User’s manual
Prevention of unexpected start-up (option +Q950) for ACS880 multidrives
## List of related manuals

<table>
<thead>
<tr>
<th>General drive manuals</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety instructions for ACS880 multidrive cabinets and modules</td>
<td>3AUA00000102301</td>
</tr>
<tr>
<td>Mechanical installation instructions for ACS880 multidrive cabinets</td>
<td>3AUA00000101764</td>
</tr>
<tr>
<td>Electrical planning instructions for ACS880 multidrive cabinets and modules</td>
<td>3AUA00000102324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply unit manuals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-207 IGBT supply units hardware manual</td>
<td>3AUA00000130644</td>
</tr>
<tr>
<td>ACS880-307 (+A003) diode supply units hardware manual</td>
<td>3AUA00000102453</td>
</tr>
<tr>
<td>ACS880-307 (+A018) diode supply units hardware manual</td>
<td>3AXD50000011408</td>
</tr>
<tr>
<td>ACS880-907 regenerative rectifier units hardware manual</td>
<td>3AXD50000020546</td>
</tr>
<tr>
<td>ACS880 IGBT supply control program firmware manual</td>
<td>3AUA00000131562</td>
</tr>
<tr>
<td>ACS880 diode supply control program firmware manual</td>
<td>3AUA00000103295</td>
</tr>
<tr>
<td>ACS880 regenerative rectifier control program firmware manual</td>
<td>3AXD50000020827</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverter unit manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-107 inverter units hardware manual</td>
<td>3AUA00000102519</td>
</tr>
<tr>
<td>ACS880 primary control program firmware manual</td>
<td>3AUA00000085967</td>
</tr>
<tr>
<td>ACS880 primary control program quick start-up guide</td>
<td>3AUA00000098062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC tool manuals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up and maintenance PC tool Drive composer user’s manual</td>
<td>3AUA00000094606</td>
</tr>
<tr>
<td>Functional safety design tool user’s manual</td>
<td>3AXD10000102417</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-AP-x Assistant control panels user’s manual</td>
<td>3AUA00000085685</td>
</tr>
<tr>
<td>FSO-12 safety functions module user’s manual</td>
<td>3AXD50000015612</td>
</tr>
<tr>
<td>FSO-21 safety functions module user’s manual</td>
<td>3AXD50000015614</td>
</tr>
<tr>
<td>FSE-31 pulse encoder interface module user’s manual</td>
<td>3AXD50000016597</td>
</tr>
<tr>
<td>Functional safety; Technical guide No. 10</td>
<td>3AUA00000048753</td>
</tr>
<tr>
<td>Safety and functional safety; A general guide</td>
<td>1SFC001008B0201</td>
</tr>
<tr>
<td>ABB Safety information and solutions</td>
<td><a href="http://www.abb.com/safety">www.abb.com/safety</a></td>
</tr>
<tr>
<td>Manuals and quick guides for I/O extension modules, fieldbus adapters, etc.</td>
<td></td>
</tr>
</tbody>
</table>

You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative.
User’s manual

Prevention of unexpected start-up (option +Q950) for ACS880 multidrives

Table of contents

4. Start-up and acceptance test
# Table of contents

List of related manuals ................................................. 2

1. Introduction to the manual

Contents of this chapter .................................................. 7
Applicability ................................................................. 7
Safety instructions ......................................................... 8
Target audience ............................................................. 8
Contents ................................................................. 9
Related documents ..................................................... 9
Abbreviations ............................................................. 9
Exclusion of liability .................................................... 10
Quick reference guide for implementing a safety system .......... 10

2. Option description and instructions

Contents of this chapter .................................................. 11
Overview ................................................................. 11
  Summary of wirings and settings .................................. 12
Operation principle ..................................................... 13
  Time scheme ............................................................ 13
  Operation principle diagram ....................................... 14
Wiring ................................................................. 16
Use of the safety function ............................................. 17
  Activating .............................................................. 17
  Resetting ............................................................... 17
POUS indications ......................................................... 17
Fault reaction function ................................................ 17
  FSO module ............................................................ 17
  FSE module ............................................................. 18
  Safety encoder ........................................................ 18
  STO function in the inverter units ................................ 18

3. Parameter settings

Contents of this chapter .................................................. 19
Introduction ............................................................... 19
FSO module ............................................................... 19
  General parameters .................................................. 20
  Parameters for the STO function .................................. 20
  Parameters for the SSE function .................................. 21
  Parameters for the POUS function ................................ 21
  FSE module and safety pulse encoder parameters .......... 22
Inverter units parameter settings .................................... 23
  Safety pulse encoder parameters ................................ 23

4. Start-up and acceptance test

Contents of this chapter .................................................. 25
Safety encoder interface ................................................ 25
## 5. Maintenance

Contents of this chapter .......................................................... 29  
Maintenance ........................................................................... 29 
Proof test interval ................................................................. 30 
Competence ............................................................................ 30 
Residual risk ........................................................................... 30 
Intentional misuse .................................................................... 30 
Decommissioning ...................................................................... 30 

## 6. Technical data

Contents of this chapter .......................................................... 31  
Safety data .............................................................................. 31 
  Safety performance with different safety pulse encoders .................. 31 
  Safety data values .................................................................. 32 
  Safety component types .......................................................... 32 
  Safety block diagram .............................................................. 32 
  Relevant failure modes ........................................................... 32 
  Fault exclusions ..................................................................... 32 
  Operation delays ..................................................................... 32 
General rules, notes and definitions ............................................. 33  
  Validation of the safety functions ............................................. 33 
    Validation procedure ........................................................... 33 
    Acceptance test reports ....................................................... 33 
    Competence ........................................................................ 33 
  Ambient conditions ............................................................... 33 
  Reporting problems and failures related to safety functions .......... 33 
Related standards and directives ................................................. 34  
  Compliance with the European Machinery Directive .................... 34 

## Further information

Product and service inquiries ..................................................... 35  
Product training ....................................................................... 35 
Providing feedback on ABB Drives manuals ............................... 35 
Document library on the Internet .............................................. 35
Introduction to the manual

Contents of this chapter

This chapter describes the manual in short and gives some general information for the reader. The chapter also contains a quick reference for implementing a safety system.

Applicability

The manual applies to ACS880 multidrives which have the option +Q950: Prevention of unexpected start-up with STO, with FSO. For the option +Q950, ABB installs the FSO-12 safety functions modules (option +Q973) or the FSO-21 safety functions modules (option +Q972) to the inverter units. When safety pulse encoders are used, ABB installs the FSE-31 pulse encoder interface modules (option +L521) and the FSO-21 modules to the inverter units. Only the FSO-21 module supports the FSE-31 module and the use of safety pulse encoders.

Required versions with the FSO-12 module:
• ACS880 primary control program: 1.80 or later
• FSO-12 safety functions module: revision C or later
• Drive composer pro: 1.6 or later.

Required versions with the FSO-21 module:
• ACS880 primary control program: 2.2 or later
• FSO-21 safety functions module: revision D or later
• FSE-31 pulse encoder interface module: revision D or later (if used)
• Drive composer pro: 1.8 or later.
Safety instructions

Only a qualified electrician who has appropriate knowledge on functional, machine and process safety is allowed to install, start up and maintain the safety circuit.

**WARNING!** This safety function does not disconnect the voltage of the main and auxiliary circuits from the drive. Never work on the electrical parts of the drive or the motor before you have also disconnected the drive system from the electric supply, from rotating permanent magnet motors and from rotating motors equipped with sine filters, and made sure by measuring that there is no dangerous voltage present.

**WARNING!** After you have made additions to the drive safety circuit or modified it, changed circuit boards inside the drive, replaced the FSO or FSE module or modified FSO module parameters, always test the operation of the safety circuit according to its acceptance test procedure. The change can affect unexpectedly. All customer-made changes are on the customer’s responsibility.

**WARNING!** The Safe torque off functionality is only achieved through the XSTO connector of the inverter control unit. True Safe torque off functionality is not achieved through the XSTO connectors of other control units (such as the supply control unit or the brake control unit). In the supply and brake units, the XSTO input must not be used for any safety function purposes to ensure personnel safety. The Safe torque off function is supported by any ACS880 inverter or drive firmware. It is not supported by supply or brake firmware.

**WARNING!** (With permanent magnet or synchronous reluctance [SynRM] motors only) In case of a multiple inverter IGBT failure, the inverter can produce an alignment torque which maximally rotates the motor shaft by $\frac{180}{p}$ (with permanent magnet motors) or $\frac{180}{2p}$ (with synchronous reluctance [SynRM] motors) degrees regardless of the activation of the Safe torque off function. $p$ denotes the number of pole pairs.

**WARNING!** Read and obey all safety instructions in *ACS880 multidrive cabinets and modules safety instructions* (3AUA0000102301 [English]). If you ignore them, injury or death, or damage to the equipment can occur.

This manual does not repeat the complete safety instructions of the drive but it only includes the instructions related to the scope of this manual.

**Target audience**

This manual is intended for people who install, start up, use and service the drive safety option. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components, electrical schematic symbols, and functional safety.
Contents

The chapters of this manual are briefly described below.

*Introduction to the manual* (this chapter) introduces this manual and gives safety instructions.

*Option description and instructions* describes the safety function and instructs how to wire and use it.

*Parameter settings* lists the parameters that you have to set for the safety function.

*Start-up and acceptance test* gives instructions on how to start up, test and validate the safety function.

*Maintenance* gives instructions on how to maintain the safety function.

*Technical data* gives general rules, notes and definitions related to safety functions and lists the related standards and directives.

Related documents

- Product manuals (see the inside of the front cover)
- Circuit diagrams delivered with the drive
- Part lists delivered with the drive
- Safety data report

Abbreviations

Abbreviations used in this manual are listed below.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI</td>
<td>Digital input</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>Digital output</td>
<td></td>
</tr>
<tr>
<td>FSE-31</td>
<td>Pulse encoder interface module</td>
<td></td>
</tr>
<tr>
<td>FSO-12</td>
<td>Safety functions module which does not support the use of encoders</td>
<td></td>
</tr>
<tr>
<td>FSO-21</td>
<td>Safety functions module which supports the FSE-31 module and the use of safety encoders</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>HFT</td>
<td>Hardware fault tolerance</td>
<td>IEC 61508, EN/IEC 62061</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistor</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Performance level (levels are: a, b, c, d and e). Corresponds to SIL.</td>
<td>EN ISO 13849-1</td>
</tr>
<tr>
<td>POUS</td>
<td>Prevention of unexpected start-up</td>
<td>EN 1037</td>
</tr>
<tr>
<td>R8i</td>
<td>Frame size designation of the inverter unit</td>
<td></td>
</tr>
<tr>
<td>SIL</td>
<td>Safety integrity level (levels are: 1, 2, 3 and 4)</td>
<td>IEC 61508, IEC 61511, EN/IEC 62061, EN/IEC 61800-5-2</td>
</tr>
<tr>
<td>SSE</td>
<td>Safe stop emergency</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to the manual

Exclusion of liability

ABB is not responsible for the implementation, verification and validation of the overall safety system. It is the responsibility of the system integrator (or other party) who is responsible for the overall system and system safety.

The system integrator (or other responsible party) must make sure that the entire implementation complies with all relevant standards, directives and local electrical code, and that the system is tested, verified and validated correctly.

Quick reference guide for implementing a safety system

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the appropriate functional safety standard for the implementation: EN ISO 13849-1, EN/IEC 62061, IEC 61511 or other.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you select EN/IEC 62061 or IEC 61511, make a safety plan. See EN/IEC 62061 or IEC 61511.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess safety: analyze and evaluate risks (estimate SIL/PL) and define risk reduction strategies. Define the safety requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design the safety system. The part of the design made by ABB is described in chapter Option description and instructions on page 11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify the achieved SIL/PL with, for example, FSDT-01 Functional safety design tool or similar. See Functional safety design tool user's manual (3AXD10000102417 [English]).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect the wiring. See section Wiring on page 16.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set the necessary parameters. See chapter Parameter settings on page 19.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validate that the implemented system meets the safety requirements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Do the acceptance test. See chapter Start-up and acceptance test on page 25.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write the necessary documentation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation | Description | Reference |
|--------------|-------------|-----------|
| STO | Safe torque off. In this manual, this term is used in two different contexts:  
• the STO circuit in the drive (the drive STO function)  
• the STO safety function in the FSO module.  
Safety functions in the FSO module (eg, STO, SSE, SS1 and POUS) activate the drive STO function, that is, open the drive STO circuit. In addition, some safety functions can activate the STO safety function in the FSO module, which in turn opens the drive STO circuit. | EN/IEC 61800-5-2 |
Option description and instructions

Contents of this chapter

This chapter describes the operation of the option +Q950: Prevention of unexpected start-up and instructs how to wire and use it.

Overview

The option +Q950 uses the FSO-12 safety functions module (option +Q973) or the FSO-21 safety functions module (option +Q972) for the Prevention of unexpected start-up (POUS) safety function. ABB installs the FSO modules to the inverter units and sets default parameter values for the option at the factory. The user installs and wires an operating switch and an indication lamp (optional) on site. These are not included in the delivery.

When safety pulse encoders are used in the safety application, also the FSE-31 pulse encoder interface modules (option +L521) are installed in the inverter units. ABB installs the FSE modules to the inverter units and sets the delivery configuration for the cabinet safety option at the factory.

The user activates the POUS function with an operating switch mounted, for example, on a control desk. When the switch is open (off), the POUS function is active and the POUS indication lamp is on.

When the user switches off the POUS switch, he/she actually activates the Safe torque off (STO) function in the inverter unit. The STO function disables the control voltage of the power semiconductors of the inverter unit output stage. This prevents the inverter unit from generating the torque required to rotate the motor(s). With this function, the user can do
short-time operations (like cleaning) and/or maintenance work on the non-electrical parts of the machinery without switching off and disconnecting the drive.

For a detailed description of the Safe torque off function, see the inverter unit hardware manual.

For more information on the FSO module, see FSO-12 safety functions module user’s manual (3AXD50000015612 [English]) or FSO-21 safety functions module user’s manual (3AXD50000015614 [English]).

For more information on the FSE module, see FSE-31 pulse encoder interface module user’s manual (3AXD50000016597 [English]).

The design principles of the option +Q950 comply with EN ISO 13850.

The STO function complies with EN/IEC 61800-5-2. For a complete list of related standards and European directives, see section Related standards and directives on page 34.

### Summary of wirings and settings

The wirings and settings of the POUS function are:

- The inverter units are equipped with the FSO safety functions modules (option +Q973 or +Q972). ABB installs the modules at the factory.
- The user must wire a dual-channel POUS switch to the FSO module. See section Wiring on page 16.
- The user can wire a POUS indication lamp to the FSO module (optional).
- The digital input of the FSO module to which the POUS switch is connected, is selected as the input for the POUS request. This is an FSO module parameter that ABB sets at the factory. The user must check the setting at the start-up.
- The digital output of the FSO module to which the POUS indication lamp is connected, is selected as the output for the POUS completed signal. This is an FSO module parameter that ABB sets at the factory. The user must check the setting at the start-up.

Additional wirings when safety pulse encoders are used:

- The inverter units are equipped with the FSE-31 pulse encoder interface modules (option +L521). ABB installs the modules at the factory.
- The motors must be equipped with safety pulse encoders. The user installs the safety pulse encoders and wires them to the FSE modules. The user must make sure that the required safety integrity (SIL/PL) can be achieved with the used safety encoder(s).

For a detailed description of wirings, see sections Operation principle diagram on page 14 and Wiring on page 16. For a detailed description of parameter settings, see chapter Parameter settings on page 19.
Operation principle

Time scheme

This time scheme diagram illustrates the operation of the POUS function. This safety function uses the POUS function of the FSO module. For more information, see the FSO module user’s manual.

A POUS indication delay (see parameter *POUS.13*): An additional security delay. The POUS completed indication (parameter *POUS.22*) becomes active after this delay.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The user stops the motor(s).</td>
</tr>
</tbody>
</table>
| 2    | After the motor(s) have reached the zero speed, the user switches the POUS switch off (open). The FSO module activates the inverter unit STO function.  
**Note:** If the user activates the POUS function when the motor is running, the FSO module activates the inverter unit STO function, the motor(s) coasts to a stop and the FSO module generates a fault. |
| 3    | After time A has elapsed, the POUS indication lamp turns on (POUS completed indication). |
| 4    | The user switches the POUS switch on (closed). The FSO module deactivates the inverter unit STO function and turns off the POUS indication lamp. The user can start the motor(s) again.  
**Note:** In this case, automatic acknowledgement of the POUS function is selected (parameter *POUS.02*). |
| 5    | The user restarts the motor(s). |
## Operation principle diagram

This diagram shows the connections of two FSO modules in a network (without the safety encoder interface). For more information, see the circuit diagrams of the delivery.

![Operation principle diagram](image)

- **FSO**: FSO safety functions module (on the inverter unit control board)
- **DI**: Digital input
- **DO**: Digital output
- **GND**: Ground
- **STO**: Safety trip output
- **M**: Mains supply

The dash-dot line (— — —) indicates a user-defined installation.
The dash line (— — —) indicates an additional network.

- **Sxx**: POUS switch for 24 V (user-defined)
- **Pxx**: POUS indication lamp (user-defined)
Initial status: The drive is in operation and the motor is not running.

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The user activates the POUS function by switching off the POUS switch [Sxx]. This activates the POUS function in the FSO module.</td>
</tr>
<tr>
<td>2.</td>
<td>The FSO module de-energizes the STO inputs on the inverter units control boards. This activates the inverter units STO function. The inverter units indicate the status. See section POUS indications on page 17.</td>
</tr>
<tr>
<td>3.</td>
<td>The POUS indication lamp [Pxx] switches on.</td>
</tr>
<tr>
<td>4.</td>
<td>The user cannot start the motor(s) while the inverter units STO function is on.</td>
</tr>
</tbody>
</table>
| 5.   | Normal operation resumes after the user:  
  - switches on the POUS switch [Sxx]  
  - resets the inverter units (if parameter 31.22 STO indication run/stop has been set so that a fault is generated, see page 23). |
Wiring

The POUS switch and indication lamp for the POUS function are not factory-installed. The user must install and wire them to the inverter units on site.

There is an extension terminal block [X68] for the connections to the FSO module inside the inverter unit cabinet. This terminal block is the user interface. The FSO module connectors [X113] and [X114] have been wired to [X68]. This table shows the connections between the extension terminal block and the FSO module.

<table>
<thead>
<tr>
<th>FSO X113:</th>
<th>X68</th>
<th>FSO X114:</th>
<th>X68</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>8,9</td>
<td>6</td>
<td>22, 23</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>13, 14, 15, 16</td>
<td>10</td>
<td>27, 28, 29, 30</td>
</tr>
</tbody>
</table>

There is a separate user interface (terminal block [X957]) inside the cabinet.

ABB installs the FSO module and the wirings between the FSO modules and the inverter units at the factory.

The FSO module has double terminals for the connection of the POUS switch. Wire the POUS switch to the appropriate terminals in the extension terminal block [X68]. See the table above, section Operation principle diagram on page 14 and the circuit diagrams of the delivery. Obey these general rules.

1. Use only double-contact switches. We recommend approved and lockable switches.

2. Connect the switch with two conductors (two-channel connection).
   
   **Note:** Keep the channels separate. If you use only one channel, or if the first and second channels are connected together (for example, in a chain), the cross-fault detection of the FSO module trips and activates the STO function of the inverter unit.
   
   **Note:** If you change the input and the parameter settings in the FSO module into a one-channel implementation, it affects the safety integrity of the safety function. The safety data that ABB has calculated for the function is not valid.

3. Use a shielded, twisted pair cable. We recommend a double-shielded cable and gold-plated contacts in the POUS switch.

4. The maximum allowed cable length between the inverter unit and the POUS switch (for the whole loop) is 250 m (820 ft).

5. Obey the general control cable installation instructions given in the inverter unit hardware manual.

If you use a POUS indication lamp, wire it to the appropriate terminals in the extension terminal block [X68]. We recommend an LED indication lamp. The maximum allowed cable length between the inverter unit and the indication lamp (for the whole loop) is 250 m (820 ft). See the table above, section Operation principle diagram on page 14 and the circuit diagrams of the delivery.
When safety pulse encoders are used, ABB installs the FSO-21 and FSE-31 modules and the wirings between the FSO modules and the inverter units at the factory. The user must wire the safety pulse encoders to the FSE modules on site. Obey these rules:

- Use a double-shielded, twisted pair cable.
- The maximum allowed cable length between the safety pulse encoder and the FSE module is 300 m (980 ft).

For more information, see *FSE-31 pulse encoder interface module user’s manual* (3AXD50000016597 [English]).

### Use of the safety function

#### Activating

Switch off the POUS switch.

#### Resetting

You do not need to push any reset button to restore to normal operation after deactivating the POUS function. The reset input in the FSO module is set to auto reset mode at the factory. However, you must reset the inverter units if they have tripped on fault at the activation of the POUS function. The reaction of the inverter units depends on parameter settings. See chapter *Parameter settings* on page 19.

### POUS indications

When the POUS function is active:

- the POUS indication lamp is on.

The indications that the FSO module generates are configurable. For more information, see chapter *Parameter settings* on page 19 and chapter *Fault tracing* in the FSO module user’s manual.

### Fault reaction function

**Definition:** The safety function has a ‘fault reaction function’ that attempts to bring the systems to a safe state if it detects any failure within the safety system:

- a short or open circuit or redundancy failure of the POUS switch wiring chain,
- any internal failure within the FSO or FSE modules, the safety encoder or inverter unit STO.

This section describes the fault reaction functions in the FSO and FSE modules, the safety encoder and the inverter units.

#### FSO module

The fault reaction function of the FSO module trips the inverter unit if it detects a failure. The FSO module activates the STO or Safe stop emergency (SSE) function. This activates on the inverter unit STO function. The inverter unit STO function is active until the fault has been repaired.

The FSO module goes into the Fail-safe mode. The FSO module LED STATUS/FAULT is red until the fault has been repaired.
To exit the Fail-safe mode, remove the cause of the fault and reset the FSO module by switching the power off and on, by pressing the Boot FSO button on the Safety view of Drive composer pro or with inverter unit parameter 96.09 FSO reboot. For more information, see the inverter unit firmware manual and the FSO module user’s manual.

**FSE module**

When a safety function is active, the fault reaction function of the FSO module trips the inverter unit if it detects a failure in the FSE module. The FSO module activates the STO function. This activates the drive STO function. The inverter unit STO function is active until the fault has been repaired.

When there are no active safety functions, the fault reaction function depends on the value of FSO parameter S_ENCGEN.11 FSE diagnostic failure reaction (see section General parameters on page 20).

The FSO module goes into the Fail-safe mode. The FSO module LED STATUS/FAULT is red and the FSE module LED STATUS is off until the fault has been repaired. Also the inverter unit indicates some of the FSE module faults.

To exit the Fail-safe mode, remove the cause of the fault and reset the FSO module by switching the power off and on, by pressing the Boot FSO button on the Safety view of Drive composer pro or with inverter unit parameter 96.09 FSO reboot.

For more information, see the inverter unit firmware manual, FSO-21 safety functions module user’s manual (3AXD50000015614 [English]) and FSE-31 pulse encoder interface module user’s manual (3AXD50000016597 [English]).

**Safety encoder**

The FSE module indicates the internal faults of the safety encoder as cabling faults. This activates the fault reaction function in the FSE module. This causes the FSO module to go into the Fail-safe mode (see previous sections).

The FSO module LED STATUS/FAULT is red and the FSE module LED ENC STATUS is off until the fault has been repaired. Also the inverter unit indicates the safety encoder fault.

To exit the Fail-safe mode, remove the cause of the fault and reset the FSO module by switching the power off and on, by pressing the Boot FSO button on the Safety view of Drive composer pro or with inverter unit parameter 96.09 FSO reboot.

The safety encoder goes into the Safe state. To exit the Safe state, remove the cause of the fault and reboot the safety encoder (for example, by switching the power off and on).

For more information, see the inverter unit firmware manual, FSO-21 safety functions module user’s manual (3AXD50000015614 [English]) and FSE-31 pulse encoder interface module user’s manual (3AXD50000016597 [English]).

**STO function in the inverter units**

The STO function in the inverter units has internal fault diagnostics and a fault reaction function which causes a fault trip in case it detects a redundancy fault of STO control signals or any internal failure. See the hardware and firmware manuals of the inverter unit.
Parameter settings

Contents of this chapter
This chapter lists the parameters that you have to set in the FSO modules and the inverter units.

Introduction
The person who configures the safety functions in the FSO module must be a competent person as required by IEC 61508-1 clause 6. In this context, the person must have expertise and knowledge of functional safety, the safety functions as well as the configuration of the FSO module. We recommend our training courses on the FSO module.

The example parameter values in this chapter are the delivered default values for the example POUS safety function presented in this manual (+Q950). We also assume that the FSO module is only used in this safety function and not in any other safety function at the same time. However, the actual deliveries vary. You must always check the pre-set parameter values against the delivery specific circuit diagrams and your application needs, and adjust the parameter values when necessary.

FSO module
You need the Drive composer pro PC tool to set the FSO module parameters, and a password to be able to download the configuration to the FSO module from Drive composer pro. For the default password of the FSO module, see the FSO module user’s manual. For more information on the Drive composer pro PC tool, see Start-up and maintenance PC tool Drive composer user’s manual (3AUA0000094606 [English]).

Note: When the motor is running, you cannot change the password, adjust the parameters, or upload or download the FSO configuration file.
Follow the configuration steps described in the FSO module user’s manual, chapter Configuration. There are parameters that you must set always and parameters that are related only to certain safety functions. These tables list all the parameters that you must check and set for the option +Q950. The example values apply only to the option +Q950.

### General parameters

These parameters are common to all safety functions.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSOGEN.21 Motor nominal speed</td>
<td>1500 rpm</td>
<td>Sets the nominal motor speed. Adjust the default value to meet the ratings of the motor in use.</td>
</tr>
<tr>
<td></td>
<td>FSOGEN.22 Motor nominal frequency</td>
<td>50 Hz</td>
<td>Sets the nominal motor frequency. Adjust the default value to meet the ratings of the motor in use.</td>
</tr>
</tbody>
</table>
|        | FSOGEN.41 Power-up acknowledgement | Automatic | Sets the power-up acknowledgement method of the FSO module.  
**Automatic:** You do not need to push a reset button after switching on the FSO module. The FSO module generates the acknowledgement signal automatically after the power-up.  
**Manual:** The FSO module reads the external acknowledgement signal through the digital input defined by parameter FSOGEN.42.  
Make sure that the value is Automatic. |
|        | FSOGEN.42 Acknowledgement button input | None        | Selects the digital input for the acknowledgement signal when parameter FSOGEN.41 Power-up acknowledgement or STO.02 STO acknowledgement has value Manual.  
In the safety function described in this manual, parameters FSOGEN.41 Power-up acknowledgement and STO.02 STO acknowledgement have value Automatic, and this digital input is not used. The safety function is configured not to require a reset/acknowledgement of the safety function after power-up or the removal of the safety function request. |

### Parameters for the STO function

These parameters are related to the STO function of the FSO module. The FSO module can activate the STO function in internal fault situations.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
</table>
|        | STO.02 STO acknowledgement | Automatic | Sets the acknowledgement method used in the STO, SSE and SS1 functions.  
**Automatic:** The FSO module generates the STO acknowledgement signal automatically, and the user does not have to press a reset button (see parameter FSOGEN.42 Acknowledgement button input).  
**Note:** The default value after factory reset is Manual. Always check this parameter after factory reset. |
|        | STO.11 STO input A            | None          | Sets the digital input that is connected to the primary input of the STO function.  
The safety option described in this manual does not use this function and the value must be None.  
**Note:** The default value after factory reset is DI X113:1&X114:1. Always check this parameter after factory reset. |
Parameters for the SSE function

These parameters are related to the Safe stop emergency (SSE) function of the FSO module. The FSO module can activate the SSE function in internal fault situations.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO.14</td>
<td>Time to zero speed with STO and modoff</td>
<td>2000 ms</td>
<td>Sets the time after which the acknowledgement is allowed after coast stop in the STO, SSE and SS1 functions. This parameter is relevant only when the FSO module activates the STO or SSE function in internal fault situations. Set this value always at the start-up. Use the estimated time in which the motor coasts to a stop from the maximum speed. <strong>Note:</strong> The default value after factory reset is 3,600,000 ms. Always check this parameter after factory reset. <strong>When a safety encoder is used:</strong> This parameter is relevant only if an encoder or FSE module failure occurs. The FSO module goes into the Fail-safe mode and activates the STO function. For more information, see the FSO-21 module user’s manual.</td>
</tr>
</tbody>
</table>

Parameters for the POUS function

These parameters are related to the POUS function in all FSO modules in the network.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POUS.01</td>
<td>POUS activity and version</td>
<td>Version 1</td>
<td>Activates or deactivates the POUS function and shows the version of the POUS function. <strong>Version 1:</strong> Activates the POUS function.</td>
</tr>
<tr>
<td>POUS.02</td>
<td>POUS acknowledgement</td>
<td>Automatic</td>
<td>Sets the POUS acknowledgement method. <strong>Automatic:</strong> The FSO module generates the POUS acknowledgement signal automatically after the POUS request signal has been removed. Make sure that this value is <strong>Automatic.</strong> <strong>Note:</strong> The default value after factory reset is <strong>Manual.</strong> Always check this parameter after factory reset.</td>
</tr>
<tr>
<td>POUS.11</td>
<td>POUS input</td>
<td>DI X113:3&amp;X114:3</td>
<td>Sets the digital input that is connected to the POUS input. For the option +Q950, ABB has configured the POUS request signal to these digital inputs at the factory.</td>
</tr>
<tr>
<td>POUS.13</td>
<td>POUS delay for completion</td>
<td>0 ms</td>
<td>Sets the time after which the POUS completed indication (<strong>POUS.22</strong>) is activated after the POUS request. Adjust the default value if necessary.</td>
</tr>
</tbody>
</table>
## Parameter settings

### FSE module and safety pulse encoder parameters

Set these parameters when you use a safety pulse encoder in the safety application.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.231</td>
<td>FSE 3X act and par version</td>
<td>Version 1</td>
<td>Activates the FSE-31 encoder interface and shows the version of the encoder parameter groups (91 and 92).</td>
</tr>
<tr>
<td>200.232</td>
<td>Number of encoders</td>
<td>Single encoder CH1</td>
<td>Shows the number of safety pulse encoders connected to the FSE module.</td>
</tr>
<tr>
<td>S_ENCGEN.01</td>
<td>Safe pulse encoder version</td>
<td>Version 1</td>
<td>Activates the safety pulse encoder and shows the version parameter group S_ENCGEN.</td>
</tr>
<tr>
<td>S_ENCGEN.11</td>
<td>FSE diagnostic failure reaction</td>
<td>STO</td>
<td>Sets the action taken when there is a problem with the FSE module. STO: The FSO module goes into the Fail-safe mode and activates the drive STO function.</td>
</tr>
<tr>
<td>S_ENCGEN.14</td>
<td>Enc speed cross comp tolerance</td>
<td>1 rpm</td>
<td>Sets the encoder speed cross comparison tolerance. This defines how much the axle speed of the motor can change within 1 ms. Adjust the default value to meet the motor in use.</td>
</tr>
<tr>
<td>S_ENCGEN.41</td>
<td>Gear numerator encoder 1</td>
<td>1</td>
<td>Sets the rotation direction for the safety pulse encoder. With this parameter, you can change the rotation direction of the motor. Adjust the default value if necessary.</td>
</tr>
<tr>
<td>91.11</td>
<td>Module 1 type</td>
<td>FSE-31</td>
<td>Sets the type of the safety pulse encoder interface module 1.</td>
</tr>
<tr>
<td>91.12</td>
<td>Module 1 location</td>
<td>2</td>
<td>Sets the slot in which the safety pulse encoder interface module 1 is located.</td>
</tr>
<tr>
<td>92.01</td>
<td>Encoder 1 type</td>
<td>HTL1</td>
<td>Activates or deactivates the communication with the safety pulse encoder interface module 1 and sets the type for the safety pulse encoder.</td>
</tr>
</tbody>
</table>
Inverter units parameter settings

The inverter unit parameter setting in ACS880 primary control program:

- parameter 31.22 STO indication run/stop is set to value Warning/Warning.

We recommend that you do not set parameter 31.22 STO indication run/stop to value 0, 1 or 2. This prevents the inverter units from making a fault every time the FSO module activates the inverter units STO function.

For more information, see the firmware manual.

Safety pulse encoder parameters

The inverter unit parameter settings in ACS880 primary control program when you use a safety pulse encoder:

- parameter 90.41 Motor feedback selection is set to value Encoder 1.
- parameter 90.45 Motor feedback fault is set to value Warning.
  Note: If you want that the inverter units trip on encoder faults, set this parameter to value Fault. For more information, see the firmware manual.
- parameter 92.21 Encoder cable fault mode is set to value A+, A1, B+, B-, Z+, Z-.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.02</td>
<td>Encoder 1 source</td>
<td>Module 1</td>
<td>Sets the safety pulse encoder interface module that the safety pulse encoder 1 is connected to.</td>
</tr>
<tr>
<td>92.10</td>
<td>Pulses/revolution</td>
<td>2048</td>
<td>Sets the number of HTL pulses per revolution for safety pulse encoder 1. Adjust the default value to meet the safety pulse encoder in use. Make sure that the value is according to the encoder nameplate.</td>
</tr>
</tbody>
</table>
| 92.17 | Accepted pulse freq of encoder 1 | 300 kHz | Sets the maximum pulse frequency range of encoder 1. Adjust the default value to meet the motor and safety pulse encoder in use. You can use this formula to define the value: \[ r_{\text{max}} \times ppr_{\text{enc}} + 10\% \], where
  \* \( r_{\text{max}} \) = the maximum motor speed used in the application (or the motor nominal speed)
  \* \( ppr_{\text{enc}} \) = Pulses/revolution of the safety pulse encoder (parameter 92.10). |
Start-up and acceptance test

Contents of this chapter
This chapter describes the start-up and acceptance procedure of the safety function.

Safety encoder interface
When you use safety pulse encoders in the safety application, validate the safety encoder interface as described in FSO-21 safety functions module user’s manual (3AXD50000015614 [English]), chapter Verification and validation.
Start-up and acceptance test

You need the Drive composer pro PC tool to perform the start-up and acceptance test.

Initial status: Make sure that the drive is ready for use, that is, you have done the tasks of the drive start-up procedure. See the hardware manual.

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="WARNING! Obey the Safety instructions, page 8. If you ignore them, injury or death, or damage to the equipment can occur." /></td>
</tr>
</tbody>
</table>

Checks and settings with no voltage connected

After you have done the wiring to the POUS switch and indication lamp, check the connections against the appropriate circuit diagrams. Make sure that the POUS request is not on (the POUS switch is closed).

Drives with R8i inverter modules: Check that the STO OUT output on the inverter control unit [A41] is chained to the STO inputs of all inverter modules. The STO circuit is disabled in spare part modules.

Settings with voltage connected

Make sure that the parameters relevant to the safety function are set as defined in chapter Parameter settings on page 19 and according to your application.

Create a backup file of the drive (button Backup/restore in the Drive composer pro PC tool).

Save the FSO safety file (button Save safety file in the Drive composer pro PC tool).
Note: The FSO safety file is not included in the drive backup process.

Acceptance test procedure

Make sure that you can run and stop the motors freely during the test.

We recommend that you monitor these signals with the Drive composer pro PC tool:
- 01.01 Motor speed used (rpm)
- 01.02 Motor speed estimated (rpm)
- 01.07 Motor current (A)
- 01.10 Motor torque (%)
- 23.01 Speed ref ramp input (rpm)
- 23.02 Speed ref ramp output (rpm)
- 90.01 Motor speed for control (rpm)
- 90.10 Encoder 1 speed (rpm)
- 200.01 FSO speed ch1 (rpm)
- 200.02 FSO speed ch2 (rpm)
- 200.03 FSO DI status
- 200.04 FSO DO status
- 200.05 FSO control word 1
- 200.06 FSO control word 2
- 200.07 FSO status word 1
- 200.08 FSO status word 2
- 200.09 Drive status word 1
- 200.10 Drive status word 2

Close the disconnector and switch on the power. Do not start the motors yet (you should activate the POUS function only when the motors are stopped).

Activate the POUS function by switching off the POUS switch.
### Start-up and acceptance test

<table>
<thead>
<tr>
<th>Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Make sure that the motors stay at zero speed and the inverter units indicate POUS as defined in section <em>POUS indications</em> on page 17. Note that there can be several POUS groups in a multidrives system. Make sure that only the desired inverter units indicate POUS.</td>
<td></td>
</tr>
<tr>
<td>Make sure that you cannot start the inverter units and motors from any control location: Switch the external start signal off and on (in the external control mode) or push the start key of the control panel (in the local control mode). The LOC and REM buttons of the control panel or the Drive composer PC tool switch between the local and external controls.</td>
<td></td>
</tr>
<tr>
<td><strong>Drives with R8i inverter modules:</strong> Make sure that “STO hardware failure” (5090) is not generated.</td>
<td></td>
</tr>
<tr>
<td>Deactivate the POUS function by switching on the POUS switch. Make sure that the inverter units do not restart directly after deactivation.</td>
<td></td>
</tr>
<tr>
<td>Switch off the inverter units start signals (only in external control mode). If the inverter units generate a fault message, reset the inverter units.</td>
<td></td>
</tr>
<tr>
<td>Restart the inverter units and motors and make sure that they operate normally.</td>
<td></td>
</tr>
<tr>
<td>Repeat the acceptance test for each POUS group.</td>
<td></td>
</tr>
<tr>
<td>If you made any changes in the FSO parameters, save the FSO safety file (button <strong>Save safety file</strong> in the Drive composer pro PC tool).</td>
<td></td>
</tr>
<tr>
<td>Fill in and sign the acceptance test report which verifies that the safety function is safe and accepted to operation.</td>
<td></td>
</tr>
</tbody>
</table>
Start-up and acceptance test
Maintenance

Contents of this chapter

This chapter gives maintenance instructions for the safety function.

Maintenance

After the operation of the safety circuit has been tested at start-up, it does not need any scheduled maintenance during its specified lifetime.

In addition to proof testing, it is a good practice to check the operation of the safety function when other maintenance procedures are carried out on the machinery. Do the acceptance test described in chapter Start-up and acceptance test on page 25.

If you change any wiring or component after the start-up, replace the FSO or FSE module, modify FSO module parameters or restore parameters to their factory default values, you must:

- Use only ABB approved spare parts.
- Register the change to the change log for the safety circuit.
- Test the safety function again after the change. Obey the rules given in chapter Start-up and acceptance test on page 25.
- Document the tests and store the report into the logbook of the machine.
Proof test interval

After the operation of the safety function is validated at start-up, the safety function must be maintained by periodic proof testing. In high demand mode of operation, the maximum proof test interval is 20 years. In low demand mode of operation, the maximum proof test interval is 2 or 5 years (high or low demand as defined in IEC 61508, EN/IEC 62061 and EN ISO 13849-1). Regardless of the mode of operation, it is a good practice to check the operation of the safety function at least once a year. Do the test as described in section Start-up and acceptance test on page 25.

The person responsible for the design of the complete safety function should also note the Recommendation of Use CNB/M/11.050 published by the European co-ordination of Notified Bodies for Machinery concerning dual-channel safety-related systems with electromechanical outputs:

- When the safety integrity requirement for the safety function is SIL 3 or PL e (cat. 3 or 4), the proof test for the function must be performed at least every month.
- When the safety integrity requirement for the safety function is SIL 2 (HFT = 1) or PL d (cat. 3), the proof test for the function must be performed at least every 12 months.

This is a recommendation and depends on the required (not achieved) SIL/PL. For example, contactors, breakers, safety relays, contactor relays, emergency stop buttons, switches etc. are typically safety devices which contain electromechanical outputs. The FSO and FSE modules and the STO circuit of the inverter unit do not contain any electromechanical components.

Competence

The maintenance and proof test activities of the safety function must be carried out by a competent person with expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6.

Residual risk

The safety functions are used to reduce the recognized hazardous conditions. In spite of this, it is not always possible to eliminate all potential hazards. Therefore the warnings for the residual risks must be given to the operators.

Intentional misuse

The safety circuit is not designed to protect a machine against intentional misuse.

Decommissioning

When you decommission a POUS circuit or an inverter unit, make sure that the safety of the machine is maintained until the decommissioning is complete.
Technical data

Contents of this chapter
This chapter gives general rules, notes and definitions related to safety functions and lists the related standards and directives.

Safety data

- Safety performance with different safety pulse encoders

See *FSE-31 pulse encoder interface module user’s manual* (3AXD50000016597 [English]).
Safety data values
Each multidrives delivery is unique. If included in the customer order, ABB calculates the safety data for each POUS circuit of the multidrives delivery, and delivers the data separately to the customer.

For the safety data of the FSO-12 module, see FSO-12 safety functions module user’s manual (3AXD50000015612 [English]).

For the safety data of the FSO-21 and FSE-31 modules, see FSO-21 safety functions module user’s manual (3AXD50000015614 [English]).

Safety component types
Safety component types as defined in IEC 61508-2:
• FSO module: type B
• FSE module: type B
• inverter unit STO circuit:
  • frame sizes R1...R9 and drives with R1i...R7i inverter modules: type A
  • frame sizes R10 and R11 and drives with R8i inverter modules: type B.

Safety block diagram
Each multidrives delivery is unique. If included in the customer order, ABB defines the safety block diagram for each multidrives delivery, and delivers the diagram separately to the customer.

Relevant failure modes
Relevant failure modes are:
• the FSO module detects any open circuits and short circuits and redundancy failures of the POUS input signal wirings. Similarly, it detects redundancy failures of the POUS switch when the POUS request on.
• internal failures of the FSO and FSE modules and the STO function in the inverter unit.

These failures are included in the failure rate value of the function.

Fault exclusions
Fault exclusions (not considered in the calculations):
• any short and open circuits in the cables of the safety circuit
• any short and open circuits in the cabinet terminal blocks of the safety circuits.

Operation delays
Total delay and fault reaction response time for the POUS function: less than 100 ms (includes the response time of inverter unit STO).
General rules, notes and definitions

■ Validation of the safety functions
You must do an acceptance test (validation) to validate the correct operation of safety functions.

Validation procedure
You must do the acceptance test using the checklist given in chapter Start-up and acceptance test on page 25:
• at initial start-up of the safety function
• after any changes related to the safety function (wiring, components, safety function related parameter settings etc.)
• after any maintenance action related to the safety function.

The acceptance test must include at least the following steps:
• having an acceptance test plan
• testing all commissioned functions for proper operation, from each operation location
• documenting all acceptance tests
• signing and storing the acceptance test report for further reference.

Acceptance test reports
You must store the signed acceptance test reports in the logbook of the machine. The report must include, as required by the referred standards:
• a description of the safety application (including a figure)
• a description and revisions of safety components that are used in the safety application
• a list of all safety functions that are used in the safety application
• a list of all safety related parameters and their values
• documentation of start-up activities, references to failure reports and resolution of failures
• the test results for each safety function, checksums, date of the tests and confirmation by the test personnel.

You must store any new acceptance test reports performed due to changes or maintenance in the logbook of the machine.

Competence
The acceptance test of the safety function must be carried out by a competent person with expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6. The test procedures and report must be documented and signed by this person.

■ Ambient conditions
For the environmental limits for the safety functions and the drive, refer to the hardware manual.

■ Reporting problems and failures related to safety functions
Contact your local ABB representative.
Related standards and directives

<table>
<thead>
<tr>
<th>Standard</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design</td>
</tr>
<tr>
<td>IEC 61511-1:2016</td>
<td>Functional safety - Safety instrumented systems for the process industry sector – Part 1: Framework, definitions, system, hardware and application programming requirements</td>
</tr>
<tr>
<td>IEC 61326-3-1:2008</td>
<td>Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) – General industrial applications</td>
</tr>
<tr>
<td>2006/42/EC</td>
<td>European Machinery Directive</td>
</tr>
<tr>
<td>Other</td>
<td>Machine-specific C-type standards</td>
</tr>
</tbody>
</table>

Compliance with the European Machinery Directive

The drive is an electronic product which is covered by the European Low Voltage Directive. However, the drive internal safety function of this manual (option +Q950) is in the scope of the Machinery Directive as a safety component. This function complies with European harmonized standards such as EN/IEC 61800-5-2. The declaration of conformity is delivered with the drive.
Further information

Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/searchchannels.

Product training
For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet at www.abb.com/drives/documents.
Contact us

www.abb.com/drives
www.abb.com/drivespartners