Leitfaden Netzwerk-Management
Version 2.3
ABB

INSUM®
Leitfaden Netzwerk-Management

Version 2.3
WICHTIGE HINWEISE

Die in diesem Handbuch angegebenen Daten gelten vorbehaltlich der Änderung und sind für ABB Schaltanlagentechnik GmbH nicht verbindlich. ABB Schaltanlagentechnik GmbH übernimmt keine Haftung für Irrtümer in diesem Handbuch.

ABB Schaltanlagentechnik GmbH haftet unter keinen Umständen für unmittelbare, mittelbare, besondere, zusätzliche oder Folgeschäden jeglicher Art, die aus der Verwendung dieses Handbuchs entstehen, und ABB Schaltanlagentechnik GmbH haftet auch nicht für indirekte oder Folgeschäden aus der Verwendung von hier beschriebener Hard- oder Software.

Die in diesem Handbuch beschriebene Software wird gemäß einer Lizenz geliefert und darf nur gemäß den Lizenzbestimmungen verwendet, kopiert oder weitergegeben werden.

© 2002 ABB Schaltanlagentechnik GmbH, Deutschland

WARENZEICHEN

MNS und INSUM sind eingetragene Warenzeichen der ABB Schaltanlagentechnik GmbH.

Microsoft, Windows und Windows NT sind eingetragene Warenzeichen der Microsoft Corporation.

Echelon, LON, LONWORKS, LonTalk, Neuron sind Warenzeichen der Echelon Corporation, eingetragen in den USA und anderen Ländern.

Internes Referenzdokument 1TGB 350010 R1.5
Einführung
1 Einführung .. 4
 1.1 Zweck des Dokuments .. 4
 1.2 Zugehörige Dokumentation .. 4

Aufbau des INSUM-Systems
2 Aufbau des INSUM-Systems ... 5
 2.1 Systemstruktur ... 5
 2.2 Adressenbereiche ... 5

Netzwerkinstallation
3 Netzwerkinstallation .. 7
 3.1 Installation neuer Feldgeräte .. 7
 3.2 Laden der Standard-Bindings ... 7
 3.3 Einrichtung von MMI-/Gateway-Adressen und Bindings 7
 3.4 Auffinden eines Geräts über den Wink-Befehl ... 7
 3.5 Fehlerbeseitigung bei der Installation ... 7

Systemfunktionen und -parameter
4 Systemfunktionen und -parameter ... 8
 4.1 Datenübertragung ... 8
 4.1.1 MCU ... 8
 4.1.2 ITS .. 9
 4.1.3 PR112 ... 9
 4.2 Überwachung der INSUM-Geräte ... 9
 4.2.1 Feldgeräte ... 9
 4.2.2 Gateways .. 9

Failsafe
5 Failsafe ... 10
 5.1 Philosophie der Failsafe-Funktion .. 10
 5.2 Realisierung der Failsafe-Funktion ... 10

Control Access (Schaltberechtigung)
6 Control Access (Schaltberechtigung) ... 11
 6.1 Philosophie der Funktion Schaltberechtigung ... 11
 6.2 Einschränkungen ... 11
 6.3 Konfiguration des Control Access in INSUM .. 11
 6.3.1 Festlegung der Priorität von ICU-Geräten (SU-Geräten) 11
 6.3.2 Konfiguration der MCU-PR112-Parameter ... 12
 6.3.3 Konfiguration der Parameter für ICU-Geräte (SU-Geräte) 12
 6.3.4 Ansteuerung von Geräten über CAPass (Control Access weitergeben) 12

Annex A - Begriffe und Abkürzungen .. 13
1 Einführung

1.1 Zweck des Dokuments

- Installation neuer Knoten ohne Netzwerkverwaltungsprogramm
- Vergabe von Subnet-/Knotenadressen direkt über die MMI durch Auswahl mittels Bildlaufleiste
- Anzeige freier Knotenadressen für neue Geräte
- Anzeige von bereits vergebenen Knotenadressen
- Automatische Erkennung neuer Geräte und Aufnahme in die Lifelist
- Überwachung bestehender Knoten und Warnmeldung bei Entfernung
- Kein Download von Bindings für Standardanwendungen erforderlich
- Installation neuer Geräte einfach durch Betätigen eines Tasters an der MMI

1.2 Zugehörige Dokumentation

1TGC 901007 INSUM Technische Information
1TGC 901021 INSUM MCU Handbuch
1TGC 901026 INSUM MCU Parameterbeschreibung
1TGC 901034 INSUM MMI Handbuch
1TGC 901030 INSUM MMI Kurzanleitung
1TGC 901042 INSUM Modbus Gateway Handbuch
1TGC 901052 INSUM Profibus Gateway Handbuch
1TGC 901060 INSUM Ethernet Gateway Handbuch
1TGC 901080 INSUM Systemuhr Handbuch
1TGC 901090 INSUM Leitfaden Control Access
1TGC 901091 INSUM Leitfaden Failsafe
1TGC 901092 INSUM Leitfaden Reitluddante Ausführung
SACE RH 0080 Rev.I PR112/ PD-L LON Works Interface
1SEP407948P0001 Users Manual Intelligent Tier Switch (ITS)
2 Aufbau des INSUM-Systems

2.1 Systemstruktur

In der Standardkonfiguration kann das INSUM-System bis zu 128 Feldgeräte und 16 ICUs (Schaltanlagen-Einheiten SU) verwalten. Dieses Maximum kann nicht überschritten werden.

Eine Überschreitung dieser Werte kann unvorhersehbare Reaktionen des Gesamtsystems zur Folge haben. Die MMI zeigt daher diesen Zustand auf dem Bildschirm an und bietet so die Möglichkeit zur Entfernung überzähliger Geräte.

Abb. 1. Systemstruktur INSUM®

2.2 Adressenbereiche

INSUM verwendet standardmäßig das folgende Adressierungsschema

- Subnet_01: Motorstarter u. ITS, Knoten-Adressbereich von 1 bis 32
- Subnet_02: Motorstarter u. ITS, Knoten-Adressbereich von 1 bis 32
- Subnet_03: Motorstarter u. ITS, Knoten-Adressbereich von 1 bis 32
- Subnet_04: Motorstarter, ITS oder LS**, Knoten-Adressbereich von 1 bis 32
- Subnet_05: ICU (SU) - Geräte (MMI, Gateway, Router, …) Knoten-Adressbereich von 1 bis 100

** Einschränkungen siehe nächste Seite
** INSUM-Adressbelegung **

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Subnet / Knoten 1250 kBit/s</th>
<th>Subnet / Knoten 78 kBit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMI</td>
<td>5 / 20...29</td>
<td>--</td>
</tr>
<tr>
<td>MODBUS GW</td>
<td>5 / 10...13</td>
<td>--</td>
</tr>
<tr>
<td>PROFIBUS GW Linie 1/2</td>
<td>5 / 16</td>
<td>--</td>
</tr>
<tr>
<td>PROFIBUS GW Linie 3/4</td>
<td>5 / 17</td>
<td>--</td>
</tr>
<tr>
<td>TCP/IP GW</td>
<td>5 / 35...39</td>
<td>--</td>
</tr>
<tr>
<td>OS</td>
<td>5 / 30...34</td>
<td>--</td>
</tr>
<tr>
<td>Systemuhr</td>
<td>5 / 05</td>
<td>--</td>
</tr>
<tr>
<td>Andere ICU-Geräte</td>
<td>5 / 40</td>
<td>--</td>
</tr>
<tr>
<td>Router Linie 1/2</td>
<td>5 / 1 , 5 / 2</td>
<td>1 / 100 , 2 / 100</td>
</tr>
<tr>
<td>Router Linie 3/4</td>
<td>5 / 3 , 5 / 4</td>
<td>3 / 100 , 4 / 100</td>
</tr>
<tr>
<td>MCU 1/2</td>
<td>--</td>
<td>1...4 / 1...32</td>
</tr>
<tr>
<td>ITS</td>
<td>--</td>
<td>1...4 / 1...32</td>
</tr>
<tr>
<td>LS PR 112**</td>
<td>--</td>
<td>4 / 1...32</td>
</tr>
<tr>
<td>Reservegeräte „online“</td>
<td>--</td>
<td>99 / 90...98</td>
</tr>
<tr>
<td>MCU-Werkseinstellung</td>
<td>--</td>
<td>99 / 99</td>
</tr>
</tbody>
</table>

** Einschränkungen :**

Der Leistungsschalterauslöser PR112 verwendet einen XP-Transceiver (Bustopologie) anstelle von FTT10 (freie Topologie) als Kommunikationsverbindung. Aufgrund dieses physikalischen Unterschieds können die Geräte nicht gemischt werden, d.h. eine gesamte Buslinie muss für Leistungsschalter mit Auslöser PR112 reserviert werden. Die Leistungsschalter mit Auslöser PR112 werden durch einen speziellen Router für Linie 3 / 4 (Best.-Nr. 1TGB302001 R3413) unterstützt.

** Achtung:** In diesem Fall ist Linie 4 für Leistungsschalter mit PR112 reserviert und steht für Motorstarter oder ITS nicht zur Verfügung.
3 Netzwerkinstallation

3.1 Installation neuer Feldgeräte

Die Vergabe der Adressen für ITS und PR112 erfolgt analog. Dabei sind die auf Seite 6 genannten Einschränkungen zu beachten.

Nähere Beschreibungen zu PR 112 und ITS sind in den folgenden Dokumenten zu finden:

- PR112 SACE 601933/001 und RH0080
- ITS 1SEP 407948 P0001

3.2 Laden der Standard-Bindings

Achtung:

3.3 Einstellung von MMI-/Gateway-Adressen und Bindings

3.4 Auffinden eines Geräts über den Wink-Befehl

Zur Überprüfung der Adresseinstellung und zur einfachen Feststellung des Einbauorts einer MCU kann durch Auswahl des "WINK" Kommandos im Menü <SYSTEM-INSTALLATION> der „WINK“-Befehl an die ausgewählte MCU ausgesendet werden.

3.5 Fehlerbeseitigung bei der Installation

4 Systemfunktionen und -parameter

4.1 Datenübertragung

Dem LON liegt das Konzept der ereignisgesteuerten Datenübertragung zugrunde. Dies hat den Nachteil, dass neu installierte Überwachungsgeräte (z.B. MMI) Gerätedaten erst dann melden können, wenn eine Datenänderung stattgefunden hat. Um diese Schwierigkeit zu umgehen, unterstützen alle Geräte sogenannte Sendezyklen, in denen die Daten in einer Hintergrundanwendung auch dann aktualisiert werden, wenn sie sich nicht geändert haben.

4.1.1 MCU

Die wichtigste Information innerhalb des INSUM-Systems ist der Motorstatus. Aus diesem Grund ist für den Motorstatus ein eigener Zeitparameter für den Sendezyklus vorhanden, der „Status Sendezyklus“, der im Bereich von 1 s bis 60 s in Schritten zu je 0,1 s einstellbar ist.

 Alle anderen Daten (Warnungen und Messwerte) werden entsprechend einem zweiten Timer „NV Sendezyklus“ aktualisiert, der ebenfalls im Bereich von 1 s bis 60 s in Schritten zu je 0,1 s einstellbar ist.

Alle Netzwerkvariablen innerhalb dieser Gruppe werden in Zeitabständen aktualisiert, die als ganzes Vielfaches von „NV Sendezyklus“ definiert werden. Die Zeitabstände werden definiert in der Form 4xT, 12xT und 72xT.

<table>
<thead>
<tr>
<th>Zeitabstand</th>
<th>Aktualisierung der Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4xT</td>
<td>Actual CA1</td>
</tr>
<tr>
<td></td>
<td>Warnung</td>
</tr>
<tr>
<td></td>
<td>Stromprotokoll</td>
</tr>
<tr>
<td>12xT</td>
<td>Spannungsprotokoll</td>
</tr>
<tr>
<td></td>
<td>Drehzahlprotokoll</td>
</tr>
<tr>
<td></td>
<td>Leistungsprotokoll</td>
</tr>
<tr>
<td>72xT</td>
<td>Schaltspielzähler CCc</td>
</tr>
<tr>
<td></td>
<td>Schaltspielzähler CCa</td>
</tr>
<tr>
<td></td>
<td>Schaltspielzähler CCb</td>
</tr>
<tr>
<td></td>
<td>Motorbetriebsstunden</td>
</tr>
<tr>
<td></td>
<td>Ereignis</td>
</tr>
<tr>
<td></td>
<td>Wärmebelastung</td>
</tr>
<tr>
<td></td>
<td>Rückmeldung GPI1</td>
</tr>
<tr>
<td></td>
<td>Rückmeldung GPI2</td>
</tr>
<tr>
<td></td>
<td>Rückmeldung GPO1</td>
</tr>
<tr>
<td></td>
<td>Rückmeldung GPO2</td>
</tr>
<tr>
<td></td>
<td>Konfiguration CRC</td>
</tr>
<tr>
<td></td>
<td>Zeit bis Auslösung</td>
</tr>
<tr>
<td></td>
<td>Zeit bis Reset möglich</td>
</tr>
</tbody>
</table>

Häufigkeit der Hintergrundaktualisierung entsprechend Parameter NV Sendezyklus (T).

Hinweis:

Diese kann anhand der folgenden Formel abgeschätzt werden:

\[TBL = N_D \times D-p/s \]

mit

- \(TBL \) = Buslast gesamt (!! Mittelwert ohne Ereignisse !!)
- \(N_D \) = Anzahl der an den Bus angeschlossenen Geräte
- \(D-p/s \) = Anzahl Datenpakete pro Knoten und Sekunde

\[D-p/s = \frac{1}{\text{Status Sendezyklus}} + \frac{1}{\text{NV Sendezyklus}} \]

Damit in INSUM nach dem Prinzip Plug-and-Play gearbeitet werden kann, dient der Status Sendezyklus im Hintergrund zur Erkennung neu installierter MCUs und gleichzeitig zur Überwachung aller am Bus angeschlossenen MCUs.

4.1.2 ITS

Analog zur MCU gibt es für den ITS einen Status und einen NV Sendezyklus, der über die MMI im Menü System-Einstellungen konfiguriert werden kann. Für die Parameter gelten dieselben Einschränkungen wie für die MCUs.

4.1.3 PR112

Ab PR112-Software 2.0 aufwärts werden alle Mess- und Zählwerte des PR112 mittels Hintergrundsendezyklus (Heartbeat) aktualisiert. Diese stehen im MMI-Menü „System“ zur Verfügung:

- Status Sendezyklus
- Zähler Sendezyklus
- Strom Sendezyklus
- I-Auslösung Sendezyklus
- CA Sendezyklus

Achtung:

Bei früheren PR112 Versionen (z.B. V1.02) werden nicht alle Messwerte des PR112 vom NV Sendezyklus aktualisiert. Bei neu installierten Geräten werden einige Messwerte als „Nicht geschickt“ gekennzeichnet, bis sich der Wert erstmalig ändert.

4.2 Überwachung der INSUM-Geräte

4.2.1 Feldgeräte

\[
\text{Feldgeräte Überwach.} = 3 \times \text{Status Sendezyklus}
\]

Es hat sich bewährt, den Status Sendezyklus aller Feldgeräte auf ein- und denselben Wert zu setzen. Darüber hinaus sollte auch der Wert Feldgeräte Überwachung aller Gateways und MMI identisch gewählt werden.

4.2.2 Gateways

Notizen:

5 Failsafe

Weitergehende Informationen über diese Funktionalität sind im INSUM Leitfaden Failsafe zu finden.

5.1 Philosophie der Failsafe-Funktion

- Stop eines laufenden Antriebs
- Start eines Antriebs
- Start eines Antriebs in umgekehrter Drehrichtung
- Aktuellen Zustand beibehalten (NOP)

Diese Failsafe-Zustände können für jede MCU einzeln parametriert werden. Im Failsafe-Zustand steuert die MCU die Motoren entsprechend diesem vorher festgelegten Zustand an.

5.2 Realisierung der Failsafe-Funktion

Der dezidierte Failsafe-Master (üblicherweise das Gateway, das mit der PLT verbunden ist) erzeugt zyklische Broadcast-Sendungen an alle angeschlossenen Geräte. Der Aktualisierungszyklus dieser Meldung kann über den Parameter Failsafe Sendezyklus im Systemparameterbereich des jeweiligen Gateways eingestellt werden. Die Meldungen setzen interne Timer in den MCUs zurück. Bei einem Kommunikationsausfall laufen die Timer ab, und die MCUs versetzen die Motoren in den vorher festgelegten Zustand. Die Zeitspanne ist für jede MCU einzeln einstellbar (Parameter Failsafe Sendezyklus), wobei es sich bewährt hat, alle MCUs auf denselben Wert zu setzen. Das Verhältnis zwischen Failsafe Sendezyklus in Gateways und Failsafe Überwachung in MCUs sollte mindestens folgende Bedingungen erfüllen:

Failsafe Überwachung >= 3 * Failsafe Sendezyklus

(Es wird ein Faktor > 3 empfohlen)

** Hinweis:

Eine zu restriktive Einstellung der Failsafe Überwachung kann zu einer unbeabsichtigten Stilllegung der Motoren schon bei kurzem Kommunikationsausfall durch elektromagnetische Störungen führen.

Besonderheiten:

- Ein PROFIBUS-Gateway unterstützt lediglich 48 Motorstarter (zwei Linien zu je 24 MCUs). Für eine maximale Systemkonfiguration werden 2 Gateways benötigt. In diesem Fall senden die einzelnen Gateways die Failsafe-Befehle nur an ihre zugehörigen MCUs.
- Nach dem Einschalten ist die Failsafe-Funktionalität nicht aktiv, bis die MCU erstmalig einen aktualisierten Failsafe-Wert vom Gateway erhält.
- Die Verbindung zur PLT wird vom Gateway über einen ähnlichen Algorithmus überwacht. Der Timeout wird über Parameter eingestellt.
- Es wird empfohlen, die Failsafe-Funktionalität in redundanten Konfigurationen nicht zu verwenden.
- Die Failsafe-Überwachung in der MCU ist bei Betrieb VORORT nicht aktiv.
- Im Fall der Nutzung eines Ethernet-Gateways für die Kommunikation mit dem PLS muss die Implementierung von Failsafe mit verschiedenen Ethernet Clients vorab mit ABB geklärt werden.
6 Control Access (Schaltberechtigung)

Weitergehende Informationen über diese Funktionalität sind im INSUM Leitfaden Control Access zu finden.

6.1 Philosophie der Funktion Schaltberechtigung

Die Struktur des INSUM-Systems ermöglicht die parallele und gleichzeitige Ansteuerung der Motorstarter durch verschiedene Instanzen (Gateways, MMI, OS, Vorortsteuerung). Dabei muss es möglich sein, einen bestimmten Motor zu einem bestimmten Zeitpunkt von nur einer Stelle aus zu steuern. Diese Zugriffsrechte werden normalerweise extern verwaltet. INSUM bietet eine eingebaute Zuteilung der Steuerung, die sogenannte Schaltberechtigung oder Control Access (CA). Ohne Aktivierung der CA-Funktion haben alle ICU (SU)-Geräte (Gateways, MMI, OS) dieselben Rechte. Mit CA kann eine Hierarchie der Steuergeräte per Parametereinstellung implementiert werden. Mit Hilfe dieses Parameters wird jedem ICU (SU)-Gerät eine Prioritätsstufe von 2...13 zugewiesen.

Control Access bietet die folgenden Möglichkeiten:
• Die Steuerung jeder MCU kann jedem SU-Gerät gesondert übertragen werden
• Eine MCU kann jederzeit nur von einem SU-Gerät angesteuert werden (CA Eigner)
• Das SU-Gerät mit der höheren Priorität kann die Schaltberechtigung an ein Gerät mit niedrigerer Priorität weitergeben (CAPass)
• Das SU-Gerät mit der höheren Priorität kann einem Gerät mit niedrigerer Priorität die Schaltberechtigung jederzeit entziehen
• Zum Entzug der Schaltberechtigung führt das Gerät die Funktion CAPass an sich selbst aus.
• CAPass an Geräte höherer Priorität ist nicht möglich
• Die MCU akzeptiert CAPass nur für Geräte, die in der SU-Lifelist als aktiv gekennzeichnet sind
• Wenn das Gerät, das aktuell die MCU ansteuert, aus der SU-Lifelist entfernt wird, bedeutet dies die Freigabe der Schaltberechtigung für die MCU
• Der CA Eigner kann die Schaltberechtigung für eine MCU durch Senden von CAPass =0x0000 freigeben.

6.2 Einschränkungen

• MMI, OS, MODBUS Gateway und Ethernet Gateway unterstützen die Funktion Schaltberechtigung auf Steuerungsebene
• PROFIBUS Gateway unterstützt die CA-Funktion nicht
• MCU und PR112 unterstützen die CA-Funktion auf der Feldgeräteebene
• ITS unterstützt CA nicht (Gerät erlaubt nur manuelle Betätigung)
• MMI und OS unterstützen zusätzlich den Algorithmus ANFO-CA

6.3 Konfiguration des Control Access in INSUM

6.3.1 Festlegung der Priorität von ICU-Geräten (SU-Geräten)
Zu diesem Zweck wird zunächst die Rangordnung der ICU (SU)-Geräte innerhalb des Systems festgelegt:

<table>
<thead>
<tr>
<th>Priorität</th>
<th>Gerät</th>
<th>Domain/Subnet/Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VORORT / Hardware (immer höchste Priorität = fest)</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>SU-Gerät mit höchster Priorität (GW)</td>
<td>0//</td>
</tr>
<tr>
<td>3</td>
<td>SU-Gerät mit zweithöchster Priorität (GW)</td>
<td>0//</td>
</tr>
<tr>
<td>4</td>
<td>SU-Gerät mit dritthöchster Priorität (GW)</td>
<td>0//</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>0//</td>
</tr>
<tr>
<td>14</td>
<td>VORORT / Software (immer niedrigste Priorität = fest)</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>nc</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>CA wird verwendet (Bit intern von Gateways verwendet)</td>
<td>--</td>
</tr>
</tbody>
</table>
6.3.2 Konfiguration der MCU-/PR112-Parameter

Die folgenden Parameter müssen eingestellt werden:

- CA wird verwendet = Ja
- Konfiguration der Adressenliste gemäß 6.3.1 (nur tatsächlich verwendete Adressen müssen eingestellt werden)
- Einstellwert für Lifelist Timeout
- Bei PR112 ab Version 2.0: CA Sendezyklus

Anmerkung: Individuelle Einstellungen sind möglich, es wird jedoch empfohlen, für alle MCUs/PR112 dieselben Einstellungen vorzunehmen!!

6.3.3 Konfiguration der Parameter für ICU-Geräte (SU-Geräte)

Die Parameter sind wie folgt einzustellen:

- Priorität gemäß 6.3.1 vergeben
- Benutzername für Schaltberechtigung eingeben (zur Anzeige an der MMI)
- SU Lifelist Sendezyklus einstellen
- SU Lifesign Sendezyklus einstellen
- SU Lifesign Timeout einstellen (= 3 x SU Lifesign-Sendezyklus)

Anmerkung: Nur das SU-Gerät mit der höchsten Priorität sendet die SU-Lifelist per Broadcast an alle MCUs. Bei Ausfall dieses Geräts übernimmt das SU-Gerät mit der zweithöchsten Priorität automatisch die Funktionalität, etc.

6.3.4 Ansteuerung von Geräten über CAPass (Control Access weitergeben)

Zur Weitergabe der Schaltberechtigung muss eine Meldung CAPass zusammen mit dem Bitmuster für den neuen Besitzer der Schaltberechtigung ausgesendet werden (entsprechend der nachstehenden Tabelle - es ist jeweils nur ein Bit gesetzt).

<table>
<thead>
<tr>
<th>Priorität</th>
<th>Hex-Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>0x0002</td>
</tr>
<tr>
<td>3</td>
<td>0x0004</td>
</tr>
<tr>
<td>4</td>
<td>0x0008</td>
</tr>
<tr>
<td>5</td>
<td>0x0010</td>
</tr>
<tr>
<td>6</td>
<td>0x0020</td>
</tr>
<tr>
<td>7</td>
<td>0x0040</td>
</tr>
<tr>
<td>8</td>
<td>0x0080</td>
</tr>
<tr>
<td>9</td>
<td>0x0100</td>
</tr>
<tr>
<td>10</td>
<td>0x0200</td>
</tr>
<tr>
<td>11</td>
<td>0x0400</td>
</tr>
<tr>
<td>12</td>
<td>0x0800</td>
</tr>
<tr>
<td>13</td>
<td>0x1000</td>
</tr>
<tr>
<td>14</td>
<td>0x2000</td>
</tr>
<tr>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
</tr>
</tbody>
</table>

Freigabe 0x0000

Um die Schaltberechtigung zurückzuerhalten, kann ein ICU (SU)-Gerät (mit höherer Priorität als der aktuelle CA-Besitzer) den Befehl CAPass an seine eigene Prioritätsstufe senden.
Annex A - Begriffe und Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Begriff</th>
<th>Erläuterung / Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backplane</td>
<td>(Grundplatte)</td>
<td>INSUM-Backbone, Bestandteil der INSUM Communications Unit (ICU). Nimmt die folgenden INSUM-Geräte auf: Router, Gateways, Uhr, Netzteil.</td>
</tr>
<tr>
<td>CA</td>
<td>Control Access</td>
<td>Eine Funktion des INSUM-Systems, mit der Zugriffsrechte für jede Geräteebene festgelegt werden können (z.B. Leitsystem, Gateway, Feldgerät)</td>
</tr>
<tr>
<td>CAT</td>
<td>Control Access Table</td>
<td>Tabelle der Zugangsberechtigungen</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
<td>Leistungsschalter (in diesem Fall: ABB SACE Emax mit elektronischem Auslöser PR112-PD/LON)</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
<td>siehe auch PLS (Leitsystem)</td>
</tr>
<tr>
<td>Eth</td>
<td>Ethernet</td>
<td>Ethernet ist eine Netzwerkeotechnologie z.B. für Firmennetzwerke. Der Ethernet-Standard beschreibt das physikalische Medium, die Regeln für die Zugangssteuerung und die Telegrammrahmen.</td>
</tr>
<tr>
<td>FD, FU</td>
<td>Feldgerät</td>
<td>Sammelbegriff für die an den LON-Feldbus angeschlossenen Geräte (z.B. Motorsteuergeräte und Leistungsschalter-Auslösegeräte)</td>
</tr>
<tr>
<td>GPI</td>
<td>General Purpose Input</td>
<td>Digitaler Mehrzweckeingang der MCU</td>
</tr>
<tr>
<td>GPO</td>
<td>General Purpose Output</td>
<td>Digitaler Mehrzweckausgang der MCU</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
<td>System zur Erfassung der lokalen Position, der Weltzeit und der Zeitzone; die GPS-Technik versorgt Systeme mit exakten Zeitangaben</td>
</tr>
<tr>
<td>GW</td>
<td>Gateway</td>
<td>Ein Gateway bildet die Schnittstelle zwischen dem LON-Protokoll in INSUM und anderen Kommunikationsprotokollen (z.B. TCP/IP, Profibus, Modbus)</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface (Benutzerschnittstelle)</td>
<td>Allgemeine Bezeichnung für Benutzeroberflächen für Feldgeräte auf Schaltanlagenebene, in Schaltanlage integriert oder als Handgeräte</td>
</tr>
<tr>
<td>ICU</td>
<td>INSUM Communications Unit (INSUM-Kommunikations-einheit)</td>
<td>Die INSUM Communications Unit besteht aus der Backplane, Gateways, Routern, der Systemuhr und dem Netzteil. Sie bildet die Kommunikationsschnittstelle innerhalb von INSUM sowie zwischen INSUM und übergeordneten Leitsystemen. Frühere Bezeichnungen: SGC, SU</td>
</tr>
<tr>
<td>INSUM OS</td>
<td>INSUM Operator Station</td>
<td>Tool zur Parametrierung, Überwachung und Steuerung von Geräten innerhalb von INSUM</td>
</tr>
<tr>
<td>LON</td>
<td>Local Operating Network</td>
<td>LON ist die Abkürzung für das Netzwerk LonWorks. Dieses findet als Schaltanlagenbus Verwendung in INSUM.</td>
</tr>
<tr>
<td>LonTalk</td>
<td>LonTalk Protokoll</td>
<td>Feldbus-Kommunikationsprotokoll in LonWorks-Netzwerken.</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Begriff</td>
<td>Erläuterung / Anmerkungen</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MCU</td>
<td>Motor Control Unit (Motorsteuergerät)</td>
<td>MCU ist eine allgemeine Bezeichnung für eine Reihe von elektronischen Motorsteuerungsgeräten in INSUM. Sie übernimmt Schutz-, Steuerungs- und Überwachungsfunktionen für einen Motorstarter in der Schaltanlage.</td>
</tr>
<tr>
<td>MMI</td>
<td>Man Machine Interface (Benutzerschnittstelle)</td>
<td>Die INSUM-Benutzerschnittstelle auf Schaltanlagenebene zur Parametrierung und Steuerung von Kommunikations- und Feldgeräten.</td>
</tr>
<tr>
<td>MNS</td>
<td>MNS Modulare Niederspannungs-Schaltanlage von ABB</td>
<td></td>
</tr>
<tr>
<td>NV,nv</td>
<td>LON-Netzwerkvariable</td>
<td>Eine Netzwerkvariable ist ein Datenelement im LonTalk-Protokoll mit max. 31 Bytes Daten.</td>
</tr>
<tr>
<td>Nvi, nvi</td>
<td>LON-Netzwerkvariable, Eingang</td>
<td>LON-Bus Eingangsvariable</td>
</tr>
<tr>
<td>Nvo, nvo</td>
<td>LON-Netzwerkvariable, Ausgang</td>
<td>LON-Bus Ausgangsvariable</td>
</tr>
<tr>
<td>OS</td>
<td>Operator Station (OS)</td>
<td>siehe INSUM OS</td>
</tr>
<tr>
<td>PLS</td>
<td>Prozessleit system</td>
<td>Übergeordnetes Leittechnik-System,</td>
</tr>
<tr>
<td>Profibus DP</td>
<td>Feldbus-Kommunikationsprotokoll mit zyklicher Datenübertragung</td>
<td></td>
</tr>
<tr>
<td>Profibus DP-V1</td>
<td>Feldbus-Kommunikationsprotokoll, Erweiterung von Profibus-DP, zur zyklischen Datenübertragung und Multi-Mastering</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Programmable Release (programmierbarer Auslöser)</td>
<td>Leistungsschalter-Auslösegerät (in diesem Fall: ABB SACE Emax PR112-PD/LON)</td>
</tr>
<tr>
<td>PTB</td>
<td>Physikalisch-Technische Bundesanstalt</td>
<td>Deutsche Zulassungsstelle für Ex-e geschützte Anwendungen.</td>
</tr>
<tr>
<td>PTC</td>
<td>Positiver Temperaturkoeffizient</td>
<td>Ein temperaturabhängiger Widerstand zur Erkennung hoher Motortemperaturen und zur Abschaltung des Motors beim Erreichen einer Alarmstufe.</td>
</tr>
<tr>
<td>RCU</td>
<td>Remote Controlled Unit (ferngesteuertes Gerät)</td>
<td>Vor Ort installierte Steuerung für Motorstarter, die direkt unter Umgehung der MCU für den Vorortbetrieb mit dem Starter kommuniziert.</td>
</tr>
<tr>
<td>Router</td>
<td>Gerät innerhalb eines LON-Netzwerks zur Verbindung mehrerer LON-Subnets. Ist Teil der INSUM Communications Unit (siehe ICU)</td>
<td></td>
</tr>
<tr>
<td>RTC</td>
<td>Echtzeituhr</td>
<td>Teil der INSUM-Systemuhr und optionaler Zeitgeber für INSUM</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
<td>Überwachende Steuerung und Datenerfassung</td>
</tr>
<tr>
<td>SGC</td>
<td>Switchgear Controller</td>
<td>Frühere Bezeichnung der INSUM Communications Unit</td>
</tr>
<tr>
<td>SPS</td>
<td>Speicherprogrammierbare Steuerung</td>
<td>Steuerung auf niedriger Ebene</td>
</tr>
<tr>
<td>STW</td>
<td>Stromwandler</td>
<td>Stromwandler</td>
</tr>
<tr>
<td>SU</td>
<td>Switchgear Unit</td>
<td>Frühere Bezeichnung der INSUM Communications Unit</td>
</tr>
<tr>
<td>Systemuhr</td>
<td>INSUM-Gerät zur Zeitsynchronisation zwischen Zeitgeber und allen MCUs. Gehört zur INSUM Communications Unit (siehe ICU)</td>
<td></td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Begriff</td>
<td>Erläuterung / Anmerkungen</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>TFLC</td>
<td>Thermal Full Load Current</td>
<td>Beschreibung siehe MCU-Parameterbeschreibung</td>
</tr>
<tr>
<td>TOL</td>
<td>Thermische Überlast</td>
<td>Beschreibung siehe MCU-Parameterbeschreibung</td>
</tr>
<tr>
<td>VU</td>
<td>Voltage Unit</td>
<td>Spannungsmess- u. Versorgungseinheit für MCU 2</td>
</tr>
<tr>
<td>Wink</td>
<td>Die Wink-Funktion erlaubt die Identifizierung eines Geräts im LON-Netzwerk. Wenn ein Gerät eine Wink-Meldung vom Feldbus erhält, reagiert es mit einer optischen Anzeige (blinkende LED).</td>
<td></td>
</tr>
</tbody>
</table>