ostrzeżenie 1</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.07</td>
<td>Aktywne ostrzeżenie 2</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.08</td>
<td>Aktywne ostrzeżenie 3</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.11</td>
<td>Najnowszy błąd</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.12</td>
<td>Najnowszy błąd 2</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.13</td>
<td>Najnowszy błąd 3</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.16</td>
<td>Najnowsze ostrzeżenie</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.17</td>
<td>Najnowsze ostrzeżenie 2</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
<tr>
<td>04.18</td>
<td>Najnowsze ostrzeżenie 3</td>
<td>Dane</td>
<td>0000h…FFFFFh</td>
<td>-</td>
</tr>
</tbody>
</table>

05 Diagnostyka

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.01</td>
<td>Licznik czasu włączenia</td>
<td>Real</td>
<td>0...65535 d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>05.02</td>
<td>Licznik czasu pracy</td>
<td>Real</td>
<td>0...65535 d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>05.03</td>
<td>Godziny pracy</td>
<td>Real</td>
<td>0,0...429496729,5 h</td>
<td>10 = 1 h</td>
</tr>
<tr>
<td>05.04</td>
<td>Licznik czasu włąc. went.</td>
<td>Real</td>
<td>0...65535 d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>05.10</td>
<td>Temp. karty sterowania</td>
<td>Real</td>
<td>-100…300°C °C lub °F</td>
<td>10 = 1°C</td>
</tr>
<tr>
<td>05.11</td>
<td>Temperatura inwertera</td>
<td>Real</td>
<td>-40,0…160,0 %</td>
<td>10 = 1%</td>
</tr>
</tbody>
</table>
05 Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.22</td>
<td>Słowo diagnostyczne 3</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>05.80</td>
<td>Prędk. silnika przy błędzie</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>05.81</td>
<td>Częstotli. wyj. przy błędzie</td>
<td>Real</td>
<td>-500,00…500,00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>05.82</td>
<td>Napięcie DC przy błędzie</td>
<td>Real</td>
<td>0,00…2000,00 V</td>
<td>100 = 1 V</td>
<td></td>
</tr>
<tr>
<td>05.83</td>
<td>Prąd silnika przy błędzie</td>
<td>Real</td>
<td>0,00…30000,00 A</td>
<td>100 = 1 A</td>
<td></td>
</tr>
<tr>
<td>05.84</td>
<td>Mom. siln. podczas błędu</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>05.85</td>
<td>Gł. sł. stanu podczas błędu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.86</td>
<td>Opóźn. stan wej. DI przy bł.</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.87</td>
<td>Temp. inw. podczas błędu</td>
<td>PB</td>
<td>-40,0…160,0 °C</td>
<td>10 = 1°C</td>
<td></td>
</tr>
<tr>
<td>05.88</td>
<td>Uż. w. zad. podczas błędu</td>
<td>Real</td>
<td>-500,00…500,00 Hz / -1600,0…1600,0 % / 30000,00…30000,00 obr./min</td>
<td>100 = 1 Hz / 10 = 1 % / 100 = 1 obr./min</td>
<td></td>
</tr>
</tbody>
</table>

06 Słowa sterowania i stanu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.01</td>
<td>Główne słowo sterowania</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.11</td>
<td>Główne słowo stanu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.16</td>
<td>Słowo stanu 1 przem.</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.17</td>
<td>Słowo stanu 2 przem.</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.18</td>
<td>Słowo stanu przerw. startu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.19</td>
<td>Słowo stanu ster. prędk.</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.20</td>
<td>Słowo stanu prędkości stałej</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.21</td>
<td>Słowo stanu 3</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.30</td>
<td>Wybór bitu 11 MSW</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.31</td>
<td>Wybór bitu 12 MSW</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.32</td>
<td>Wybór bitu 13 MSW</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.33</td>
<td>Wybór bitu 14 MSW</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

07 Informacje systemowe

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.03</td>
<td>ID typu przemienneika</td>
<td>Lista</td>
<td>0…999</td>
<td>-</td>
</tr>
<tr>
<td>07.04</td>
<td>Nazwa oprogramowania</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.05</td>
<td>Wersja oprogramowania</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.06</td>
<td>Nazwa pak. ładowania</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.07</td>
<td>Wersja pak. ładowania</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.11</td>
<td>Wykorzystanie CPU</td>
<td>Real</td>
<td>0…100</td>
<td>%</td>
</tr>
<tr>
<td>07.25</td>
<td>Nazwa pakietu dost.</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.26</td>
<td>Wersja pakietu dost.</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.30</td>
<td>Stan progr. adaptacyjnego</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>07.31</td>
<td>Stan sekwencji AP</td>
<td>Dane</td>
<td>0…20</td>
<td>-</td>
</tr>
<tr>
<td>07.35</td>
<td>Konfiguracja przem. częst.</td>
<td>Lista</td>
<td>0…15</td>
<td>-</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>Sygnały apl. dźwigowej</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.01</td>
<td>SW1 dźwigu</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>09.03</td>
<td>FW1 dźwigu</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>09.06</td>
<td>W. zad. prędk. dźwigu</td>
<td>Real</td>
<td>-30000…30000,00</td>
<td>obr./min</td>
<td>100 = 1 obr./ min</td>
</tr>
<tr>
<td>09.16</td>
<td>W. zad. częstotl. dźwigu</td>
<td>Real</td>
<td>-500…500</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów 391

Grupy parametrów 10...99

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.02</td>
<td>Stan DI po opóźnieniach</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.03</td>
<td>Wybór wymuszenia DI</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.04</td>
<td>Wymuszone stany DI</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.21</td>
<td>Stan RO</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.22</td>
<td>Wybór wymuszenia RO</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.23</td>
<td>Wymuszone dane RO</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.24</td>
<td>Źródło RO1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.25</td>
<td>Opóźnienie WL. RO1</td>
<td>Real</td>
<td>0,0...3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.26</td>
<td>Opóźnienie WYŁ. RO1</td>
<td>Real</td>
<td>0,0...3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.99</td>
<td>Słowo sterowania RO/DIO</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.101</td>
<td>Licznik przełączeń RO1</td>
<td>Real</td>
<td>0...4294967000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Dodatkowe parametry 11

11 Standardowe DIO, FI, FO

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.02</td>
<td>Stan DIO po opóźnieniach</td>
<td>Lista</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.03</td>
<td>Wybór wymuszenia DIO</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.04</td>
<td>Wymuszenie wartości DIO</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.05</td>
<td>Konfiguracja DIO1</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.06</td>
<td>Źródło wyjścia DIO1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.07</td>
<td>Opóźnienie WL. DIO1</td>
<td>Real</td>
<td>0,0...3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.08</td>
<td>Opóźnienie WYŁ. DIO1</td>
<td>Real</td>
<td>0,0...3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.09</td>
<td>Funkcja DIO2</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.10</td>
<td>Źródło wyjścia DIO2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.11</td>
<td>Opóźnienie WL. DIO2</td>
<td>Real</td>
<td>0,0...3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.12</td>
<td>Opóźnienie WYŁ. DIO2</td>
<td>Real</td>
<td>0,0...3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.13</td>
<td>Konfiguracja D13</td>
<td>Lista</td>
<td>0, 1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.17</td>
<td>Konfiguracja D14</td>
<td>Lista</td>
<td>0, 1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.38</td>
<td>Wej. częst. 1: wart. akt.</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.39</td>
<td>Wej. częst. 1: wart.skalow.</td>
<td>Real</td>
<td>-32768,000...32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.42</td>
<td>Wej. częst. 1: minimum</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.43</td>
<td>Wej. częst. 1: maksimum</td>
<td>Real</td>
<td>-32768,000...32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.44</td>
<td>Wej. częst. 1: skalow. min.</td>
<td>Real</td>
<td>-32768,000...32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.45</td>
<td>Wej. częst. 1: skalow. maks.</td>
<td>Real</td>
<td>-32768,000...32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.46</td>
<td>Wej. częst. 2: wart. akt.</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.47</td>
<td>Wej. częst. 2: skalowane</td>
<td>Real</td>
<td>-32768,000...32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.50</td>
<td>Wej. częst. 2: minimum</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.51</td>
<td>Wej. częst. 2: maksimum</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.52</td>
<td>Wej. częst. 2: skalow. min.</td>
<td>Real</td>
<td>-32768,000...32767,000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------------</td>
<td>------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>11.53</td>
<td>Wej. częst. 2: skalow. maks.</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.54</td>
<td>Wyj. częst. 1: wart. akt.</td>
<td>Real</td>
<td>0…16000</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.55</td>
<td>Wyj. częst. 1: źródło</td>
<td>Lista</td>
<td>0, 1, 3, 4, 6…8, 10…14, 16</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.58</td>
<td>Wyj. częst. 1: min. źródła</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.59</td>
<td>Wyj. częst. 1: maks. źródła</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.60</td>
<td>Wyj. częst. 1: min. źródła</td>
<td>Real</td>
<td>0…16000</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.61</td>
<td>Wyj. częst. 1: maks. źródła</td>
<td>Real</td>
<td>0…16000</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.62</td>
<td>Wyj. częst. 2: wart. akt.</td>
<td>Real</td>
<td>0…16000</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.63</td>
<td>Wyj. częst. 2: źródło</td>
<td>Lista</td>
<td>0, 1, 3, 4, 6…8, 10…14, 16</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.66</td>
<td>Wyj. częst. 2: min. źródła</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.67</td>
<td>Wyj. częst. 2: maks. źródła</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.68</td>
<td>Wyj. częst. 2: min. źródła</td>
<td>Real</td>
<td>0…16000</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.69</td>
<td>Wyj. częst. 2: maks. źródła</td>
<td>Real</td>
<td>0…16000</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Standardowe AI

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.02</td>
<td>Wybór wymuszenia AI</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.03</td>
<td>Funkcja nadzoru AI</td>
<td>Lista</td>
<td>0…4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.04</td>
<td>Wybór nadzoru AI</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.11</td>
<td>Wartość aktualna AI1</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.12</td>
<td>Wartość skalowana AI1</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.13</td>
<td>Wartość wymuszona AI1</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.15</td>
<td>Wybór jednostki AI1</td>
<td>Lista</td>
<td>2, 10</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.16</td>
<td>Czas filtru AI1</td>
<td>Real</td>
<td>0,000…30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>12.17</td>
<td>Min. AI1</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.18</td>
<td>Maks. AI1</td>
<td>Real</td>
<td>0,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.19</td>
<td>AI1 skal. do min. AI1</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.20</td>
<td>AI1 skal. do maks. AI1</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.21</td>
<td>Wartość aktualna AI2</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.22</td>
<td>Wartość skalowana AI2</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.23</td>
<td>Wartość wymuszona AI2</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.25</td>
<td>Wybór jednostki AI2</td>
<td>Lista</td>
<td>2, 10</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.26</td>
<td>Czas filtru AI2</td>
<td>Real</td>
<td>0,000…30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>12.27</td>
<td>Min. AI2</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.28</td>
<td>Maks. AI2</td>
<td>Real</td>
<td>4,000…20,000 mA lub 0,000…10,000 V</td>
<td>mA lub V</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>12.29</td>
<td>AI2 skal. do min. AI2</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.30</td>
<td>AI2 skal. do maks. AI2</td>
<td>Real</td>
<td>-32768,000…32767,000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>12.101</td>
<td>Wartość procentowa A11</td>
<td>Real</td>
<td>0,00…100,00 %</td>
<td>100 = 1%</td>
<td></td>
</tr>
<tr>
<td>12.102</td>
<td>Wartość procentowa A12</td>
<td>Real</td>
<td>0,00…100,00 %</td>
<td>100 = 1%</td>
<td></td>
</tr>
</tbody>
</table>

13 Standardowe AO

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.02</td>
<td>Wybór wymuszenia AO</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>13.11</td>
<td>Wartość aktualna AO1</td>
<td>Real</td>
<td>0,00…22,000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>Źródło AO1</td>
<td>Żródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.13</td>
<td>Wartość wymuszona AO1</td>
<td>Real</td>
<td>0,00…22,000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.15</td>
<td>Wybór jednostki AO1</td>
<td>Lista</td>
<td>2, 10</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.16</td>
<td>Czas filtru AO1</td>
<td>Real</td>
<td>0,00…30,000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>13.17</td>
<td>Min. źródła AO1</td>
<td>Real</td>
<td>-32768,0…32767,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>13.18</td>
<td>Maks. źródła AO1</td>
<td>Real</td>
<td>-32768,0…32767,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>13.19</td>
<td>AO1 z min. źr. AO1</td>
<td>Real</td>
<td>0,00…22,000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.20</td>
<td>AO1 z maks. źr. AO1</td>
<td>Real</td>
<td>0,00…22,000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.91</td>
<td>Magazyn danych AO1</td>
<td>Real</td>
<td>-327,68…327,67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

15 Moduł rozszerzeń

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.01</td>
<td>Typ modułu rozszerzenia</td>
<td>Lista</td>
<td>0, 5…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.02</td>
<td>Wykryty moduł rozszerz.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.04</td>
<td>Stan RO/DO</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>15.05</td>
<td>Wybór wymuszenia RO/DO</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>15.06</td>
<td>Wymuszone wart. RO/DO</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>15.07</td>
<td>Źródło RO2</td>
<td>Żródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.08</td>
<td>Opóźnienie WL. RO2</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.09</td>
<td>Opóźnienie WYŁ. RO2</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.10</td>
<td>Źródło RO3</td>
<td>Żródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.11</td>
<td>Opóźnienie WL. RO3</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.12</td>
<td>Opóźnienie WYŁ. RO3</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.13</td>
<td>Źródło RO4</td>
<td>Żródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.14</td>
<td>Opóźnienie WL. RO4</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.15</td>
<td>Opóźnienie WYŁ. RO4</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.16</td>
<td>Źródło RO5</td>
<td>Żródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.17</td>
<td>Opóźnienie WL. RO5</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>15.18</td>
<td>Opóźnienie WYŁ. RO5</td>
<td>Real</td>
<td>0,0…3000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>

19 Tryb pracy

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.01</td>
<td>Aktualny tryb pracy</td>
<td>Lista</td>
<td>1…5, 10, 20</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.11</td>
<td>Wybór Zew1/Zew2</td>
<td>Żródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.12</td>
<td>Tryb sterowania Zew1</td>
<td>Lista</td>
<td>1…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.14</td>
<td>Tryb sterowania Zew2</td>
<td>Lista</td>
<td>1...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.16</td>
<td>Tryb sterowania lokalnego</td>
<td>Lista</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.17</td>
<td>Blokada ster. lokalnego</td>
<td>Lista</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Start/stop/kierunek

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01</td>
<td>Komendy Zew1</td>
<td>Lista</td>
<td>0...6, 11...12, 14, 21...23</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.02</td>
<td>Typ wyzw. startu Zew1</td>
<td>Lista</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.03</td>
<td>Źródło We1 Zew1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.04</td>
<td>Źródło We2 Zew1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.05</td>
<td>Źródło We3 Zew1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.06</td>
<td>Komendy Zew2</td>
<td>Lista</td>
<td>0...6, 11...12, 14, 21...23</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.07</td>
<td>Typ wyzw. startu Zew2</td>
<td>Lista</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.08</td>
<td>Źródło We1 Zew2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.09</td>
<td>Źródło We2 Zew2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.10</td>
<td>Źródło We3 Zew2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.11</td>
<td>Tryb zatrz. wył. zezw. na bieg</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.12</td>
<td>Źródło zezwolenia na bieg 1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.13</td>
<td>Zezwolenie na bieg 2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.14</td>
<td>Zezwolenie na bieg 3</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.15</td>
<td>Zezwolenie na bieg 4</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.19</td>
<td>Źródło zezwolenia na start</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.21</td>
<td>Kierunek</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.22</td>
<td>Zezwolenie na obracanie</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.25</td>
<td>Wł. biegu prób.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.26</td>
<td>Źródło startu biegu prób. 1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.27</td>
<td>Źródło startu biegu prób. 2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.210</td>
<td>Wej. szybkiego zatrzymania</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.211</td>
<td>Tryb szybkiego zatrzymania</td>
<td>Lista</td>
<td>1...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.212</td>
<td>Potwierdz. włączenia zasilania</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.213</td>
<td>Opózn. resetu powt. zasil.</td>
<td>Real</td>
<td>0...30000</td>
<td>ms</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>20.214</td>
<td>Pozycja zerowa joysticka</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.215</td>
<td>Opóżn. ostrz. joysticka</td>
<td>Real</td>
<td>0…30000</td>
<td>ms</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.216</td>
<td>Słowo sterowania 1 dźwigu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

21 Tryb start/stop

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.01</td>
<td>Tryb startu wektorowego</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.02</td>
<td>Czas magnesowania</td>
<td>Real</td>
<td>0…10000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>21.03</td>
<td>Tryb zatrzymania</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.04</td>
<td>Tryb zatrzymania awaryjnego</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.05</td>
<td>Źródło zatrzymania awar.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.06</td>
<td>Limit prędkości zerowej</td>
<td>Real</td>
<td>0,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1 obr./ min</td>
</tr>
<tr>
<td>21.07</td>
<td>Opóź. prędkości zerowej</td>
<td>Real</td>
<td>0…30000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>21.08</td>
<td>Sterowanie prądem DC</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.09</td>
<td>Prędkość trzymania DC</td>
<td>Real</td>
<td>0,00…1000,00</td>
<td>obr./min</td>
<td>100 = 1 obr./ min</td>
</tr>
<tr>
<td>21.10</td>
<td>Wart. zadana prędu DC</td>
<td>Real</td>
<td>0,0…100,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>21.11</td>
<td>Czas magnesowania dodat.</td>
<td>Real</td>
<td>0…3000</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>21.14</td>
<td>Wybór źródła nagrz. wstępnego</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.16</td>
<td>Prąd nagrzew. wstępnego</td>
<td>Real</td>
<td>0,0…30,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>21.18</td>
<td>Czas autom. restartowania</td>
<td>Real</td>
<td>0,0, 0,1…10,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>21.19</td>
<td>Tryb startu skalarnego</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.21</td>
<td>Częstotliwość trzymania DC</td>
<td>Real</td>
<td>0,00…1000,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>21.22</td>
<td>Opóźnienie startu</td>
<td>Real</td>
<td>0,00…60,00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>21.23</td>
<td>Płynny start</td>
<td>Real</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.24</td>
<td>Prąd płynnego start</td>
<td>Real</td>
<td>10,0…100,0</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>21.25</td>
<td>Prędkość płynnego start</td>
<td>Real</td>
<td>2,0…100,0</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>21.26</td>
<td>Prąd podbicia momentu</td>
<td>Real</td>
<td>15,0…300,0</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>21.30</td>
<td>Tryb zatr. z komp. prędk.</td>
<td>Real</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.31</td>
<td>Opóźn. zatr. z komp. prędk.</td>
<td>Real</td>
<td>0,00…1000,00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>21.32</td>
<td>Próg zatr. z komp. prędk.</td>
<td>Real</td>
<td>0…100</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>21.34</td>
<td>Wymusu aut. restart</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

22 Wybór wart. zadanej prędkości

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.01</td>
<td>Nieogr. w.zad. prędk.</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1 obr./ min</td>
</tr>
<tr>
<td>22.11</td>
<td>W. zad. pręd. 1 Zew1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.12</td>
<td>W. zad. pręd. 2 Zew1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.13</td>
<td>Funkcja pręd. Zew1</td>
<td>Lista</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>22.18</td>
<td>W. zad. prędk. 1 Zew2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.19</td>
<td>W. zad. prędk. 2 Zew2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.20</td>
<td>Funkcja prędk. Zew2</td>
<td>Lista</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.21</td>
<td>Funkcja stałej prędkości</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.22</td>
<td>Wybór stałej prędkości 1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.23</td>
<td>Wybór stałej prędkości 2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.24</td>
<td>Wybór stałej prędkości 3</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.26</td>
<td>Prędkość stała 1</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.27</td>
<td>Prędkość stała 2</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.28</td>
<td>Prędkość stała 3</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.29</td>
<td>Prędkość stała 4</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.30</td>
<td>Prędkość stała 5</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.31</td>
<td>Prędkość stała 6</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.32</td>
<td>Prędkość stała 7</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.41</td>
<td>Bezpieczna w. zad. prędk.</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.42</td>
<td>W. zad. biegu próbnego 1</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.43</td>
<td>W. zad. biegu próbnego 2</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.51</td>
<td>Funkcja prędk. krytycznej</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.52</td>
<td>Prędkość krytyczna 1 niska</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.53</td>
<td>Prędkość krytyczna 1 wys.</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.54</td>
<td>Prędkość krytyczna 2 niska</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.55</td>
<td>Prędkość krytyczna 2 wys.</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.56</td>
<td>Prędkość krytyczna 3 niska</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.57</td>
<td>Prędkość krytyczna 3 wys.</td>
<td>Real</td>
<td>-30000,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>22.71</td>
<td>Funkcja potencjom. silnika</td>
<td>Lista</td>
<td>0…3, 5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
| 22.72 | Wart. pocz. potencj. silnika | Real | -32768,00…32767,00 | - | 100 = 1
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.73</td>
<td>Źródło górne potenc. silnika</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.74</td>
<td>Źródło dolne potenc. silnika</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.75</td>
<td>Czas rampy potenc. silnika</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>22.76</td>
<td>Wartość min. potenc. silnika</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.77</td>
<td>Wart. maks potenc. silnika</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.80</td>
<td>Akt. w. zad. potenc. silnika</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.86</td>
<td>Akt. wart. zad. prędkości 6</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.87</td>
<td>Akt. wart. zad. prędkości 7</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.221</td>
<td>Kształt w. zad. prędkości</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.220</td>
<td>Włączenie pot.siln. dźwigu</td>
<td>Lista</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.223</td>
<td>Wyb. przysp. pot.siln. dźwigu</td>
<td>Lista</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.224</td>
<td>Min. prędk. pot.siln. dźwigu</td>
<td>Real</td>
<td>0…30000</td>
<td>obr./min</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.225</td>
<td>SW pot. siln. dźwigu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.226</td>
<td>Min. wart. pot. siln. dźwigu</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.227</td>
<td>Maks. wart. pot. siln. dźwigu</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.230</td>
<td>Akt. wart. zad. pot. siln. dźwigu</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

23 Rampa wart. zad. prędkości

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.01</td>
<td>W. zad. prędk. przed ramp.</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1</td>
</tr>
<tr>
<td>23.02</td>
<td>W. zad. prędk. po ramp.</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1</td>
</tr>
<tr>
<td>23.11</td>
<td>Wybór zestawu ramp</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.12</td>
<td>Czas przyspieszania 1</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.13</td>
<td>Czas zwalniania 1</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.14</td>
<td>Czas przyspieszania 2</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.15</td>
<td>Czas zwalniania 2</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.20</td>
<td>Czas przysp. dla biegu prób.</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.21</td>
<td>Czas zwaln. dla biegu prób.</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.23</td>
<td>Czas zatrz. awaryjnego</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.28</td>
<td>Zmienne nachylenie wł.</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.29</td>
<td>Tempo zmiennego nachyl.</td>
<td>Real</td>
<td>2…30000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>23.32</td>
<td>Czas kształtu 1</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.33</td>
<td>Czas kształtu 2</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.201</td>
<td>Czas przysp. 1 pot. siln. dźwigu</td>
<td>Real</td>
<td>0,00…3600,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.202</td>
<td>Czas zwaln. 1 pot. siln. dźwigu</td>
<td>Real</td>
<td>0,00…3600,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----</td>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>23.206</td>
<td>Czas zwal. szybkiego zatr.</td>
<td>Real</td>
<td>0,00…3000,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
</tbody>
</table>

24 Warunkowa w. zad. prędkości

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. w. zad. prędkości</th>
<th>Real</th>
<th>-30000,00…30000,00</th>
<th>obr./min</th>
<th>100 = 1 obr./ min</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.206</td>
<td>Czas zwal. szybkiego zatr.</td>
<td>Real</td>
<td>0,00…3000,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
</tbody>
</table>

24.01 Użyta wart. zad. prędkości

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. w. zad. momentu ster. prędk.</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
</table>

25 Sterowanie prędkością

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. w. zad. momentu ster. prędk.</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.01</td>
<td>Wart. w. zad. momentu ster. prędk.</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
</tbody>
</table>

25 Sterowanie prędkością

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. w. zad. momentu ster. prędk.</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.01</td>
<td>Wart. w. zad. momentu ster. prędk.</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
</tbody>
</table>

26 Łańcuch wart. zad. momentu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. zad. momentu do TC</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.01</td>
<td>Wart. zad. momentu do TC</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
</tbody>
</table>

26.02 Użyta wart. zad. momentu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. zad. momentu do TC</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.02</td>
<td>Użyta wart. zad. momentu</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
</tbody>
</table>

26.09 Maks. wart. zad. momentu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. zad. momentu do TC</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.09</td>
<td>Maks. wart. zad. momentu</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
</tbody>
</table>

26.09 Maks. wart. zad. momentu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wart. zad. momentu do TC</th>
<th>Real</th>
<th>-1600,0…1600,0</th>
<th>%</th>
<th>10 = 1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.09</td>
<td>Maks. wart. zad. momentu</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
</tbody>
</table>

26.11 Źródło wart. zad. momentu 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Źródło wart. zad. momentu 1</th>
<th>Źródło analogowe</th>
<th>-</th>
<th>-</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.11</td>
<td>Źródło wart. zad. momentu 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

26.12 Źródło wart. zad. momentu 2

<table>
<thead>
<tr>
<th>Nr</th>
<th>Źródło wart. zad. momentu 2</th>
<th>Źródło analogowe</th>
<th>-</th>
<th>-</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.12</td>
<td>Źródło wart. zad. momentu 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

26.13 Funkcja w. zad. momentu 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Funkcja w. zad. momentu 1</th>
<th>Lista</th>
<th>0…5</th>
<th>-</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.13</td>
<td>Funkcja w. zad. momentu 1</td>
<td>Lista</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

26.14 Wybór w. zad. momentu 1/2

<table>
<thead>
<tr>
<th>Nr</th>
<th>Wybór w. zad. momentu 1/2</th>
<th>Źródło cyfrowe</th>
<th>-</th>
<th>-</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.14</td>
<td>Wybór w. zad. momentu 1/2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

26.17 Czas filtru w. zad. momentu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Czas filtru w. zad. momentu</th>
<th>Real</th>
<th>0,00…30,000</th>
<th>s</th>
<th>1000 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.17</td>
<td>Czas filtru w. zad. momentu</td>
<td>Real</td>
<td>0,00…30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
</tbody>
</table>

26.18 Czas wzrostu rampy mom.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Czas wzrostu rampy mom.</th>
<th>Real</th>
<th>0,00…60,000</th>
<th>s</th>
<th>1000 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.18</td>
<td>Czas wzrostu rampy mom.</td>
<td>Real</td>
<td>0,00…60,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
</tbody>
</table>

26.19 Czas spadku rampy mom.

<p>| Nr | Czas spadku rampy mom. | Real | 0,00…60,000 | s | 1000 = 1 s |</p>
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.21</td>
<td>Wyb. momentu: mom. wej.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.22</td>
<td>Wyb. momentu: prędk. wej.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.70</td>
<td>Akt. w. zad. momentu 1</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.71</td>
<td>Akt. w. zad. momentu 2</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.72</td>
<td>Akt. w. zad. momentu 3</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.73</td>
<td>Akt. w. zad. momentu 4</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.74</td>
<td>Wyj. w. zad. mom. po ramp.</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.75</td>
<td>Akt. w. zad. momentu 5</td>
<td>Real</td>
<td>-1600,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.81</td>
<td>Wzmoc. dla kontr.nagł.przysp</td>
<td>Real</td>
<td>0,0…10000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>28.01</td>
<td>Wejście rampy w. zad. częst.</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.02</td>
<td>Wyjście rampy w. zad. częst.</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.11</td>
<td>W. zad. częst. 1 Zew1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.12</td>
<td>W. zad. częst. 2 Zew1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.13</td>
<td>Funkcja częstotliwości Zew1</td>
<td>Lista</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.15</td>
<td>W. zad. częst. 1 Zew2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.16</td>
<td>W. zad. częst. 2 Zew2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.17</td>
<td>Funkcja częstotliwości Zew2</td>
<td>Lista</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.21</td>
<td>Funkcja stałej częstotliwości PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.22</td>
<td>Wybór stałej częstotliwości 1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.23</td>
<td>Wybór stałej częstotliwości 2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.24</td>
<td>Wybór stałej częstotliwości 3</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.26</td>
<td>Stała częstotliwość 1</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.27</td>
<td>Stała częstotliwość 2</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.28</td>
<td>Stała częstotliwość 3</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.29</td>
<td>Stała częstotliwość 4</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.30</td>
<td>Stała częstotliwość 5</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.31</td>
<td>Stała częstotliwość 6</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.32</td>
<td>Stała częstotliwość 7</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.41</td>
<td>Bezpieczna wart. zad. częst.</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.51</td>
<td>Funkcja częst. krytycznej PB</td>
<td>00b...11b</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.52</td>
<td>Częst. krytyczna 1 niska</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.53</td>
<td>Częst. krytyczna 1 wysoka</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
</tbody>
</table>
400 Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.54</td>
<td>Częst. krytyczna 2 niska</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.55</td>
<td>Częst. krytyczna 2 wysoka</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.56</td>
<td>Częst. krytyczna 3 niska</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.57</td>
<td>Częst. krytyczna 3 wysoka</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.71</td>
<td>Wybór ust. rampy częst.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.72</td>
<td>Czas przysp. 1 częstotliwości</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>28.73</td>
<td>Czas zwaln. 1 częstotliwości</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>28.74</td>
<td>Czas przysp. 2 częstotliwości</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>28.75</td>
<td>Czas zwaln. 2 częstotliwości</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>28.76</td>
<td>Źródło wart. zero. wej. rampy</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.82</td>
<td>Kształt rampy 1</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>28.83</td>
<td>Kształt rampy 2</td>
<td>Real</td>
<td>0,000…1800,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>28.92</td>
<td>Akt. w. zad. częstotl. 3</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.96</td>
<td>Akt. w. zad. częstotl. 7</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.97</td>
<td>Nieogr. wart. zad. częst.</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.211</td>
<td>Kształt w. zad. częstotl.</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

30 Limity

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.01</td>
<td>Słowo limitu 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.02</td>
<td>Moment: stan limitu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.11</td>
<td>Min. prędkość</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1 obr./ min</td>
</tr>
<tr>
<td>30.12</td>
<td>Maks. prędkość</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>obr./min</td>
<td>100 = 1 obr./ min</td>
</tr>
<tr>
<td>30.13</td>
<td>Min. częstotliwość</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>30.14</td>
<td>Maks. częstotliwość</td>
<td>Real</td>
<td>-500,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>30.17</td>
<td>Maks. prąd</td>
<td>Real</td>
<td>0,00…30000,00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>30.18</td>
<td>Wybór lim. momentu</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.19</td>
<td>Min. moment 1</td>
<td>Real</td>
<td>-1600,0…0,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.20</td>
<td>Maks. moment 1</td>
<td>Real</td>
<td>0,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.21</td>
<td>Źródło min. momentu 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.22</td>
<td>Źródło maks. momentu 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.23</td>
<td>Minimalny moment 2</td>
<td>Real</td>
<td>-1600,0…0,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.24</td>
<td>Maksymalny moment 2</td>
<td>Real</td>
<td>0,0…1600,0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.26</td>
<td>Limit mocy napędowej</td>
<td>Real</td>
<td>0,00…600,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>30.27</td>
<td>Limit mocy generowanej</td>
<td>Real</td>
<td>-600,00…0,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>30.30</td>
<td>Kontrola przepięć</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.31</td>
<td>Kontr. nad zbyt niskim nap.</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.203</td>
<td>Strefa nieczul. do przodu</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

30.204 Strefa nieczuł. do tyłu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.204</td>
<td>Strefa nieczuł. do tyłu</td>
<td>Real</td>
<td>0,00...100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>

31 Funkcje błędu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.01</td>
<td>Żródło zdarzenia zewn. 1</td>
<td>żródło cyfrowe</td>
<td>-</td>
</tr>
<tr>
<td>31.02</td>
<td>Typ zdarzenia zewn. 1</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.03</td>
<td>Żródło zdarzenia zewn. 2</td>
<td>żródło cyfrowe</td>
<td>-</td>
</tr>
<tr>
<td>31.04</td>
<td>Typ zdarzenia zewn. 2</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.05</td>
<td>Żródło zdarzenia zewn. 3</td>
<td>żródło cyfrowe</td>
<td>-</td>
</tr>
<tr>
<td>31.06</td>
<td>Typ zdarzenia zewn. 3</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.07</td>
<td>Żródło zdarzenia zewn. 4</td>
<td>żródło cyfrowe</td>
<td>-</td>
</tr>
<tr>
<td>31.08</td>
<td>Typ zdarzenia zewn. 4</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.09</td>
<td>Żródło zdarzenia zewn. 5</td>
<td>żródło cyfrowe</td>
<td>-</td>
</tr>
<tr>
<td>31.10</td>
<td>Typ zdarzenia zewn. 5</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.11</td>
<td>Wybór resetu błędu</td>
<td>żródło cyfrowe</td>
<td>-</td>
</tr>
<tr>
<td>31.12</td>
<td>Wybór autoresetu</td>
<td>PB</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>31.13</td>
<td>Błąd wybieralny</td>
<td>real</td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>31.14</td>
<td>Liczba prób</td>
<td>real</td>
<td>0...5</td>
</tr>
<tr>
<td>31.15</td>
<td>Łączny czas prób</td>
<td>real</td>
<td>1,0...600,0</td>
</tr>
<tr>
<td>31.16</td>
<td>Czas opóźnienia</td>
<td>real</td>
<td>0,0...120,0</td>
</tr>
<tr>
<td>31.19</td>
<td>Utrata fazy silnika</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.20</td>
<td>Błąd doziemienia</td>
<td>lista</td>
<td>0...2</td>
</tr>
<tr>
<td>31.21</td>
<td>Utrata fazy zasilania</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.22</td>
<td>Wskazanie STO praca/zatrz.</td>
<td>lista</td>
<td>0...5</td>
</tr>
<tr>
<td>31.23</td>
<td>Błąd okablow. lub doziemie.</td>
<td>lista</td>
<td>0...1</td>
</tr>
<tr>
<td>31.24</td>
<td>Funkcja utyku</td>
<td>lista</td>
<td>0...2</td>
</tr>
<tr>
<td>31.25</td>
<td>Limit prądu f. utyku</td>
<td>real</td>
<td>0,0...1600,0</td>
</tr>
<tr>
<td>31.26</td>
<td>Limit prędkości f. utyku</td>
<td>real</td>
<td>0,00...10000,0</td>
</tr>
<tr>
<td>31.27</td>
<td>Limit częstotliwości futyku</td>
<td>real</td>
<td>0,00...1000,00</td>
</tr>
<tr>
<td>31.28</td>
<td>Czas utyku</td>
<td>real</td>
<td>0...3600</td>
</tr>
<tr>
<td>31.30</td>
<td>Marg. wyl. dla przekr. prędk.</td>
<td>real</td>
<td>0,00...10000,00</td>
</tr>
<tr>
<td>31.31</td>
<td>Marg. wyl. dla przekr. częst.</td>
<td>real</td>
<td>0,00...10000,00</td>
</tr>
<tr>
<td>31.32</td>
<td>Nadzór rampy zatrzymania awaryjn.</td>
<td>real</td>
<td>0...300</td>
</tr>
<tr>
<td>31.33</td>
<td>Opóź. nadzoru rampy zatrz. awaryj.</td>
<td>real</td>
<td>0...100</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.205</td>
<td>Maskowanie ostrz. dźwigu</td>
<td>Źródło analogowe</td>
<td>0, 1, 4, 6...10, 11...15</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

32 Nadzór

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.01</td>
<td>Stan nadzoru</td>
<td>PB</td>
<td>0000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.05</td>
<td>Funkcja nadzoru 1</td>
<td>Lista</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.06</td>
<td>Działanie nadzoru 1</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.07</td>
<td>Sygnał nadzoru 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.08</td>
<td>Czas filtru nadzoru 1</td>
<td>Real</td>
<td>0,000...30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.09</td>
<td>Nadzór 1: dolny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.10</td>
<td>Nadzór 1: górny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.11</td>
<td>Histereza nadzoru 1</td>
<td>Real</td>
<td>0,00...100000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.15</td>
<td>Funkcja nadzoru 2</td>
<td>Lista</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.16</td>
<td>Działanie nadzoru 2</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.17</td>
<td>Sygnał nadzoru 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.18</td>
<td>Czas filtru nadzoru 2</td>
<td>Real</td>
<td>0,000...30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.19</td>
<td>Nadzór 2: dolny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.20</td>
<td>Nadzór 2: górny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.21</td>
<td>Histereza nadzoru 2</td>
<td>Real</td>
<td>0,00...100000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.25</td>
<td>Funkcja nadzoru 3</td>
<td>Lista</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.26</td>
<td>Działanie nadzoru 3</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.27</td>
<td>Sygnał nadzoru 3</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.28</td>
<td>Czas filtru nadzoru 3</td>
<td>Real</td>
<td>0,000...30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.29</td>
<td>Nadzór 3: dolny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.30</td>
<td>Nadzór 3: górny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.31</td>
<td>Histereza nadzoru 3</td>
<td>Real</td>
<td>0,00...100000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.35</td>
<td>Funkcja nadzoru 4</td>
<td>Lista</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.36</td>
<td>Działanie nadzoru 4</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.37</td>
<td>Sygnał nadzoru 4</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.38</td>
<td>Czas filtru nadzoru 4</td>
<td>Real</td>
<td>0,000...30,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.39</td>
<td>Nadzór 4: dolny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.40</td>
<td>Nadzór 4: górny limit</td>
<td>Real</td>
<td>-21474830,00...21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.41</td>
<td>Histereza nadzoru 4</td>
<td>Real</td>
<td>0,00...100000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.45</td>
<td>Funkcja nadzoru 5</td>
<td>Lista</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>32.46</td>
<td>Działanie nadzoru 5</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.47</td>
<td>Sygnał nadzoru 5</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.48</td>
<td>Czas filtru nadzoru 5</td>
<td>Real</td>
<td>0,000…30,000</td>
<td>s</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>32.49</td>
<td>Nadzór 5: dolny limit</td>
<td>Real</td>
<td>-21474830,00…21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.50</td>
<td>Nadzór 5: górny limit</td>
<td>Real</td>
<td>-21474830,00…21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.51</td>
<td>Histereza nadzoru 5</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.55</td>
<td>Funkcja nadzoru 6</td>
<td>Lista</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.56</td>
<td>Działanie nadzoru 6</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.57</td>
<td>Sygnał nadzoru 6</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.58</td>
<td>Czas filtru nadzoru 6</td>
<td>Real</td>
<td>0,000…30,000</td>
<td>s</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>32.59</td>
<td>Nadzór 6: dolny limit</td>
<td>Real</td>
<td>-21474830,00…21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.60</td>
<td>Nadzór 6: górny limit</td>
<td>Real</td>
<td>-21474830,00…21474830,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.61</td>
<td>Histereza nadzoru 6</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

34 Funkcje czasowe

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.01</td>
<td>Stan funkcji czasowych</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.02</td>
<td>Stan timera</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.04</td>
<td>Stan okr. czas./dnia wyjątku</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.10</td>
<td>Włączenie funkcji czasowych</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.11</td>
<td>Konfiguracja timera 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.12</td>
<td>Czas startu timera 1</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.13</td>
<td>Czas trwania timera 1</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.14</td>
<td>Konfiguracja timera 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.15</td>
<td>Czas startu timera 2</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.16</td>
<td>Czas trwania timera 2</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.17</td>
<td>Konfiguracja timera 3</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.18</td>
<td>Czas startu timera 3</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.19</td>
<td>Czas trwania timera 3</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.20</td>
<td>Konfiguracja timera 4</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.21</td>
<td>Czas startu timera 4</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.22</td>
<td>Czas trwania timera 4</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.23</td>
<td>Konfiguracja timera 5</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.24</td>
<td>Czas startu timera 5</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>-----</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>34.25</td>
<td>Czas trwania timera 5</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.26</td>
<td>Konfiguracja timera 6</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.27</td>
<td>Czas startu timera 6</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.28</td>
<td>Czas trwania timera 6</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.29</td>
<td>Konfiguracja timera 7</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.30</td>
<td>Czas startu timera 7</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.31</td>
<td>Czas trwania timera 7</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.32</td>
<td>Konfiguracja timera 8</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.33</td>
<td>Czas startu timera 8</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.34</td>
<td>Czas trwania timera 8</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.35</td>
<td>Konfiguracja timera 9</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.36</td>
<td>Czas startu timera 9</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.37</td>
<td>Czas trwania timera 9</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.38</td>
<td>Konfiguracja timera 10</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.39</td>
<td>Czas startu timera 10</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.40</td>
<td>Czas trwania timera 10</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.41</td>
<td>Konfiguracja timera 11</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.42</td>
<td>Czas startu timera 11</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.43</td>
<td>Czas trwania timera 11</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.44</td>
<td>Konfiguracja timera 12</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.45</td>
<td>Czas startu timera 12</td>
<td>Czas</td>
<td>00:00:00…23:59:59</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>34.46</td>
<td>Czas trwania timera 12</td>
<td>Czas trwania</td>
<td>00 00:00…07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>34.60</td>
<td>Dzień rozpoczęcia okresu 1</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.61</td>
<td>Dzień rozpoczęcia okresu 2</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.62</td>
<td>Dzień rozpoczęcia okresu 3</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.63</td>
<td>Dzień rozpoczęcia okresu 4</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.70</td>
<td>Liczba aktywnych wyjątków</td>
<td>Real</td>
<td>0…16</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.71</td>
<td>Typy wyjątków</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.72</td>
<td>Start wyjątku 1</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.73</td>
<td>Czas trwania wyjątku 1</td>
<td>Real</td>
<td>0…60</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.74</td>
<td>Start wyjątku 2</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.75</td>
<td>Czas trwania wyjątku 2</td>
<td>Real</td>
<td>0…60</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.76</td>
<td>Start wyjątku 3</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.77</td>
<td>Czas trwania wyjątku 3</td>
<td>Real</td>
<td>0…60</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.78</td>
<td>Dzień wyjątku 4</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>34.79</td>
<td>Dzień wyjątku 5</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.80</td>
<td>Dzień wyjątku 6</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.81</td>
<td>Dzień wyjątku 7</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.82</td>
<td>Dzień wyjątku 8</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.83</td>
<td>Dzień wyjątku 9</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.84</td>
<td>Dzień wyjątku 10</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.85</td>
<td>Dzień wyjątku 11</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.86</td>
<td>Dzień wyjątku 12</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.87</td>
<td>Dzień wyjątku 13</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.88</td>
<td>Dzień wyjątku 14</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.89</td>
<td>Dzień wyjątku 15</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.90</td>
<td>Dzień wyjątku 16</td>
<td>Data</td>
<td>01.01…31.12</td>
<td>d</td>
<td>1 = 1 d</td>
</tr>
<tr>
<td>34.100</td>
<td>Timer łączony 1</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.101</td>
<td>Timer łączony 2</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.102</td>
<td>Timer łączony 3</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.110</td>
<td>Funkcja czasu dodat.</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34.111</td>
<td>Źródło aktyw. funk. czasu dod.</td>
<td></td>
<td></td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>34.112</td>
<td>Długość czasu dodat.</td>
<td></td>
<td>00 00:00...07 00:00</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
</tbody>
</table>

35 Ochrona termiczna silnika

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.01</td>
<td>Szacowana temperatura silnika</td>
<td>Real</td>
<td>-60…1000°C lub -76…1832°F</td>
<td>°C lub °F</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>35.02</td>
<td>Zmierzona temperatura 1</td>
<td>Real</td>
<td>-10…1000°C lub 14…1832°F</td>
<td>°C, °F lub Ω</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.03</td>
<td>Zmierzona temperatura 2</td>
<td>Real</td>
<td>-10…1000°C lub 14…1832°F</td>
<td>°C, °F lub Ω</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.11</td>
<td>Źródło temperatury 1</td>
<td>Lista</td>
<td>0, 1, 5…7, 11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.12</td>
<td>Limit błędu temp. 1</td>
<td>Real</td>
<td>-60…5000°C lub Ω albo -76…9032°F</td>
<td>°C, °F lub Ω</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.13</td>
<td>Limit ostrzeżenia temp. 1</td>
<td>Real</td>
<td>-60…5000°C lub Ω albo -76…9032°F</td>
<td>°C, °F lub Ω</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.14</td>
<td>Źródło AI temperatury 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.21</td>
<td>Źródło temperatury 2</td>
<td>Lista</td>
<td>0, 1, 11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.22</td>
<td>Limit błędu temp. 2</td>
<td>Real</td>
<td>-60…5000°C lub Ω, lub -76…9032°F</td>
<td>°C, °F lub Ω</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.23</td>
<td>Limit ostrzeżenia temp. 2</td>
<td>Real</td>
<td>-60…5000°C lub Ω, lub -76…9032°F</td>
<td>°C, °F lub Ω</td>
<td>1 = 1 jednostka</td>
</tr>
<tr>
<td>35.24</td>
<td>Źródło AI temperatury 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.50</td>
<td>Temperatura otoczenia silnika</td>
<td>Real</td>
<td>-60…100°C lub -75…212°F</td>
<td>°C</td>
<td>1 = 1 °</td>
</tr>
<tr>
<td>35.51</td>
<td>Krzywa obciążenia silnika</td>
<td>Real</td>
<td>50…150</td>
<td>%</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>35.52</td>
<td>Obciażenie przy zerowej prędk.</td>
<td>Real</td>
<td>25…150</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>35.53</td>
<td>Punkt przegięcia</td>
<td>Real</td>
<td>1,00…500,00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>35.54</td>
<td>Nominalny przyrost temp. siln.</td>
<td>Real</td>
<td>0…300°C lub 32…572°F</td>
<td>°C lub °F</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>35.55</td>
<td>Term.stała czasowa silnika</td>
<td>Real</td>
<td>100…10000</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>

36 Analiza obciążenia

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.01</td>
<td>PVL: źródło sygnału</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.02</td>
<td>PVL: czas filtru</td>
<td>Real</td>
<td>0,00…120,00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>36.06</td>
<td>AL2: źródło sygnału</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.07</td>
<td>AL2: skalowanie sygnału</td>
<td>Real</td>
<td>0,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>36.09</td>
<td>Reset rejestratorów</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.10</td>
<td>PVL: wartość szczycowa</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>36.11</td>
<td>PVL: data wart. szczytowej</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.12</td>
<td>PVL: godz. wart. szczytowej</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.13</td>
<td>PVL: prąd w szczycie</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>36.14</td>
<td>PVL: nap. DC w szczycie</td>
<td>Real</td>
<td>0,00…2000,00</td>
<td>V</td>
<td>100 = 1 V</td>
</tr>
<tr>
<td>36.15</td>
<td>PVL: prędkość w szczycie</td>
<td>Real</td>
<td>-30000…30000</td>
<td>obr./min</td>
<td>100 = 1 obr./min</td>
</tr>
<tr>
<td>36.16</td>
<td>PVL: data resetu</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.17</td>
<td>PVL: godzina resetu</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.20</td>
<td>AL1 0 do 10%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.21</td>
<td>AL1 10 do 20%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.22</td>
<td>AL1 20 do 30%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.23</td>
<td>AL1 30 do 40%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.24</td>
<td>AL1 40 do 50%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.25</td>
<td>AL1 50 do 60%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.26</td>
<td>AL1 60 do 70%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.27</td>
<td>AL1 70 do 80%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.28</td>
<td>AL1 80 do 90%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.29</td>
<td>AL1 ponad 90%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.40</td>
<td>AL2 0 do 10%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.41</td>
<td>AL2 10 do 20%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.42</td>
<td>AL2 20 do 30%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.43</td>
<td>AL2 30 do 40%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.44</td>
<td>AL2 40 do 50%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.45</td>
<td>AL2 50 do 60%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.46</td>
<td>AL2 60 do 70%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.47</td>
<td>AL2 70 do 80%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>36.48</td>
<td>AL2 80 do 90%</td>
<td>Real</td>
<td>0,00…100,00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>36.49</td>
<td>AL2 ponad 90%</td>
<td>Real</td>
<td>0,00…100,00 %</td>
<td>100 = 1 %</td>
<td></td>
</tr>
<tr>
<td>36.50</td>
<td>AL2: data resetu</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>36.51</td>
<td>AL2: godzina resetu</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

37 Krzywa obciążenia użytkownika

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.01</td>
<td>Słowo stanu wyjścia ULC</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.02</td>
<td>ULC — sygnał nadzoru</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.03</td>
<td>ULC - działania przeciąż.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.04</td>
<td>ULC - działania niedost.obc.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.11</td>
<td>ULC - tabela prędk.: pkt 1</td>
<td>Real</td>
<td>-30000,0…30000,0 obr./min</td>
<td>10 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>37.12</td>
<td>ULC - tabela prędk.: pkt 2</td>
<td>Real</td>
<td>-30000,0…30000,0 obr./min</td>
<td>10 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>37.13</td>
<td>ULC - tabela prędk.: pkt 3</td>
<td>Real</td>
<td>-30000,0…30000,0 obr./min</td>
<td>10 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>37.14</td>
<td>ULC - tabela prędk.: pkt 4</td>
<td>Real</td>
<td>-30000,0…30000,0 obr./min</td>
<td>10 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>37.15</td>
<td>ULC - tabela prędk.: pkt 5</td>
<td>Real</td>
<td>-30000,0…30000,0 obr./min</td>
<td>10 = 1 obr./min</td>
<td></td>
</tr>
<tr>
<td>37.16</td>
<td>ULC - tabela częst.: pkt 1</td>
<td>Real</td>
<td>-500,0…500,0 Hz</td>
<td>10 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.17</td>
<td>ULC - tabela częst.: pkt 2</td>
<td>Real</td>
<td>-500,0…500,0 Hz</td>
<td>10 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.18</td>
<td>ULC - tabela częst.: pkt 3</td>
<td>Real</td>
<td>-500,0…500,0 Hz</td>
<td>10 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.19</td>
<td>ULC - tabela częst.: pkt 4</td>
<td>Real</td>
<td>-500,0…500,0 Hz</td>
<td>10 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.20</td>
<td>ULC - tabela częst.: pkt 5</td>
<td>Real</td>
<td>-500,0…500,0 Hz</td>
<td>10 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.21</td>
<td>ULC - niedociążenie: pkt 1</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.22</td>
<td>ULC - niedociążenie: pkt 2</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.23</td>
<td>ULC - niedociążenie: pkt 3</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.24</td>
<td>ULC - niedociążenie: pkt 4</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.25</td>
<td>ULC - niedociążenie: pkt 5</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.31</td>
<td>ULC - przeciążenie: pkt 1</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.32</td>
<td>ULC - przeciążenie: pkt 2</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.33</td>
<td>ULC - przeciążenie: pkt 3</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.34</td>
<td>ULC - przeciążenie: pkt 4</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.35</td>
<td>ULC - przeciążenie: pkt 5</td>
<td>Real</td>
<td>-1600,0…1600,0 %</td>
<td>10 = 1 %</td>
<td></td>
</tr>
<tr>
<td>37.41</td>
<td>ULC — timer przeciążenia</td>
<td>Real</td>
<td>0,0…10000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>37.42</td>
<td>ULC — timer niedociążenia</td>
<td>Real</td>
<td>0,0…10000,0 s</td>
<td>10 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>

40 PID procesu: zestaw 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostki klienta regulatora PID</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.01</td>
<td>PID procesu: akt.wart. wyj.</td>
<td>Real</td>
<td>-200000,00…200000,00 %</td>
<td>100 = 1 %</td>
<td></td>
</tr>
<tr>
<td>40.02</td>
<td>PID procesu: akt.wart.sprz.zw.</td>
<td>Real</td>
<td>-200000,00…200000,00 %</td>
<td>100 = 1 %</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td>-------</td>
<td>--------------------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>40.03</td>
<td>PID procesu: akt.wart.nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.04</td>
<td>PID procesu: akt.wart.odchyl.</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.06</td>
<td>PID procesu: słowo stanu</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.07</td>
<td>Tryb pracy PID</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.08</td>
<td>Zest. 1: źródło sprz. zwrot. 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.09</td>
<td>Zest. 1: źródło sprz. zwrot. 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.10</td>
<td>Zest. 1: funkcja sprz. zwrot.</td>
<td>Lista</td>
<td>0…11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.11</td>
<td>Zest. 1: czas filtru sprz. zwrot.</td>
<td>Real</td>
<td>0,000…30,000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.14</td>
<td>Zest. 1: skal. nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.15</td>
<td>Zest. 1: skal. wyjścia</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.16</td>
<td>Zest. 1: źródło nastawy 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.17</td>
<td>Zest. 1: źródło nastawy 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.18</td>
<td>Zest. 1: funkcja nastawy</td>
<td>Lista</td>
<td>0…11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.19</td>
<td>Zest. 1: wybór wewn. nast. 1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.20</td>
<td>Zest. 1: wybór wewn. nast. 2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.21</td>
<td>Zest. 1: wewn. nastawa 1</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.22</td>
<td>Zest. 1: wewn. nastawa 2</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.23</td>
<td>Zest. 1: wewn. nastawa 3</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.24</td>
<td>Zest. 1: wewn. nastawa 0</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.26</td>
<td>Zest. 1: min. nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>40.27</td>
<td>Zest. 1: maks. nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.28</td>
<td>Zest. 1: czas zwiększ. nast.</td>
<td>Real</td>
<td>0,0…1800,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.29</td>
<td>Zest. 1: czas zmniejsz. nast.</td>
<td>Real</td>
<td>0,0…1800,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.30</td>
<td>Zest. 1: wł. blokow. nastawy</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.31</td>
<td>Zest. 1: odwr. różniczk.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.32</td>
<td>Zest. 1: wzmocnienie</td>
<td>Real</td>
<td>0,10…100,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.33</td>
<td>Zest. 1: czas całkowania</td>
<td>Real</td>
<td>0,0…9999,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.34</td>
<td>Zest. 1: czas różniczk.</td>
<td>Real</td>
<td>0,000…10,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>40.35</td>
<td>Zest. 1: czas filtru różniczk.</td>
<td>Real</td>
<td>0,0…10,00</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.36</td>
<td>Zest. 1: min. wyjście</td>
<td>Real</td>
<td>-200000,000…200000,00</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.37</td>
<td>Zest. 1: maks. wyjście</td>
<td>Real</td>
<td>-200000,000…200000,00</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.38</td>
<td>Zest. 1: blokow. wyjścia wł.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.39</td>
<td>Zest. 1: zakres strefy nieczu.</td>
<td>Real</td>
<td>0……200000,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.40</td>
<td>Zest. 1: opóż. strefy nieczu.</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.43</td>
<td>Zest. 1: poziom uśpienia</td>
<td>Real</td>
<td>0……200000,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.44</td>
<td>Zest. 1: opóź. uśpienia</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.45</td>
<td>Zest. 1: czas wzm. uśpienia</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.46</td>
<td>Zest. 1: krok wzmac. uśpienia</td>
<td>Real</td>
<td>-0……200000,0</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.47</td>
<td>Zest. 1: odchyl. przebudz.</td>
<td>Real</td>
<td>-200000,000…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.48</td>
<td>Zest. 1: opóźn. przebudz.</td>
<td>Real</td>
<td>0,00…60,00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>40.49</td>
<td>Zest. 1: tryb śledzenia</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.50</td>
<td>Zest. 1: wybór śledz. w. zad.</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.57</td>
<td>PID: wybór zestawu 1/2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.58</td>
<td>Zest. 1: zwiększ zabez.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.59</td>
<td>Zest. 1: zmniejsz zabez.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.60</td>
<td>Zestaw 1: žr. aktyw. PID</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.61</td>
<td>W. akt. skalow. nastawy</td>
<td>Real</td>
<td>-200000,000…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>40.62</td>
<td>Wewn. akt. wart. nast. PID</td>
<td>Real</td>
<td>-200000,000…200000,00</td>
<td>Jednostki klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>40.80</td>
<td>Zest. 1: źródło min. wart. wyj. PID</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.81</td>
<td>Zest. 1: źródło maks. wart. wyj. PID</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.89</td>
<td>Zest. 1: mnożnik nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.90</td>
<td>Zest. 1: mnożnik sprz. zwrot.</td>
<td>Real</td>
<td>--200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.91</td>
<td>Magazyn danych sprzężenia zwrotnego</td>
<td>Real</td>
<td>-327,68…327,67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.92</td>
<td>Magazyn danych nastawy</td>
<td>Real</td>
<td>-327,68…327,67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.96</td>
<td>% wyjścia z PID procesu</td>
<td>Real</td>
<td>-100,00…100,00</td>
<td>%</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.97</td>
<td>% sprz. zwrot. z PID procesu</td>
<td>Real</td>
<td>-100,00…100,00</td>
<td>%</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.98</td>
<td>% nastawy PID procesu</td>
<td>Real</td>
<td>-100,00…100,00</td>
<td>%</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.99</td>
<td>% odchylenia PID procesu</td>
<td>Real</td>
<td>-100,00…100,00</td>
<td>%</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

41 PID procesu: zestaw 2

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.08</td>
<td>Zest. 2: źródło sprz. zwrot. 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.09</td>
<td>Zest. 2: źródło sprz. zwrot. 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.10</td>
<td>Zest. 2: funkcja sprz. zwrot.</td>
<td>Lista</td>
<td>0…11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.11</td>
<td>Zest. 2: czas filtru sprz. zwrot.</td>
<td>Real</td>
<td>0,000…30,00</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>41.14</td>
<td>Zest. 2: skal. nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.15</td>
<td>Zest. 2: skal. wyjścia</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.16</td>
<td>Zest. 2: źródło nastawy 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.17</td>
<td>Zest. 2: źródło nastawy 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.18</td>
<td>Zest. 2: funkcja nastawy</td>
<td>Lista</td>
<td>0…11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.19</td>
<td>Zest. 2: wybór wewn.nast. 1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.20</td>
<td>Zest. 2: wybór wewn.nast. 2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.21</td>
<td>Zestaw 2: wewn. nastawa 1</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostka klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>41.22</td>
<td>Zestaw 2: wewn. nastawa 2</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostka klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>41.23</td>
<td>Zestaw 2: wewn. nastawa 3</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostka klienta regulatora PID</td>
<td>100 = 1 jednostka klienta regulatora PID</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>41.24</td>
<td>Zest. 2: wewn. nastawa 0</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID 100 = 1 jednostka klienta regulatora PID</td>
<td></td>
</tr>
<tr>
<td>41.26</td>
<td>Zest. 2: min. nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>- 100 = 1</td>
<td></td>
</tr>
<tr>
<td>41.27</td>
<td>Zest. 2: maks. nastawy</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>- 100 = 1</td>
<td></td>
</tr>
<tr>
<td>41.28</td>
<td>Zest. 2: czas zwiększ. nast.</td>
<td>Real</td>
<td>0,0…1800,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.29</td>
<td>Zest. 2: czas zmniejsz. nast.</td>
<td>Real</td>
<td>0,0…1800,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.30</td>
<td>Zest. 2: blokow. nastawy wł.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.31</td>
<td>Zest. 2: odwr. różniczk.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.32</td>
<td>Zest. 2: wzmocnienie</td>
<td>Real</td>
<td>0,01…100,00</td>
<td>- 100 = 1</td>
<td></td>
</tr>
<tr>
<td>41.33</td>
<td>Zest. 2: czas całkowania</td>
<td>Real</td>
<td>0,0…9999,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.34</td>
<td>Zest. 2: czas różniczk.</td>
<td>Real</td>
<td>0,000…10,000</td>
<td>s 1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.35</td>
<td>Zest. 2: czas filtru różniczk.</td>
<td>Real</td>
<td>0,0…10,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.36</td>
<td>Zest. 2: min. wyjście</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>- 10 = 1</td>
<td></td>
</tr>
<tr>
<td>41.37</td>
<td>Zest. 2: maks. wyjście</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>- 10 = 1</td>
<td></td>
</tr>
<tr>
<td>41.38</td>
<td>Zest. 2: wł. blokow. wyjścia</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.39</td>
<td>Zest. 2: zakres strefy nieczu.</td>
<td>Real</td>
<td>0…200000,0</td>
<td>- 10 = 1</td>
<td></td>
</tr>
<tr>
<td>41.40</td>
<td>Zest. 2: opóż. strefy nieczu.</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.43</td>
<td>Zest. 2: poziom uśpienia</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>- 10 = 1</td>
<td></td>
</tr>
<tr>
<td>41.44</td>
<td>Zest. 2: opóż. uśpienia</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.45</td>
<td>Zest. 2: czas wzm. uśpienia</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s 10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.46</td>
<td>Zest. 2: krok wzmac. uśpienia</td>
<td>Real</td>
<td>0,0…20000,00</td>
<td>Jednostki klienta regulatora PID 100 = 1 jednostka klienta regulatora PID</td>
<td></td>
</tr>
<tr>
<td>41.47</td>
<td>Zest. 2: odchyl. przebudz.</td>
<td>Real</td>
<td>-200000,00…200000,00</td>
<td>Jednostki klienta regulatora PID 100 = 1 jednostka klienta regulatora PID</td>
<td></td>
</tr>
<tr>
<td>41.48</td>
<td>Zest. 2: opóżn. przebudz.</td>
<td>Real</td>
<td>0,00…60,00</td>
<td>s 100 = 1 s</td>
<td></td>
</tr>
<tr>
<td>41.49</td>
<td>Zest. 2: tryb śledzenia</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.50</td>
<td>Zest. 2: wybór śledz. w. zad.</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.58</td>
<td>Zest. 2: zwiększ bezpiecz.</td>
<td>Lista</td>
<td>0…3</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.59</td>
<td>Zest. 2: zmniejsz bezpiecz.</td>
<td>Lista</td>
<td>0…3</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.60</td>
<td>Zestaw 2: źr. aktyw. PID</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>- 1 = 1</td>
<td></td>
</tr>
<tr>
<td>41.80</td>
<td>Zest. 2: źródło min. wart. wyj. PID</td>
<td>Lista</td>
<td>0…1</td>
<td>- 1 = 1</td>
<td></td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

#### Nr	Nazwa	Typ	Zakres	Jednostka	FbEq32
41.81 | Zest. 2: źródło maks. wart. wyj. PID | Lista | 0…1 | - | 1 = 1
41.89 | Zest. 2: mnożnik nastawy | Real | -200000,00…200000,00 | - | 100 = 1
41.90 | Zest. 2: mnożnik sprz. zwr. | Real | -200000,00…200000,00 | - | 100 = 1

43 Czoper hamowania

Nr	Nazwa	Typ	Zakres	Jednostka
43.01 | Temp. rezystora hamowania | Real | 0,0…120,0 | % | 10 = 1% |
43.06 | Funk. czopera hamowania | Lista | 0…2 | - | 1 = 1 |
43.07 | Zeworldzenie na pracę czopera | Źródło cyfrowe | - | - | 1 = 1 |
43.08 | Term. stała czas. rez. ham. | Real | 0…10000 | s | 1 = 1 s |
43.09 | Maks. moc ciągła rez. ham. | Real | 0,00…100000,00 | kW | 100 = 1 kW |
43.10 | Rezystancja rezystora | Real | 0,0…1000,0 | Ω | 10 = 1 Ω |
43.11 | Limit błędu rez. ham. | Real | 0…150 | % | 1 = 1% |
43.12 | Limit ostrz. rez. ham. | Real | 0…150 | % | 1 = 1% |

44 Sterowanie hamulcem mechan.

Nr	Nazwa	Typ	Zakres	Jednostka
44.01 | Stan sterowania hamulcem | PB | 0000h…FFFFh | - | 1 = 1 |
44.02 | Pamięć momentu ham. | Real | -1600,0…1600,0 | % | 10 = 1% |
44.03 | Wart.zad мом. dla otw.ham. | Real | -1600,0…1600,0 | % | 10 = 1% |
44.06 | Sterowanie hamulca wł. | Źródło cyfrowe | - | - | 1 = 1 |
44.07 | Wybór potwierdz. hamowania | Źródło cyfrowe | - | - | 1 = 1 |
44.08 | Opóźnienie otw. hamulca | Real | 0,00…5,00 | s | 100 = 1 s |
44.09 | Źródło mom. otw. hamulca | Źródło analogowe | - | - | 1 = 1 |
44.10 | Moment otwarcia hamulca | Real | -1000…1000 | % | 10 = 1% |
44.11 | Trzymaj zamknięty hamulce | Źródło cyfrowe | - | - | 1 = 1 |
44.12 | Ządanie zamknięcia hamulca | Źródło cyfrowe | - | - | 1 = 1 |
44.13 | Opóźnienie zamk. hamulca | Real | 0,00…60,00 | s | 100 = 1 s |
44.14 | Poziom zamk. hamulca | Real | 0,0…1000,0 | obr./min | 100 = 1 obr./min |
44.15 | Poz. opóźn. zamk. hamulca | Real | 0,00…10,00 | s | 100 = 1 s |
44.16 | Opóź. ponownego otw. ham. | Real | 0,00…10,00 | s | 100 = 1 s |
44.17 | Funkcja błędu hamulca | Lista | 0…2 | - | 1 = 1 |
44.18 | Opóźnienie błędu hamulca | Real | 0,00…60,00 | s | 100 = 1 s |
44.202 | Badanie momentu | Źródło cyfrowe | - | - | 1 = 1 |
44.203 | W. zad. badania momentu | Real | 0,0…300,0 | % | 10 = 1,0% |
44.204 | Czas sprawdz. syst. ham. | Real | 0,10…30 | ms | 10 = 1 s |
44.205 | Limit prędk. poślizgu ham. | Real | 0,0…30000,0 | obr./min | 1 = 1 obr./min |
44.206 | Opóźn. błędu poślizgu ham. | Real | 0…30000 | ms | 1 = 1 ms |

Table Notes:
- **Nazwa** refers to the name of the parameter.
- **Typ** indicates the type of the parameter.
- **Zakres** specifies the range of the parameter.
- **Jednostka** denotes the unit of measurement.
- **FbEq32** represents the specific value or condition for that parameter.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.207</td>
<td>Wybór bezp. zamykania</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.208</td>
<td>Prędkość bezp. zamykania</td>
<td>Real</td>
<td>0,00…30000,00</td>
<td>obr./min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.209</td>
<td>Opóźnienie bezp. zamykania</td>
<td>Real</td>
<td>0…30000</td>
<td>ms</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.211</td>
<td>Rozszerzony czas pracy</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>44.212</td>
<td>SW rozszer. czasu pracy</td>
<td>Źródło cyfrowe</td>
<td>0000h…FFFFH</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

45 Wydajność energetyczna

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.01</td>
<td>Zaoszczędzone GWh</td>
<td>Real</td>
<td>0…65535</td>
<td>GWh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.02</td>
<td>Zaoszczędzone MWh</td>
<td>Real</td>
<td>0…999</td>
<td>MWh</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.03</td>
<td>Zaoszczędzone kWh</td>
<td>Real</td>
<td>0,0…999,0</td>
<td>kWh</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>45.04</td>
<td>Zaoszczędzona energia</td>
<td>Real</td>
<td>0,0…214748364,7</td>
<td>kWh</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>45.05</td>
<td>Zaoszcz. pieniędze x 1000</td>
<td>Real</td>
<td>0…4294967295 tysięcy (do wyboru)</td>
<td>1 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>45.06</td>
<td>Zaoszczędzone pieniędze</td>
<td>Real</td>
<td>0,0…999,99 (do wyboru)</td>
<td>100 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>45.07</td>
<td>Zaoszczędzona kwota</td>
<td>Real</td>
<td>0,0…21474836,47 (do wyboru)</td>
<td>100 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>45.08</td>
<td>Redukcja CO2 w kilotonach</td>
<td>Real</td>
<td>0…65535</td>
<td>kilotona</td>
<td>1 = 1 kilotona metriczna</td>
</tr>
<tr>
<td>45.09</td>
<td>Redukcja CO2 w tonach</td>
<td>Real</td>
<td>0,0…999,9</td>
<td>tona</td>
<td>10 = 1 tona</td>
</tr>
<tr>
<td>45.10</td>
<td>Łącznie zaoszczędzone CO2</td>
<td>Real</td>
<td>0,0…21474836,57</td>
<td>tona</td>
<td>10 = 1 tona</td>
</tr>
<tr>
<td>45.11</td>
<td>Optymalizator energii</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.12</td>
<td>Taryfa energetyczna 1</td>
<td>Real</td>
<td>0,000…4294967,295 (do wyboru)</td>
<td>1000 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>45.13</td>
<td>Taryfa energetyczna 2</td>
<td>Real</td>
<td>0,000…4294967,295 (do wyboru)</td>
<td>1000 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>45.14</td>
<td>Wybór taryfy</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.18</td>
<td>Współcz. konwersji CO2</td>
<td>Real</td>
<td>0,000…65,535</td>
<td>tona/MWh</td>
<td>1000 = 1 tona/ MWh</td>
</tr>
<tr>
<td>45.19</td>
<td>Moc porównawcza</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>kW</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.21</td>
<td>Reset kalkulacji energii</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.24</td>
<td>Wart. mocy szczyt.: godzina</td>
<td>Real</td>
<td>-3000,00…3000,00</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
<tr>
<td>45.25</td>
<td>Godz. mocy szczyt.: godzina</td>
<td>Real</td>
<td>nd.</td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>45.26</td>
<td>Godzinna całk. energia (reset.)</td>
<td>Real</td>
<td>-3000,00…3000,00</td>
<td>kWh</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>45.27</td>
<td>Wart. mocy szczyt. (resetowalna): dzień</td>
<td>Real</td>
<td>-3000,00…3000,00</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
<tr>
<td>45.28</td>
<td>Godz. mocy szczyt.: dzień</td>
<td>Real</td>
<td>nd.</td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>45.29</td>
<td>Dzienneal. energia (reset.)</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>kWh</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>45.30</td>
<td>Całkow. energia: ost. dzień</td>
<td>Real</td>
<td>-30000,00…30000,00</td>
<td>kWh</td>
<td>1 = 1 kWh</td>
</tr>
<tr>
<td>45.31</td>
<td>Wart. mocy szczyt. (resetowalna): miesiąc</td>
<td>Real</td>
<td>-3000,00…3000,00</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
<tr>
<td>45.32</td>
<td>Data mocy szczyt.: miesiąc</td>
<td>Real</td>
<td>1/1/1980…6/5/2159</td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>45.33</td>
<td>Godz. mocy szczyt.: miesiąc</td>
<td>Real</td>
<td></td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>45.34</td>
<td>Miesięczna całk. energia (reset.)</td>
<td>Real</td>
<td>-1000000,00…1000000,00 kWh</td>
<td>1 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>45.35</td>
<td>Całkow. energia: ost. mies.</td>
<td>Real</td>
<td>-1000000,00…1000000,00 kWh</td>
<td>1 = 1 kWh</td>
<td></td>
</tr>
<tr>
<td>45.36</td>
<td>Wart. mocy szczyt.: zawsze</td>
<td>Real</td>
<td>-3000,00…3000,00 kW</td>
<td>1 = 1 kW</td>
<td></td>
</tr>
<tr>
<td>45.37</td>
<td>Data mocy szczyt.: zawsze</td>
<td>Real</td>
<td></td>
<td>nd.</td>
<td></td>
</tr>
<tr>
<td>45.38</td>
<td>Godz. mocy szczyt.: zawsze</td>
<td>Real</td>
<td></td>
<td>nd.</td>
<td></td>
</tr>
</tbody>
</table>

46 Ust. monitorowania/skalowania

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.01</td>
<td>Skalowanie prędkości</td>
<td>Real</td>
<td>0,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>46.02</td>
<td>Skalowanie częstotliwości</td>
<td>Real</td>
<td>0,1…1000,0 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>46.03</td>
<td>Skalowanie momentu</td>
<td>Real</td>
<td>0,1…1000,0 %</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>46.04</td>
<td>Skalowanie mocy</td>
<td>Real</td>
<td>0,1 … 30000,0 kW lub 0,1…40215,5 KM kW lub KM</td>
<td>10 = 1 jednostka</td>
<td></td>
</tr>
<tr>
<td>46.05</td>
<td>Skalowanie prądu</td>
<td>Real</td>
<td>0…30000 A</td>
<td>1 = 1 A</td>
<td></td>
</tr>
<tr>
<td>46.06</td>
<td>Skal. zerowej wart. zad. prędk.</td>
<td>Real</td>
<td>0,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>46.11</td>
<td>Czas filtru: prędk. silnika</td>
<td>Real</td>
<td>2…20000 ms</td>
<td>1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>46.12</td>
<td>Czas filtru częst. wyj.</td>
<td>Real</td>
<td>2…20000 ms</td>
<td>1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>46.13</td>
<td>Czas filtru mom. silnika</td>
<td>Real</td>
<td>2…20000 ms</td>
<td>1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>46.14</td>
<td>Czas filtru mocy</td>
<td>Real</td>
<td>2…20000 ms</td>
<td>1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>46.21</td>
<td>Przy histerezie prędkości</td>
<td>Real</td>
<td>0,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>46.22</td>
<td>Przy histerezie częstotliwości</td>
<td>Real</td>
<td>0,00…1000,00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>46.23</td>
<td>Przy histerezie momentu</td>
<td>Real</td>
<td>0,00…300,00 %</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>46.31</td>
<td>Powyżej limitu prędkości</td>
<td>Real</td>
<td>0,00…30000,00 obr./min</td>
<td>100 = 1 obr./ min</td>
<td></td>
</tr>
<tr>
<td>46.32</td>
<td>Powyżej limitu częstotliwości</td>
<td>Real</td>
<td>0,00…1000,00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>46.33</td>
<td>Powyżej limitu momentu</td>
<td>Real</td>
<td>0,0…1600,0 %</td>
<td>10 = 1%</td>
<td></td>
</tr>
<tr>
<td>46.41</td>
<td>Skalowanie impulsów kWh</td>
<td>Real</td>
<td>0,001…1000,000 kWh</td>
<td>1000 = 1 kWh</td>
<td></td>
</tr>
</tbody>
</table>

47 Magazyn danych

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.01</td>
<td>Magazyn danych 1 real32</td>
<td>Real</td>
<td>-2147483,008…2147483,008</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.02</td>
<td>Magazyn danych 2 real32</td>
<td>Real</td>
<td>-2147483,008…2147483,008</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.03</td>
<td>Magazyn danych 3 real32</td>
<td>Real</td>
<td>-2147483,008…2147483,008</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.04</td>
<td>Magazyn danych 4 real32</td>
<td>Real</td>
<td>-2147483,008…2147483,008</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.11</td>
<td>Magazyn danych 1 int32</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.12</td>
<td>Magazyn danych 2 int32</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.13</td>
<td>Magazyn danych 3 int32</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.14</td>
<td>Magazyn danych 4 int32</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.21</td>
<td>Magazyn danych 1 int16</td>
<td>Real</td>
<td>-32768…32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.22</td>
<td>Magazyn danych 2 int16</td>
<td>Real</td>
<td>-32768…32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.23</td>
<td>Magazyn danych 3 int16</td>
<td>Real</td>
<td>-32768…32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.24</td>
<td>Magazyn danych 4 int16</td>
<td>Real</td>
<td>-32768…32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

49 Port komunikacyjny panelu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.01</td>
<td>Numer ID węzła</td>
<td>Real</td>
<td>1…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.03</td>
<td>Szybkość transmisji</td>
<td>Lista</td>
<td>1…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.04</td>
<td>Czas utraty komunikacji</td>
<td>Real</td>
<td>0,3…3000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>49.05</td>
<td>Reakcja na utratę komunik.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.06</td>
<td>Odświęż ustawienia</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.19</td>
<td>Widok gł. 1 panelu podst.</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>49.20</td>
<td>Widok gł. 2 panelu podst.</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>49.21</td>
<td>Widok gł. 3 panelu podst.</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>49.30</td>
<td>Ukryw. menu panelu podst.</td>
<td></td>
<td>0000h…FFFFh</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

50 Adapter komunikacyjny (FBA)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.01</td>
<td>Włączenie FBA A</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.02</td>
<td>FBA A: funkcja utr. komun.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.03</td>
<td>FBA A: lim. czas. utr. kom.</td>
<td>Real</td>
<td>0,3…6553,5</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>50.04</td>
<td>FBA A: typ wart. zad. 1</td>
<td>Lista</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.05</td>
<td>FBA A: typ wart. zad. 2</td>
<td>Lista</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.06</td>
<td>FBA A: wybór słowa stanu</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.07</td>
<td>FBA A: typ wart. akt. 1</td>
<td>Lista</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.08</td>
<td>FBA A: typ wart. akt. 2</td>
<td>Lista</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.09</td>
<td>FBA A: źródło transp. sł. stanu</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.10</td>
<td>FBA A: źródło transp. w. akt. 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.11</td>
<td>FBA A: źródło transp. w. akt. 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.12</td>
<td>Tryb debugowania FBA A</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.13</td>
<td>FBA A: słowo sterowania</td>
<td>Dane</td>
<td>000000000h…FFFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.14</td>
<td>FBA A: wartość zadana 1</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.15</td>
<td>FBA A: wartość zadana 2</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.16</td>
<td>FBA A: słowo stanu</td>
<td>Dane</td>
<td>000000000h…FFFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.17</td>
<td>FBA A: aktualna wartość 1</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.18</td>
<td>FBA A: aktualna wartość 2</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.01</td>
<td>FBA A: typ</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.02</td>
<td>FBA A: parametr 2</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.26</td>
<td>FBA A: parametr 26</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.27</td>
<td>FBA A: odś. param.</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.28</td>
<td>FBA A: wer. tabeli param.</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.29</td>
<td>FBA A: kod typu przemien.</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.30</td>
<td>FBA A: wersja pliku odwz.</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.31</td>
<td>D2FBA A: stan komunikacji</td>
<td>Lista</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.32</td>
<td>FBA A: wersja oprog. kom.</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.33</td>
<td>FBA A: wersja opr aplikacji</td>
<td>Dane</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>52.01</td>
<td>FBA A: dane wej. 1</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.12</td>
<td>FBA A: dane wej. 12</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>53.01</td>
<td>FBA A: dane wyj. 1</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.12</td>
<td>FBA: dane wyj. 12</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.01</td>
<td>Włączenie protokołu</td>
<td>Lista</td>
<td>0, 1, 3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.02</td>
<td>ID protokołu</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.03</td>
<td>Adres węzła Identyfikator węzła</td>
<td>Real</td>
<td>0…255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.04</td>
<td>Szybkość transmisji</td>
<td>Lista</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.05</td>
<td>Parzystość</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.06</td>
<td>Sterowanie komunikacji</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.07</td>
<td>Diagnostyka komunikacji</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.08</td>
<td>Odebrane pakiety</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.09</td>
<td>Przesłane pakiety</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.10</td>
<td>Wszystkie pakiety</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.11</td>
<td>Błędy UART</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.12</td>
<td>Błędy CRC</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.14</td>
<td>Reakcja na utratę komunik.</td>
<td>Lista</td>
<td>0…4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.15</td>
<td>Tryb utraty komunikacji</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.16</td>
<td>Czas utraty komunikacji</td>
<td>Real</td>
<td>0,0…6000,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>58.17</td>
<td>Opóźnienie transmisji</td>
<td>Real</td>
<td>0…65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.18</td>
<td>Słowo sterowania EFB</td>
<td>PB</td>
<td>0…FFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.19</td>
<td>Słowo stanu EFB</td>
<td>PB</td>
<td>0…FFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>58.22</td>
<td>Stan NMT CANopen</td>
<td>Lista</td>
<td>0...127</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.23</td>
<td>Lokalizacja konfiguracji</td>
<td>Lista</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.24</td>
<td>Skalow. transparente 16</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.25</td>
<td>Profil sterowania</td>
<td>Lista</td>
<td>0, 5, 7, 8, 9</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.26</td>
<td>EFB: typ wartości zad. 1</td>
<td>Lista</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.27</td>
<td>EFB: typ wartości zad. 2</td>
<td>Lista</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.28</td>
<td>EFB: typ wartości akt. 1</td>
<td>Lista</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.29</td>
<td>EFB: typ wartości akt. 2</td>
<td>Lista</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.31</td>
<td>EFB: źródło transp. w. akt. 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.32</td>
<td>EFB: źródło transp. w. akt. 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.33</td>
<td>Tryb adresowania</td>
<td>Lista</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.34</td>
<td>Kolejność słów</td>
<td>Lista</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.70</td>
<td>EFB: tryb debugowania</td>
<td>Lista</td>
<td>-100000...100000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.71</td>
<td>EFB: wartość zadana 1</td>
<td>Real</td>
<td>-100000...100000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.72</td>
<td>EFB: wartość zadana 2</td>
<td>Real</td>
<td>-100000...100000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.73</td>
<td>EFB: wartość aktualna 1</td>
<td>Real</td>
<td>-100000...100000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.74</td>
<td>EFB: wartość aktualna 2</td>
<td>Real</td>
<td>-100000...100000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.76</td>
<td>RPDO1 COB-ID</td>
<td>Real</td>
<td>0...7FFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.77</td>
<td>Typ transmisji RPDO1</td>
<td>Real</td>
<td>0...255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.78</td>
<td>Timer zdarzeń RPDO1</td>
<td>Real</td>
<td>0...65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.79</td>
<td>TPDO1 COB-ID</td>
<td>Real</td>
<td>0...7FFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.80</td>
<td>Typ transmisji TPDO1</td>
<td>Real</td>
<td>0...255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.81</td>
<td>Timer zdarzeń TPDO1</td>
<td>Real</td>
<td>0...65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.82</td>
<td>RPDO6 COB-ID</td>
<td>Real</td>
<td>0...7FFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.83</td>
<td>Typ transmisji RPDO6</td>
<td>Real</td>
<td>0...255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.84</td>
<td>Timer zdarzeń RPDO6</td>
<td>Real</td>
<td>0...65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.85</td>
<td>TPDO6 COB-ID</td>
<td>Real</td>
<td>0...7FFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.86</td>
<td>Typ transmisji TPDO6</td>
<td>Real</td>
<td>0...255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.87</td>
<td>Timer zdarzeń TPDO6</td>
<td>Real</td>
<td>0...65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.88</td>
<td>RPDO21 COB-ID</td>
<td>Real</td>
<td>0...7FFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.89</td>
<td>Typ transmisji RPDO21</td>
<td>Real</td>
<td>0...255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.90</td>
<td>Timer zdarzeń RPDO21</td>
<td>Real</td>
<td>0...65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.91</td>
<td>TPDO21 COB-ID</td>
<td>Real</td>
<td>0...7FFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.92</td>
<td>Typ transmisji TPDO21</td>
<td>Real</td>
<td>0...255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.93</td>
<td>Timer zdarzeń TPDO21</td>
<td>Real</td>
<td>0...65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.101</td>
<td>Dane I/O 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>TPDO1: słowo 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------------------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>58.102</td>
<td>Dane I/O 2</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO1: słowo 2</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.103</td>
<td>Dane I/O 3</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO1: słowo 3</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.104</td>
<td>Dane I/O 4</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO1: słowo 4</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.105</td>
<td>Dane I/O 5</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPDO1: słowo 1</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.106</td>
<td>Dane I/O 6</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPDO1: słowo 2</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.107</td>
<td>Dane I/O 7</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPDO1: słowo 3</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.108</td>
<td>Dane I/O 8</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPDO1: słowo 4</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.109</td>
<td>Dane I/O 9</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO6: słowo 1</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.110</td>
<td>Dane I/O 10</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO6: słowo 2</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.111</td>
<td>Dane I/O 11</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO6: słowo 3</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.112</td>
<td>Dane I/O 12</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO6: słowo 4</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.113</td>
<td>Dane I/O 13</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPDO6: słowo 1</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>58.114</td>
<td>Dane I/O 14</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>RPDO6: słowo 2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.115</td>
<td>RPDO6: słowo 3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.116</td>
<td>RPDO6: słowo 4</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.117</td>
<td>TPDO21: słowo 1</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.118</td>
<td>TPDO21: słowo 2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.119</td>
<td>TPDO21: słowo 3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.120</td>
<td>TPDO21: słowo 4</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.121</td>
<td>RPDO21: słowo 1</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.122</td>
<td>RPDO21: słowo 2</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.123</td>
<td>RPDO21: słowo 3</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.124</td>
<td>RPDO21: słowo 4</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

71 Zewnętrzny regulator PID1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.01</td>
<td>Aktualna wart. zewn. PID</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.02</td>
<td>Akt. wart. sprzężenia zwr.</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.03</td>
<td>Aktualna wart. nastawy</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.04</td>
<td>Aktualna wart. uchybu</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.06</td>
<td>Słowo stanu PID</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.07</td>
<td>Tryb pracy regulatora PID</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.08</td>
<td>Źródło sprzężenia zwr. 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.11</td>
<td>Czas filtru sprzężenia zwr.</td>
<td>Real</td>
<td>0,000…30,000 s</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>71.14</td>
<td>Skalowanie nastawy</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>71.15</td>
<td>Skalowanie wyjścia</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>71.16</td>
<td>Źródlo nastawy 1</td>
<td>Źródło analogowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.19</td>
<td>Wybór 1 wewn. nastawy</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.20</td>
<td>Wybór 2 wewn. nastawy</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>71.21</td>
<td>Wewnętrzna nastawa 1</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.22</td>
<td>Wewnętrzna nastawa 2</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.23</td>
<td>Wewnętrzna nastawa 3</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>71.26</td>
<td>Min. nastawy</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>71.27</td>
<td>Maks. nastawy</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>71.31</td>
<td>Odwrócenie uchybu regul.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.32</td>
<td>Wzmocnienie</td>
<td>Real</td>
<td>0,10…100,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>71.33</td>
<td>Czas całkowania</td>
<td>Real</td>
<td>0,0…9999,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>71.34</td>
<td>Czas różniczkowania</td>
<td>Real</td>
<td>0,000…10,000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>71.35</td>
<td>Czas filtru różniczkowania</td>
<td>Real</td>
<td>0,0…10,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>71.36</td>
<td>Min. wyjście</td>
<td>Real</td>
<td>-32768,0…32767,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>71.37</td>
<td>Maks. wyjście</td>
<td>Real</td>
<td>-32768,0…32767,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>71.38</td>
<td>Aktywacja zamrożenia wyj.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.39</td>
<td>Zakres strefy nieczułości</td>
<td>Real</td>
<td>0,0…32767,0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>71.40</td>
<td>Opóźnienie strefy nieczuł.</td>
<td>Real</td>
<td>0,0…3600,0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>71.58</td>
<td>Zwiększ zabezpieczenie</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.59</td>
<td>Zmniejsz zabezpieczenie</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>71.62</td>
<td>Akt. wart. nastawy wewn.</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min, % lub Hz</td>
<td>100 = 1 jednostka</td>
</tr>
</tbody>
</table>

Funkcje aplikacji

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.01</td>
<td>Stan sterowania krańc.</td>
<td>Lista</td>
<td>0…9</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.02</td>
<td>Włącz sterow. krańc.</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.03</td>
<td>Tryb sterowania krańc.</td>
<td>Lista</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.04</td>
<td>Limit zatrzymania do przodu</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.05</td>
<td>Limit zwalniania do przodu</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.06</td>
<td>Limit zatrzymania do tyłu</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.07</td>
<td>Limit zwalniania do tyłu</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.08</td>
<td>Prędkość zwalniania</td>
<td>Real</td>
<td>0,00…30000,00</td>
<td>obr./min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.09</td>
<td>Częstotliwość zwalniania</td>
<td>Real</td>
<td>0,00…500,00</td>
<td>Hz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.11</td>
<td>Tryb zatrzymania limitu</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.12</td>
<td>Czas rampy zatrzymania limitu</td>
<td>Real</td>
<td>0,000…30000,00 s</td>
<td>S</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>76.31</td>
<td>Dopasowanie prędk. silnika</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>76.32</td>
<td>Poziom odchylenia stałej prędkości silnika</td>
<td>Real</td>
<td>0,00…30000,00</td>
<td>obr./min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.33</td>
<td>Poziom odchylenia rampy prędkości silnika</td>
<td>Real</td>
<td>0,00…30000,00</td>
<td>obr./min</td>
<td>1 = 1</td>
</tr>
<tr>
<td>76.34</td>
<td>Opóźn. błędu dopas. prędk.</td>
<td>Real</td>
<td>0…30000</td>
<td>ms</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

90 Wybór sprzężenia zwrotnego

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.01</td>
<td>Prędkość silnika do ster.</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min</td>
<td>100 = 1 obr./min</td>
</tr>
<tr>
<td>90.02</td>
<td>Poz. silnika</td>
<td>Real</td>
<td>0,00000000…1,00000000</td>
<td>obr.</td>
<td>100000000 = 1 obr.</td>
</tr>
<tr>
<td>90.10</td>
<td>Prędkość enkodera 1</td>
<td>Real</td>
<td>-32768,00…32767,00</td>
<td>obr./min</td>
<td>100 = 1 obr./min</td>
</tr>
<tr>
<td>90.11</td>
<td>Poz. enkodera 1</td>
<td>Real</td>
<td>0,00000000…1,00000000</td>
<td>obr.</td>
<td>100000000 = 1 obr.</td>
</tr>
<tr>
<td>90.13</td>
<td>Enkoder 1: rozszerz. obr.</td>
<td>Real</td>
<td>-2147483648…2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.41</td>
<td>Wybór sprz. zwr. od silnika</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.42</td>
<td>Czas filtru prędk. silnika</td>
<td>Real</td>
<td>0…10000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>90.45</td>
<td>Błąd sprz. zwr. od silnika</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.46</td>
<td>Wymuśę tęę otwartą</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.47</td>
<td>W. wykr. dryfu enkod. silnika</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

91 Ustawienia adaptera enkodera

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.10</td>
<td>Odśwież. param. enkodera</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

92 Konfiguracja enkodera 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.10</td>
<td>Impulsy/obr.</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

95 Konfiguracja HW

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.01</td>
<td>Napięcie zasilania</td>
<td>Lista</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.02</td>
<td>Adaptacyjne limity napięcia</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.03</td>
<td>Szac. napięcie zasilania AC</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>95.04</td>
<td>Zasilanie karty sterowania</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.15</td>
<td>Specjalne ustawienia sprzętu</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.20</td>
<td>Słowo opcji sprzętowych 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

96 System

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.01</td>
<td>Język</td>
<td>Lista</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.02</td>
<td>Kod</td>
<td>Dane</td>
<td>0…999999999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.03</td>
<td>Stan poziomu dostępu</td>
<td>PB</td>
<td>000b…111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.04</td>
<td>Wybór makra</td>
<td>Lista</td>
<td>0…3, 11…14</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.05</td>
<td>Macro aktywne</td>
<td>Lista</td>
<td>1…3, 11…14</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.06</td>
<td>Przywrócenie parametrów</td>
<td>Lista</td>
<td>0, 8, 62</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.07</td>
<td>Ręczne zapisanie parametrów</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.08</td>
<td>Restart karty sterowania</td>
<td>Real</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.10</td>
<td>Zestaw użytk.: stan</td>
<td>Lista</td>
<td>0…7, 20…23</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Dodatkowe dane parametrów

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.11</td>
<td>Zest. użytk.: zapis/załaduj</td>
<td>Lista</td>
<td>0…5, 18…21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.12</td>
<td>Zest. użytk.: tryb I/O we1</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.13</td>
<td>Zest. użytk.: tryb I/O we2</td>
<td>Źródło cyfrowe</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.16</td>
<td>Wybór jednostki</td>
<td>PB</td>
<td>000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.20</td>
<td>Podst. źródło synchr. czasu</td>
<td>Lista</td>
<td>0, 2, 6, 8, 9</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.51</td>
<td>Czyść rej. błędów i zdarzeń</td>
<td>Real</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.70</td>
<td>Wyłącz prog. adaptacyjny</td>
<td>Real</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Parametry 96.100…96.102 są widoczne tylko po ich włączeniu przy użyciu parametru 96.02

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.100</td>
<td>Zmień kod użytkownika</td>
<td>Dane</td>
<td>10000000…99999999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.101</td>
<td>Potwierdź kod uż.</td>
<td>Dane</td>
<td>10000000…99999999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.102</td>
<td>Funkcja blokady użytk.</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

97 Sterowanie silnikiem

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.01</td>
<td>W.zad. częstotliwość przel.</td>
<td>Lista</td>
<td>4…12 kHz</td>
<td>kHz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.02</td>
<td>Min. częstotliwość przełącz.</td>
<td>Lista</td>
<td>1…12 kHz</td>
<td>kHz</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.03</td>
<td>Wzmocnienie poślizgu</td>
<td>Real</td>
<td>0…200 %</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.04</td>
<td>Rezerwa napięcia</td>
<td>Real</td>
<td>-4…50 %</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.05</td>
<td>Hamowanie strumieniem</td>
<td>Lista</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.10</td>
<td>Wprowadzanie sygnału</td>
<td>Lista</td>
<td>0…4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.11</td>
<td>Dostrajanie TR</td>
<td>Real</td>
<td>25…400 %</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.13</td>
<td>Kompensacja IR</td>
<td>Real</td>
<td>0,00…50,00 %</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>97.15</td>
<td>Przystosowanie temp. modelu silnika</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.16</td>
<td>Współczynnik temp. stojana</td>
<td>Real</td>
<td>0…200 %</td>
<td>%</td>
<td>1=1%</td>
</tr>
<tr>
<td>97.17</td>
<td>Współcz. temp. wirnika</td>
<td>Real</td>
<td>0…200 %</td>
<td>%</td>
<td>1=1%</td>
</tr>
<tr>
<td>97.20</td>
<td>Stosunek U/f</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

98 Parametry silnika użytkownika

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.01</td>
<td>Tryb modelu silnika użytk.</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>98.02</td>
<td>Rs użytkownika</td>
<td>Real</td>
<td>0,0000…0,50000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>98.03</td>
<td>Rr użytkownika</td>
<td>Real</td>
<td>0,0000…0,50000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>98.04</td>
<td>Lm użytkownika</td>
<td>Real</td>
<td>0,00000…10,00000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>98.05</td>
<td>SigmaL użytkownika</td>
<td>Real</td>
<td>0,00000…1,00000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>98.06</td>
<td>Ld użytkownika</td>
<td>Real</td>
<td>0,00000…10,00000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>98.07</td>
<td>Lq użytkownika</td>
<td>Real</td>
<td>0,00000…10,00000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>98.08</td>
<td>Strumień PM użytkownika</td>
<td>Real</td>
<td>0,00000…2,00000 p.u.</td>
<td>100 000 = 1 p.u.</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Zakres</td>
<td>Jednostka</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>98.09</td>
<td>Rs użytkownika w SI</td>
<td>Real</td>
<td>0,00000…100,00000</td>
<td>Ω</td>
<td>100 000 = 1 p.u.</td>
</tr>
<tr>
<td>98.10</td>
<td>Rr użytkownika w SI</td>
<td>Real</td>
<td>0,00000…100,00000</td>
<td>Ω</td>
<td>100 000 = 1 p.u.</td>
</tr>
<tr>
<td>98.11</td>
<td>Lm użytkownika w SI</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.12</td>
<td>SigmaL użytkownika w SI</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.13</td>
<td>Ld użytkownika w SI</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.14</td>
<td>Lq użytkownika w SI</td>
<td>Real</td>
<td>0,00…100000,00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
</tbody>
</table>

99 Dane silnika

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Zakres</th>
<th>Jednostka</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.03</td>
<td>Typ silnika</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.04</td>
<td>Tryb sterowania silnikiem</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.06</td>
<td>Prąd znamionowy silnika</td>
<td>Real</td>
<td>0,0…6400,0</td>
<td>A</td>
<td>10 = 1 A</td>
</tr>
<tr>
<td>99.07</td>
<td>Napięcie znam. silnika</td>
<td>Real</td>
<td>0,0…800,0</td>
<td>V</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>99.08</td>
<td>Częstotliwość znam. silnika</td>
<td>Real</td>
<td>0,0…500,0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>99.09</td>
<td>Prędkość znam. silnika</td>
<td>Real</td>
<td>0…30000</td>
<td>obr./min</td>
<td>1 = 1 obr./min</td>
</tr>
<tr>
<td>99.10</td>
<td>Moc znamionowa silnika</td>
<td>Real</td>
<td>-10000,00…10000,00 kW lub -13405,83…13405,83 KM</td>
<td>kW lub KM</td>
<td>100 = 1 jednostka</td>
</tr>
<tr>
<td>99.11</td>
<td>Znamionowy cos φ silnika</td>
<td>Real</td>
<td>0,00…1,00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>99.12</td>
<td>Moment znamion. silnika</td>
<td>Real</td>
<td>0,000…</td>
<td>Nm lub lb ft</td>
<td>1000 = 1 jednostka</td>
</tr>
<tr>
<td>99.13</td>
<td>Żądanie biegu ident.</td>
<td>Lista</td>
<td>0…3, 5…6,</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.14</td>
<td>Ostatni wykonany bieg ident.</td>
<td>Lista</td>
<td>0…3, 5…6,</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.15</td>
<td>Obl. ilość par bieg. siln.</td>
<td>Real</td>
<td>0…1000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.16</td>
<td>Kolejność faz silnika</td>
<td>Lista</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Śledzenie błędów

Spis treści

- Bezpieczeństwo
- Wskazania
- Historia ostrzeżeń/błądów
- Generowanie kodów QR na potrzeby mobilnej aplikacji serwisowej
- Komunikaty ostrzegawcze
- Komunikaty o błędach

Jeśli informacje zawarte w tym rozdziale nie pozwolą zidentyfikować i usunąć niektórych ostrzeżeń i błędów, należy skontaktować się z przedstawicielem serwisu ABB. Jeśli używany jest program komputerowy Drive Composer, należy wysłać utworzony w tym programie pakiet wsparcia do przedstawiciela firmy ABB.

Ostrzeżenia i błędy zostały podane w osobnych tabelach. Zawartość każdej tabeli jest posortowana według kodu ostrzeżenia/błędu.

Bezpieczeństwo

⚠️ OSTRZEŻENIE! Do serwisowania przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy. Przed rozpoczęciem pracy z przemiennikiem częstotliwości należy zapoznać się z instrukcjami w rozdziale *Instrukcje bezpieczeństwa* na początku podręcznika użytkownika przemiennika częstotliwości.
Wskazania

Ostrzeżenia i błędy

Ostrzeżenia i błędy wskazują stan przemiennika częstotliwości odbiegający od normy. Kody i nazwy aktualnych ostrzeżeń i błędów są wyświetlone na panelu sterowania przemiennika częstotliwości oraz w programie komputerowym Drive Composer. Magistrala komunikacyjna udostępnia tylko kody ostrzeżeń i błędów.

Ostrzeżeń nie trzeba resetować. Gdy przyczyna ostrzeżenia znika, przestaje ono być wyświetlane. Ostrzeżenia nie powodują zatrzymania pracy — przemiennik częstotliwości normalnie steruje silnikiem.

Błędy powodują przerwanie pracy przemiennika, w wyniku czego silnik jest zatrzymywany. Po usunięciu przyczyny można zresetować błąd za pomocą parametru 31.11 Wybór resetu błędu, takiego jak panel sterowania, program komputerowy Drive Composer, wejścia cyfrowe przemiennika częstotliwości lub magistrala komunikacyjna. Zresetowanie błędu tworzy zdarzenie 64FF Resetowanie błędu. Po zresetowaniu można ponownie uruchomić przemiennik częstotliwości.

Niektóre błędy wymagają ponownego uruchomienia jednostki sterującej przez wyłączenie i włączenie zasilania albo przy użyciu parametru 96.08 Restart karty sterowania — jest to wskazane w komunikacie o błędzie.

Zdarzenia

Oprócz ostrzeżeń i błędów istnieją zdarzenia rejestrowane wyłącznie w dzienniku zdarzeń przemiennika częstotliwości. Kody tych zdarzeń znajdują się w tabeli Komunikaty ostrzegawcze na str. 428.

Historia ostrzeżeń/błędy

Dziennik zdarzeń

Wszystkie wskazania są przechowywane w dzienniku zdarzeń. Dziennik zdarzeń zawiera informacje dotyczące

- ostatnich 8 zarejestrowanych błędów, czyli błędów, które spowodowały wyłączenie awaryjne przemiennika częstotliwości lub resetowania błędów,
- ostatnich 10 ostrzeżeń lub zdarzeń.

Patrz sekcja Wyświetlanie informacji dotyczących ostrzeżeń/błędy na str. 427.

Kody pomocnicze

Niektóre zdarzenia generują kod pomocniczy, który często pomaga w zidentyfikowaniu problemu. Na panelu sterowania kod pomocniczy jest przechowywany jako część szczegółów zdarzenia, a w programie komputerowym Drive Composer jest wyświetlan na liście zdarzeń.
Wyświetlanie informacji dotyczących ostrzeżeń/błądów

Przemiennik częstotliwości może przechowywać listę aktualnych błędów, które powodują aktualne wyłączenie awaryjne przemiennika. Przemiennik częstotliwości przechowuje też listę wcześniejszych błędów i ostrzeżeń.

Aby wyświetlić aktualne błędy i ostrzeżenia, należy wybrać poniższe pozycje:

• Menu główne — Diagnostyka — Aktywne błędy
• Menu główne — Diagnostyka — Aktywne ostrzeżenia
• Menu Opcje — Aktywne błędy
• Menu Opcje — Aktywne ostrzeżenia
• parametry z grupy 04 Ostrzeżenia i błędy (str. 120).

Aby wyświetlić wcześniejsze błędy i ostrzeżenia, należy wybrać poniższe pozycje:

• Menu główne — Diagnostyka — Dziennik błędów i zdarzeń
• parametry z grupy 04 Ostrzeżenia i błędy (str. 120).

Dostęp do dziennika zdarzeń można także uzyskać (i przeprowadzić resetowanie) za pomocą programu komputerowego Drive Composer. Patrz podręcznik użytkownika Drive composer PC tool user’s manual (3AUA0000094606 [j. ang.]).

Generowanie kodów QR na potrzeby mobilnej aplikacji serwisowej

Przemiennik częstotliwości może wygenerować kod QR (lub serię kodów QR) do wyświetlania na panelu sterowania z asystentami. Kod QR zawiera dane identyfikacyjne przemiennika, informacje o najnowszych zdarzeniach oraz wartości stanu i parametry liczników. Taki kod można odczytać przy użyciu urządzenia przenośnego z zainstalowaną aplikacją serwisową ABB, a następnie wysłać dane do przeanalizowania przez personel firmy ABB. Więcej informacji o aplikacji można uzyskać od lokalnego przedstawiciela firmy ABB.
Komunikaty ostrzegawcze

Uwaga: lista zawiera również te zdarzenia, które pojawiają się tylko w dzienniku zdarzeń.

<table>
<thead>
<tr>
<th>Kod (szesnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>64FF</td>
<td>Resetowanie błędu</td>
<td>Błąd został zresetowany na panelu, w programie komputerowym Drive Composer, przez magistralę komunikacyjną lub I/O.</td>
<td>Zdarzenie. Tylko informacyjne.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kod (szesnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B3</td>
<td>Zwarcie doziemne</td>
<td>Przemiennik częstotliwości wykrył asymetrię obciążenia, zwykle spowodowaną zwarcie doziemnym w silniku lub kablu silnika.</td>
<td>Sprawdzić, czy w kablu silnika nie ma żadnych kondensatorów korygujących współczynnik mocy ani ograniczników przeprüć. Sprawdzić silnik i kable silnika pod kątem występowania zwarcia doziemnego, mierząc rezystancję izolacji silnika i kabla silnika. Patrz rozdział Montaż elektryczny, sekcja Sprawdanie izolacji zespołu w podręczniku użytkownika przemieninika częstotliwości. W przypadku wykrycia zwarcia doziemnego naprawić lub wymienić kabel silnika i/lub silnik. Jeżeli nie można wykryć żadnego zwarcia doziemnego, należy skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>A3A1</td>
<td>Przepięcie łącza DC</td>
<td>Zbyt wysokie napięcie pośredniego obwodu DC (gdy przemiennik częstotliwości jest zatrzymany).</td>
<td>Sprawdzić ustawienie napięcia zasilania (parametr 95.01 Napięcie zasilania). Nieprawidłowe ustawienie tego parametru może spowodować niekontrolowane przyspieszenie silnika albo przeciążenie czopera lub rezystora hamowania.</td>
</tr>
<tr>
<td>A3A2</td>
<td>Niedostateczne napięcie łącza DC</td>
<td>Zbyt niskie napięcie pośredniego obwodu DC (gdy przemiennik częstotliwości jest zatrzymany).</td>
<td></td>
</tr>
<tr>
<td>A3AA</td>
<td>Nie naładowano obwodu DC</td>
<td>Napięcie pośredniego obwodu DC nie osiągnęło jeszcze poziomu działania.</td>
<td></td>
</tr>
<tr>
<td>A490</td>
<td>Niepoprawna konf. czujnika temp.</td>
<td>Niezgodność typu czujników</td>
<td>Sprawdzić ustawienia parametrów źródłowych temperatury 35.11 i 35.21.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>A491</td>
<td>Temperatura zewnętrzna 1 (Edytowalny tekst komunikatu)</td>
<td>Mierzona temperatura 1 przekroczyła limit ostrzeżenia.</td>
<td>Sprawdzić wartość parametru 35.02 Zmierzona temperatura 1. Sprawdzić chłodzenie silnika (lub innego urządzenia, którego temperatura jest mierzona). Sprawdzić wartość parametru 35.13 Limit ostrzeżenia temp. 1.</td>
</tr>
<tr>
<td>A492</td>
<td>Temperatura zewnętrzna 2 (Edytowalny tekst komunikatu)</td>
<td>Mierzona temperatura 2 przekroczyła limit ostrzeżenia.</td>
<td>Sprawdzić wartość parametru 35.03 Zmierzona temperatura 2. Sprawdzić chłodzenie silnika (lub innego urządzenia, którego temperatura jest mierzona). Sprawdzić wartość parametru 35.23 Limit ostrzeżenia temp. 2.</td>
</tr>
<tr>
<td>Kod (sześćnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>A580</td>
<td>Komunikacja z jednostką mocy</td>
<td>Wykryto błędy komunikacji między jednostką sterującą przemiennika częstotliwości a jednostką mocy.</td>
<td>Sprawdzić połączenia między jednostką sterującą przemiennika częstotliwości a jednostką mocy. Sprawdzić wartość parametru 95.04 Zasilanie karty sterowania.</td>
</tr>
<tr>
<td>0000</td>
<td></td>
<td>Trwa inicjowanie sprzętu przemiennika.</td>
<td>Zaczekaj na zainicjowanie konfiguracji.</td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td>Inicjowanie ustawień sprzętu po raz pierwszy.</td>
<td>Zaczekaj na zainicjowanie konfiguracji.</td>
</tr>
<tr>
<td>A5EA</td>
<td>Temp. obwodu pomiarowego</td>
<td>Problem z pomiarem wewnętrznej temperatury przemiennika częstotliwości.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>A5EB</td>
<td>Błąd zasilania karty jednostki mocy</td>
<td>Błąd zasilacza jednostki mocy.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>A5EC</td>
<td>Błąd wewn. komunikacji z j.mocy</td>
<td>Wykryto błędy komunikacji między jednostką sterującą przemiennika częstotliwości a jednostką mocy.</td>
<td>Sprawdzić połączenia między jednostką sterującą przemiennika częstotliwości a jednostką mocy.</td>
</tr>
<tr>
<td>A5ED</td>
<td>Obwód pomiarowy: ADC</td>
<td>Błąd obwodu pomiarowego.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>A5EE</td>
<td>Obwód pomiarowy: DFF</td>
<td>Błąd obwodu pomiarowego.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>A5EF</td>
<td>Sprzężenie zwrotne od stanu jednostki mocy</td>
<td>Sprzężenie zwrotne od stanu z faz wyjściowych nie odpowiada sygnałom sterującym.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>A5F0</td>
<td>Sprzężenie zwrotne od ładowania</td>
<td>Brak sygnału sprzężenia zwrotnego od ładowania.</td>
<td>Sprawdzić sygnał sprzężenia zwrotnego przychodzący z systemu ładowania.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>A6A5</td>
<td>Brak danych silnika</td>
<td>Parametry w grupie 99 nie zostały ustawione.</td>
<td>Sprawdzić, czy wszystkie wymagane parametry w grupie 99 zostały ustawione. Uwaga: To ostrzeżenie standardowo pojawia się podczas rozruchu i nie znika, dopóki dane silnika nie zostaną wprowadzone.</td>
</tr>
<tr>
<td>A6A6</td>
<td>Nie wybrano kategorii napięcia</td>
<td>Nie zdefiniowano kategorii napięcia.</td>
<td>Patrz kategoria napięcia w parametrze 95.01 Napięcie zasilania.</td>
</tr>
<tr>
<td>A6B0</td>
<td>Blokada użytkownika jest otwarta</td>
<td>Blokada użytkownika jest otwarta, czyli parametry konfiguracji blokady użytkownika 96.100…96.102 są widoczne.</td>
<td>Zamknąć blokadę użytkownika, wprowadzając nieprawidłowy kod w parametrze 96.02 Kod. Patrz sekcja Blokada użytkownika (str. 109).</td>
</tr>
<tr>
<td>A6D1</td>
<td>Konflikt parametrów adapt. kom. A</td>
<td>Przemienik częstotliwości nie ma funkcjonalności żądanej przez sterownik PLC lub żądana funkcjonalność nie została aktywowana.</td>
<td>Sprawdzić programowanie sterownika PLC. Sprawdzić ustawienia grup parametrów 50 Adapter komunikacyjny (FBA).</td>
</tr>
<tr>
<td>0000</td>
<td>Niespójne punkty prędkości.</td>
<td></td>
<td>Sprawdzić, czy każdy punkt prędkości (parametry 37.11…37.15) ma wyższą wartość niż poprzedni punkt.</td>
</tr>
<tr>
<td>0001</td>
<td>Niespójne punkty częstotliwości.</td>
<td></td>
<td>Sprawdzić, czy każdy punkt częstotliwości (parametry 37.16…37.20) ma wyższą wartość niż poprzedni punkt.</td>
</tr>
<tr>
<td>0002</td>
<td>Punkt niedociążenia powyżej punktu przeciążenia.</td>
<td></td>
<td>Sprawdzić, czy każdy punkt przeciążenia (37.31…37.35) ma wyższą wartość niż odpowiadający mu punkt niedociążenia (37.21…37.25).</td>
</tr>
<tr>
<td>0003</td>
<td>Punkt przeciążenia poniżej punktu niedociążenia.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>A7A5</td>
<td>Otwarcie hamulca mechanicznego niedozwolone</td>
<td>Nie można spełnić warunków otwarcia hamulca mechanicznego (na przykład otwarcie hamulca jest uniemożliwione przez parametr 44.11).</td>
<td>Sprawdzić ustawienia hamulca mechanicznego w grupie parametrów 44 Sterowanie hamulcem mechan. (związka 44.11). Sprawdzić, czy sygnał potwierdzenia (jeśli jest używany) jest zgodny z aktualnym stanem hamulca.</td>
</tr>
<tr>
<td>A7B0</td>
<td>Sprzężenie zwrotne od pr. silnika Programowalna funkcja ostrzeżenia: 90.45 Błąd sprz. zwr. od silnika</td>
<td>Niepowodzenie sprzężenia zwrotnego od prędkości silnika — przemiennik częstotliwości kontynuuje działanie przy użyciu sterowania w otwartej pętli.</td>
<td>Sprawdzić ustawienia parametrów konfiguracji silnika w grupach 90 Wybór sprzężenia zwrotnego, 91 Ustawienia adaptera enkodera i 92 Konfiguracja enkodera 1.</td>
</tr>
<tr>
<td>A791</td>
<td>Rezystor hamowania</td>
<td>Rezystor hamowania jest uszkodzony lub niepodłączony.</td>
<td>Sprawdzić, czy rezystor hamowania jest podłączony. Sprawdzić stan rezystora hamowania.</td>
</tr>
<tr>
<td>A794</td>
<td>Dane rezystora hamowania</td>
<td>Nie podano danych rezystora hamowania.</td>
<td>Sprawdzić ustawienia danych rezystora (parametry 43.08…43.10).</td>
</tr>
</tbody>
</table>
A7AB
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7AB</td>
<td>Błąd konfiguracji modułu rozszerzeń we/wy</td>
<td>Moduł rozszerzeń we/wy nie jest połączony z urządzeniem. Na przykład jeśli przemiennik jest podłączony do modułu we/wy i Modbus, a później zostanie odłączony, przemiennik wyświetli ostrzeżenie, jeśli zostanie utracone połączenie między dowolnym parametrem i skonfigurowanym wyświetleniem cyfrowym lub analogowym.</td>
<td>Upewnij się, czy moduł rozszerzeń we/wy jest połączony z urządzeniem.</td>
</tr>
</tbody>
</table>

A7C1
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
</table>

A7CE
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7CE</td>
<td>Utrata komunikacji EFB</td>
<td>Przerwa w komunikacji przez wbudowaną magistralę komunikacyjną (EFB).</td>
<td>Sprawdzić stan urządzenia nadrzędnego magistrali komunikacyjnej (online/offline/błąd itd.). Sprawdzić połączenia kablowe z zaciskami EIA-485/X5 o numerach 29, 30 i 31 jednostki sterującej.</td>
</tr>
</tbody>
</table>

A7E1
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7E1</td>
<td>Enkoder</td>
<td>Błąd enkodera.</td>
<td>Sprawdzić kod pomocniczy. Działania przedstawiono poniżej.</td>
</tr>
</tbody>
</table>

0001
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
</table>

A7EE
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7EE</td>
<td>Utrata panelu</td>
<td>Zatrzymanie komunikacji ze strony panelu sterowania lub programu komputerowego wybranego jako aktywna lokalizacja sterowania przemiennika częstotliwości.</td>
<td>Sprawdzić połączenie z programem komputerowym lub panelem sterowania. Sprawdzić złącze panelu sterowania. Sprawdzić platformę montażową, o ile jest używana. Odlączyć i ponownie podłączyć panel sterowania.</td>
</tr>
</tbody>
</table>

A71C
<table>
<thead>
<tr>
<th>Kod (sześnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A71C</td>
<td>Błąd wewnętrzny modułu I/O.</td>
<td>Informacje o kalibracji nie są przechowywane w module I/O. Sygnały analogowe nie działają z pełną dokładnością.</td>
<td>Wymień moduł I/O.</td>
</tr>
</tbody>
</table>

Kod (sześnastkowy)

Ostrzeżenie/kod pomocniczy

Przyczyna

Co należy zrobić
<table>
<thead>
<tr>
<th>Kod (szesnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8A0 Nadzór AI</td>
<td>Programowalna funkcja ostrzeżenia: 12.03 Funkcja nadzoru AI</td>
<td>Sygnał analogowy jest poza limitami określonymi dla wejścia analogowego.</td>
<td>Sprawdzić poziom sygnału na wejściu analogowym. Sprawdzić okablowanie podłączone do wejścia. Sprawdzić minimalne i maksymalne limity wejścia w grupie parametrów 12 Standardowe AI.</td>
</tr>
<tr>
<td>A8A1 Ostrzeżenie dotyczące zużycia RO</td>
<td>Stan przekaźnika zmieniał się częściej niż zalecana liczba razy.</td>
<td>Wymienić kartę sterowania lub przestąpić używać wyjścia przekaźnikowego.</td>
<td></td>
</tr>
<tr>
<td>0001 Wyjście przekaźnikowe 1</td>
<td></td>
<td></td>
<td>0001 Wyjście przekaźnikowe 1</td>
</tr>
<tr>
<td>A8A2 Ostrzeżenie o przełączaniu RO</td>
<td>Stan przekaźnika zmienia się częściej niż zalecana liczba razy, na przykład gdy podłączony jest do niego sygnał o wysokiej częstotliwości przełączania. Żywotność przekaźnika zostanie wkrótce przekroczona.</td>
<td>Zastąpić sygnał podłączony do źródła wyjścia przekaźnikowego sygnałem o niższej częstotliwości przełączania.</td>
<td>0001 Wyjście przekaźnikowe 1</td>
</tr>
<tr>
<td>A8B0 Nadzór sygnału (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 32.06 Działanie nadzoru 1</td>
<td>Ostrzeżenie generowane przez funkcję nadzoru sygnału.</td>
<td>Sprawdzić źródło ostrzeżenia (parametr 32.07 Sygnał nadzoru 1).</td>
<td></td>
</tr>
<tr>
<td>A8B1 Nadzór sygnału (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 32.16 Działanie nadzoru 2</td>
<td>Ostrzeżenie generowane przez funkcję nadzoru sygnału.</td>
<td>Sprawdzić źródło ostrzeżenia (parametr 32.17 Sygnał nadzoru 2).</td>
<td></td>
</tr>
<tr>
<td>A8B2 Nadzór sygnału (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 32.26 Działanie nadzoru 3</td>
<td>Ostrzeżenie generowane przez funkcję nadzoru sygnału.</td>
<td>Sprawdzić źródło ostrzeżenia (parametr 32.27 Sygnał nadzoru 3).</td>
<td></td>
</tr>
<tr>
<td>A8B3 Nadzór sygnału (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 32.36 Działanie nadzoru 4</td>
<td>Ostrzeżenie generowane przez funkcję nadzoru sygnału.</td>
<td>Sprawdzić źródło ostrzeżenia (parametr 32.37 Sygnał nadzoru 4).</td>
<td></td>
</tr>
<tr>
<td>A8B4 Nadzór sygnału (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 32.46 Działanie nadzoru 5</td>
<td>Ostrzeżenie generowane przez funkcję nadzoru sygnału.</td>
<td>Sprawdzić źródło ostrzeżenia (parametr 32.47 Sygnał nadzoru 5).</td>
<td></td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>A8B5</td>
<td>Nadzór sygnału (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 32.56 Działanie nadzoru 6</td>
<td>Ostrzeżenie generowane przez funkcję nadzoru sygnału.</td>
<td>Sprawdzić źródło ostrzeżenia (parametr 32.57 Sygnał nadzoru 6).</td>
</tr>
<tr>
<td>A8C0</td>
<td>ULC — nieprawidłowa tabela prędkości</td>
<td>Krzywa obciążenia użytkownika: Punkty osi X (prędkość) nie są prawidłowe.</td>
<td>Sprawdzić, czy punkty spełniają warunki. Patrz parametr 37.11 ULC - tabela prędk.: pkt 1.</td>
</tr>
<tr>
<td>A8C1</td>
<td>ULC — ostrzeżenie dotyczące przecięcia</td>
<td>Krzywa obciążenia użytkownika: Sygnał zbyt długo przekraczał krzywą przeciężenia.</td>
<td>Patrz parametr 37.03 ULC - działania przeciąż.</td>
</tr>
<tr>
<td>A8C8</td>
<td>ULC — nieprawidłowa tabela częstotliwości</td>
<td>Krzywa obciążenia użytkownika: Punkty osi X (częstotliwość) nie są prawidłowe.</td>
<td>Sprawdzić, czy punkty spełniają warunki. -500,0 Hz < 37.16 < 37.17 < 37.18 < 37.19 < 37.20 ≤ 500,0 Hz. Patrz parametr 37.16 ULC - tabela częst.: pkt 1.</td>
</tr>
<tr>
<td>A981</td>
<td>Ostrzeżenie zewnętrzne 1 (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 31.01 Źródło zdarzenia zewn. 1 31.02 Typ zdarzenia zewn. 1</td>
<td>Błąd w urządzeniu zewnętrznym 1.</td>
<td>Sprawdzić urządzenie zewnętrzne. Sprawdzić ustawienie parametru 31.01 Źródło zdarzenia zewn. 1.</td>
</tr>
<tr>
<td>A983</td>
<td>Ostrzeżenie zewnętrzne 3 (Edytowalny tekst komunikatu) Programowalna funkcja ostrzeżenia: 31.05 Źródło zdarzenia zewn. 3 31.06 Typ zdarzenia zewn. 3</td>
<td>Błąd w urządzeniu zewnętrznym 3.</td>
<td>Sprawdzić urządzenie zewnętrzne. Sprawdzić ustawienie parametru 31.05 Źródło zdarzenia zewn. 3.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| A984 | Ostrzeżenie zewnętrzne 4
(Edytowalny tekst komunikatu)
Programowalna funkcja ostrzeżenia:
31.07 Źródło zdarzenia zewn. 4
31.08 Typ zdarzenia zewn. 4 | Błąd w urządzeniu zewnętrznym 5. | Sprawdzić urządzenie zewnętrzne.
Sprawdzić ustawienie parametru 31.07
źródło zdarzenia zewn. 4. |
| A985 | Ostrzeżenie zewnętrzne 5
(Edytowalny tekst komunikatu)
Programowalna funkcja ostrzeżenia:
31.09 Źródło zdarzenia zewn. 5
31.10 Typ zdarzenia zewn. 5 | Błąd w urządzeniu zewnętrznym 5. | Sprawdzić urządzenie zewnętrzne.
Sprawdzić ustawienie parametru 31.09
źródło zdarzenia zewn. 5. |
| AF88 | Ostrzeżenie dot.
konfiguracji okresu czasowego. | Został skonfigurowany okres czasowy, który rozpoczyna się przed poprzednim okresem. | Skonfigurować okresy czasowe
z rosnącymi datami rozpoczęcia,
parametry 34.60 Dzień rozpoczęcia okresu 1...34.63 Dzień rozpoczęcia okresu 4. |
| AF8C | Tryb uśpienia regul.
PID procesu | Przemienik częstotliwości wchodzi w tryb uśpienia. | Ostrzeżenie informacyjne. Patrz sekcja
Funkcje uśpienia i wzmocnienia dla
regulatora PID procesu, i parametry 40.43...40.48. |
| AFAA | Automatyczne resetowanie | Błąd zostanie automatycznie zresetowany. | Ostrzeżenie informacyjne. Patrz
ustawienia w grupie parametrów 31
Funkcje błędu. |
| AFE1 | Zatrzymanie awaryjne
(off2) | Przemienik częstotliwości odebrał polecenie awaryjnego zatrzymania (wybór trybu off2). | Sprawdzić, czy można bezpiecznie kon-
tynuować pracę. Następnie przełączyć
przycisk zatrzymania awaryjnego do nor-
malnego położenia. Ponownie uruchomić
przemienik częstotliwości.
Jeśli zatrzymanie awaryjne nie było
celowe, sprawdzić źródło wybrane za
pomocą parametru 21.05 Źródło zatrzy-
mania awar.. |
| AFE2 | Zatrzymanie awaryjne
(off1/off3) | Przemienik częstotliwości odebrał polecenie awaryjnego zatrzymania (wybór trybu off1 lub off3). | Sprawdzić, czy można bezpiecznie kon-
tynuować pracę. Następnie przełączyć
przycisk zatrzymania awaryjnego do nor-
malnego położenia. Ponownie uruchomić
przemienik częstotliwości.
Jeśli zatrzymanie awaryjne nie było
celowe, sprawdzić źródło wybrane za
pomocą parametru 21.05 Źródło zatrzy-
mania awar.. |
| AFEA | Brak sygnału włączania startu
(Edytowalny tekst komunikatu) | Nie odebrano sygnału zezwolenia na start. | Sprawdzić ustawienie parametru 20.19
źródło zezwolenia na start i źródło
wymagane w tym parametrze. |
| AFE9 | Opóźnienie startu | Opóźnienie startu jest aktywne, a przemiennik częstotliwości uruchomi silnik po wstępnie zdefiniowanym opóźnieniu. | Ostrzeżenie informacyjne. Patrz
parametr 21.22 Opóźnienie startu. |
| AFEB | Brak zezwolenia na bieg | Nie odebrano sygnału zezwolenia na bieg. | Sprawdzić ustawienie parametru 20.12
źródło zezwolenia na bieg 1. Włączyć
sygnal (np. w słowie sterowania
magistrali komunikacyjnej) lub sprawdzić
okablowanie wybranego źródła. |
<table>
<thead>
<tr>
<th>Kod (sześćnastkowy)</th>
<th>Ostrzeżenie/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFEC</td>
<td>Brak zewnętrznego sygnału mocy</td>
<td>Parametr 95.04 Zasilanie karty sterowania jest ustawiony na wartość Zewnętrzne 24 V, ale nie podłączone napięcia do jednostki sterującej.</td>
<td>Sprawdzić zewnętrzne źródło zasilania 24 V DC jednostki sterującej lub zmienić ustawienie parametru 95.04.</td>
</tr>
<tr>
<td>AFF6</td>
<td>Bieg identyfikacyjny</td>
<td>Bieg identyfikacyjny silnika zostanie przeprowadzony przy założonym uruchomieniu.</td>
<td>Ostrzeżenie informacyjne.</td>
</tr>
<tr>
<td>B5A0</td>
<td>Zdarzenie STO</td>
<td>Funkcja bezpiecznego wyłączania momentu jest aktywna, tzn. utraciło sygnał z obwodu bezpieczeństwa podłączonego do złącza STO.</td>
<td>Sprawdzić połączenia obwodu bezpieczeństwa. Więcej informacji zawiera rozdział Funkcja bezpiecznego wyłączania momentu w podręcznikiu użytkownika przemiennika częstotliwości oraz opis parametru 31.22 Wskazanie STO praca/zatr. (str. 244).</td>
</tr>
<tr>
<td>D200</td>
<td>Poślizg ham. w tr. Statyczny 2</td>
<td>Poślizg hamulca zachodzi, gdy silnik nie pracuje.</td>
<td>Sprawdzić hamulec mechaniczny. Sprawdzić ustawienia parametrów w grupie 76.31 Dopasowanie prędk. silnika.</td>
</tr>
<tr>
<td>D201</td>
<td>Limit zwalniania do przodu</td>
<td>Polecenie zwalniania jest aktywne w kierunku do przodu, stosownie do ustawienia parametru 76.05 Limit zwalniania do przodu.</td>
<td>Uruchomić silnik w przeciwnym kierunku i dezaktywować polecenie zwalniania lub pozwolić przemiennikowi pracować z ograniczoną wartością zadaną prędkością.</td>
</tr>
<tr>
<td>D202</td>
<td>Limit zwalniania do tyłu</td>
<td>Polecenie zwalniania jest aktywne w kierunku do tyłu, stosownie do ustawienia parametru 76.07 Limit zwalniania do tyłu.</td>
<td>Uruchomić silnik w przeciwnym kierunku i dezaktywować polecenie zwalniania lub pozwolić przemiennikowi pracować z ograniczoną wartością zadaną prędkością.</td>
</tr>
<tr>
<td>D206</td>
<td>Limit zatrzymania do tyłu</td>
<td>Polecenie limitu zatrzymania jest aktywne w kierunku do tyłu, stosownie do ustawienia parametru 76.06 Limit zatrzymania do tyłu.</td>
<td>Sprawdzić okablowanie połączenia limitu zatrzymania do tyłu. Uruchomić silnik w przeciwnym kierunku i dezaktywować polecenie limitu zatrzymania do tyłu.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Ostrzeżenie/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>D209</td>
<td>Pozycja zerowa joysticka</td>
<td>Przemiennik częstotliwości nie przyjął polecenia startu z powodu nieprawidłowego stanu wejścia pozycji zerowej joysticka.</td>
<td>Sprawdzić okablowanie wejścia pozycji zerowej joysticka.</td>
</tr>
<tr>
<td>D20A</td>
<td>Szybkie zatrzymanie</td>
<td>Polecenie szybkiego zatrzymania zostało aktywowane.</td>
<td>Dezaktywować polecenie szybkiego zatrzymania.</td>
</tr>
</tbody>
</table>
Komunikaty o błędach

<table>
<thead>
<tr>
<th>Kod (szesnastkowy)</th>
<th>Błąd/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080</td>
<td>Limit czasu kopii zapasowej/przywracania</td>
<td>Niepowodzenie komunikacji panelu lub programu komputerowego z przemiennikiem częstotliwości podczas tworzenia lub przywracania kopii zapasowej</td>
<td>Ponownie zażądać utworzenia kopii zapasowej lub przywrócenia kopii zapasowej.</td>
</tr>
<tr>
<td>2281</td>
<td>Kalibracja</td>
<td>Zmierzone odchylenie pomiaru fazy prądu wyjściowego lub różnica między pomiarami prądu faz wyjściowych U2 i W2 są za duże (wartości są aktualizowane podczas kalibracji prądu)</td>
<td>Spróbować ponownie wykonać kalibrację. Jeśli błąd powtarza się, należy skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2340</td>
<td>Zwarcie</td>
<td>Zwarcie w kablu/kablach silnika lub silniku</td>
<td>Sprawdzić, czy w silniku i kablach silników nie ma błędów okablowania. Sprawdzić, czy w kablu silnika nie ma żadnych kondensatorów korygujących współczynnik mocy ani ograniczników przepięć. Podłączyć zasilanie do przemiennika częstotliwości.</td>
</tr>
<tr>
<td>Kod (sześnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3220</td>
<td>Niedostateczne napięcie łącza DC</td>
<td>Napięcie pośredniego obwodu DC jest niewystarczające z powodu braku fazy zasilania, przepalonego bezpiecznika lub usterki w mostku prostownika.</td>
<td>Sprawdzić okablowanie zasilania, bezpieczniki i aparatrę rozdzielczą.</td>
</tr>
<tr>
<td>4110</td>
<td>Temperatura karty sterowania</td>
<td>Temperatura karty sterowania jest zbyt wysoka.</td>
<td>Sprawdzić, czy przemiennik częstotliwości jest prawidłowo chłodzony. Sprawdzić pomocniczy wentylator chłodzący.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4290</td>
<td>Chłodzenie</td>
<td>Nadmierna temperatura modułu przemiennika częstotliwości.</td>
<td>Sprawdzić temperaturę otoczenia. Jeśli przekracza ona 50°C (122°F), upewnić się, że prąd obciążeniowy nie przekracza obniżonej obciążalności przemiennika częstotliwości. Patrz rozdział Dane techniczne, sekcja Obniżanie wartości znacjonowych w podręczniku użytkownika przemiennika częstotliwości. Sprawdzić przepływ powietrza chłodzącego moduł przemiennika częstotliwości i działanie wentylatora. Sprawdzić, czy we wnętrzu szafy i radiatora modułu przemiennika częstotliwości nie zbiera się pyłu. W razie potrzeby wyczyścić je.</td>
</tr>
<tr>
<td>42F1</td>
<td>Temperatura IGBT</td>
<td>Nadmierna temperatura tranzystora IGBT przemiennika częstotliwości.</td>
<td>Sprawdzić warunki otoczenia. Sprawdzić przepływ powietrza i działanie wentylatora. Sprawdzić, czy na żeberkach radiatora nie zbiera się pyłu. Sprawdzić moc silnika względem mocy przemiennika częstotliwości.</td>
</tr>
<tr>
<td>4982</td>
<td>Temperatura zewnętrzna 2 (Edytowalny tekst komunikatu)</td>
<td>Mierzona temperatura 2 przekroczyła limit błędu.</td>
<td>Sprawdzić wartość parametru 35.03 Zmierzona temperatura 2. Sprawdzić chłodzenie silnika (lub innego urządzenia, którego temperatura jest mierzona). Sprawdzić wartość parametru 35.22 Limit temp. 2.</td>
</tr>
</tbody>
</table>
| Kod (sześ
nastkowy) | Błąd/kod pomocniczy | Przyczyna | Co należy zrobić |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5092</td>
<td>Błąd ukł.log. j.mocy</td>
<td>Pamięć jednostki mocy została wyczyszczena.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>5094</td>
<td>Temp. obwodu pomiarowego</td>
<td>Problem z pomiarem wewnętrznej temperatury przemiennika częstotliwości.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>50A0</td>
<td>Wentylator</td>
<td>Wentylator chłodzący został zablokowany lub jest odłączony.</td>
<td>Sprawdzić działanie i podłączenie wentylatora. Wymienić wentylator, jeśli jest niesprawny.</td>
</tr>
<tr>
<td>5681</td>
<td>Komunikacja z jednostką mocy</td>
<td>Wykryto błędy komunikacji między jednostką sterującą przemiennika częstotliwości a jednostką mocy.</td>
<td>Sprawdzić połączenie między jednostką sterującą przemiennika częstotliwości a jednostką mocy. Sprawdzić wartość parametru 95.04 Zasilanie karty sterowania.</td>
</tr>
<tr>
<td>5682</td>
<td>Utrata jednostki mocy</td>
<td>Zanik połączenia między jednostką sterującą przemiennika częstotliwości a jednostką mocy.</td>
<td>Sprawdzić połączenie między jednostką sterującą a jednostką mocy.</td>
</tr>
<tr>
<td>5690</td>
<td>Błąd wewn. komunikacji z j.mocy</td>
<td>Wewnętrzny błąd komunikacji.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>5691</td>
<td>Obwód pomiarowy: ADC</td>
<td>Błąd obwodu pomiarowego.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>5692</td>
<td>Błąd zasilania karty jednostki mocy</td>
<td>Błąd zasilacza jednostki mocy.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>5693</td>
<td>Obwód pomiarowy: DFF</td>
<td>Błąd obwodu pomiarowego.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>5696</td>
<td>Sprzężenie zwrotne od stanu jednostki mocy</td>
<td>Sprzężenie zwrotne od stanu z faz wyjściowych nie odpowiada sygnałom sterującym.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>5697</td>
<td>Sprzężenie zwrotne od ładowania</td>
<td>Brak sygnału sprzężenia zwrotnego od ładowania.</td>
<td>Sprawdzić sygnał sprzężenia zwrotnego przychodzącą z systemu ładowania.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>6181</td>
<td>Niezgodna wersja FPGA</td>
<td>Niezgodność wersji oprogramowania i układu FPGA.</td>
<td>Uruchomić jednostkę sterującą ponownie przy użyciu parametru 96.08 Restart karty sterowania lub przez wyłączenie i włączenie zasilania. Jeśli problem powtarza się, skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>6306</td>
<td>Plik mapow.ad.kom. A</td>
<td>Błąd odczytu pliku odwzorowania adaptera komunikacyjnego A.</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>6481</td>
<td>Przeciążenie zadania</td>
<td>Błąd wewnętrzny.</td>
<td>Uruchomić jednostkę sterującą ponownie przy użyciu parametru 96.08 Restart karty sterowania lub przez wyłączenie i włączenie zasilania. Jeśli problem powtarza się, skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>6487</td>
<td>Przepełnienie stosu</td>
<td>Błąd wewnętrzny.</td>
<td>Uruchomić jednostkę sterującą ponownie przy użyciu parametru 96.08 Restart karty sterowania lub przez wyłączenie i włączenie zasilania. Jeśli problem powtarza się, skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>64A1</td>
<td>Wewn. ładow. pliku</td>
<td>Błąd odczytu pliku.</td>
<td>Uruchomić jednostkę sterującą ponownie przy użyciu parametru 96.08 Restart karty sterowania lub przez wyłączenie i włączenie zasilania. Jeśli problem powtarza się, skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
</tr>
<tr>
<td>000A</td>
<td>Uszkodzony program lub blok nie istnieje.</td>
<td></td>
<td>Przywrócić program szablonu lub pobrac program na przemiennik częstotliwości.</td>
</tr>
<tr>
<td>000C</td>
<td>Brak wymaganych danych wejściowych bloku.</td>
<td></td>
<td>Sprawdzić dane wejściowe bloku.</td>
</tr>
<tr>
<td>000E</td>
<td>Uszkodzony program lub blok nie istnieje.</td>
<td></td>
<td>Przywrócić program szablonu lub pobrac program na przemiennik częstotliwości.</td>
</tr>
<tr>
<td>0011</td>
<td>Program jest zbyt duży.</td>
<td></td>
<td>Usuwać bloki, aż ten błąd przestanie się pojawiać.</td>
</tr>
<tr>
<td>0012</td>
<td>Program jest pusty.</td>
<td></td>
<td>Poprawić program i pobrać go na przemiennik częstotliwości.</td>
</tr>
<tr>
<td>001C</td>
<td>W parametrze użyto nieistniejącego parametru lub bloku.</td>
<td></td>
<td>Zmienić parametr tak, aby poprawić wartość zadaną parametru, lub użyć istniejącego bloku.</td>
</tr>
<tr>
<td>001E</td>
<td>Wyjście do parametru nie powiodło się, ponieważ parametr był chroniony przed zapisem.</td>
<td></td>
<td>Sprawdzić wartość zadaną parametru w programie. Sprawdzić inne źródła wpływające na docelowy parametr.</td>
</tr>
<tr>
<td>0023</td>
<td>Plik programu jest niezgodny z bieżącą wersją oprogramowania.</td>
<td></td>
<td>Dostosować program do bieżącej wersji bloków i oprogramowania.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>0024</td>
<td>Plik programu jest niezgodny z bieżącą wersją oprogramowania.</td>
<td>Dostosować program do bieżącej wersji bloków i oprogramowania.</td>
<td></td>
</tr>
<tr>
<td>Inne</td>
<td>-</td>
<td>Skontaktować się z lokalnym przedstawicielem firmy ABB, podając kod pomocniczy.</td>
<td></td>
</tr>
</tbody>
</table>
| 64B2 | Błąd ust. przez użytk. | Ładowanie zestawu parametrów użytkownika nie powiodło się, ponieważ:
 • żądany zestaw nie istnieje,
 • zestaw nie jest zgodny z oprogramowaniem,
 • przemiennik częstotliwości został wyłączony podczas ładowania.
 Upewnić się, że istnieje prawidłowy zestaw parametrów użytkownika. W razie potrzeby załadować go ponownie. |
| 64E1 | Przeciążenie systemu | Błąd systemu operacyjnego. | Uruchomić jednostkę sterującą ponownie przy użyciu parametru 96.08 Restart karty sterowania lub przez wyłączenie i włączenie zasilania. Jeśli problem powtarza się, skontaktować się z lokalnym przedstawicielem firmy ABB. |
| 6581 | System parametrów | Ładowanie lub zapisywanie parametrów nie powiodło się. | Spróbować wymusić zapisanie przy użyciu parametru 96.07 Ręczne zapisanie parametrów. Ponów próbę. |
| 65A1 | Konflikt parametrów adapt. kom. A | Przemiennik częstotliwości nie ma funkcjonalności żądanej przez sterownik PLC lub żądana funkcjonalność nie została aktywowana. | Sprawdzić programowanie sterownika PLC.
 Sprawdzić ustawienia grup parametrów 50 Adapter komunikacyjny (FBA) i 51 FBA A: ustawienia. |
| 6681 | Utrata komunikacji EFB
 Programowalna funkcja błędu: 58.14 Reakcja na utratę komunik. | Przerwa w komunikacji przez wbudowaną magistralę komunikacyjną (EFB). | Sprawdzić stan urządzenia nadzrodnego magistrali komunikacyjnej (online/offline/bląd itd.).
 Sprawdzić połączenia kablowe z zaciskami EIA-485/X5 o numerach 29, 30 i 31 jednostki sterującej. |
| 6682 | Plik konfiguracji EFB | Nie można odczytać pliku konfiguracji wbudowanej magistrali komunikacyjnej (EFB). | Skontaktować się z lokalnym przedstawicielem firmy ABB. |
| 6683 | Nieprawidłowa parametryzacja EFB | Ustawienia parametrów wbudowanej magistrali komunikacyjnej (EFB) są niespójne lub nie są zgodne z wybranym protokołem. | Sprawdzić ustawienia w grupie parametrów 58 Wbud. moduł komunikacyjny. |
| 6684 | Błąd ładowania EFB | Nie można załadować oprogramowania protokołu wbudowanej magistrali komunikacyjnej (EFB).
 Niezgodność wersji oprogramowania EFB i oprogramowania przemiennika częstotliwości. | Skontaktować się z lokalnym przedstawicielem firmy ABB. |
<table>
<thead>
<tr>
<th>Kod (zeszynastkowy)</th>
<th>Błąd/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>6685</td>
<td>Błąd EFB 2</td>
<td>Błąd zastrzeżony dla aplikacji protokołu EFB.</td>
<td>Sprawdzić dokumentację protokołu.</td>
</tr>
<tr>
<td>6686</td>
<td>Błąd EFB 3</td>
<td>Błąd zastrzeżony dla aplikacji protokołu EFB.</td>
<td>Sprawdzić dokumentację protokołu.</td>
</tr>
<tr>
<td>7081</td>
<td>Utrata panelu sterowania Programowalna funkcja błędu: <code>49.05 Reakcja na utratę komunik.</code></td>
<td>Zatrzymanie komunikacji ze strony panelu sterowania lub programu komputerowego wybranego jako aktywna lokalizacja sterowania przemienika częstotliwości.</td>
<td>Sprawdzić połączenie z programem komputerowym lub panelem sterowania. Sprawdzić złącze panelu sterowania. Odlączyć i ponownie podłączyć panel sterowania.</td>
</tr>
<tr>
<td>7082</td>
<td>Utrata komunikacji z modulem I/O</td>
<td>Komunikacja między modułem I/O i przemiennikiem częstotliwości nie działa prawidłowo.</td>
<td>Sprawdzić instalację modułu I/O.</td>
</tr>
<tr>
<td>7086</td>
<td>Przepięcie AI modulu I/O.</td>
<td>Wykryto przepięcie w AI. Al zmieniono na tryb napięcia. Po przywróceniu poprawnego poziomu sygnału AI zostanie przywrócony tryb mA.</td>
<td>Sprawdzić poziom sygnału AI.</td>
</tr>
<tr>
<td>71A5</td>
<td>Otwarcie hamulca mechanicznego niedozwolone</td>
<td>Nie można spełnić warunków otwarcia hamulca mechanicznego (na przykład otwarcie hamulca jest uniemożliwione przez parametr 44.11).</td>
<td>Sprawdzić ustawienia hamulca mechanicznego w grupie parametrów <code>44 Sterowanie hamulcem mechan.</code> (zwłaszcza 44.11). Sprawdzić, czy sygnał potwierdzenia (jeśli jest używany) jest zgodny z aktualnym stanem hamulca.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 7181 | Rezystor hamowania | Rezystor hamowania jest uszkodzony lub niepodłączony. | Sprawdzić, czy rezystor hamowania jest podłączony.
Sprawdzić stan rezystora hamowania.
Sprawdzić wymiarowanie rezystora hamowania. |
| 7183 | Nadmierna temp. rezystora ham. | Temperatura rezystora hamowania przekroczyła limit błędu określony przez parametr 43.11 Limit błędu rez. ham. | Wyłączyć przemiennik częstotliwości.
Poczekać, aż rezystor ostygnie.
Sprawdzić ustawienia funkcji ochrony przed przegrzaniem rezystora (grupa parametrów 43 Czoper hamowania).
Sprawdzić ustawienie limitu błędu, parametr 43.11 Limit błędu rez. ham.
Sprawdzić, czy cykl hamowania odpowiada dozwolonym limitem. |
| 7184 | Okablowanie rezystora hamowania | Zwarcie rezystora hamowania lub błąd sterowania czopera hamowania. | Sprawdzić połączenie czopera hamowania i rezystora hamowania.
Upewnić się, że rezystor hamowania nie jest uszkodzony. |
| 7191 | Zwarcie czopera hamowania | Zwarcie w tranzystorze IGBT czopera hamowania. | Upewnić się, że rezystor hamowania jest podłączony i nie jest uszkodzony.
Sprawdzić specyfikację elektryczną rezystora hamowania w rozdziale Hamowanie rezystorowe w podręczniku użytkownika przemiennika częstotliwości.
Wymienić czopera hamowania (jeśli jest wymienny). |
| 7192 | Nadmierna temp. IGBT czop. ham. | Temperatura tranzystora IGBT czopera hamowania przekroczyła wewnętrzny limit błędu. | Poczekać, aż czop ostygnie.
Sprawdzić, czy temperatura otoczenia nie przekracza limitu.
Sprawdzić, czy wentylator chłodzący jest sprawny i działa.
Sprawdzić, czy nic nie zakłóca przepływu powietrza.
Sprawdzić ustawienia funkcji ochrony przed przegrzaniem rezystora (grupa parametrów 43 Czoper hamowania).
Sprawdzić, czy cykl hamowania odpowiada dozwolonym limitem.
Sprawdzić, czy napięcie zasilania AC w przemienniku nie jest zbyt wysokie. |
| 7301 | Sprzężenie zwrotne od prędkości silnika
Programowalna funkcja błędu: 90.45 Błąd sprz. zwr. od silnika | Nie odebrano sygnału sprzężenia zwrotnego od prędkości silnika.
Prędkość enkodera zbyt się różni od wewnętrznego oszacowania prędkości.
Kod pomocniczy 4 = wykryto dryf. Kod pomocniczy 3FC = nieprawidłowa konfiguracja sprzężenia zwrotnego silnika. | Sprawdzić ustawienie parametru 90.41 i faktycznie wybrane źródło.
Sprawdzić połączenie elektryczne enkodera i wartość sinus/a/cosinus impulsu. |
<table>
<thead>
<tr>
<th>Kod (szes nastkowy)</th>
<th>Błąd/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>7381</td>
<td>Enkoder Programowalna funkcja błędu: 90.45 Błąd sprz. zw. od silnika</td>
<td>Błąd sprzężenia zwrotnego od enkodera.</td>
<td>Patrz A7E1 Enkoder (str. 434).</td>
</tr>
<tr>
<td>8002</td>
<td>ULC — błąd przeciążenia</td>
<td>Krzywa obciążenia użytkownika: Sygnał zbyt długo przekraczał krzywą przeciążenia.</td>
<td>Patrz parametr 37.03 ULC - działania przeciąż.</td>
</tr>
<tr>
<td>Kod (szeroki) Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>80A0 Nadzór AI</td>
<td>Sygnał analogowy jest poza limitami określonymi dla wejścia analogowego.</td>
<td>Sprawdzić poziom sygnału na wejściu analogowym. Sprawdzić okablowanie podłączone do wejścia. Sprawdzić minimalne i maksymalne limity wejścia w grupie parametrów 12 Standardowe AI.</td>
<td></td>
</tr>
<tr>
<td>80B0 Nadzór sygnału (Edytowalny tekst komunikatu)</td>
<td>Błąd generowany przez funkcję nadzoru sygnału 1.</td>
<td>Sprawdzić źródło błędu (parametr 32.07 Sygnał nadzoru 1).</td>
<td></td>
</tr>
<tr>
<td>80B1 Nadzór sygnału (Edytowalny tekst komunikatu)</td>
<td>Błąd generowany przez funkcję nadzoru sygnału 2.</td>
<td>Sprawdzić źródło błędu (parametr 32.17 Sygnał nadzoru 2).</td>
<td></td>
</tr>
<tr>
<td>80B2 Nadzór sygnału (Edytowalny tekst komunikatu)</td>
<td>Błąd generowany przez funkcję nadzoru sygnału 3.</td>
<td>Sprawdzić źródło błędu (parametr 32.27 Sygnał nadzoru 3).</td>
<td></td>
</tr>
<tr>
<td>80B3 Nadzór sygnału (Edytowalny tekst komunikatu)</td>
<td>Błąd generowany przez funkcję nadzoru sygnału 4.</td>
<td>Sprawdzić źródło błędu (parametr 32.37 Sygnał nadzoru 4).</td>
<td></td>
</tr>
<tr>
<td>80B4 Nadzór sygnału (Edytowalny tekst komunikatu)</td>
<td>Błąd generowany przez funkcję nadzoru sygnału 5.</td>
<td>Sprawdzić źródło błędu (parametr 32.47 Sygnał nadzoru 5).</td>
<td></td>
</tr>
<tr>
<td>80B5 Nadzór sygnału (Edytowalny tekst komunikatu)</td>
<td>Błąd generowany przez funkcję nadzoru sygnału 6.</td>
<td>Sprawdzić źródło błędu (parametr 32.57 Sygnał nadzoru 6).</td>
<td></td>
</tr>
<tr>
<td>9081 Błąd zewnętrzny 1 (Edytowalny tekst komunikatu)</td>
<td>Błąd w urządzeniu zewnętrznym 1.</td>
<td>Sprawdzić urządzenie zewnętrzne. Sprawdzić ustawienie parametru 31.01 Źródło zdarzenia zewn. 1.</td>
<td></td>
</tr>
<tr>
<td>9082 Błąd zewnętrzny 2 (Edytowalny tekst komunikatu)</td>
<td>Błąd w urządzeniu zewnętrznym 2.</td>
<td>Sprawdzić urządzenie zewnętrzne. Sprawdzić ustawienie parametru 31.03 Źródło zdarzenia zewn. 2.</td>
<td></td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>9083</td>
<td>Blad wewnętrzny 3</td>
<td>Błąd w urządzeniu zewnętrznym 3.</td>
<td>Sprawdzić urządzenie zewnętrznne. Sprawdzić ustawienie parametrów 31.05 Źródło zdarzenia zewn. 3.</td>
</tr>
<tr>
<td></td>
<td>(Edytowalny tekst komunikatu)</td>
<td>Programowalna funkcja błędu: 31.05 Źródło zdarzenia zewn. 3 31.06 Typ zdarzenia zewn. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Edytowalny tekst komunikatu)</td>
<td>Programowalna funkcja błędu: 31.07 Źródło zdarzenia zewn. 4 31.08 Typ zdarzenia zewn. 4</td>
<td></td>
</tr>
<tr>
<td>9085</td>
<td>Blad wewnętrzny 5</td>
<td>Błąd w urządzeniu zewnętrznym 5.</td>
<td>Sprawdzić urządzenie zewnętrznne. Sprawdzić ustawienie parametrów 31.09 Źródło zdarzenia zewn. 5.</td>
</tr>
<tr>
<td></td>
<td>(Edytowalny tekst komunikatu)</td>
<td>Programowalna funkcja błędu: 31.09 Źródło zdarzenia zewn. 5 31.10 Typ zdarzenia zewn. 5</td>
<td></td>
</tr>
<tr>
<td>FA81</td>
<td>Bezpieczne wylaczanie momentu 1</td>
<td>Funkcja bezpiecznego wylaczania momentu jest aktywna, tzn. obwód STO 1 jest przerwany.</td>
<td>Sprawdzić połączenia obwodu bezpieczenstwa. Więcej informacji zawiera rozdziały Funkcja bezpiecznego wylaczania momentu w podręczniku użytkownika przemieninika częstotliwości oraz opis parametru 31.22 Wskazanie STO praca/zatrz. (str. 244).</td>
</tr>
<tr>
<td>FA82</td>
<td>Bezpieczne wylaczanie momentu 2</td>
<td>Funkcja bezpiecznego wylaczania momentu jest aktywna, tzn. obwód STO 2 jest przerwany.</td>
<td>Sprawdzić wartość parametru 95.04 Zasilanie karty sterowania.</td>
</tr>
<tr>
<td>Kod (szesnastkowy)</td>
<td>Błąd/kod pomocniczy</td>
<td>Przyczyna</td>
<td>Co należy zrobić</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 0002 | Limit prędkości maksymalnej lub oszacowany punkt osłabienia pola jest za niski. | Sprawdzić ustawienia parametrów
- 30.11 Min. prędkość
- 30.12 Maks. prędkość
- 99.07 Napięcie znam. silnika
- 99.08 Częstotliwość znam. silnika
- 99.09 Prędkość znam. silnika.
Upewnij się, że wartość
- 30.12 > (0,55 × 99.09) >
(0,50 × prędkość synchroniczna)
- 30.11 ≤ 0
- napięcie zasilania ≥ (0,66 × 99.07). | |
| 0003 | Limit momentu maksymalnego jest za niski. | Sprawdzić ustawienia parametru 99.12 Moment znam. silnika i limity momentu w grupie 30 Limity.
Upewnij się, że zastosowany limit momentu maksymalnego jest większy niż 100%. | |
| 0004 | Kalibracja pomiaru prądu nie została ukończona w wyznaczonym czasie. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 0005…0008 | Błąd wewnętrzny. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 0009 | (Tylko silniki asynchroniczne)
Przyspieszenie nie zostało ukończono w wyznaczonym czasie. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 000A | (Tylko silniki asynchroniczne)
Zwalnianie nie zostało ukończono w wyznaczonym czasie. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 000B | (Tylko silniki asynchroniczne)
W trakcie biegu identyfikacyjnego prędkość spadła do zera. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 000C | (Tylko silniki z magnesami trwałymi)
Pierwsze przyspieszenie nie zostało ukończono w wyznaczonym czasie. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 000D | (Tylko silniki z magnesami trwałymi)
Drugie przyspieszenie nie zostało ukończono w wyznaczonym czasie. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 000E…0010 | Błąd wewnętrzny. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 0011 | (Tylko synchroniczne silniki reluktancyjne)
Błąd testu impulsu. | Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
| 0012 | Silnik jest za duży do zaawansowanego statycznego biegu identyfikacyjnego. | Sprawdzić, czy rozmiary silnika i przeprzemiennika częstotliwością są zgodne.
Skontaktować się z lokalnym przedstawicielem firmy ABB. | |
<table>
<thead>
<tr>
<th>Kod (szesnastkowy)</th>
<th>Błąd/kod pomocniczy</th>
<th>Przyczyna</th>
<th>Co należy zrobić</th>
</tr>
</thead>
<tbody>
<tr>
<td>0013</td>
<td>(Tylko silniki asynchroniczne) Błąd danych silnika.</td>
<td>Sprawdzić, czy ustawienie wartości znamionowej silnika w przemienniku jest takie samo, co na tabliczce znamionowej silnika. Skontaktować się z lokalnym przedstawicielem firmy ABB.</td>
<td></td>
</tr>
<tr>
<td>FF81</td>
<td>FB A: wym. wył. awar.</td>
<td>Odebrano polecenie wyłączenia awaryjnego przez adapter komunikacyjny A.</td>
<td>Sprawdzić informacje o błędzie dostarczone przez sterownik PLC.</td>
</tr>
<tr>
<td>FF8E</td>
<td>EFB wym. wył. awar.</td>
<td>Odebrano polecenie wyłączenia awaryjnego przez interfejs wbudowanej magistrali komunikacyjnej.</td>
<td>Sprawdzić informacje o błędzie dostarczone przez sterownik PLC.</td>
</tr>
</tbody>
</table>
| D100 | Badanie momentu | Przemiennik częstotliwości nie był w stanie zapewnić wystarczającego momentu podczas sprawdzania momentu. Tryb czasu magnesowania wstępnego jest nieprawidłowy lub zbyt krótki. | Sprawdzić silnik i kable silnika. Sprawdzić, czy ustawienia parametrów są następujące:
 - 21.01 Tryb startu wektorowego = Stały czas
 - 21.02 Czas magnesowania = Ustawienie nie jest ustalone. Wprowadź odpowiednią wartość. |
| D101 | Poślizg przy hamowaniu | W trakcie sprawdzania momentu doszło do poślizgu hamulca. | Sprawdzić hamulec. Sprawdzić, czy w stanie zamkniętym hamulec również się ślizga. |
| D102 | Bezpieczne zamknięcie hamulca | Polecenie startu jest aktywne, prędkość rzeczywista jest poniżej limitu zdefiniowanego w parametrze 44.208 Prędkość bezp. zamykania i upłynęło opóźnienie zdefiniowane w parametrze 44.209 Opóźnienie bezp. zamykania. | Sprawdzić, czy konieczne jest napędzanie rozwiązania z małą prędkością. Jeśli nie, zmień wartości parametrów 44.208 Prędkość bezp. zamykania i 44.209 Opóźnienie bezp. zamykania stosownie do zastosowania. Przy wózkach lub dłuższych trasach należy wyłączyć funkcję bezpiecznego zamykania hamulca za pomocą parametru 44.207 Wybór bezp. zamykania. |
| D105 | Dopasow. prędkości | Prędkość silnika przekroczyła poziom odchylenia dla stanu stabilnego (par. 76.32) lub poziom odchylenia dla stanu rampy (par. 76.33) oraz upłynęło opóźnienie zdefiniowane w parametrze 76.34 Opóźn. błędu dopas. prędk.. | Sprawdzić ustawienia momentu i limitu prądu. Jeśli używasz enkodera, sprawdzić jego ustawienia.d205 |
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB
Spis treści

- Opis systemu
- Modbus
 - Łączenie magistrali komunikacyjnej z przemiennikiem częstotliwości
 - Konfigurowanie wbudowanego interfejsu komunikacyjnego (modbus)
 - Ustawianie parametrów sterowania przemiennikiem częstotliwości
 - Podstawowe informacje o wbudowanym interfejsie komunikacyjnym
- Informacje o profilach sterowania
 - Słowo sterowania
 - Słowo stanu
 - Schematy zmian stanu
 - Wartości zadane
 - Wartości aktualne
 - Adresy rejestru przechowującego protokołu Modbus
 - Kody funkcji protokołu Modbus
 - Kody wyjątków
 - Cewki (zestaw wartości zadanych 0xxxx)
 - Wejścia dyskretnie (zestaw wartości zadanych 1xxxx)
 - Rejesty kodów błędów (rejesty przechowujące 400090…400100)
- CANopen
 - Łączenie magistrali komunikacyjnej z przemiennikiem częstotliwości
 - Konfigurowanie wbudowanego interfejsu komunikacyjnego (CANopen)
 - Ustawianie parametrów sterowania przemiennikiem częstotliwości
 - Podstawowe informacje o wbudowanym interfejsie komunikacyjnym
 - Informacje o profilach sterowania
 - Profil CiA 402
 - Profil ABB Drives
 - Profil Transparent 16
 - Profil Transparent 32
 - Słownik obiektów
 - Wskaźniki stanu CANopen

Opis systemu

Przemiennik częstotliwości można podłączyć do zewnętrznego systemu sterującego za pośrednictwem łącza komunikacyjnego przy użyciu adaptera komunikacyjnego lub wbudowanego interfejsu komunikacyjnego.
Interfejs wbudowanej magistrali komunikacyjnej obsługuje dwa protokoły: Modbus i CANopen.

- **Modbus**

Wbudowana magistrala komunikacyjna obsługuwana jest przez następujące urządzenia:

- Wariant standardowy ACS380-04xS
- Wariant skonfigurowany (ACS380-04xC) z modułem rozszerzeń we/wy i Modbus (opcja +L538).

Wbudowany interfejs komunikacyjny obsługuje protokół Modbus RTU. Program sterujący przemiennikiem częstotliwości obsługuje do 10 rejestrów protokołu Modbus na poziomie 10 milisekund. Jeśli na przykład przemiennik częstotliwości otrzyma żądanie odczytu 20 rejestrów, rozpocznie swoją odpowiedź w ciągu 22 ms od otrzymania żądania — 20 ms na przetworzenie żądania i dodatkowe 2 ms na obsługę magistrali. Rzeczywisty czas odpowiedzi zależy też od innych czynników, na przykład od szybkości transmisji (ustawienie parametru w przemienniku częstotliwości).

Przemiennik częstotliwości można ustawić tak, aby odbierał wszystkie informacje sterujące przez interfejs komunikacyjny. Informacje te mogą być także przesyłane między wbudowanym interfejsem komunikacyjnym a innymi dostępnymi źródłami, takimi jak wejścia cyfrowe i analogowe.
Łączenie magistrali komunikacyjnej z przemiennikiem częstotliwości

Podłączyć magistralę komunikacyjną do zacisku EIA-485 Modbus RTU w module BMIO-01 dołączonym do jednostki sterującej przemiennika częstotliwości. Poniżej znajduje się schemat połączenia.

Przepływ danych

- Słowo sterowania (CW)
- Wartości zadane
- Słowo stanu (SW)
- Wartości aktualne
- Odczyt/zapis parametrów żądania/odpowiedzi

Magistrala komunikacyjna

- We/wy procesu (cykliczne)
- Wiadomości serwisowe (niecykliczne)

Sterownik magistrali komunikacyjnej

Terminacja WL.1

1) Urządzenia na obu końcach magistrali komunikacyjnej muszą mieć włączoną terminację.
2) Jedno urządzenie, najlepiej na końcu magistrali komunikacyjnej, musi mieć włączony bias.
Konfigurowanie wbudowanego interfejsu komunikacyjnego (modbus)

Aby użyć magistrali modbus

1. Wybierz opcję Modbus RTU w menu Makra sterowania (patrz sekcja Podmenu na str. 20).

 Poniższe parametry zostaną automatycznie zmienione.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01 Komendy Zew1</td>
<td>Wbudowana magistrala komunikacyjna</td>
</tr>
<tr>
<td>20.03 We1 Zew1</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>20.04 We2 Zew1</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>22.11 W. zad. pręd. 1 Zew1</td>
<td>EFB — wartość zadana 1</td>
</tr>
<tr>
<td>22.22 Wybór stałej prędkości 1</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>22.23 Wybór stałej prędkości 2</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>23.11 Wybór zestawu ramp</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td>28.11 W. zad. częst. 1 Zew1</td>
<td>EFB — wartość zadana 1</td>
</tr>
<tr>
<td>28.22 Wybór stałej częstotliwości 1</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>28.23 Wybór stałej częstotliwości 2</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>28.71 Wybór ust. rampy częst.</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td>31.11 Wybór resetu błędu</td>
<td>DI1</td>
</tr>
<tr>
<td>58.01 Protokół wł.</td>
<td>Modbus RTU</td>
</tr>
</tbody>
</table>

Ustawienia magistrali modbus dla interfejsu wbudowanej magistrali komunikacyjnej

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.01 Włączenie protokołu</td>
<td>Modbus RTU</td>
<td>Inicjuje komunikację przez wbudowaną magistralę komunikacyjną.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.03 Adres węzła</td>
<td>1 (wartość domyślna)</td>
<td>Adres węzła. Nie może być dwóch węzłów online o takim samym adresie.</td>
</tr>
<tr>
<td>58.04 Szybkość transmisi</td>
<td>19,2 kb/s (wartość domyślna)</td>
<td>Definiuje szybkość komunikacji łącza. Należy użyć tego samego ustawienia co w stacji nadrzędnej.</td>
</tr>
<tr>
<td>Parametr</td>
<td>Ustawienie sterowania przez magistralę komunikacyjną</td>
<td>Funkcja/informacja</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>58.05</td>
<td>Parzystość</td>
<td>8 PARZYSTOŚĆ 1 (wartość domyślna)</td>
</tr>
<tr>
<td>58.15</td>
<td>Tryb utraty komunikacji</td>
<td>St. ster. / Zad1 / Zad2 (wartość domyślna)</td>
</tr>
<tr>
<td>58.16</td>
<td>Czas utraty komunikacji</td>
<td>3,0 s (wartość domyślna)</td>
</tr>
<tr>
<td>58.17</td>
<td>Opóźnienie transmisji</td>
<td>0 ms (wartość domyślna)</td>
</tr>
<tr>
<td>58.26</td>
<td>EFB: typ wartości zad. 1</td>
<td>Prędkość lub częstotliwość (wartość domyślna w przypadku parametru 58.26), Transparentne, Ogólna, Moment (wartość domyślna w przypadku parametru 58.27), Prędkość, Częstotliwość</td>
</tr>
<tr>
<td>58.28</td>
<td>EFB: typ wartości akt. 1</td>
<td>Prędkość lub częstotliwość (wartość domyślna w przypadku parametru 58.28), Transparentne (wartość domyślna w przypadku parametru 58.29), Ogólna, Moment, Prędkość, Częstotliwość</td>
</tr>
<tr>
<td>58.31</td>
<td>EFB: źródło transp. w. akt. 1</td>
<td>Inny</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.33</td>
<td>Tryb adresowania</td>
<td>Tryb 0 (wartość domyślna)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Definiuje odwzorowanie pomiędzy parametrami oraz rejesty przechowywające z zakresu rejestrów protokołu Modbus 400001…465536 (100…65535).</td>
</tr>
<tr>
<td>58.34</td>
<td>Kolejność słów</td>
<td>NIS-WYS (wartość domyślna)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Definiuje kolejność słów danych w ramce komunikatu protokołu Modbus.</td>
</tr>
<tr>
<td>58.101</td>
<td>Dane I/O 1...</td>
<td>Na przykład ustawienia domyślne (we/wy 1…6 zawierają słowo sterowania, słowo stanu, dwie wartości zadane i dwie wartości aktualne).</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>Definiuje adres parametru przemiennika częstotliwości, do którego dostęp uzyskuje urządzanie nadrzędne protokołu Modbus podczas odczytu lub zapisu pod adresem rejestrów odpowiadającym parametrom wejścia/wyjścia protokołu Modbus. Należy wybrać parametry, które mają zostać odczytane lub zapisane za pośrednictwem słów wejścia/wyjścia protocolu Modbus.</td>
</tr>
<tr>
<td>58.114</td>
<td>Dane I/O 14</td>
<td>Słowo sterowania RO/DIO, Magazyn danych AO1, Magazyn danych sprzężenia zwrotnego, Magazyn danych nastawy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ustawienia te zapisują przychodzące dane w parametrach magazynu danych 10.99 Słowo sterowania RO/DIO, 13.91 Magazyn danych AO1, 40.91 Magazyn danych sprzężenia zwrotnego i 40.92 Magazyn danych nastawy.</td>
</tr>
<tr>
<td>58.06</td>
<td>Sterowanie komunikacyjną</td>
<td>Odśwież ustawienia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprawdza ustawienia parametrów konfiguracji.</td>
</tr>
</tbody>
</table>

Nowe ustawienia zostaną zastosowane po następnym włączeniu przemiennika częstotliwości lub po sprawdzeniu ich poprawności przy użyciu parametru 58.06 Sterowanie komunikacyjną (Odśwież ustawienia).

Ustawianie parametrów sterowania przemiennikiem częstotliwości

Po skonfigurowaniu wbudowanego interfejsu komunikacyjnego należy sprawdzić i dostosować parametry sterowania przemiennika częstotliwości wymienione w poniższej tabeli. Kolumna Ustawienie sterowania przez magistralę komunikacyjną zawiera wartości używane, gdy sygnał wbudowanej magistrali komunikacyjnej jest żadanym źródłem lub celem danego sygnału sterowania przemiennikiem częstotliwości. Kolumna Funkcja/informacja zawiera opis parametru.
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>WYBÓR ŹRÓDŁA POLECENIA STERUJĄCEGO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.01 Komendy Zew1</td>
<td>Wbudowana magistrala komunikacyjna</td>
<td>Wybiera magistralę komunikacyjną będącą źródłem poleceń startu i stopu, gdy jako aktywna lokalizacja sterowania zostanie wybrana lokalizacja ZEW1.</td>
</tr>
<tr>
<td>20.02 Komendy Zew2</td>
<td>Wbudowana magistrala komunikacyjna</td>
<td>Wybiera magistralę komunikacyjną będącą źródłem poleceń startu i stopu, gdy jako aktywna lokalizacja sterowania zostanie wybrana lokalizacja ZEW2.</td>
</tr>
<tr>
<td>WYBÓR WARTOŚCI ZADANEJ PRĘDKOŚCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.11 W. zad. pręd. 1 Zew1</td>
<td>W. zad. EFB 1</td>
<td>Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną prędkości 1.</td>
</tr>
<tr>
<td>22.18 W. zad. pręd. 1 Zew2</td>
<td>W. zad. EFB 1</td>
<td>Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną prędkości 2.</td>
</tr>
<tr>
<td>WYBÓR WARTOŚCI ZADANEJ MOMENTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.11 Źródło wart. zad. momentu 1</td>
<td>W. zad. EFB 1</td>
<td>Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną momentu 1.</td>
</tr>
<tr>
<td>WYBÓR WARTOŚCI ZADANEJ CZĘSTOTLIWOŚCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.11 W. zad. częst. 1 Zew1</td>
<td>W. zad. EFB 1</td>
<td>Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną częstotliwości 1.</td>
</tr>
<tr>
<td>INNE WYBORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartości zadane EFB można wybrać jako źródło w praktycznie każdym parametrze selektora sygnału, wybierając pozycję Inny, a następnie pozycję 03.09 Wart. zadana 1 EFB lub 03.10 Wart. zadana 2 EFB.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEJŚCIA STEROWANIA SYSTEMEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.07 Ręczne zapisanie parametrów</td>
<td>Zapisz (powraca do Gotowe)</td>
<td>Zapisuje zmiany w wartości parametru (w tym te dokonane przy użyciu sterowania przez magistralę komunikacyjną) w pamięci trwałej.</td>
</tr>
</tbody>
</table>
Podstawowe informacje o wbudowanym interfejsie komunikacyjnym

Komunikacja cykliczna między systemem magistrali komunikacyjnej i przemieni-nikiem częstotliwości składa się z 16-bitowych słów danych lub 32-bitowych słów danych (z transparentnymi profilami sterowania).

Poniższy schemat przedstawia działanie wbudowanego interfejsu komunikacyjnego. Sygnały przekazywane w ramach komunikacji cyklicznej zostały dokładnie wyjaśnione na poniższym schemacie.

1. Należy też zapoznać się z innymi parametrami, które można kontrolować z magistrali komunikacyjnej.
Słowo sterowania i słowo stanu

Słowo sterowania (CW) to 16- lub 32-bitowe spakowane słowo binarne. To główny sposób sterowania przemiennikiem częstotliwości w systemie magistrali komunikacyjnej. Słowo sterowania jest wysyłane przez sterownik magistrali komunikacyjnej do przemiennika częstotliwości. Przy użyciu parametrów przemiennika częstotliwości użytkownik wybiera słowo sterowania wbudowanego interfejsu komunikacyjnego jako źródło poleceń sterowania przemiennikiem częstotliwości (na przykład poleceń startu/stopu, zatrzymania awaryjnego, wyboru między lokalizacjami sterowania zewnętrznego 1/2 lub resetowania błędu). Stan przemiennika częstotliwości jest przełączany w zależności od zakodowanych bitowo instrukcji w słowie sterowania.

Słowo sterowania magistrali komunikacyjnej jest zapisywane w przemienniku częstotliwości bez zmian lub dane są konwertowane. Patrz sekcja Informacje o profilach sterowania na str. 465.

Słowo stanu (SW) magistrali komunikacyjnej to 16- lub 32-bitowe spakowane słowo binarne. Zawiera ono informacje o stanie przekazywane z przemiennika częstotliwości do sterownika magistrali komunikacyjnej. Słowo stanu przemiennika częstotliwości jest zapisywane w słowie stanu magistrali komunikacyjnej bez zmian lub dane są konwertowane. Patrz sekcja Informacje o profilach sterowania na str. 465.

Wartości zadane

Wartości zadane EFB 1 i 2 to 16- lub 32-bitowe wartości całkowite ze znakiem. Zawartość każdego słowa wartości zadanej może być używana jako źródło praktycznie każdego sygnału, na przykład wartości zadanej prędkości, częstotliwości, momentu lub procesu. W przypadku komunikacji przez wbudowaną magistralę komunikacyjną wartości zadane 1 i 2 są wyświetlane przy użyciu odpowiednio parametrów 03.09 Wart. zadana 1 EFB i 03.10 Wart. zadana 2 EFB. Skalowanie wartości zadanych zależy od ustawień parametrów 58.26 EFB: typ wartości zad. 1 i 58.27 EFB: typ wartości zad. 2. Patrz sekcja Informacje o profilach sterowania na str. 465.

Wartości aktualne

Sygnały aktualne magistrali komunikacyjnej (ACT1 i ACT2) to 16- lub 32-bitowe wartości całkowite ze znakiem. Przekazują one wybrane wartości parametru przemiennika częstotliwości z przemiennika do urządzenia nadrzędnego. Skalowanie wartości aktualnych zależy od ustawień parametrów 58.28 EFB: typ wartości akt. 1 i 58.29 EFB: typ wartości akt. 2. Patrz sekcja Informacje o profilach sterowania na str. 465.

Dane wejściowe/wyjściowe

Wejścia/wyjścia danych to 16- lub 32-bitowe słowa zawierające wybrane wartości parametru przemiennika częstotliwości. Parametry 58.101 Dane I/O 1…58.114 Dane I/O 14 definiują adresy, z których urządzenie nadrzędne odczytuje dane (wejście) lub w których zapisuje dane (wyjście).
Adresy rejestru

Pole adresu żądań protokołu Modbus dotyczących dostępu do rejestrów przechowujących ma 16 bitów. Dzięki temu protokół Modbus może obslużywać adresy 65536 rejestrów przechowujących.

Dotychczas urządzenia nadrzędne protokołu Modbus używały 5-cyfrowych adresów dziesiętnych z zakresu od 40001 do 49999, które reprezentowały adresy rejestru przechowującego. 5-cyfrowe adresy dziesiętne są ograniczone do 9999 możliwych adresów rejestrów przechowujących.

Urządzenia nadrzędne protokołu Modbus ograniczone do 5-cyfrowych adresów dziesiętnych mogą uzyskiwać dostęp do rejestrów z zakresu od 400001 do 499999 przy użyciu 5-cyfrowych adresów dziesiętnych z zakresu od 40001 do 499999. Rejestry z zakresu od 410000 do 465536 są niedostępne dla tych urządzeń nadrzędnych. Więcej informacji przedstawia parametr 58.33 Tryb adresowania.

Uwaga: Nie można uzyskać dostępu do adresów rejestrów 32-bitowych parametrów przy użyciu 5-cyfrowych numerów rejestrów.

Informacje o profilach sterowania

Profil sterowania definiuje reguły transferu danych między przemienneikiem częstotliwości i urządzeniem nadrzędnym magistrali komunikacyjnej, określa na przykład:

• czy spakowane słowa binarne są konwertowane i;
• czy wartości sygnału są skalowane i jak,
• jak adresy rejestrów przemienneika częstotliwości są odwzorowywane na urządzenie nadrzędnym magistrali komunikacyjnej.

Przemienneik częstotliwości można skonfigurować tak, aby otrzymywał i wysyłał komunikaty zgodnie z jednym z dwóch profili:

• ABB Drives
• Profil DCU.

Wybór profili sterowania przy użyciu parametru 58.25 *Profil sterowania*:
- (0) *ABB Drives*
- (5) *Profil DCU.*
Słowo sterowania
Słowo sterowania profilu ABB Drives

Poniższa tabela przedstawia zawartość słowa sterowania magistrali komunikacyjnej w przypadku profilu sterowania ABB Drives. Wbudowany interfejs komunikacyjny konwertuje to słowo na postać, w której jest ono używane w przemienniku częstotliwości. Pogrubięony tekst pisany wielkimi literami odnosi się do stanów na schemacie Schemat zmiany stanu dla profilu ABB Drives na stronie 473.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF1_CONTROL</td>
<td>1</td>
<td>Przejście do stanu GOTOWOŚĆ DO PRACY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie zgodnie z aktywną rampą zwalniania. Przejście do stanu OFF1 AKTYWNE; przejście do stanu GOTOWOŚĆ DO WŁ., jeśli inne blokady (OFF2, OFF3) nie są aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>OFF2_CONTROL</td>
<td>1</td>
<td>Kontynuowanie działania (stan OFF2 nieaktywny).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wyłączenie awaryjne, zatrzymanie wybiegiem. Przejście do stanu OFF2 AKTYWNE, przejście do stanu WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td>2</td>
<td>OFF3_CONTROL</td>
<td>1</td>
<td>Kontynuowanie działania (stan OFF3 nieaktywny).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie awaryjne, zatrzymanie w czasie określonym przez parametr przemiennika częstotliwości. Przejście do stanu OFF3 AKTYWNE; przejście do stanu WŁĄCZANIE PRZERWANE. Ostrzeżenie: Należy się upewnić, że silnik i napędzane urządzenie można zatrzymać za pomocą tego trybu zatrzymywania.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przerwanie pracy. Przejście do stanu PRZERWANIE DZIAŁANIA.</td>
</tr>
<tr>
<td>4</td>
<td>RAMP_OUT_ZERO</td>
<td>1</td>
<td>Normalna praca. Przejście do stanu RAMP FUNCTION GENERATOR: WYJŚCIE WŁĄCZONE. Wymuszenie zerowej wartości wyjściowej generatora funkcji rampy. Przemieniarka częstotliwości powoduje zatrzymanie według rampy (obowiązują limity prądu i napięcia DC).</td>
</tr>
<tr>
<td>5</td>
<td>RAMP_HOLD</td>
<td>1</td>
<td>Włączanie funkcji rampy. Przejście do stanu RAMP FUNCTION GENERATOR: AKCELERATOR WŁĄCZONY. Zatrzymanie rampy (zatrzymanie wartości wyjściowych generatora funkcji rampy).</td>
</tr>
<tr>
<td>Bit</td>
<td>Nazwa</td>
<td>Wart.</td>
<td>Stan/opis</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>6</td>
<td>RAMP_IN_ZERO</td>
<td>1</td>
<td>Normalna praca. Przejście do stanu PRACA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wymuszenie zerowej wartości wejściowej generatora rampy.</td>
</tr>
<tr>
<td>7</td>
<td>RESET</td>
<td>0=>1</td>
<td>Resetowanie błędów, jeśli istnieje aktualny błąd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Kontynuowanie normalnego działania.</td>
</tr>
<tr>
<td>8</td>
<td>JOGGING_1</td>
<td>1</td>
<td>Żądanie pracy z prędkością Bieg próbny 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Kontynuowanie normalnego działania.</td>
</tr>
<tr>
<td>9</td>
<td>JOGGING_2</td>
<td>1</td>
<td>Żądanie pracy z prędkością Bieg próbny 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Kontynuowanie normalnego działania.</td>
</tr>
<tr>
<td>10</td>
<td>REMOTE_CMD</td>
<td>1</td>
<td>Włączone sterowanie przez magistralę komunikacyjną.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Słowo sterowania <> 0 lub wartość zadana <> 0: zachowanie ostatniego słowa sterowania i ostatniej wartości zadanej. Słowo sterowania = 0 i wartość zadana = 0: Włączone sterowanie przez magistralę komunikacyjną. Wartość zadana oraz rampa zwalniania/przyspieszania są zablokowane.</td>
</tr>
<tr>
<td>11</td>
<td>EXT_CTRL_LOC</td>
<td>1</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW2. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja sterowania była wybierana magistrał komunikacyjna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW1. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja sterowania była wybierana magistrał komunikacyjna.</td>
</tr>
<tr>
<td>12</td>
<td>USER_0</td>
<td></td>
<td>Bity sterowania z możliwością zapisywania, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>13</td>
<td>USER_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>USER_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>USER_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Słowo sterowania profilu DCU

Wbudowany interfejs komunikacyjny zapisuje słowo sterowania magistrali komunikacyjnej bez zmian w bitach słowa sterowania przemiennika częstotliwości od 0 do 15. Bity od 16 do 32 słowa sterowania przemiennika częstotliwości nie są używane.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STOP</td>
<td>1</td>
<td>Zatrzymanie zgodnie z parametrem Tryb zatrzymania lub bitami żądań trybu zatrzymania (bity 7…9).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>1</td>
<td>START</td>
<td>1</td>
<td>Uruchomić przemiennik częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>2</td>
<td>REVERSE</td>
<td>1</td>
<td>Odwrócenie kierunku obrotów silnika.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>3</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RESET</td>
<td>0=>1</td>
<td>Resetowanie błędów, jeśli istnieje aktualny błąd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>5</td>
<td>Zew2</td>
<td>1</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW1.</td>
</tr>
<tr>
<td></td>
<td>RUN_DISABLE</td>
<td>1</td>
<td>Bieg wyłączony. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał zezwolenia na bieg z magistrali komunikacyjnej, ten bit dezaktywuje sygnał.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zezwolenie na bieg. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał zezwolenia na bieg z magistrali komunikacyjnej, ten bit aktywuje ten sygnał.</td>
</tr>
<tr>
<td>7</td>
<td>STOPMODE_RAMP</td>
<td>1</td>
<td>Normalny tryb zatrzymania zgodnie z rampą</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślna przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>8</td>
<td>STOPMODE_EMERGENCY_RAMP</td>
<td>1</td>
<td>Tryb zatrzymania awaryjnego zgodnie z rampą</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślna przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>9</td>
<td>STOPMODE_COAST</td>
<td>1</td>
<td>Tryb zatrzymania wybiegiem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślna przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>10</td>
<td>Zarezerwowane dla RAMP_PAIR_2</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>Bit</td>
<td>Nazwa</td>
<td>Wart.</td>
<td>Stan/opis</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>RAMP_OUT_ZERO</td>
<td>1</td>
<td>Wymuszenie zerowej wartości wyjściowej generatora funkcji rampy. Przemiennik częstotliwości powoduje zatrzymanie według rampy (obowiązują limity prądu i napięcia DC).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
<tr>
<td>12</td>
<td>RAMP_HOLD</td>
<td>1</td>
<td>Zatrzymanie rampy (zatrzymanie wartości wyjściowych generatora funkcji rampy).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
<tr>
<td>13</td>
<td>RAMP_IN_ZERO</td>
<td>1</td>
<td>Wymuszenie zerowej wartości wejściowej generatora funkcji rampy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
<tr>
<td>14</td>
<td>REQ_LOCAL_LOCK</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwano dla TORQ_LIM_PAIR_2</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>16</td>
<td>FB_LOCAL_CTL</td>
<td>1</td>
<td>Żądany jest tryb lokalny sterowania z magistrali komunikacyjnej. Odebrać sterowanie z aktywnego źródła.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>17</td>
<td>FB_LOCAL_REF</td>
<td>1</td>
<td>Żądany jest tryb lokalny wartości zadanej z magistrali komunikacyjnej. Odebrać wartość zadaną z aktywnego źródła.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>18</td>
<td>Zastrzeżony dla bitu RUN_DISABLE_1</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>19</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>USER_0</td>
<td></td>
<td>Bitę sterowania z możliwością zapisywania, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>23</td>
<td>USER_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>USER_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>USER_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Słowo stanu

Słowo stanu profilu ABB Drives

Poniższa tabela przedstawia słowo stanu w przypadku profilu sterowania ABB Drives. Wbudowany interfejs komunikacyjny konwertuje słowo stanu przemiennika częstotliwości w postać dla magistrali komunikacyjnej. Pogrubiony tekst pisany wielkimi literami odnosi się do stanów na schemacie *Schemat zmiany stanu dla profilu ABB Drives* na stronie 473.
<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RDY_ON</td>
<td>1</td>
<td>GOTOWOŚĆ DO WŁ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>BRAK GOTOWOŚCI DO WŁ.</td>
</tr>
<tr>
<td>1</td>
<td>RDY_RUN</td>
<td>1</td>
<td>GOTOWOŚĆ DO PRACY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OFF1 AKTYWNE.</td>
</tr>
<tr>
<td>2</td>
<td>RDY_REF</td>
<td>1</td>
<td>ZEZWOLENIE NA PRACĘ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>PRZERWANIE DZIAŁANIA.</td>
</tr>
<tr>
<td>3</td>
<td>TRIPPED</td>
<td>1</td>
<td>BŁĄD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak błędu.</td>
</tr>
<tr>
<td>4</td>
<td>OFF_2_STATUS</td>
<td>1</td>
<td>Stan OFF2 nieaktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OFF2 AKTYWNE.</td>
</tr>
<tr>
<td>5</td>
<td>OFF_3_STATUS</td>
<td>1</td>
<td>Stan OFF3 nieaktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OFF3 AKTYWNE.</td>
</tr>
<tr>
<td>6</td>
<td>SWC_ON_INHIB</td>
<td>1</td>
<td>WŁĄCZANIE PRZEWANE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>ALARM</td>
<td>1</td>
<td>Ostrzeżenie/alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak ostrzeżenia/alarmu.</td>
</tr>
<tr>
<td>8</td>
<td>AT_SETPOINT</td>
<td>1</td>
<td>PRACA. Wartość aktualna jest równa wartości zadanej (mieści się w limitach tolerancji, tzn. w sterowaniu prędkością błąd prędkości wynosi maksymalnie 10% znamionowej prędkości silnika).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna różni się od wartości zadanej (jest poza granicami tolerancji).</td>
</tr>
<tr>
<td>9</td>
<td>REMOTE</td>
<td>1</td>
<td>Miejsce sterowania przemiennikiem częstotliwości: ZDALNE (ZEW1 lub ZEW2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Miejsce sterowania przemiennikiem częstotliwości: LOKALNE.</td>
</tr>
<tr>
<td>10</td>
<td>ABOVE_LIMIT</td>
<td>1</td>
<td>Wartość aktualna częstotliwości lub prędkości jest równa limitowi nadzoru (ustawionemu przy użyciu przemiennika częstotliwości) lub jest większa od tego limitu. Obowiązuje w obu kierunkach obrotu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna częstotliwości lub prędkości nie przekracza limitu nadzoru.</td>
</tr>
<tr>
<td>11</td>
<td>USER_0</td>
<td></td>
<td>Bity stanu, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>12</td>
<td>USER_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>USER_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>USER_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Słowo stanu profilu DCU

Wbudowany interfejs komunikacyjny zapisuje bity od 0 do 15 słowa stanu przemieninika częstotliwości bez zmian w słowie stanu magistrali komunikacyjnej. Bity od 16 do 32 słowa stanu przemiennika częstotliwości nie są używane.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>READY</td>
<td>1</td>
<td>Przemiennik częstotliwości jest gotowy do odebrania polecenia startu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie jest gotowy.</td>
</tr>
<tr>
<td>1</td>
<td>ENABLED</td>
<td>1</td>
<td>Zewnętrzny sygnał zezwolenia na bieg jest aktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zewnętrzny sygnał zezwolenia na bieg nie jest aktywny.</td>
</tr>
<tr>
<td>2</td>
<td>Zastrzeżony dla bitu</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td>ENABLED_TO_ROTATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RUNNING</td>
<td>1</td>
<td>Przemiennik częstotliwości wykonuje modulację.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie wykonuje modulacji.</td>
</tr>
<tr>
<td>4</td>
<td>ZERO_SPEED</td>
<td>1</td>
<td>Przemiennik częstotliwości działa z prędkością zerową.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie działa z prędkością zerową.</td>
</tr>
<tr>
<td>5</td>
<td>ACCELERATING</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>6</td>
<td>DECELERATING</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>7</td>
<td>AT_SETPOINT</td>
<td>1</td>
<td>Przemiennik częstotliwości jest w punkcie pracy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie jest w punkcie pracy.</td>
</tr>
<tr>
<td>8</td>
<td>LIMIT</td>
<td>1</td>
<td>Zastosowano limity pracy przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Nie zastosowano limitów pracy przemiennika częstotliwości.</td>
</tr>
<tr>
<td>9</td>
<td>SUPERVISION</td>
<td>1</td>
<td>Wartość aktualna (prędkość, częstotliwość lub moment) jest ponad limitem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Limit jest ustawiany przy użyciu parametrów 46.31…46.33</td>
</tr>
<tr>
<td>10</td>
<td>REVERSE_REF</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>11</td>
<td>REVERSE_ACT</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>PANEL_LOCAL</td>
<td>1</td>
<td>Panel/klawiatura (lub program komputerowy) jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Panel/klawiatura (lub program komputerowy) nie jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>13</td>
<td>FIELDBUS_LOCAL</td>
<td>1</td>
<td>Magistrala komunikacyjna jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Magistrala komunikacyjna nie jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>14</td>
<td>EXT2_ACT</td>
<td>1</td>
<td>Lokalizacja sterowania zewnętrznego ZEW2 jest aktywna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Lokalizacja sterowania zewnętrznego ZEW1 jest aktywna.</td>
</tr>
<tr>
<td>15</td>
<td>BŁĄD</td>
<td>1</td>
<td>Błąd przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak błędu przemiennika częstotliwości.</td>
</tr>
<tr>
<td>16</td>
<td>ALARM</td>
<td>1</td>
<td>Aktywne ostrzeżenie/aktywny alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak ostrzeżenia/alarmu.</td>
</tr>
<tr>
<td>17</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Zastrzeżony dla bitu DIRECTION_LOCK</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>19</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>USER_0</td>
<td></td>
<td>Bity stanu, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>23</td>
<td>USER_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>USER_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>USER_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>REQ_CTL</td>
<td>1</td>
<td>Żądanie sterowania na tym kanale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak żądania sterowania na tym kanale.</td>
</tr>
<tr>
<td>27…31</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schematy zmian stanu

Schemat zmiany stanu dla profilu ABB Drives

Poniższy schemat przedstawia zmiany stanów przemiennika częstotliwości, gdy przemiennik używa profilu ABB Drives i jest skonfigurowany do wykonywania poleceń słowa sterowania z wbudowanego interfejsu komunikacyjnego. Teksty pisane wielkimi literami odnoszą się do stanów, które zawierają tabele przedstawiające słowa sterowania i stanu magistrali komunikacyjnej.

Patrz sekcja Słowo sterowania profilu ABB Drives na stronie 467 i Słowo stanu profilu ABB Drives na stronie 470.
Zasilanie wyłączone

Zasilanie WŁ.

Przerwanie działania

(bit 3 CW = 0)

Praca przerwana

(bit 1 SW = 0)

GOTOWOŚĆ DO PRACY

(bit 0 SW = 1)

GOTOWOŚĆ DO WŁ.

(CW = xxxx x1xx xxxx x110)

BRAK GOTOWOŚCI DO WŁ.

(bit 0 SW = 0)

(bit 6 SW = 1)

(bit 0 CW = 0)

WOŁANIE WYŁĄCZONE

 Zaczątkowo sterowania

CW = słowo sterowania

SW = słowo stanu

n = prędkość

I = prąd wejściowy

RFG = generator

f = częstotliwość

Przebieg ABB Drives

Zasilanie WŁĄCZONE

PRZERWANE

(bit 2 SW = 0)

Zaporowe

z dowolnego stanu

OFF1

(bit 0 CW = 0)

(bit 1 SW = 0)

n(f)=0 / I=0

OFF1

AKTYWNE

(bit 3 CW = 0)

(bit 4 CW = 0)

Zezwolenie na pracę

RFG: Wyjście włączone

RFG: Akcelerator włączony

PRACA

(bit 8 SW = 1)

(bit 5 CW = 0)

(bit 6 CW = 0)

(bit 4 SW = 0)

Błąd

(bit 3 SW = 1)

(bit 7 CW = 1)

Zatrzymanie awaryjne

Wyl. awaryjne

OFF3

(bit 2 CW = 0)

(bit 5 SW = 0)

n(f)=0 / I=0

OFF2

(bit 1 CW = 0)

OFF2

AKTYWNE

OFF3

AKTYWNE

Z dowolnego stanu

Z dowolnego stanu

Warunek

rosnące zbocze bitu

Stan
Wartości zadane

Wartości zadane profilów ABB Drives i DCU Profile

Profil ABB Drives obsługuje używanie dwóch wartości zadanych, wartości zadanej EFB 1 i wartości zadanej EFB 2. Wartości zadane to 16-bitowe słowa zawierające bit znaku i 15-bitową wartość całkowitą. Ujemna wartość zadana jest wyznaczana przez obliczenie dopełnienia do dwóch odpowiadającej dodatniej wartości zadanej.

Wartości zadane są skalowane zgodnie z definicją w parametrach 46.01…46.04. Używany sposób skalowania zależy od ustawienia parametrów 58.26 EFB: typ wartości zad. 1 i 58.27 EFB: typ wartości zad. 2 (patrz str. 335).

Skalowane wartości zadane są wyświetlane przy użyciu parametrów 03.09 Wart. zadana 1 EFB i 03.10 Wart. zadana 2 EFB.

Wartości aktualne

Wartości aktualne profilów ABB Drives i DCU Profile

Profil ABB Drives obsługuje używanie dwóch wartości aktualnych magistrali komunikacyjnej: ACT1 i ACT2. Wartości aktualne to 16-bitowe słowa zawierające bit znaku i 15-bitową wartość całkowitą. Wartość ujemna jest wyznaczana przez obliczenie dopełnienia do dwóch odpowiadającej dodatniej wartości zadanej.

Wartości aktualne są skalowane zgodnie z definicją w parametrach 46.01…46.04. Używany sposób skalowania zależy od ustawienia parametrów 58.28 EFB: typ wartości akt. 1 i 58.29 EFB: typ wartości akt. 2 (patrz str. 335).
Adresy rejestru przechowującego protokołu Modbus

Adresy rejestru przechowującego protokołu Modbus dla profilu ABB Drives i profilu DCU

Poniższa tabela przedstawia domyślné adresy rejestru przechowującego protokołu Modbus na potrzeby danych przemiennika częstotliwości z profilem ABB Drives. Ten profil zapewnia skonwertowany 16-bitowy dostęp do danych przemiennika częstotliwości.

Uwaga: Możliwy jest dostęp tylko do 16 najmniej znaczących bitów 32-bitowych słów sterowania i słów stanu przemiennika.

Uwaga: Bity od 16 do 32 słowa sterowania/stanu profilu DCU nie są używane, jeśli 16-bitowe słowo sterowania/stanu jest używane z profilem DCU.

<table>
<thead>
<tr>
<th>Adres rejestru</th>
<th>Dane rejestru (słowa 16-bitowe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400001</td>
<td>Wartość domyślna: Słowo sterowania (Słowo sterowania 1 16-bitowe). Patrz sekcje Słowo sterowania profile ABB Drives (str. 467) i Słowo sterowania profilu DCU (str. 469). Wybór można zmienić przy użyciu parametru 58.101 Dane I/O 1.</td>
</tr>
<tr>
<td>400002</td>
<td>Wartość domyślna: Wartość zadana 1 (Wartość zadana 1 16-bitowa). Wybór można zmienić przy użyciu parametru 58.102 Dane I/O 2.</td>
</tr>
<tr>
<td>400003</td>
<td>Wartość domyślna: Wartość zadana 2 (Wartość zadana 2 16-bitowa). Wybór można zmienić przy użyciu parametru 58.102 Dane I/O 2.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

Kody funkcji protokołu Modbus

Poniższa tabela przedstawia kody funkcji protokołu Modbus obsługiwane przez wbudowany interfejs komunikacyjny.

<table>
<thead>
<tr>
<th>Kod</th>
<th>Nazwa funkcji</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>Odczyt cewek</td>
<td>nd.</td>
</tr>
<tr>
<td>02h</td>
<td>Odczyt wejść dyskretnych</td>
<td>nd.</td>
</tr>
<tr>
<td>03h</td>
<td>Odczyt rejestrów przechowujących</td>
<td>nd.</td>
</tr>
<tr>
<td>05h</td>
<td>Zapisanie pojedynczej cewki</td>
<td>nd.</td>
</tr>
<tr>
<td>06h</td>
<td>Zapisanie pojedynczego rejestru</td>
<td>nd.</td>
</tr>
</tbody>
</table>

Kod 400004 | Wartość domyślna: Słowo stanu *(Słowo stanu 16-bitowe)*. Patrz sekcje *Słowo stanu profilu ABB Drives* (str. 470) i *Słowo stanu profilu DCU* (str. 472). Wybór można zmienić przy użyciu parametru 58.102 Dane I/O 2.

Kod 400005 | Wartość domyślna: Wartość aktualna 1 *(Wartość aktualna 1 16-bitowa)*. Wybór można zmienić przy użyciu parametru 58.105 Dane I/O 5.

Kod 400006 | Wartość aktualna 2 *(Wartość aktualna 2 16-bitowa)*. Wybór można zmienić przy użyciu parametru 58.106 Dane I/O 6.

Kod 400007…400014 | Dane we/wy 7…14. Wybierane przy użyciu parametrów 58.107 Dane I/O 7…58.114 Dane I/O 14.

Kod 400015…400089 | Nieużywane

Kod 400090…400100 | Dostęp do kodu błędu. Patrz sekcja *Rejestry kodów błędów (rejestry przechowujące 400090…400100)* (str. 482).

Kod 400101…465536 | Zapis/odczyt parametru. Parametry są odwzorowywane na adresy rejestrów zgodnie z parametrem 58.33 Tryb adresowania.
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Kod</th>
<th>Nazwa funkcji</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>08h</td>
<td>Diagnostyka</td>
<td>Udostępnia serię testów sprawdzających komunikację lub różne warunki błędów wewnętrznych. Obsługiwane podkody:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 00h Zwrócenie danych zapytania: test echo/loopback.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 01h Ponowne uruchomienie opcji komunikacji: Uru-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chamia ponownie i inicjuje EFB, czyści liczniki zdarzeń komunikacji.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 04h Wymuszenie trybu tylko nasłuchu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0Ah Wyczyszczenie liczników i rejestrów diagnostycznych</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0Bh Zwrócenie liczby komunikatów magistrali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0Ch Zwrócenie liczby błędów komunikacji magistrali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0Dh Zwrócenie liczby błędów wyjątku magistrali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0Eh Zwrócenie liczby komunikatów urządzenia podrzędne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0Fh Zwrócenie liczby braku odpowiedzi urządzenia podrzędne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10h Zwrócenie liczby NAK (potwierdzenie negatywne) ur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zdzeni podrzędne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 11h Zwrócenie liczby komunikatów informujących, które urządzenie podrzędne jest zajęte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 12h Zwrócenie liczby przepięć znaków magistrali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 14h Wyczyszczenie licznika i flagi przepięńienia</td>
</tr>
<tr>
<td>0Bh</td>
<td>Uzyskanie licznika zdarzeń komunikacji</td>
<td>nd.</td>
</tr>
<tr>
<td>0Fh</td>
<td>Zapisanie wielu cewek</td>
<td>nd.</td>
</tr>
<tr>
<td>10h</td>
<td>Zapisanie wielu rejestrów</td>
<td>nd.</td>
</tr>
<tr>
<td>16h</td>
<td>Rejestr zapisu maski</td>
<td>nd.</td>
</tr>
<tr>
<td>17h</td>
<td>Odczyt/zapisanie wielu rejestrów</td>
<td>nd.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

2Bh / 0Eh
Transport hermetyzowanego interfejsu

Obsługiwane podkody:
• 0Eh Odczyt informacji identyfikujących urządzenia: Umożliwia odczytywanie informacji identyfikujących oraz innych informacji.
• 00h: Żądanie uzyskania podstawowych informacji identyfikujących urządzenia (dostęp do strumienia)
• 04h: Żądanie uzyskania jednego konkretnego obiektu informacji identyfikujących (dostęp pojedynczy)

Obsługiwane identyfikatory obiektu:
• 00h: Nazwa dostawcy („ABB“)
• 01h: Kod produktu (na przykład „ASCCL“)
• 02h: Wersja główna i wersja podrzędna (połączenie zawartości parametrów 07.05 Wersja oprogramowania i 58.02 ID protokołu).
• 03h: Adres URL dostawcy („www.abb.com“)
• 04h: Nazwa produktu („ACS380“).

Kody wyjątków
Poniższa tabela przedstawia kody wyjątków protokołu Modbus obsługiwane przez wbudowany interfejs komunikacyjny.

<table>
<thead>
<tr>
<th>Kod</th>
<th>Nazwa funkcji</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>NIEPRAWIDŁOWA FUNKCJA</td>
<td>Kod funkcji otrzymany w zapytaniu nie jest dozwolonym działaniem dla serwera.</td>
</tr>
<tr>
<td>02h</td>
<td>NIEPRAWIDŁOWY ADRES</td>
<td>Adres danych otrzymany w zapytaniu nie jest dozwolonym adresem dla serwera.</td>
</tr>
<tr>
<td>03h</td>
<td>NIEPRAWIDŁOWA WARTOŚĆ</td>
<td>Żądana liczba rejestrów jest większa niż liczba obsługiwana przez urządzenie. Ten błąd nie oznacza, że wartość zapisana w urządzeniu wykracza poza prawidłowy zakres.</td>
</tr>
<tr>
<td>04h</td>
<td>BŁĄD URZĄDZENIA</td>
<td>Wystąpił nieodwracalny błąd, gdy serwer podejmował próbę wykonania żadanego działania. Patrz sekcja Rejestry kodów błędów (rejestry przechowujące 400090…400100) na str. 482.</td>
</tr>
</tbody>
</table>

Cewki (zestaw wartości zadanych 0xxxx)
Cewki to 1-bitowe wartości do odczytu i zapisu. Ten typ danych pozwala na dostęp do pojedynczych bitów słowa sterowania. Poniższa tabela zawiera podsumowanie cewek protokołu Modbus (zestaw wartości zadanych 0xxxx). Należy pamiętać, że wartości zadane to indeks oparty na wartości 1, który odpowiada adresowi przekazanemu przez przewód.
<table>
<thead>
<tr>
<th>Dokument</th>
<th>Profil ABB Drives</th>
<th>Profil DCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td>OFF1_CONTROL</td>
<td>STOP</td>
</tr>
<tr>
<td>000002</td>
<td>OFF2_CONTROL</td>
<td>START</td>
</tr>
<tr>
<td>000003</td>
<td>OFF3_CONTROL</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000004</td>
<td>INHIBIT_OPERATION</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000005</td>
<td>RAMP_OUT_ZERO</td>
<td>RESET</td>
</tr>
<tr>
<td>000006</td>
<td>RAMP_HOLD</td>
<td>Zew2</td>
</tr>
<tr>
<td>000007</td>
<td>RAMP_IN_ZERO</td>
<td>RUN_DISABLE</td>
</tr>
<tr>
<td>000008</td>
<td>RESET</td>
<td>STOPMODE_RAMP</td>
</tr>
<tr>
<td>000009</td>
<td>JOGGING_1</td>
<td>STOPMODE_EMERGENCY_RAMP</td>
</tr>
<tr>
<td>000010</td>
<td>JOGGING_2</td>
<td>STOPMODE_COAST</td>
</tr>
<tr>
<td>000011</td>
<td>REMOTE_CMD</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000012</td>
<td>EXT_CTRL_LOC</td>
<td>RAMP_OUT_ZERO</td>
</tr>
<tr>
<td>000013</td>
<td>USER_0</td>
<td>RAMP_HOLD</td>
</tr>
<tr>
<td>000014</td>
<td>USER_1</td>
<td>RAMP_IN_ZERO</td>
</tr>
<tr>
<td>000015</td>
<td>USER_2</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000016</td>
<td>USER_3</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000017</td>
<td>Zarezerwowane</td>
<td>FB_LOCAL_CTL</td>
</tr>
<tr>
<td>000018</td>
<td>Zarezerwowane</td>
<td>FB_LOCAL_REF</td>
</tr>
<tr>
<td>000019</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000020</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000021</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000022</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000023</td>
<td>Zarezerwowane</td>
<td>USER_0</td>
</tr>
<tr>
<td>000024</td>
<td>Zarezerwowane</td>
<td>USER_1</td>
</tr>
<tr>
<td>000025</td>
<td>Zarezerwowane</td>
<td>USER_2</td>
</tr>
<tr>
<td>000026</td>
<td>Zarezerwowane</td>
<td>USER_3</td>
</tr>
<tr>
<td>000027</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000028</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000029</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000030</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000031</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000032</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>000033</td>
<td>Sterowanie wyjściem przekaźnikowym RO1 (parametr 10.99 Słowo sterowania RO/DIO, bit 0)</td>
<td>Sterowanie wyjściem przekaźnikowym RO1 (parametr 10.99 Słowo sterowania RO/DIO, bit 0)</td>
</tr>
<tr>
<td>000034</td>
<td>Sterowanie wyjściem przekaźnikowym RO2 (parametr 10.99 Słowo sterowania RO/DIO, bit 1)</td>
<td>Sterowanie wyjściem przekaźnikowym RO2 (parametr 10.99 Słowo sterowania RO/DIO, bit 1)</td>
</tr>
</tbody>
</table>
Wejścia dyskretne (zestaw wartości zadanych 1xxxx)

Wejścia dyskretne to 1-bitowe wartości tylko do odczytu. Ten typ danych pozwala na dostęp do pojedynczych bitów słowa stanu. Poniższa tabela zawiera podsumowanie wejść dyskretnych protokołu Modbus (zestaw wartości zadanych 1xxx). Należy pamiętać, że wartości zadane to indeks oparty na wartości 1, który odpowiada adresowi przekazanemu przez przewód.

<table>
<thead>
<tr>
<th>Dokument</th>
<th>Profil ABB Drives</th>
<th>Profil DCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>000035</td>
<td>Sterowanie wyjściem przekaźnikowym RO3 (parametr 10.99 Słowo sterowania RO/DIO, bit 2)</td>
<td>Sterowanie wyjściem przekaźnikowym RO3 (parametr 10.99 Słowo sterowania RO/DIO, bit 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dokument</th>
<th>Profil ABB Drives</th>
<th>Profil DCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RDY_ON</td>
<td>READY</td>
</tr>
<tr>
<td>1</td>
<td>RDY_RUN</td>
<td>ENABLED</td>
</tr>
<tr>
<td>2</td>
<td>RDY_REF</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>3</td>
<td>WYŁĄCZENIE AWARYJNE</td>
<td>RUNNING</td>
</tr>
<tr>
<td>4</td>
<td>OFF_2_STATUS</td>
<td>ZERO_SPEED</td>
</tr>
<tr>
<td>5</td>
<td>OFF_3_STATUS</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>6</td>
<td>SWC_ON_INHIB</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>7</td>
<td>ALARM</td>
<td>AT_SETPOINT</td>
</tr>
<tr>
<td>8</td>
<td>AT_SETPOINT</td>
<td>LIMIT</td>
</tr>
<tr>
<td>9</td>
<td>REMOTE</td>
<td>SUPERVISION</td>
</tr>
<tr>
<td>10</td>
<td>ABOVE_LIMIT</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>11</td>
<td>USER_0</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>12</td>
<td>USER_1</td>
<td>PANEL_LOCAL</td>
</tr>
<tr>
<td>13</td>
<td>USER_2</td>
<td>FIELDBUS_LOCAL</td>
</tr>
<tr>
<td>14</td>
<td>USER_3</td>
<td>EXT2_ACT</td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
<td>BŁĄD</td>
</tr>
<tr>
<td>16</td>
<td>Zarezerwowane</td>
<td>ALARM</td>
</tr>
<tr>
<td>17</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>18</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>19</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>20</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>21</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>22</td>
<td>Zarezerwowane</td>
<td>USER_0</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Dokument</th>
<th>Profil ABB Drives</th>
<th>Profil DCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Zarezerwowane</td>
<td>USER_1</td>
</tr>
<tr>
<td>24</td>
<td>Zarezerwowane</td>
<td>USER_2</td>
</tr>
<tr>
<td>25</td>
<td>Zarezerwowane</td>
<td>USER_3</td>
</tr>
<tr>
<td>26</td>
<td>Zarezerwowane</td>
<td>REQ_CTL</td>
</tr>
<tr>
<td>27</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>28</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>29</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>30</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>31</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>32</td>
<td>Stan opóźniony wejścia cyfrowego DI1 (parametr 10.02 Stan DI po opóźnieniach, bit 0)</td>
<td>Stan opóźniony wejścia cyfrowego DI1 (parametr 10.02 Stan DI po opóźnieniach, bit 0)</td>
</tr>
<tr>
<td>33</td>
<td>Stan opóźniony wejścia cyfrowego DI2 (parametr 10.02 Stan DI po opóźnieniach, bit 1)</td>
<td>Stan opóźniony wejścia cyfrowego DI2 (parametr 10.02 Stan DI po opóźnieniach, bit 1)</td>
</tr>
<tr>
<td>34</td>
<td>Stan opóźniony wejścia cyfrowego DI3 (parametr 10.02 Stan DI po opóźnieniach, bit 2)</td>
<td>Stan opóźniony wejścia cyfrowego DI3 (parametr 10.02 Stan DI po opóźnieniach, bit 2)</td>
</tr>
<tr>
<td>35</td>
<td>Stan opóźniony wejścia cyfrowego DI4 (parametr 10.02 Stan DI po opóźnieniach, bit 3)</td>
<td>Stan opóźniony wejścia cyfrowego DI4 (parametr 10.02 Stan DI po opóźnieniach, bit 3)</td>
</tr>
<tr>
<td>36</td>
<td>Stan opóźniony wejścia cyfrowego DI01 (parametr 11.02 Stan DIO po opóźnieniach, bit 4)</td>
<td>Stan opóźniony wejścia cyfrowego DI01 (parametr 11.02 Stan DIO po opóźnieniach, bit 4)</td>
</tr>
<tr>
<td>37</td>
<td>Stan opóźniony wejścia cyfrowego DI02 (parametr 11.02 Stan DIO po opóźnieniach, bit 5)</td>
<td>Stan opóźniony wejścia cyfrowego DI02 (parametr 11.02 Stan DIO po opóźnieniach, bit 5)</td>
</tr>
</tbody>
</table>

Rejestry kodów błędów (rejestry przechowujące 400090…400100)

Te rejestry zawierają informacje dotyczące ostatniego zapytania. Rejestr błędów zostaje wyczyszczony po pomyślnym ukończeniu zapytania.

<table>
<thead>
<tr>
<th>Dokument</th>
<th>Nazwa</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Zresetowanie rejestrów błędów</td>
<td>1 = zresetowanie rejestrów błędów wewnętrznych (91…95). 0 = brak działania.</td>
</tr>
<tr>
<td>90</td>
<td>Kod funkcji błędu</td>
<td>Kod funkcji zapytania zakończonego niepowodzeniem.</td>
</tr>
<tr>
<td>Dokument</td>
<td>Nazwa</td>
<td>Opis</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>91</td>
<td>Kod błędu</td>
<td>Ustawiany po wygenerowaniu kodu wyjątku 04h (patrz wcześniejsza tabela).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 00h Brak błędu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 02h Przekroczenie dolnego/górnego limitu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 03h Uszkodzony indeks: Niedostępny indeks parametru tablicy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 05h Nieprawidłowy typ danych: Wartość nie jest zgodna z typem danych parametru</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 65h Błąd ogólny: Niezdefiniowany błąd podczas obsługi zapytania</td>
</tr>
<tr>
<td>92</td>
<td>Niepowodzenie rejestru</td>
<td>Ostatni reestr (wejście dyskretne, cewka lub rejestr wejściowy), w przypadku którego nastąpiło niepowodzenie odczytu lub zapisu.</td>
</tr>
<tr>
<td>93</td>
<td>Ostatni reestr zapisany pomyślnie</td>
<td>Ostatni reestr (wejście dyskretne, cewka albo rejestr wejściowy lub rejestr przechowujący), który został pomyślnie zapisany.</td>
</tr>
<tr>
<td>94</td>
<td>Ostatni reestr odczytany pomyślnie</td>
<td>Ostatni reestr (wejście dyskretne, cewka albo rejestr wejściowy lub rejestr przechowujący), który został pomyślnie odczytany.</td>
</tr>
</tbody>
</table>

CANopen

Wbudowana magistrala komunikacyjna z protokołem CANopen służy do obsługi następujących instrumentów:

- Wariant skonfigurowany (ACS380-04xC) z modułem rozszerzeń BCAN-11 CANopen (opcja +K495).

Wbudowana magistrala CANopen działa na różnych poziomach czasowych. Dane cykliczne o wysokim priorycie (słowa sterowania, wartości zadane, słowa stanu i wartości aktualne) i większość komunikatów CANopen są przetwarzane na poziomie 2 ms. Komunikaty SDO oraz odczyty parametrów przemiennika częstotliwości są realizowane na poziomie 10 ms. Zapisywanie obiektów w pamięci nieulotnej oraz odczytywanie obiektów z pamięci nieulotnej jest realizowane w tle.

Przemiennik częstotliwości można ustawić tak, aby odbierał wszystkie informacje sterujące przez interfejs komunikacyjny. Informacje te mogą być także przesyłane między wbudowanym interfejsem komunikacyjnym a innymi dostępnymi źródłami, takimi jak wejścia cyfrowe i analogowe.

Łączenie magistrali komunikacyjnej z przemiennikiem częstotliwości

Należy podłączyć magistralę komunikacyjną do zacisku X1on w module BCAN-11 dołączonym do jednostki sterującej przemiennika częstotliwości.
Styki złącza opisano na etykiecie BCAN-11.

Uwaga: Przed pierwszym rozpoczęciem użytkowania modułu CANopen zalecane jest niepodłączanie przewodu. Zapobiega to zakłócaniu magistrali CAN, gdy przemiennik próbuje rozpoznać podłączony moduł.

Przykład sieci CAN

Konfigurowanie wbudowanego interfejsu komunikacyjnego (CANopen)

Przeprowadzanie automatycznej konfiguracji przemiennika częstotliwości

1. Włączyć przemiennik częstotliwości.
 Oprogramowanie rozpoznaje połączony z przemiennikiem częstotliwości moduł interfejsu CANopen. Oprogramowanie sprawdzi, czy podłączono adapter CANopen.

2. Nacisnąć przycisk OK. Parametry podane w tabeli **Parametry magistrali CANopen** zostaną automatycznie ustawione.

Parametry magistrali CANopen

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01 Komendy Zew1</td>
<td>Wbudowana magistrala komunikacyjna</td>
</tr>
<tr>
<td>20.03 We1 Zew1</td>
<td>Nie wybrano</td>
</tr>
</tbody>
</table>
Przeprowadzanie ręcznej konfiguracji przemiennika częstotliwości

1. Włączyć przemiennik częstotliwości.
 Oprogramowanie rozpoznaje połączone z przemiennikiem częstotliwości moduł interfejsu CANopen. Oprogramowanie sprawdzi, czy podłączono adapter CANopen.

2. Nie naciskać przycisku OK. Ustawić parametry podane w tabeli Parametry magistrali CANopen.

3. Należy skonfigurować przemiennik częstotliwości na potrzeby komunikacji przez wbudowaną magistralę komunikacyjną za pomocą parametrów z poniższej tabeli (Ustawienia parametrów CANopen dla interfejsu wbudowanej magistrali komunikacyjnej).

 Kolumna Ustawienie sterowania przez magistralę komunikacyjną zawiera wartość, której należy użyć, lub wartość domyślną. Kolumna Funkcja/informacja przedstawia opis parametru.

 Uwaga: Aby parametry magistrali CANopen były widoczne, do przemiennika częstotliwości musi być podłączony moduł (58.01 = [3] CANopen).

Ustawienia parametrów CANopen dla interfejsu wbudowanej magistrali komunikacyjnej

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>INICJOWANIE KOMUNIKACJI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.01</td>
<td>Włączenie protokołu</td>
<td>CANopen</td>
</tr>
<tr>
<td>Parametr</td>
<td>Ustawienie sterowania przez magistralę komunikacyjną</td>
<td>Funkcja/informacja</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>KONFIGURACJA WBUDOWANEGO ADAPTERA MODBUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.03 Identyfikator węzła</td>
<td>3 (wartość domyślna)</td>
<td>Adres węzła. Nie może być dwóch węzłów online o takim samym adresie.</td>
</tr>
<tr>
<td>58.04 Szybkość transmisji</td>
<td>125 kb/s (domyślnie).</td>
<td>Definiuje szybkość komunikacji łącza. Należy użyć tego samego ustawienia co w stacji nadrzędnej.</td>
</tr>
<tr>
<td>58.23 Lokalizacja konfiguracji</td>
<td>Obiekty CAN</td>
<td>Magistrala: Obiekty PDO są konfigurowane przez urządzenie nadrzędne wobec magistrali komunikacyjnej za pomocą SDO. Parametry przemiennika częstotliwości: Konfigurację obiektów PDO określają parametry przemiennika częstotliwości 58.76, 58.93 i 58.101…58.124.</td>
</tr>
<tr>
<td>58.26 EFB: typ wartości zad. 1</td>
<td>Prędkość lub częstotliwość (wartość domyślna w przypadku parametru 58.26), Transparentne, Ogólna, Moment (wartość domyślna w przypadku parametru 58.27), Prędkość, Częstotliwość</td>
<td>Definiuje typy wartości zadanych magistrali komunikacyjnej 1 i 2. Skalowanie każdego typu wartości zadanej jest określone przez parametry 46.01…46.03. W przypadku ustawienia Prędkość lub częstotliwość typ jest wybierany automatycznie zgodnie z aktualnie aktywnym trybem sterowania przemiennikiem częstotliwości.</td>
</tr>
<tr>
<td>58.27 EFB: typ wartości zad. 2</td>
<td>Prędkość lub częstotliwość (wartość domyślna w przypadku parametru 58.28), Transparentne (wartość domyślna w przypadku parametru 58.29), Ogólna, Moment, Prędkość, Częstotliwość</td>
<td>Definiuje typy wartości aktualnych magistrali komunikacyjnej 1 i 2. Skalowanie każdego typu wartości aktualnej jest określone przez parametry 46.01…46.03. W przypadku ustawienia Prędkość lub częstotliwość typ jest wybierany automatycznie zgodnie z aktualnie aktywnym trybem sterowania przemiennikiem częstotliwości.</td>
</tr>
<tr>
<td>Parametr</td>
<td>Ustawienie sterowania przez magistralę komunikacyjną</td>
<td>Funkcja/informacja</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>58.76</td>
<td>RPDO1 COB-ID</td>
<td>Definiuje COB-ID dla obiektu PDO oraz włącza i wyłącza tę opcję.</td>
</tr>
<tr>
<td>58.82</td>
<td>RPDO6 COB-ID</td>
<td>0 = wyłącz ten obiekt PDO</td>
</tr>
<tr>
<td>58.88</td>
<td>RPDO21 COB-ID</td>
<td>1 = włącz ten obiekt PDO z domyślnym COB-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inne = włącz ten obiekt PDO z podanym COB-ID</td>
</tr>
<tr>
<td>58.77</td>
<td>Typ transmisji RPDO1</td>
<td>255 (wartość domyślna)</td>
</tr>
<tr>
<td>58.83</td>
<td>Typ transmisji RPDO6</td>
<td>Definiuje typ transmisji obiektu PDO.</td>
</tr>
<tr>
<td>58.89</td>
<td>Typ transmisji RPDO21</td>
<td>0 = synchronizacja acykliczna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1...240 = synchronizacja cykliczna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254…255 = asynchroniczny</td>
</tr>
<tr>
<td>58.78</td>
<td>Timer zdarzeń RPDO1</td>
<td>0 (wartość domyślna)</td>
</tr>
<tr>
<td>58.84</td>
<td>Timer zdarzeń RPDO6</td>
<td>Definiuje limit upływu czasu dla obiektu PDO.</td>
</tr>
<tr>
<td>58.90</td>
<td>Timer zdarzeń RPDO21</td>
<td>0 = Bez zmiany.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inne = jeśli obiekt PDO jest włączony, ale nie zostanie odebrany w czasie podanym w milisekundach dla timera zdarzenia, wykonana zostanie akcja zdefiniowana w parametrze 58.14 Reakcja na utratę komunik.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uwaga: kontrola limitu czasu jest aktywowana po pomyślnym odbiorze obiektu RPDO.</td>
</tr>
<tr>
<td>58.79</td>
<td>TPDO1 COB-ID</td>
<td>1 (wartość domyślna w przypadku parametru 58.79), 0 (wartość domyślna w przypadku parametru 58.79)</td>
</tr>
<tr>
<td>58.85</td>
<td>TPDO6 COB-ID</td>
<td>Definiuje COB-ID dla obiektu PDO oraz włącza i wyłącza tę opcję.</td>
</tr>
<tr>
<td>58.91</td>
<td>RPDO21 COB-ID</td>
<td>0 = wyłącz to PDO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = włącz to PDO z domyślnym COB-ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inne = włącz to PDO z podanym COB-ID</td>
</tr>
<tr>
<td>58.80</td>
<td>Typ transmisji TPDO1</td>
<td>255 (wartość domyślna)</td>
</tr>
<tr>
<td>58.86</td>
<td>Typ transmisji TPDO6</td>
<td>Definiuje typ transmisji obiektu PDO.</td>
</tr>
<tr>
<td>58.92</td>
<td>Typ transmisji TPDO21</td>
<td>0 = synchronizacja acykliczna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1...240 = synchronizacja cykliczna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>252 = tylko synchroniczne RTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>253 = tylko asynchroniczne RTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254…255 = asynchroniczny</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

Ustawienie sterowania przez magistralę komunikacyjną

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.81</td>
<td>Timer zdarzeń TPDO1</td>
<td>100 (domyślne dla 58.81)</td>
</tr>
<tr>
<td>58.87</td>
<td>Timer zdarzeń TPDO6</td>
<td>0 (domyślne dla 58.87, 58.93)</td>
</tr>
<tr>
<td>58.93</td>
<td>Timer zdarzeń TPDO21</td>
<td>Definiuje limit upływu czasu dla obiektu PDO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = bez limitu czasu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inne = jeśli PDO jest włączone i nie zostanie przesłane w czasie podanym w milisekundach dla timera zdarzenia, transmisja zostanie wymuszona</td>
</tr>
<tr>
<td>58.101</td>
<td>TPDO1: słowo 1</td>
<td>Przy ustawieniach domyślnych</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPDO1 zawiera 16-bitowe słowo stanu i dwie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bitowe wartości aktualne, a RPDO1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— 16-bitowe słowo stanu i dwie 16-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bitowe wartości zadane.</td>
</tr>
<tr>
<td>58.114</td>
<td>RPDO21: słowo 4</td>
<td>Definiuje obiekty odwzorowane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>między PDO i przemiennikiem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>częstotliwości.</td>
</tr>
<tr>
<td>58.06</td>
<td>Sterowanie komunikacją</td>
<td>Odśwież ustawienia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprawdza ustawienia parametrów</td>
</tr>
<tr>
<td></td>
<td></td>
<td>konfiguracji.</td>
</tr>
</tbody>
</table>

Nowe ustawienia zostaną zastosowane po następnym włączeniu przemiennika częstotliwości lub po sprawdzeniu ich poprawności przy użyciu parametru 58.06 Sterowanie komunikacją (Odśwież ustawienia).

Ustawianie parametrów sterowania przemiennikiem częstotliwości

Po skonfigurowaniu wbudowanego interfejsu komunikacyjnego należy sprawdzić i dostosować parametry sterowania przemiennikiem częstotliwości wymienione w poniższej tabeli. Kolumna Ustawienie sterowania przez magistralę komunikacyjną zawiera wartości używane, gdy sygnał wbudowanej magistrali komunikacyjnej jest żadanym źródłem lub celem danego sygnału sterowania przemiennikiem częstotliwości. Kolumna Funkcja/informacja zawiera opis parametru.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
</table>
| WYBÓR ŹRÓDŁA POLECENIA STERUJĄCEGO
| 20.01 Komendy Zew1 | Wbudowana magistrala komunikacyjna | Wybiera magistralę komunikacyjną będącą źródłem poleceń startu i stopu, gdy jako aktywna lokalizacja sterowania zostanie wybrana lokalizacja ZEW1. |
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie sterowania przez magistralę komunikacyjną</th>
<th>Funkcja/informacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.02 Komendy Zew2</td>
<td>Wbudowana magistrala komunikacyjna</td>
<td>Wybiera magistralę komunikacyjną będącą źródłem poleceń startu i stopu, gdy jako aktywna lokalizacja sterowania zostanie wybrana lokalizacja ZEW2.</td>
</tr>
</tbody>
</table>

WYBÓR WARTOŚCI ZADANEJ PRĘDKOŚCI

| 22.11 W. zad. pręd. 1 Zew1 | W. zad. EFB 1 | Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną prędkości 1. |
| 22.18 W. zad. pręd. 1 Zew2 | W. zad. EFB 1 | Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną prędkości 2. |

WYBÓR WARTOŚCI ZADANEJ MOMENTU

| 26.11 Źródło wart. zad. momentu 1 | W. zad. EFB 1 | Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną momentu 1. |

WYBÓR WARTOŚCI ZADANEJ CZĘSTOTLIWOŚCI

| 28.11 W. zad. częst. 1 Zew1 | W. zad. EFB 1 | Wybiera wartość zadaną odebraną przez wbudowany interfejs komunikacyjny jako wartość zadaną częstotliwości 1. |

INNE WYBORY

Wartości zadane EFB można wybrać jako źródło w praktycznie każdym parametrze selektora sygnału, wybierając pozycję Inny, a następnie pozycję 03.09 Wart. zadana 1 EFB lub 03.10 Wart. zadana 2 EFB.

WEJŚCIA STEROWANIA SYSTEMEM

| 96.07 Ręczne zapisanie parametrów | Zapisz (powałca do Gotowe) | Zapisuje zmiany w wartości parametru (w tym te dokonane przy użyciu sterowania przez magistralę komunikacyjną) w pamięci trwałej. |

Podstawowe informacje o wbudowanym interfejsie komunikacyjnym

Komunikacja cykliczna między systemem magistrali komunikacyjnej i przemiennikiem częstotliwości składa się z 16-bitowych słów danych lub 32-bitowych słów danych. Poniższy schemat przedstawia działanie wbudowanego interfejsu komunikacyjnego CANopen. Sygnały przekazywane w ramach komunikacji cyklicznej zostały dokładnie wyjaśnione na poniższym schemacie.
Działanie interfejsu wbudowanej magistrali komunikacyjnej CANopen

Słowo sterowania i słowo stanu

Słowo sterowania (CW) to 16- lub 32-bitowe spakowane słowo binarne. To główny sposób sterowania przemiennikiem częstotliwości w systemie magistrali komunikacyjnej. Słowo sterowania jest wysyłane przez sterownik magistrali komunikacyjnej do przemiennika częstotliwości. Przy użyciu parametrów przemiennika częstotliwości użytkownik wybiera słowo sterowania wbudowanego interfejsu komunikacyjnego jako źródło poleceń sterowania przemiennikiem częstotliwości (na przykład poleceń startu/stopu, zatrzymania awaryjnego, wyboru między lokalizacjami sterowania zewnętrznego 1/2 lub resetowania błędu). Stan przemiennika częstotliwości jest przełączany w zależności od zakodowanych bitowo instrukcji w słowie sterowania. Słowo sterowania magistrali komunikacyjnej jest zapisywane w przemienniku częstotliwości bez zmian lub dane są konwertowane. Patrz sekcja **Informacje o profilach sterowania** na str. 465.

Słowo stanu (SW) magistrali komunikacyjnej to 16- lub 32-bitowe spakowane słowo binarne. Zawiera ono informacje o stanie przekazywane z przemiennika częstotliwości do sterownika magistrali komunikacyjnej. Słowo stanu przemiennika częstotliwości jest zapisywane w słowie stanu magistrali komunikacyjnej bez zmian lub dane są konwertowane. Patrz sekcja **Informacje o profilach sterowania** na str. 465.
Wartości zadane

Wartości zadane EFB 1 i 2 to 16- lub 32-bitowe wartości całkowite ze znakiem. Zawartość każdego słowa wartości zadanej może być używana jako źródło praktycznie każdego sygnału, na przykład wartości zadanej prędkości, częstotliwości, momentu lub procesu. W przypadku komunikacji przez wbudowaną magistralę komunikacyjną wartości zadane 1 i 2 są wyświetlane przy użyciu odpowiednio parametrów 03.09 Wart. zadana 1 EFB i 03.10 Wart. zadana 2 EFB. Skalowanie wartości zadaných zależy od ustawień parametrów 58.26 EFB: typ wartości zad. 1 i 58.27 EFB: typ wartości zad. 2. Patrz sekcja Informacje o profilach sterowania na str. 465.

Wartości aktualne

Sygnały aktualne magistrali komunikacyjnej (ACT1 i ACT2) to 16- lub 32-bitowe wartości całkowite ze znakiem. Przekazują one wybrane wartości parametru przemiennika częstotliwości z przemiennika do urządzenia nadrzędnego. Skalowanie wartości aktualnych zależy od ustawień parametrów 58.28 EFB: typ wartości akt. 1 i 58.29 EFB: typ wartości akt. 2. Patrz sekcja Informacje o profilach sterowania na str. 465.

Informacje o profilach sterowania

Profil sterowania definiuje reguły transferu danych między przemiennikiem częstotliwości i urządzeniem nadrzędnym magistrali komunikacyjnej, określa na przykład:

- czy słowo sterowania i słowo stanu jest konwertowane i jak,
- czy wartości sygnału są skalowane i jak,
- funkcjonalność i zawartość określonych obiektów w sekcji Słownik obiektów na str. 510.

Przemiennik częstotliwości można skonfigurować tak, aby otrzymywał i wysyłał komunikaty zgodnie z jednym z czterech profili:

- CiA 402
- ABB Drives
- Transparent 16
- Transparent 32

W przypadku profilów ABB Drives oraz CiA 402 wbudowany interfejs komunikacyjny przemiennika częstotliwości konwertuje dane magistrali komunikacyjnej na dane używane w przemienniku częstotliwości i odwrotnie. Profile Transparentny nie wykonują żadnej konwersji danych, przy czym w profilu Transparentny 16 możliwe jest opcjonalne skalowanie wartości zadaných i aktualnych za pomocą skonfigurowanej wartości skalowania (58.24 Skalow. transparentne 16).

Profil CiA 402

Słowo sterowania profilu CiA 402

Słowo sterowania profilu CiA 402 można zapisać do obiektu 6040h.
Poniższa tabela przedstawia zawartość słowa sterowania magistrali komunikacyjnej w przypadku profilu sterowania CiA 402. Wbudowany interfejs komunikacyjny konwertuje to słowo na postać, w której jest ono używane w przemienniku częstotliwości.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Włączono</td>
</tr>
<tr>
<td>1</td>
<td>Włącz napięcie</td>
</tr>
<tr>
<td>2</td>
<td>Szybkie zatrzymanie</td>
</tr>
<tr>
<td>3</td>
<td>Zezwolenie na pracę</td>
</tr>
<tr>
<td>4...6</td>
<td>Specyficzne dla trybu pracy</td>
</tr>
<tr>
<td>7</td>
<td>Resetowanie błędu</td>
</tr>
<tr>
<td>8</td>
<td>Zatrzymanie</td>
</tr>
<tr>
<td>9...10</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>11...15</td>
<td>Specyficzne dla przemiennika</td>
</tr>
</tbody>
</table>

Bity specyficzne dla trybu pracy

<table>
<thead>
<tr>
<th>Bit</th>
<th>Tryb prędkości</th>
<th>Tryb prędkości profilowej</th>
<th>Moment obrotowy profilowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Włączenie generatora funkcji rampy</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>5</td>
<td>Odblokowywanie generatora funkcji rampy</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>6</td>
<td>Wartość zadana generatora funkcji rampy</td>
<td>Zarezerwowane</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

Polecenia urządzenia są wywoływane przez bity słowa sterowania w następujący sposób:

<table>
<thead>
<tr>
<th>Polecenie</th>
<th>Bit słowa sterowania 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resetowanie błędu, bit 7</td>
</tr>
<tr>
<td>Wyłączenie</td>
<td>0</td>
</tr>
<tr>
<td>Włączone</td>
<td>0</td>
</tr>
<tr>
<td>Włączono</td>
<td>0</td>
</tr>
<tr>
<td>Wyłączenie napięcia</td>
<td>0</td>
</tr>
<tr>
<td>Szybkie zatrzymanie</td>
<td>0</td>
</tr>
<tr>
<td>Brak zezwolenia na pracę</td>
<td>0</td>
</tr>
<tr>
<td>Zezwolenie na pracę</td>
<td>0</td>
</tr>
<tr>
<td>Resetowanie błędu</td>
<td>0=>1</td>
</tr>
</tbody>
</table>
1) Bity oznaczone jako x nie mają znaczenia

2) Gdy bit słowa stanu 3 (Zezwolenie na pracę) ma wartość 1, przemiennik częstotliwości nie wykona żadnych czynności w stanie Włączono. Gdy bit 3 ma wartość 0, wykonywane są zadania w stanie Włączono.

Stany i przejścia między nimi dotyczą tych przedstawionych w sekcji Schemat zmian stanu w profilu CiA 402 na str. 496.

Poniższe tryby zatrzymania powiązano z poleceniami sterowania oraz innymi zdarzeniami:

<table>
<thead>
<tr>
<th>Polecenie/zdarzenie</th>
<th>Tryb zatrzymania przemiennika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szybkie zatrzymanie</td>
<td>Zatrzymanie awaryjne</td>
</tr>
<tr>
<td>Wyłączenie</td>
<td>Zatrzymanie z wybiegiem</td>
</tr>
<tr>
<td>Wyłączenie napiecia</td>
<td>Zatrzymanie rampy</td>
</tr>
<tr>
<td>Zatrzymanie</td>
<td>Zatrzymanie rampy (konfigurowane za pomocą obiektu 605Dh magistrali CANopen)</td>
</tr>
<tr>
<td>Błąd</td>
<td>Reakcja na błąd określona przez przemiennik częstotliwości. Zazwyczaj jest to zatrzymanie z wybiegiem.</td>
</tr>
</tbody>
</table>

Tryb zatrzymania jest sterowany za pomocą bitu 8 słowa sterowania CiA 402. Gdy bit zatrzymania zostanie ustawiony w stanie ZEZWOLENIE NA PRACĘ, przemiennik częstotliwości zatrzyma się, a aparat stanu zachowa stan ZEZWOLENIE NA PRACĘ. Po wyzerowaniu bitu przemiennik uruchomi się ponownie. We wszystkich trybach obsługujących funkcję zatrzymania po zatrzymaniu przemiennika częstotliwości ustawiany jest bit 10 słowa stanu CiA 402 (osiągnięto wartość docelową).

Uwaga: Jeśli przemiennik nadal pracuje (ZEZWOLENIE NA PRACĘ), może on nie zatrzymać się całkowicie.

W poniższej tabeli podano funkcje przemiennika częstotliwości używane do wykonania zatrzymania według rampy oraz różne kody opcji zatrzymania obsługiwane przez poszczególne tryby działania magistrali CiA 402. Kod opcji zatrzymania jest wybieran obiektem CANopen 605Dh.

<table>
<thead>
<tr>
<th>Tryb</th>
<th>Opis</th>
<th>Kody opcji zatrzymania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prędkość profilowa</td>
<td>Dynamiczna rampa ograniczenia</td>
<td>1</td>
</tr>
<tr>
<td>Moment obrotowy profilowy</td>
<td>Ustawia wartość zadaną momentu na 0. Rampa zależy od parametrów przemiennika częstotliwości</td>
<td>1</td>
</tr>
<tr>
<td>Prędkość</td>
<td>Tryb zatrzymania 1: Wejście rampy ma wartość 0. Tryb zatrzymania 2, 3, 4: Wyjście rampy ma wartość 0.</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Inne tryby</td>
<td>Bit zatrzymania nie daje żadnego efektu.</td>
<td>nd.</td>
</tr>
</tbody>
</table>

Słowo stanu profilu CiA 402
Słowo stanu profilu CiA 402 można odczytać z obiektu 6041h. Poniższa tabela przedstawia zawartość słowa sterowania magistrali komunikacyjnej w przypadku profilu sterowania CiA 402. Wbudowany interfejs komunikacyjny konwertuje słowo stanu przemiennika częstotliwości w postać dla magistrali komunikacyjnej.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gotowość do włączenia</td>
</tr>
<tr>
<td>1</td>
<td>Włączone</td>
</tr>
<tr>
<td>2</td>
<td>Zezwolenie na pracę</td>
</tr>
<tr>
<td>3</td>
<td>Błąd</td>
</tr>
<tr>
<td>4</td>
<td>Włączone napięcie</td>
</tr>
<tr>
<td>5</td>
<td>Szybkie zatrzymanie</td>
</tr>
<tr>
<td>6</td>
<td>Włączenie zablokowane</td>
</tr>
<tr>
<td>7</td>
<td>Ostrzeżenie</td>
</tr>
<tr>
<td>8</td>
<td>Bit specyficzny dla przemiennika</td>
</tr>
<tr>
<td>9</td>
<td>Zdolne</td>
</tr>
<tr>
<td>10</td>
<td>Osiągnięto wartość docelową</td>
</tr>
<tr>
<td>11</td>
<td>Wewnętrzne ograniczenie aktywne</td>
</tr>
<tr>
<td>12...13</td>
<td>Specyficzne dla trybu pracy</td>
</tr>
<tr>
<td>14...15</td>
<td>Specyficzne dla przemiennika</td>
</tr>
</tbody>
</table>

Bity specyficzne dla trybu pracy:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Tryb prędkości</th>
<th>Tryb prędkości profilowej</th>
<th>Tryb profilowego momentu obrotowego</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zarezerwowane</td>
<td>Prędkość wynosi zero</td>
<td>Zarezerwowane</td>
</tr>
<tr>
<td>13</td>
<td>Zarezerwowane</td>
<td>Osiągnięto maksymalny poślizg</td>
<td>Zarezerwowane</td>
</tr>
</tbody>
</table>

Tryby pracy

Tryb pracy definiuje działanie przemiennika częstotliwości. Obsługiwane są następujące tryby pracy profilu CiA 402:

- Tryb prędkości profilowej
- Tryb profilu momentu obrotowego
- Tryb prędkości
- Tryb synchronicznej cyklicznej prędkości
- Tryb synchronicznego cyklicznego momentu obrotowego

Protokół CANopen w przemienniku ACS380 obsługuje minimalną implementację trybów pracy. W tym rozdziale opisano skalowanie wartości zadań oraz aktualnych w każdym trybie pracy. Obiekty specyficzne dla trybu pracy zdefiniowano w sekcji *Słownik obiektów* na str. 510.

Tryb prędkości

Tryb prędkości to podstawowy tryb sterowania prędkością przemiennika częstotliwości z uwzględnieniem funkcji ograniczeń i rampy. Do ustawienia prędkości docelowej służy obiekt 6042h, a prędkość aktualną można odczytać z obiektu 6044h. Wartości prędkości są skalowane za pomocą współczynnika podanego w obiekcie 604Ch. Domyslnie współczynnik wynosi 1, a prędkości są podawane w obr./min, tzn. 1 = 1 obr./min.

Tryb prędkości profilowej

Tryb prędkości profilowej służy do sterowania prędkością przemiennika częstotliwości bez uwzględniania pozycji. Do ustawienia prędkości docelowej służy obiekt 60FFh, a prędkość aktualną można odczytać z obiektu 606Ch. Wartości prędkości są podawane w przyrostach na sekundę. Dokładność przyrostów jest definiowana w obiekcie 608Fh. Wartością domyślną w obiekcie 608Fh jest 65536 przyrostów na 1 obrót. Oznacza to, że dla 1 obr./min to 1 [obr./min] * 65536 [prz./s] / 60 [s/min] = 1092 przyrostów na sekundę.

Tryb synchronicznej cyklicznej prędkości

W trybie synchronicznej cyklicznej prędkości generator trajektorii pozostaje pod kontrolą urządzenia sterującego, a nie przemiennika. Urządzenie sterujące przesyła nową, docelową wartość prędkości do przemiennika w zadanych odstępach. Do ustawienia prędkości docelowej służy obiekt 60FFh, a prędkość aktualną można odczytać z obiektu 606Ch. Wartości prędkości są podawane w przyrostach na sekundę. Dokładność przyrostów jest definiowana w obiekcie 608Fh. Wartością domyślną w obiekcie 608Fh jest 65536 przyrostów na 1 obrót. Oznacza to, że dla 1 obr./min to 1 [obr./min] * 65536 [prz./s] / 60 [s/min] = 1092 przyrostów na sekundę.

Tryb profilowego momentu obrotowego

Tryb profilowego momentu obrotowego pozwala na bezpośrednie sterowanie momentem obrotowym przemiennika. Do ustawienia docelowego momentu obrotowego służy obiekt 6071h, a moment aktualny można odczytać z obiektu 6077h. Wartości momentu obrotowego podano w promilach momentu znamionowego, np 10 = 1%.
Tryb synchronicznego cyklicznego momentu obrotowego

W trybie cyklicznego synchronicznego momentu obrotowego generator trajektorii pozostaje pod kontrolą urządzenia sterującego, a nie przemiennika. Urządzenie sterujące przesyła nową docelową wartość momentu obrotowego do przemiennika w zadanym odstępach. Do ustawienia docelowego momentu obrotowego służy obiekt 6071h, a moment aktualny można odczytać z obiektu 6077h. Wartości momentu obrotowego podano w promilach momentu znamionowego, np 10 = 1%.

Schemat zmian stanu w profilu CiA 402

Poniższy schemat przedstawia zmiany stanów przemiennika częstotliwości, gdy przemiennik używa profile CiA 402 i jest skonfigurowany do wykonywania poleceń słowa sterowania z wbudowanego interfejsu komunikacyjnego.
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

Aparat stanów profilu CiA 402

CW: Słowo sterowania
SW: Słowo stanu

Z dowolnego stanu

- **BŁĄD**
 SW: xxxxxxxxx0xx1000

- **BRAK GOTOWOŚCI DO WŁ.**
 SW: xxxxxxxxx0xx0000

Przejścia między stanami
(0) Włączenie, autoinicjowanie
(1) Zainicjowano pomyślnie
(2) CW: xxxxxxxxxxxxxxx110
(3) CW: xxxxxxxxxxxxxxx111
(4) CW: xxxxxxxxxxxxxxx111
(5) CW: xxxxxxxxxxxxxxx011
(6) CW: xxxxxxxxxxxxxxx110
(7) CW: xxxxxxxxxxxxxxx01x
(8) CW: xxxxxxxxxxxxxxx110
(9) CW: xxxxxxxxxxxxxxx0x
(10) CW: xxxxxxxxxxxxxxx01x
(11) CW: xxxxxxxxxxxxxxx01x
(12) CW: xxxxxxxxxxxxxxx0x
(13) CW: xxxxxxxxxxxxxxx110
(14) CW: xxxxxxxxxxxxxxx110
(15) CW: xxxxxxxxxxxxxxx110

Zainicjowano

START

REAKCJA NA BŁĄD AKTYWNE
SW: xxxxxxxxx0xx1111

GOTOWOŚĆ DO WŁ.
SW: xxxxxxxxx01x0001

WŁĄCZANIE ZABLOKOWANE
SW: xxxxxxxxx1xx0000

WŁĄCZONO
SW: xxxxxxxxx01x0011

PRACA ENABLED
SW: xxxxxxxxx01x0111

SZYBKIE ZATRZYMANIE AKTYWNE
SW: xxxxxxxxx0xx0111

Szybkie zatrzymanie

Reakcja na błąd zakończono

Reakcja na błąd

Zainicjowanie

Przejście między stanami

(0) Włączenie, autoinicjowanie

Przejście między stanami

(8) CW: xxxxxxxxxxxxxxx110

Przejście między stanami

(3) CW: xxxxxxxxxxxxxxx111

Przejście między stanami

(4) CW: xxxxxxxxxxxxxxx111

Przejście między stanami

(5) CW: xxxxxxxxxxxxxxx011

Przejście między stanami

(9) CW: xxxxxxxxxxxxxxx0x

Przejście między stanami

(10) CW: xxxxxxxxxxxxxxx01x

Przejście między stanami

(11) CW: xxxxxxxxxxxxxxx01x

Przejście między stanami

(12) CW: xxxxxxxxxxxxxxx0x

Przejście między stanami

(13) CW: xxxxxxxxxxxxxxx110

Przejście między stanami

(14) CW: xxxxxxxxxxxxxxx110

Przejście między stanami

(15) CW: xxxxxxxxxxxxxxx110

Przejście między stanami

(2) CW: xxxxxxxxxxxxxxx01x
Profil ABB Drives

Słowo sterowania profilu ABB Drives

Słowo sterowania profilu ABB Drives można zapisać do obiektu 2101h lub 6040h.

Poniższa tabela przedstawia zawartość słowa sterowania magistrali komunikacyjnej w przypadku profilu sterowania ABB Drives. Wbudowany interfejs komunikacyjny konwertuje to słowo na postać, w której jest ono używane w przemienniku częstotliwości. Pogrubiony tekst pisany wielkimi literami odnosi się do stanów na schemacie `Schemat zmiany stanu dla profilu ABB Drives` na stronie 502.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>KONTROLA OFF1</td>
<td>1</td>
<td>Przejście do stanu GOTOWOŚĆ DO PRACY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie zgodnie z aktywną rampą zwalniania. Przejście do stanu OFF1 AKTYWNE; przejście do stanu GOTOWOŚĆ DO WŁ., jeśli inne blokady (OFF2, OFF3) nie są aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>KONTROLA OFF2</td>
<td>1</td>
<td>Kontynuowanie działania (stan OFF2 nieaktywny).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wyłączenie awaryjne, zatrzymanie wybiegiem. Przejście do stanu OFF2 AKTYWNE, przejście do WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td>2</td>
<td>KONTROLA OFF3</td>
<td>1</td>
<td>Kontynuowanie działania (stan OFF3 nieaktywny).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie awaryjne. Zatrzymanie awaryjne, zatrzymanie w czasie określonym przez parametr przemiennika częstotliwości. Przejście do stanu OFF3 AKTYWNE; przejście do stanu WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ostrzeżenie: Należy się upewnić, że silnik i napędzane urządzenie można zatrzymać za pomocą tego trybu zatrzymywania.</td>
</tr>
<tr>
<td>3</td>
<td>PRZERWANIE PRACY</td>
<td>1</td>
<td>Przejście do stanu ZEZWOLENIE NA PRACĘ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przerwanie pracy. Przejście do stanu PRZERWANIE DZIAŁANIA.</td>
</tr>
<tr>
<td>4</td>
<td>WYJŚCIE RAMPY: ZERO</td>
<td>1</td>
<td>Normalna praca. Przejście do stanu GENERATOR FUNKCJI RAMPY: WYJŚCIE WŁĄCZONE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wymuszenie zerowej wartości wyjściowej generatora funkcji rampy. Przemiennik częstotliwości powoduje zatrzymanie według rampy (obowiązują limity prądu i napięcia DC).</td>
</tr>
<tr>
<td>5</td>
<td>WSTRZYMANIE RAMPY</td>
<td>1</td>
<td>Włączanie funkcji rampy. Przejście do stanu GENERATOR FUNKCJI RAMPY: AKCELERATOR WŁĄCZONY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie rampy (zatrzymanie wartości wyjściowych generatora funkcji rampy).</td>
</tr>
<tr>
<td>Bit</td>
<td>Nazwa</td>
<td>Wart.</td>
<td>Stan/opis</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>WEJŚCIE RAMPY: ZERO</td>
<td>1</td>
<td>Przejście do stanu PRACA. Uwaga: Ten bit ma zastosowanie tylko wtedy, gdy interfejs komunikacyjny jest ustawiony jako źródło tego sygnału przez parametry przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wymuszenie zerowej wartości wejściowej generatora funkcji rampy.</td>
</tr>
<tr>
<td>7</td>
<td>RESET</td>
<td>0=>1</td>
<td>Resetowanie błędów, jeśli istnieje aktualny błąd. Przejście do stanu WŁĄCZANIE PRZERWANE. Uwaga: Ten bit ma zastosowanie tylko wtedy, gdy interfejs komunikacyjny jest ustawiony jako źródło tego sygnału przez parametry przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak ostrzeżenia/alarmu.</td>
</tr>
<tr>
<td>8</td>
<td>BIEG PRÓBNY 1</td>
<td>1</td>
<td>Uwaga: Ten bit ma zastosowanie tylko wtedy, gdy interfejs komunikacyjny jest ustawiony jako źródło tego sygnału przez parametry przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Kontynuowanie normalnego działania.</td>
</tr>
<tr>
<td>9</td>
<td>BIEG PRÓBNY 2</td>
<td>1</td>
<td>Uwaga: Ten bit ma zastosowanie tylko wtedy, gdy interfejs komunikacyjny jest ustawiony jako źródło tego sygnału przez parametry przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Kontynuowanie normalnego działania.</td>
</tr>
<tr>
<td>10</td>
<td>KOMENDA ZDALNA</td>
<td>1</td>
<td>Włączone sterowanie przez magistralę komunikacyjną.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Słowo sterowania <> 0 lub wartość zadana <> 0: zachowanie ostatniego słowa sterowania i ostatniej wartości zadanej. Słowo sterowania = 0 i wartość zadana = 0: Włączone sterowanie przez magistralę komunikacyjną. Wartość zadana oraz rampa zwalniania/przyspieszania są zablokowane.</td>
</tr>
<tr>
<td>11</td>
<td>ZEWN. LOKALIZACJA STER.</td>
<td>1</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW2. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja sterowania była wybierana magistrala komunikacyjna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW1. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja sterowania była wybierana magistrala komunikacyjna.</td>
</tr>
<tr>
<td>12</td>
<td>USER_0</td>
<td></td>
<td>Bity sterowania z możliwością zapisywania, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>13</td>
<td>USER_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>USER_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>USER_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Słowo stanu dla profilu ABB Drives

Słowo sterowania profilu ABB Drives można odczytać z obiektu 2104h lub 6041h.
Poniższa tabela przedstawia słowo stanu w przypadku profilu sterowania ABB Drives. Wbudowany interfejs komunikacyjny konwertuje słowo stanu przemiennika częstotliwości w postać dla magistrali komunikacyjnej. Pogrubiony tekst pisany wielkimi literami odnosi się do stanów na schemacie Schemat zmiany stanu dla profilu ABB Drives na stronie 473.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RDY_ON</td>
<td>1</td>
<td>GOTOWOŚĆ DO WŁ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>BRAK GOTOWOŚCI DO WŁ.</td>
</tr>
<tr>
<td>1</td>
<td>RDY_RUN</td>
<td>1</td>
<td>GOTOWOŚĆ DO PRACY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OFF1 AKTYWNE.</td>
</tr>
<tr>
<td>2</td>
<td>RDY_REF</td>
<td>1</td>
<td>ZEZWOLENIE NA PRACĘ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>PRZERWANIE DZIAŁANIA.</td>
</tr>
<tr>
<td>3</td>
<td>WYŁĄCZENIE AWARYJNE</td>
<td>1</td>
<td>BŁĄD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak błędu.</td>
</tr>
<tr>
<td>4</td>
<td>OFF_2_STATUS</td>
<td>1</td>
<td>Stan OFF2 nieaktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OFF2 AKTYWNE.</td>
</tr>
<tr>
<td>5</td>
<td>OFF_3_STATUS</td>
<td>1</td>
<td>Stan OFF3 nieaktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>OFF3 AKTYWNE.</td>
</tr>
<tr>
<td>6</td>
<td>SWC_ON_INHIB</td>
<td>1</td>
<td>WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>ALARM</td>
<td>1</td>
<td>Ostrzeżenie/alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak ostrzeżenia/alarmu.</td>
</tr>
<tr>
<td>8</td>
<td>AT_SETPOINT</td>
<td>1</td>
<td>PRACA. Wartość aktualna jest równa wartości zadanej (mieści się w limitach tolerancji, tzn. w sterowaniu prędkością błąd prędkości wynosi maksymalnie 10% znamionowej prędkości silnika).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna różni się od wartości zadanej (jest poza granicami tolerancji).</td>
</tr>
<tr>
<td>9</td>
<td>REMOTE</td>
<td>1</td>
<td>Miejsce sterowania przemiennikiem częstotliwości: ZDALNE (ZEW1 lub ZEW2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Miejsce sterowania przemiennikiem częstotliwości: LOKALNE.</td>
</tr>
<tr>
<td>10</td>
<td>ABOVE_LIMIT</td>
<td>1</td>
<td>Wartość aktualna częstotliwości lub prędkości jest równa limitowi nadzoru (ustawionemu przy użyciu przemiennika częstotliwości) lub jest większa od tego limitu. Obowiązuje w obu kierunkach obrotu.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna częstotliwości lub prędkości nie przekracza limitu nadzoru.</td>
</tr>
<tr>
<td>11</td>
<td>USER_0</td>
<td>0</td>
<td>Bity stanu, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>12</td>
<td>USER_1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>USER_2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>USER_3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wartości zadane dla profilu ABB Drives

Profil ABB Drives obsługuje używanie dwóch wartości zadanych, wartości zadanej EFB 1 i wartości zadanej EFB 2. Wartości zadane podano jako 16-bitowe wartości całkowite bez znaku.

Wartości zadane można zapisać do obiektów 2102h i 2103h lub do odpowiednich obiektów w obszarze obiektu profilu CiA 402 (patrz Słownik obiektów; str. 510).

Wartości zadane są skalowane zgodnie z definicją w parametrach 46.01…46.04. Używany sposób skalowania zależy od ustawienia parametrów 58.26 EFB: typ wartości zad. 1 i 58.27 EFB: typ wartości zad. 2 (patrz tabela Ustawienia parametrów CANopen dla interfejsu wbudowanej magistrali komunikacyjnej).

Skalowanie wartości profilu ABB Drives z magistrali komunikacyjnej na przemiennik częstotliwości

Skalowane wartości zadane są wyświetlone przy użyciu parametrów 03.09 Wart. zadana 2 EFB i 03.10 Wart. zadana 2 EFB.

<table>
<thead>
<tr>
<th>Magistrala komunikacyjna</th>
<th>Przemiennik częstotliwości</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>46.01 (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>46.02 (z wartością zadaną częstotliwości)</td>
</tr>
<tr>
<td>10000</td>
<td>46.03 (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-10000</td>
<td>46.03 (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>-20000</td>
<td>-46.01 (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>-46.02 (z wartością zadaną częstotliwości)</td>
</tr>
</tbody>
</table>

Wartości aktualne dla profilu ABB Drives

Profil ABB Drives obsługuje używanie dwóch wartości aktualnych magistrali komunikacyjnej: ACT1 i ACT2. Wartości aktualne to 16-bitowe słowa zawierające bit znaku i 15-bitową wartość całkowitą. Wartość ujemna jest wyznaczana przez obliczenie dopełnienia do dwóch odpowiadającej dodatniej wartości zadanej.

Wartości aktualne można odczytać z obiektów 2105h i 2106h lub do odpowiednich obiektów w obszarze obiektu profilu CiA 402 (patrz sekcja Słownik obiektów na str. 510).
Wartości aktualne są skalowane zgodnie z definicją w parametrach 46.01...46.04. Używany sposób skalowania zależy od ustawienia parametrów 58.28 EFB: typ wartości akt. 1 i 58.29 EFB: typ wartości akt. 2.

Skalowanie wartości profilu ABB Drives z przemiennika częstotliwości na magistralę komunikacyjną

<table>
<thead>
<tr>
<th>Magistrala komunikacyjna</th>
<th>Przemiennik częstotliwości</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>46.01 (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>46.02 (z wartością zadaną częstotliwości)</td>
</tr>
<tr>
<td>10000</td>
<td>46.03 (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-10000</td>
<td>46.03 (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>-20000</td>
<td>-46.01 (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>-46.02 (z wartością zadaną częstotliwości)</td>
</tr>
</tbody>
</table>

Schemat zmiany stanu dla profilu ABB Drives

Poniższy schemat przedstawia zmiany stanów przemiennika częstotliwości, gdy przemiennik używa profilu ABB Drives i jest skonfigurowany do wykonywania poleceń słowa sterowania z wbudowanego interfejsu komunikacyjnego. Teksty pisane wielkimi literami odnoszą się do stanów, które zawierają tabele przedstawiające słowa sterowania i stanu magistrali komunikacyjnej. Patrz sekcja Słowo sterowania profilu ABB Drives na stronie 467 i Słowo stanu profilu ABB Drives na stronie 470.
Aparat stanów profilu ABB Drives

ZASILANIE WYLACZONE

WLACZANIE (bit 6 SW = 1)

PRZERWANE (bit 0 CW = 0)

BRAK (bit 0 SW = 0)

GOTOWOSCI (bit 3 CW = 0)

DO WL.

PRZERWANIE (bit 2 SW = 0)

DZIALANIA

(z dowolnego stanu)

praca

perwana

PRZERWANIE

DZIALANIA

(z dowolnego stanu)

OFF1 (bit 0 CW = 0)

AKTYWNE (bit 1 SW = 0)

n(f)=0 / l=0

(bit 3 CW = 1 i bit 12 SW = 1)

B C D

(z dowolnego stanu)

OFF1

AKTYWNE

(z dowolnego stanu)

OFF2 (bit 4 SW = 0)

AKTYWNE

OFF3 (bit 2 CW = 0)

Zatrymanie awaryjne

WYL. awaryjne

BŁAD (bit 7 CW = 1)

Błęd

ZASILANIE WŁĄCZONE

RFG: WYJŚCIE

WLACZONE

(CW = xxxx x1xx xxxx x111)

(bit 6 CW = 0)

RFG: AKCELERATOR

WŁACZONY

(CW = xxxx x1xx x111 1111)

PRACA

(bit 8 SW = 1)

STAN

warunek

rosnące zbocze bitu

Profil ABB Drives

CW = słowo sterowania

SW = słowo stanu

n = prędkość

I = prąd wejściowy

RFG = generator

funkcji rampy

f = częstotliwość
Profil Transparent 16

Słowo sterowania dla profilu Transparent 16

Słowo sterowania profilu Transparent 16 można zapisać do obiektu 2051h. Wbudowany interfejs komunikacyjny zapisuje słowo sterowania magistrali komunikacyjnej bez zmian słowa sterowania przemiennika częstotliwości.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STOP</td>
<td>1</td>
<td>Zatrzymanie zgodnie z parametrem Tryb zatrzymania lub bitami żądań trybu zatrzymania (bity 7…9).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>1</td>
<td>START</td>
<td>1</td>
<td>Uruchomić przemiennik częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>2</td>
<td>REVERSE</td>
<td>1</td>
<td>Odwrócenie kierunku obrotów silnika.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>3</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RESET</td>
<td>0=>1</td>
<td>Resetowanie błędu, jeśli istnieje aktywny błąd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>5</td>
<td>Zew2</td>
<td>1</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW1.</td>
</tr>
<tr>
<td>6</td>
<td>RUN_DISABLE</td>
<td>1</td>
<td>Bieg wyłączony. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał zezwolenia na bieg z magistrali komunikacyjnej, ten bit dezaktywuje sygnał.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zezwolenie na bieg. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał zezwolenia na bieg z magistrali komunikacyjnej, ten bit aktywuje ten sygnał.</td>
</tr>
<tr>
<td>7</td>
<td>STOPMODE-_RAMP</td>
<td>1</td>
<td>Normalny tryb zatrzymania zgodnie z rampą</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślne przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>8</td>
<td>STOPMODE_-EMERGENCY-_RAMP</td>
<td>1</td>
<td>Tryb zatrzymania awaryjnego zgodnie z rampą</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślne przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>9</td>
<td>STOPMODE_-_COAST</td>
<td>1</td>
<td>Tryb zatrzymania wybiegiem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślne przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>10</td>
<td>Zarezerwowane dla RAMP__PAIR_2</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>RAMP_O-UT_ZERO</td>
<td>1</td>
<td>Wymuszenie zerowej wartości wyjściowej generatora funkcji rampy. Przemiennik częstotliwości powoduje zatrzymanie według rampy (obowiązują limity prądu i napięcia DC).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
<tr>
<td>12</td>
<td>RAMP_HOLD</td>
<td>1</td>
<td>Zatrzymanie rampy (zatrzymanie wartości wyjściowych generatora funkcji rampy).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
<tr>
<td>13</td>
<td>RAMP_IN_ZERO</td>
<td>1</td>
<td>Wymuszenie zerowej wartości wejściowej generatora funkcji rampy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
<tr>
<td>14</td>
<td>REQ_LOCAL_LOCK</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowano dla TORQ_LIM_PAIR_2</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
</tbody>
</table>

Słowo stanu dla profilu Transparent 16

Słowo stanu profilu Transparent 16 można odczytać z obiektu 2054h.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>READY</td>
<td>1</td>
<td>Przemiennik częstotliwości jest gotowy do odebrania polecenia startu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie jest gotowy.</td>
</tr>
<tr>
<td>1</td>
<td>ENABLED</td>
<td>1</td>
<td>Zewnętrzny sygnał zezwolenia na bieg jest aktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zewnętrzny sygnał zezwolenia na bieg nie jest aktywny.</td>
</tr>
<tr>
<td>2</td>
<td>Zastrzeżony dla bitu ENABLED_TO_ROTATE</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>3</td>
<td>RUNNING</td>
<td>1</td>
<td>Przemiennik częstotliwości wykonuje modulację.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie wykonuje modulacji.</td>
</tr>
<tr>
<td>4</td>
<td>ZERO_SPEED</td>
<td>1</td>
<td>Przemiennik częstotliwości działa z prędkością zerową.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie działa z prędkością zerową.</td>
</tr>
<tr>
<td>5</td>
<td>ACCELERATING</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>6</td>
<td>DECELERATING</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>7</td>
<td>AT_SETPOINT</td>
<td>1</td>
<td>Przemiennik częstotliwości jest w punkcie pracy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie jest w punkcie pracy.</td>
</tr>
</tbody>
</table>
Profil Transparent 32
Słowo sterowania dla profilu Transparent 32

Wartości zadane dla profilu Transparent 16
Wartości zadane można zapisać do obiektów 2052h i 2053h. Wartości zadane są skalowane za pomocą wartości skalowania zdefiniowanej w parametrze 58.24 Skalow. transparentne 16.

Wartości aktualne dla profilu Transparent 16
Wartości aktualne można odczytać z obiektów 2055h i 2056h. Wartości aktualne są skalowane za pomocą wartości skalowania zdefiniowanej w parametrze 58.24 Skalow. transparentne 16.

Wartości zadane dla profilu Transparent 16

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>LIMIT</td>
<td>1</td>
<td>Zastosowano limity pracy przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Nie zastosowano limitów pracy przemiennika częstotliwości.</td>
</tr>
<tr>
<td>9</td>
<td>SUPERVISION</td>
<td>1</td>
<td>Wartość aktualna (prędkość, częstotliwość lub moment) jest ponad limitem. Limit jest ustawiany przy użyciu parametrów 46.31…46.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna (prędkość, częstotliwość lub moment) mieści się w limicie.</td>
</tr>
<tr>
<td>10</td>
<td>REVERSE_REF</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>11</td>
<td>REVERSE_ACT</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>12</td>
<td>PANEL_LOCAL</td>
<td>1</td>
<td>Panel/klawiatura (lub program komputerowy) jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Panel/klawiatura (lub program komputerowy) nie jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>13</td>
<td>FIELDBUS_LOCAL</td>
<td>1</td>
<td>Magistrala komunikacyjna jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Magistrala komunikacyjna nie jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>14</td>
<td>EXT2_ACT</td>
<td>1</td>
<td>Lokalizacja sterowania zewnętrznego ZEW2 jest aktywna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Lokalizacja sterowania zewnętrznego ZEW1 jest aktywna.</td>
</tr>
<tr>
<td>15</td>
<td>BŁĄD</td>
<td>1</td>
<td>Błąd przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak błędu przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak ostrzeżenia/alarma.</td>
</tr>
</tbody>
</table>

506 Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB
Słowo sterowania profilu Transparent 32 można zapisać do obiektu 2001h. Wbudowany interfejs komunikacyjny zapisuje słowo sterowania magistrali komunikacyjnej bez zmian słowa sterowania przemiennika częstotliwości.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STOP</td>
<td>1</td>
<td>Zatrzymanie zgodnie z parametrem Tryb zatrzymania lub bitami żądań trybu zatrzymania (bity 7…9).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>1</td>
<td>START</td>
<td>1</td>
<td>Uruchomić przemiennik częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>2</td>
<td>REVERSE</td>
<td>1</td>
<td>Odwrócenie kierunku obrotów silnika.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>3</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RESET</td>
<td>0=>1</td>
<td>Resetowanie błędu, jeśli istnieje aktywny błąd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak)</td>
</tr>
<tr>
<td>5</td>
<td>Zew2</td>
<td>1</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW2. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja sterowania była wybierana magistrala komunikacyjna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wybór lokalizacji sterowania zewnętrznego ZEW1. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja sterowania była wybierana magistrala komunikacyjna.</td>
</tr>
<tr>
<td>6</td>
<td>RUN_DISABLE</td>
<td>1</td>
<td>Bieg wyłączony. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał zezwolenia na bieg z magistrali komunikacyjnej, ten bit dezaktywuje sygnał.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zezwolenie na bieg. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał zezwolenia na bieg z magistrali komunikacyjnej, ten bit aktywuje ten sygnał.</td>
</tr>
<tr>
<td>7</td>
<td>STOPMODE_DE_RAMP</td>
<td>1</td>
<td>Normalny tryb zatrzymania zgodnie z rampą</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślna przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>8</td>
<td>STOPMODE_EMERGENCY_RAMP</td>
<td>1</td>
<td>Tryb zatrzymania awaryjnego zgodnie z rampą</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślna przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>9</td>
<td>STOPMODE_COAST</td>
<td>1</td>
<td>Tryb zatrzymania wybiegiem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>(brak) Domyślna przełączenie w tryb zatrzymania parametru, jeśli bity 7…9 mają wartość 0.</td>
</tr>
<tr>
<td>10</td>
<td>Zarezerwowane dla RAMP_PAIR_2</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>11</td>
<td>RAMP_OUT_ZERO</td>
<td>1</td>
<td>Wymuszenie zerowej wartości wyjściowej generatora funkcji rampy. Przemiennik częstotliwości powoduje zatrzymanie według rampy (obowiązują limity prądu i napięcia DC).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Normalna praca.</td>
</tr>
</tbody>
</table>
Słowo stanu dla profilu Transparent 32

Słowo stanu profilu Transparent 32 można odczytać z obiektu 2004h.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>READY</td>
<td>1</td>
<td>Przemiennik częstotliwości jest gotowy do odebrania polecenia startu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie jest gotowy.</td>
</tr>
<tr>
<td>1</td>
<td>ENABLED</td>
<td>1</td>
<td>Zewnętrzny sygnał zezwolenia na bieg jest aktywny.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zewnętrzny sygnał zezwolenia na bieg nie jest aktywny.</td>
</tr>
<tr>
<td>Bit</td>
<td>Nazwa</td>
<td>Wart.</td>
<td>Stan/opis</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
<td>Zastrzeżony dla bitu ENABLED_TO_ROTATE</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie wykonuje modulacji.</td>
</tr>
<tr>
<td>3</td>
<td>RUNNING</td>
<td>1</td>
<td>Przemiennik częstotliwości wykonuje modulację.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie wykonuje modulacji.</td>
</tr>
<tr>
<td>4</td>
<td>ZERO_SPEED</td>
<td>1</td>
<td>Przemiennik częstotliwości działa z prędkością zerową.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie działa z prędkością zerową.</td>
</tr>
<tr>
<td>5</td>
<td>ACCELERATING</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>6</td>
<td>DECELERATING</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>7</td>
<td>AT_SETPOINT</td>
<td>1</td>
<td>Przemiennik częstotliwości jest w punkcie pracy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przemiennik częstotliwości nie jest w punkcie pracy.</td>
</tr>
<tr>
<td>8</td>
<td>LIMIT</td>
<td>1</td>
<td>Zastosowano limity pracy przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Nie zastosowano limitów pracy przemiennika częstotliwości.</td>
</tr>
<tr>
<td>9</td>
<td>SUPERVISION</td>
<td>1</td>
<td>Wartość aktualna (prędkość, częstotliwość lub moment) jest ponad limitem. Limit jest ustawiany przy użyciu parametrów 46.31...46.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna (prędkość, częstotliwość lub moment) mieści się w limicie.</td>
</tr>
<tr>
<td>10</td>
<td>REVERSE_REF</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>11</td>
<td>REVERSE_ACT</td>
<td>1</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>12</td>
<td>PANEL_LOCAL</td>
<td>1</td>
<td>Panel/klawiatura (lub program komputerowy) jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Panel/klawiatura (lub program komputerowy) nie jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>13</td>
<td>FIELDBUS_LOCAL</td>
<td>1</td>
<td>Magistrala komunikacyjna jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Magistrala komunikacyjna nie jest w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>14</td>
<td>EXT2_ACT</td>
<td>1</td>
<td>Lokalizacja sterowania zewnętrznego ZEW2 jest aktywna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Lokalizacja sterowania zewnętrznego ZEW1 jest aktywna.</td>
</tr>
<tr>
<td>15</td>
<td>BŁĄD</td>
<td>1</td>
<td>Błąd przemiennika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak błędu przemiennika częstotliwości.</td>
</tr>
<tr>
<td>16</td>
<td>ALARM</td>
<td>1</td>
<td>Aktywne ostrzeżenie/aktywny alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak ostrzeżenia/alarmu.</td>
</tr>
<tr>
<td>17</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
510 Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Zastrzeżony dla bitu DIRECTION_LOCK</td>
<td></td>
<td>Jeszcze nie wdrożono.</td>
</tr>
<tr>
<td>19...21</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>USER_0</td>
<td></td>
<td>Bity stanu, które można połączyć ze specyficzną dla aplikacji funkcją układu logicznego przemiennika częstotliwości.</td>
</tr>
<tr>
<td>23</td>
<td>USER_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>USER_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>USER_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>REQ_CTL</td>
<td>1</td>
<td>Żądanie sterowania na tym kanale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Brak żądania sterowania na tym kanale.</td>
</tr>
<tr>
<td>27...31</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wartości zadane dla profilu Transparent 32

Wartości zadane można zapisać do obiektów 2002h i 2003h.

Wartości aktualne dla profilu Transparent 32

Wartości aktualne można odczytać z obiektów 2005h i 2006h.

Słownik obiektów

Słownik obiektów składa się z obiektów. Każdy obiekt w słowniku jest adresowany za pomocą 16-bitowego indeksu (wartości szesnastkowe 0000h–FFFFh). Adresy obiektów podzielono w tej instrukcji na trzy kategorie:

1. **Obszar profilu komunikacyjnego (1000...1FFF)**
 - Spis obiektów powiązanych z komunikacją.

2. **Obszar profilu specyficzny dla producenta (2000...5FFF)**
 - Spis obiektów specyficznych dla producenta.

3. **Ustandaryzowany obszar profilu (6000...9FFF)**
 - Spis obiektów z profilu standardowego CiA.
Obszar profilu komunikacyjnego (1000...1FFF)

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000h</td>
<td>0</td>
<td>Typ urządzenia</td>
<td>U32</td>
<td>RO</td>
<td>Typ urządzenia określa rodzaj urządzenia. Niższa część 16 bitów zawiera numer profilu urządzenia, a wyższa — dodatkowe informacje w zależności od profilu.</td>
</tr>
<tr>
<td>1001h</td>
<td>0</td>
<td>Rejestr błędów</td>
<td>U8</td>
<td>RO</td>
<td>Rejestr błędów to pole składające się z 8 bitów, z czego każdy dotyczy określonego typu błędu. W przypadku wystąpienia błędu dany bit zostanie ustawiony. Znaczenie bitu 0 błąd ogólny; zawsze ustawiane w przypadku błędu 1 natężenie 2 napięcie 3 temperatura 4 błąd komunikacji (przepełnienie, stan błędu) 5 specyficzne dla profilu urządzenia 6 zarezerwowane 7 specyficzne dla producenta</td>
</tr>
<tr>
<td>1003h</td>
<td>0</td>
<td>Liczba błędów</td>
<td>U8</td>
<td>RW</td>
<td>W tym obiekcie znajdują się błędy, które wystąpiły w urządzeniu i zostały zasygnalizowane przez obiekt awaryjny. Najnowszy błąd jest rejestrowany z podindeksem 1. Po wystąpieniu nowego błędu poprzednie są przesuwane w dół listy. Szczegółowe poszczególnych kodów błędów podano w sekcji Sledzenie błędów na str. 425. Zapisa nie wartości 0 do podindeksu 0 usuwa całą historię błędów.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Standardowe pole błędu</td>
<td>U32</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Standardowe pole błędu</td>
<td>U32</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Standardowe pole błędu</td>
<td>U32</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Standardowe pole błędu</td>
<td>U32</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Standardowe pole błędu</td>
<td>U32</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>1005h</td>
<td>0</td>
<td>Komunikat synchronizacji COB-ID</td>
<td>U32</td>
<td>RW</td>
<td>UWAGA: Odczytać można wyłącznie podindeksy o wartości do 1001h:0h (liczby błędów). Na przykład jeśli wystąpiły dwa błędy, możliwe jest odczytanie wartości do 1001h:2h. Próba odczytania wartości 1001h:3h spowoduje wystąpienie zatrzymania obiektu SDO.</td>
</tr>
<tr>
<td>1008h</td>
<td>0</td>
<td>Nazwa producenta urządzeń</td>
<td>Widoczny ciąg</td>
<td>Stała</td>
<td>Zawiera nazwę urządzenia.</td>
</tr>
<tr>
<td>1009h</td>
<td>0</td>
<td>Wersja oprogramowania producenta</td>
<td>Widoczny ciąg</td>
<td>RW</td>
<td>Zawiera wersję oprogramowania urządzenia.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Ch</td>
<td>0</td>
<td>Czas ochrony</td>
<td>U6</td>
<td>RW</td>
<td>Ta pozycja zawiera czas ochrony w ms. Wartość 0 oznacza, że czas ochrony nie jest używany.</td>
</tr>
<tr>
<td>100Dh</td>
<td>0</td>
<td>Współczynnik czasu eksploatacji</td>
<td>U8</td>
<td>RW</td>
<td>Współczynnik czasu eksploatacji pomnożony przez czas ochrony daje czas eksploatacji urządzenia. Wartość 0 oznacza, że współczynnik nie jest używany.</td>
</tr>
<tr>
<td>1010h</td>
<td>0</td>
<td>Największy obsługiwany podindeks</td>
<td>U8</td>
<td>RO</td>
<td>Ta pozycja służy do zapisywania parametrów w pamięci nieulotnej. Przy dostępie z odczytem urządzenie poda informacje o możliwości zapisu. Wyróżnione zostało kilka grup parametrów. Podindeks 1: wszystkie parametry Podindeks 2: parametry komunikacyjne (1000h…1FFFh) Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie zapisania parametrów przez przemiennik częstotliwości W celu realizacji zapisu należy zapisać sygnaturę „save” (65766173h).</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Zapisz wszystkie parametry</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 1: wszystkie parametry Podindeks 2: parametry komunikacyjne (1000h…1FFFh) Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie zapisania parametrów przez przemiennik częstotliwości W celu realizacji zapisu należy zapisać sygnaturę „save” (65766173h).</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Zapisz parametry komunikacji</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 2: parametry komunikacyjne (1000h…1FFFh) Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie zapisania parametrów przez przemiennik częstotliwości W celu realizacji zapisu należy zapisać sygnaturę „save” (65766173h).</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Zapisz parametry aplikacji</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie zapisania parametrów przez przemiennik częstotliwości W celu realizacji zapisu należy zapisać sygnaturę „save” (65766173h).</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Zapisz parametry przemiennika częstotliwości</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 4: żądanie zapisania parametrów przez przemiennik częstotliwości W celu realizacji zapisu należy zapisać sygnaturę „save” (65766173h).</td>
</tr>
<tr>
<td>1011h</td>
<td>0</td>
<td>Największy obsługiwany podindeks</td>
<td>U8</td>
<td>RO</td>
<td>Ta pozycja pozwala na przywrócenie parametrów domyślnych. Przy dostępie z odczytem urządzenie poda informacje o możliwości przywrócenia tych wartości. Wyróżnione zostało kilka grup parametrów. Podindeks 1: wszystkie parametry Podindeks 2: parametry komunikacyjne (1000h…1FFFh) Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie przywrócenia parametrów przez przemiennik częstotliwości W celu realizacji przywrócenia należy zapisać sygnaturę „load” (64616F6Ch).</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Przywrócenie wszystkich parametrów domyślnych</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 1: wszystkie parametry Podindeks 2: parametry komunikacyjne (1000h…1FFFh) Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie przywrócenia parametrów przez przemiennik częstotliwości W celu realizacji przywrócenia należy zapisać sygnaturę „load” (64616F6Ch).</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Przywrócenie domyślnych parametrów komunikacji</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 2: parametry komunikacyjne (1000h…1FFFh) Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie przywrócenia parametrów przez przemiennik częstotliwości W celu realizacji przywrócenia należy zapisać sygnaturę „load” (64616F6Ch).</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Przywrócenie domyślnych parametrów aplikacji</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 3: parametry aplikacji (6000h…9FFFh) Podindeks 4: żądanie przywrócenia parametrów przez przemiennik częstotliwości W celu realizacji przywrócenia należy zapisać sygnaturę „load” (64616F6Ch).</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Przywracanie domyślnych parametrów przemiennika częstotliwości</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 4: żądanie przywrócenia parametrów przez przemiennik częstotliwości W celu realizacji przywrócenia należy zapisać sygnaturę „load” (64616F6Ch).</td>
</tr>
<tr>
<td>1014h</td>
<td>0</td>
<td>Komunikat awaryjny COB-ID</td>
<td>U32</td>
<td>RW</td>
<td>Identyfikator COB-ID używany do przesyłania wiadomości awaryjnych (generator awaryjny).</td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
<td>Opis</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1016h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td>Czas kliencki impulsu oznacza oczekiwany czas cyklu impulsu. Oznacza to, że wartość ta musi być wyższa od odpowiedniego czasu impulsu producenta skonfigurowanego w urządzeniu generującym dany impuls.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Czas kliencki impulsu</td>
<td>U32</td>
<td>RW</td>
<td>Bity 31-24 każdego podindeksu muszą mieć wartość 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bity 23-16 zawierają wartość identyfikatora węzła.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dolne 16 bitów zawierają czas impulsu.</td>
</tr>
<tr>
<td>1017h</td>
<td>0</td>
<td>Czas impulsu producenta</td>
<td>U16</td>
<td>RW</td>
<td>Czas impulsu producenta określa czas trwania cyklu impulsu. Wartość 0 oznacza, że czas nie jest używany. Czas musi być wielokrotnością 1 ms.</td>
</tr>
<tr>
<td>1018h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td>Ten obiekt zawiera ogólne informacje o urządzeniu.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Identyfikator dostawcy</td>
<td>U32</td>
<td>RO</td>
<td>Podindeks 1 zawiera identyfikator dostawcy (B7h = ABB)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Kod produktu</td>
<td>U32</td>
<td>RO</td>
<td>Podindeks 2 identyfikuje typ przemiannika częstotliwości.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Numer seryjny</td>
<td>U32</td>
<td>RO</td>
<td>Podindeks 4 zawiera liczbową reprezentację numeru seryjnego przemiannika częstotliwości.</td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
<td>Opis</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1400h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td>Zawiera parametry komunikacyjne obiektów PDO, które urządzenie odbiera.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 0 przedstawia liczbę wprowadzonych parametrów obiektu PDO.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Typ transmisji</td>
<td>U8</td>
<td>RW</td>
<td>Podindeks 1 zawiera identyfikator COB-ID obiektu PDO. Ustawienie bitu 31 oznacza, że obiekt PDO jest włączony.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Czas przerwania</td>
<td>U6</td>
<td>RW</td>
<td>Podindeks 2 określa tryb transmisji.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td>Podindeks 3 nie jest używany w obiektach RPDO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Podindeks 5 określa limit czasu dla asynchronicznych obiektów PDO.</td>
</tr>
<tr>
<td>1405h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td>Podindeks 2 określa tryb transmisji.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 3 nie jest używany w obiektach RPDO.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Typ transmisji</td>
<td>U8</td>
<td>RW</td>
<td>Podindeks 5 określa limit czasu dla asynchronicznych obiektów PDO.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Czas przerwania</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>1414h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Typ transmisji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Czas przerwania</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
<td>Opis</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1600h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RW</td>
<td>Zawiera odwzorowanie danych w obiektach PDO na obiekty ze słownika obiektów. Podindeks 0 określa liczbę obiektów odwzorowanych na obiekt PDO.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pozycja 1 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td>Pozostałe podindeksy służą do odwzorowania poszczególnych obiektów na PDO.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pozycja 2 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td>Ich struktura przedstawia się następująco:</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pozycja 3 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td>Indeks (górne 16 bitów) Podindeks (8 bitów)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pozycja 4 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td>Długość w bitach (dolne 8 bitów)</td>
</tr>
<tr>
<td>1605h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pozycja 1 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pozycja 2 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pozycja 3 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pozycja 4 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>1614h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pozycja 1 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pozycja 2 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pozycja 3 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pozycja 4 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
<td>Opis</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1800h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td>Zawiera parametry komunikacyjne obiektów PDO wysyłanych przez urządzenie.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
<td>U32</td>
<td>RW</td>
<td>Podindeks 0 przedstawia liczbę wprowadzonych parametrów obiektu PDO.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Typ transmisji</td>
<td>U8</td>
<td>RW</td>
<td>Podindeks 1 zawiera identyfikator COB-ID obiektu PDO. Ustawienie bitu 31 oznacza, że obiekt PDO jest wyłączony.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Czas przerwania</td>
<td>U6</td>
<td>RW</td>
<td>Podindeks 2 określa tryb transmisji.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td>Podindeks 3 definiuje czas przerwania (10 = 1 ms).</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td>Podindeks 5 określa limit czasu dla asynchronicznych obiektów PDO.</td>
</tr>
<tr>
<td>1805h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Typ transmisji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Czas przerwania</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>1814h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>COB-ID</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Typ transmisji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Czas przerwania</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Timer zdarzenia</td>
<td>U6</td>
<td>RW</td>
<td></td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A00h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RW</td>
<td>Zawiera odwzorowanie danych w obiektach PDO na obiekty ze słownika obiektów. Podindeks 0 określa liczbę obiektów odwzorowanych na obiekt PDO. Pozostałe podindeksy służą do odwzorowania poszczególnych obiektów na PDO. Ich struktura przedstawia się następująco: Indeks (górne 16 bitów) Podindeks (8 bitów) Długość w bitach (dolne 8 bitów)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pozycja 1 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pozycja 2 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pozycja 3 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pozycja 4 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>1A05h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pozycja 1 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pozycja 2 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pozycja 3 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pozycja 4 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>1A14h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Pozycja 1 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pozycja 2 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Pozycja 3 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pozycja 4 odwzorowania obiektu PDO</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>2000h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>WARTOŚĆ ZADANA 2</td>
<td>INT16</td>
<td>RWW</td>
<td>Wartość zadana 2 dla profilów Transparent 16 oraz ABB Drives (wersja alternatywna)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WARTOŚĆ AKTUALNA 2</td>
<td>INT16</td>
<td>RO</td>
<td>Wartość aktualna 2 dla profilów Transparent 16 oraz ABB Drives (wersja alternatywna)</td>
</tr>
</tbody>
</table>
Obszar profilu specyficzny dla producenta (2000...5FFF)

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>WARTOŚĆ ZADANA 2</td>
<td>INT16</td>
<td>RWW</td>
<td>Wartość zadana 2 dla profiliw Transparent 16 oraz ABB Drives (wersja alternatywna)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WARTOŚĆ AKTUALNA 2</td>
<td>INT16</td>
<td>RO</td>
<td>Wartość aktualna 2 dla profiliw Transparent 16 oraz ABB Drives (wersja alternatywna)</td>
</tr>
<tr>
<td>2001h</td>
<td>0</td>
<td>T32 CW</td>
<td>U32</td>
<td>RWW</td>
<td>Słowo polecienia profilu Transparent 32</td>
</tr>
<tr>
<td>2002h</td>
<td>0</td>
<td>Zad1 T32</td>
<td>INT32</td>
<td>RWW</td>
<td>Profil Transparent 32</td>
</tr>
<tr>
<td>2003h</td>
<td>0</td>
<td>Zad2 T32</td>
<td>INT32</td>
<td>RWW</td>
<td>Wartość zadana 1 dla profilu Transparent 32</td>
</tr>
<tr>
<td>2004h</td>
<td>0</td>
<td>T32 SW</td>
<td>U32</td>
<td>RO</td>
<td>Wartość zadana 2 dla profilu Transparent 32</td>
</tr>
<tr>
<td>2005h</td>
<td>0</td>
<td>Akt1 T32</td>
<td>INT32</td>
<td>RO</td>
<td>Wartość aktualna 1 dla profilu Transparent 32</td>
</tr>
<tr>
<td>2006h</td>
<td>0</td>
<td>Akt2 T32</td>
<td>INT32</td>
<td>RO</td>
<td>Wartość aktualna 2 dla profilu Transparent 32</td>
</tr>
<tr>
<td>2051h</td>
<td>0</td>
<td>T16 CW</td>
<td>U6</td>
<td>RWW</td>
<td>Słowo polecenia dla profilu Transparent 16</td>
</tr>
<tr>
<td>2052h</td>
<td>0</td>
<td>Zad1 T16</td>
<td>INT16</td>
<td>RWW</td>
<td>Wartość zadana 1 dla profilu Transparent 16</td>
</tr>
<tr>
<td>2053h</td>
<td>0</td>
<td>Zad2 T16</td>
<td>INT16</td>
<td>RWW</td>
<td>Wartość zadana 2 dla profilu Transparent 16</td>
</tr>
<tr>
<td>2054h</td>
<td>0</td>
<td>T16 SW</td>
<td>U6</td>
<td>RO</td>
<td>Słowo stanu dla profilu Transparent 16</td>
</tr>
<tr>
<td>2055h</td>
<td>0</td>
<td>Akt1 T16</td>
<td>INT16</td>
<td>RO</td>
<td>Wartość aktualna 1 dla profilu Transparent 16</td>
</tr>
<tr>
<td>2056h</td>
<td>0</td>
<td>Akt2 T16</td>
<td>INT16</td>
<td>RO</td>
<td>Wartość aktualna 2 dla profilu Transparent 16</td>
</tr>
<tr>
<td>2100h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
<td>Maksymalny podindeks obiektu</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>U6</td>
<td>RO</td>
<td>Kod alarmu 1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>U6</td>
<td>RO</td>
<td>Kod alarmu 2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>U6</td>
<td>RO</td>
<td>Kod alarmu 3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>U6</td>
<td>RO</td>
<td>Kod alarmu 4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>U6</td>
<td>RO</td>
<td>Kod alarmu 5</td>
</tr>
<tr>
<td>2101h</td>
<td>0</td>
<td>ABB CW</td>
<td>U6</td>
<td>RWW</td>
<td>Słowo polecienia dla profilu ABB Drives</td>
</tr>
<tr>
<td>2102h</td>
<td>0</td>
<td>Zad1 ABB</td>
<td>INT16</td>
<td>RWW</td>
<td>Wartość zadana 1 dla profilu ABB Drives</td>
</tr>
<tr>
<td>2103h</td>
<td>0</td>
<td>Zad2 AB</td>
<td>INT16</td>
<td>RWW</td>
<td>Wartość zadana 2 dla profilu ABB Drives</td>
</tr>
<tr>
<td>2104h</td>
<td>0</td>
<td>ABB SW</td>
<td>U6</td>
<td>RO</td>
<td>Słowo stanu dla profilu ABB Drives</td>
</tr>
<tr>
<td>2105h</td>
<td>0</td>
<td>Akt1 ABB</td>
<td>INT16</td>
<td>RO</td>
<td>Wartość aktualna 1 dla profilu ABB Drives</td>
</tr>
<tr>
<td>2106h</td>
<td>0</td>
<td>Akt2 ABB</td>
<td>INT16</td>
<td>RO</td>
<td>Wartość aktualna 2 dla profilu ABB Drives</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001h</td>
<td></td>
<td></td>
<td></td>
<td>Obiekty 4001h–4063h zapewniają dostęp do wszystkich parametrów przemiennika częstotliwości. Każdy obiekt odpowiada grupie parametrów, a każdy podindeks w obiekcie — jednemu parametrowi z grupy. Oznacza to, że na przykład obiekt 4001h.01 odpowiada parametrowi 01.01, a obiekt 400Ah.04 — parametrowi 10.04.</td>
</tr>
</tbody>
</table>

Ustandaryzowany obszar profilu (6000...9FFF)

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>603Fh</td>
<td>0 Kod błędu</td>
<td>U6</td>
<td>RO</td>
<td>Ten obiekt przedstawia kod ostatniego błędu, który wystąpił w przemienniku częstotliwości.</td>
</tr>
<tr>
<td>6040h</td>
<td>0 Słowo sterowania</td>
<td>U6</td>
<td>RWW</td>
<td>Aby uzyskać szczegółowe informacje, zapoznaj się z sekcją Profil CiA 402 na str. 491 oraz Profil ABB Drives na str. 498.</td>
</tr>
<tr>
<td>6041h</td>
<td>0 Słowo stanu</td>
<td>U6</td>
<td>RO</td>
<td>Ten obiekt przedstawia oczekiwany prędkość systemu w trybie prędkości. Podaną wartość należy pomnożyć przez licznik współczynnika wymiaru VI oraz podzielić przez mianownik współczynnika wymiaru VI. Jeśli obie te liczby mają wartość 1 (tj. wartość domyślną), prędkość podana jest w obrotach na minutę.</td>
</tr>
<tr>
<td>6042h</td>
<td>0 Prędkość docelowa VI</td>
<td>INT16</td>
<td>RWW</td>
<td>Ten obiekt przedstawia oczekivaną prędkość systemu w trybie prędkości. Podaną wartość należy pomnożyć przez licznik współczynnika wymiaru VI oraz podzielić przez mianownik współczynnika wymiaru VI. Jeśli obie te liczby mają wartość 1 (tj. wartość domyślną), prędkość podana jest w obrotach na minutę.</td>
</tr>
<tr>
<td>6043h</td>
<td>0 Oczekiwana prędkość VI</td>
<td>INT16</td>
<td>RO</td>
<td>Ten obiekt przedstawia prędkość wygenerowaną przez funkcję rampy. Jest to wartość wewnętrzna przemiennika częstotliwości. Wartość tę należy podać w tej samej jednostce co prędkość docelową VI. Wartości dodatnie wskazują kierunek do przodu, a wartości ujemne — do tyłu.</td>
</tr>
<tr>
<td>6044h</td>
<td>0 Praca sterująca VI</td>
<td>INT16</td>
<td>RO</td>
<td>Ten obiekt przedstawia aktualną prędkość. Wartość tę należy podać w tej samej jednostce co prędkość docelową VI. Wartości dodatnie wskazują kierunek do przodu, a wartości ujemne — do tyłu.</td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>6046h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Minimalna wartość prędkości VI</td>
<td>U32</td>
<td>RWW</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Maksymalna wartość prędkości VI</td>
<td>U32</td>
<td>RWW</td>
</tr>
<tr>
<td>6048h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Delta prędkości</td>
<td>U32</td>
<td>RWW</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Delta czasu</td>
<td>U6</td>
<td>RWW</td>
</tr>
<tr>
<td>6049h</td>
<td>0</td>
<td>Liczba pozycji</td>
<td>U8</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Delta prędkości</td>
<td>U32</td>
<td>RWW</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Delta czasu</td>
<td>U6</td>
<td>RWW</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>604Ch</td>
<td>0</td>
<td>Najwyższy obsługiwany podindeks</td>
<td>U8</td>
<td>Stała</td>
<td>Ten obiekt wskazuje skonfigurowany licznik i mianownik współczynnika wymiaru VI. Współczynnik wymiaru VI służy do uwzględnienia przełożenia w obliczeniach albo wyskalowania częstotliwości lub jednostek użytkownika. Wpływa on na prędkość docelową VI, oczekiwana prędkość VI, aktualną wartość prędkości VI oraz funkcję ograniczenia prędkości i funkcję rampy.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Licznik współczynnika wymiaru VI</td>
<td>INT32</td>
<td>RW</td>
<td>Mnożnik wartości prędkości VI. Musi się różnić od 0.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Mianownik współczynnika wymiaru VI</td>
<td>INT32</td>
<td>RW</td>
<td>Dzielnik wartości prędkości VI. Musi się różnić od 0.</td>
</tr>
<tr>
<td>605Dh</td>
<td>0</td>
<td>Kod opcji zatrzymania</td>
<td>INT16</td>
<td>RW</td>
<td>Ten obiekt wskazuje działanie podejmowane po wykonaniu funkcji zatrzymania, tj. ustawieniu bitu zatrzymania w słowie sterowania. Rampa spowolnienia stanowi wartość spowolnienia używanego trybu pracy.</td>
</tr>
</tbody>
</table>

Obowiązują poniższe definicje wartości:

1 = spowolnienie na rampie spowolnienia oraz pozostanie w trybie ZEZWOLENIE NA PRACĘ
2 = spowolnienie na rampie szybkiego zatrzymania oraz pozostanie w trybie ZEZWOLENIE NA PRACĘ
3 = spowolnienie na ograniczeniu natężenia oraz pozostanie w trybie ZEZWOLENIE NA PRACĘ
4 = spowolnienie na ograniczeniu napięcia oraz pozostanie w trybie ZEZWOLENIE NA PRACĘ
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6060h</td>
<td>0</td>
<td>Tryby pracy</td>
<td>INT8</td>
<td>RW</td>
<td>Ten obiekt pozwala na wybranie trybu pracy. Obiekt przedstawia tylko wartość żadanego trybu pracy. Aktualny tryb pracy PDS przedstawia obiekt 6061h. Obowiązują poniższe definicje wartości: 0 = brak zmiany trybu / brak przypisanego trybu 1 = tryb pozycji profilu (nie jest obsługiwane) 2 = tryb prędkości 3 = tryb prędkości profilowej 4 = tryb profilowego momentu obrotowego 5 = zarezerwowane 6 = tryb pozycji wyjściowej (nie jest obsługiwane) 7 = tryb pozycji interpolowanej (nie jest obsługiwane) 8 = tryb pozycji cyklicznej i synchronicznej (nie jest obsługiwane) 9 = tryb prędkości cyklicznej i synchronicznej 10 = tryb momentu obrotowego synchronicznego i cyklicznego</td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
<td>Opis</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>6061h</td>
<td>0</td>
<td>Wyświetlanie trybu pracy</td>
<td>INT8</td>
<td>RO</td>
<td>Ten obiekt przedstawia aktualny tryb pracy. Obowiązują poniższe definicje wartości: 0 = brak zmiany trybu / brak przypisanego trybu 1 = tryb pozycji profiliu (nie jest obsługiwane) 2 = tryb prędkości 3 = tryb prędkości profilowej 4 = tryb profilowego momentu obrotowego 5 = zarezerwowane 6 = tryb pozycji wyjściowej (nie jest obsługiwane) 7 = tryb pozycji interpolowanej (nie jest obsługiwane) 8 = tryb pozycji cyklicznej i synchronicznej (nie jest obsługiwane) 9 = tryb prędkości cyklicznej i synchronicznej 10 = tryb momentu obrotowego synchronicznego i cyklicznego</td>
</tr>
<tr>
<td>6069h</td>
<td>0</td>
<td>Wartość aktualna czujnika prędkości</td>
<td>INT32</td>
<td>RO</td>
<td>Ten obiekt przedstawia wartość odczytaną z czujnika prędkości.</td>
</tr>
<tr>
<td>606Bh</td>
<td>0</td>
<td>Wartość żądana prędkości</td>
<td>INT32</td>
<td>RO</td>
<td>Ten obiekt przedstawia wartość wyjściową generatora trajektorii.</td>
</tr>
<tr>
<td>606Ch</td>
<td>0</td>
<td>Wartość aktualna prędkości</td>
<td>INT32</td>
<td>RO</td>
<td>Ten obiekt przedstawia aktualną wartość prędkości pobraną z czujnika prędkości lub czujnika pozycji.</td>
</tr>
<tr>
<td>6071h</td>
<td>0</td>
<td>Docelowy moment obrotowy</td>
<td>INT16</td>
<td>RWW</td>
<td>Ten obiekt wskazuje wartość wejściową w kontrolerze momentu obrotowego w trybie profilowego momentu obrotowego.</td>
</tr>
<tr>
<td>6072h</td>
<td>0</td>
<td>Maksymalny moment</td>
<td>U6</td>
<td>RWW</td>
<td>Ten obiekt wskazuje maksymalny dopuszczony moment obrotowy silnika. 10 = 1%</td>
</tr>
<tr>
<td>6073h</td>
<td>0</td>
<td>Maks. prąd</td>
<td>U6</td>
<td>RWW</td>
<td>Ten obiekt wskazuje maksymalny dopuszczony moment obrotowy tworzący prąd w silniku. 10 = 1%</td>
</tr>
<tr>
<td>6077h</td>
<td>0</td>
<td>Wartość aktualnego momentu</td>
<td>INT16</td>
<td>RO</td>
<td>Ten obiekt przedstawia wartość aktualnego momentu obrotowego. Powinien być on zgodny z chwilowym momentem silnika. 10 = 1%</td>
</tr>
<tr>
<td>Indeks</td>
<td>Podindeks</td>
<td>Nazwa</td>
<td>Typ</td>
<td>Dostęp</td>
<td>Opis</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>6083h</td>
<td>0</td>
<td>Przyspieszenie profilowe</td>
<td>U32</td>
<td>RWW</td>
<td>Ten obiekt definiuje nakazywane przyspieszenie. Ten obiekt jest używany w trybie prędkości profilowej.</td>
</tr>
<tr>
<td>6084h</td>
<td>0</td>
<td>Spowolnienie profilowe</td>
<td>U32</td>
<td>RWW</td>
<td>Ten obiekt definiuje spowolnienie. Ten obiekt jest używany w trybie prędkości profilowej.</td>
</tr>
<tr>
<td>6087h</td>
<td>0</td>
<td>Nachylenie momentu</td>
<td>U32</td>
<td>RW</td>
<td>Ten obiekt wskazuje szybkość zmiany momentu.</td>
</tr>
<tr>
<td>608Fh</td>
<td>0</td>
<td>Najwyższy obsługiwany podindeks</td>
<td>U8</td>
<td>Stała</td>
<td>Obiekt ten wskazuje skonfigurowane przyrosty enkodera oraz liczbę obroty silnika. Dokładność enkodera pozycji jest obliczana za pomocą następującego wzoru: dokładność enkodera pozycji = przyrosty enkodera / obroty silnika</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Przyrosty enkodera</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Obroty silnika</td>
<td>U32</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>60C2h</td>
<td>0</td>
<td>Najwyższy obsługiwany podindeks.</td>
<td>U8</td>
<td>Stała</td>
<td>Ten obiekt wskazuje czas cyklu interpolacji.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Wartość okresu czasu interpolacji</td>
<td>U8</td>
<td>RW</td>
<td>Wartość czasu.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Indeks czasu interpolacji</td>
<td>INT8</td>
<td>RW</td>
<td>Indeks wymiaru wartości czasu w podindeksie 1</td>
</tr>
<tr>
<td>60FFh</td>
<td>0</td>
<td>Prędkość docelowa</td>
<td>INT32</td>
<td>RWW</td>
<td>Ten obiekt wskazuje skonfigurowaną prędkość docelową.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6402h</td>
<td>0</td>
<td>Typ silnika</td>
<td>U6</td>
<td>RO</td>
<td>Ten obiekt wskazuje typ silnika przy-mocowanego do przemiennika i napędzanego przez niego.</td>
</tr>
</tbody>
</table>

Obowiązują poniższe definicje wartości:

- 0000h = silnik niestandardowy
- 0001h = silnik DC modulowany fazowo
- 0002h = silnik DC sterowany częstotliwością
- 0003h = silnik synchroniczny PM
- 0004h = silnik synchroniczny FC
- 0005h = przełączany silnik reluktancyjny
- 0006h = nawijany silnik indukcyjny
- 0007h = klatkowy silnik indukcyjny
- 0008h = silnik krokowy
- 0009h = silnik krokowy z mikrokrokiem
- 0010h = sinusoidalny silnik PM BL
- 0011h = trapezoidalny silnik PM BL
- 0012h = synchronizacja reluktancyjna AC
- 0013h = komutator DC PM
- 0014h = komutator DC nawijany, seria
- 0015h = komutator DC nawijany, złożenie
- 7FFFh = brak przypisanego typu silnika
- 8000h-FFFFh = specyficzne dla producenta
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Podindeks</th>
<th>Nazwa</th>
<th>Typ</th>
<th>Dostęp</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6502h</td>
<td>0</td>
<td>Obsługiwane tryby przemiennika</td>
<td>U32</td>
<td>RO</td>
<td>Obiekt ten zawiera informacje o obsługiwanych trybach przemiennika. Ten obiekt jest zorganizowany bitami. Bity mają następujące znaczenie:</td>
</tr>
</tbody>
</table>
| | | | | | bit 0: tryb pozycji profilowej
| | | | | | bit 1: tryb prędkości
| | | | | | bit 2: tryb prędkości profilowej
| | | | | | bit 3: tryb momentu obrotowego profilowego
| | | | | | bit 4: zarezerwowane
| | | | | | bit 5: tryb pozycji wyjściowej
| | | | | | bit 6: tryb pozycji interpolowanej
| | | | | | bit 7: tryb pozycji cyklicznej i synchronicznej
| | | | | | bit 8: tryb prędkości cyklicznej i synchronicznej
| | | | | | bit 9: tryb momentu obrotowego synchronicznego i cyklicznego
| | | | | | bity 10–15: zarezerwowane
| | | | | | bity 16-31: specyficzne dla producenta
| | | | | | Wartości bitów mają następujące znaczenie:
| | | | | | wartość bitu = 0: tryb nie jest obsługiwany
| | | | | | wartość bitu = 1: tryb jest obsługiwany
| 6504h | 0 | Producent przemiennika częstotliwości | Widoczny ciąg | Stała | Ten obiekt wskazuje na producenta: ABB Drives
| 6505h | adres http katalogu przemiennika | Widoczny ciąg | Stała | Ten obiekt wskazuje przypisany adres internetowy producenta przemiennika częstotliwości: www.abb.com |

Wskaźniki stanu CANopen

Stan komunikacji CANopen można wyznaczyć diodami wirtualnymi, które są wyświetlane na zintegrowanym panelu. Dwie wirtualne diody LED CANopen, RUN i ERROR, są widoczne w widoku stanu połączenia na zintegrowanym panelu.

Obie diody LED mogą być włączone lub wyłączone. Poniższa tabela przedstawia obraz wyświetlanym przy włączonych i wyłączenych diodach.

<table>
<thead>
<tr>
<th>Dioda LED</th>
<th>Stan</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>Wył.</td>
</tr>
</tbody>
</table>
Opis migania diody LED.

<table>
<thead>
<tr>
<th>Nazwa</th>
<th>Stan</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BŁĄD</td>
<td>Wył.</td>
<td>Brak błędu</td>
</tr>
<tr>
<td></td>
<td>Miganie</td>
<td>Ogólny błąd konfiguracji</td>
</tr>
<tr>
<td></td>
<td>Jedno mignięcie</td>
<td>Licznik błędów w kontrolerze CANopen przekroczył wartość ostrzeżenia (zbyt dużo błędów).</td>
</tr>
<tr>
<td></td>
<td>Dwa mignięcia</td>
<td>Zaszło zdarzenie bezpieczeństwa lub doszło do upływu czasu impulsu.</td>
</tr>
<tr>
<td></td>
<td>Cztery mignięcia</td>
<td>Przed upływem timera zdarzenia nie otrzymano oczekiwangego obiektu PDO.</td>
</tr>
<tr>
<td></td>
<td>Wł.</td>
<td>Sterownik CAN ma wyłączoną magistralę.</td>
</tr>
<tr>
<td>BIEG</td>
<td>Miganie</td>
<td>Urządzenie jest w stanie PRZED DZIAŁANIEM.</td>
</tr>
<tr>
<td></td>
<td>Jedno mignięcie</td>
<td>Urządzenie jest w stanie ZATRZYMANE.</td>
</tr>
<tr>
<td></td>
<td>Wł.</td>
<td>Urządzenie jest w stanie PRACUJĄCE.</td>
</tr>
</tbody>
</table>
Sterowanie przez magistralę komunikacyjną za pośrednictwem wbudowanego interfejsu komunikacyjnego EFB
Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego

Spis treści
- Opis systemu
- Podstawowe informacje o interfejsie komunikacyjnym sterowania
- Automatyczna konfiguracja przemiennika częstotliwości pod kątem sterowania magistralą
- Ręczne konfigurowanie przemiennika częstotliwości do sterowania przez magistralę komunikacyjną

Opis systemu

Dla następującego instrumentu:
- Przemiennik ACS380-04xC z podłączonym adapterem komunikacyjnym (z wyłączeniem interfejsu BCAN-11 CANopen; +K405)

Przemiennikiem częstotliwości można sterować za pomocą urządzeń zewnętrznych przez sieć komunikacyjną (magistralę komunikacyjną) za pośrednictwem opcjonalnego modułu adaptera komunikacyjnego.

Przemiennik częstotliwości można podłączyć do zewnętrznego systemu sterującego za pośrednictwem opcjonalnego adaptera komunikacyjnego (adapter komunikacyjny A” = FBA A) zamontowanego w jednostce sterującej przemienника częstotliwości. Przemiennik częstotliwości można skonfigurować tak, aby odbierał wszystkie infor-
macie sterujące przez magistralę komunikacyjną lub inne dostępne źródła, takie jak wejścia cyfrowe i analogowe, zależnie od sposobu skonfigurowania lokalizacji sterowania ZEW1 i ZEW2.

Adaptery komunikacyjne są dostępne dla różnych systemów komunikacyjnych i protokołów, na przykład:

- PROFIBUS DP (adapter FPBA-01-M)
- CANopen (adapter FCAN-01-M)
- EtherNet/IP™ FENA-21-M
- EtherCAT™ FECA-01-M

Można także użyć wersji F powyższych modułów.

Uwaga: Tekst i przykłady w tym rozdziale opisują konfigurację jednego adaptera komunikacyjnego (FBA A) przy użyciu parametrów 50.01…50.18 i grup parametrów 51 FBA A: ustawienia...53 FBA A: dane wyj.

![Diagram](image_url)

Przepływ danych

- Słowo sterowania (CW)
- Wartości zadane
- Słowo stanu (SW)
- Wartości aktualne
- R/W parametry żądania/odpowiedzi

Magistrala komunikacyjna

- Sterownik magistrali komunikacyjnej
- Inne urządzenia
- Adapter komunikacyjny typu Fxxx zainstalowany w jednostce sterującej przemiennika częstotliwości (gniazdo 1)
Podstawowe informacje o interfejsie komunikacyjnym sterowania

Komunikacja cykliczna między systemem magistrali komunikacyjnej a przemieniennikiem częstotliwości składa się z 16- lub 32-bitowych słów danych wejściowych i wyjściowych. Przemieniennik częstotliwości może obsługiwać maksymalnie 12 słów danych (po 16 bitów) w każdym kierunku.

Dane transmitowane z przemieninika częstotliwości do sterownika magistrali komunikacyjnej są definiowane przez parametry 52.01 FBA A: dane wej. 1…52.12 FBA A: dane wej. 12. Dane transmitowane ze sterownika magistrali komunikacyjnej do przemieninika częstotliwości są definiowane przez parametry 53.01 FBA A: dane wyj. 1…53.12 FBA: dane wyj. 12.
Słowo sterowania i słowo stanu

Słowo sterowania to główny sposób sterowania przemiennikiem częstotliwości w systemie magistrali komunikacyjnej. Jest ono wysyłane przez nadrzędną stację magistrali komunikacyjnej do przemiennika częstotliwości za pośrednictwem modułu adaptera. Przemiennik częstotliwości przełącza się między swoimi stanami w zależności od instrukcji bitowych w słowie sterowania i zwraca informacje o stanie do przemiennika nadrzędnego w słowie stanu.
Więcej informacji o słowie sterowania znajduje się na str. 536, a o słowie stanu — na str. 537. Stany przemiennika częstotliwości zostały przedstawione na wykresie stanów na str. 539.

Debugowanie słów sieci

Jeśli parametr 50.12 *Tryb debugowania FBA A* jest ustawiony na wartość *Szybkie*, parametr 50.13 *FBA A: słowo sterowania* przedstawia słowo sterowania odbierane z magistrali komunikacyjnej, a parametr 50.16 *FBA A: słowo stanu* — słowo stanu transmitowane przez sieć komunikacyjną. Te „surowe” dane są bardzo przydatne przy określaniu, czy urządzenie nadrzędne magistrali komunikacyjnej przesłała prawidłowe dane przed przekazaniem sterowania do sieci komunikacyjnej.
Wartości zadane

Wartości zadane to 16-bitowe słowa zawierające bit znaku i 15-bitową liczbę całkowitą. Ujemna wartość zadana (oznaczająca odwrotny kierunek obrotów) jest wyznaczana przez obliczenie dopełnienia do dwóch odpowiadającej dodatniej wartości zadanej.

Przemienniki częstotliwości firmy ABB mogą odbierać informacje sterujące z wielu źródeł, w tym z wejść analogowych i cyfrowych, panelu sterowania przemiennika częstotliwości i modułu adaptera komunikacyjnego. Aby sterować przemiennikiem częstotliwości za pośrednictwem magistrali komunikacyjnej, moduł musi być zdefiniowany jako źródło informacji sterujących, np. wartości zadanej. Jest to realizowane za pomocą parametrów wyboru źródeł w grupach 22 Wybór wart. zadanej prędkości, 26 Łańcuch wart. zad. momentu i 28 Łańcuch w. zad. częstotliwości.

Debugowanie słów sieci

Jeśli parametr 50.12 Tryb debugowania FBA A ma wartość Szybkie, parametry 50.14 FBA A: wartość zadana 1 i 50.15 FBA A: wartość zadana 2 wyświetляją wartości zadane odbierane przez magistralę komunikacyjną.

Skalowanie wartości zadanych

Wartości zadane są skalowane zgodnie z definicją w parametrach 46.01…46.04. Używany sposób skalowania zależy od ustawienia parametrów 50.04 FBA A: typ wart. zad. 1 i 50.05 FBA A: typ wart. zad. 2.

<table>
<thead>
<tr>
<th>Magistrala komunikacyjna</th>
<th>Przemiennik częstotliwości</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>46.01 (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>46.02 (z wartością zadaną częstotliwości)</td>
</tr>
<tr>
<td>10000</td>
<td>46.03 (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-10000</td>
<td>-(46.03) (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>-20000</td>
<td>-(46.01) (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>-(46.02) (z wartością zadaną częstotliwości)</td>
</tr>
</tbody>
</table>

Skalowane wartości zadane są wyświetlane przy użyciu parametrów 03.05 W. zad. 1 mag. kom. A i 03.06 W. zad. 2 mag. kom. A.
Wartości aktualne

Wartości aktualne to 16-bitowe słowa zawierające informacje o działaniu przemienника częstotliwości. Typy monitorowanych sygnałów są wybierane przez parametry 50.07 FBA A: typ wart. akt. 1 i 50.08 FBA A: typ wart. akt. 2.

Debugowanie słów sieci

Jeśli parametr 50.12 Tryb debugowania FBA A ma wartość Szybkie, parametry 50.17 FBA A: aktualna wartość 1 i 50.18 FBA A: aktualna wartość 2 wyświetlają wartości aktualne wysłane do magistrali komunikacyjnej.

Skalowanie wartości aktualnych

Wartości aktualne są skalowane zgodnie z definicją w parametrach 46.01…46.04. Używany sposób skalowania zależy od ustawienia parametrów 50.07 FBA A: typ wart. akt. 1 i 50.08 FBA A: typ wart. akt. 2.

<table>
<thead>
<tr>
<th>Magistrala komunikacyjna</th>
<th>Przemiennik częstotliwości</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>46.01 (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>46.02 (z wartością zadaną częstotliwości)</td>
</tr>
<tr>
<td>10000</td>
<td>46.03 (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-10000</td>
<td>-(46.03) (z wartością zadaną momentu)</td>
</tr>
<tr>
<td>-20000</td>
<td>-(46.01) (z wartością zadaną prędkości)</td>
</tr>
<tr>
<td></td>
<td>-(46.02) (z wartością zadaną częstotliwości)</td>
</tr>
</tbody>
</table>
Zawartość słowa sterowania magistrali komunikacyjnej

Pogrubiony tekst pisany wielkimi literami odnosi się do stanów na wykresie stanów (strona 539).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Kontrola Off1</td>
<td>1</td>
<td>Przejście do stanu GOTOWOŚĆ DO PRACY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie zgodnie z aktywną rampą zwalniania. Przejście do stanu OFF1 AKTYWNE; przechodzenie do stanu GOTOWOŚĆ DO WŁ., jeśli inne blokady (OFF2, OFF3) nie są aktywne.</td>
</tr>
<tr>
<td>1</td>
<td>Kontrola Off2</td>
<td>1</td>
<td>Kontynuowanie działania (stan OFF2 nieaktywny).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wyłączenie awaryjne, zwalnianie wybiegiem aż do zatrzymania. Przejście do stanu OFF2 AKTYWNE, przejście do stanu WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td>2</td>
<td>Kontrola Off3</td>
<td>1</td>
<td>Kontynuowanie działania (stan OFF3 nieaktywny).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie awaryjne, zatrzymanie w czasie określonym przez parametr przemiennika częstotliwości. Przejście do stanu OFF3 AKTYWNE; przejście do stanu WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OSTRZEŻENIE: Należy się upewnić, że silnik i napędzane urządzenie mogą zostać zatrzymane za pomocą tego trybu zatrzymywania.</td>
</tr>
<tr>
<td>3</td>
<td>Bieg</td>
<td>1</td>
<td>Przejście do stanu ZEZWOLENIE NA PRACĘ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Przerwanie pracy. Przejście do stanu PRZERWANIE DZIAŁANIA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uwaga: Sygnał zezwolenia na bieg musi być aktywny. Patrz dokumentację przemiennika częstotliwości. Jeśli przemiennik częstotliwości jest ustawiony tak, aby odbierał sygnał Zezwolenia na bieg z magistrali komunikacyjnej, ten bit aktywuje ten sygnał.</td>
</tr>
<tr>
<td>4</td>
<td>Wyjście rampy: zero</td>
<td>1</td>
<td>Normalna praca. Przejście do stanu RAMP FUNCTION GENERATOR: WYJŚCIE WŁĄCZONE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wymuszenie zerowej wartości wyjściowej generatora funkcji rampy. Przekształca częstotliwość natychmiast całkowicie zatrzyma silnik (biorąc pod uwagę limity momentu).</td>
</tr>
<tr>
<td>5</td>
<td>Wstrzymanie rampy</td>
<td>1</td>
<td>Włączanie funkcji rampy. Przejście do stanu RAMP FUNCTION GENERATOR: AKCELERATOR WŁĄCZONY.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zatrzymanie rampy (zatrzymanie wartości wyjściowych generatora funkcji rampy).</td>
</tr>
<tr>
<td>6</td>
<td>Wejście rampy: zero</td>
<td>1</td>
<td>Normalna praca. Przejście do stanu PRACA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wymuszenie zerowej wartości wejściowej generatora funkcji rampy.</td>
</tr>
<tr>
<td>7</td>
<td>Reset</td>
<td>0=>1</td>
<td>Resetowanie błędu, jeśli istnieje aktywny błąd. Przejście do stanu WŁĄCZANIE PRZERWANE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Kontynuowanie normalnego działania.</td>
</tr>
</tbody>
</table>
Zawartość słowa stanu magistrali komunikacyjnej

Pogrubiony tekst pisany wielkimi literami odnosi się do stanów na wykresie stanów (strona 539).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
</table>
| 8 | Ruch powolny 1 | 1 | Przyspieszenie do nastawy 1 ruchu powolnego (biegu próbnego). **Uwagi:**
| | | | • Bity 4…6 muszą mieć wartość 0.
| | | | • Patrz także sekcja **Bieg próbny** na str. 70.
| | | 0 | Ruch powolny (bieg próbny) 1 wyłączony. |
| 9 | Ruch powolny 2 | 1 | Przyspieszenie do nastawy 2 ruchu powolnego (biegu próbnego). Patrz uwagi do bitu 8.
| | | 0 | Ruch powolny (bieg próbny) 2 wyłączony. |
| 10 | Komenda zdalna | 1 | Włączone sterowanie przez magistralę komunikacyjną.
| | | 0 | Słowo sterowania i wartość zadana nie są przekazywane do przemiennika częstotliwości poza bitami 0…2. |
| 11 | Zewn. lokalizacja ster. | 1 | Wybór lokalizacji sterowania zewnętrznego ZEW2. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja była wybierana magistrala komunikacyjna.
| | | 0 | Wybór lokalizacji sterowania zewnętrznego ZEW1. Działa, jeśli parametry lokalizacji sterowania są ustawione tak, aby jako lokalizacja była wybierana magistrala komunikacyjna. |
| 12 | Bit użytkownika 0 | 1 | Konfigurowalne przez użytkownika
| | | 0 | |
| 13 | Bit użytkownika 1 | 1 |
| | | 0 | |
| 14 | Bit użytkownika 2 | 1 |
| | | 0 | |
| 15 | Bit użytkownika 3 | 1 |
| | | 0 | |

### Bit Nazwa	Wart.	Stan/opis
0	Gotowość do włączenia.	1
		0
1	Gotowość do pracy	1
		0
2	Wartość zadana gotowa	1
		0
3	Wyłączenie awaryjne	1
		0
4	Wył. 2 nieaktywne	1
		0
5	Wył. 3 nieaktywne	1
		0
6	Włączenie przerwane	1
		0
7	Ostrzeżenie	1
<p>| | | 0 | Brak aktywnego ostrzeżenia. |</p>
<table>
<thead>
<tr>
<th>Bit</th>
<th>Nazwa</th>
<th>Wart.</th>
<th>Stan/opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Przy nastawie</td>
<td>1</td>
<td>PRACA. Wartość aktualna równa wartości zadanej = jest w granicach tolerancji (patrz parametry 46.21…46.23).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Wartość aktualna różni się od wartości zadanej = jest poza granicami tolerancji.</td>
</tr>
<tr>
<td>9</td>
<td>Zdalne</td>
<td>1</td>
<td>Miejsce sterowania przemiennikiem częstotliwości: ZDALNE (ZEW1 lub ZEW2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Miejsce sterowania przemiennikiem częstotliwości: LOKALNE.</td>
</tr>
<tr>
<td>10</td>
<td>Ponad limitem</td>
<td>-</td>
<td>Patrz bit 10 parametru 06.17 Słowo stanu 2 przem.</td>
</tr>
<tr>
<td>11</td>
<td>Bit użytkownika 0</td>
<td>-</td>
<td>Patrz parametr 06.30 Wybór bitu 11 MSW.</td>
</tr>
<tr>
<td>12</td>
<td>Bit użytkownika 1</td>
<td>-</td>
<td>Patrz parametr 06.31 Wybór bitu 12 MSW.</td>
</tr>
<tr>
<td>13</td>
<td>Bit użytkownika 2</td>
<td>-</td>
<td>Patrz parametr 06.32 Wybór bitu 13 MSW.</td>
</tr>
<tr>
<td>14</td>
<td>Bit użytkownika 3</td>
<td>-</td>
<td>Patrz parametr 06.33 Wybór bitu 14 MSW.</td>
</tr>
<tr>
<td>15</td>
<td>Zarezerwowane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagram stanu (waży tylko dla profilu ABB Drives)

- **ZASILANIE WYŁĄCZONE**
 - Zasilanie WŁ.
 - bit 3 CW = 0

- **PRZERWANIE Działańia**
 - bit 2 SW = 0
 - Przerwanie działania
 - z dowolnego stanu

- **OFF1 (bit 0 CW = 0)**
 - bit 1 SW = 0
 - n(f) = 0 / I = 0

- **OFF1 AKTYWNE**
 - bit 1 SW = 0

- **RFG: WYJŚCIE WŁĄCZONE**
 - bit 6 CW = 0
 - CW = xxxx x1xx xx11 1111

- **RFG: AKCELERATOR WŁĄCZONY**
 - CW = xxxx x1xx x111 1111

- **BRAK GOTOWOŚCI DO WŁ.**
 - bit 0 SW = 0
 - CW = xxxx x1xx xxxx x110

- **GOTOWOŚĆ DO WŁ.**
 - bit 0 SW = 0
 - CW = xxxx x1xx xxxx x111

- **GOTOWOŚĆ DO PRACY**
 - bit 1 SW = 0

- **OFF2 AKTYWNE**
 - bit 4 SW = 0

- **OFF2 (bit 1 CW = 0)**
 - Zatrzymanie awaryjne

- **OFF3 (bit 2 CW = 0)**
 - Zatrzymanie awaryjne

- **ZASILANIE WŁĄCZONE**
 - Zasilanie WŁ.

- **BŁĄD**
 - bit 3 SW = 1
 - bit 7 CW = 1

- **STAN**
 - warunek
 - rosnące
 - zbocze bitu

Świadomość sterowania

- SW = słowo stanu
- bx = bit x
- n = prędkość
- I = prąd wejściowy
- RFG = generator
- f = częstotliwość
- PRACA
Automatyczna konfiguracja przemiennika częstotliwości pod kątem sterowania magistralą

Oprogramowanie automatycznie ustawia odpowiednie parametry, gdy moduł adaptera komunikacyjnego jest podłączany do przemiennika. Wstępnie skonfigurowane ustawienia są dostępne dla protokołów CANopen, EtherCAT, PROFIBUS i PROFINET (domyślnie w module FENA-21-M).

Ostrzeżenie! Przed montażem elektrycznym przemiennik częstotliwości musi być odłączony na pięć (5) minut.

Aby skonfigurować komunikację przez magistralę komunikacyjną:

1. Włączyć przemiennik częstotliwości.

2. Oprogramowanie przemiennika wykryje podłączony adapter magistrali komunikacyjnej i wybierze odpowiednie makro sterowania połączeniem.

 Zmienione parametry są wymienione w sekcjach Automatycznie zmienione parametry (wszystkie adaptery) i Określone parametry adaptera komunikacyjnego.

3. Wybrane makro można zobaczyć w podmenu Makra połączenia lub w parametrze 96.05. W podmenu Makra połączenia można także zmienić numer węzła.

4. Aby zmienić inne parametry, należy edytować je ręcznie.

Jeśli odpowiednie parametry nie zostały automatycznie ustawione, wykonaj instrukcje z sekcji Ręczne konfigurowanie przemiennika częstotliwości do sterowania przez magistralę komunikacyjną na str. 543.

Jeśli parametr 07.35 ma wartość 0, funkcja automatycznego ustawiania magistrali komunikacyjnej jest aktywowana automatycznie po włączeniu zasilania. Zmiana na inny adapter przy wartości 0 w parametrze 07.35 spowoduje jej ponowną aktywację.

Przykład: Zmiana na inny adapter wymaga ponownej konfiguracji parametru 07.35 Konfiguracja przem. częst. Wybierz opcję 0 Nie zainicjowano, przejdź do parametru 96.07 i zapisz go. Zatrzymaj i uruchom ponownie przemiennik częstotliwości. Przemiennik zacznie pracować z nową konfiguracją.

Funkcja automatycznego ustawiania magistrali komunikacyjnej nie jest aktywowana automatycznie po zmianie parametrów ani modułu magistrali.

Gdy adapter magistrali komunikacyjnej jest podłączony do przemiennika, program sterujący przemiennika ustawia odpowiednie parametry. Wstępnie skonfigurowane ustawienia są dostępne dla protokołów CANopen, EtherCAT, PROFIBUS i PROFINET (domyślnie w module FENA-21). W przypadku używania adaptera BCAN-11 należy zapoznać się z wyjątkami w tabeli.
Automatycznie zmienione parametry (wszystkie adaptery)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie (ogólne)</th>
<th>Ustawienie (BCAN-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01 Komendy Zew1</td>
<td>Magistrala komunikacyjna A</td>
<td>Wbudowana mag. komunikacyjna</td>
</tr>
<tr>
<td>20.03 Źródło We1 Zew1</td>
<td>Nie wybrano</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>20.04 Źródło We2 Zew1</td>
<td>Nie wybrano</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>22.11 W. zad. pręd. 1 Zew1</td>
<td>W. zad. 1 mag. kom. A</td>
<td>EFB — wartość zadana 1</td>
</tr>
<tr>
<td>22.22 Wybór stałej prędkości 1</td>
<td>Nie wybrano</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>22.23 Wybór stałej prędkości 2</td>
<td>Nie wybrano</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>23.11 Wybór zestawu ramp</td>
<td>Czas przysp./zwaln. 1</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td>28.11 W. zad. częst. 1 Zew1</td>
<td>W. zad. 1 mag. kom. A</td>
<td>EFB — wartość zadana 1</td>
</tr>
<tr>
<td>28.22 Wybór stałej częstotliwości 1</td>
<td>Nie wybrano</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>28.23 Wybór stałej częstotliwości 2</td>
<td>Nie wybrano</td>
<td>Nie wybrano</td>
</tr>
<tr>
<td>28.71 Wybór ust. rampy częst.</td>
<td>Czas przysp./zwaln. 1</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
<tr>
<td>31.11 Wybór resetu błędu</td>
<td>DI1</td>
<td>DI2</td>
</tr>
<tr>
<td>50.01 Włączenie FBA A</td>
<td>Włącz</td>
<td>nd.</td>
</tr>
<tr>
<td>50.02 FBA A: funkcja utr. komun.</td>
<td>Błąd</td>
<td>nd.</td>
</tr>
</tbody>
</table>

Określone parametry adaptera komunikacyjnego

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Ustawienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANopen (FCAN-01-M)</td>
<td></td>
</tr>
<tr>
<td>51.05 Profil</td>
<td>CiA 402</td>
</tr>
<tr>
<td>EtherCAT</td>
<td></td>
</tr>
<tr>
<td>51.02 Profil</td>
<td>CiA 402</td>
</tr>
<tr>
<td>PROFIBUS</td>
<td></td>
</tr>
<tr>
<td>51.02 Adres wężła</td>
<td>3</td>
</tr>
<tr>
<td>51.05 Profil</td>
<td>ABB Drives</td>
</tr>
<tr>
<td>52.01 FBA A: dane wej. 1</td>
<td>Słowo stanu 16-bitowe</td>
</tr>
<tr>
<td>52.02 FBA A: dane wej. 2</td>
<td>Wartość aktualna 1 16-bitowa</td>
</tr>
<tr>
<td>53.01 FBA: dane wyj. 1</td>
<td>Słowo sterowania 16-bitowe</td>
</tr>
<tr>
<td>53.02 FBA: dane wyj. 2</td>
<td>Wartość zadana 1 16-bitowa</td>
</tr>
<tr>
<td>PROFINET (domyślnie w FENA-21)</td>
<td></td>
</tr>
<tr>
<td>51.02 Protokół/profil</td>
<td>11 = PNIO ABB Pro (protokół PROFINET IO: profil ABB Drives).</td>
</tr>
<tr>
<td>51.04 Konfiguracja adresu IP</td>
<td>0 (Statyczny adres IP)</td>
</tr>
<tr>
<td>52.01 Wejście danych</td>
<td>4 (SW 16 bit (słowo stanu (16-bitowe)))</td>
</tr>
<tr>
<td>52.02 Wejście danych 2</td>
<td>5 (Akt 1 16-bitowe)</td>
</tr>
<tr>
<td>53.01 Wyjście danych 1</td>
<td>1 (CW 16-bitowe)</td>
</tr>
<tr>
<td>53.02 Wyjście danych 2</td>
<td>2 (Zad 1 16-bitowe)</td>
</tr>
<tr>
<td>Parametr</td>
<td>Ustawienie</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modbus TCP/IP</td>
<td></td>
</tr>
<tr>
<td>51.02 Protokół/profil</td>
<td>1 = MB/TCP T16. (Modbus/TCP: profil ABB Drives — rozszerzone)</td>
</tr>
<tr>
<td>Ethernet IP</td>
<td></td>
</tr>
<tr>
<td>51.02 Protokół/profil</td>
<td>EIP ABB Pro. (protokół Ethernet/IP: profil ABB Drives).</td>
</tr>
<tr>
<td>CANopen (BCAN-11)</td>
<td></td>
</tr>
<tr>
<td>58.01 Protokół wł.</td>
<td>CANopen</td>
</tr>
</tbody>
</table>
Ręczne konfigurowanie przemiennika częstotliwości do sterowania przez magistralę komunikacyjną

Moduł adaptera komunikacyjnego jest przeważnie zainstalowany fabrycznie. Przemiennik częstotliwości rozpoznaje moduł automatycznie.

Jeśli adapter nie jest fabrycznie zainstalowany, można go zainstalować mechanicznie i elektrycznie.

1. Moduł adaptera komunikacyjnego należy zainstalować mechanicznie i elektrycznie zgodnie z instrukcjami w podręczniku użytkownika modułu.

2. Włączyć przemiennik częstotliwości.

3. Aktywować komunikację pomiędzy przemiennikiem częstotliwości a modułem adaptera komunikacyjnego za pomocą parametru 50.01 Włączenie FBA A

4. Za pomocą parametru 50.02 FBA A: funkcja utr. komun. określić, jak przemiennik częstotliwości reaguje na przerwę w komunikacji z magistralą komunikacyjną.

Uwaga: Ta funkcja monitoruje komunikację zarówno między przemiennikiem częstotliwości a modulem adaptera komunikacyjnego, jak i między modułem adaptera a przemiennikiem częstotliwości.

5. Za pomocą parametru 50.03 FBA A: lim. czas. utr. kom. określić czas między wykryciem przerwy w komunikacji a wykonaniem wybranego działania.

6.Wybrać wartości odpowiednie do określonej aplikacji dla reszty parametrów w grupie 50 Adapter komunikacyjny (FBA), zaczynając od parametru 50.04. Przykłady właściwych wartości zostały przedstawione w tabelach poniżej.

8. Zdefiniować w grupach parametrów 52 FBA A: dane wej. i 53 FBA A: dane wyj. dane procesu przesyłane do i z przemiennika częstotliwości.

Uwaga: W zależności od używanego protokołu komunikacyjnego i profilu, słowo sterowania i słowo stanu mogą już być skonfigurowane do wysyłania/odbierania przez system komunikacyjny.

9. Zapisać właściwe wartości parametrów w pamięci trwałej, ustawiając parametr 96.07 Ręczne zapisanie parametrów na wartość Zapisz.

10. Sprawdzić poprawność ustawień wprowadzonych w grupach parametrów 51, 52 i 53, ustawiając parametr 51.27 FBA A: odśw. param. na wartość Skonfiguruj.

11. Skonfigurować miejsca sterowania ZEW1 i ZEW2, aby umożliwić odbieranie sygnałów sterujących i zadawania z magistrali komunikacyjnej.
Sterowanie przez magistralę komunikacyjną za pośrednictwem adaptera komunikacyjnego
Diagramy łańcucha sterowania

Zawartość tego rozdziału

W tym rozdziale przedstawiono łańcuchy przetwarzania wartości zadanej dla przemiennika częstotliwości. Diagramy łańcucha sterowania mogą być używane do śledzenia, w jaki sposób parametry wchodzą w interakcje i gdzie w systemie parametrów przemiennika częstotliwości odnoszą efekt.

Bardziej ogólny schemat można znaleźć w sekcji Tryby pracy i tryby sterowania silnikiem na str. 56.

Uwaga: Panel przywołany na tym diagramie przedstawia pomocnicze panele sterowania ACX-AP-x oraz program komputerowy Drive composer.
Wybór wartości zadanej częstotliwości

28.11 Ext1 frequency ref1
Selection

28.12 Ext1 frequency ref2
Selection

28.15 Ext2 frequency ref1
Selection

28.16 Ext2 frequency ref2
Selection

19.11 Ext1/Ext2 selection
Selection

28.21 Const frequency function
Selection

28.22 Constant frequency set1
Selection

28.23 Constant frequency set2
Selection

28.24 Constant frequency set3
Selection

28.26 Constant frequency 1
Value

28.27 Constant frequency 2
Value

28.28 Constant frequency 3
Value

28.29 Constant frequency 4
Value

28.30 Constant frequency 5
Value

28.31 Constant frequency 6
Value

28.32 Constant frequency 7
Value

28.92 Frequency ref act 3
Value

28.96 Frequency ref act 7
Value

Direction Lock

31.01 Panel reference
Value

6.16 bit 9 Network control
Value

06.16 bit 8 Local control
Value

28.41 Frequency ref safe
Value

49.05 Communication loss action = Speed ref safe
Panel comm loss active
Panel as local control device
AND

OR

Frequency reference safe command

50.02 FBA A comm loss func = Speed ref safe
Fieldbus comm loss active
Control from Fieldbus active
AND
Wybór źródła wartości zadanej prędkości I
Wybór źródła wartości zadanej prędkości II
Obliczanie błędu prędkości
Diagramy łączenia sterowania

Kontroler prędkości

PID

24.03 Speed error filtered
25.02 Speed proportional gain
25.03 Speed integration time
25.04 Speed derivation time
25.05 Derivation filter time
25.15 Proportional gain em stop
25.01 Torque reference speed control
25.53 Torque prop reference
25.54 Torque integral reference
25.55 Torque deriv reference
25.56 Torque acc compensation

30.18 Torq lim sel
30.20 Maximum torque
30.22 Max torque 2 source
30.19 Minimum torque
30.21 Min torque 2 source
30.18 Torq lim sel
Wybór i modyfikowanie źródła wartości zadanej momentu
Wybór wartości zadanej dla kontrolera momentu
Ograniczanie momentu

Diagramy łańcucha sterowania

26.01 Torque reference used

30.02 Torque limit status

Bit Name
0 = Undervoltage
1 = Overvoltage
2 = Minimum torque
3 = Maximum torque
4 = Load angle
5 = Motor pull-out
6 = Reserved
7 = Thermal
8 = Max current
9 = User current
10 = Thermal IGBT
11 = 13 = 14 =
15 =

30.17 Maximum current

30.19 Minimum torque

30.20 Maximum torque

30.21 Minimum speed feedback

30.22 Overvoltage control

Ograniczanie momentu

30.31 Under
torque limit

30.30 Overvoltage control

Value

Power limiter

Torque limiter

Current limiter

Motor pull-out limitation

Load angle limitation

DC voltage limiter

To TC
Wybór źródła nastaw i sprzężenia zwrotnego regulatora

Note! Process PID parameter set 2 is also available. See parameter group 41.
Regulator PID procesu
Diagramy

71.38 Output freeze enable
71.39 Deadband range
71.40 Deadband relay

71.03 Setpoint act value
71.02 Feedback act value

71.31 Deviation inversion

71.04 Deviation act value

71.14 Setpoint scaling
71.15 Output scaling

71.32 Gain
71.33 Integration time
71.34 Derivation time
71.35 Derivation filter time
71.07 PID operation mode
71.58 Increase prevention
71.59 Decrease prevention

71.36 Output min

71.37 Output max

71.38 Output freeze enable

71.01 External PID act value

71.06 PID status word

External PID status

71.39 Deadband range

71.40 Deadband relay

Zewnętrzny regulator PID
Blokada kierunku
Dodatek A – przemiennik ACS380 w aplikacjach dźwigowych

W tym rozdziale opisano najważniejsze funkcje programu sterującego, które dotyczą aplikacji dźwigowych, sposób ich użycia i konfigurowania. W razie potrzeby można użyć tych funkcji także w innych aplikacjach.

Spis treści

- Przegląd programu sterującego dźwigiem
- Szybkie uruchomienie
- Sterowanie hamulcem mechanicznym dźwigu
- Dopasowanie prędkości
- Maskowanie ostrzeżeń dźwigu
- Funkcja strefy nieczułości
- Blokada start/stop
- Funkcja limitu zatrzymania dźwigu
- Funkcja zwalniania dźwigu
- Szybkie zatrzymanie
- Potwierdzenie włączenia zasilania
- Obsługa wartości zadanej prędkości
- Polecenie hamowania
- Potencjometr silnika dźwigu
Przegląd programu sterującego dźwigiem

Przemienniki ACS380 mogą być używane w takich dźwigach jak:

- elektryczne dźwigi suwnicowe (electric overhead traveling, EOT) do zastosowań wewnętrznych,
- zewnętrzne dźwigi wieżowe oraz
- dźwigi wieżowe.

Dźwigi te wymagają niezależnych ruchów. Wewnętrzne dźwigi EOT i dźwigi wieżowe wykonują takie ruchy jak podnoszenie, jazda na wózku oraz długie przejazdy. Zewnętrzne dźwigi wieżowe wykonują takie ruchy jak podnoszenie, jazda na wózku oraz obrót.

Sygnały startu, stopu i sterowania mogą być analogowe i cyfrowe albo przesyłane przez magistralę komunikacyjną z programowalnego sterownika logicznego (PLC) lub ręcznego urządzenia sterującego, takiego jak joystick. Typowy interfejs sterowania dźwigham przedstawiono w sekcji Przyłącza sterowania na stronie 602.

Oferta produktów firmy ABB dla dźwigów kładzie nacisk na bezpieczeństwo i wydajność. Każdy element zwiększający bezpieczeństwo musi być stosowany w przemiennikach dźwigowych. Na przykład w przemiennikach podnośnikowych do bezpiecznego nadzorowania prędkości musi być używana kontrola w pętli zamkniętej (z enkoderem lub nadzorem zewnętrznym).
Szybkie uruchomienie

Ta sekcja przedstawia następujące alternatywne schematy sterowania do uruchomienia przemiennika za pomocą programu sterującego:

- **Sterowanie przez interfejs we/wy za pomocą joysticka** (str. 564)
- **Sterowanie przez interfejs we/wy za pomocą krokowego zadawania prędkości** (str. 568)
- **Sterowanie przez interfejs magistrali komunikacyjnej za pomocą słowa sterowania** (str. 572).

Ponadto w tej sekcji opisano sposób konfigurowania następujących funkcji programu:

- **Konfigurowanie zwalniania za pomocą dwóch limitów i logiki krańcowej** (str. 577)
- **Konfigurowanie sprzężenia zwrotnego od prędkości za pomocą enkodera impulsowego HTL/TTL** (str. 575)
- **Konfigurowanie sterowania hamulcem mechanicznym** (str. 581).

Przed uruchomieniem należy wykonać następujące czynności:

1. **Upewnić się, że odpowiednie połączenia we/wy są dostępne. Aby skonfigurować niezbędne połączenia we/wy, należy ustawić poniższe parametry:**

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.09</td>
<td>Funkcja DIO2</td>
<td>Wejście</td>
</tr>
<tr>
<td>22.22</td>
<td>Wybór stałej prędkości 1</td>
<td>Zawsze wyłączone</td>
</tr>
<tr>
<td>22.23</td>
<td>Wybór stałej prędkości 2</td>
<td>Zawsze wyłączone</td>
</tr>
<tr>
<td>23.11</td>
<td>Wybór zestawu ramp</td>
<td>Czas przysp./zwaln. 1</td>
</tr>
</tbody>
</table>

2. **Do skalarnego sterowania silnikiem lub przy ruchach wózka i długich przejazdach należy wyłączyć funkcje Badanie momentu oraz Moment otwarcia hamulca. Patrz **Konfigurowanie sterowania hamulcem mechanicznym** na stronie 581.
Sterowanie przez interfejs we/wy za pomocą joysticka

W tej sekcji opisano, jak skonfigurować przemiennik częstotliwości do sterowania przez interfejs we/wy za pomocą joysticka.

Bezpieczeństwo

OSTRZEŻENIE! Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.

Działania wstępne

- **OSTRZEŻENIE!** Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemienika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.

- **OSTRZEŻENIE!** Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemienika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.

Sprawdzenie obwodu hamowania

- Upewnij się, że można bezpiecznie wykonać kontrolę obwodu hamowania. Na przykład upewnij się, że na haku nie wisi ładunek.

- Upewnij się, że obwód hamowania działa zgodnie z oczekiwaniami oraz zgodnie z polecanym podanym przez domyślny interfejs sygnału sterującego hamulca (wyjście przekaźnikowe RO1):

 - Otworzyć tymczasowo hamulec, ustawiając dla parametru \textit{10.24 Źródło RO1} wartość \textit{Aktywne}. Sprawdzić, czy hamulec otworzył się.

 - Aby użyć domyślnego interfejsu sygnału sterowania hamulcem, ustawić dla parametru \textit{10.24 Źródło RO1} wartość \textit{Komenda hamowania}.

Ustawienia sygnału sterowania

- Wybierz źródła sygnału do sterowania startem i stopem.

 - 20.01 Komendy Zew1 = We1: st. w przód; We2: st. w tył

 - 20.02 Typ wyzw. startu Zew1 = Zbocze

 - 20.03 Źródło We1 Zew1 = DI1

 - 20.04 Źródło We2 Zew1 = DI2

- Wybierz źródło sygnału dla wartości zadanej prędkości 1.

 - 22.11 W. zad. pręd. 1 Zew1 = Skalowane AI1

 - 22.13 Funkcja pręd. Zew1 = Abs (w. zad. 1)

- Zdefiniować skale wejścia analogowego AI1.

 - 12.15 Wybór jednostki AI1 = V

 - 12.17 Min. AI1 = 0 V

 - 12.18 Maks. AI1 = 10 V

 - 12.19 AI1 skal. do min. AI1 = Wymagana maksymalna prędkość dla kierunku do tyłu

 - 12.20 AI1 skal. do maks. AI1 = Wymagana maksymalna prędkość dla kierunku do przodu
<table>
<thead>
<tr>
<th>Ustawić wymagane czasy rampy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.11 Wybór zestawu ramp</td>
</tr>
<tr>
<td>23.12 Czas przyspieszania 1</td>
</tr>
<tr>
<td>23.13 Czas zwalniania 1</td>
</tr>
<tr>
<td>23.14 Czas przyspieszania 2</td>
</tr>
<tr>
<td>23.15 Czas zwalniania 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ustawić limity prędkości.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.11 Min. prędkość = Taka sama wartość co w parametrze 12.19 Al1 skal. do min. Al1</td>
</tr>
<tr>
<td>30.12 Maks. prędkość = Taka sama wartość co w parametrze 12.20 Al1 skal. do maks. Al1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ustawienia sterowania hamulcem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upewnij się, że włączono logikę sterowania hamulcem.</td>
</tr>
<tr>
<td>44.06 Sterowanie hamulca wł. = Wybrano</td>
</tr>
<tr>
<td>10.24 Źródło RO1 = Komenda hamowania</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zdefiniować opóźnienia otwierania i zamykania hamulca.</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.08 Opóźnienie otw. hamulca = np. 1 s</td>
</tr>
<tr>
<td>44.13 Opóźnienie zamk. hamulca = np. 1 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wybrać źródło sygnału potwierdzenia hamowania.</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.07 Wybór potwierdz. hamowania = zgodnie z wymaganiami aplikacji (np. Bez potwierdzenia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W razie konfigurowania przemiennika dla wciągika ustaw parametry w poniższy sposób:</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.09 Źródło mom. otw. hamulca = Moment otwarcia hamulca</td>
</tr>
<tr>
<td>44.10 Moment otwarcia hamulca = 30% (jest to wartość funkcjonująca jako minimalna, gdy wybrano opcję Pamięć momentu hamowania)</td>
</tr>
<tr>
<td>44.202 Badanie momentu = Wybrano</td>
</tr>
<tr>
<td>44.203 W. zad. badania momentu = 25,0</td>
</tr>
<tr>
<td>44.204 Czas sprawdz. syst. ham. = 0,30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W razie konfigurowania przemiennika dla wózka lub dźwigu długoprzejazdowego ustawić parametry w poniższy sposób:</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.09 Źródło mom. otw. hamulca = Zero</td>
</tr>
<tr>
<td>44.10 Moment otwarcia hamulca = 0%</td>
</tr>
<tr>
<td>44.202 Badanie momentu = Nie wybrano</td>
</tr>
</tbody>
</table>

| Uwaga: Wartości te są również zalecane przy używaniu przemiennika wciągika w trybie sterowania skalarnego (99.04). |

<table>
<thead>
<tr>
<th>Bieg próbny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wykonać bieg próbny bez obciążenia.</td>
</tr>
</tbody>
</table>

| Upewnij się, że hamulec i obwody bezpieczeństwa działają. |

| Wykonać bieg próbny z prawdziwym obciążeniem. |
Przyłącza sterowania

Na schemacie przedstawiono połączenia dla konfiguracji z joystickiem opisanej na str. 564.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyfrowe połączenia we/wy</td>
<td></td>
</tr>
<tr>
<td>+24V</td>
<td>Napięcie pomocnicze +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa wejścia cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>DI2</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>DI3</td>
<td>Limit zatrzymania 1 (do przodu)</td>
</tr>
<tr>
<td>DI4</td>
<td>Limit zatrzymania 2 (do tyłu)</td>
</tr>
<tr>
<td>DIO1</td>
<td>Zwalnianie</td>
</tr>
<tr>
<td>DIO2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Masa we/wy cyfrowych</td>
</tr>
<tr>
<td>Analogowe we/wy</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Prędkość/częstotliwość (0...10 V)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygnalowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
<tr>
<td>Bezpieczne wyłączanie momentu (STO)</td>
<td></td>
</tr>
<tr>
<td>S+</td>
<td>Bezpieczne wyłączanie momentu (STO). Połączenie fabryczne. Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości. Stan z parametru 06.18 Słowo stanu przerw. startu (1 = STO aktywne, obwody otwarte).</td>
</tr>
<tr>
<td>SGND</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>Wyjście przekaźnikowe 1</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Polecenie hamowania</td>
</tr>
<tr>
<td>RA</td>
<td>(10.24 Źródło RO1 = Komenda hamowania)</td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>
Uwagi:
Rozmiary zacisków: 0,14 mm²…1,5 mm²
Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)
Zaciski DGND, AGND i SGND są podłączone wewnętrznie do tego samego potencjału wartości zadanej.

Sygnały wejściowe
• Start do przodu (DI1)
• Start do tyłu (DI2)
• Limit zatrzymania 1 (do przodu) (DI3)
• Limit zatrzymania 2 (do tyłu) (DI4)
• Zwalnianie (DIO1)

Sygnały wyjściowe
• Prędkość/częstotliwość (0…10 V) (AI1)
• Częstotliwość wyjściowa (0…20mA) (AO)
• Polecenie hamowania (RO1)
Sterowanie przez interfejs we/wy za pomocą krokoowego zadawania prędkości

W tej sekcji opisano, jak skonfigurować przemiennik do sterowania przez interfejs we/wy za pomocą logiki wartości zadanej kroku/kasety sterowniczej.

Bezpieczeństwo

OSTRZEŻENIE! Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.

Działania wstępne

- Upewnić się, że wykonano podstawową sekwencję rozruchową przemiennika. Patrz *Uruchamianie, bieg identyfikacyjny i obsługa* na stronie 25.
 - Upewnij się, że jako metodę sterowania silnikiem wybrano sterowanie wektorowe (99.04).
- Włączyć przemiennik częstotliwości i odczekać 10 sekund.
 - Ma to na celu zapewnienie, że wszystkie płyty są zasilane, a aplikacja działa.
- Przełączyć się na sterowanie lokalne

Sprawdzenie obwodu hamowania

- Upewnij się, że można bezpiecznie wykonać kontrolę obwodu hamowania. Na przykład upewnij się, że na haku nie wisi ładunek.
- Upewnij się, że obwód hamowania działa zgodnie z oczekiwaniom oraz zgodnie z poleceniem podanym przez domyślny interfejs sygnału sterującego hamulca (wyjście przekaźnikowe RO1):
 - Otworzyć tymczasowo hamulec, ustawiając dla parametru 10.24 Źródło RO1 wartość *Aktywne*. Sprawdzić, czy hamulec otworzył się.
 - Aby użyć domyślnego interfejsu sygnału sterowania hamulcem, ustawić dla parametru 10.24 Źródło RO1 wartość *Komenda hamowania*.

Ustawienia sygnału sterowania

- Wybrać źródła sygnału do sterowania startem i stopem.
 - 20.01 Komendy Zew1 = We1: st. w przód; We2: st. w tył
 - 20.02 Typ wyzw. startu Zew1 = Zbocze
 - 20.03 Źródło We1 Zew1 = DI1
 - 20.04 Źródło We2 Zew1 = DI2
- Zdefiniować logikę wartości zadanej kroku (4 kroki).
 - 22.21 Funkcja stałej prędkości = Ustawić bit kroku prędkości 2 = 1 (0b0100)
 - 22.22 Wybór stałej prędkości 1 = DI3
 - 22.23 Wybór stałej prędkości 2 = DI4
 - 22.24 Wybór stałej prędkości 3 = DIO1 (11.05 Konfiguracja DIO1 = Wejście)
 - 22.26 Prędkość stała 1 = 300,00
 - 22.27 Prędkość stała 2 = 600,00
 - 22.28 Prędkość stała 3 = 1000,00
 - 22.29 Prędkość stała 4 = 1500,00
Ustawić wymagane czasy rampy.

- **23.11 Wybór zestawu ramp**
- **23.12 Czas przyspieszania 1**
- **23.13 Czas zwalniania 1**
- **23.14 Czas przyspieszania 2**
- **23.15 Czas zwalniania 2**

Ustawić limity prędkości.

- **30.11 Min. prędkość** = Taka sama wartość co w parametrze 12.19 AI1 skal. do min. AI1
- **30.12 Maks. prędkość** = Taka sama wartość co w parametrze 12.20 AI1 skal. do maks. AI1

Ustawić limity momentu i prądu.

- **30.17 Maks. prąd** = Znamionowy prąd silnika [A]
- **30.19 Min. moment 1** = Znamionowy moment silnika (np. -100%).
- **30.20 Maks. moment 1** = Znamionowy moment silnika (np. 100%).

Uwaga: Po biegu próbnym należy ustawić powyższe limity zgodnie z wymaganiami aplikacji.

Ustawienia sterowania hamulcem

Upewnić się, że włączone logikę sterowania hamulcem.

- **44.06 Sterowanie hamulca wł. = Wybrano**
- **10.24 Źródło RO1 = Komenda hamowania**

Zdefiniować opóźnienia otwierania i zamykania hamulca.

- **44.08 Opóźnienie otw. hamulca** = np. 1 s
- **44.13 Opóźnienie zamk. hamulca** = np. 1 s

Wybrać źródło sygnału potwierdzenia hamowania.

- **44.07 Wybór potwierdz. hamowania** = zgodnie z wymaganiami aplikacji (np. **Bez potwierdzienia**)

W razie konfigurowania przemiennika dla wcięgnika ustawić parametry w poniższy sposób:

- **44.09 Źródło mom. otw. hamulca = Moment otwarcia hamulca**
- **44.10 Moment otwarcia hamulca** = 30% (jest to wartość funkcjonująca jako minimalna, gdy wybrano opcję **Pamięć momentu hamowania**)
- **44.202 Badanie momentu = Wybrano**
- **44.203 W. zad. badania momentu** = 25,0
- **44.204 Czas sprawdz. sys. ham.** = 0,30

W razie konfigurowania przemiennika dla wózka lub dźwigu długoprzejazdowego ustawić parametry w poniższy sposób:

- **44.09 Źródło mom. otw. hamulca = Zero**
- **44.10 Moment otwarcia hamulca** = 0%
- **44.202 Badanie momentu = Nie wybrano**

Uwaga: Wartości te są również zalecane przy używaniu przemiennika wcięgnika w trybie sterowania skalarnego (99.04).

Bieg próbny

- **Wykonać bieg próbny bez obciążenia.**
- **Upewnić się, że hamulec i obwody bezpieczeństwa działają.**
- **Wykonać bieg próbny z prawdziwym obciążeniem.**
Przyłącza sterowania

Na schemacie przedstawiono połączenia dla konfiguracji wartości zadanej kroku opisanej na str. 612.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyfrowe połączenia we/wy</td>
<td></td>
</tr>
<tr>
<td>+24V</td>
<td>Napięcie pomocnicze +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocnicznego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa wejścia cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Start do przodu (szeregowe z limitem zatrzymania 1)</td>
</tr>
<tr>
<td>DI2</td>
<td>Start do tyłu (szeregowe z limitem zatrzymania 2)</td>
</tr>
<tr>
<td>DI3</td>
<td>Krok prędkości wyb 2</td>
</tr>
<tr>
<td>DI4</td>
<td>Krok prędkości wyb 3</td>
</tr>
<tr>
<td>DIO1</td>
<td>Krok prędkości wyb 4</td>
</tr>
<tr>
<td>DIO2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Masa we/wy cyfrowych</td>
</tr>
<tr>
<td>Analogowe we/wy</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Prędkość/częstotliwość (0...10 V)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygnałowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
<tr>
<td>Bezpieczne wyłączanie momentu (STO)</td>
<td></td>
</tr>
<tr>
<td>S+</td>
<td>Bezpieczne wyłączanie momentu (STO). Połączenie fabryczne. Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości. Stan z parametrów 06.18 Słowo stanu przerw. startu (1 = STO aktywne, obwody otwarte), 20.212 Potwierdz. włączenia zasilania i 20.12 Źródło zezwolenia na bieg 1.</td>
</tr>
<tr>
<td>SGND</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>Wyjście przekaźnikowe 1</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Polecenie hamowania</td>
</tr>
<tr>
<td>RA</td>
<td>(10.24 Źródło RO1 = Komenda hamowania)</td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>
Uwagi:

Rozmiary zacisków: 0,14 mm²…1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND, AGND i SGND są podłączone wewnętrznie do tego samego potencjału wartości zadanej.

Sygnały wejściowe

- Start do przodu (szeregowe z limitem zatrzymania 1) (DI1)
- Start do tyłu (szeregowe z limitem zatrzymania 2) (DI2)
- Krok prędkości wyb 2 (DI3)
- Krok prędkości wyb 3 (DI4)
- Krok prędkości wyb 4 (DIO1)

Sygnały wyjściowe

- Prędkość/częstotliwość (0...10 V) (AI1)
- Częstotliwość wyjściowa (0...20 mA) (AO)
- Polecenie hamowania (RO1)
Sterowanie przez interfejs magistrali komunikacyjnej za pomocą słowa sterowania

W tej sekcji opisano, jak skonfigurować przemiennik częstotliwości do sterowania przez interfejs magistrali komunikacyjnej za pomocą słowa sterowania magistrali komunikacyjnej.

Bezpieczeństwo

OSTRZEŻENIE! Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.

Działania wstępne

- Upewnij się, że wykonano podstawową sekwencję rozruchową przemiennika. Patrz Uruchamianie, bieg identyfikacyjny i obsługa na stronie 25.
- **Uwaga:** Przy wykonywaniu procedury rozruchu upewnij się, że jako metodę sterowania silnikiem wybrano sterowanie wektorowe (99.04).
- Włączyć przemiennik częstotliwości i odczekać 10 sekund.
- Ma to na celu zapewnienie, że wszystkie płyty są zasilane, a aplikacja działa.
- Przełączyć się na sterowanie lokalne

Sprawdzenie obwodu hamowania

- Upewnij się, że można bezpiecznie wykonać kontrolę obwodu hamowania. Na przykład upewnij się, że na haku nie wisi ładunek.
- Upewnij się, że obwód hamowania działa zgodnie z oczekiwaniom oraz zgodnie z poleceniem podanym przez domyślny interfejs sygnału sterującego hamulca (wyjście przekaźnikowe RO1):
 - Otworzyć tymczasowo hamulec, ustawiając dla parametru 10.24 Źródło RO1 wartość Aktywne. Sprawdzić, czy hamulec otworzył się.
 - Aby użyć domyślnego interfejsu sygnału sterowania hamulcem, ustawić dla parametru 10.24 Źródło RO1 wartość Komenda hamowania.

Podstawowe ustawienia adaptera komunikacyjnego

- Patrz rozdział Automatyczna konfiguracja przemiennika częstotliwości pod kątem sterowania magistralą na str. 540.

Ustawienia sygnału sterowania

- Wybierz źródło sygnału do sterowania startem i stopem.
 - 20.01 Komendy Zew1 = Magistrala komunikacyjna A
 - 20.02 Typ wyzw. startu Zew1 = Poziom
- Wybierz źródło sygnału dla wartości zadanej prędkości 1.
 - 22.11 W. zad. pręd. 1 Zew1 = W. zad. 1 mag. kom. A
Ustawienia sterowania hamulcem

- **Upewnij się, że włączone logiki sterowania hamulcem.**

 44.06 Sterowanie hamulca wł. = Wybrano

 10.24 Źródło RO1 = Komenda hamowania

- **Zdefiniować opóźnienia otwierania i zamykania hamulca.**

 44.08 Opóźnienie otw. hamulca = np. 1 s

 44.13 Opóźnienie zamk. hamulca = np. 1 s

- **Wybrać źródło sygnału potwierdzenia hamowania.**

 44.07 Wybór potwierdz. hamowania = zgodnie z wymaganiami aplikacji (np. DI3 lub Bez potwierdzenia)

W razie konfigurowania przemiennika dla wciągnika ustawić parametry w poniższy sposób:

- **44.09 Źródło mom. otw. hamulca = Moment otwarcia hamulca**
- **44.10 Moment otwarcia hamulca = 30%** (jest to wartość funkcjonująca jako minimalna, gdy wybrano opcję Pamięć momentu hamowania)
- **44.202 Badanie momentu = Wybrano**
- **44.203 W. zad. badania momentu = 25,0**
- **44.204 Czas sprawdz. syst. ham. = 0,30**

W razie konfigurowania przemiennika dla wózka lub dźwigu długoprzejazdowego ustawić parametry w poniższy sposób:

- **44.09 Źródło mom. otw. hamulca = Zero**
- **44.10 Moment otwarcia hamulca = 0%**
- **44.202 Badanie momentu = Nie wybrano**

Uwaga: Wartości te są również zalecane przy użyciu przemiennika wciągnika w trybie sterowania skalarnego (99.04).

Bieg próbny

- **Wykonać bieg próbny z pustym hakiem.**

- **Upewnij się, że hamulec i obwody bezpieczeństwa działają.**

- **Wykonać bieg próbny z prawdziwym obciążeniem.**
Połączenie sterujące przy konfiguracji sterowania przez magistralę komunikacyjną

Na schemacie przedstawiono połączenia sterowania dla konfiguracji słowa sterowania magistrali komunikacyjnej opisanej na str. 572.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyfrowe połączenia we/wy</td>
<td></td>
</tr>
<tr>
<td>+24V</td>
<td>Napięcie pomocnicze +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa wejść cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Resetowanie błędu</td>
</tr>
<tr>
<td>DI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>Analogowe we/wy</td>
<td></td>
</tr>
<tr>
<td>Bezpieczne wyłączanie momentu (STO)</td>
<td></td>
</tr>
<tr>
<td>SGND</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>Wyjście przekaźnikowe 1</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Polecenie hamowania (10.24 Źródło RO1 = Komenda hamowania)</td>
</tr>
<tr>
<td>RA</td>
<td>Połączenia modułu magistrali komunikacyjnej</td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DSUB9</td>
<td>CANopen</td>
</tr>
<tr>
<td>DSUB9</td>
<td>Profibus DP</td>
</tr>
<tr>
<td>RJ45 X 2</td>
<td>EtherCAT</td>
</tr>
<tr>
<td>RJ45 X 2</td>
<td>Ethernet IP</td>
</tr>
<tr>
<td>RJ45 X 2</td>
<td>Profinet</td>
</tr>
<tr>
<td>RJ45 X 2</td>
<td>Modbus TCP</td>
</tr>
<tr>
<td>Blok zacisków</td>
<td>CANopen</td>
</tr>
</tbody>
</table>

Uwagi:

Rozmiary zacisków: 0,14 mm²…1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)
Zaciski DGND, AGND i SGND są podłączone wewnętrznie do tego samego potencjału wartości zadanej.

Sygnały wejściowe
- Resetowanie błędu (DI1)
- Słowa sterowania i słowa wartości zadanej z modułu adaptera komunikacyjnego

Sygnały wyjściowe
- Słowa i sygnały stanu z modułu adaptera komunikacyjnego
- Polecenie hamowania (RO1)

Konfigurowanie sprzężenia zwrotnego od prędkości za pomocą enkodera impulsowego HTL/TTL

Sprzężenie zwrotne od prędkości można skonfigurować za pomocą modułu interfejsu enkodera impulsowego BTAC (opcja +L535). Pozwala to dodać cyfrowy interfejs enkodera impulsowego do przemiennika i uzyskiwać precyzyjne informacje o prędkości lub położeniu (kącie) wału silnika.

Poniższy rysunek przedstawia przemiennik częstotliwości ACS380 z modułem BTAC.

Informacje dotyczące instalacji mechanicznej i elektrycznej można znaleźć w instrukcji obsługi przemiennika.

Bezpieczeństwo

OSTRZEŻENIE! Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.
Ustawienia parametrów

- **Ustawić** zasilanie modułu BTAC i przemiennika częstotliwości (w przypadku zasilania zewnętrznego).

- **Ustawić** wybór sprzężenia zwrotnego.
 - 90.41 Wybór spr. zwr. od silnika = Enkoder 1
 - 90.45 Błąd sprz. zwr. od silnika = Błąd

- **Ustawić** liczbę impulsów zgodnie z tabliczką znamionową enkodera (92.10 Impulsy/obr.).

- **Ustawić** parametr 91.10 Odśwież. param. enkodera na wartość Odśwież, aby zapisać nowe ustawienia parametru. Po wprowadzeniu nowych ustawień parametr automatycznie zmieni wartość na Gotowe. Należy to wykonać po każdej zmianie parametrów enkodera.

Bieg próbny

- **Tymczasowo ustawić** parametr 90.41 na wartość Oszacowanie. Wykonać bieg próbny. Obserwować sprzężenie zwrotne enkodera dla sygnału 90.10 Prędkość enkodera 1 i porównać je z parametrem 01.02 Szacowana prędkość silnika. Jeśli różnica między wartościami nie jest wysoka, ustawić parametr 90.41 90.41 na wartość Enkoder 1.
Konfigurowanie zwalniania za pomocą dwóch limitów i logiki krańcowej

Wejścia limitu zwalniania

<table>
<thead>
<tr>
<th>Bezpieczeństwo</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTRZEŻENIE! Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ustawienia parametrów</th>
</tr>
</thead>
<tbody>
<tr>
<td>Włączyć sterowanie limitem.</td>
</tr>
<tr>
<td>76.02 Włącz sterow. krańc. = Wybrano</td>
</tr>
<tr>
<td>Ustawić typ wyzwalania dla sygnałów.</td>
</tr>
<tr>
<td>76.03 Tryb sterowania krańc. = Niski poziom</td>
</tr>
<tr>
<td>Wybrać wejścia zwalniania.</td>
</tr>
<tr>
<td>76.05 Limit zwalniania do przodu</td>
</tr>
<tr>
<td>76.07 Limit zwalniania do tyłu</td>
</tr>
<tr>
<td>Wybrać jeden sygnał przychodzącą w obu kierunkach, dwa wejścia lub jedno wejście dla każdego kierunku. Patrz sekcja Funkcja zwalniania dźwigu, str. 598.</td>
</tr>
<tr>
<td>Wybrać prędkość lub częstotliwość zwalniania zgodnie z wybraną wartością zadaną.</td>
</tr>
<tr>
<td>76.08 Prędkość zwalniania</td>
</tr>
<tr>
<td>lub</td>
</tr>
<tr>
<td>76.09 Częstotliwość zwalniania</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bieg próbny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Przed końcowym biegiem próbnym sprawdzić podłączone wejścia i wyjścia w trybie sterowania lokalnego.</td>
</tr>
<tr>
<td>Uwaga: Jeśli używane jest wejście/wyjście cyfrowe (DIO1 lub DIO2), ustawić poprawną konfigurację.</td>
</tr>
<tr>
<td>11.05 Konfiguracja DIO1 = Wejście</td>
</tr>
<tr>
<td>lub</td>
</tr>
<tr>
<td>11.09 Funkcja DIO2 = Wejście</td>
</tr>
</tbody>
</table>

Limit zatrzymania

<table>
<thead>
<tr>
<th>Bezpieczeństwo</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTRZEŻENIE! Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłącznie wykwalifikowani elektrycy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ustawienia parametrów</th>
</tr>
</thead>
<tbody>
<tr>
<td>Włączyć sterowanie limitem.</td>
</tr>
<tr>
<td>76.02 Włącz sterow. krańc. = Wybrano</td>
</tr>
<tr>
<td>Ustawic typ wyzwalania tak, aby sygnały były równe.</td>
</tr>
</tbody>
</table>
| Wybiera wejścia limitu zatrzymania. | 76.04 Limit zatrzymania do przodu
76.06 Limit zatrzymania do tyłu |
| Wybiera tryb rampy zatrzymania. | 76.11 Tryb zatrzymania limitu |
| Jeśli parametr 76.11 Tryb zatrzymania limitu ma wartość Tryb zatrzym. wg limitu rampy, wpisać wymagany czas rampy do zatrzymania. | 76.12 Czas rampy zatrzymania limitu = np. 0,500 s |

Bieg próbny

| Przed końcowym biegiem próbnym sprawdzić podłączone wejścia i wyjścia w trybie sterowania lokalnego. **Uwaga:** Zamiast logiki limitu zatrzymania można połączyć przełączniki szeregowo z poleceniami startu. |
Schemat połączenia sterowania

Na poniższym schemacie przedstawiono przykład połączenia sterowania dla funkcji limitu zwalniania i limitu zatrzymania zgodnie z opisem na str. 577.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaciski</td>
<td></td>
</tr>
<tr>
<td>+24V</td>
<td>Napięcie pomocnicze +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa wejścia cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>DI2</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>DI3</td>
<td>Limit zatrzymania 1 (do przodu)</td>
</tr>
<tr>
<td>DI4</td>
<td>Limit zatrzymania 2 (do tyłu)</td>
</tr>
<tr>
<td>DIO1</td>
<td>Zwalnianie</td>
</tr>
<tr>
<td>DIO2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Masa we/wy cyfrowych</td>
</tr>
<tr>
<td>Opis</td>
<td></td>
</tr>
<tr>
<td>Zaciski</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Prędkość/częstotliwość (0...10 V)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygnałowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
<tr>
<td>Opis</td>
<td></td>
</tr>
<tr>
<td>Zaciski</td>
<td></td>
</tr>
<tr>
<td>S+</td>
<td>Bezpieczne wyłączanie momentu (STO).</td>
</tr>
<tr>
<td>SGND</td>
<td>Bezpieczne wyłączanie momentu (STO).</td>
</tr>
<tr>
<td>S1</td>
<td>Bezpieczne wyłączanie momentu (STO).</td>
</tr>
<tr>
<td>S2</td>
<td>Połączenie fabryczne. Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości.</td>
</tr>
<tr>
<td>Opis</td>
<td></td>
</tr>
<tr>
<td>Zaciski</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Polecenie hamowania</td>
</tr>
<tr>
<td>RA</td>
<td>(10.24 Źródło RO1 = Komenda hamowania)</td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>
Uwagi:

Rozmiary zacisków: 0,14 mm²…1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND, AGND i SGND są podłączone wewnątrznie do tego samego potencjału wartości zadanej.

Sygnały wejściowe

• Start do przodu (DI1)
• Start do tyłu (DI2)
• Limit zatrzymania 1 (do przodu) (DI3)
• Limit zatrzymania 2 (do tyłu) (DI4)
• Zwalnianie (DIO1)

Sygnały wyjściowe

• Prędkość/częstotliwość (0…10 V) (AI1)
• Częstotliwość wyjściowa (0…20 mA) (AO)
• Polecenie hamowania (RO1)
Konfigurowanie sterowania hamulcem mechanicznym

Bezpieczeństwo

- **OSTRZEŻENIE!** Należy przestrzegać wszystkich instrukcji bezpieczeństwa przemiennika częstotliwości. Do uruchomienia przemiennika częstotliwości uprawnieni są wyłączne wykwalifikowani elektrycy.

Ustawienia parametrów

- Aktywować logikę sterowania hamulcem. 44.06 Sterowanie hamulca wł. = Wybrano
- Wybrać źródło sygnału potwierdzenia hamowania. 44.07 Wybór potwierdzenia hamowania = zgodnie z wymaganiami aplikacji (np. DI3 lub Bez potwierdzenia)
- Zdefiniować opóźnienia otwierania i zamykania hamulca. 44.08 Opóźnienie otw. hamulca = np. 1 s 44.13 Opóźnienie zamk. hamulca = np. 1 s
 - **Uwagi:**
 - Czas opóźnienia zamykania może być większy niż czas opóźnienia mechanicznego określony przez producenta hamulca mechanicznego.
 - Dłuższy czas opóźnienia może powodować niewielkie cofanie, a krótki — zużycie klocków hamulcowych.
- Wybrać źródło momentu otwierania hamulca. Najpierw wybrać następujące parametry: 44.09 Źródło mom. otw. hamulca = Moment otwarcia hamulca 44.10 Moment otwarcia hamulca = 30%
 - **Uwagi:**
 - Moment otwierania hamulca dotyczy tylko wciągarek. Nie jest konieczne używanie go przy wózkach i dźwigach długoprzejazdowych. Przy wózkach i dźwigach długoprzejazdowych należy w obu parametrach ustawić wartość 0%.
 - Do skalarnego sterowania silnikiem lub przy ruchach wózka i długich przejazdach należy wyłączyć funkcje Badanie momentu oraz Moment otwarcia hamulca. Wybrać następujące opcje:
 - 44.09 Źródło mom. otw. hamulca = Zero 44.10 Moment otwarcia hamulca = 0% 44.202 Badanie momentu = Nie wybrano 44.203 W. zad. badania momentu = 0%
- Ustawić poziom zamknięcia hamulca. 44.14 Poziom zamk. hamulca = 30 obr./min lub 60 obr./min.
 - Gdy używany jest enkoder, należy ustawić wartość 10–30 obr./min. W przeciwnym razie należy ustawić wartość 60 obr./min.
- Jako działanie błędu hamulca ustawić błąd. 44.17 Funkcja błędu hamulca = Błąd
- W przemiennikach dla wciągarka ustawić parametry w poniższy sposób: 44.202 Badanie momentu = Wybrano 44.203 W. zad. badania momentu = 30%
| ☐ Ustawić wydłużony czas pracy, aby utrzymać modulację przez przemiennik po zamknięciu hamulca. Namagnesuje to przemiennik częstotliwości przed następnym uruchomieniem i umożliwi szybszą reakcję na polecenia sterujące. **44.211 Rozszerzony czas pracy** |
| ☐ Jeśli w systemie nie ma enkodera impulsowego, aktywować funkcję bezpiecznego zamknięcia hamulca za pomocą parametru **44.207 Wybór bezp. zamykania**. |

Bieg próbny

| ☐ Dostosować parametry sterowania hamulcem podczas końcowego biegu oraz podczas monitorowania rzeczywistych wartości prędkości i momentu. Pomoże to uzyskać możliwie szybka reakcję na polecenia sterujące bez szarpnięć lub zmniejszania rzeczywistej prędkości podczas otwierania lub zamykania hamulca. |
Sterowanie hamulcem mechanicznym dźwigu

Oprócz istniejącej funkcji sterowania hamulcem mechanicznym (patrz str. 86) funkcja sterowania hamulcem mechanicznym dźwigu obejmuje kontrolę układu hamulcowego (patrz str. 584) i funkcje wydłużonego czasu pracy (patrz str. 589).

Na schemacie Schemat czasowy sterowania hamulcem dźwigu poniżej przedstawiono sekwencję zamknięcia-otwarcie-zamknięcia oraz zilustrowano działanie funkcji sterowania hamulcem dźwigu.

Schemat czasowy sterowania hamulcem dźwigu

<table>
<thead>
<tr>
<th>Polecenie startu (06.16 b5)</th>
<th>Modulowanie (06.16 b6)</th>
<th>Zgodnie z wartością zadaną (06.16 b4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość zadana momentu</td>
<td>Wartość zadana prędkości</td>
<td></td>
</tr>
<tr>
<td>Sygnał sterujący hamulcem (44.01 b0)</td>
<td>Żądanie momentu otwierającego (44.01 b1)</td>
<td></td>
</tr>
<tr>
<td>Żądanie zatrzymania (44.01 b2)</td>
<td>Żądanie zwalniania zgodnie z rampą aż do całkowitego zatrzymania (44.01 b3)</td>
<td></td>
</tr>
<tr>
<td>Zbadano moment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T_{pv} Wartość zadana badania momentu (parametr 44.203 W. zad. badania momentu)

T_s Moment początkowy podczas otwierania hamulca (parametr 44.03 Wart.zad.mom. dla otw.ham.)

T_{mem} Zapisana wartość momentu podczas zamykania hamulca (parametr 44.02 Pamięć momentu ham.)

t_{md} Opóźnienie magnesowania silnika

t_{od} Opóźnienie otwarcia hamulca (parametr 44.08 Opóżnienie otw. hamulca)

n_{cs} Prędkość zamknięcia hamulca (parametr 44.14 Poziom zamk. hamulca)

t_{ccd} Opóźnienie komendy zamknięcia hamulca (parametr 44.15 Poz. opóźn. zamk. hamulca)

t_{cd} Opóźnienie zamknięcia hamulca (parametr 44.13 Opóźnienie zamk. hamulca)

t_{ctdf} Opóźnienie błędu zamknięcia hamulca (parametr 44.18 Opóźnienie błędu hamulca)

t_{od} Opóźnienie ponownego otwarcia hamulca (parametr 44.16 Opóž. ponownego otw. ham.)

t_{bscd} Czas kontroli układu hamulcowego (parametr 44.204 Czas sprawdz. syst. ham.)

t_{extm} Przedłużony czas pracy (parametr 44.211 Rozszerzony czas pracy)
Uwaga: W przypadku jakiejkolwiek usterki hamulec zamyka się natychmiast. Domyślnie sterowanie hamulcem wykorzystuje wyjście przekaźnikowe RO1.

Kontrole układu hamulcowego — przegląd

Kontrole układu hamulcowego obejmują testy elektryczne i mechaniczne.

- Test elektryczny pozwala sprawdzić, czy przemiennik może wytworzyć moment przed zwolnieniem hamulca i uruchomieniem dźwigu. Oznacza to sprawdzenie, czy komponenty elektryczne, takie jak przemiennik częstotliwości, kabel silnika i sam silnik, są gotowe do pracy.
- Test mechaniczny pozwala sprawdzić, czy hamulec silnika nie ślizga się.

Oba testy są wykonywane równolegle (w tym samym czasie) na etapie kontroli (44.204). Jeśli w czasie kontroli oba testy zostaną przeprowadzone pomyślnie, przemiennik częstotliwości otworzy hamulec i rozpoczną się ruch wyciągu dźwigu.

Szczegółowe informacje na temat testów podano w sekcjach:

- **Kontrole układu hamulcowego — badanie momentu** na str. 586
- **Kontrole układu hamulcowego — poślizg hamulca** na str. 587.

Uwaga: Do skalarnego sterowania silnikiem lub przy ruchach wózka i długich przejazdach należy wyłączyć funkcje Badanie momentu oraz Moment otwarcia hamulca. Wybrać następujące opcje:

- **44.09 Źródło mom. otw. hamulca** = Zero
- **44.10 Moment otwarcia hamulca** = 0%
- **44.202 Badanie momentu** = Nie wybrano
Ten schemat pokazuje sekwencję sprawdzania układu hamulcowego.

1. Włączyć sterowanie hamulcem (44.01 bit 0)
2. Włączyć badanie momentu (44.202 = Wybrano)
3. Włączono polecenie startu i silnik pracuje
4. Upłynął czas magnesowania DC (21.02)
5. Uruchomiono czas kontroli układu hamulcowego (44.204)
6. Wartość zadana momentu = Wartość zadana badania momentu (44.203)
7. Moment silnika (01.10) > Wartość zadana sprawdzania momentu (44.203)
 * Tak: Upłynął czas kontroli układu hamulcowego (44.204)
 * Nie: D100 Badanie momentu
8. Prędkość silnika > Limit prędkości poślizgu hamulca (44.205)
 * Tak: Upłynęło opóźnienie błędu poślizgu hamulca (44.206)
 * Nie: D101 Poślizg przy hamowaniu
9. Upłynął czas kontroli układu hamulcowego (44.204)
 * Tak: D100 Badanie momentu
 * Nie: Badanie momentu OK
10. Upłynął czas kontroli układu hamulcowego (44.204)
 * Tak: Poślizg hamulca OK
 * Nie: Badanie momentu OK Poślizg hamulca OK
11. Polecenie otwarcia hamulca
Schemat czasowy

Ten schemat czasowy pokazuje działanie funkcji badania momentu obrotowego i kontroli układu hamulcowego.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Czas kontroli układu hamulcowego (44.204)</td>
</tr>
<tr>
<td>b</td>
<td>Opóźnienie błędu poślizgu hamulca (44.206)</td>
</tr>
</tbody>
</table>

*Wartość zadana badania momentu jest przechowywana przez czas kontroli układu hamulcowego, nawet jeśli zbadano już moment.

Kontrole układu hamulcowego — badanie momentu

Badanie momentu pozwala sprawdzić, czy przemiennik częstotliwości może wytworzyć moment przed zwolnieniem hamulca i uruchomieniem dźwigu. Funkcja jest przeznaczona głównie dla dźwigów wyciągowych, ale można ją również aktywować w dźwignach sterujących innymi ruchami, jeśli tylko przemiennik wykorzystują sprzężenie zwrotne od enkodera.

Badanie momentu generuje dodatnią lub ujemną wartość zadanej momentu względem zamkniętego hamulca mechanicznego. Jeśli badanie momentu zakończy się powodzeniem, innymi słowy jeśli rzeczywisty moment przemiennika częstotliwości osiągnie poziom wartości zadanej (44.203), przemiennik umożliwi otwarcie hamulca i realizację następnego kroku w sekwencji początkowej.
Opóźnienie czasowe (44.204) definiuje czas, podczas którego wartość zadana momentu (44.203) jest aktywna i realizowane są testy elektryczne i mechaniczne dźwigu. Nieudane badanie momentu powoduje awaryjne wyłączenie przemiennika częstotliwości (D100).

Patrz także Schemat czasowy na str. 586.

Ustawienia

Parametry: 44.202 Badanie momentu, 44.203 W. zad. badania momentu, 44.204 Czas sprawdz. syst. ham.

Sygnały: 09.01 SW1 dźwigu, 09.03 FW1 dźwigu

Ostrzeżenia: -

Błędy: D100 Badanie momentu

- **Kontrole układu hamulcowego — poślizg hamulca**

Funkcja poślizgu hamulca bada cały system pod kątem zachodzenia poślizgu hamulca, gdy program sterujący wykonuje badanie momentu obrotowego przy zamkniętym hamulcu. Jeśli rzeczywista prędkość silnika przekroczy limit prędkości (44.205) podczas kontroli (44.204) i pozostanie w przekroczeniu przez czas dłuższy od czasu opóźnienia (44.206), przemiennik zostanie awaryjnie wyłączony (D101).

Patrz Schemat czasowy na str. 586.

Uwaga: Do skalarnego sterowania silnikiem lub przy ruchach wózka i długich przejazdach należy wyłączyć funkcje Badanie momentu oraz Moment otwarcia hamulca. Wybierz następujące opcje:

- 44.09 Źródło mom. otw. hamulca = Zero
- 44.10 Moment otwarcia hamulca = 0%
- 44.202 Badanie momentu = Nie wybrano

Ustawienia

Parametry: 44.204 Czas sprawdz. syst. ham., 44.205 Limit prędk. poślizgu ham., 44.206 Opóźn. błędu poślizgu ham.

Sygnały: 09.03 FW1 dźwigu

Ostrzeżenia: -

Błędy: D101 Poślizg przy hamowaniu
Bezpieczne zamknięcie hamulca

Funkcja bezpiecznego zamykania hamulca realizuje wymuszone zamknięcie hamulca i uniemożliwia użytkownikowi końcowemu obsługę przemiennika przy bardzo niskich prędkościach. Zalecamy tę funkcję szczególnie w przemiennikach wciągnikowych, które z jakiegoś powodu nie mają enkodera impulsowego. (Ze względów bezpieczeństwa w przemiennikach wciągnikowych bardzo zalecane jest urządzenie z funkcją sprzężenia zwrotnego od prędkości).

Funkcja bezpiecznego zamknięcia hamulca monitoruje oszacowanie prędkości silnika przy uruchomionym przemienniku częstotliwości. Gdy zarówno szacowana prędkość silnika (01.01), jak i rampa oraz kształt wartości zadanej prędkości (23.02) są poniżej limitu prędkości zdefiniowanego przez użytkownika (44.208) dłuższych niż opóźnienie zdefiniowane przez użytkownika (44.209), przemiennik częstotliwości zostanie wyłączony awaryjnie (D102), a hamulec silnika zostanie zamknięty.

Schemat czasowy

Ten schemat pokazuje działanie błędu *Bezpieczne zamknięcie hamulca*.

Ustawienia

Parametry: 44.207 Wybór bezp. zamykania, 44.208 Prędkość bezp. zamykania, 44.209 Opóźnienie bezp. zamykania

Sygnały: 09.03 FW1 dźwigu

Ostrzeżenia: -

Błędy: D102 Bezpieczne zamknięcie hamulca
Rozszerzony czas pracy

Funkcja Rozszerzony czas pracy minimalizuje opóźnienie między kolejnymi poleceniами startu. Po zamknięciu hamulca oraz upłynie czasu opóźnienia zamknięcia hamulca funkcja rozszerzonego czasu pracy utrzymuje silnik w stanie namagnesowania przez określony czas. Podczas opóźnienia silnik pozostaje namagnesowany (jest modulowany) po to, aby był gotowy do natychmiastowego restartu. Dzięki temu następny start może być znacznie szybszy, jako że może pominać pewne kroki sekwencji rozruchu, takie jak namagnesowanie (str. 78) i badanie momentu (str 586).

Funkcja aktywuje się po ustawieniu następujących parametrów:

- 44.06 Sterowanie hamulca wł. = Wybrano
- 44.211 Rozszerzony czas pracy > 0.
- 44.212 SW rozszer. czasu pracy (bit 0) = 1. Po zamknięciu hamulca przemiennik jest modulowany przez czas określony w parametrze 44.211 Rozszerzony czas pracy.

Jeżeli przemiennik wyłączy się awaryjnie podczas rozszerzonego czasu pracy, licznik czasu funkcji zostanie zresetowany.

Działanie funkcji Rozszerzony czas pracy przedstawiono w sekcji Schemat czasowy sterowania hamulcem dźwigu (na str. 583).

Uwagi:

- Funkcja wydłużonego czasu pracy jest dostępna tylko w trybie sterowania wektorowego (patrz strona 56), gdy przemiennik działa w trybie zdalnym, a parametr 21.03 Tryb zatrzymania ma wartość Rampa.
- Jeśli w tym samym czasie zostanie włączona funkcja dodatkowego magnetyzowania, zostanie ona zrealizowana w pierwszej kolejności. Po upływie jej czasu pracy rozszerzony czas pracy — jeśli jest dłuższy od czasu dodatkowego magnetyzowania — powinien zostać załączony na pozostały skonfigurowany czas.

OSTRZEŻENIE: Należy sprawdzić, czy silnik zaprojektowano tak, aby pochłaniał lub rozpraszał energię cieplną generowaną podczas ciągłego magnetyzowania, na przykład za pomocą wymuszonej wentylacji.

Ustawienia

Parametry: 44.211 Rozszerzony czas pracy

Sygnały: 44.01 Stan sterowania hamulcem, 44.212 SW rozszerz. czasu pracy

Ostrzeżenia: -

Błędy: -
Dopasowanie prędkości

Funkcja dopasowywania prędkości porównuje na bieżąco wartość zadaną prędkości dźwigu z rzeczywistą prędkością silnika, aby wykryć ewentualne różnice. Za pomocą tej funkcji można upewnić się, że po zatrzymaniu, przy przyspieszaniu lub zwalnianiu oraz przy pracy ze stałą prędkością silnik pracuje z prędkością zadaną. Pozwala to również zapewnić, że hamulec nie poślizgnie się, gdy przemiennik częstotliwości zatrzyma się przy zamkniętym hamulcu.

Funkcja ma dwa poziomy odchylen:
• do sprawdzania odchylenia prędkości podczas fazy rampy, czyli przyspieszenia i hamowania (76.33) oraz
• do sprawdzania odchylenia prędkości podczas stałej prędkości (76.32).

Przemiennik jest wyłączany awaryjnie z powodu błędu (D105) gdy przemiennik pracuje oraz
• silnik pracuje w ustalonym stanie, a różnica między rzeczywistą prędkością silnika (90.01) a rampą i kształtem prędkości zadanej (24.01) jest większa niż poziom odchylenia stanu ustalonego przez czas dłuższy niż wartość opóźnienia (76.34) lub
• silnik przyspiesza lub zwalnia, a różnica między rzeczywistą prędkością silnika (90.01) a rampą i kształtem prędkości zadanej (24.01) jest większa niż poziom odchylenia stanu ustalonego przez czas dłuższy niż wartość opóźnienia (76.34).

Przemiennik częstotliwości wygeneruje ostrzeżenie (D200), gdy przemiennik zatrzyma się,
• a różnica między rzeczywistą prędkością silnika (90.01) prędkością zadaną jest większa niż poziom odchylenia stanu ustalonego przez czas dłuższy niż wartość opóźnienia (76.34)
 i
• sterowanie hamulcem jest aktywne, a hamulec jest zamknięty.
Schematy czasowe

Ten schemat pokazuje działanie błędu **Dopasow. prędkości**.

Prędkość (obr./min)

76.32 (+30 obr./min)
76.33 (+50 obr./min)
76.34

Prędkość (obr./min)

76.32 (+30 obr./min)

Poślizg ham. w tr. Statyczny 2

Ponieważ przemiennik częstotliwości jest zatrzymany, rampa i ukształtowana prędkość zadana (24.01) mają wartość zero.
Ustawienia
Parametry: 76.31 Dopasowanie prędk. silnika
Sygnały: 09.01 SW1 dźwigu, 09.03 FW1 dźwigu
Ostrzeżenia: D200 Poślizg ham. w tr. Statyczny 2
Błędy: D105 Dopasow. prędkości

Maskowanie ostrzeżeń dźwigu

Funkcja maskująca ostrzeżenie dźwigu maskuje predefiniowane ostrzeżenia dotyczące sterowania dźwigiem. Zamaskowane ostrzeżenia nie pojawiają się w rejestratorze zdarzeń ani w panelu sterowania

Parametr: 31.205 Maskowanie ostrz. dźwigu
Sygnały: 09.01 SW1 dźwigu
Ostrzeżenia: -
Błędy: -

Funkcja strefy nieczułości

Dokładność analogowego sygnału wejściowego w pobliżu zera jest niska. Za pomocą funkcji strefy nieczułości można zablokować wartość zadaną prędkości dla określonego obszaru pasma (tj. strefy nieczułości) lub zignorować niską wartość zadaną prędkości spowodowaną możliwymi drgami joysticka od dźwigu.

Funkcja przeskalowuje sygnał analogowy w oparciu o ustawienia strefy nieczułości, a następnie oblicza nową wartość zadaną prędkości.

Przykład

W tym przykładzie:

- Wartość zadana wejścia analogowego (AI1) pochodzi z joysticka:
 - Par. 12.18 Maks. AI1 = 10 V
 - Par. 12.17 Min. AI1 = 0 V
 - Par. 12.20 AI1 skal. do maks. AI1 = 1500

- Wartość 0…5 V nadaje wartość zadaną prędkości skierowanej do tyłu.
- 5 V to pozycja zerowa joysticka.
- Wartość 5…10 V nadaje wartość zadaną prędkości skierowanej do przodu.
Gdy parametr 30.203 Strefa nieczuł do przodu ma wartość 2%, oznacza to, że strefa nieczułości ma zakres 30 obr./min (2% par. 12.20 Al1 skal. do maks. Al1 = 1500 obr./min) w kierunku do przodu. Wewnątrz strefy nieczułości wynikowa wartość zadana prędkości wynosi zero. Sygnał rzeczywisty 09.06 W. zad. prędk. dźwigu pokazuje końcową wartość zadaną prędkości oraz sytuację, kiedy wartość zadana prędkości jest poza strefą nieczułości. W tym przypadku sygnał rzeczywisty 09.06 zaczyna wykazywać dodatnią wartość zadaną od punktu, w którym wartość skalowana wejścia analogowego AI1 (12.12 Wartość skalowana Al1) przekracza 30 obr./min.

Ustawienia

Parametry: 30.203 Strefa nieczuł do przodu, 30.204 Strefa nieczuł do tyłu

Sygnały: 09.06 W. zad. prędk. dźwigu, 09.16 W. zad. częstotl. dźwigu

Ostrzeżenia: -

Błędy: -

Blokada start/stop

Funkcja blokady start/stop programu sterującego umożliwia użytkownikowi końcowemu uruchomienie dźwigu wyłącznie wtedy, gdy przemiennik częstotliwości jest gotowy do pracy.

Ta funkcja obejmuje następujące funkcje:

- **Blokada pozycji zerowej joysticka** (str. 593)
- **Blokada wartości zadanej joysticka** (str. 594)

Blokada pozycji zerowej joysticka

Ta funkcja nadzoruje pozycję zerową joysticka przy uruchomionym przemienniku i wydaje polecenie stop, jeśli przemiennik częstotliwości zostanie wyłączony awaryjnie z powodu błędu. Gdy po zatrzymaniu lub wyłączeniu awaryjnym użytkownik końcowy będzie chciał wydać kolejne polecenie startu, najpierw musi wystąpić opadające zboczce wejścia pozycji zerowej (20.214). Jeśli logika przemiennika nie wykryje zboczca opadającego (tzn. sygnał pozostanie w stanie wysokim) przed wydaniem nowego polecenia startu, przemiennik wygeneruje ostrzeżenie (D209).
Ta ilustracja pokazuje, jak joystick współpracuje ze stykami NO (normalnie otwartymi) dla poleczeń start/stop w kierunkach do przodu i do tyłu oraz jednym stykiem NC (normalnie zamkniętym) dla położenia zerowego.

Blokada wartości zadanej joysticka

Za pomocą tej funkcji możesz sprawdzić wartość zadaną odczytywaną z joysticka. Jeśli wejście pozycji zerowej joysticka (20.214) jest aktywne, a wartość zadana prędkości lub momentu jest większa niż +/− 10% minimum lub maksimum przeskalowanej wartości zadanej joysticka, po upływie zdefiniowanego opóźnienia czasowego (20.215) przemiennik częstotliwości wygeneruje ostrzeżenie (D208).
Schemat czasowy

Ten schemat pokazuje działanie ostrzeżenia *Sprawdz. wart. zadanej joysticka*.

Ustawienia

Sygnały: **09.01 SW1 dźwigu**

Ostrzeżenia: **D208 Sprawdz. wart. zadanej joysticka**, **D209 Pozycja zerowa joysticka**

Błędy: -
Funkcja limitu zatrzymania dźwigu

Funkcja limitu zatrzymania dźwigu zatrzymuje bezpiecznie ruch dźwigu po osiągnięciu pozycji końcowej. Funkcji limitu zatrzymania można użyć zarówno dla ruchu w poziomie (wózek długoprzejazdowy), jak i w pionie wciągarka.

Funkcja limitu zatrzymania ma dwa limity:

1. Limit zatrzymania do przodu (76.04) — dla kierunku pracy do przodu (dodatnim).
2. Limit zatrzymania do tyłu (76.06) — dla kierunku pracy do tyłu (ujemnym).

W limitach zatrzymania do przodu i do tyłu wejście jest podłączone odpowiednio do przełącznika limitu ruchu do przodu i do tyłu.

Jeśli jeden z tych limitów jest aktywny, funkcja aktywuje polecenie zatrzymania i zatrzyma ruch zgodnie z wyborem trybu zatrzymania (76.11). Te dwa limity są niezależne od siebie.

W przypadku limitu zarówno do przodu, jak i do tyłu warunki aktywne i nieaktywne stosują się w następujący sposób:

- Limity są aktywne, gdy wejście limitu do napędu ma wartość fałsz (0), tj. gdy normalnie zamknięty przełącznik limitu jest otwarty.
- Limity są nieaktywne, gdy wejście limitu do napędu ma wartość prawda (1), tj. gdy normalnie zamknięty przełącznik limitu jest zamknięty. Ten warunek obowiązuje, gdy ruch dźwigu nie osiągnął limitu.

Poniższe kroki opisują operację limitu zatrzymania ruchu do przodu przy podnoszeniu (do przodu, kierunek dodatni). Można je także zastosować w przypadku ograniczenia ruchu opuszczania w kierunku wstecznym (do tyłu, kierunek ujemny):

- Jeśli limit zatrzymania do przodu zostanie uaktywniony podczas pracy przemiennika do przodu (w górę), silnik zostanie zatrzymany zgodnie z wybranym trybem zatrzymania (76.11)
 - Jeśli wybrano tryb zatrzymywania z rampą (76.11), przemiennik zacznie zwalniać zgodnie ze zdefiniowanym przez rampę czasem zatrzymywania (76.12)
 - Jeśli wybrano normalny tryb zatrzymywania (76.11), przemiennik zacznie zwalniać zgodnie z wybranym trybem zatrzymania (21.03).
- Gdy aktywny jest limit zatrzymania do przodu, przemiennik częstotliwości wygeneruje ostrzeżenie D205 Limit zatrym. do przodu.
- Przy aktywnym limicie zatrzymania do przodu silnik może pracować wyłącznie do tyłu.

W typowych warunkach funkcja limitu zatrzymania dźwigu wymaga ustawienia następujących parametrów:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.01</td>
<td>Stan sterowania krańcow.</td>
<td>(Aktualny stan kontroli limitu)</td>
</tr>
<tr>
<td>76.02</td>
<td>Włącz sterow. krańcow.</td>
<td>Wybrano</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa</td>
<td>Wartość</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>76.03</td>
<td>Tryb sterowania krańc.</td>
<td>Niski poziom</td>
</tr>
<tr>
<td>76.04</td>
<td>Limit zatrzymania do przodu</td>
<td>DI3 (wartość przykładowa)</td>
</tr>
<tr>
<td>76.05</td>
<td>Limit zwalniania do przodu</td>
<td>Wybrano</td>
</tr>
<tr>
<td>76.06</td>
<td>Limit zatrzymania do tyłu</td>
<td>DI4 (wartość przykładowa)</td>
</tr>
<tr>
<td>76.07</td>
<td>Limit zwalniania do tyłu</td>
<td>Wybrano</td>
</tr>
<tr>
<td>76.11</td>
<td>Tryb zatrzymania limitu</td>
<td>Tryb zatrzym. wg limitu rampy</td>
</tr>
<tr>
<td>76.12</td>
<td>Czas rampy zatrzymania limitu</td>
<td>0,5 s (wartość przykładowa)</td>
</tr>
</tbody>
</table>

Ustawienia

Parametry: 76.01 Stan sterowania krańc., 76.02 Włącz sterow. krańc., 76.03 Tryb sterowania krańc., 76.04 Limit zatrzymania do przodu, 76.06 Limit zatrzymania do tyłu, 76.11 Tryb zatrzymania limitu, 76.12 Czas rampy zatrzymania limitu

Sygnały: 09.01 SW1 dźwigu, 09.03 FW1 dźwigu

Ostrzeżenia: D205 Limit zatrzym. do przodu, D206 Limit zatrzymania do tyłu

Błędy: D108 Błąd I/O limit. zatrz.
Funkcja zwalniania dźwigu

Funkcja zwalniania ogranicza ruchy do przodu i do tyłu ładunku między dwoma punktami.

Funkcja obsługuje monitorowanie czujników zwalniania w obszarze ruchu oraz pozwala na odpowiednie zmniejszenie prędkości. Należy pamiętać, aby podczas montażu systemu zainstalować czujniki i połączyć je do przemiennika częstotliwości.

Funkcji zwalniania dźwigu można użyć zarówno w dźwigu poziomym (wózku długo-przejazdowym), jak i pionowym (wciągniku).

Funkcja zwalniania dźwigu korzysta z trybu sterowania krańcowego „Poziom niski” (76.03). Ma ona dwa tryby:

1. Zwalnianie z dwoma wejściami limitu.
2. Zwalnianie z kierunkiem.

- **Zwalnianie z dwoma wejściami limitu.**

Dwa wejścia limitu funkcji zwalniania to (patrz rysunek powyżej):

1. Limit zwalniania do przodu (76.05) — dla kierunku pracy do przodu (dodatnim).
2. Limit zwalniania do tyłu (76.07) — dla kierunku pracy do tyłu (ujemnym).
W przypadku limitu zarówno do przodu, jak i do tyłu warunki aktywne i nieaktywne stosują się w następujący sposób:

- Limity są aktywne, gdy wejście limitu do przemiennika częstotliwości ma wartość Falsz (0), tj. gdy normalnie zamknięty przełącznik limitu jest otwarty.
- Limity są nieaktywne, gdy wejście limitu do przemiennika częstotliwości ma wartość Prawda (1), tj. gdy normalnie zamknięty przełącznik limitu jest zamknięty. Ten warunek dotyczy normalnej pracy dźwigu.

Zwalnianie z kierunkiem

Program sterujący aktywuje ten tryb, gdy w parametrach ustawiono takie samo źródło sygnału 76.05 Limit zwalniania do przodu oraz 76.07 Limit zwalniania do tyłu, a każdy z tych sygnałów źródłowych ma wartość Falsz (0).

Po aktywacji zwalniania z kierunkiem funkcja ogranicza wartość prędkości do wartości zadanej zwalniania (76.08/76.09) w kierunku ruchu zachodzącego podczas tej aktywacji. Do momentu wyłączenia napięcia zasilania przemiennik będzie pamiętać ten kierunek ruchu i umożliwiać pracę w przeciwnym kierunku z pełną prędkością.

Aktywacja polecenia zwalniania po zatrzymaniu przemiennika sprawi, że funkcja zezwoli na niską prędkość w obu kierunkach. Funkcja ta ogranicza także wartość zadanej prędkości w obu kierunkach w sytuacji, gdy polecenie zwalniania zostanie wydane po uruchomieniu przemiennika.

W typowych warunkach funkcja zwalniania dźwigu wymaga ustawienia następujących parametrów:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.01</td>
<td>Stan sterowania krańc.</td>
<td>(Aktualny stan kontroli limitu)</td>
</tr>
<tr>
<td>76.02</td>
<td>Włącz sterow. krańc.</td>
<td>Wybrano</td>
</tr>
<tr>
<td>76.03</td>
<td>Tryb sterowania krańc.</td>
<td>Niski poziom</td>
</tr>
<tr>
<td>76.05</td>
<td>Limit zwalniania do przodu</td>
<td>DIO1</td>
</tr>
<tr>
<td>76.07</td>
<td>Limit zwalniania do tyłu</td>
<td>DIO1</td>
</tr>
<tr>
<td>76.08</td>
<td>Prędkość zwalniania</td>
<td>300 obr./min</td>
</tr>
<tr>
<td>76.09</td>
<td>Częstotliwość zwalniania</td>
<td>0,00 Hz</td>
</tr>
</tbody>
</table>

Ustawienia

Parametry: 76.01 Stan sterowania krańc., 76.02 Włącz sterow. krańc., 76.03 Tryb sterowania krańc., 76.05 Limit zwalniania do przodu, 76.07 Limit zwalniania do tyłu, 76.08 Prędkość zwalniania, 76.09 Częstotliwość zwalniania

Sygnały: 09.01 SW1 dźwigu, 09.03 FW1 dźwigu

Ostrzeżenia: D201 Limit zwalniania do przodu, D202 Limit zwalniania do tyłu

Błędy: -

Schemat połączenia sterowania przedstawiono w sekcji Konfigurowanie zwalniania za pomocą dwóch limitów i logiki krańcowej na stronie 577.
Szybkie zatrzymanie

Funkcja szybkiego zatrzymania zatrzymuje przemiennik natychmiast, nawet jeśli pracuje on z dużą prędkością. Na przykład można użyć tej funkcji w celu zatrzymania szybkiego ruchu w dół nabieraka dźwigu przed całkowitym odwinięciem się lin i ich rozłożeniem na wierzchu dźwigu. Funkcja szybkiego zatrzymania nie jest funkcją zatrzymania awaryjnego.

Tryb szybkiego zatrzymania aktywuje się po zmianie wartości wejścia szybkiego zatrzymania na wartość Falsz (0). Przemiennik zatrzyma silnik zgodnie z wybranym trybem szybkiego zatrzymania (20.211) i wyświetli ostrzeżenie D20A Szybkie zatrzymanie. Po zmianie wartości wejścia szybkiego zatrzymania na wartość 1 (prawda) funkcja wróci do normalnej pracy.

Funkcja ma trzy tryby:

- **Rampa i hamowanie mechaniczne** — przemiennik częstotliwości zwolni do prędkości zerowej zgodnie z określonym czasem rampy. Gdy przemiennik osiągnie prędkość zamykania hamulca, hamulec mechaniczny zostanie zamknięty.

- **Limit momentu i hamowanie mechaniczne** — przemiennik częstotliwości zwalnia do prędkości zerowej zgodnie z ograniczeniami momentu przemiennika. Gdy przemiennik osiągnie prędkość zamykania hamulca, hamulec mechaniczny zostanie zamknięty.

- **Tylko hamowanie mechaniczne** — ta funkcja wymusza zamknięcie hamulca mechanicznego.

W typowych warunkach funkcja szybkiego zatrzymania dźwigu wymaga ustawienia następujących parametrów:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.210</td>
<td>Wej. szybkiego zatrzymania</td>
<td>DIO2</td>
</tr>
<tr>
<td>20.211</td>
<td>Tryb szybkiego zatrzymania</td>
<td>Rampa</td>
</tr>
<tr>
<td>23.206</td>
<td>Czas zwal. szybkiego zatrz.</td>
<td>0,5 s</td>
</tr>
</tbody>
</table>

Ustawienia

Sygnały: 09.01 SW1 dźwigu

Ostrzeżenia: D20A Szybkie zatrzymanie

Błędy: -
Potwierdzenie włączenia zasilania

Funkcja potwierdzania zasilania pozwala sprawdzić, czy główne zasilanie jest podłączone, a przemiennik jest gotowy do pracy. Można użyć tej funkcji na przykład do automatycznego resetowania usterek wygenerowanych przez przemiennik w trybie gotowości.

Źródłem sygnału potwierdzenia zasilania (20.212) mogą być następujące źródła:

- bezpieczne włączenie momentu (STO), parametr 06.18 Słowo stanu przerw. startu, odwrócony bit 7 lub

Gdy przemiennik częstotliwości zostanie wyłączony awaryjnie z powodu błędu oraz zostanie aktywowany sygnał potwierdzenia zasilania (zboczce rosnące), po upływie czasu opóźnienia (20.213) przemiennik wygeneruje resetowanie z powodu błędu wewnętrznego.

Jeśli obwód potwierdzenia włączenia zasilania jest otwarty (parametr 20.212 ma wartość Falsz), przemiennik częstotliwości wyświetli ostrzeżenie D20B Potwierdzenie włączenia zasilania.

Schemat czasowy

W typowych warunkach funkcja potwierdzenia zasilania dźwigu wymaga ustawienia następujących parametrów:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.12</td>
<td>Źródło zezwolenia na bieg 1</td>
<td>wartość bitu 7 parametru 06.18. (jeśli jest używane włączenie uruchomienia)</td>
</tr>
<tr>
<td>20.212</td>
<td>Potwierdz. włączenia zasilania</td>
<td>wartość bitu 7 parametru 06.18.</td>
</tr>
<tr>
<td>20.213</td>
<td>Opóźn. resetu powt. zasil.</td>
<td>500 ms</td>
</tr>
</tbody>
</table>

Ustawienia

Sygnały: 09.01 SW1 dźwigu

Ostrzeżenia: D20B Potwierdzenie włączenia zasilania

Błędy: -
Przyłącza sterowania

Poniższy schemat pokazuje schemat połączeń sterujących, który umożliwia realizację funkcji potwierdzania zasilania (przez STO lub DIO2) przy zewnętrznym zasilaniu 24 V.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTAC</td>
<td>Cyfrowe połączenia we/wy</td>
</tr>
<tr>
<td>+24V</td>
<td>Napięcie pomocnicze +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa wejść cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>DI2</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>DI3</td>
<td>Limit zatrzymania 1 (do przodu)</td>
</tr>
<tr>
<td>DI4</td>
<td>Limit zatrzymania 2 (do tyłu)</td>
</tr>
<tr>
<td>DIO1</td>
<td>Zwalnianie</td>
</tr>
<tr>
<td>DIO2</td>
<td>Potwierdzenie zasilania</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Masa we/wy cyfrowych</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>X103</td>
<td>Analizowe we/owy</td>
</tr>
<tr>
<td>AI1</td>
<td>Prędkość/częstotliwość (0...10 V)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>A12</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygałowego</td>
</tr>
<tr>
<td>+10 V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Bezpieczne wyłączanie momentu (STO)</td>
</tr>
<tr>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>SGND</td>
<td>Stan z parametru 06.18 Słowo stanu przerw. startu (1 = STO aktywne, obwody otwarte).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Polecenie hamowania (10.24 Źródło RO1 = Komenda hamowania)</td>
</tr>
<tr>
<td>RA</td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td></td>
</tr>
</tbody>
</table>
Uwagi:

Rozmiary zacisków: 0,14 mm²…1,5 mm²

Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)

Zaciski DGND, AGND i SGND są podłączone wewnętrznie do tego samego potencjału wartości zadanej.

Sygnały wejściowe

• Start do przodu (DI1)
• Start do tyłu (DI2)
• Limit zatrzymania 1 (do przodu) (DI3)
• Limit zatrzymania 2 (do tyłu) (DI4)
• Zwalnianie (DIO1)
• Potwierdzenie zasilania (DIO2)

Sygnały wyjściowe

• Prędkość/częstotliwość (0…10 V) (AI1)
• Częstotliwość wyjściowa (0…20mA) (AO)
• Polecenie hamowania
Obsluga wartosci zadanej prędkosci

Wartosc zadaną prędkości dźwigu można uzyskać z jednego z następujących źródeł:

- Joystick podłączony przez we/wy cyfrowe i analogowe
- Urządzenie PLC podłączone do magistrali komunikacyjnej
- Kaseta sterownicza połączona do wejść cyfrowych lub wartości zadane kroku
- Potencjometr silnika dźwigu

Joysticki jednobiegunowe

Joysticki jednobiegunowe podają wartość zadaną prędkości za pomocą sygnału analogowego 0...10 V, gdzie 0 V jest prędkością maksymalną minus, 5 V jest prędkością zerową, a 10 V jest maksymalną prędkością plus. Polecenia kierunku są określone za pomocą dwóch wejść cyfrowych. Na przykład wejście cyfrowe DI1 może być użyte do startu do przodu, a wejście DI2 do startu do tyłu.

W typowych warunkach joysticki jednobiegunowe wymagają ustawienia następujących parametrów:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.17</td>
<td>Min. AI1</td>
<td>0,000</td>
</tr>
<tr>
<td>12.18</td>
<td>Maks. AI1</td>
<td>10,000</td>
</tr>
<tr>
<td>12.19</td>
<td>AI1 skal. do min. AI1</td>
<td>-1500</td>
</tr>
<tr>
<td>12.20</td>
<td>AI1 skal. do maks. AI1</td>
<td>1500</td>
</tr>
<tr>
<td>22.11</td>
<td>W. zad. pręd. 1 Zew1</td>
<td>Skalowane AI1</td>
</tr>
<tr>
<td>22.13</td>
<td>Funkcja pręd. Zew1</td>
<td>Abs (w. zad. 1)</td>
</tr>
</tbody>
</table>

Ustawienia

Parametry: 12.17 Min. AI1, 12.18 Maks. AI1, 12.19 AI1 skal. do min. AI1, 12.20 AI1 skal. do maks. AI1, 22.11 W. zad. pręd. 1 Zew1, 22.13 Funkcja pręd. Zew1

Sygnały: -
Ostrzeżenia: -
Błędy: -

Schemat połączenia sterowania przedstawiono w sekcji Sterowanie przez interfejs we/wy za pomocą joysticka na stronie 564.

Paraboliczna wartość zadana prędkości

Generalnie ruchy joystickiem powodują liniową zmianę w stosunku do wartości zadanej prędkości: zmiana pozycji o 50% spowoduje zmianę wartości zadanej prędkości o 50%.

Często w przypadku obszarów o niższej prędkości wymagana jest precyzyjna obsługa ładunku. Zachodzi to na przykład wtedy, gdy użytkownik musi ustawić ładunek ręcznie lub gdy brak miejsca narzuca jakieś ograniczenia. W takich sytuacjach na dokładniejsze kontrolowanie ruchów joysticka pozwala stosowanie parabolicznej wartości zadanej prędkości zamiast liniowej.
Funkcja parabolicznej wartości zadanej prędkości (par. 22.211) zmienia wzajemne zależności między sygnałem wejściowym (ruchem joysticka) a prędkością zadaną zgodnie z funkcją matematyczną. Dostępne funkcje to X2 (*Paraboliczna 1*), X3 (*Paraboliczna 2*) i zależność linowa (*Liniowy*). Joystick ma parametry pozwalające na ustawienie strefy nieczułości w kierunku do przodu (30.203) i do tyłu (30.204).

Poza drążkiem źródłem parabolicznej wartości zadanej prędkości może być także sygnał analogowy z urządzenia zewnętrznego.

Wykres sposobu pracy

Ten wykres pokazuje krzywe paraboliczne prędkości zadanej w porównaniu do liniowej prędkości zadanej.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relacja liniowa (Liniowe)</td>
</tr>
<tr>
<td>2</td>
<td>X^2 (Paraboliczna 1)</td>
</tr>
<tr>
<td>3</td>
<td>X^3 (Paraboliczna 2)</td>
</tr>
<tr>
<td>a</td>
<td>Najbardziej dotknięty obszar</td>
</tr>
</tbody>
</table>

Ustawienia

Parametry: **22.211 Kształt w. zad. prędkości**
Sygnały: 09.06 W. zad. prędk. dźwigu

Ostrzeżenia: -

Błędy: -

Krokowe zadawanie prędkości

W przypadku zadawania krokowego prędkość można wybrać spośród czterech wartości prędkości. W takim rozwiązaniu często używana jest także kaseta sterująca.

Na poniższym rysunku przedstawiono kasetę sterującą.

Aby aktywować kasetę sterującą/sterowanie krokowe w bicie 2 parametru 22.21 **Funkcja stałej prędkości** ustaw wartość 1. Polaryzacja wartości zadanym zależy od kierunku, w którym użytkownik końcowy wyda polecenie startu za pomocą wejść cyfrowych (20.03 i 20.04)

Poniższa tabela pokazuje, jak program sterujący dobiera używaną wartość zadaną prędkości. Aby aktywować kolejny krok prędkości, należy zachować poprzedni krok.

<table>
<thead>
<tr>
<th>22.21 Funkcja stałej prędkości</th>
<th>22.22 Wybór stałej prędkości 1</th>
<th>22.23 Wybór stałej prędkości 2</th>
<th>22.24 Wybór stałej prędkości 3</th>
<th>Użyta wartość zadała</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22.26 Prędkość stała 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>22.27 Prędkość stała 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>22.28 Prędkość stała 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22.29 Prędkość stała 4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>22.26 Prędkość stała 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>22.27 Prędkość stała 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>22.26 Prędkość stała 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>22.26 Prędkość stała 1</td>
</tr>
</tbody>
</table>

W typowych warunkach logika krokowego zadawania prędkości wymaga ustawienia następujących parametrów:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.21</td>
<td>Funkcja stałej prędkości</td>
<td>0b0100 (bit 2 = 1)</td>
</tr>
<tr>
<td>22.22</td>
<td>Wybór stałej prędkości 1</td>
<td>DI3</td>
</tr>
<tr>
<td>22.23</td>
<td>Wybór stałej prędkości 2</td>
<td>DI4</td>
</tr>
<tr>
<td>22.24</td>
<td>Wybór stałej prędkości 3</td>
<td>Zawsze wyłączone</td>
</tr>
<tr>
<td>22.26</td>
<td>Prędkość stała 1</td>
<td>300,00</td>
</tr>
</tbody>
</table>
Ustawienia
Parametry: 22.21 Funkcja stałej prędkości, 22.22 Wybór stałej prędkości 1, 22.23 Wybór stałej prędkości 2, 22.24 Wybór stałej prędkości 3, 22.26 Prędkość stała 1, 22.27 Prędkość stała 2, 22.28 Prędkość stała 3, 22.29 Prędkość stała 4
Sygnały: -
Ostrzeżenia: -
Błędy: -

Potencjometr silnika dźwigu

Funkcja potencjometru silnika dźwigu może być stosowana w przypadku modernizacji starszych sterowników. Na przykład dotyczy to układów z kasetą sterującą z przyciskami do startu do przodu, startu do tyłu i zwiększania prędkości (trzy przyciski). Jest to funkcja używana zamiast zwykłego potencjometru silnika, który ma oddzielne sygnały wejściowe do zwiększania i zmniejszania wartości zadanej. Sygnały te nie mają żadnego efektu, gdy przemiennik jest zatrzymany.

Aby aktywować potencjometr dźwigu, užyj parametru 22.220 Włączenie pot. siln. dźwigu.

Kierunek do przodu

Wartość zadaną potencjometru silnika (22.230) można zwiększyć dwiema metodami:

- Aktywacja polecenia ruchu do przodu: Po aktywacji polecenia ruchu do przodu wartość zadaną potencjometru silnika (22.230) zwiększy się do prędkości minimalnej potencjometru silnika dźwigu (22.224).
 lub
- Aktywacja polecenia przyspieszenia potencjometru silnika dźwigu (22.223) wraz z poleceniem ruchu do przodu: Powoduje to zwiększenie wartości zadanej potencjometru silnika (22.230).

Po aktywacji polecenia ruchu do przodu

- gdy wartość zadaną potencjometru silnika (22.230) jest mniejsza od prędkości minimalnej potencjometru silnika dźwigu (22.224), dźwig przyspieszy do prędkości minimalnej potencjometru silnika dźwigu (22.224).
- gdy wartość zadaną potencjometru silnika (22.230) jest większa od prędkości minimalnej potencjometru silnika dźwigu (22.224), a dźwig porusza się do przodu, wartość zadaną prędkości pozostanie ustalona na poziomie równym prędkości sprzed wydania polecenia ruchu do przodu.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.27</td>
<td>Prędkość stała 2</td>
<td>750</td>
</tr>
<tr>
<td>22.28</td>
<td>Prędkość stała 3</td>
<td>1500</td>
</tr>
<tr>
<td>22.29</td>
<td>Prędkość stała 4</td>
<td>1500</td>
</tr>
</tbody>
</table>
- gdy wartość zadana potencjometru silnika (22.230) jest większa od prędkości minimalnej potencjometru silnika dźwigu (22.224), a dźwig porusza się do tyłu, dźwig zwolni do zera, zmieni kierunek i przyspieszy do prędkości minimalnej potencjometru silnika dźwigu (22.224).

Uwagi:

1. Po wydaniu polecenia przyspieszenia (22.223) wartość zadana potencjometru silnika (22.230) pozostaje na ostatnim osiągniętym poziomie. Aby bardziej przyspieszyć, należy ponownie aktywować polecenie przyspieszenia (22.223).

Kierunek do tyłu

Wartość zadaną potencjometru silnika (22.230) w kierunku do tyłu można zwiększyć dwiema metodami:

- Aktywacja polecenia ruchu do tyłu: Wartość zadana potencjometru silnika (22.230) zwiększy się do prędkości minimalnej potencjometru silnika dźwigu (22.224).
 lub
- Aktywacja polecenia przyspieszenia potencjometru silnika dźwigu (22.223) wraz z poleceniem ruchu do tyłu: Powoduje to zwiększenie wartości zadanej potencjometru silnika (22.230).

Po aktywacji polecenia ruchu do tyłu

- gdy wartość zadana potencjometru silnika (22.230) jest mniejsza od prędkości minimalnej potencjometru silnika dźwigu (22.224), dźwig przyspieszy do prędkości minimalnej potencjometru silnika dźwigu (22.224).
- gdy wartość zadana potencjometru silnika (22.230) jest większa od prędkości minimalnej potencjometru silnika dźwigu (22.224), a dźwig porusza się do tyłu, wartość zadana prędkości pozostanie ustalona na poziomie równym prędkości przed wydania polecenia ruchu do tyłu.
- gdy wartość zadana potencjometru silnika (22.230) jest większa od prędkości minimalnej potencjometru silnika dźwigu (22.224), a dźwig porusza się do przodu, dźwig zwolni do zera, zmieni kierunek i przyspieszy do prędkości minimalnej potencjometru silnika dźwigu (22.224).

Uwagi:

1. Po wydaniu polecenia przyspieszenia (22.223) wartość zadana potencjometru silnika (22.230) pozostaje na ostatnim osiągniętym poziomie. Aby bardziej przyspieszyć, należy ponownie aktywować polecenie przyspieszenia (22.223).

W poniższym przykładowe pokazano, jak zmienia się wartość potencjometru silnika:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>W. zad. pręd. 1 Zew1</td>
<td>Dźwig MotPot</td>
</tr>
<tr>
<td>22.220</td>
<td>Włączenie pot. siln. dźwigu</td>
<td>Wybrano</td>
</tr>
<tr>
<td>22.223</td>
<td>Wyb. przysp. pot. siln. dźwigu</td>
<td>DIO2</td>
</tr>
<tr>
<td>22.224</td>
<td>Min. prędk. pot. siln. dźwigu</td>
<td>300,00</td>
</tr>
<tr>
<td>22.226</td>
<td>Min. wart. pot. siln. dźwigu</td>
<td>-1500,00</td>
</tr>
<tr>
<td>22.227</td>
<td>Maks. wart. pot. siln. dźwigu</td>
<td>1500,00</td>
</tr>
<tr>
<td>23.201</td>
<td>Czas przysp. 1 pot. siln. dźwigu</td>
<td>4,0 (widoczne tylko wtedy, gdy parametr 22.220 Włączenie pot. siln. dźwigu ma wartość Wybrano)</td>
</tr>
<tr>
<td>23.202</td>
<td>Czas zwaln. 1 pot. siln. dźwigu</td>
<td>4,0 (widoczne tylko wtedy, gdy parametr 22.220 Włączenie pot. siln. dźwigu ma wartość Wybrano)</td>
</tr>
</tbody>
</table>

Polecenia rozpoczęcia ruchu do przodu i do tyłu zdefiniowano w grupie parametrów 20 Start/stop/kierunek.

Ustawienia

Parametry: 22.11 W. zad. pręd. 1 Zew1, 28.11 W. zad. częst. 1 Zew1, 22.220 Włączenie pot. siln. dźwigu, 22.223 Wyb. przysp. pot. siln. dźwigu, 22.224 Min. prędk.
pot. siln. dźwigu, 22.226 Min. wart. pot. siln. dźwigu, 22.227 Maks. wart. pot. siln. dźwigu, 23.201 Czas przysp. 1 pot. siln. dźwigu, 23.202 Czas zwaln. 1 pot. siln. dźwigu, grupa 20 Start/stop/kierunek

Sygnały: - 22.230 Akt. wart. zad. pot. siln. dźwigu, 22.225 SW pot. siln. dźwigu

Ostrzeżenia: -

Błędy: -
Przyłącza sterowania

Poniższy schemat przedstawia schemat we/wy połączeń sterowania dla potencjometru silnika dźwigu.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Napięcie pomocnicze +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DGND</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa wejść cyfrowych</td>
</tr>
<tr>
<td>DI1</td>
<td>Start do przodu</td>
</tr>
<tr>
<td>DI2</td>
<td>Start do tyłu</td>
</tr>
<tr>
<td>DI3</td>
<td>Limit zatrzymania 1 (do przodu)</td>
</tr>
<tr>
<td>DI4</td>
<td>Limit zatrzymania 2 (do tyłu)</td>
</tr>
<tr>
<td>DIO1</td>
<td>Zwalnianie</td>
</tr>
<tr>
<td>DIO2</td>
<td>Przyspieszanie (22.223)</td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
</tr>
<tr>
<td>DIO COM</td>
<td>Masa we/wy cyfrowych</td>
</tr>
<tr>
<td>AI1</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AI2</td>
<td>Nie skonfigurowano</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wejścia analogowego</td>
</tr>
<tr>
<td>AO</td>
<td>Częstotliwość wyjściowa (0...20 mA)</td>
</tr>
<tr>
<td>AGND</td>
<td>Masa obwodu wyjścia analogowego</td>
</tr>
<tr>
<td>SCR</td>
<td>Ekran kabla sygnałowego</td>
</tr>
<tr>
<td>+10V</td>
<td>Napięcie zadane +10 V DC</td>
</tr>
</tbody>
</table>

Styki pomocnicze stycznika głównego

S+	Bezpieczne wyłączanie momentu (STO). Połączenie fabryczne. Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości.
SGND	Stan z parametrów 06.18 Słowo stanu przerw. startu (1 = STO aktywne, obwody otwarte), 20.212 Potwierdz. włączenia zasilania i 20.12 Źródło zezwolenia na bieg 1.
S1	
S2	

Przekaźnik hamulca

RC	Polecenie hamowania (10.24 Źródło RO1 = Komenda hamowania)
RA	
RB	
Uwagi:
Rozmiary zacisków: 0,14 mm²…1,5 mm²
Moment dokręcenia: 0,5 N·m (0,4 lbf·ft)
Zaciski DGND, AGND i SGND są podłączone wewnątrznie do tego samego potencjału wartości zadanej.

Sygnały wejściowe
- Start do przodu (DI1)
- Start do tyłu (DI2)
- Limit zatrzymania 1 (do przodu) (DI3)
- Limit zatrzymania 2 (do tyłu) (DI4)
- Zwalnianie (DIO1)
- Przyspieszanie (DIO2)

Sygnały wyjściowe
- Częstotliwość wyjściowa (AO)
- Polecenie hamowania
Dalsze informacje

Zapytania dotyczące produktów i serwisu

Wszystkie zapytania dotyczące produktu należy kierować do lokalnego przedstawi- ciela firmy ABB, podając kod typu i numer seryjny urządzenia, którego dotyczy pytanie. Spis danych kontaktowych firmy ABB w zakresie sprzedaży, pomocy technicznej i serwisu znajduje się na stronie www.abb.com/searchchannels.

Szkolenia z zakresu obsługi produktów

Informacje o szkoleniach z zakresu obsługi produktów firmy ABB znajdują się na stronie new.abb.com/service/training.

Przesyłanie uwag dotyczących instrukcji obsługi przemienników częstotliwości ABB

Biblioteka dokumentów w Internecie

Podręczniki użytkownika i inne dokumenty są dostępne w Internecie w formacie PDF na stronie www.abb.com/drives/documents.
Kontakt z nami

www.abb.com/drives
www.abb.com/drivespartners

3AXD50000043465D

3AXD50000043465 wersja D (PL) 2017-10-10