

Power and productivity

for a better worldTM

System 800xA Control
AC 800M
Configuration

System Version 5.1

System 800xA Control
AC 800M

Configuration

System Version 5.1

NOTICE
This document contains information about one or more ABB products and may include a
description of or a reference to one or more standards that may be generally relevant to
the ABB products. The presence of any such description of a standard or reference to a
standard is not a representation that all of the ABB products referenced in this document
support all of the features of the described or referenced standard. In order to determine
the specific features supported by a particular ABB product, the reader should consult the
product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intel-
lectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license. This
product meets the requirements specified in EMC Directive 2004/108/EEC and in Low
Voltage Directive 2006/95/EEC.

TRADEMARKS
All rights to copyrights, registered trademarks, and trademarks reside with their respec-
tive owners.

Copyright © 2003-2010 by ABB.
All rights reserved.

Release: June 2010
Document number: 3BSE035980-510

3BSE035980-510 5

TABLE OF CONTENTS

About This Book
General ..15

Document Conventions ...16

Warning, Caution, Information, and Tip Icons..16

Terminology...17

Related Documentation ...17

Section 1 - Basic Functions and Components
Introduction ...19

Control Project Templates ...21

Control Projects ...22

Program Organization Units, POU..23

Entities and Reservation (Multi-User Engineering) ..24

Entities ...24

Reservation...25

Environments...26

Engineering and Production Environments..26

Remove Environment Changes ..29

System Firmware Functions ..29

Hardware ...31

Standard System Libraries with Hardware...32

Customized Hardware Types..34

Configuring the Controller ...34

Basic Hardware ..37

Basic Library for Applications ..38

Application Types and Instances ...39

Table of Contents

3BSE035980-510 6

3BSE035980-510 6

Types and Instances - Concept ...40

Define a Type in the Editor ..41

Control Modules and Function Blocks ..47

Types in Applications...49

Types in User defined Library..50

Modify Complex Types..51

Decisions When Creating Types ..52

Create and Connect instances...53

Function Block Execution ...58

Control Module Execution ...60

FD Port ...61

Single Control Modules ...63

Aspect instances ...64

Variables and Parameters...66

Variable and Parameter Concept ..67

Variables ...69

Variable Entry...70

Specific Initial Values...77

External Variables ..78

Access Variables...79

Communication between Applications Using Access Variables81

Communication in an Application Using Global Variables82

Communication Variables ..83

Control the Execution of Individual Objects..88

Project Constants..92

I/O Addressing Guidelines ...96

Connecting Variables to I/O Channels ...97

Extensible Parameters in Function Blocks...102

Keywords for Parameter Descriptions..103

Property Permissions..105

Property Attribute Override..106

Viewer for Function Diagrams ..107

Table of Contents

3BSE035980-510 7

3BSE035980-510 7

Viewing the Diagram ...107

Common Viewing Operations in Diagram...110

Objects in Diagram Viewer ..111

Diagram Viewer in POU Online Editor (Online or Simulation View)...............119

Connecting the Diagram to Controller Tasks...120

Changing the Execution Order...120

Library Management ...122

Connect Libraries ...123

Import/Export Libraries ...128

Create Libraries ..128

Library States ...129

Library Versions ...130

Library Password Protection ..133

Add Types to Libraries Used in Applications ..134

Add Customized Hardware Types to Library...137

Device Import Wizard ..138

Additional Files for Libraries with Hardware ..139

Delete Hardware Types ..143

Type Usage for Hardware Types ..143

Hide and Protect Control Module Types, Function Block Types and Data Types144

Protect a Self-Defined Type ...145

Protect MySupervision Type Example...146

Task Control ..150

Task Connections ...150

Task Execution ...154

Task Priority ...155

Interval Time ..157

Offset ...158

Execution Time ..163

Overrun and Latency ...163

Overrun Supervision ..163

Latency Supervision...166

Table of Contents

3BSE035980-510 8

3BSE035980-510 8

Task Abortion...168

Load Balancing ..169

Non-Cyclic Execution in Debug Mode..170

Task Analysis...171

Exploring the Interface...172

Modifying Task Execution Time..176

Error and Warning Categories..176

Security..179

Authentication at Download...179

Confirmed Online Write...181

Search and Navigation...181

Search and Navigation Dialog..182

Search Settings ...183

Symbol and Definition ...185

References ..186

Navigation to Editors ...190

Search and Navigation Settings..191

Search Data ..194

Reports ...194

Input and Output Signal Handling...195

Backup Media..198

Compact Flash..199

Secure Digital...199

Adding CF Card or SD Card to Hardware ...200

Saving Cold Retain Values on Files ...201

Downloading the Application to Removable Media ..203

Configuration Load ..203

Upgrading Controller Firmware using Backup Media.......................................204

Restoring Formatted CF Cards to Original Size ..208

Compiler Switches...209

Settings ...209

Reports...212

Table of Contents

3BSE035980-510 9

3BSE035980-510 9

Difference Report ...212

Source Code Report ...215

Reports Generated at Download ..217

Portability Verification ...219

Performance Management...219

Project Documentation ..222

Objects and Types ..223

Editor Items..224

Used Types ...225

Section 2 - Alarm and Event Handling
Introduction ...227

Alarms and Events ...228

Alarm and Event Library..229

Process Alarm and Event Generation..229

Process Alarms and Events ..230

Detection of Simple Events..239

Built-in Alarm and Event Handling in Other Libraries......................................239

External Time Stamps (S800 I/O) ..244

External Time Stamps (PROFINET IO) ..244

External Time Stamps (INSUM)..246

Choose Alarm Handling Method for INSUM Alarms.......................................251

System Alarm and Event Generation ..252

Controller Generated System Alarms and System Simple Events.....................253

User Generated System Alarms ...255

Handling Alarms and Events ...255

Simple Events...256

System Alarms and Events...256

Time Stamps...256

Alarm and Event Communication ...259

Subscriptions ..259

Configuration of OPC AE Communication – Overview....................................259

Buffer Queues ..261

Table of Contents

3BSE035980-510 10

3BSE035980-510 10

Buffer Configuration ..262

Local Printers ...263

Print Format..263

Sending an Alarm to the Application...265

Third Party OPC Clients ..266

Translation – NLS Handling of Strings ...266

Alarm Examples ..267

AlarmSimple_M Example ...268

Alarm and Event Aspect Example (AlarmSimple_M)273

Alarm Owner Examples ...274

Condition State Example..278

Inhibit Example..280

Simple Event Examples ...282

Alarm and Event Functions ...286

System Diagnostics ..286

Acknowledgement Rules – State Diagrams ...287

Alarm Shelving..291

Section 3 - Communication
Introduction ...293

Communication Libraries ..294

COMLI Communication Library ...294

Foundation FIELDBUS HSE Communication Library294

INSUM Communication Library ...298

MB300 Communication Library..302

MMS Communication Library...303

MODBUS RTU Communication Library ..304

MODBUS TCP Communication Library...304

Modem Communication Library..304

Siemens S3964 Communication Library ...304

SattBus Communication Library..305

MTM Communication Library ..305

Serial Communication Library...306

Table of Contents

3BSE035980-510 11

3BSE035980-510 11

Supported Protocols...309

Control Network ..310

Network Redundancy...310

Statistics and Information on Communication...311

Variable Communication ...312

StartAddr ...313

Reading/Sending Data ...316

Connection Methods ..318

Communication Concepts ..320

Fieldbus Communication...323

HART Communication..326

SIL Certified Communication ...326

SIL Communication ...328

How to Choose Function Block/Control Modules in MMSCommLib329

Parameter Errors (ParError) ...331

Section 4 - Online Functions
Introduction ...333

Online Editors..334

Dynamic Display of I/O Channels and Forcing ..336

Forcing I/O Channels in SIL Applications...337

Scaling Analog Signals..339

Supervising Unit Status ...339

Find Out What is Wrong by Using HWStatus ...340

AllUnitStatus..341

Binary Channels ...342

Supervising Communication Variable Status ..343

Status Indications...344

Acknowledge Errors and Warnings..345

Tasks ..346

Interaction Windows..346

Status and Error Messages...349

Search and Navigation in Online and Test Mode ..350

Table of Contents

3BSE035980-510 12

3BSE035980-510 12

Project Documentation ..354

Section 5 - Maintenance and Trouble-Shooting
Introduction ...357

Remote Desktop Connection ...358

Characteristics of Control Builder as Terminal Server360

Backup and Restore ...363

Introduction ..363

Files for Separate Backup ..364

Remove and Add FSD Server Files ...364

Migration ...365

Migration from 800xA to Compact Control Builder ...365

Migration from Compact Control Builder to 800xA ...367

Import and Export..369

Introduction ..369

Export a Library ...369

Export an Application/Controller...371

Import an Application/Controller...371

Import and Export Alternatives..372

Applying Cold Retain Values when Importing Applications.............................373

About Library Import/Export ...374

Detailed Difference Report During Import ..375

Controller Configuration ...375

Controller Settings in Non-High Integrity Controllers377

Controller Settings in High Integrity Controllers...380

Error Handler Log Entries..383

Online Upgrade ...384

Why You Need to Read this First...384

Restrictions for Online Upgrade ..385

Preliminary Actions for Online Upgrade ...387

Online Upgrade Process ...390

Running Online Upgrade ...396

Solving an Interrupted Online Upgrade ...397

Table of Contents

3BSE035980-510 13

3BSE035980-510 13

Trouble-Shooting...398

General ...398

Log Files ...399

Crash Dumps for Analysis and Fault-Localization ..415

Remote Systems Information ...416

Diagnostics for Communication Variables...419

Analysis Tools ..425

System Diagnostics ..427

Trouble-Shooting Error Symptoms..433

Common Reason for Shut-Down AC 800M HI Controller................................436

Connection to Aspect Server..440

Error Reports ...441

Appendix A - Array, Queue and Conversion Examples
Arrays ..443

SearchStructComponent...445

InsertArray ...449

SearchArray..450

Queues ...454

Conversion Functions ..458

DIntToBCD ..458

BCDToDInt ..459

ASCII ...460

ASCII Conversion ..462

Appendix B - System Alarms and Events
General ..469

OPC Server – Software..470

OPC Server – Subscription..472

Controller – Software ..474

Controller – Hardware ...506

Alarms and Events Common for all Units ...508

Unit Specific Alarms and Events ...513

Table of Contents

3BSE035980-510 14

3BSE035980-510 14

Controller Units and Communication Interfaces ...513

Adapters ...569

S800 I/O ...576

S900 I/O ...624

S100 I/O ...661

INSUM Devices ...662

FF Devices..665

MB300 Nodes ..665

ABB Standard Drive ..666

Process Panel..668

ITS ...669

NAIO ff ...670

PPO ...676

Special IO Template ...680

INDEX

3BSE035980-510 15

About This Book

General
This manual describes how to use the basic 800xA programming and configuration
functions that can be accessed via the Plant explorer and Project Explorer interfaces.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules, which are not supported by this
standard.

• Section 1, Basic Functions and Components, describes all the basic functions
that are available via system functions, Basic library, and commands in the
Control Builder interface. This section also describes the type and object
concept, and how variables and parameters are used.

• Section 2, Alarm and Event Handling, describes the types in the Alarm and
Event library and how to use them to add alarm and event functions to objects
that do not have alarm functionality built into them.

• Section 3, Communication, describes the types in the Communication libraries
and how to use them to establish communication between controllers.

• Section 4, Online Functions, describes Control Builder functions in online
mode.

• Section 5, Maintenance and Trouble-Shooting, describes Control Builder
maintenance functions. It also describes how to use the Import/Export function,
how to write an error report, the location of various log files, how to read these
log files, and how to fix some common problems.

• Appendix A, Array, Queue and Conversion Examples contains some examples
on how to use queues and arrays, and how to convert numbers from one format
to another.

• Appendix B, System Alarms and Events describes system alarms and system
simple events from a controller perspective.

Document Conventions About This Book

16 3BSE035980-510

Document Conventions
Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons
This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result

Before running SIL certified applications in a High Integrity controller, refer to
System 800xA Control AC 800M Getting Started (3BSE041880*) manual.

Electrical Warning icon indicates the presence of a hazard which could result in
electrical shock.

Warning icon indicates the presence of a hazard which could result in personal
injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design the project or how to use
a certain function

 About This Book Terminology

3BSE035980-510 17

in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

Terminology
A complete and comprehensive list of Terms is included in the IndustrialIT
Extended Automation System 800xA, Engineering Concepts instruction
(3BDS100972*). The listing included in Engineering Concepts includes terms and
definitions as they apply to the 800xA system where the usage is different from
commonly accepted industry standard definitions and definitions given in standard
dictionaries such as Webster’s Dictionary of Computer Terms.

Related Documentation
A complete list of all documents applicable to the 800xA IndustrialIT Extended
Automation System is provided in Released User Documents, (3BUA000263*).
This document lists applicable Release Notes and User Instructions. It is provided in
PDF format and is included on the Release Notes/Documentation media provided
with the system. Released User Documents are updated with each release and a new
file is provided that contains all user documents applicable for that release with their
applicable document number. Whenever a reference to a specific instruction is
made, the instruction number is included in the reference.

Related Documentation About This Book

18 3BSE035980-510

3BSE035980-510 19

Section 1 Basic Functions and Components

Introduction
Control Builder is a programming tool that contains:

• Compiler.

• Programming editors.

• Standard libraries for developing controller applications.

• Standard hardware types (units) in libraries for configuring the controller.

The Control Builder tool also includes system firmware and common functions such
as control system templates, task supervision, security and access management.
Most of the application development can be accomplished using the basic functions
and components presented in this section.

This section is organized in the following manner:

• Control Project Templates on page 21 describes the different templates that can
be used to create a control project.

• Control Projects on page 22 describes how to create and work with control
projects.

• Program Organization Units, POU on page 23 introduces the Program
Organization Unit (POU) concept.

• Entities and Reservation (Multi-User Engineering) on page 24 introduces the
concept of reservation and entities.

• Environments on page 26 introduces the concept of environments.

• System Firmware Functions on page 29 describes firmware functions included
in the system, which can be used in any application.

Introduction Section 1 Basic Functions and Components

20 3BSE035980-510

• Hardware on page 31 describes the standard libraries for hardware types.

• Basic Library for Applications on page 38 describes the objects of the Basic
library, which can be included in any project.

• Application Types and Instances on page 39 introduces the very important,
object-oriented, types and objects concept. This subsection also describes how
to add user defined types and how to create objects (instances) from types.

• Variables and Parameters on page 66 describes how to use parameters and
variables to store and transfer values in the control system.

• Library Management on page 122 describes how to work with libraries.

• Viewer for Function Diagrams on page 107 describes the diagram viewer in
Control Builder.

• Hide and Protect Control Module Types, Function Block Types and Data
Types on page 144 describes how to hide and protect objects and types, using
the Hidden and Protected attributes.

• Task Control on page 150 describes how to set up tasks to control the execution
of the applications.

• Overrun and Latency on page 163 describes how to configure overrun and
latency control for the tasks.

• Task Analysis on page 171 describes the Task Analysis tool that detects the
possible task overrun/latency problems in an application before its download to
the controller.

• Security on page 179 describes how to set up access to actions and objects, as
well as how to set up access rights for SIL certified applications.

• Search and Navigation on page 181 describes how to use the search and
navigation function to find all instances of a type or to find out where a certain
variable is used.

• Input and Output Signal Handling on page 195 describes how to enable over
and under range for input and output objects.

• Backup Media on page 198 describes how to use the Backup Media as a
removable storage.

Section 1 Basic Functions and Components Control Project Templates

3BSE035980-510 21

• Compiler Switches on page 209 describes how to use Compiler Switches to
control the behavior of compiler.

• Reports on page 212 describes the function of the Difference Report and
Source Code Report.

• Performance Management on page 219 describes how to gather information of
the applications using the Compiler Statistics tool.

• Project Documentation on page 222 describes how to use the Project
Documentation function to document standard libraries, user defined libraries,
and applications in MS Word format.

Control Project Templates
A control project template sets up the necessary features required to build a control
project. The control project consists of system firmware functions, basic library
functions, application functions and a pre-set of hardware functions.

The 800xA System provides the following AC 800M control project templates:

• AC800M
Template for normal use, and for running non-SIL applications.

• AC800M_HighIntegrity_SM810
Template for running both non-SIL and SIL1-2 applications.

• AC800M_HighIntegrity_SM811
Template for running non-SIL, SIL1-2, and SIL3 applications.

• EmptyProject
Template that requires a minimum configuration, with only the System folder
inserted. This template is rarely used.

• SoftController
Template for developing software for simulating non-SIL applications without
a controller.

• SoftController_HI
Template for developing software for simulating SIL applications without a
controller.

Control Projects Section 1 Basic Functions and Components

22 3BSE035980-510

For example, the AC 800M_HighIntegrity_SM810 template prepares a control
project for a PM865 CPU and an SM810 module, while the AC 800M template and
the SoftController template have completely different settings. The EmptyProject
template contains only the compulsory system firmware functions, with no
additional application or hardware functions.

A control project template can be selected from a dialog, when creating a control
project. For more information about creating a control project, see Create and Open
a Control Project in Plant Explorer on page 22.

Control Projects
A control project combines the control applications and the controllers together in
the Project Explorer. Several control projects can be created for the same control
network.

The control projects can be created either from the Plant Explorer or from the
Project Explorer.

Create and Open a Control Project in Plant Explorer

1. In the Control Structure, right-click Control Network and select New Object
to open the New Object window.

2. Select a control project template and enter a name for the control project in the
Name field.

3. Click Create to create a new control project.

The 800xA system starts the Control Builder, and the control project opens in
Project Explorer.

A SIL application can only run in an AC 800M High Integrity (HI) controller.
Create SIL applications by selecting the High Integrity control project template
(AC800M_HighIntegrity). See Control Project Templates on page 21. A control

Before creating a control project, set up and configure a control network in the
Control Structure (Plant Explorer).

It is not required to close the Control Builder each time when a new control
project is to be opened. Control Builder automatically closes the previous project
and opens the new project in the background.

Section 1 Basic Functions and Components Program Organization Units, POU

3BSE035980-510 23

project containing a VMT library, a VMT application, and a CTA application is
obtained if this template is used.

For more information, refer to SIL Certified Applications in the manual System
800xA Control AC 800M Getting Started (3BSE041880*). Also, refer to System
800xA Safety AC 800M High Integrity Safety Manual (3BNP004865*), which
contains guidelines and safety considerations for all safety life cycle phases of an
AC 800M High Integrity controller.

Program Organization Units, POU
The IEC 61131-3 standard describes programs, function blocks, and functions as
Program Organization Units (POUs). The Control Builder also considers control
modules and diagrams as POUs. All these units are helpful in organizing the control
project into code blocks, minimizing code writing, and optimizing the code
structure and code maintenance.

A POU is an object type that contains an editor to write code and declare parameters
and variables.

All POUs can be repeatedly used in a hierarchical structure, except for diagrams and
programs that can only be a 'top-level' POU, inside an application.

The VMT library, VMT application, and CTA application are created to check
that the High Integrity controller and the compiler work properly. These libraries
and the compiler test application are used for internal checks only. Do not try to
alter or remove these applications or the VMT library.

Entities and Reservation (Multi-User Engineering) Section 1 Basic Functions and Components

24 3BSE035980-510

Entities and Reservation (Multi-User Engineering)
Entities and reservation provide support for multi-user engineering (working within
a project development group that involves several people).

Before modifying the properties of an object, the object must be reserved. This
ensures that only one user can modify an object at a time. This also protects
configuration data from being unintentionally modified when multiple users are
working on one system.

If a user releases the reservation on an object, another user can reserve and modify
the object. However, it is only possible to make a reservation of entities, that is, the
smallest subset of objects that can be reserved is an entity.

An entity is a set of objects (with aspects) that is reserved as a single unit.

Unless an entity is reserved, parts of the Project Explorer will be read-only. For
example, some context menu items are disabled, and dialog boxes are read-only.

Entities

The following objects are grouped as entities:

• Projects, applications, controllers
• Libraries, libraries with hardware types
• Control modules types, except hidden control module types
• Function block types, except hidden function block types
• Diagrams

An entity can be part of another entity. For example, applications and controllers are
part of a project, and control module types and function block types are part of
either an application or a library.

Reservations do not protect any runtime data or prevent download of modified
applications to a controller. For example, if a controller is reserved by user A, and
an application is reserved by user B, it is still possible for user C to download the
application. However, reservations are indicated in the Download dialog.

A single user who has logged on to more than one client, and several users who
use the same user account, can unintentionally overwrite configuration data.

If environments are used, and a user reserves an entity in one environment,
another user can reserve the same entity in another environment.

Section 1 Basic Functions and Components Reservation

3BSE035980-510 25

When an entity is reserved, all its objects are reserved. For example:

• When the user reserves a controller, all objects that are part of the controller
(objects such as hardware units and tasks) are reserved.

• When the user reserves an application, its programs and data types, but not
necessarily its function block types or control module types, are reserved.

Reservation

The entity must be reserved before it can be modified.

To reserve an entity:

1. Right-click the entity (for example, an application), and select Reserve to open
the Reserve dialog box.

2. Select the entities to reserve. Click Help for more information on how to use
the dialog box.

To release the reservation of an entity after modifying it:

1. Right-click the entity (for example, an application), and select Release
Reservation to open the Release Reservation dialog box.

2. Select the reservations to release. Click Help for more information on how to
use the dialog box.

Use the Reserve and Release Reservation icons in the Project Explorer
toolbar to reserve entities or to release the reservation. Some offline editors also
have a Reserve button.

In case environments are used, the entity icons in Project Explorer show only the
reservation status. For example, the icon is shown for the current
environment; however, the Reservation dialog shows complete reservation status.

The same dialog box (with a different name) also appears when an operation that
requires the reservation of one or more entities is performed.

In case environments are used, the reservations in the current environment only
can be released.

To take over a reservation, both the Plant Explorer and the Project Explorer can
be used. For more information, refer to the System 800xA Configuration
(3BDS011222*).

Environments Section 1 Basic Functions and Components

26 3BSE035980-510

Environments
In 800xA Systems, environments provide isolated engineering. Since different
environments can have different content, a control application can be modified
without affecting the running control application. For example, the Engineering
Environment can contain a modified application, while the Production Environment
contains the running application.

Engineering and Production Environments

When environments are used, the basic combination is to have one Engineering
Environment and one Production Environment:

• Engineering Environment is used for engineering (For example, to modify a
project or an application).

• Production Environment is used to download a project (or a single application)
to the controller and go online. An operator can then use an Operator
Workplace opened in this environment to control the process.

When an entity in an environment is modified, the changes are visible in that
environment only, and not in any other environment. All users working in the same
environment can see the changes made by each other.

The user can transfer the modified entities from one environment to another. This is
called Deploy.

When a modified application is deployed from the Engineering Environment to the
Production Environment, the Production Environment no longer contains the
running application. Instead, the Production Environment contains the modified
application, which can be downloaded to the controller.

Environments require a separate license and are not available to all users. The
Project Explorer shows the information about an environment only when it is
being used.

For more information, refer to the System 800xA Engineering Engineering and
Production Environments (3BSE045030*).

To change to another environment in the Control Builder, re-open the project in
the relevant environment.

Section 1 Basic Functions and Components Engineering and Production Environments

3BSE035980-510 27

Environment Workflows

For a new project, follow this workflow:

1. Create a new project in the Engineering Environment, and modify the entities
as desired.

2. Deploy the project and all other modified entities from the Engineering
Environment to the Production Environment.

3. Re-open the project in the Production Environment and download the new
project to the controller.

To modify an exiting project, follow this workflow:

1. Open the project in the Engineering Environment.

2. Right-click the project name, and select Refresh Project.

3. Modify the project without affecting the Production Environment, which
contains the project running in the controller.

4. Deploy the modified project to the Production Environment.

5. Re-open the project in the Production Environment, and download the
modified project to the controller.

When a project is deployed from the Engineering Environment to the Production
Environment, there is a possibility that a new application was created only in the
Production Environment and not in the Engineering Environment. In this case,
this application is not deleted from the Production Environment.

Engineering and Production Environments Section 1 Basic Functions and Components

28 3BSE035980-510

Deploying an Entity

To deploy an entity (for example, an application):

1. Right-click the entity, and select Deploy.

2. Use the displayed Deploy dialog box to deploy the entity to the desired
environment.

Deploy is only available in offline mode.

The Deploy dialog box is the same as in Plant Explorer. For more information on
how to use the dialog box, click the Help button or refer to the System 800xA
Configuration (3BDS011222*).

Section 1 Basic Functions and Components Remove Environment Changes

3BSE035980-510 29

Remove Environment Changes

When a project is opened in the Engineering Environment, the project may already
contain changes.

To start working with the same project as in the Production Environment:

Either

• Refresh the Engineering Environment, which recreates the entire Engineering
Environment as a copy of Production environment.

Or

• Replace selected entities.

In Engineering Environment, single entities can be selected and updated to be
identical with the Production environment. Refer to the manual System 800xA
Engineering Engineering and Production Environments (3BSE045030*) for
more details.

System Firmware Functions
All system firmware functions are stored in the System folder, which is located at
the top of the library branch (in Project Explorer).

The System folder contains fundamental IEC 61131-3 data types and functions,
along with other firmware functions, which can be used in firmware in the
controller. They are all protected and automatically inserted via the selected control
system templates.

The System folder cannot be changed, version handled or deleted from a control
project.

The system firmware functions that can be used in the application depends on the
Firmware version. To upgrade the Firmware, replace the BasicHWLib with the
latest version.

Table 1 contains the System firmware data types and functions. Refer the Control
Builder online help for more information and description.

The System folder is not a library, even though it is always shown in the library
branch, together with the libraries (Basic library, Icon library, etc.)

System Firmware Functions Section 1 Basic Functions and Components

30 3BSE035980-510

To access the detailed online help and how-to-do instructions for a system
firmware function, select the data type or function, and press the F1 key.

Table 1. System Function Overview

System Functions Examples

Simple Data Types bool, dint, int, uint, dword, word, real, etc.

Structured Data Types time, Timer, date_and_time, etc.

Common Library Data
Types

Open structured data types like, BoolIO, DintIO,
DwordIO, RealIO, HWStatus, SignalPar, etc.

Bit String Operations and, or, xor, etc.

Relational and Equality
Functions

Equal to, Greater than, etc.

Mathematical Functions Trigonometric, Logarithmic, Exponential and
Arithmetic Functions.

Data Type Conversion Conversion of bool, dint, etc.

String Functions Handles strings like, inserts string into string, deletes
part of a string, etc.

Exception Handling Functions for handling zero division detection
integer and real values.

Task Functions SetPriority, GetPriority, etc,. Handles the priority of
the current task.

System Time Functions Exchanging time information between different
systems.

Timer Functions Functions to Start, Stop and Hold Timers.

Random Generation
Functions

Functions for generating random numbers or values.

Variable Handling
Functions

Reads and writes variable values.

Section 1 Basic Functions and Components Hardware

3BSE035980-510 31

Hardware
All hardware is defined as hardware types (units) in Control Builder. The hardware
types reflect the physical hardware in the system.

Hardware types are organized and installed as libraries. This makes it possible to
handle hardware types independently, with the following advantages:

• Since the libraries are version handled, different versions of the same hardware
type exist in different versions of the library. This makes it easy to upgrade to
newer system versions and also allows coexistence of new and old hardware
units.

• The new versions of a library (along with the hardware types) can be easily
delivered and inserted to the system.

A number of standard libraries with hardware types are delivered with the
system. A standard library is write protected and cannot be changed

• Only used hardware types allocate memory in the controller.

Array Functions Handles arrays.

Queue Functions Handles queues.

Table 1. System Function Overview (Continued)

System Functions Examples

Standard System Libraries with Hardware Section 1 Basic Functions and Components

32 3BSE035980-510

Standard System Libraries with Hardware

The standard system libraries with hardware are delivered by the system. Table 2
describes the standard libraries with hardware.

Table 2. Standard system libraries with hardware

Library Description

ABBDrvNpbaCI851HwLib
ABBDrvNpbaCI854HwLib

ABB Drive NPBA and subunits for PROFIBUS

ABBDrvRpbaCI851HwLib
ABBDrvRpbaCI854HwLib

ABB Drive RPBA and subunits for PROFIBUS

ABBProcPnlCI851HwLib
ABBProcPnlCI854HwLib

ABB Process Panel for PROFIBUS

ABBPnl800CI851HwLib
ABBPnl800CI854HwLib

ABB Panel 800 for PROFIBUS

ABBDRVRETACI871HWLIB Optional device for ABB drives, which enables the
connection of the drive to a PROFINET IO
network.

ABBMNSiSCI871HWLIB Motor control center solution that can be used in
PROFINET IO network.

BasicHWLib Basic controller hardware types for AC 800M and
SoftController

BasicHIHwLib Basic controller hardware types for AC 800M HI
and SoftController HI

CI851PROFIBUSHwLib Communication interface PROFIBUS DP

CI854PROFIBUSHwLib Communication interface PROFIBUS DP-V1

CI860FFhseHwLib Communication interface FOUNDATION Fieldbus
HSE

CI855Mb300HwLib Communication interface MasterBus 300

CI857InsumHwLib Communication interface INSUM

CI858DriveBusHwLib Communication interface DriveBus

Section 1 Basic Functions and Components Standard System Libraries with Hardware

3BSE035980-510 33

CI856S100HwLib Communication interface S100 I/O system and
S100 I/O units

CI865SattIOHwLib Communication interface for remote I/O
connected via ControlNet

CI853SerialComHwLib RS-232C serial communication interface

CI867ModbusTcpHwLib Communication interface MODBUS TCP

CI868IEC61850HwLib Communication interface IEC 61850

CI869AF100HwLib Communication interface for AF 100

CI871PROFINETHwLib Communication interface CI871

CI872MTMHwLib Communication interface for MOD5-to-MOD5

CI873EthernetIPHWLib Communication interface EtherNet/IP

CI852FFh1HwLib Communication interface FOUNDATION Fieldbus
H1

S200IoCI851HwLib
S200IoCI854HwLib

S200 adapter and S200 I/O units for PROFIBUS

S800IoModulebusHwLib S800 I/O units for ModuleBus

S800CI830CI851HwLib
S800CI830CI854HwLib
S800CI840CI854HwLib
S800CI801CI854HwLib

S800 adapters and S800 I/O units for PPOFIBUS

S900IoCI854HwLib S900 adapter and S900 I/O units for PROFIBUS

PrinterHwLib Printer unit

ModemHwLib Modem unit

SerialHwLib
COMLIHWLib
ModBusHWLib
S3964HWLib

Communication protocols

Table 2. Standard system libraries with hardware

Library Description

Customized Hardware Types Section 1 Basic Functions and Components

34 3BSE035980-510

.

Customized Hardware Types

Customized hardware types can be created in user-defined libraries, using the
Device Import Wizard. This is useful when the hardware types found in the standard
system libraries or the Device Integration Library are not sufficient.

The Device Import Wizard imports a device capability description file (for example,
a *.gsd file), converts the file to a hardware type, and inserts the type into the user-
defined library (See Create Libraries on page 128. Also see Device Import Wizard
on page 138 and Supported Device Capability Description Files on page 138).

User-defined libraries with hardware types are included while performing import
and export, and backup and restore, in the Plant Explorer. By using the import and
export function, it is possible to distribute the user-defined libraries with hardware
types. These libraries are developed centrally, or by ABB for a specific project to
other engineering systems. For further information, see Import/Export Libraries on
page 128.

In exceptional cases, it may be relevant to insert individual external customized
hardware types to a user-defined library (for example, to use a specific hardware
type, which have been converted and used in an earlier version of Control Builder).

The Source Code Report can be used to view the hardware types loaded in the
project. See Source Code Report on page 215.

Configuring the Controller

Before configuring the controller:

1. Insert the libraries, which contain the hardware types (units) to be used in the
controller configuration, into the control project.

2. Connect the libraries to the controller.

For a complete list of the hardware types in the standard libraries, see Control
Builder online help.

If a suitable hardware type cannot be found in any of the standard system
libraries, it can be found in the Device Integration Library. The Device
Integration Library can be purchased separately from ABB.

Section 1 Basic Functions and Components Configuring the Controller

3BSE035980-510 35

See Connect Libraries on page 123 for information on how to insert and connect
libraries.

Add Unit to Hardware in Controller Configuration

Perform the following steps to add a new hardware unit into the controller
configuration in Project Explorer:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click the unit to which a new hardware unit is to be added, and select
Insert Unit to open the Insert Unit dialog.

.

Figure 1. Insert Unit dialog for inserting hardware in a controller configuration

It is not possible to select Insert Unit if the unit cannot contain any sub-units or if
no more positions are available.

Configuring the Controller Section 1 Basic Functions and Components

36 3BSE035980-510

3. Expand the relevant library folder under Connected Libraries, and select the
hardware type to be included.

4. From the Position drop-down list, select a position for the hardware unit.

By default, the first available position is chosen. If no more positions are
available, the Position drop-down list is empty and the Insert button is
disabled.

5. For units supporting redundancy, check the Enable redundant mode check
box, and select a position for the backup unit.

6. In the Name field, enter a name for the unit. After the unit is inserted in the
hardware tree, this name appears along with the name of the selected type.

7. Click Insert to apply the changes made.

8. Click Close to close the dialog.

The Libraries in Project contains libraries that are added to the project but not
yet connected to the controller. If a unit is selected under Libraries in Project,
the option to connect the library to the controller appears.

Some redundant units have a fixed position offset. For these units, the backup
position is automatically calculated, and the user cannot change this position.

Click Previous or Next to navigate to another unit in the Project Explorer
hardware tree.

To rename the unit after it is inserted, right-click the unit, and select
Rename Unit.

Figure 2. Example of a hardware tree with a name for the AI820 unit

Section 1 Basic Functions and Components Basic Hardware

3BSE035980-510 37

Replace Hardware in a Controller Configuration

Perform the following steps to replace a hardware unit in a controller configuration:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click on the unit to be replaced, and select Replace Unit to open the
Replace Unit dialog.

While the hardware unit is being replaced in a controller configuration, the system
retains the settings and connections, and also retains the units in the existing
subtrees. For example, replacing a CPU with a similar one can be done without any
connection loss or data loss.

Basic Hardware

The two Basic Hardware Libraries: BasicHwLib and BasicHIHwLib, contain
standard system hardware types that are used when configuring the AC 800M
controller and SoftController. The standard system hardware types are installed
along with the Control Builder.

The BasicHwLib contains the following basic controller hardware:

• Controllers (AC 800M and SoftController)
• Compact Flash (CF) units
• Secure Digital (SD) units
• CPU units (PM8xx and CPU)
• Ethernet links, serial Com ports, and PPP ports
• ModuleBus
• IP
• IAC MMS

The BasicHIHwLib contains the following basic controller hardware:

• Controllers (AC 800M HI and SoftController HI)

The Replace Unit dialog works in the same way as the Insert Unit dialog, except
that it is not possible to change the position of the unit in the Replace Unit dialog.

Only one version of a Basic Hardware Library can be connected to a controller.

Basic Library for Applications Section 1 Basic Functions and Components

38 3BSE035980-510

• CPU unit (PM865 HI)
• SM810 and SM811 units
• Ethernet links, serial Com ports, and PPP ports
• ModuleBus

Basic Library for Applications
The Basic library contains basic building blocks for AC 800M control software. It
contains data types, function block types and control module types with extended
functionality, designed by ABB.

The contents inside the Basic library can be categorized as follows:

• IEC 61131-3 Function Block Types.

• Other Function Block Types.

• Control Module Types.

For a complete list of data types, function block types, and control module types
in the Control Builder standard libraries, refer to the manual System 800xA
Control AC 800M Configuration (3BSE035980*)

Table 3. Basic Library Overview

Basic Functions Examples

IEC 61131-3 Function Block
Types

Standard bistable function block types (SR, RS).

Standard edge detection function block types
(R_TRIG, F_TRIG).

Standard counter function block types (CTU, CTD,
etc.)

Standard timer function blocks type (TP, TOn, etc.)

Other Function Block Types ACOF (Automatic Check Of Feedback) functions,
converters, pulse generators, detectors, system
diagnostics, timers, compares, etc.

Control Module Type Connection module for group start sequences
(GroupStartObjectConn).

Section 1 Basic Functions and Components Application Types and Instances

3BSE035980-510 39

Application Types and Instances
Types and instances form the basis of the application structure. This subsection
contains an overview of the following:

• The type and instances concept, see Types and Instances - Concept on page 40.

• The editors that are used to create and configure the types, see Define a Type in
the Editor on page 41.

• Important differences between control module and function block types, see
Control Modules and Function Blocks on page 47.

• How to create types directly in an application, and how to create types in the
library for re-use in applications. See Types in Applications on page 49 and
Types in User defined Library on page 50.

• How to create complex types so that they are flexible enough for future
upgrades, see Modify Complex Types on page 51.

• What to consider and what to set up before creating types and using them, see
Decisions When Creating Types on page 52.

• How to create objects from types and connect the object to the surrounding
application or type, see Create and Connect instances on page 53.

• How different objects are executed, see Function Block Execution on page 58
and Control Module Execution on page 60.

• How to use single control modules as containers for control modules, see
Single Control Modules on page 63.

• The aspect object setting, see Aspect instances on page 64.

Types and Instances - Concept Section 1 Basic Functions and Components

40 3BSE035980-510

Types and Instances - Concept

Types are used to represent motors, valves, tanks, etc. that are located in a plant
area, and then turn them into manageable units in a control project (for example,
motor types, valve types, mixer types, and so on). Instances are created based on
each of these types.

A type is the source (the blue print) for a unit (motor, valve, tank, etc), while an
instance represents the unit(s) in libraries and applications. There is an inherited
mechanism between a type and all its instances, where all instances have the same
performance as the type, and changes performed in the type affect all instances
simultaneously.

A type is a generic solution, which can be used by many instances, and contains
programming code with variables, functions, connection parameters (textual and
graphical), graphical instances, and formal instances1.

Figure 3 shows the relationship between a type located in a library and two
instances created in an application.

Figure 3. Relationship between a type and two instances.

The type contains the code, whereas each instance contains a list of computed
variable values. The instance does not contain any code; it uses the code inside the
type for manipulating its own local variable values.

1. Formal instances are instances of another type located inside a type. These, along with instances based on that
type are executed in applications.

If A = 10then
B:= A+1;

end_if;

A

B

3

7

type

A

B

10

11

Library

Application instance1 instance2

Section 1 Basic Functions and Components Define a Type in the Editor

3BSE035980-510 41

A type is always static and cannot run by itself in applications. To execute the code
inside the type, an instance based on the type (an instance) must be created. The
instance executes the code located inside the type. To create an instance, point to a
type either in a library or in an application.

All instances based on the same type have the same characteristics, which means
they have equal access to everything in the type. An instance does not contain a
programming editor or code blocks; hence the code cannot be written inside an
instance. All logic must be created in the type.

The allocated memory for creating a type solution (for example, a motor type
solution that contains one motor type and 20 motor instances) is distributed mainly
on the programming code inside the type. Therefore, the cost (allocated memory)
for each new instance (motor) is very small, compared to the type itself. The
instance only needs to allocate memory for variables, as the code is located and
executed from the type. However, the number of instances are relevant for
considering the total CPU memory.

It is easier to update the application while working with newer version of types,
since the inherited mechanism takes care of changes that often concern hundreds of
instances. A code change (for example, declaring additional connection parameters)
can be done once for the type, and this change is inherited by all instances
simultaneously.

Control Builder also contains a number of structured data types. For more
information, refer to the System 800xA Control AC 800M Planning (3BSE043732*)
manual. A type described in this sub-section is either a function block type or a
control module type.

Define a Type in the Editor

Select the type from Project explorer and open the corresponding editor to declare
the necessary parameters for the type.

An editor contains several declaration panes that can be opened from the following
tabs:

• Parameters
• Variables
• Function Blocks.

Define a Type in the Editor Section 1 Basic Functions and Components

42 3BSE035980-510

Apart from the declaration panes, the editor contains:
• Programming editor for programming code (see Figure 8).
• Graphical editor called CMD Editor (see Figure 10).

Declaration Pane for Parameters

To open the declaration pane for parameters, double-click the type (to open the
editor), and then select the Parameters tab.

Figure 4 shows the editor for My_MotorType, with the declaration pane for
parameters selected. These parameters can be used for connecting variables outside
the instance.

Declaration Pane for Local Variables

To open the declaration pane for variables, double-click the type (to open the
editor), then select the Variables tab. If the editor is already open, simply select the
Variables tab.

Figure 5 shows the declaration pane for creating local variables inside the type. The
local variables can be used by the code inside the type.

Figure 4. Declaration pane for creating connection parameters

Section 1 Basic Functions and Components Define a Type in the Editor

3BSE035980-510 43

Declaration Pane for External Variables

External variables are pointers to global variables. An instance can declare an
external variable locally and then use this variable to access the value in a global
variable located in the application. External variables and global variables are
discussed in External Variables on page 78.

Declaration Pane for Communication Variables

Communication variables are declared in Diagram editor, Program editor, or
top level Single Control Module editor. For details about communication variables,
see Communication Variables on page 83.

Figure 6 shows the declaration pane for communication variables in a Program
editor.

Figure 5. The declaration pane for creating local variables

Figure 6. Declaration pane for communication variables

Define a Type in the Editor Section 1 Basic Functions and Components

44 3BSE035980-510

Declaration Pane for Function Blocks

To open the declaration pane for function blocks, double-click the type (to open the
editor), and select the Function Blocks tab. If the editor is already open, simply
select the Function Blocks tab.

Figure 7 shows the declaration pane for declaring function blocks inside the type.

Enter the name of the function block in the Name column, and select the cell in the
Function Block Type column. Press CTRL+J to open a context menu with all
function block types available.

Programming Editor for IEC 61131 Languages

Use the programming editor to write code in one of the five programming languages
that conforms to the IEC 61131-3 standard. The programming editor is always
active, and can be accessed irrespective of which tab is selected (parameters,
variables, function blocks, etc.).

The programming editor can be expanded using code blocks for structuring the
code. These code blocks are then executed either in a predetermined order as
decided by the compiler (control modules), or from left to right (function blocks).

Figure 7. Declaration pane for creating function blocks inside a type

 Connect all libraries with the required function blocks types to the application.
Only then, the available function block types are listed in the context menu
(CTRL+J)

Section 1 Basic Functions and Components Define a Type in the Editor

3BSE035980-510 45

Figure 8 shows a part of a programming editor, which uses Structured Text (ST) as
the language. This editor also contains two code blocks: Control and Start_Code.

Figure 8. A programming editor with two code blocks.

A brief description of code blocks in general and Start_ code blocks :

• Code blocks are very useful for structuring the code. Dividing the
programming code into a number of code blocks, improves the overall code
structure and readability. Examples of code blocks are Control, Object Error,
Operators, etc.

• There is no limit to the number of code blocks that can be created in a type.
Create only the required number of code blocks, since each code block affects
the memory consumption and the execution time of the type.

• Start_

A code block with the prefix Start_ is always executed first in an application
and only once, at the application startup (after a warm and cold start, but not
after a power failure). This block must be used for initiating alarm strings,
converting project constants to strings, etc.

Code block names cannot contain certain characters. See Online help for
information on characters that cannot be used in code block names.

Code blocks Programming editor

Define a Type in the Editor Section 1 Basic Functions and Components

46 3BSE035980-510

However, there are some limitations while using the Start_ code block:

– It is not suitable to place functions, function blocks, etc, in a Start_ code
block.

– It is valid only for the code blocks in control modules, and not for the code
blocks in SFC (Sequential Function Chart).

– The FirstScanAfterApplicationStart function must not be used in the
block.

– Function blocks for communication must not be used in the block.

Code Block Context Menu

Right-click a code block tab to access the code block context menu.

Graphical Editor

The graphical editor, Control Module Diagram Editor (CMD Editor) is a combined
editor for drawing and programming. The term ‘diagram’ refers to the graphical
view of control modules and connections.

Use this editor to create and edit control modules, code, and graphics, and to
connect variables and parameters.

If the application contains a very large chunk of code that has to be run in the first
scan (for example, alarms in the Start_ code block), the execution time can be so
high that overrun occurs. This leads to the eventual shut-down of the controller.

Figure 9. Code block context menu

Section 1 Basic Functions and Components Control Modules and Function Blocks

3BSE035980-510 47

To open the CMD Editor, right-click the control module type and select CMD
Editor. Figure 10 shows part of the graphical editor (CMD Editor).

The drawing functions in the CMD editor include basic auto shapes (lines,
rectangles, etc.), ready-to-use interaction instances (option buttons, check boxes,
etc.), and composite instances (trend graphs, string selectors, etc.). The graphical
instances are dynamic, that is, with changing variable values, the points move,
colors change, and numerical values are presented.

Control Modules and Function Blocks

A type can be a control module type or a function block type. The types and the
instances can be mixed. For example, a control module can be created inside a
function block type (to add graphics), or a function block can be created inside a
control module type (to execute a list of basic functions).

The following list describes some differences between control module types and
function block types.

Figure 10. Graphical objects created in the CMD Editor.

Control Modules and Function Blocks Section 1 Basic Functions and Components

48 3BSE035980-510

• Control modules types may have graphical connections (see Graphical
Connections on page 54).

• Control modules types use code sorting (see Control Module Execution on
page 60).

• Control modules are executed by the system and once per scan, whereas
function blocks are executed from code. Therefore, a function block is
executed once or several times per scan, or it is not executed at all. This is the
main difference between control module execution and function block
execution.

• Parameter values on function blocks are copied (except In_Out parameters and
parameters having by_ref attribute, see Function Block Execution on page 58).

• Function block types are required when using extensible parameters (see
Extensible Parameters in Function Blocks on page 102).

The choice between control module types and function block types depends on the
context and environment. For guidelines about the use of control modules and
function blocks, refer to the System 800xA Control AC 800M Planning
(3BSE043732*) manual.

Section 1 Basic Functions and Components Types in Applications

3BSE035980-510 49

Types in Applications

Creating a type in an application is the quickest and easiest way to get started.
Before creating types, no new libraries need to be created; use the available methods
like connect libraries, create user defined data types, and select the object type to
use (see Decisions When Creating Types on page 52). However, if a type is created
directly in an application, it can only be used inside that application.

To gain access to standard libraries (or user defined libraries), insert them into the
control project (see Library Management on page 122), and connect them to the
application. This allows the types in the application to use the instances from
existing types in the connected libraries.

Figure 11. Two examples of a type created especially for Application_1. (Left) A
control module type (My_MotorType), (Right) a function blocks type
(PumpMotor_type)

Types in User defined Library Section 1 Basic Functions and Components

50 3BSE035980-510

Types in User defined Library

The advantage of creating types inside a library, instead of creating them directly in
an application, is the possibility to re-use them in other applications. If the types are
created in a library, all the necessary functions and programs can be stored in this
library. The library can then be connected to any application.

If a new library is created, user defined types can be created in that library (the
800xA System does not allow creation of types in a standard library).

Figure 12. A Type (MyControlLoop) created in MyTypeLib library. This example
shows a control loop created as a control module type, while the components are
ready-made instances from the standard libraries

Functionality from the
Control libraries

Type

Section 1 Basic Functions and Components Modify Complex Types

3BSE035980-510 51

Modify Complex Types

This subsection describes a use case where it is preferable to copy two types, instead
of keeping a single and very large type in a library.

Refuse Incinerator Type - Problem

In this example, assume that a plant area has two identical refuse incinerators.

A type solution like this is manageable if a Refuse Incinerator type is created in a
library with several underlying types. This type can then be re-used twice (as two
objects), in two separate applications, by connecting the library to each application.

The following are the examples of underlying types inside the Refuse Incinerator
type:

• A Feeder type containing 10 conveyors.

• A Combustion type.

• An Ash Handling type.

• A Flue Gas type.

After building the Refuse Incinerator type in the library, connect the library to both
Application_1 and Application_2. This helps in creating an Incinerator1 instance in
Application_1 and an Incinerator2 instance in Application_2.

If the Incinerator2 instance running in Application_2 suddenly needs an individual
change (for example, 20 conveyors instead of 10 conveyors), edit the library and
change the Feeder type inside the Refuse Incinerator type. But, changing anything
inside the Refuse Incinerator type affects both incinerators due to the type and
instance inherit mechanism.

By changing the Feeder type to include 20 conveyors, both the Incinerator instances
are changed suddenly to contain 20 conveyors, which is not the intended use.

Decisions When Creating Types Section 1 Basic Functions and Components

52 3BSE035980-510

Refuse Incinerator Type - Solution

To avoid the problem, once the type is ready, consider the possible individual
(instance) changes in the future. If an individual instance needs to be changed, copy
the type on the highest type level (in this example, Refuse Incinerator Type1 and
Refuse Incinerator Type2).

Create an Incinerator10 instance in Application_1, based on Refuse Incinerator
Type1, and then create an Incinerator20 instance in Application_2, based on the
new type copy, Refuse Incinerator Type2. This increases the memory consumption
in the controller, but allows individual changes. For example, the number of
conveyors in the feeder for one of the applications can be changed, without
affecting the other.

Decisions When Creating Types

This subsection describes the decisions to be made about the types before
programming the code, and declaring parameters and variables. Many functions and
type solutions have been developed already, and the Control Builder helps to set up
and access these options before programming. Read more about design analysis in
the System 800xA Control AC 800M Planning (3BSE043732*).

The following decisions must be made before creating the types:

• Whether there is a need to create instances in user defined type(s).

These types are based on other types located in external libraries. In that case,
those external libraries must be connected to the library or application.

• Whether there is a need to create self-defined structured data types for passing
parameters through several layers of instances.

The data types are automatically connected to the library or application.
Structured data types are often useful in more complex type solutions, with a
deep hierarchical structure.

• Whether a function block type or a control module type should be used.

If the code is programmed in one of the POUs1, select function block types. If a
graphical editor is used to program the code, and automatic code sorting is
preferred, select control module types.

1. See Program Organization Units, POU on page 23.

Section 1 Basic Functions and Components Create and Connect instances

3BSE035980-510 53

 Create and Connect instances

An instance is a function block or control module based on a type.

Each time a new instance is created, the Control Builder prompts for a type. The
type can be located in an inserted library (inserted into the control project), user
defined library, or directly in an application. In any case, a type and its location
must always be selected.

Once the type is selected, connect the connection parameters.

Figure 13. Available settings for setting up an instance type, whether it is in
libraries, or applications

For information on how to access these methods, refer to the Control Builder
online help. Select one of the folders in Project Explorer and press F1.

Create and Connect instances Section 1 Basic Functions and Components

54 3BSE035980-510

Connections

Control modules can be connected to each other either through graphics or through
text. Graphical connections are implemented directly in the Control Module
Diagram editor and textual connections are implemented in the Connection editor.

Graphical Connections

Graphical nodes and graphical connections connects the control modules
effectively.

Figure 14. Creating an instance (Pump10) based on My_MotorType, which is
located in the application. The instance needs the location (Application_1) and the
type (My_MotorType)

Section 1 Basic Functions and Components Create and Connect instances

3BSE035980-510 55

The control module parameters, which can be graphically connected, contains
NODE in the beginning of the parameter description. This is the standard for all
control modules located inside the standard libraries.

Nodes for graphical connections can also be created for self-designed control
modules. Graphical connections are suitable for obtaining a comprehensive view of
main flows, for example, in a PID controller or for group start of several motors.
Figure 15 shows three graphical connections for group starting motors. The
modules are connected using the Graphical Connection function (located in the
CMD Editor).

Figure 15. Two motor instances that have been graphically connected with a Start
and Next instance located in the Group Start library. The circles symbolize the
connection nodes

1

2

3

Create and Connect instances Section 1 Basic Functions and Components

56 3BSE035980-510

Textual Connection

To open the Connections editor via the Connections entry, right-click the module
and select Connections.

Parameters can be connected to the actual variables presented in the Connections
editor. Textual connection is the only way to connect parameters when the control
module is subordinate to a function block, since there are no surrounding graphics.

Connect an instance

The Connections editor is a parameter/variable interface between the instance and
its closest surrounding. The Connections editor displays the parameters that are
declared in the type, with reference to the control module instance, and connects the
surrounding parameters/variables to the instance.

If a control module instance is created in an application (see Figure 16), then the
application can be seen as the closest surrounding, and the variables in the
application must be connected to the instance.

If a control module instance is created in a type (located in a library), then the type
can be seen as the closest entity, and parameters/variables in the type must be
connected to the instance.

It is not possible to connect the same parameter both graphically and textually.

To connect the parameters to instances located several hierarchical layers away
(not the closest), use structured data types that simplifies the connections (instead
of passing corresponding parameters). For more information on structured data
types, refer to the System 800xA Control AC 800M Planning (3BSE043732*)

Section 1 Basic Functions and Components Create and Connect instances

3BSE035980-510 57

 Figure 16. A control module instance connected to variables in an application. The
application is the ‘surrounding area’ with the variables appfb1, Name (initial value
‘PumpMotor’) and appout1 connected to the instance.

In Figure 16, the connection parameters for the motor instance connect the
parameters (FB1, Name and OUT1) to the variables (appfb1, appout1, Name; Name
has the initial value PumpMotor) that have been declared in the application.

A Motor Type

Code

FB1

motor object

Application

appfb1

surrounding area

OUT1

FB1

OUT1

appout1

Name

Name‘PumpMotor’

Function Block Execution Section 1 Basic Functions and Components

58 3BSE035980-510

Once the variables are connected to the instance, it is ready to run in the application
(see Figure 17).

The instance ‘Motor_object’ has been created in the application.

Function Block Execution
There are three types of function block parameters: In, Out, and In_out.

The input and output parameters are passed by value, which means that the function
block creates copies of each variable value, before and after the function block is
executed. The In_Out parameters are passed by reference, which means only a
reference to the actual variable outside the function block is passed to and from the
function block.

Input parameters create a copy of each variable before the function block executes,
and the output parameters create a new copy after the function block is executed and
pass the new values to the surrounding variables outside the function block.

For complex data types and strings, a reference to the data instance can be passed in
the function block call. This is achieved by setting the attribute of the parameter to
by_ref.

Figure 17. The instance ‘Motor_object’ created in the application

Section 1 Basic Functions and Components Function Block Execution

3BSE035980-510 59

Figure 18. In and Out parameters for a function block. This example illustrates how
In and Out parameters copies the variable (var).

Using by_ref on parameters enhances the performance. It takes a lot of execution
time to copy parameters in each scan.

There are some limitations when using by_ref:

• It is not possible to connect expressions or literals to a reference parameter.

• If a reference parameter is not connected in one invocation, it cannot be
connected in other invocation (if the instance has multiple invocations).

• It is not possible to read or write the parameter from outside the function block
(except in the invocation). The example expressions like fb.par_in := 2; or k :=
fb.par_out; are not allowed for reference parameters.

By using by_ref, it is still possible to use init values, in which case the init value is
the default value. If the parameter is not connected, the default value is used.

The code generated for connecting by_ref parameter is identical to an in_out
parameter; but they differ in what is allowed inside the function block.

For example, it is not allowed to write onto an in parameter regardless of whether it
is a reference or value parameter. The ownership analysis detects that a variable is
read only if an in parameter by reference is used instead of in_out. It is therefore
preferable to use direction=in and attribute=by_ref (instead of in_out), if the
parameter is actually an in parameter.

Function block

var In

var’

var’’ Out

code

var

before execution after execution

surrounding area (Program or in a type)

Control Module Execution Section 1 Basic Functions and Components

60 3BSE035980-510

If In_Out parameters are passed by reference, only a reference to the actual variable
outside the function block is passed to and from the function block. The local
representation of the parameter does not exist inside the function block. Performing
operations on an In_Out parameter inside a function block means performing
operations directly on the actual variable connected to the function block. See also
Connecting Variables to I/O Channels on page 97.

Figure 19. In_Out parameter for a function block. This example illustrates how the
In_Out parameter points as reference to the value in the variable varRef.

Control Module Execution

Control modules provide data flow-driven execution, which makes the code design
much easier for solutions where several types and formal instances are needed. All
control modules communicate with each other, and can therefore determine when
each individual instance can send and receive information. A data flow-driven
design prevents possible mistakes, when trying to foresee the correct execution
order, since the compiler rearrange or sort all the code behind the scenes. This is
called code sorting.

Direction for Control Modules

In control module types, a parameter can have any of the following direction:

• In
• Out
• In_out
• Unspecified.

Function block

In_Out

code

varRefvarRef

Section 1 Basic Functions and Components FD Port

3BSE035980-510 61

These control module parameters follow different access rules from the code inside
the control module and offer limitations to the methods used to connect them.

All of them are passed by reference, which means only a reference to the actual
variable outside the control module is passed to and from the Control module.

The rules governing their functioning are as follows:

• Input parameters are read only.

• Out, In_Out and Unspecified are read and edit.

• Control modules on the same level can connect only In to Out.

• A sub control module inside could only connect its In parameters to In
parameters in the surrounding control module and so on.

• In_out must be connected to a variable (on any level)

• Several In could be connected to one Out (if not a structured type containing a
reverse attribute)

These rules apply to connecting parameters to communication variables as well.
Communication Variable In should be connected to In parameters and the
corresponding for Out. The compiler (and check) warns if rules are broken.

Unspecified parameters can be used without limitations for compatibility reasons.

FD Port

The FD Port column appears in the editor for function block types and control
module types. This column only significant for the types that are instantiated in a
Function Diagram (FD) code block.

The normal choice is Yes or No. The value specifies if the parameter shall be visible
when the function block type or control module type is instantiated in an FD code
block. The default value is Yes.

There are extra choices (Left or Right) for control module parameters with direction
Unspecified and function block parameters with direction In_Out. These choices are
related to the placement of the parameter port in the FD code block.

For more information on Code Sorting, see the System 800xA Control AC 800M
Planning (3BSE043732*).

FD Port Section 1 Basic Functions and Components

62 3BSE035980-510

There are some types with structured parameters that are mostly output, but also
contain some input components. Such a parameter must be either an Unspecified
parameter (control module types only) or an In_Out parameter. Both Unspecified
and In_Out parameters are placed on the left side, by default. Therefore Left is
default value for this extra choice.

The following list summarizes the use of the values in the FD Port column for
control module parameters with direction Unspecified and function block
parameters with direction In_Out:

• No - Not visible as a port.

• No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

• No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on.

• Yes - Visible as a port on the left side of the object.

• Yes Left - Visible as a port on the left side of the object.

• Yes Right - Visible as a port on the right side of the object.

Section 1 Basic Functions and Components Single Control Modules

3BSE035980-510 63

Single Control Modules

A special kind of control module type, the single control module, provides a way of
grouping graphical instances, variables, parameters, and control modules into a
single unit.

Compared to the previous discussions about types and instances, a single control
module can be considered as a hybrid of them both (see Figure 20). First of all,
create a single control module as an instance under the control module folder (not
the control module type folder) in an application.

Once a single control module is created, it starts acting as both a type and an
instance. It contains code, editors for declaring parameters, function blocks,
instance information, etc. just like a regular type or instance. A single control
module can never be reusable as a type that can be used to create many instances.
However, it can be copied to a new single control module, and then be modified.

Figure 20. A single control module. This module is not reusable, hence intended to
be used only once for grouping instances into a single unit.

Single control modules can be used as a framework and attach control module
instances inside, like an application does with instances. Figure 21 illustrates this,

IfA = 10then
B:=A+1;

end_if;

A

B

3

7

type

object1

Single Control Module
Application

Control Module Types

Control Modules

Aspect instances Section 1 Basic Functions and Components

64 3BSE035980-510

where three single control modules (Transport, Heating, and Crushing) form the
framework for the control modules (Motor_1, etc.).

Aspect instances

Aspect instance is an attribute that decides whether the instance will be visible in
Plant Explorer, or not.

instances not interacting with other instances in Plant Explorer should have the
aspect instance attribute set to False for not loading the Aspect Server performance.

Figure 21. Single control modules form the framework for the control modules

Function blocks and control modules created from Plant Explorer will be aspect
instances by default, regardless of the type is an alarm owner or not.

Section 1 Basic Functions and Components Aspect instances

3BSE035980-510 65

Set Aspect instance Attribute

To set the aspect instance attribute:

1. In Project Explorer, right-click the function block or control module and select
Properties > Aspect Object. Use the check box to set the attribute
(checked=True, unchecked=False).

Suppress Aspect Object (Set Attribute to False)

If the attribute is set to false, the instance will not be visible in Plant Explorer and no
live data can be fetched from the instance. If the instance has the aspect object
attribute set to false, it cannot be accessed from Plant Explorer.

Aspect Object (Set Attribute to True)

If the attribute is true, the instance will be visible in Plant Explorer (provided that
the surrounding type is not hidden or protected). See also Hide and Protect Control
Module Types, Function Block Types and Data Types on page 144.

Figure 22. Aspect Object

Every time the Aspect Object menu item is selected, the aspect instance property
is toggled on/off (true/false).

If the aspect object attribute is set to false, added aspects will be deleted without
warning. Also, ensure that all editors are closed before changing this attribute in
Project Explorer, otherwise there is a risk that aspect object settings are
overwritten when the editor is closed.

Aspect Object True

Variables and Parameters Section 1 Basic Functions and Components

66 3BSE035980-510

Set Instantiate as Aspect Object Attribute for a Type

• In Project Explorer, right-click the type and select Properties > Instantiate as
Aspect Object. Use the check box to set the attribute (checked=True,
unchecked=False).

Variables and Parameters
Variables and parameters are the carriers of data throughout the system. This
section describes how to use parameters and variables in the best way possible:

• Variable and Parameter Concept on page 67 gives an overview of variables and
parameters and how they are used.

• Variables on page 69 gives an overview of the different variable types.

• Variable Entry on page 70 describes how to declare variables.

• Specific Initial Values on page 77 describes how to use specific initial values.

• External Variables on page 78 describes how to define external variables.

• Access Variables on page 79 describes how to define and use access variables.

• Communication between Applications Using Access Variables on page 81 and
Communication in an Application Using Global Variables on page 82 describe
how communicate between applications.

• Communication Variables on page 83 describes how to define communication
variables.

• Control the Execution of Individual Objects on page 88 describes how to use
variables and parameters to control the execution of objects.

• Project Constants on page 92 describes the use of project constants and how to
update them.

• I/O Addressing Guidelines on page 96 describes the rules for addressing I/O
channels.

• Connecting Variables to I/O Channels on page 97 describes how to connect I/O
variables to I/O channels.

• Extensible Parameters in Function Blocks on page 102 describes extensible
parameters (these can only be used in function blocks).

Section 1 Basic Functions and Components Variable and Parameter Concept

3BSE035980-510 67

• Keywords for Parameter Descriptions on page 103 describes keywords used in
description in editors to identify the function of a parameter.

• Property Permissions on page 105 describes how to set permission for
variables and objects.

• Property Attribute Override on page 106

Variable and Parameter Concept

Variables

There are different kinds of variables in the Control Builder for storing and
computing values. A way of understanding the use of these variables presented
throughout this section is perhaps to consider them as carriers on object, application
and network levels.

Local variables are mainly used inside objects as carriers of local values. Global
variables are declared in the application and holds values that can be reached by any
object in the application. Access variables and Communication variables are used as
carriers for communication between several applications and controllers in a
network.

• Local variables is the most common variable type. They belong to the code and
can only be accessed within the same function block, control module or
program.

• Global variables on the other hand, are always declared in an application and
can be accessed by any function block, control module or program. However,
in order to reach a global variable, each object that intends to use a global
variable must have declared a corresponding External variable, see also
External Variables on page 78).

• Access variables allow data exchange between controllers, that is, access
variables can be accessed by other controllers. See Communication between
Applications Using Access Variables on page 81.

• Communication variables are used for cyclic communication between
diagrams, programs, and top level single control modules. Communication
variables support both inter application communication and inter controller
communication in a system network. For more information, see
Communication Variables on page 83.

Variable and Parameter Concept Section 1 Basic Functions and Components

68 3BSE035980-510

In spite of the different variables purposes, they all have one thing in common – a
variable holds or carries a value (except an external variable). They are defined by
their name and data type, which defines the characteristics of the variable (dint,
bool, real, string, etc.).

Parameters

Parameters on the other hand, cannot store any values. Instead, the user can assign
variables to parameters of function blocks, control modules and functions. Variables
store the value of the corresponding (connection) parameters.

Use parameters for connecting objects and to point to variable values that need to be
read into code blocks and written from code blocks.

When function blocks read from a variable and write to a variable, they use input
and output parameters that temporarily copy the variable value, before and after
execution. In this case, one may claim that parameters can temporarily hold a
value. See Function Block Execution on page 58 for more details.

Section 1 Basic Functions and Components Variables

3BSE035980-510 69

Variables

Table 4 lists available variables in Control Builder.

Table 4. Variable types in Control Builder.

Variable type Scope Where to declare

Local variable Object level. Can only be
accessed within the function
block, control module or
program in which it is
declared.

Application editor (for passing
parameters between control
modules) or,

Programs editor (for access in
the program).

Function block editor (for
access inside the function
block).

Control module editor (for
access inside the control
module).

Global variable Application level. Can be
accessed from anywhere in
the code within an
application. An object that
intends to use a global
variable must declare an
external variable locally that
will point at the corresponding
global variable.

In the application editor. See
also Communication in an
Application Using Global
Variables on page 82.

Variable Entry Section 1 Basic Functions and Components

70 3BSE035980-510

 Variable Entry

Control Builder helps the user to declare variables in applications, programs,
function block types and control module types. This section covers the entries:
Name, Data Type, Attributes, Initial Value and Description.

Name

It is recommended that variables are given simple and explanatory names, and that
they begin with a capital letter. Names consisting of more than one word should
have capital letters at the beginning of each new word. Examples of recommended
variable names are DoorsOpen, PhotoCell.

Certain names, however, are reserved by the system and cannot be used for other
purposes, for example true. An error message appears if such a word is used. For
naming guidelines and information on relevant tools, refer to the System 800xA
Control AC 800M Planning (3BSE043732*).

Access variable Network level. Variable that
can be accessed by remote
systems for communication
between controllers. See also
Access Variables on page 79
and Communication between
Applications Using Access
Variables on page 81.

Access Variable editor of a
controller.

Communication
Variable

Network Level. Variable that
can be accessed by remote
systems for communication
between applications and
controllers. See
Communication Variables on
page 83

Editor for Diagram, Program,
or top level Single Control
Module.

Table 4. Variable types in Control Builder. (Continued)

Variable type Scope Where to declare

Section 1 Basic Functions and Components Variable Entry

3BSE035980-510 71

Data Types

A data type defines the characteristics of a variable type. There are both simple and
structured data types in Control Builder. A variable of simple data type contains a
single value, while a structured data type contains a number of components of
simple or structured data types.

Table 5 presents the most common simple data types and the initial value when the
variable is declared.

Table 5. Simple data types

Data type Description
Bytes allocated

by variable
Initial value

(default)

bool Boolean 4 False, 0

dint Double integer 4 0

int Integer 4 0

uint Unsigned integer 4 0

string(1)

(1) It is allowed to use variables of string and date_and_time also in SIL3 applications; however,
the result must never influence the safety function of a SIL certified application. The variables
cannot be send via safe peer to peer MMS, as SIL data.

Character string(2)

(2) String length is 40 characters by default, but can be changed by entering string[n] as the data
type, where n is the string length. The number of bytes allocated for string[40] will be (40 +10)
50. The maximum string length is 140.

10 bytes + string
length [n]

‘‘

word Bit string 4 0

dword Bit string 4 0

time Duration 8 T#0s

date_and_time(1) Date and time of
day

8 1979-12-31-
00:00:00

real Real number 4 0.0

Variable Entry Section 1 Basic Functions and Components

72 3BSE035980-510

When declaring variables or parameters of the data type string, always define the
required length within square brackets (for example, string[20]), to minimize
allocated memory. If the string length is not defined, then Control Builder
automatically allocates memory for a 40 character string length.

A structured data type contains a number of components of simple or structured data
type. For bidirectional communication using structured data types, a reverse
attribute must be set to indicate which components communicate in the opposite
direction (see also Bidirectional Communication Variable on page 86).

There are a number of predefined data types in Control Builder (for example
BoolIO and RealIO) that are structured data types. User-defined structured data
types can also be created, see Decisions When Creating Types on page 52.

Attributes

Attributes are used to define how variable values should be handled at certain
events, such as after cold restart, warm restart, etc. Variables that are supposed to
hold values over several downloads must for example, have a retain attribute in

Comparison of variables of unsigned data types (uint, word, and dword) will not
work properly if the most significant bit is set. Internally, they are handled as
signed, where the most significant bit is used as the sign. This means that a word
variable with a value above 32767 will be considered to be smaller than a word
variable with a value below 32768.

Use variables of data type string with care. Strings occupy a great deal of
memory, and require much execution time to be copied or concatenated.

In a control module, the word “default” can be used as an initial value for a
parameter. This works for both simple and structured data types. For a structured
data type, the initial value “default” gives the default value of the data types for
all components.

This is useful when creating types; for input parameters of a structured data type
that do not have to be connected, and for output data types that do not have to be
connected.

More information is given in Control Builder online help. Search the index for
“structured data type”.

Section 1 Basic Functions and Components Variable Entry

3BSE035980-510 73

order to keep their values after a warm start. Any of the attributes in Table 6, can be
given to a variable. For parameter attributes see Table 7.

Table 6. Variable attributes

Name Description

no attribute The variable value is not maintained after a restart, or a download of
changes. Instead, it is set to the initial variable value. If the variable
has no initial value assigned, it will be assigned the default data type
value, see Table 5 on page 71.

retain The variable value is maintained after a warm restart, but not after a
cold restart. Control Builder sets retain on all variables by default. To
override this, the attribute field must be left empty in declaration pane.

coldretain The variable value is saved in the aspect directory, and retained after
warm or cold restart.(1)

Coldretain overrides the retain attributes in a structured data type.

(1) When an application is downloaded the very first time, variables will get their initial data type
values, even though they have been declared with the attribute coldretain, and, that the controller
has done a cold restart. Hence, no variables can receive their coldretain values before they have
been stored in the aspect directory. Correspondingly, will variables that have been declared later
on, contain their initial values until they have been saved in the aspect directory.

constant The user cannot change the value online once assigned.

This attribute overrides the coldretain and retain attributes in a
structured data type.

hidden The variable will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

nosort This attribute suppresses the code sorting feature for control module
types. It is advisable not to use the nosort attribute if the user do not
know the data flow characteristics in detail.

state This attribute will let the variable retain its old value between two
scans for control module types. The old and new value can be read by
adding :old and :new to the variable name.

Variable Entry Section 1 Basic Functions and Components

74 3BSE035980-510

Table 7. Parameter attributes

Name Description

no attribute The parameter value is not maintained after a restart, or a download
of changes. Instead, it is set to the initial parameter value. If the
parameter has no initial value assigned, it will be assigned the default
data type value, see Table 5 on page 71.(1)

(1) These attributes are valid if the parameter is not connected, if connected it is the attributes of
connected variables.

retain The parameter value is maintained after a warm restart, but not after a
cold restart.(1)

coldretain The parameter value is saved in the aspect directory, and retained
after warm or cold restart.(1)

Coldretain overrides the retain attributes in a structured data type.

hidden The parameter will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

by_ref This attribute is used for controlling the passed value. For in and out
parameters the value is usually copied into the called instance at the
invocation. But for non simple data types and strings it is time
consuming. In that case, a reference to the data instance is passed in
the function block call. This is achieved by setting the attribute of the
parameter to by_ref.

In case of power failure, SIL3 applications are restarted using cold retain marked
values which are periodically saved in the controller with a cycle time set by the
user.

Coldretain is not allowed in SIL3 application on restricted parameters. This could
lead to a failing coldretain save and that the controller shuts down after a power
fail restart. A system alarm is generated if coldretain fails and the controller log
gives information on the problematic POU and variable.

Section 1 Basic Functions and Components Variable Entry

3BSE035980-510 75

Attribute Example

The following example tries to illustrate how a variable will be handled, depending
on different attribute settings. Suppose the variable valveC has the attribute
coldretain, valveR has the attribute retain and valve has no attribute. Also, suppose
that these three variables have the initial value = True (see Figure 23 for the variable
declaration).

It is possible to assign several attributes to a variable for example, retain, nosort,
and hidden can be assigned as (retain nosort hidden) attribute.

An intermediate variable (a variable which is automatically generated when
making a graphical connection between function blocks) in FBD or LD is always
assigned the attribute retain (even if the parameters on both sides of the graphical
connection have the attributes coldretain).

Figure 23. Three variables with different attributes settings

Variable Entry Section 1 Basic Functions and Components

76 3BSE035980-510

According to the attribute settings in Figure 23, the variables will be read or written
on different occasions in the given code example below, (read the comments under
each IF statement):

IF valveC THEN
(*Code in this position is only executed once after the very
first cold restart*)

valveC := false;
END_IF

IF valveR THEN
(*Code in this position is only executed once after a cold
restart*)

valveR := false;
END_IF

IF valve THEN
(*Code in this position is only executed once after a cold restart
and once after a warm restart*)

valve := false;
END_IF

Note that execution does not have to take place during the first scan after restart, for
example, when IF valve is embedded in another IF statement.

Variables and parameters should have the attribute retain, unless they are written at
each scan. When a change has been made to the application, the entire application
will be (warm) restarted and in doing so, variables without the attribute retain will
be set to their initial values, and there is a chance that the change will not be totally
bumpless. It is recommended that In and Out parameters to function blocks always
have the attribute retain.

Initial Values

It is possible to give the variable an initial value, which will be assigned to the
variable the first time the application is executed. This setting overrides the default
data type value. Table 5 shows default initial values for the most common data
types.

More information is given in Control Builder online help. Search the index for
“attribute”.

Section 1 Basic Functions and Components Specific Initial Values

3BSE035980-510 77

Descriptions

The description field describes and provides information about the variable. A short
descriptive text may include an explanation of the cause of a condition or a simple
event, for example “Pump 1 is running”. Since the description is not downloaded to
the controller, the size of the description is irrelevant.

Specific Initial Values

In the Control Properties aspect, the user has the possibility to set instance-specific
initial values for variables and parameters in a POU that are different from the ones
defined for the type. These values are compiled and applied to the instances when
Control Builder downloads the project to the controllers. Specific initial values can
be set for the following types of objects in the Control Structure:

• Applications (for variables and global variables),
• Program (for variables)
• Single control modules (for variables and parameters that are default-marked

and not connected)
• Control modules (for variables and parameters that are default-marked and not

connected)
• Function blocks (for variables and parameters with direction in or out, but not

for the direction in_out)

Set Specific Initial Values

Specific initial values are set in Plant Explorer, via the Control Properties aspect in
the Control Structure. To enter an initial value:

1. Select the Control Properties aspect for the object.

2. Select the Properties tab.

3. Select the corresponding item with the Init_Val suffix, then enter the initial
start value in the Property Value field.

4. Click Apply.

If Control Builder finds errors when compiling instance-specific initial values
before download, Control Builder presents a dialog where errors can be corrected.

External Variables Section 1 Basic Functions and Components

78 3BSE035980-510

Priority Order

Initial values are applied in the following order:

1. Coldretain value from the latest saved set.

2. Instance-specific initial value (init_Val property).

3. Initial value declared in the type.

4. Default value of the data type.

Retain Attributes–Effect on Initial Values

The retain attribute decides how initial values are applied.

External Variables

External variables are not really variables, in the sense that they carry a value.
Instead, external variables work like parameters, that is, they point to a variable
value (in this case a global variable). In order for an object to reach a global variable
(located at the top of the application) it must use a pointer, or more specifically, an
external variable. By declaring an external variable inside an object, it is possible to

Table 8. Application of initial values, depending on retain attributes.

Attribute Situation
Initial Value Applied

(_Init_Val)

No attribute Cold restart download Yes

Warm restart download Yes

Retain attribute Cold restart download Yes

Warm restart download No

ColdRetain attribute Init_Val will be applied at the very first download.

For all other situations, Init_Val will not apply if
there are saved coldretain values.

Section 1 Basic Functions and Components Access Variables

3BSE035980-510 79

access global variables efficiently from a deep code design, without having to pass
variable values through parameters.

Figure 24. The variable z can be accessed deep down in the structure, using several
parameters. (Bottom): Using external (and global) variables, the variable z is
accessed directly, without having to use parameters.

Access Variables

Access variables are needed when the system works as a server. Allowed protocols
are MMS, COMLI, MODBUS TCP and SattBus. MMS and SattBus variables are
declared in the Access Variable Editor under the corresponding tab, COMLI and
MODBUS TCP variables under the Address tab. The variable name must be unique
within the physical control system.

Open the Access Variable Editor by right-clicking the ‘Access Variables’ icon
under the respective Controller and select Editor.

To limit the access to a variable, set the attribute to ReadOnly. If the attribute is
left blank, it is possible to both read and write.

variable z [global]

value of z

variable z

parameter z

parameter z

parameter z

value of z

[external]

Access Variables Section 1 Basic Functions and Components

80 3BSE035980-510

MMS

MMS variables can only be accessed by name.

An MMS access variable name can be up to 32 characters long and contain letters,
digits and the characters dollar($) and underscore(_). However, an access variable
name cannot begin with a digit or the dollar ($) character.

All data types for single and structured variables are allowed, with the exception of
ArrayObject and QueueObject.

To limit the access to an MMS variable, set the Attribute to ReadOnly. If the
attribute is left blank, both read and write is possible.

SattBus

SattBus variables can be accessed in three ways:

• Standard SattBus name such as Valve:

– the name must consist of exactly five ASCII characters, but may not begin
with a percentage sign (%).

• COMLI direct addressing (see Address),

• IEC 61131-3 standard representation for variables.

– IEC61131-3 address must be entered under the COMLI tab

Allowed data types for a single variable are, bool, dint, int, uint, real or string.
Whereas a structured variable does not allow string data type.

Address

Address variables can be accessed in two ways only, either direct addressing with
capital X and the number for boolean, or capital R and the number for registers (R0-
R65535 for PA controller and 65000 for HI controller) beginning with a percentage
sign or not, or according to IEC 61131-3 standard representation for variables.

Allowed data types for a single variable are bool, dint, int, or uint, whereas
structured variables must all be of same data type. A structured variable is allowed
to contain more than 512 booleans and contain more than 32 components of integer
data type. Overlapping areas are not allowed.

Section 1 Basic Functions and Components Communication between Applications Using Access

3BSE035980-510 81

Example

An access variable name "X0" is defined and connected to a variable which contains
544 Boolean components at octal address 0-1037. The next available address is then
1040 to ensure that areas do not overlap.

At least one of the variables in the access variable table has to be defined. For
missing variables, requested data of boolean data type will be returned with the
value False and requested data of integer data type will be returned with the value
"0". Writing to undefined variables is ignored.

Communication between Applications Using Access Variables

The communication variables are used for cyclic communication between diagrams,
programs, and top level single control modules in the system networkthat uses
MMS communication protocol.

Two applications may communicate with each other via variables, but these
variables must be declared as access variables (see, Access Variables on page 79).
This also applies when two applications are downloaded to the same controller (see
Figure 25).

Figure 25. Variables for communication between applications must always be
declared as access variables.

When transferring access variables, it is important to use the same data type range
for the client (dint), as for the server (dint).

It is, however, possible to connect variables with different ranges, such as a dint
variable on the server and an integer variable on the client.

Application 2

Controller

Application 1
Application

Controller 1

Application

Controller 2

Communication in an Application Using Global Variables Section 1 Basic Functions and

82 3BSE035980-510

As long as the variable values are within the range of an integer, this will work, but
once the value goes outside the integer range, it will not.

Communication in an Application Using Global Variables

In Programs

Global variables are declared at application level, in the Global Variables tab of the
application editor. They can be accessed directly, without any declaration in the
program editor. Variables that are not declared in the declaration pane in the
program editor are assumed to be global variables. A global variable can be used in
any program, without having external variables declared in a program.

In Function Blocks or Control Modules

In order to reach a global variable from either a function block type or a control
module type, each type must have either an external variable declared or a
parameter. Thus, the types access the global variable value by using an external
variable or a parameter to point at the global variable located in the application.

If an access variable is the only user of a variable that is connected to an I/O
channel, this variable is by default updated every second. To update this variable
with another interval, create a statement that involves the variable, but is never
executed.

A statement that is never executed, but still updates the variable x could look like
this:

if false then
x:=x;

end_if;

Connect this program to a task that executes with the desired interval. The
variable is updated every time the task is executed.

Section 1 Basic Functions and Components Communication Variables

3BSE035980-510 83

Communication Variables

The communication variables are used for cyclic communication between diagrams,
programs, and top level single control modules in the system network that uses
MMS communication protocol.

Communication variables are declared in the Program editor or top level Single
Control Module editor. They are also declared in the Function Diagram in Function
Designer.

Communication variables support both inter application communication and inter
controller communication in a system network.

A communication variable can be either a communication input variable or a
communication output variable.

If the direction of a communication variable is in in a POU, the POU can read the
variable, but cannot write to the variable. If the direction of a communication
variable is out in a POU, the POU can write to the variable and read the variable.

A communication variable can be either an elementary type or a structured data
type. It cannot be a generic or built-in type.

Communication variables use a name based resolution to connect a communication
output variable to one or several communication input variables.

In a system network, all communication output variables must be declared with
unique names.

Communication variables cannot be connected to the channels of an I/O unit.

Communication variables can be used only in Non-SIL configurations.

Communication variables are not supported in distributed applications. If an
application that contains communication variables is running in a controller, it is
not possible to download the same application to another controller.

If a communication variable is of structured data type, it must not contain
components that are declared with the CONSTANT type qualifier and it must not
contain CONSTANT components at any sub-level of the variable.

Communication Variables Section 1 Basic Functions and Components

84 3BSE035980-510

Declaration pane for communication variable

The declaration pane for communication variables consists of:

• Name

The name of the communication variable. For communication output variables
(direction - out), the name must be unique on the network to resolve the
IP-address during compilation.

• Data Type

The supported simple data types are Bool, Dint, Uint, Int, Dword, Word, Real,
String, Time, and Date_and_time. Structured data types with these simple data
types are also supported with maximum size of 1000 components.

If the type contains strings, the maximum size is calculated according to the
formula (5 * NumberOfComponents + TotalStringLength) < 1400.

The data types Time and Date_and_time are considered as a data structure with
two components. Nested structured variables are allowed.

• Attributes

Possible attributes to specify are:
– retain
– coldretain
– hidden
– hidden retain
– hidden coldretain

If no attribute is specified when the communication variable is declared,
retain is filled in automatically by the editor.

• Direction

The possible values are in or out. If no direction is specified when the
communication variable is declared, in is automatically filled in by the editor.

• ISP value

Applicable only to communication input variables. This field defines the ISP
(Input Set as Predetermined) value to be set for the in variable. This value can
only be set for simple data types. If no ISP value is specified, the default value

Section 1 Basic Functions and Components Communication Variables

3BSE035980-510 85

is the last good value, or if no last good value exists (because of no
communication), the init value is applied.

For structured data types, the ISP values can only be set in the data type for
each individual component (in the Data Type editor). Hence, it is not possible
to configure instance specific ISP values for structured data types.

ISP could be used in a structured variable to detect communication failure or
bad quality, by using a Boolean Valid component with ISP set to false.

• Interval Time

Communication cycle time for peer-to-peer communication. The possible
values are fast, normal, slow, very fast, and very slow. The default value is
normal.

The time interval (in milliseconds) for each of these cycle times is defined in
the hardware editor for IAC MMS in the Control Builder. The IAC MMS
object is located at position 5.1 under the controller object in the hardware tree
in Control Builder.

• IP Address

Applicable only to communication input variables. This field defines the
IP address of the controller that contains the corresponding communication
output variable (with the same name) in any of its applications. When no value
for the IP address is entered, the editor automatically fills in the default value
'auto'. This means that the IP address is resolved during compilation.

Source and Sink for Communication Variables

The term ‘source’ is used for the POU that declares a communication output
variable. The term ‘sink’ is used for the POU that declares a communication input
variable.

If a sink is located in one application, a source can be located in any of the
following:

• In the same application as the sink.

• In another application but in the same controller as the sink.

• In another application and in another controller.

Communication Variables Section 1 Basic Functions and Components

86 3BSE035980-510

Multiple sinks can be linked to the same source.

For example, for every communication output variable with a unique name, there
can be multiple communication input variables with the same name as the
communication output variable. The communication input variables can reside in a
different POU, in a different application, or in a different controller.

There is no need to declare the location of the source (communication output
variable) while configuring the sink (communication input variable). This is
because the binding between them is based on the name of the communication
variable. The source can be moved with in the same controller (same IP address)
without the need to modify the sinks.

The availability of the data from a communication output variable to a
communication input variable depends on the task that is connected to the different
POUs corresponding to the variables.

The Control Builder checks whether the name of a communication output variable
is unique in the networkproject, only during the download of the application. The
download is aborted if the variable name is not unique.

Unresolved Communication Variable

A communication input variable is unresolved if there is no communication output
variable (source) with the same name, during compilation.

A resolved communication variable can also become unresolved if the source is
removed at a reconfiguration.

Bidirectional Communication Variable

Bidirectional communication variables have communication in both directions and
can be configured for one-to-one connections only. These variables can be created
for structured data types only.

The Control Builder allows the execution of an application that contains
unresolved communication variable. When a reconfiguration of the system is
done (for example, at a warm restart), the source can be created and the
unresolved communication variable becomes resolved.

Section 1 Basic Functions and Components Communication Variables

3BSE035980-510 87

The configuration parameters that are used for the in variables can also be specified
for the out variables, if bidirectional. This allows the configuration of a
communication variable with a different communication setup in either directions
(for example, different interval times).

Reverse attribute

For bidirectional communication using structured data types, a reverse attribute
must be set to indicate which components communicate in the opposite direction to
the in/out declaration of the communication variable.

The reverse attribute can only be set such that all in variables are located
consecutively and also all out variables are located consecutively in memory.
Hence, it is not possible to configure reverse for every other component in a data
type.

The reverse attribute can be set in both top level and sublevel of of a structured data
type but can not be nested. For example, for a ControlConnection data type, which
consists of one forward structure and one backward structure, the reverse attribute is
set on the whole backward structure. All components in the backward structure
inherits the reverse attribute automatically.

Interval Time

Out of the five different cyclic categories (VerySlow, Slow, Normal, Fast,
VeryFast), the default interval time for a communication variable is Normal.

The interval time for a communication variable can be changed only when the
Control Builder is offline. The changes takes effect during the download.

The time interval (in milliseconds) for each cyclic category is defined using the
hardware editor for IAC MMS. The IAC MMS object is available at position 0.5.1
under the controller object. Position 5 contains the IP object.

Hardware Simulation with Communication Variables

It is possible to use hardware simulation for IAC.

The reverse attribute is configured in the data type editor.

Control the Execution of Individual Objects Section 1 Basic Functions and Components

88 3BSE035980-510

When using hardware simulation, the communication variables use real
communication and real copying of input variables.

This is also the case when downloading a simulated AC 800M to a Soft Controller.

Control the Execution of Individual Objects

Sometimes there is a need to execute specific sub function blocks and/or sub control
modules, with a time interval and priority different from the task connected to the
application. Depending on the requirement, this can be done in two ways:

1. To create a new task and connect this task to all the following objects, read the
sub-section 'Using a Global Variable Connected to an External Variable on
page 88.

2. To choose a new task for each individual object (and for that object only), read
the sub-section 'Using a Global Variable Connected to a Parameter on page 89.

Using a Global Variable Connected to an External Variable

Assume that the user has added a new task, for example SuperFast, to the other
tasks in the Project Explorer.

Steps to use global variable:

1. Declare a global variable (for example Speed) of data type string, with the
attribute constant and the initial value 'SuperFast'.

2. To reach objects that have been created in the application, start by declaring an
external variable in the type (open the type editor and select the external
variable tab).

3. Declare an external variable with the same name, data type and attribute as the
global variable. In this example, an external variable called Speed of data type
string and with the attribute constant is used.

Finally, connect the new task SuperFast to the object by right-clicking the object
and selecting Task connection. Type the variable name Speed in the task field. All
the following objects that are created will have this task connection, that is,
SuperFast.

The advantages with this method of using a global variable connected to an external
variable (declared in the type) is that every following object will be connected to the

Section 1 Basic Functions and Components Control the Execution of Individual Objects

3BSE035980-510 89

same task (SuperFast). If the user later on need to change the task connection for all
the objects (perhaps hundreds of objects), change only the initial value for the
global variable in the application (see Figure 26). The present task connection for all
objects will point, via the external variable to the task declared by the global
variable.

Figure 26. All objects will have the same task connected (SuperFast), once the first
object has connected Speed.

Using a Global Variable Connected to a Parameter

Assume that the user has added a new task, for example SuperSlow, to the other
tasks in the Project Explorer.

The main advantage of this method, compared to the previous method with external
variables, is that the user can change the task connection on each following formal
instance, by simply connecting a parameter to a different global variable. (See
Figure 27).

For more information on formal instances, see Types and Instances - Concept on
page 40.

SuperFast

Fast

Normal

Slow

SuperSlow

Tasks Global variable
Speed initial value = ‘SuperFast’

type

External
variable = Speed

objects
Task connection = Speed
on the first created object.

Current task is SuperFast
for all following objects.

Control the Execution of Individual Objects Section 1 Basic Functions and Components

90 3BSE035980-510

This method is based on declaring two global variables (for example, Slowly and
Learning) of the data type string, with the attribute constant, and the initial values
'SuperSlow' and ‘Slow’, respectively.

Section 1 Basic Functions and Components Control the Execution of Individual Objects

3BSE035980-510 91

In order to reach the following objects that have been created in the application,
start by declaring a parameter in the type (open the type editor and select the
parameter tab). Declare a parameter, for example Sleepy, of data type string. Select
the formal instance (object) inside the type:

1. Right-click the object and select Property > Task connection.

2. Type Sleepy in the task field.

Every created object that is based on the type (containing the formal instance) can
be connected via the connection parameter Sleepy and one of the global variables
Slowly or Learning, located in the application.

Figure 27. Each object can be connected to a different task via the parameter
Sleepy declared in the type and task connected in the formal instance.

SuperFast

Fast

Normal

Slow

SuperSlow

Tasks Global variables
Slowly with initial value = ‘SuperSlow’

type

Parameter = Sleepy

object1

Task connection = Sleepy
on the formal instance.

Current task is SuperSlow

Current task is Slow

Learning with initial value = ‘Slow’

formal instance

Sleepy connects = Slowly

Sleepy connects = Learningobject2

Project Constants Section 1 Basic Functions and Components

92 3BSE035980-510

The advantage of this method is that the objects of the formal instance, located
inside the type can be connected to different tasks (global variables with a different
task name as init value).

Project Constants

Project constants are declared at the top level of libraries and projects. They are
globally visible, and can be used wherever a constant value is permitted, for
example, in program code and for variable initialization. With project constants, it is
possible to create settings for an individual project, without having to modify any
source code, or having to introduce parameters which have to be passed on to all
concerned types.

Project constants are suitable to use for library items that the user wants to change.
Examples are, date and time formats, logical colors and logical names. Do not use
project constants to change the functionality of an object, for example, initial values
and comparisons in code.

Typically, project constants are declared in a library and given default values. They
are then used, for example, in code located inside types.

Project constants are allowed to have the same names as variables and parameters.
Control Builder will, however, choose the variable or parameter name if a name
conflict exists. This must be considered when adding, renaming or deleting
variables or parameters in an already running application.

Project constants declared at library level (user-defined libraries) can only be edited
and deleted from the library, that is, they cannot be deleted from the Project constant

Follow the naming convention, which says that project constants should begin
with the letter “c” (for example “cColors”). Use structured project constants, if
possible.

Note that project constants cannot be used to control the execution of function
blocks or control modules. Use a global variable or a parameter instead. For more
information see, Control the Execution of Individual Objects on page 88.

If a project constant connected to a retain parameter (or variable) is changed
online, then the change does not effect on existing instances until a cold restart is
performed.

Section 1 Basic Functions and Components Project Constants

3BSE035980-510 93

dialog that is reach by right-click the control project folder (root object). To edit or
delete a library-declared project constant, right-click the library in Project Explorer
and select Project Constants.

Structured Project Constants

It is advisable to create one single structured project constant for an entire project or
library, where the project constant name is a concatenation of “c” and the project
name (or library name).

An example:
If the project name is “ACMEToothpaste”, the structured project constant should be
named “cACMEToothpaste”. Using a structured project constant makes sure that
there is little chance of conflict with variable and parameter names. Using a
structured project constant (“cACMEToothpaste”) enables the user to, for example,
use “Max” without causing problems due to a variable or parameter called “Max”,
since the full path to the project constant “Max” would be
“cACMEToothpaste.Max”.

Define only one project constant per library. This project constant can, and should,
be a structured project constant the concatenation of “c” and the library name in
which it is contained. For example, if the library name is “ACMEValveLib” the
(structured) project constant should be “cACMEValveLib”.

Typical Use

There are two typical use cases for project constants:

1. To satisfy the need for constant values in all project applications.

Some values might have to be constant throughout the entire project. To
change such a “constant” value, change it once. There is no need to change it at

Naming conflicts between project constants appears when the same project
constant name exists in more than one library at the same time.

The only way to avoid a naming conflict is either to delete one of the constants or
not using the constant at all. A type conflict can never be overridden.

All project constants defined in libraries and projects must have been given
unique names.

Project Constants Section 1 Basic Functions and Components

94 3BSE035980-510

every occurrence. For such cases, use a project constant. The project constant
is defined in one place only, and can be used throughout the project. Changes
to the project constant will be reflected throughout the project.

An example:
To be able to change the severity for all “High level alarms” in the entire
project, set up a project constant that defines the severity and use the project
constant in all alarm blocks in all applications. To change the severity, just
change the value of the project constant.

In this case, project constants should be defined on control project level, not in
a library.

2. To be able to change library type solutions without having to make changes in
the library itself.

A method commonly used in control application engineering/programming is
to construct libraries, in which re-usable code is placed. It is good practice to
make the library as general as possible, to maximize its usefulness. The use of
project constants is an excellent solution for such situations.

Example 1: Easy Translation

Assume that the user has created a library that makes extensive use of text strings.
Instead of including strings (in the user’s native language) statically in the library,
use project constants. This allows another engineer to change the values of these
project constants and to translate the strings to another language.

For example, a project constant that was originally set to “Stop” can easily be
translated by a German engineer to “Halt”, simply by changing the value of the
project constant. This would not be the case if the user had typed “Stop” in the
library. Such string constants that are to be translated are best stored as a structured
project constant under the component .Settings.

The string “Stop” would, for example, be defined as the structured project constant
“cACMEValveLib.Settings.StopLabel” or, even more levels;
“cACMEValveLib.Settings.Labels.Stop”.

Section 1 Basic Functions and Components Project Constants

3BSE035980-510 95

Example 2: Combination of Dynamic and Static String Constants

Consider the following function block, in Figure 28, that controls high alarms.
Signal is of RealIO type, Alarmlevel is of real type, and Message is of string type.

Figure 28. The function block AlarmCond located in the Alarm library.

Now, we want a “customized” message to be passed to Message, such as

High Level (> 75 ºC)

The message consists of five important elements that make up the message.

1. “High Level”

2. “(> “(note the spaces)

3. 75 (a value set by Alarm level)

4. ºC (a value set by Signal.parameters.unit)

5. “)”

All in all, three strings (1, 2, and 5) and two values (3 and 4).

Defining these 3 strings locally would be poor design, since the strings would be
defined for every object that is created from the type. To create a dynamic
environment, use project constants, or, more specifically, structured project
constants.

In the example above, we actually have different string categories – “High Level”,
“(> “, and, “)”.

The first one is a (dynamic) string that a user may want to translate, depending on
target customer nationality, whereas the other two are static and independent of
language. This calls for two different views of project constant.

Signal

Alarm level

Message

AlarmCond

I/O Addressing Guidelines Section 1 Basic Functions and Components

96 3BSE035980-510

Using structured project constants, and the naming convention mentioned earlier in
this section, a defined structured project constant for “High Level” could be:
cACMEValveLib.Settings.HighLevelLabel.

As described in the first example (Example 1 above), we make use of the
component “Settings” in the structure. Underneath this component, we define the
constants that are to be translated, or changed, depending on circumstances.

Next, we define the structured project constant cACMEValveLib.Internal.Str1 and
cACMEValveLib.Internal.Str2 to contain “(> “and “)”. Note the component
“Internal”, which implies that components (constants) under this level are not to be
changed by the user. Of course, the user can use the structure
cACMEValveLib.Settings.Labels.HighLevel, as described earlier, if the user
prefers more levels.

I/O Addressing Guidelines

A good I/O variable structure is the key to being able to debug and change an
application. A good structure also makes the connection of the application to system
I/O easier to read and understand.

Below are some hints and tips to ensure that the I/O connections have a good
structure.

• A good I/O connection structure requires a good application program structure,
and also a realistic translation of the process to be controlled, into the
application program.

• Try to collect I/O of the same process object in the same controller, and even in
the same object in the application program.

• Try to divide the application program into process cells, with contents similar
to the real process.

These hints are basic rules for object-based programming for real processes, and
once the application has a good structure, it is easier to divide I/O signals into
groups or cells of the process.

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

3BSE035980-510 97

Connecting Variables to I/O Channels

Only one variable can be connected to each I/O signal, and vice versa. This is not a
problem for output signals, but for input signals it may be necessary to read the
same input signal from different programs, or even from different places in the same
program. This can be done by placing the connected IO variables in a common area,
for example, in the application. Then the variables can be read by the program(s).

Note that the result of an IO copying is different depending on whether the
parameter is IN or IN_OUT. An IN parameter will result in a copy of the value,
whereas an IN_OUT parameter will result in a reference to the current value. While
different tasks can copy the same I/O signal, a task with a higher priority may
update the signal value in the middle of a scan. See also Function Block Execution
on page 58 and the information on connected I/O channels in a task in the System
800xA Control AC 800M Planning (3BSE043732*).

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

98 3BSE035980-510

If the same I/O signal must be read by different applications, the I/O copying must
be done from one of the applications. The copied value can then be moved to other
applications through ordinary communication services. See also Communication
between Applications Using Access Variables on page 81.

The address for a hardware unit is composed of the hardware tree position numbers
of the unit and its parent units, described from left to right and separated by dots.
For example, channel 1 on the I/O unit DO814 in Figure 29 has the address
Controller_1.0.11.1.1.

Figure 29 illustrates an example of a controller hardware position.

Figure 29. An example of how IO channel addresses are created in a control
project.

All I/O access is done via variables connected to I/O channels and these variables
are connected in the hardware configuration editor. The Connections tab displays all
channels that can be connected.

Controller_1

Position 11

Unit 11.1

Channel 1
= Controller_1.0.11.1.1

Hardware pos. 0

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

3BSE035980-510 99

I/O Data Types

Variables connected to I/O can be of any of the simple data types, bool, dint, dword
or real, or any of the system-defined I/O data types. For example, an IO unit input
can be connected to a variable of bool data type or a variable of BoolIO data type.
For applications that only require a simple channel value, it is enough to connect a
variable of simple data type. But for applications that need comprehensive
information like forcing IO channels, reading status, or validate analog channel
values, must connect variables that is of system defined (structured) IO data type.

The user can always choose a variable that is of the simple data type bool, dint,
dword, or real, and connect it directly to the I/O channel, as long as the user is
content with a simple value in return. However, such a connection does not take
advantage of certain auxiliary signals which come with structured data types. A
predefined structured data type includes signals for I/O forcing, analog signal status,
maximum and minimum values, etc.

Figure 30 presents as an example the available components inside the structured
data type BoolIO.

It is possible to force I/O values, and display forced and non-forced values from
an engineering station, regardless of whether the channel is of a simple data type
or an I/O data type.

It is not possible to assign the forced component of a system defined I/O data type
in a SIL certified application, but it is possible to reset a specific force using the
firmware function ResetForcedValue.

Always use In_Out parameters when writing to output I/O variables from a
function block. This will prevent unintentional overwriting of I/O variable
component values, such as scaling. Do not use Out parameters for this purpose.

Figure 30. Components inside the structured data type BoolIO

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

100 3BSE035980-510

A structured data type (for example, the BoolIO data type) contains four
components. Declare a local variable MyIOVar as a BoolIO data type, and then
connect MyIOVar to an IO channel to automatically access these four component
values at the same time.

Declaring MyIOVar as a simple data type, Bool, provides access to the channel
value. In other words, the user cannot read or write other values from the code.

Table 9 shows the (hardware editor) entries to different IO channels. The Type
column presents the IO channel data type in the hardware editor, whereas the
Variable column presents possible data type connections (simple, structured).

See Figure 31 and the corresponding structured data types in Table 9.

By declaring a structured data type, more information can be accessed from the
IO channel, which can be read/written in code.

When connecting a structured data type to an I/O channel, always connect the
data type (like MyIOVar). Do not try to connect one of the components inside
(like Value, I/O Value, Forced etc.) directly on the I/O channel.

Table 9. Possible variable (data types) connections to IO channels.

Channel Name Type Variable

IX, QX Boolean. input (IX) and
output (QX)

BoolIO bool, BoolIO

IW, QW Non-boolean. input (IW) and
output (QW)

RealIO real, RealIO

IW, QW Non-boolean. input (IW) and
output (QW)

DintIO dint, DintIO

IW, QW Non-boolean. input (IW) and
output (QW)

DwordIO dword, DwordIO

IW0, QW0 (1)All Inputs, All Outputs

(1) ISP and OSP values are not set for variables connected to All Inputs/All Outputs!
For more information see also Access All Inputs and All Outputs on page 342.

DwordIO dword, DwordIO

IW0 Channel status DwordIO dword, DwordIO

IW0 UnitStatus HWStatus dint, HWStatus

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

3BSE035980-510 101

Figure 31. A correct way of connecting IO variables. The structured data type
MyIOVar connected to an IO channel.

Example of I/O Channel Representation

The IO channel in Figure 31, IX0.11.1.1, interpreted from Table 9, gives the
following: IX is a Boolean input, whereas 0.11.1 represents the hardware address
and .1 represents the I/O channel.

Monitoring the Status for Hardware and I/O

UnitStatus is a hardware connection to individual hardware and I/O units in the
Project Explorer. The user can connect a variable to Unit Status by selecting the
Unit Status tab in the hardware editor.

If the user chooses to connect a variable to Unit Status this must be either of a dint
data type or of an HWStatus structured data type. The simple data type dint will
return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information. See the
contents inside the Unit Status tab in Figure 32.

IO channel of type boolIO. MyIOVar of BoolIO (correct connection).

Extensible Parameters in Function Blocks Section 1 Basic Functions and Components

102 3BSE035980-510

Figure 32. The components available inside the HWStatus.

In addition to the Unit Status there is a 'collective' hardware connection,
AllUnitStatus, which contains errors and warnings regarding all hardware units
connected to the controller.

Similar to Unit Status, the user can choose to connect a variable of simple data type
dint or a variable of the structured data type HWStatus. The simple data type dint
will return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information.

Figure 33. The AllUnitStatus connection gives access to the status of all units.
.

Extensible Parameters in Function Blocks

Some function block types have extensible parameters, such as MMSRead,
COMLIRead, etc. This means that the number of input/output parameters is
changeable, and must be specified while declaring the function block in the function
block tab.

For information about supervising IO channels and unit status in online mode, see
Supervising Unit Status on page 339.

Section 1 Basic Functions and Components Keywords for Parameter Descriptions

3BSE035980-510 103

The editor automatically inserts [1] when the user specifies a function block type
with extensible parameters. Change the number within the brackets to the required
number of parameters.

To see which function block types can have extensible parameters and the
maximum number of parameters for each type, see the Control Builder online help.

Keywords for Parameter Descriptions

Types that are located in standard libraries contain keywords in the description
column for parameters. These keywords help the user to organize the parameters
and document the purpose of parameters.

In the Function Block Diagram (FBD) and Ladder Diagram (LD) languages, a
maximum of 32 extensible parameters per function block can be shown.

There is no support for online values on Extensible Parameters. No such values
will be presented in online editors or in the project documentation and
consequently it is not recommended to trust these values.

Table 10. Type description keywords.

Keywor
d

Description

IN The parameter direction is IN (read).

OUT The parameter direction is OUT (write).

IN(OUT) The parameter direction is both IN and OUT, but mainly IN (read).

OUT(IN) The parameter direction is both IN and OUT, but mainly OUT (write).

NODE Applies only to control modules. Used to indicate that the parameter has
a graphical connection.

Keywords for Parameter Descriptions Section 1 Basic Functions and Components

104 3BSE035980-510

EDIT Applies only to IN parameters. The parameter, which must have a value,
is only read following changes to the application, warm restart or cold
restart.

Be careful not to connect a variable to a parameter with the keyword
EDIT. Use a literal instead.

NONSIL Some of the Certified Function Block Types and Control Module Types,
contains SILx Restricted sub-objects.

It is not allowed to use output parameters from Function Blocks or
Control Modules marked with Non-SIL in the parameter description in a
way that can influence the safety function of a SIL classified application.
If such code affects an output from a SIL3 application, it might result in a
Safety Shutdown.

Table 10. Type description keywords.

Keywor
d

Description

Section 1 Basic Functions and Components Property Permissions

3BSE035980-510 105

Property Permissions

Parameters and variables that are not needed for HSI, configuration, etc., should
have the attribute Hidden, but for all other variables that will be exposed via the
OPC Server, property permissions must be properly set. Note that components
inside a data type should also have property permissions. The user can set
permissions from both Project Explorer and Plant Explorer.

The following five property permissions are the frequently applicable. However,
there are several other property permissions available, along with self-defined
property permissions.

• Read

• Operate

• Tune

• Configure

• Administrate

In some cases, there is also a need for setting authentication levels, besides the Read
and Write property permissions.

Re-authenticate

Re-authenticate means that the user will be asked for UserId and Password before
changing the property.

Double Authenticate

Double authenticate means that two separate UserIds and Passwords have to be
entered before changing the property.

For more information about creating self-defined Property permissions, see the
System 800xA Administration and Security (3BSE037410*).

This function requires a separate license and is not available to all users.

This function requires a separate license and is not available to all users.

Property Attribute Override Section 1 Basic Functions and Components

106 3BSE035980-510

Set Property Permissions and Authentication Level

The property permissions and the authentication level can be set from both Plant
Explorer and Project Explorer.

To set permissions from Project Explorer:

1. Double-click the object. The corresponding editor opens.

2. Select Tools > Edit Permissions. The Edit Permissions dialog is displayed.

3. Click a variable under Property, and select (Read/Write) permissions and
authentication level from the drop-down menus.

4. Click OK.

Property Attribute Override

Property Attribute Override is an aspect that allows the user to override existing
property permissions and authentication flags on both types and objects, inside
libraries. For more information, refer to the System 800xA Administration and
Security (3BSE037410*) manual.

The user can set the same property permission for several variables in one
operation, by selecting the variables (Ctrl + mouse click) and then select
permission from the drop-down menu.

Property permissions and authentication levels can only be set on variables and
parameters of simple data type. Hence, property permissions and authentication
level attributes for structured data types will display (N/A). Corresponding
settings for components must be repeated inside each Data Type.

Section 1 Basic Functions and Components Viewer for Function Diagrams

3BSE035980-510 107

Viewer for Function Diagrams
A Function Diagram (FD) contains the code that is designed using the engineering
editor called Function Designer, available in Engineering Studio under
System 800xA. The Function Diagram contains aspect objects like function blocks
and control modules, which are graphically connected.

The Function Designer compiles and allocates the Function Diagram to a selected
application available in the Control Builder, so that the diagram is available for
download to the controller.

For details about the creation of the Function Diagram and allocation of the
Function Diagram to an application, refer to the System 800xA Configuration
(3BDS011222*).

In the Control Builder, it is possible to:

• View the Function Diagram allocated to an application in the Control Builder.

• Connect the Function Diagram and its objects to controller tasks.

• Control the execution order of the Function Diagrams, based on the controller
tasks.

Viewing the Diagram

A Function Diagram that is allocated to an application appears under the Diagrams
POU under the application in the Control Builder. The diagram can be identified
using the same name as created using Function Designer.

Figure 34 shows a diagram object under an application in Control Builder.

Viewing the Diagram Section 1 Basic Functions and Components

108 3BSE035980-510

To open the viewer for a diagram, right click the diagram object, and select Viewer.

Figure 35 shows the viewer of a diagram named FuD_32_2000 available under
Application_1.
The viewer consists of the declaration pane and the page view pane.

Figure 34. A function diagram allocated to an application

Deleting a Function Diagram object (for example, FuD_32_2000 in Figure 34)
from the Control Builder results in the deletion of the Function Diagram in the
Function Designer.

The name of the Function Diagram can be changed using the Rename option in
Control Builder. The new name appears in the Function Designer also.

The viewer for the diagram in Control Builder can also be opened from Function
Designer, after the diagram is allocated to an application. Open the context menu
of the diagram in Function Designer, and select Viewer.

Section 1 Basic Functions and Components Viewing the Diagram

3BSE035980-510 109

The declaration pane lists all the variables, communication variables, function
blocks, and control modules in the Function Diagram as created using Function
Designer.

The page view pane displays a page based view of the Function Diagram.

Figure 35. Viewer for a Function Diagram in Control Builder

Common Viewing Operations in Diagram Section 1 Basic Functions and Components

110 3BSE035980-510

Common Viewing Operations in Diagram

Page Navigation

The page view pane shows the diagram that is downloaded to the application from
the Function Designer. The diagram in the pane consists of different pages as
created in the Function Designer.

Page navigation can be done using the page navigation control, using menu
commands in the context menu, and using keyboard shortcuts.

Figure 36. Page navigation control in FD viewer

Figure 37. Page navigation using the context menu in FD Viewer

Section 1 Basic Functions and Components Objects in Diagram Viewer

3BSE035980-510 111

The keyboard shortcuts for page navigation are:

• Page Down = Next page

• Page Up = Previous page

• Ctrl + Page Down = Last page

• Ctrl + Page Up = First page

Zooming

To zoom the diagram, use the mouse (Ctrl + scroll) or use the zoom option available
in the standard toolbar of the diagram viewer window.

Printing

To print the diagram, use the print option available in the standard toolbar of the FD
viewer window. Each page in the diagram viewer is printed as a separate page.

Objects in Diagram Viewer

The properties for the objects in the diagram viewer are inherited from the
properties of the diagram in the Function Designer.

Properties Common to All Objects

The common properties for the objects in the diagram viewer are:

• Leap number for object names

A leap number (in brackets) appears in the names of the objects if two or more
objects have the same name (for example, and(3)).

• Data Flow Order number

The Data Flow Order number appears at the end of the names of the objects,
separated by a colon(for example, and(3):10). This number determines the
sequence of data flow of the object, and can be changed using the
Define Data Flow Order command in the context menu of the Function
Diagram in the Function Designer.

Objects in Diagram Viewer Section 1 Basic Functions and Components

112 3BSE035980-510

Graphical Data Connections

Figure 38. Example of graphical data connections

Section 1 Basic Functions and Components Objects in Diagram Viewer

3BSE035980-510 113

Connection Ports with Negation

The negated attribute on a connection port of an object determines if a Boolean
connection port shall be inverted.

EN block attribute

All functions and function blocks have a Boolean attribute called EN. This attribute
controls if the function/function block executes or not, and if used, it should be
connected to a Boolean variable. If EN is not used, it is hidden and the
function/function block executes every scan.

Figure 39. Example of port negation at IN1

Figure 40. Example of EN parameter

Objects in Diagram Viewer Section 1 Basic Functions and Components

114 3BSE035980-510

Function Call

Procedure Call

Figure 41. Examples of function call

Figure 42. Examples of procedure call

Section 1 Basic Functions and Components Objects in Diagram Viewer

3BSE035980-510 115

Function Block Invocation

Some function block and control module instances have extensible parameters.
These parameters are indexed using integer values inside brackets.

Figure 43. Examples of function block invocation

Figure 44. Example of a function block invocation with extensible parameters

Objects in Diagram Viewer Section 1 Basic Functions and Components

116 3BSE035980-510

Control Module Invocation

Code Block Invocation

A code block invocation can either be a ST block or a SFC block.

An SFC code block contains the following parameters:
– EN
– Hold
– Reset
– DisableActions
– MaxStepTime*
– Check*
– StepTimedOut*

* Requires that "Step elapsed time" is enabled for the SFC.

Variable Reference

A variable reference is a reference to a declared variable in the containing POU.

Figure 45. Example of control module invocation

Figure 46. Example of SFC code block invocation

Section 1 Basic Functions and Components Objects in Diagram Viewer

3BSE035980-510 117

A variable reference consists of:

• The data type of the variable.

• One input port and one output port, corresponding to the variable itself.

• Ports corresponding to the components of the variable, when the data type of
the variable is a structured data type.

Communication Variable Reference

A communication variable reference is a reference to a declared communication
variable in the containing Diagram POU.

A communication variable reference consists of:

• A port that represents the communication variable itself. A communication
variable with direction in has a port with direction out, and a communication
variable with direction out has a port with direction in.

• A status port (output). This is always available for communication variables
with direction in. It is also available for communication variables with
direction out if the corresponding data type is bidirectional (contains reverse
components).

Figure 47. Example of variable reference

Figure 48. Examples of communication variable references

Objects in Diagram Viewer Section 1 Basic Functions and Components

118 3BSE035980-510

Page Connector

A page connector is used to connect blocks on different pages. Page connectors
always work in pairs, one on each page of the required data connection.

A page connector consists of the page number and the name of the referenced port
on the other page.

In Function Designer, it is possible to set a "Display Name" on a page connector.
This display name appears on both pages instead of the text showing the connected
port on the other page. If no Display Name is defined, the page connector will be
displayed as shown in Figure 49.

Figure 49. Example of a page connector at an In port in page 1 that receives a
value from an Out port of another block in page 2

Section 1 Basic Functions and Components Diagram Viewer in POU Online Editor (Online or

3BSE035980-510 119

Diagram Viewer in POU Online Editor (Online or Simulation View)

Online and Simulated Values

The diagram shows the values for variables and communication variables of simple
data types. The values are fetched, through the POU online editor, from the
controller which owns the corresponding variable.

The values are shown as labels in the diagram. The labels are placed close to the
ports of the blocks. There is one label showing the value in each end of the edge. In
case of short straight edges, there is only one value label.

The values are only shown when there is a corresponding variable to fetch the value.
A connection between two functions does not not generate any variable and no
value is shown.

Values are shown in grey text if the communication status for the variables is bad.
The background of the label is shown in grey if it is impossible to modify the value
(for example, due to lack of access rights).

Boolean values are shown using the text true or false in the label area.

To change a value, select the text in the label, enter a new value, and press Enter.

Figure 50. Presentation of floating point values

Figure 51. Presentation of boolean values

Connecting the Diagram to Controller Tasks Section 1 Basic Functions and Components

120 3BSE035980-510

Connecting the Diagram to Controller Tasks

The diagram that is available for viewing in the Control Builder is automatically
connected to the controller task to which the application is connected.

To change the task connection of the diagram or its objects:

1. In the Control Builder, right-click the diagram or its object, and select
Properties > Task Connection.

2. Select the controller task.

Changing the Execution Order

The order of execution of diagrams depends on the connected controller tasks.

The Execution Order dialog box helps to change the order of execution of diagrams
that are allocated to an application, by changing the connected controller tasks. This
tool is useful if there are many diagrams under the application.

To open the the Execution Order dialog box, right click the Diagrams object under
the application, and select Execution Order.

The Execution Order dialog box displays:

• The tasks under the different controllers to which the application is connected.
These tasks appear as columns.

Figure 52. Execution Order dialog

Section 1 Basic Functions and Components Changing the Execution Order

3BSE035980-510 121

• The diagrams allocated to the application, and connected to the different tasks.
These diagrams appear in the respective task columns.

The execution order of a diagram can be changed in two ways in the
Execution Order dialog box:

• Select the diagram and move it up or down to change its execution order with
in the task.

• Select the diagram and move it to right or left to connect it to a different task,
and thereby change the execution order.

The diagram can be moved either by using the arrows displayed in the dialog, or by
drag-and-drop. It is also possible to select more than one diagram and move them
within the same column or move them to another column.

In the Execution Order dialog box, the diagrams that are not connected to any
task are displayed under the task to which the application is connected.

Library Management Section 1 Basic Functions and Components

122 3BSE035980-510

Library Management
From the user point of view, there are two main types of library:

• Standard libraries, that are installed with the product. These are protected and
cannot be changed.

• User-defined libraries, in which users can add their own types. Copies of
template types (data types, function block types and control module types),
from the standard libraries can be modified and also added into the
user-defined libraries.

The following operations are relevant to both library types:

• Libraries must be inserted into the control project in which they are used, see
Insert Libraries into Control Projects on page 124.

• A library that contains types for applications must be connected to all libraries
and applications that use types from the library. Libraries containing the
hardware types (units) used in the controller configuration have to be
connected to the controller. See Connect Library to Application, Library or
Controller on page 125.

• A library can be disconnected from, an application, library or controller, see
Disconnect Libraries on page 127.

• A library can be imported/exported to/from an 800xA system, see
Import/Export Libraries on page 128.

The following operations are relevant to non-standard libraries only, since standard
libraries are protected and cannot be changed:

• A new library can be created, see Create Libraries on page 128.

• The state of a library can be changed, see Library States on page 129.

• The version of a library can be changed, see Library Versions on page 130.

• Types can be added to a library, as long as its state is Open, see Add Types to
Libraries Used in Applications on page 134 and Add Customized Hardware
Types to Library on page 137.

• A library can only be deleted if it is not connected to any application, library or
controller, or if any type is in use in any project in the system (see Delete
Libraries on page 128).

Section 1 Basic Functions and Components Connect Libraries

3BSE035980-510 123

• A library can be password-protected, see Library Password Protection on page
133.

Connect Libraries

All libraries have to be present in the Library Structure in Plant Explorer, in order
for them to be connected to control projects, other libraries, and applications.

All AC 800M standard control software libraries are added to the Library Structure
when the 800xA for AC 800M system extension is added to the 800xA system, see
Figure 53. In Project Explorer, libraries connected to a control project are stored in
the Libraries folder, while libraries connected to applications and libraries are stored
in the Connected Libraries folder, see Figure 54.

Figure 53. Libraries in Library Structure.

Connect Libraries Section 1 Basic Functions and Components

124 3BSE035980-510

Figure 54. Libraries in Project Explorer.

Insert Libraries into Control Projects

A library always has to be inserted into the control project before it can be
connected to an application or a controller. To connect a library to a control project:

1. In Project Explorer, expand the Project folder.

Section 1 Basic Functions and Components Connect Libraries

3BSE035980-510 125

2. Select the Libraries/Hardware folder, right-click it and select Insert Library.

Connect Library to Application, Library or Controller

To connect a library to an application, a library or a controller:

1. In Project Explorer, expand the corresponding Library, Application or
Controller folder.

2. Select the corresponding Connected Libraries folder, right-click and select
Connect Library.

Replace Connected Library

A connected library can be replaced, for example, when the user wants to update to
a newer library version. Replacing to a newer version, results in that all instances of
a type in the new library will be used instead of the type in the old version.

To replace a connected library:

1. In the corresponding Connected folder, right-click the library and select
Replace Library.

2. Press the Yes button and select a library from the drop-down list in dialog.

3. Click the Replace button to confirm.

Library Usage

The Library Usage function displays the list of places where a library is used, and
where it is connected. For ordinary libraries the Library Usage function searches
applications and other libraries. For libraries with hardware, it searches controllers.

Libraries can also be inserted in Plant Explorer. Find the project in the Control
Structure, select the Project aspect, select the Libraries tab, click Insert and
select the library from the Select a Library dialog

It is also possible to connect a library using drag-and-drop operation. Select the
library to be connected, and drag it to the required application, library, or
controller folder.

Connect Libraries Section 1 Basic Functions and Components

126 3BSE035980-510

1. Right-click the library and select Library Usage as in Figure 55 . The Library
Usage dialog is displayed with list of applications where the library is
connected.

Figure 55. Library Usage

Section 1 Basic Functions and Components Connect Libraries

3BSE035980-510 127

2. Select System to search all projects in Aspect Directory. Click Refresh as
shown in Figure 56 to see the library used in several projects.

Disconnect Libraries

A library can only be removed if the library and its types are not used within the
system.

To remove a library from a control project:

• In the Libraries/Hardware folder, right-click the library and select Remove.
The library is removed from the control project, but it can be inserted at any
time, since it is still present in the Library Structure.

• If the Library is in use the following dialog displays.

• Click Yes to see the Library Usage dialog.

Libraries can be disconnected from both applications, libraries and controllers:

Figure 56. Library Usage dialog when the System search option is selected

Import/Export Libraries Section 1 Basic Functions and Components

128 3BSE035980-510

• In the corresponding Connected folder, right-click the library and select
Disconnect (Library). The library is disconnected, but it can be re-connected
at any time, since it is still inserted to the control project.

Delete Libraries

Standard libraries cannot be deleted. Other libraries can be deleted only if they are
not connected to any application, library or controller. If you attempt to delete a
library with connections to other objects, you will get an error message.

To delete a library from the Library Structure:

1. In the Libraries, Library Collection folder, right-click the library and select
Delete.

Import/Export Libraries

Libraries can be imported to and exported from an 800xA system. This makes it
possible to develop libraries centrally, after which they can be added to other
engineering stations at other sites.

Create Libraries

To create a new library:

1. In Project Explorer, right click Libraries or Hardware and select New
Library... The New Library dialog is displayed.

Figure 57. New Library dialog.

For detailed information on how to import/export libraries, see Import and Export
on page 369.

Section 1 Basic Functions and Components Library States

3BSE035980-510 129

2. Enter the name of the new library and click OK. The new library is created and
inserted into the control project. It is also inserted into the Library Structure in
Plant Explorer.

Library States

A library is always in one out of three possible states:

• Open
The contents of the library can be changed. This is the normal state for a library
when it is under development.

• Closed
The contents of the library cannot be changed. However, the state can still be
changed back to Open.

• Released
The contents of the library cannot be changed. However, in Plant Explorer the
state can be changed to Open, but with the Revision index of the version
number increased.

To change the library state:

1. In Project Explorer, right-click the library and select Properties>State. The
State dialog is displayed.

Figure 58. State dialog.

For information on naming conventions for libraries, see System 800xA Control
AC 800M Planning (3BSE043732*), and AC 800M Library Object Style Guide
(3BSE042835*).

Library Versions Section 1 Basic Functions and Components

130 3BSE035980-510

2. Select the desired state and click OK. The library state is changed.

The library state can only change:

• From Open to Closed or Released.

• From Closed to Open or Released.

Library Versions

The following rules should be used when creating new versions of a library. The
version number syntax is MajorVersion.MinorVersion-Revision (X.Y-Z), for
example, 2.0-1.

Table 11. Version handling rules for libraries.

Increase of Rule
Compatibility with
previous versions

Major vers. X The major version number is increased if the
library has types which have changed their
behavior, or if it is dependant on a new system
version, for example, using new system functions.

The major version number is also increased if a
connected library has increased its major version
number, and the new functionality of this new
library version is needed.

The maximum limit for the major version number of
a library or a hardware library is 32767.

The library is system or
application incompatible.

Section 1 Basic Functions and Components Library Versions

3BSE035980-510 131

 The library version can be changed in two ways:

• Change Library Version (Project Explorer)
This operation only works on libraries with state Open. This operation does not
create a new copy of the library. It simply updates the version number (that is,
it changes the version label of the library). The new version replaces the old
and all connections to other objects are intact.

• Create New Library Version (Plant Explorer)
This operation creates a new version of the library. This new version exists in
parallel with the old version. All connections to control projects, applications
and other libraries are preserved in the old version, but the new version does
not preserve any connections.

The two versions cannot be connected the same application or library, but they
can be inserted into the same control project.

Minor vers. Y The minor version number is increased if new
types have been added to a library, or an already
existing type has increased functionality.

The minor version number is also increased if a
connected library has increased its minor version
number, and the new functionality, which is the
reason for the change, is needed.

The library is compatible.

The increased minor
version number reflects
extended, modified, or
added functionality.

Rev. Z The revision index is increased when only bug
fixes have been done or when library state is
changed from Released to Open.

The revision number is also increased if a
connected library has increased its revision
number, and this new version is needed.

The library is compatible.

Functions may now have
changed their behavior,
since they are working as
intended. This may affect
the application behavior.

Table 11. Version handling rules for libraries.

Increase of Rule
Compatibility with
previous versions

Library Versions Section 1 Basic Functions and Components

132 3BSE035980-510

Change Library Version

The library version can only be changed for libraries with state Open. To change the
library version:

1. In Project Explorer, right-click the library and select Properties>Version. The
Version dialog is displayed.

Figure 59. Version dialog.

2. Set the new version number, according to the version handling rules, see
Table 11 on page 130.

3. Click OK. The version number of the library changes.

Create New Library Version

To create a new library version:

1. In the Library Structure in Plant Explorer, expand the Libraries, Library
Collection folder.

2. Click the library and select Library Version Definition aspect. The Aspect
preview pane opens.

3. Click New Version button. A ‘New Version’ dialog opens (Figure 60).

A new version can only be created if the library state is Released. If you try to
create a new version of a library with state Closed or Open, you will get an error
message.

Section 1 Basic Functions and Components Library Password Protection

3BSE035980-510 133

.

Figure 60. New Object dialog.

4. Enter a new version number according to the version handling rules, see
Table 11 on page 130.

5. Click Create. A new version of the library is created.

Advanced Library Version Handling in Applications

For a detailed discussion on how to work with library versions (libraries that have
types to be used in applications), see the System 800xA Control AC 800M Binary
and Analog Handling (3BSE035981*).

Library Password Protection

To password protect the libraries:

The new library version are not used anywhere by default, thus you must
connect/replace the library yourself.

Add Types to Libraries Used in Applications Section 1 Basic Functions and Components

134 3BSE035980-510

1. Right-click the library and select Properties>Protection. The Password dialog
is displayed.

Figure 61. Password dialog.

2. Enter the new password and confirm it in the Verify new password field.

3. Click OK. The library can now not be changed without entering the password.

Add Types to Libraries Used in Applications

Types can only be added if the library state is Open.

Follow the steps below to add the following functions in a library:

1. In Project Explorer, expand the corresponding library folder.

If the library is already password protected, you have to enter the old password
before entering a new one. A password may consist of both letters and digits. It
must be at least 6 characters long.

Figure 62. Library with sub folders

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

3BSE035980-510 135

2. To the library (see Figure 62), add the following:

a. To connect another library to library, right-click the Connected Libraries
folder and select Connect Library.

b. To add project constants to library, right-click the library folder and select
Project Constants.

Figure 63. Adding a Connect Library

Figure 64. Adding Project Constants

Add Types to Libraries Used in Applications Section 1 Basic Functions and Components

136 3BSE035980-510

c. To add a type to the library, right-click the folder corresponding to the
type you want to add and select the command for creating a new type

Figure 65. Adding a type

Section 1 Basic Functions and Components Add Customized Hardware Types to Library

3BSE035980-510 137

Add Customized Hardware Types to Library

Customized hardware types can only be added to the library if the library state is
Open. To add a customized hardware type to a library:

1. In Project Explorer, expand Libraries > Hardware.

Figure 66. Hardware with its libraries.

2. Right-click Hardware types folder under your chosen library, and select
Insert/Replace Hardware Type(s).

3. Browse and select the device capability description file (for example a *.gsd
file) you want to add as hardware and click Open. (See also Supported Device
Capability Description Files on page 138).

4. The Device Import Wizard starts. Follow the instructions in the wizard.

The usual way to distribute and share customized hardware types is to Export and
Import the complete library (with the customized hardware type(s)), in Plant
Explorer. In exceptional cases, it is possible to insert individual external customized
hardware types to a user-defined library, for example, a hardware type of a *.gsd
file that have been converted and used in an earlier version of Control Builder.

For more information on working with types and project constants, see
Application Types and Instances on page 39.

Device Import Wizard Section 1 Basic Functions and Components

138 3BSE035980-510

In this case, right-click the Hardware types folder under your chosen library and
select Insert/Replace Hardware Type(s) and browse to the hardware type (*.hwd
file) to be inserted. With Insert/Replace Hardware Type(s) it is also possible to
replace same hardware type.

Device Import Wizard

You use this wizard to import a device capability description file. The wizard will
convert this file to a hardware type and insert the type into a user-defined library.
The appearance of some wizard dialog boxes will be different depending on the file
type to import.

• You can import a new device capability description file, as described above
(Add Customized Hardware Types to Library on page 137).

• You can change conversion settings for a previous import, as described in
Wizard on page 141.

• When you receive an updated device capability description file, you may want
to replace the previous import. Import the new file the same way as the old one,
as described above.

Supported Device Capability Description Files

You can only import supported device capability description files. The following
files are supported:

• PROFIBUS GSD files

• PROFINET IO GSD files

• DeviceNet EDS files

Always complete the wizard, even if you are not finished. Then, you can re-
import the file and continue where you left off.

When a wizard dialog box is displayed, relevant information is read from the
device capability description file. If it is large this may take a while, and a
progress bar will be shown.

For more information on the Device Import Wizard, refer to the online help.

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

3BSE035980-510 139

For PROFIBUS GSD-files, *.gs? is the standard file extension. However, a file can
also have a different extension that specifies its language, for example, *.gse
(English) or *.gsg (German).

For PROFINET IO GSD files, *.xml is the standard file extension. PNIO uses
GSDML, an XML based markup language to describe the characteristics of the
PNIO devices.

For DeviceNet, *.eds is the standard file extension. DIW will convert the EDS file
to a hardware definition file (HWD File) and insert it as a hardware type into the
user-defined library.

Additional Files for Libraries with Hardware

There are a number of files associated with libraries for hardware and hardware
types. For standard system libraries, it is not possible to perform any operation on
these type of files. For a user-defined library there are some files that can be
managed.

The file types, described below, are associated with the hardware definition and
cannot be changed or replaced.

File Types Associated with Hardware Types

To display the Additional Files dialog for a hardware type:

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

You can only import PROFIBUS GSD-files with hardware types for CI854, and
not for CI851. (However, when you upgrade a previous system offering, any
included hardware types for CI851 will be upgraded as well.)

For more information on using DIW for importing gsd, xml and eds files into the
Control Builder, refer to:

• AC 800M, PROFIBUS DP, Configuration (3BDS009030*).

• AC 800M, ProfiNet I/O, Configuration (3BDS021515*).

• AC 800M, EtherNet/IP DeviceNet, Configuration
(9ARD000014*)

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

140 3BSE035980-510

2. Under Hardware types for the library, right-click the hardware type and select
Files.

The only file type (in a user-defined library) that the user can perform any
operations on is the Help File. See Help File on page 142.

The file types, listed in Table 12, are associated with the hardware type and cannot
be modified by the user.

File Types Associated with Libraries

To display the Additional Files dialog for a library with hardware types:

1. In Project Explorer, browse Libraries > Hardware.

2. Right-click the library and select Properties > Files.

Table 12. File Types Associated with Hardware Types

File Type Description

Firmware File Firmware file for CPU or communication interface unit.

Update File Update file for firmware; a download support file.

Firmware Idx File Idx file for firmware, used when analyzing a crash dump.

Protocol Handler Control
Builder File

Protocol handler used by Control Builder.

Protocol Handler Control
Builder File

Protocol handler used by Control Builder.

Protocol Handler Controller
File

Protocol handler used by controller

Protocol Handler Idx File Idx file for controller protocol handler, used when analyzing a
crash dump.

It is only possible to manage Additional files for a user-defined library.

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

3BSE035980-510 141

The file types, lsited in Table 13, are associated with the library.

Wizard

Settings for a previously added device capability description file can be changed.

1. In Additional Files for a library, select the row with the device capability
description file (Import File) and press the Wizard button.

2. In the displayed Device Import Wizard, define the new conversion settings.

Table 13. File Types Associated with Libraries

File Type Description

Help File A help file (of *.chm or *.hlp type) can be added, replaced, deleted
or extracted, See Help File on page 142

Import File Import file is a device capability description file (for example a
*.gsd file) that has been added with the Device Import Wizard.
This type of file can be deleted (Delete button), or extracted
(Extract button) to a file on disk. By pressing the Wizard button it is
also possible to change the previous done settings. See Wizard .

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

142 3BSE035980-510

Help File

A help file (of *.chm type) can be added, replaced, deleted or extracted for a
customized hardware type, as well as for a user-defined library.

Adding a help file to a customized hardware type or a user-defined library provides
access to the associated help file when you press F1on the user-defined library or on
the customized hardware type, in Project Explorer. For further information about
requirements on customized online help, see the System 800xA Control AC 800M
Binary and Analog Handling (3BSE035981*).

To add a help file to a user-defined library or to a customized hardware type:

1. In Additional Files dialog, select the Help File row and press the Add button.

Browse to the help file (of *.chm type) and click Open.

Replace and Delete

A help file that has been added can be replaced and deleted by selecting the row
with the help file and pressing Replace and Delete button respectively. It is also
possible to delete a device capability file (Import File) for a user-defined library.

Extract and Save a Copy of a File

A help file can be extracted and saved on disk by selecting the row with the help file
and press the Extract button (to the right of the grid). Browse to a place on disk and
save a copy of the file by pressing Save button.

In some exceptional cases there is a need to extract an individual customized
hardware type to a hardware definition file (*.hwd file). In this case, press the
Extract button under Hwd File.

Properties on Hardware Types

In Additional Files for a customized hardware type, it is possible to set a version
information text of maximum 18 character to the help file, by pressing the
Properties button.

Section 1 Basic Functions and Components Delete Hardware Types

3BSE035980-510 143

Delete Hardware Types

A hardware type in a library can be removed.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Remove.

Type Usage for Hardware Types

It is possible to display a list of which controller(s) that use(s) the hardware type
together with hardware tree position numbers.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Type Usage.

Figure 67. Type Usage for a selected hardware type.

It is not possible to remove a hardware type from a library, if it is used in a
hardware configuration, in any project of the system (aspect directory).

Hide and Protect Control Module Types, Function Block Types and Data Types Section 1 Basic

144 3BSE035980-510

Hide and Protect Control Module Types, Function Block
Types and Data Types

When you create libraries with self-defined control module types, function block
types and data types, Control Builder provides you with two protection features
(attributes). These two attributes are called Hidden and Protected, and can only be
set from Project Explorer.

Hidden

Setting the Hidden attribute will completely hide your code from other users. To
hide the code makes it easier to improve your type as often as you like. This is a
common situation when developing types that will be re-used over and over again in
different library solutions.

Protected

Setting your type to Protected will protect the internal type structure from being
seen. This means that only the type itself will be visible, and thus your type
definition will be protected from external exposure, as well as any attempt to
duplicate it. This is extra valuable when you create a type solution for re-use
engineering. When you set the protected attribute, the type interface will be
read-only to other users, meaning that only parameter connection is possible. The
complete type structure will still be protected from external exposure.

The attribute available on protected control modules and function blocks types "Sub
Objects visible in PPA" makes formal instances in the protected type visible in Plant
Explorer if they are configured as aspect objects. It does not make the subobjects
visible in Control Builder.

All types with the Hidden attribute disappear from their normal position in the
Object Type Structure, and can only be located in the Internal Types folder, as a
Hidden aspect.

The Hidden and Protected attribute can also be used for structured data types.

Section 1 Basic Functions and Components Protect a Self-Defined Type

3BSE035980-510 145

Override

After you have protected your types, you can always override the hidden and
protected attribute temporarily, while you work on improvements. The override
protection property can only be set in Project Explorer.

For self-made libraries with password protection, you must enter the password
before you make an override, see Library Password Protection on page 133

Protect a Self-Defined Type

To protect a self-defined type:

1. In Project Explorer, right-click the type and select Properties > Protection
and Scope. A Protection and Scope window opens.

2. Check the desired protection radio button(s) and click OK.

The protection cannot be overridden for Control Builder standard libraries. They
cannot be updated or changed by the user.

Setting an override on a library for corresponding hidden and/or protected types
will only have impact in Project Explorer. In Plant Explorer, hidden and/or
protected types will remain hidden and/or protected.

Figure 68. Protection and scope

Protect MySupervision Type Example Section 1 Basic Functions and Components

146 3BSE035980-510

Override Protection Attributes

To override protection for a library or application:

1. In Project Explorer, right-click the library (or application) and select
Properties > Protection. A Protection Properties window opens.

2. Check the Override check box (see figure above) and click OK. The Override
feature will have impact in Project Explorer only.

Protect MySupervision Type Example

The following example will show the impact that the Hidden and Protected
attributes may have on a self-defined type called MySupervision_type, which is part
of the library MyTankLib.

A Simplified Library Solution

The library MyTankLib contains three different types, MyMotor_type,
MySupervision_type and MyTank_type. The Motor10 object is located inside

Figure 69. Protection properties

Section 1 Basic Functions and Components Protect MySupervision Type Example

3BSE035980-510 147

MyTank_type, see Figure 70. As you can see, Motor10 has inherited its definition
from the type MyMotor_type.

Figure 70. A Library structure before any protection attributes have been set.
(Left) Project Explorer tree. (Right) Object Type Structure in Plant Explorer.

Protect MySupervision Using the Hidden Attribute

MyMotor_type contains a SpeedSupervision object (and a Feedback error object).
The SpeedSupervision object is of the type MySupervision_type. Both
MyMotor_type and the MyTank_type therefore depend on MySupervision_type. To
hide the code inside the MySupervision_type, we must set the attribute Hidden on
MySupervision_type, see Figure 71.

Figure 71. MySupervision_type is not shown in Plant Explorer after setting the
hidden attribute. (Left) Project Explorer with SpeedSupervision still visible. (Right)
Object Type Structure where both MySupervision_type and SpeedSupervision are
hidden.

After Hidden is set on the Supervision type, it disappears from both the Project
Explorer and the Plant Explorer. However, MySupervision type can still be traced

MySupervision type

MyTankLib

MyMotor type

MyTank type

MyMotor type

MyTank type

Protect MySupervision Type Example Section 1 Basic Functions and Components

148 3BSE035980-510

via calls from the SpeedSupervision object inside the motor type to our hidden
supervision type in Project Explorer, see Figure 72.

Figure 72. The hidden MySupervision type can still be traced via the
SpeedSupervision object in both the motor type and the motor object.

Setting the Protected Attribute for MyMotor_type

If we do not like to expose SpeedSupervision, why not hide the motor type as well?
The major reason is that it would be impractical to set hidden on the motor type, just
to conceal the function calls from SpeedSupervision (expose the existence of
MySupervision_type).

Besides, SpeedSupervision would still be visible in the motor object (Motor10, etc.)
inside the tank type, see Figure 73.

Figure 73. The Hidden attribute on MyMotor type would still allow showing objects
(children) of the MySupervision type in any new motor object.

Furthermore, we must be able to select the motor type every time we create a new
motor object.

Therefore, for re-usability reasons, we cannot hide the motor type like we did with
the supervision type, but, we can set the Protected attribute, since a protected type
will still be visible in Project Explorer, while the type definition is hidden according
to Figure 74.

SpeedSupervision object
of MySupervision type

SpeedSupervision object
inside Motor10

MyMotor type
hidden

Section 1 Basic Functions and Components Protect MySupervision Type Example

3BSE035980-510 149

Figure 74. Protected attribute on MyMotortype, which will hide the type definition.

In this case, a protected motor type will still let the user create new motor objects of
the type MyMotor_type in other libraries, like the one in Figure 75, but without
knowing about the background calls from SpeedSupervision.

Figure 75. Motor100 object of the MyMotor_type, re-used in another library with
MyMotor_type protected and MySupervision_type hidden.

For more information about control module types and function block types, see
System 800xA Control AC 800M Planning (3BSE043732*).

MyMotor type
after ‘Protected’

Task Control Section 1 Basic Functions and Components

150 3BSE035980-510

Task Control
A task is defined as an execution control element that is capable of starting, on a
periodic basis, the execution of a set of POUs (Programs, Function blocks, functions
etc.).

The Control Builder setup three tasks (Fast, Normal and Slow) by default, provided
that an AC 800M Control Project template has been selected. The tasks are
connected to their respective programs (one task per program). The tasks serve as
'work schedulers' for the programs and contain settings for interval time and
priority. However, setting interval time and priority is not enough; you must also
tune your tasks.

If a program does not have a task connected, it will run by the task connected to the
corresponding Application.

You may create and connect several tasks to a controller, but experience show that
more than five tasks in each controller makes it difficult to overview.

The Control Builder provides a Task Analysis tool that predicts the execution of an
application by the controller before loading it onto the controller. See Task Analysis
on page 171 for more information.

Task Connections

A task can be connected to a program, a function block, a control module or a single
control module, and several tasks may execute in the same controller. An
application can also be connected to a task, and all POUs in an application execute
in this task, unless otherwise specified. A task can only execute POUs in one
application. Hence, POUs from different applications can not be connected to the
same task.

To learn how to tune tasks, see Application Programming, Introduction and
Design manual (3BSE043732R5xxx).

Do not re-connect tasks to applications unless it is necessary, as this might
disrupt the task execution during reconfiguration. Else change the parameters of
the connected task (to fit the needs). A SIL3 task reconnection might lead to a
shut down of the controller.

Section 1 Basic Functions and Components Task Connections

3BSE035980-510 151

Create a New Task

To create and configure a new task:

1. Expand the Hardware tree, until you find Tasks.

2. Right-click Tasks and select New Task. A ‘New Task’ window opens.

3. Name the task.

4. Click OK.

Figure 76. A new task has been created.

After the task has been created, it is time to configure the task with new properties.

5. Right-click the new task (Superfast) and select Properties. A ‘Task Properties’
window opens.

Task Connections Section 1 Basic Functions and Components

152 3BSE035980-510

 Figure 77. A Task Properties window for configuring a task.

6. Change the interval time to 40 ms and Priority to 1-Highest. Click Apply
followed by Close.

7. Right-click Tasks and select Editor to view the new task. A ‘Task Overview’
window opens.

The Task Overview window lists all the tasks with each property settings. To
change the settings for a certain task:

Section 1 Basic Functions and Components Task Connections

3BSE035980-510 153

8. Select a task in the Task Overview window and open Tools > Task
Properties.

Connect a Task to a Program

To connect the task SuperFast to Program1:

1. Right-click Program1 and select Properties > Task Connection. A ‘Task
Connection’ dialog opens.

2. Select a task from the drop-down menu (here SuperFast) and click OK.

Figure 78. Program1 has changed task to Superfast.

Function Blocks with Different Task Connections

You can connect function blocks inside a program to a task different from the one
connected to the program, (right-click on the function block and select ‘Task
Connection’).

Right-click a task directly in the hardware tree and select Properties to open the
Task Properties window directly.

Select Tools > Reset Max, to reset all tasks that appear in the editor.

Task Execution Section 1 Basic Functions and Components

154 3BSE035980-510

However, variables inside the function block that pass values to and from the
function block are controlled by the program task. The code in the function block
will run according to its task, but the parameters will be updated according to the
program task. This means, in practice, that the function block in a program can only
run at a slower, or a least at the same, speed as the program. However, if you use
external variables or connect I/O directly to the function block, there will be a direct
reference, independent of the task cyclicity of the function block.

To set-up specific time intervals and task priority different from the task connected
to the application whilst for example, designing libraries, can be done by declaring
and using global variables, or by using parameters.

Task Execution

There are four important task parameters that can be set to optimize program
execution:

• Priority, which sets the execution order for tasks, see sub section Priority
below.

• Interval time, sets the task intervals during the program is executed, see sub
section Interval Time on page 157.

• Offset, a parameter that helps you to avoid unexpected delays in execution
when tasks are scheduled to execute at the same time. See sub section Offset on
page 158.

• Execution time, for best real time behavior and communication performance,
avoid extensive continuous execution. See Execution Time on page 163 and
also Communication Considerations on page 161.

All POUs connected to a task execute with the same priority, interval time, offset,
and execution time.

For more information, see Control the Execution of Individual Objects on page
88.

This sub-section describes priority, interval time and offset for task execution.
The next sub-section, Overrun and Latency on page 163, describes handling of
too long task executions, delays, and load balancing etc.

Section 1 Basic Functions and Components Task Priority

3BSE035980-510 155

Task Priority

There are six levels of priority: Time Critical, Highest, High, Normal, Low, and
Lowest, numbered from 0 to 5. The tasks are executed according to their priority,
where the time-critical task has the highest priority. A task with higher priority may
interrupt any task with lower priority, but a task cannot interrupt another task with
the same priority. There can only be one time-critical task. Such a task may interrupt
the execution at any point, while other tasks may only interrupt execution at defined
points.

An ordinary (non-time-critical) task can be interrupted:

• at the start of any code block,

• at backward jumps, for example for, while, repeat statements.

A time-critical task has special properties.

• The task is not driven by the same scheduler as the rest of the tasks. Instead, the
task is driven from the system’s real-time clock (hence the high precision).

• The tasks have high precision in execution time. The resolution is 1 ms.

• A change to/from time-critical priority in Online mode is not possible.

• A change to/from time-critical priority in Offline mode requires re-compilation
of the application.

Consider the following points, when using the time-critical priority.

• Only one time-critical task per controller is allowed.

• The execution time for a time-critical task (priority 0) must not exceed 100ms.
This restraint prevents the task from blocking other functions, for example
communication.

• All functions cannot be called from the program connected to the task. You
cannot set time-critical priority if the code contains invalid instructions (this is
checked during compilation). The time-critical task interrupts execution at any
time, which means that execution might be interrupted mid-statement.

• If a power failure occurs while the time-critical task is running, the execution
of the current code block is completed (assuming that it can be completed

Task Priority Section 1 Basic Functions and Components

156 3BSE035980-510

within 1 ms). For a warm start to be possible, no code block in the time-critical
task may take more than 1 ms to execute.

Consider the following points, when using task priority in HI controller:

• In HI controller VMT has the highest possible task priority. SIL3, SIL2 and
non-SIL can not share the same priority and have the priority in order listed.

• Only one task can be connected to a SIL3 application. If more than one task is
connected, compilation error is generated. To download remove all tasks
except SIL3 task.

• The SIL3 tasks must have higher priority than non-SIL and SIL1-2 tasks in the
controller. If not compilation error is generated. Decrease the priority of the
non-SIL and SIL1-2 tasks or increase the priority of the SIL3 task to enable
downloading.

• It is not recommended to have a task with the same or higher priority than the
VMT task, regardless of SIL level. If the VMT task is not the only task with the
highest priority, a compilation warning is generated. The user should decrease
the priority of any task (SIL or non-SIL) which has the same, or higher priority
than the VMT task.

• Firmware functions that tries to manipulate task parameters from 1131 code
does not work for SIL tasks that is SetPriority and SetIntervalTime.

Task priorities 1–5 can be set by using the firmware function SetPriority. This
function is located in the System folder.

Section 1 Basic Functions and Components Interval Time

3BSE035980-510 157

Interval Time
The interval time, during which the program is executed, is set in the Task
Properties dialog. Default values are 50 ms (Fast), 250 ms (Normal) and 1000 ms
(Slow). You can change these values at any time. For a time-critical task, the
interval time can be as short as 1 ms. The interval time of tasks of priority 1–5
cannot be less than 10 ms. The resolution is 1 ms.

Execution Example

Figure 79 shows two tasks executing in the same system. Task 1 and task 2 have
interval times of 30 and 200 ms, and execution times of 10 and 50 ms, respectively.

When the tasks have been assigned the same priority, the execution start time of
task 1 is very much delayed. It also drops one execution.

Figure 79. Execution of two tasks with the same priority.

In Figure 80, task 1 has higher priority than task 2, and interrupts the execution of
task 2. Hence task 1 is not delayed much by task 2.

If two tasks have the same priority, and they both wait for execution, the task
with the shortest interval time will be executed first.

All task intervals must be multiples of each other. The shortest interval is the
"time base".

Offset Section 1 Basic Functions and Components

158 3BSE035980-510

Figure 80. Execution of two tasks with different priorities.

Offset

If your tasks are scheduled to execute at the same time you will receive a warning
during download. However, this compiler function is merely calculating theoretical
periodic executions, which means that it will not warn you for task collision caused
by, for example a too close offset time. Therefore, consider the compiler warning as
a first preliminary check provided to you and not as a guarantee that will prevent
task collisions.

Two tasks will be scheduled to start execution at the same time if the greatest
common divisor of the tasks interval times divides the difference in the tasks
offsets.

Turning off Task Collision warnings

You can turn off the task collision warning from the Project Explorer.

1. Right-click the Project item and select Settings > Compilation Warnings
from the context menu. A Compilation warnings dialog will open.

2. Click to clear Task Collisions check box and then OK.

The compiler will detect inappropriate offset settings.

The offset of each task must be equal or greater than the sum of the execution
times of all higher-priority tasks.

Section 1 Basic Functions and Components Offset

3BSE035980-510 159

When tasks are scheduled to execute at the same time, the task with the highest
priority will be executed first. If tasks have the same priority the task with the
shortest interval time will be executed first. Offset is a mechanism that can be used
to avoid unexpected delays in execution when tasks are scheduled to execute at the
same time.

In Figure 81 and Figure 82, the execution of two tasks with the same priority with
interval times of 50 ms and 100 ms is shown. When both tasks have a 0 ms offset
(Figure 81), the execution start time of task 2 is delayed, and the actual interval time
for task 2 is influenced by variations in the execution time of task 1.

Figure 81. No offset. The two tasks have the same priority, but different interval
times (50 and 100 ms).

If task 2 is assigned an offset, as in Figure 82, neither task is delayed, and the actual
interval time for task 2 will not be affected by task 1.

Do not change task offset for a controller with a running application. This may
result in that the task executes one more time than expected.

Offset Section 1 Basic Functions and Components

160 3BSE035980-510

Figure 82. Offset is set on task 2. The two tasks have the same priority, but different
interval times (50 and 100 ms) and are thus executed at the requested times.

An application starts to execute by scheduling all tasks in the application to execute
at the same time. The task with highest priority is executed first, and if tasks have
the same priority, the task with the shortest interval time will be executed first.

Execution Synchronization

When a task has finished execution of the first scan after application start at time t,
the start of its next execution is synchronized to time 0 (the time the controller
started to execute).

t = n * (interval time) + d, 0 ≤ d < interval time

d is the time from the start of the current interval time, to when the task finished
execution in the current interval. The synchronization to time zero (0) implies that
the start of the next execution will be at the first start point after the current time.

If offset = 0, the task will be scheduled to execute at time (n + 1) * (interval time).
However, if the time to the start of the next execution, (interval time) - d, is less than
10 ms, the task will be scheduled to execute a time (n + 2) * (interval time).

If offset > 0, then if offset > d, the start of the next execution will be at a time
n * (interval time) + offset. If offset < d, the start of the next execution will be at a
time (n + 1) * (interval time) + offset. If the time to the start of the next execution is
less than 10 ms, the interval time will be added to the start time of the next
execution.

Section 1 Basic Functions and Components Offset

3BSE035980-510 161

The same synchronization of execution time will be performed after a change in
interval time or offset.

Time critical task is not synchronized to time zero (0).

Communication Considerations

POU execution has higher priority than other functions, such as communication.
These functions are performed in the gaps between the execution of different tasks.
If several tasks with long execution times are executed immediately, one after the
other, the time gaps are few but long (see Figure 83).

Figure 83. The result of having no offset for three tasks with long execution times.
The gap (Ta+Tb) is the time available for the execution of other functions, for
example communication.

Offset Section 1 Basic Functions and Components

162 3BSE035980-510

The offset mechanism can be used to make the time gaps more frequent (see
Figure 84).

Figure 84. The result of assigning offset to tasks 2 and 3, is that the time available
for the execution of other functions occurs more often (Ta).

The same processor handles communication and IEC 61131-3 code. This means
that you have to consider how much code you include in each task, when you tune
the tasks.

Assume that we have a task running code with an execution time of 500 ms and an
interval time of 1000 ms. This means a cyclic load of 50%
(load = execution time / interval time). But, this also means that no communication
can be performed during the 500 ms execution (since communication has lower
priority than the task).

Now, assume that we have divided the code into 4 tasks such that each one
corresponds to 125 ms of the execution time. The interval time is still 1000 ms,
hence the load is still 50%. But, if we set the offset for the 4 tasks to 0, 250, 500, and
750 ms, the result will be completely different. Now, code will be executed for
125 ms, after which there will be a pause when communication can be performed.
Following this, code will be executed for another 125 ms followed by another pause
when further communication can be performed. Hence, we still have the same
cyclic load, but the possibility for communication has increased considerably.

To conclude, try to tune your tasks using offsets before you change the priority.
Actually, the only time you have to change the priority, is when two tasks have so
much code that their execution cannot be “contained” within the same time slot, that
is, the total execution time exceeds the length of the time slot. It is then necessary to
specify which of the two tasks is most important to the system.

Section 1 Basic Functions and Components Execution Time

3BSE035980-510 163

Execution Time

The maximum allowed execution time for time-critical tasks must not exceed
100ms. This is also recommended for the other tasks in the controller. The
execution time for each individual task should be kept feasible to 100 - 200ms.

It is preferred to split the execution of a program or application into different tasks,
if the execution time is high and good real time behavior is needed. See
Communication Considerations on page 161.

Overrun and Latency
Overrun and Latency are two functions for supervising a task. Overrun checks if
each task finishes before it is supposed to start the next time, and detects if the task
runs for too long. Latency on the other hand, checks that a task starts on time (on
each cyclic start), and detects if the task starts too late.

The Overrun function is configured per controller via the Controller Settings dialog,
while the Latency function is configured per task (and SIL classification per task)
via the Task Properties dialog. Both Overrun and theLatency function uses the Error
Handler to report any errors.

Overrun Supervision
Overrun occurs when the execution of a task takes too long, that is, the task is still
executing when the next execution of the task is scheduled to start.

More information about task tuning can be found in the System 800xA Control
AC 800M Planning (3BSE043732*).

The maximum allowed execution time does not include the first scan execution
time.

For High Integrity controllers:

Overrun Supervision is automatically enabled and cannot be switched off. Load
balancing is not available in High Integrity controllers.

Latency Supervision is mandatory and therefore automatically enabled for all
SIL tasks.

Overrun Supervision Section 1 Basic Functions and Components

164 3BSE035980-510

By setting the maximum number of consecutive overruns allowed (missed scans),
you can control when a fatal overrun error is considered to have occurred, and
consequently configure a controller reaction.

These reaction settings are:

• Nothing,
• Stop Application,
• Reset Controller.

In an AC 800M (non-Hi integrity) controller, load balancing and overrun
supervision functions are mutually exclusive, whereas the Load Balancing function
is default. Hence, the overrun supervision is turned off. For more information about
load balancing and cyclic load, see Load Balancing on page 169.

Configuring Overrun Supervision

Overrun supervision is set for each controller in the Controller Settings dialog. To
select Overrun Supervision for a controller, follow these steps:

1. Expand the Hardware tree until the controller (for example, Controller_1).

2. Right-click the controller and select Properties > Controller Settings from
the pop-up menu. A ‘Controller Settings’ dialog opens.

Section 1 Basic Functions and Components Overrun Supervision

3BSE035980-510 165

Figure 85. Controller Settings dialog for a non-High Integrity AC 800M controller.

3. Uncheck Load Balancing, (Enable overload compensation check box).

4. Select a reaction for Fatal Overrun from the Reaction drop-down menu, (Reset
Controller or Stop Application will activate the Limit field).

5. Enter the number of consecutive overruns allowed in the Limit field, (number
of consecutive overruns before a fatal overrun is considered to have occurred).

6. Use the tabs under Error Reaction to set-up actions for different error types and
severity. (For information on Error Reaction settings, see Controller Settings in
Non-High Integrity Controllers on page 377).

7. Click OK.

If overrun errors occur, re-program the faulty task to decrease load.

Latency Supervision Section 1 Basic Functions and Components

166 3BSE035980-510

Latency Supervision

Latency occurs when the execution of a task is delayed, that is, the task starts to
execute later than scheduled. The latency function will supervise your tasks (start on
time on each cyclic load), and detect if a task starts sooner or later than scheduled.

Latency is activated in the Task Properties dialog, where you set the acceptable
latency in percent (accepted latency in percentage of the interval time). The lowest
accepted value for Latency Time is always 10 ms.

Configuring Latency Supervision

Latency supervision is set for each task in the Task Properties dialog. To select
Latency Supervision for a task, follow these steps:

1. Expand the Hardware tree, until you find Tasks.

2. Right-click a task and select Properties from the pop-up menu. A ‘Task
Properties’ dialog opens.

Enable
Latency supervision
check box

Section 1 Basic Functions and Components Latency Supervision

3BSE035980-510 167

3. Select Latency, (check Enable latency supervision check box).

4. Enter latency percentage into the Accepted latency entry field. The actual used
latency time is shown to the right of the entry field (here 25 ms). The lowest
accepted latency time is 10 ms.

5. Click Apply. Note how the actual latency time changes if the accepted latency
percentage exceeds 10 %.

6. Click OK.

Latency Alarm Limit

A latency warning is issued if latency is above 70% of accepted latency. A system
alarm, actual latency in ms is generated, and added to the system log. A yellow
warning is written to the Actual column of Latency alarm limit and “Latency
high alarm limit exceeded” is written in the Remark field of the task properties
dialog.

Latency is measured on a periodic basic, the time from the start of one execution to
the start of next execution is measured. The latency is then calculated as the
difference between this value and the interval time. Latency can then be both
positive and negative. The maximum latency time is the absolute value of actual
latency.

Example

Task A: Interval Time=150 ms, Offset=0 ms, Priority=4 - Low and
Execution Time=1 ms.

Task B: Interval Time=150 ms, Offset=0, Priority=3 - Normal and
Execution Time=17 ms.

In this case the actual offset of Task A is about 18 ms and actual latency vary from
-1 to +1 ms.

If latency error occurs, tune the tasks. Information about task tuning can be found
in the System 800xA Control AC 800M Planning (3BSE043732*).

If requested offset is 0 it is possible that actual offset is large, compared to actual
latency.

Task Abortion Section 1 Basic Functions and Components

168 3BSE035980-510

The execution of task A is delayed about 18 ms for each interval, which results in an
actual offset of 18 ms. This delay is repeated for each period which result in a small
actual latency, -1 to +1 ms.

If the interval time of Task A is changed to 50 ms the actual latency of Task A will
assume the values -18 ms, 0 ms, +18ms. Actual offset will assume the values 0 ms
and 18 ms.

Task Abortion

If a task is aborted, the corresponding application will be stopped. The following
criteria apply to a task abortion.

Time-critical Tasks

Time-critical tasks (priority 0) are aborted when the execution time exceeds 300 ms.
Time-critical tasks are also aborted if a fatal overrun error occurs. Criteria for fatal
overrun errors are set in the Controller Settings dialog, see also Overrun
Supervision on page 163).

Non Time-critical Tasks

Non-time-critical tasks (priority 1-5) are aborted when:

• The execution time exceeds 10 seconds.

• The execution time exceeds (100 * IntervalTime).

If overrun supervision is enabled, non-time-critical tasks are also aborted if a fatal
overrun error occurs. Criteria for fatal overrun errors are set in the Controller
Settings dialog. See also Configuring Overrun Supervision on page 164.

This means that if IntervalTime is set to 100 ms or higher (100 * 100 ms = 10
seconds), tasks will be aborted if they have not been executed within 10 seconds.

In a High Integrity controller running SIL-tasks, error handling is stricter.
Compared to a non-SIL application, less severe errors might lead to an
application being stopped.

No time critical tasks are allowed in a High Integrity controller.

Section 1 Basic Functions and Components Load Balancing

3BSE035980-510 169

If IntervalTime has been set to <100 ms, tasks will be aborted if they are not
executed within (100 * IntervalTime).

Load Balancing

The cyclic load is the percentage of controller CPU power used for program
execution of application code. If the cyclic load exceeds 70% in the controller,
so-called load balancing is initiated automatically. The interval time for all tasks,
except the time-critical task, is then generally increased, to limit the cyclic load to
70%. Load balancing is not available in High Integrity controllers.

If the cyclic load then falls below 70% again, the interval time will normally be
decreased in all tasks, except for the time-critical task. However, the interval time
never falls below the original defined interval time.

Whenever the interval time is changed due to load balancing, a SystemSimpleEvent,
expressed in percent (%) of the actual interval time, is generated, and added to the
system log.

Load balancing for the time-critical task is handled as follows (this differs from
non-time-critical tasks). The interval time for the time-critical task is increased,
whenever its execution time exceeds 50% of its interval time.

For example, if a time-critical task has an interval time of 100 ms, and the
execution time becomes 54 ms in an interval, then the new interval time becomes
108 ms. However, the interval time must be reset manually, after it has been
increased. The interval time of the time-critical task is never decreased
automatically, as for the other tasks.

Change the Requested Interval Time to its original value, or another suitable
value, in the Task Properties dialog (in Online mode). Press Apply or OK to
bring the reset into effect.

Whenever the interval time is increased for the time-critical task, due to load
balancing, a SystemSimpleEvent, expressed as the actual interval time in ms, is
generated and added to the system log.

Non-Cyclic Execution in Debug Mode Section 1 Basic Functions and Components

170 3BSE035980-510

Non-Cyclic Execution in Debug Mode

A task can be set up for non-cyclic execution. Use non-cyclic execution to simplify
the debugging of a program.

Debug Mode

Debug mode allows you to debug an application by halting the application running
in the controller, and executing the code one execution at the time.

Debug mode is enabled from the Task Properties dialog (right-click the task in
Project Explorer, and select Properties).

When you have selected Enable debug mode, you can halt the cyclic execution of a
task by clicking Halt. When the task is halted, you can execute the task once by
clicking One Execution. (This is referred to as “non-cyclic execution”.)

Other tasks will not be affected if one task is set up for Debug mode, they will run in
normal cyclic execution mode.

To return to normal cyclic execution of the task, click Run.

Tasks marked with SIL cannot be set in Debug mode.

A task in Debug mode is indicated in Project Explorer with a warning icon (a
yellow circle with a black exclamation point).

Functions based on the real-time clock (PID controllers, timers, etc.) cannot be
properly debugged in Debug mode.

Timer functions will take into account the actual time elapsed since started,
regardless if, for example, the task is halted in Debug mode.

Section 1 Basic Functions and Components Task Analysis

3BSE035980-510 171

Task Analysis
The Control Builder provides a Task Analysis tool to predict the execution of tasks
in controllers before downloading the application to a controller.

The Task Analysis tool provides the following functions before the download of the
application:

• Analyzes the task scheduling in the application.

• Presents a graphical representation of how the tasks will execute with the
application.

• Detects possible overload situations before the download of the application.
The tool detects problems such as task latency, task overrun and overload of
task execution.

• Allows remedial actions by providing the option to change the execution time
of the tasks and view the updated analysis.

The Task Analysis tool can be used before normal download and before the
download using Load Evaluate Go (LEG). For initial download, the execution time
of the tasks is assumed to be 1ms for the analysis.

If the task configuration in the Control Builder project is changed before a normal
download, the Task Analysis dialog box automatically appears during the normal
download. The dialog box does not appear automatically if LEG is used for the
download.

To open the Task Analysis dialog box in Control Builder in Offline mode or Online
mode, go to Tools > Task Analysis.

The update of the task execution time using the Task Analysis tool updates the
task for analysis only. The actual execution time of the task need to be changed
by updating the Task Values in the Task Properties dialog in Control Builder.

Exploring the Interface Section 1 Basic Functions and Components

172 3BSE035980-510

Exploring the Interface

The Task Analysis dialog box displays a summary view, a detailed view, and the
status of the summary as shown in Figure 86.

Summary view

This view lists the controllers to which the applications are downloaded. A circular
icon (for example,) appears beside each controller indicating the various states.

The indications are:
• Red icon: Error
• Yellow icon: Warning
• Green icon: Ok

If the task execution contains errors or warnings, the description of the error or
warning is also displayed.

Figure 86. Task analysis tool opened from Tools > Task Analysis

Section 1 Basic Functions and Components Exploring the Interface

3BSE035980-510 173

Detailed view

This view displays each controller (listed in Summary view) in a separate tab, as
shown in Figure 86.

Click each tab to open the graph showing the task execution of that controller. The
tasks are plotted on the graph with the Priority on the Y-axis and the Time
(task execution time) on the X-axis. Moving the cursor over each task name opens a
tooltip displaying its execution time, interval time, and offset.

Status

This is found at the bottom of the tool interface as shown in Figure 86. It displays
the total number of errors and warnings, and the icon (in red, yellow or green). This
helps to decide if it is safe to download the new application.

The significance of the indications are described below:

• Red — the new application cannot be downloaded as there is a risk of
overloading the controller.

• Yellow — the download of the new application may cause overloading of
controller. The user must, based on analysis, decide if it is feasible to go ahead
with the new application download.

• Green — the new application is safe to be downloaded to the controller.

Exploring the Interface Section 1 Basic Functions and Components

174 3BSE035980-510

Task Analysis During Normal Download and LEG Download

If the task configuration in the Control Builder project is changed before the
download, the Task Analysis dialog box automatically appears during normal
download, with the additional options to accept or cancel the download (and
icons). See Figure 88. These options also appear in the Task Analysis dialog box
that is invoked manually during LEG.

Figure 87. Task Analysis tool with error and warning indications

If the Task Analysis dialog box shows errors, the icon is not activated.

Section 1 Basic Functions and Components Exploring the Interface

3BSE035980-510 175

The execution time is fetched from the controller. At LEG download, the execution
time of the evaluated application is the same as for the old Active application (in
Compact).

Figure 88. Task Analysis with additional options to accept or cancel the download

If a task is not running in the controller when the execution time is requested, the
tool uses 1ms as the execution time, and the icon appears beside the
task name. See Figure 88. The icon also appears if the task execution time is
modified for analysis.

Accept
Reject

Execution Time = 1 ms

Modifying Task Execution Time Section 1 Basic Functions and Components

176 3BSE035980-510

Modifying Task Execution Time

The Execution Time of each task can be modified for analysis.

To modify the execution time of a task for analysis:

1. On the detailed view in Task Analysis dialog box, open the tab screen of the
controller for which the task need to be changed.

2. Click the icon, or from the toolbar, select Tools > Settings.

The Task Settings ControllerName dialog box appears as shown in Figure 89.

3. Modify the execution times under New Execution Time column
corresponding to the task name, and click OK.

The graph is updated as per the new execution time, and the icon appears
beside the task name of the modified task.

Error and Warning Categories

The errors and warnings that are displayed by the Task Analysis tool are generated
based on the following categories of analysis:

• Accepted latency
• Task latency
• Task overrun

Figure 89. Task settings

Section 1 Basic Functions and Components Error and Warning Categories

3BSE035980-510 177

• Interrupted execution
• Cyclic load overload
• Total load overload
• First scan execution limit
• Too low FDRT
• Internal diagnostics

Table 14 describes these categories and the corresponding reasons for errors and
warnings.
In the Task Analysis dialog box, these errors and warnings are displayed with
relevant messages that describe the problem.

Table 14. Categories of errors and warnings in Task Analysis tool

Category Reason for Warning Reason for Error

Accepted latency An Accepted Latency value that is
set below 10% (default value) of the
Interval Time.

-

Task latency Any of the following:

• The latency is detected and it is
is not within the Accepted
Latency, but the latency
supervision is disabled.

• The time for which the task
scheduler does not execute
any task is too small (less than
10% of the execution time of
the task last executed).

The latency is detected and it is
not within the Accepted Latency,
and the latency supervision is
enabled.

Task overrun - The overrun is detected, that is,
the task has not finished executing
one scan before the next cycle is
supposed to start.

Interrupted execution The task is interrupted by a higher
prioritized task, and the task scan is
delayed.

-

Error and Warning Categories Section 1 Basic Functions and Components

178 3BSE035980-510

Cyclic load overload The task uses more than 50% of the
total cyclic load in the controller.

Note: In a HI controller, the
recommended maximum cyclic load
is 50%.

The task uses more than 70% of
the total cyclic load in the
controller.

Total load overload The total load in the controller is
above 70%.

Note: In a HI controller, the
recommended maximum total load
is 70%.

The total load in the controller is
above 98%.

Note: This check is relevant for
download using Load Evaluate Go
as well as for the download with
modified execution times.

First scan execution
limit

The load dependent first scan
execution time (LFST) is 90% of the
maximum FDRT+Accepted
Latency, or it is 90% of the
maximum Interval Time+Accepted
Latency.

Tip: The duration of the first scan
execution time depends on the
cyclic load of the remaining tasks.
If the remaining tasks use L% CPU
load, the LFST = (FST*100)/(100-L).

The load dependent first scan
execution time (LFST) is more
than the maximum
FDRT+Accepted Latency, or it is
more than the maximum Interval
Time+Accepted Latency.

Too low FDRT The FDRT value is below
3 seconds.

-

Internal diagnostics Consecutive task execution is
detected for a time that exceeds
40% of the configured FDRT.

Consecutive task execution is
detected for a time that exceeds
50% of the configured FDRT.

Table 14. Categories of errors and warnings in Task Analysis tool

Category Reason for Warning Reason for Error

Section 1 Basic Functions and Components Security

3BSE035980-510 179

Security
Security on a type allows the administrator to set permissions for object-specific
restrictions like access, download, online changes, etc. This can be done by creating
a Security Definition aspect, which allows an administrator to include or exclude
user groups on an object level.

For more information, see the System 800xA Administration and Security
(3BSE037410*).

Authentication at Download

Control Builder provides authentication at download to controllers from Project
Explorer. The user will be prompted for user identification and password before
download is allowed.

Enable Authentication at Download

You must have an open control project, in order to enable authentication. To enable
authentication for download in Project Explorer:

1. Select Tools > Setup > Station > Application Download. The Setup -
Application Download dialog is displayed.

If permissions are set on type level, conflicts with general settings might occur
for the permission Configure (if the user has the right to configure the object, but
not a general permission to configure objects). This will result in an error
message when closing the editor after configuring an object. Use default settings
for the Configure permission, to avoid conflicts.

Authentication at Download Section 1 Basic Functions and Components

180 3BSE035980-510

Figure 90. Application Download dialog for enabling authentication at download.

2. Write true in the ReauthenticateDL field.

3. Click OK. Authentication at download is now enabled.

A Reauthenticate dialog appears before download, see Figure 91.

Figure 91. Reauthenticate dialog, shown before download to a controller.

To disable authentication at download, simply set ReauthenticateDL to false.

Set to true

Section 1 Basic Functions and Components Confirmed Online Write

3BSE035980-510 181

Confirmed Online Write
This subsection describes the Confirmed Online Write function, which is used to
configure types and instances in a SIL application, in order for an operator to be
able modify or change values online, and force I/O channels in online mode.

The Confirmed Online Write function is used to set up permissions for writing to
SIL application properties online (from the operator workstation). It is necessary to
configure the access level for types and instances, in order to make confirmed
online write possible.

All changes to protected data will require that the person requesting an online write
has the right to make changes. A Confirm Operation dialog will be showed each
time an online write to protected data is attempted.

For more information about Confirmed Online Write see the System 800xA
Administration and Security (3BSE037410*).

Search and Navigation
The Search and Navigation function makes it possible for the user to search for
symbols (see Symbol and Definition on page 185) in a project, by using advanced
queries, for example, to find out where a certain variable is used in an application.

All symbols matching the search criteria are shown, together with definitions where
the symbols are declared. If a symbol is selected, all references where the selected
symbol is used in the project are also shown. By double-clicking on a definition, it is
possible to navigate to the editor where the symbol is declared. A double-click on a
reference shows the editor where the symbol is used.

A report that contains the last search result shown in the Search and Navigation
dialog can also be generated (see Reports on page 194).

If a global variable and a data type in the application have the same name the
search data base will become faulty. This may results in that a symbol cannot be
found.

The Search and Navigation function is available in offline, online and test mode.
For information on search and navigation in online mode, see Search and
Navigation in Online and Test Mode on page 350.

Search and Navigation Dialog Section 1 Basic Functions and Components

182 3BSE035980-510

Search and Navigation Dialog

The Search and Navigation dialog mainly consists of Search settings, Symbol,
Definition and References. All Search settings are remembered and will be applied
next time the dialog is used (until Control Builder is shut down).

The Search and Navigation dialog can be accessed from Project Explorer, context
menus and editors:

• In the Project Explorer, select Edit > Search.

• Right-click a Project Explorer object (not Tasks) and select Search or
Alt+F12.

• Select Edit > Search or right click and select Search (or Alt+F12) in a POU
editor, a connection editor, a hardware editor or an access variable editor.
These editors also have a search tool bar button that has the same
function.

Figure 92. The Search and Navigation dialog

References

Search

Symbol

Definition

settings

Section 1 Basic Functions and Components Search Settings

3BSE035980-510 183

Search Settings

The Search part of the dialog consists of the Search For: drop-down list, the Search
In: drop-down list, the Search Options radio buttons, the Max no of Hits edit field
and the Search button. Filter Result belongs to References (see Filter Result on
page 190) and the Rebuild button rebuild the Search data base (see Search Data on
page 194).

Search For:

In the Search For text field you enter the symbols to search for (see Symbol and
Definition on page 185). Search Options can be selected for the symbol text entered
in the Search For: text field. An empty text or an asterisk (*) character in the Search
For: text field search for all symbols. All symbols are case-insensitive, that is, a
search for the texts “my”, “My”, “mY” and “MY” gives the same search results.

Search Options

The default setting of Search Options is Match whole word. The Match substring
option searches for all symbols containing the entered text as a substring and the
Match prefix option searches for all symbols containing the entered text in the
beginning of the symbol names.

Max no of Hits:

The entered value in the Max no of Hits: field maximizes the number of symbols
that can be found at a search. The default value is 100.

Search In:

The selection in the Search In: drop-down list specifies where, in the project, you
want to search for the entered text symbol. An empty text field gives a search
through the whole project. Applications, Controllers or Libraries are selected if a
search after the Symbol is performed in all applications, all controllers or all
libraries respectively.

The text in the Search and Navigation Dialog on page 182,
Applications.Application_1.Program1 performs a search in Program1 of

Search Settings Section 1 Basic Functions and Components

184 3BSE035980-510

Application_1. This search also finds symbols from libraries, because the HWStatus
data type is used in Program1.

Select Search “In: Applications” (not Controllers) if you want to know in which I/O
unit a certain variable is connected.

Example

In the example below, see Figure 93, a search for the variable “start” is performed to
find out which I/O channel it is connected to. “start” is connected to channel 1 in
hardware on position 0.11.3. By double-clicking on I/O channel (1), in References
pane, you navigate to the I/O unit editor there “start” is connected.

Figure 93. (Part of Search and Navigation dialog at top) A search for “start”
variable in “Applications” to find out which I/O channel “start” is connected to.
(Part of Hardware Editor at bottom).

In Controllers it is only possible to search for access variables and I/O channels
as symbols, since the search symbol has to be defined (declared) under
Controllers, in Project Explorer, to match the search criteria.

Section 1 Basic Functions and Components Symbol and Definition

3BSE035980-510 185

Search Button

A click on the Search button performs the search according to the settings. The
search result will be shown.

Always on Top

If Always on Top is checked, the Search and Navigation dialog is placed in front of
all other Windows dialogs.

Symbol and Definition

The Symbol objects or the Definitions can be sorted in ascending or descending
order, by clicking on the corresponding title. A new click will toggle the sorting
order. The selected sorting order is remembered and will be used next time.

Figure 94. The Symbol and Definition part of the Search and Navigation dialog.

Symbol

A symbol is an object, which can be search for in a project, by using the Search and
Navigation dialog.

Examples of symbols are:

• hardware channels, access variables, project constants, variables, global
variables, external variables, parameters, extensible parameters, programs,
function blocks, function block types, control modules, control module types,
single control modules, data types, functions, Sequential Function Chart steps,
Sequential Function Chart transitions, Sequential Function Chart sequences,
applications, controllers and libraries.

References Section 1 Basic Functions and Components

186 3BSE035980-510

Examples of objects that are not symbols:

• hardware types, tasks, task connections, comments, descriptions and language
statements in the code, labels in Instruction List code, code block names,
connected libraries.

A symbol can be selected by clicking on it, clicking on the definition of the symbol
or by using the arrow up/down keys on the keyboard.

Definition

The definition of a symbol is where the symbol is declared. The definition of a
variable is where in the project the variable is declared, for example in a program.

It is possible to navigate to the definition by double-click on it or by using the
context menu. The enter key on the keyboard can also be used. The editor where the
symbol is declared is shown with the symbol highlighted.

Definition Context Menu

Right-click a Definition to get the context menu selections.

• Go To Definition in Editor navigates to the editor where the symbol is
declared.

• Go To Definition in Project Explorer navigates to the location of the symbol
in Project Explorer.

• Report... See Reports on page 194.

References

The References of a symbol is where in the project the symbol is used.

For example, a variable can be used/accessed by several code lines in several code
blocks, and as an actual parameter to a function call or function block call, or as a
parameter to a control module/single control module. The variable can also be used
(connected to) an I/O channel or an access variable.

Section 1 Basic Functions and Components References

3BSE035980-510 187

Figure 95. The References part of the Search and Navigation dialog.

In the example in Figure 95, the AC 800M symbol is used at two locations:

• at line 3, position 47, in Code code block of Program1.
• in channel 0 of unit at position 0 in Controller_1.

It is possible to navigate to a reference by double-clicking it, or by using the context
menu. The enter key of the keyboard can also be used. The present editor is shown
with the symbol highlighted.

References Context Menu

Right-click on a Reference to get the context menu selections.

• Go To Reference in Editor navigates to the editor of the selected reference.

• Go To Reference in Project Explorer navigates to the referenced object in
the Project Explorer.

• The Search menu selection gives the user a possibility to initiate new searches
from the references pane. This is useful when a variable/parameter is connected
to a parameter of a control module, single control module or a function block.

References Section 1 Basic Functions and Components

188 3BSE035980-510

Figure 96. A search for Variable “AppVar1” in Applications.

In the example in Figure 96, Appvar1 is connected to a parameter SM1P1 of a
Single Control Module named SM1.

1. In References, select SM1.SM1P1(1).

2. Right-click and select Search.
The Search For: and Search In: text fields will be automatically updated
according to Figure 97. A new search is performed.

The Execute Search Instantly check box (see Execute Search Instantly on page
192) has to be checked. If it is not checked, the user must click the Search button.

Section 1 Basic Functions and Components References

3BSE035980-510 189

Figure 97. A search for SM1P1 in SM1.

A new search can be done to follow parameter Par1 in single control module SM2.

3. In References, select SM2.Par1(1).

4. Right-click and select Search.

Figure 98. A search for parameter Par1 in SM1.

Navigation to Editors Section 1 Basic Functions and Components

190 3BSE035980-510

This example shows an easy way for the user to follow a parameter through a
control module hierarchy. The users only have to use the Search context menu to
follow the parameter downwards the control module hierarchy. It is also possible to
follow a parameter upwards a module/function block hierarchy.

Icons in References

The references are marked in blue and preceded by an icon.The icon can be any of
the following:

Filter Result

The Filter Result option makes it possible to show references with write access
only, or to show references with read access only.

The possible selections are read, write, I/O Channel Out and I/O Channel In. I/O
Channel Out shows references to output channels only, and Channel In shows
references to input channels only.

Navigation to Editors

It is possible to navigate to the following editors and dialogs:
– The POU editor
– The Connection editor (offline only)
– The Control Module Diagram editor
– The Hardware configuration editor
– The Access Variables editor
– The Project Constant dialog (offline only)
– The Diagram Viewer

Icon Description

The symbol is written.

The symbol is read.

The symbol is a function block/function block call.

The symbol is accessed by reference.

The symbol is a reference to a graphical connection.

Section 1 Basic Functions and Components Search and Navigation Settings

3BSE035980-510 191

l

It is possible to navigate from a control module parameter or a single control
module parameter connection in the References to a Connection editor. However, if
the parameter connection is a graphical connection, Control Builder navigates to the
Control Module Diagram editor.

Search and Navigation Settings

The Search and Navigation settings dialog has settings for executing the search and
editing of the search fields.

Select Tools > Setup > Station > Search and Navigation Settings to view the
Search and Navigation settings dialog.

Rebuild the Search Data when Opening Project

When this option is checked, Control Builder will rebuild search data when a new
project is loaded in the Control Builder. This check box is, by default, unchecked.

Rebuild the Search Data when Going to Online/Test Mode

When this option is checked, search data is rebuilt when Control Builder is entering
online mode or test mode. This setting ensures that the search data is consistent in

When navigating to an editor or a dialog the window already can be active, but
minimized, as well as hidden behind other windows.

Figure 99. The Search and Navigation settings dialog with default settings

Search and Navigation Settings Section 1 Basic Functions and Components

192 3BSE035980-510

online and test mode compared to offline mode. This check box is, by default,
unchecked.

Execute Search Instantly

When this option is checked, the Search and Navigation dialog will instantly
perform a search when the dialog is accessed with the Search command, from a
menu or tool bar button, that is, the user do not have to press the Search button in
the dialog. The search is only performed if it is obvious what symbol to search for,
that is, both the Search For: and Search In: boxes in the Search and Navigation
dialog have to be filled in automatically. This check box is, by default, checked.

Example:

Figure 100. Selection of the AC800MStatus in Program1.

1. Click on the AC800MStatus variable in code block Code in Program1.
2. Select Edit > Search (or Alt-F12).

It is recommended to normally have this check box unchecked

Section 1 Basic Functions and Components Search and Navigation Settings

3BSE035980-510 193

 Figure 101. The search result after performing above steps.

Allow editing of the Search Fields in Online/Test Mode

When this option is checked, it enables free editing in the Search field. It is
introduced since the strings in the search fields are very sensitive in this mode. A
single misplaced character ruins the search and the “search in” field is also case
sensitive. This check box is, by default, unchecked.

Iterative searches in Online/Test Mode

When this option is checked, the searches made in Online/Test mode are iterative,
and the search hits are presented in one pane. For details, see Search and Navigation
in Online and Test Mode on page 350.
This checkbox is, by default, checked.

Search Data Section 1 Basic Functions and Components

194 3BSE035980-510

Search Data

The Search data base contains search data, that is, information about all symbols,
information about the definition of each symbol and information about all
references of each symbol.

It is possible to perform a manual rebuild of the Search data base. The Search data
base can be rebuilt in the following ways:

• selecting Rebuild Search Data from the context menus of application,
controller and library.

• selecting Tools > Rebuild all Search Data

• clicking the Rebuild button in the Search and Navigation dialog

Reports

The search result can be transformed into a report by using Basic HTML Report.xslt,
that is by default installed together with Control Builder. The report contains the last
search result shown in the Search and Navigation dialog. All symbols, definitions
and references are included in the report. The symbols in the report are shown in the
same order as in the Search and Navigation dialog.

1. Right-click on a Definition and select Report....

Figure 102. The Create Search and Navigation report dialog.

2. Click Create Report button.
If the Open report with registered application is checked, the report will be
opened in a registered application. The Basic HTMLReport produces reports in
HTML format, that is, the report is opened in the registered Web browser.

Section 1 Basic Functions and Components Input and Output Signal Handling

3BSE035980-510 195

3. Specify a directory to save the report in and enter a suitable file name.

4. Click Save button to store the report file on disk.

It is possible to export the report to Microsoft Excel by using Export to Microsoft
Excel in the Internet Explorer context menu.

Input and Output Signal Handling
Signals start and end in I/O units with I/O channels of the RealIO data type.
Between input and output I/O units, signals are handled in I/O function blocks of the
RealIO data type, or directly in various function blocks, or in control modules of the
ControlConnection data type.

Over and under range measurement

Signal objects of real type are equipped with an option to increase the signal range
with a fixed pre-selected factor of +-15% of the specified range. You can select
individual Signal Objects connected to variables of data type RealIO on the
controller and set the input parameter EnableOverUnderRange to true. The Signal
Object enabled with over and under range feature, displays the output parameter
OverUnderRangeEnabled as true to inform the surrounding code about the extended
range.

The default value on EnableOverUnderRange depends on a global project constant
from BasicLib. The default value for this project constant is false and Over and
Under range feature is disabled.

Input objects connected to I/O.

To enable signal range extensions on input signals, in Project Explorer, click
connected controller > Hardware AC 800M >Editor > Settings. Set the Clamp
Analog in values as false. See Figure 103.

Input and Output Signal Handling Section 1 Basic Functions and Components

196 3BSE035980-510

 Figure 103. Enabling over and under range for input objects.

Section 1 Basic Functions and Components Input and Output Signal Handling

3BSE035980-510 197

Output objects connected to I/O.

To enable signal range extensions on output signals, in Project Explorer, click
connected controller > Hardware AC 800M >Editor > Settings. Set the Clamp
Analog out values as false. See Figure 104.

Figure 104. Enabling over and under range for input objects

Backup Media Section 1 Basic Functions and Components

198 3BSE035980-510

Backup Media
The AC 800M controllers contain a card slot located at the front of the controller.
In non-High Integrity controllers, this card slot allows the restore of the saved
configuration data and firmware data from the backup media.

The supported backup media for AC 800M controllers are:

• Compact Flash card (supported in all AC 800M controllers except PM891)

• Secure Digital card (supported only in PM891)

The backup media cards are useful to save data in case of unpredictable power
supply and for transferring new or updated applications to other controllers.

The card will be activated and read after a long controller reset (or power failure)
and your application(s) can be loaded into the new controller host without
performing a monitored application download from a Control Builder station.

For more information about the AC 800M controller, see the subsection ‘Product
Overview’ in the AC 800M Controller Hardware (3BSE036351*).

The backup media does not support distributed applications; hence you cannot
use the memory card in a controller that run distributed applications.

An AC 800M configured as time master (CNCP order number 1) does not
transmit any clock synchronization messages if it starts from a backup media
image, and the time quality in the AC 800M is bad due to a discharged battery.
The time in the AC 800M has to be manually set using the function block SetDT
in order to have the clock synchronization in place.

The "Daylight saving" and "Time zone" settings are not retained when starting an
AC 800M from backup media. If correct local time is needed, then the 1131
application must use the TimeZoneInfo function block to define the correct
settings.

The backup media cannot be used in an AC 800M High Integrity controller.

Section 1 Basic Functions and Components Compact Flash

3BSE035980-510 199

Compact Flash

Compact Flash (CF) is a portable memory card that can be easily inserted to the card
slot located at the front of AC 800M controllers (except PM891).

Specifications for Compact Flash Card

The following are the specifications for the CF card used in AC 800M controllers
(PM8xx, except PM891):

• Formatted according to FAT16 or FAT32.

• Minimum read speed – 8MB/second.

• Minimum write speed – 6MB/second.

• Same (or better) ambient temperature operative range compared to the PM8xx
that uses the card.

Recommended Compact Flash Cards

Only industrial type Compact Flash cards must be used with the AC 800M
controller.

The recommended industrial type CF cards are:

• SanDisk Industrial Grade

• SiliconSystems SiliconDrive

Secure Digital

Secure Digital (SD) is a portable memory card that can be easily inserted to the card
slot located at the front of the PM891 controller.

Adding CF Card or SD Card to Hardware Section 1 Basic Functions and Components

200 3BSE035980-510

Specifications for Secure Digital Card

The specifications for the SD card used in AC 800M controller (PM891):

• Formatted according to FAT32.

• Minimum read speed – 8MB/second.

• Minimum write speed – 6MB/second.

• Same (or better) ambient temperature operative range compared to the PM891
that uses the card.

Adding CF Card or SD Card to Hardware

Ensure that BasicHwLib is inserted under Hardware and that it is connected to the
controller.

From the Project Explorer:

1. Expand the Controllers item until you reach the CF Reader (or SD Reader)
item (see Figure 105).

2. Right-click the CF Reader (or SD Reader) and select Insert Unit from the
context menu. A dialog opens.

3. Select CF Card (or SD Card) in the dialog, and click Insert.

4. Click Close.

Figure 105. The Controllers item expanded and the CF Card connected to the CF
Reader item.

Section 1 Basic Functions and Components Saving Cold Retain Values on Files

3BSE035980-510 201

Saving Cold Retain Values on Files

The cold retain values used by the backup media can either be saved cyclically via
the settings in the hardware editor, or from the code via the function block
(SaveColdRetain).

Either way, these values are only saved on files located on the backup media. Thus,
not be confused with the cold retain values saved by Control Builder or OPC Server
during a download.

An OPC Server will not be able to give any data at all in case the AC 800M before a
power fail executes an application downloaded from Control Builder, but starts to
execute a different version found at the backup media after the power is resumed.
All OPC quality will in this case be BAD, because the OPC Server has no way if
finding the correct description files.

Also note that cold retain values will not be saved on the backup media in case there
is an application version mismatch.

Setting Up Cyclic Save of Cold Retain Values

As mentioned earlier, saving cold retain values cyclic are one of two methods for a
single CPU configuration. The other method is saving cold retain values based on
process events, accomplished by calling the function block (SaveColdRetain) from
the code. You should typically decide one of these two methods. However, if you
run with a redundant CPU configuration, then you must read Cold Retain Values for
Redundant CPU Configuration on page 202.

This subsection will describe how to save cold retain values cyclic. Provided that
you have added the CF Card (or SD Card) to your Hardware tree, do the following:

1. Double-click the CF Card (or SD Card) and select Settings tab in the
hardware editor.

2. Set the cyclic interval time for saving cold retain values to file. The default
value is (60 min.). See Figure 106.

Read more about the SaveColdretain function block type in Control Builder
online help.

Saving Cold Retain Values on Files Section 1 Basic Functions and Components

202 3BSE035980-510

Figure 106. Settings for Save cold retain values (default 60 min.).

3. Close the hardware editor.

Cold Retain Values for Redundant CPU Configuration

If you have a redundant CPU configuration; you cannot save cold retain values
cyclic or by the function block.

However, you can always save cold retain values via the Tool menu in Control
Builder so that your cold retain values will be part of the application, thus be loaded
to the backup media.

To save cold retain values for a redundant CPU configuration in Control Builder,
first make sure your project is Online:

1. In the Project Explorer menu bar select Tools > Save “ColdRetain” Values. A
‘Save “ColdRetain” Values’ dialog will open.

2. Click Save. The cold retain values are saved with your application and you are
now ready to download to the CF card or SD card. These values will be
included when you download the next time to the CF or SD card.

To prevent CF card or SD card from saving additional cold retain values, you
must set the parameter Value to zero (0). Otherwise it will keep saving new
values to file. Setting the value to 0 would normally be the case before shipping
the backup media to a host control system.

If an AC 800M contains redundant communication interfaces on the CEX-bus,
then perform a download to the controller before creating the Compact Flash
image. Make sure that the project is not closed while creating the image and
before it goes offline, else the image is not completed.

Section 1 Basic Functions and Components Downloading the Application to Removable Media

3BSE035980-510 203

Downloading the Application to Removable Media
Before you can download your application to the backup media, you must connect
an external Compact Flash Writer or Secure Digital Writer to your Control Builder
PC. The writer is normally connected to the PCs USB port.

From the Project Explorer, make sure your project is in offline mode:

1. Insert a Compact Flash card or a Secure Digital card in the Writer slot.

2. Right-click controller and select Download to Removable Media from the
context-menu. A Backup Media dialog window will open.

3. Select Writer and click OK. The Control Builder will write the application to
the backup media.

Configuration Load
Configuration Load means to load a controller configuration, all applications and
their corresponding cold retain values from the backup media. After a configuration
load, the application can read all the critical process (cold retain) values that was
stored on the backup media (CF card or SD card).

If or when a control system is shuts down due to power failure, and no battery
backup in the controller is available, the backup media can re-boot the control
system with the latest and the most efficient cold retain values.

In case the Control Builder source code files is to be placed on the CF/SD card, it
is recommended to zip these files into one single file before placing it on the
card.

For a redundant CPU configuration, you need to write the same application twice
(two CF/SD cards, one in each CPU). Copy (in Windows Explorer) the
downloaded application (two folders) from the CF/SD card and paste them
temporarily on your local disk. Insert the next memory card into the Writer and
drag your two folders from the hard disk and drop them on the new CF memory
card.

In case of a redundant processor unit configuration, it is recommended to insert a
CF card or SD card in both CPUs.

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

204 3BSE035980-510

Application Version Check

If the application version in the controller is not identical with the version in the
backup media or vice verse; a warning message will alert and no more cold retain
values can be saved.

Upgrading Controller Firmware using Backup Media

When a controller is started, or when a long reset is done, the execution starts in the
Boot Loader. While starting, the controller checks for any inserted CF card or SD
card. If a card is present, then the controller checks for valid firmware in it. If valid
firmware is found, it will be used for upgrading the current firmware.

Upgrading a controller’s firmware using a removable backup media, involves the
following steps:

1. Loading a copy of the firmware (that is, a firmware image) onto the backup
media using Control Builder (refer Loading the Firmware Image to Removable
Media on page 204).

2. Upgrading the controller firmware using the image on the backup media (refer
Upgrading Controller Firmware from a CF/SD card on page 208).

Loading the Firmware Image to Removable Media

Follow the steps given below for loading a firmware image from the
Control Builder to a removable backup media:

1. Mount the backup media card (SD or CF card) on the card reader-writer of the
Control Builder PC. Make sure that no other program uses or accesses the card.

2. Right-click on the controller object of the same type as the contoller to be
upgraded.

3. From the context-menu, select Load Firmware to Removable Media. The
Load Firmware to Removable Media window appears.

4. The Load Firmware to Removable Media window displays details of the card
being used and the action that will be taken. The displayed details differ
depending on whether the media card is SD or CF. Click Yes to proceed or No
to cancel the operation.

Section 1 Basic Functions and Components Upgrading Controller Firmware using Backup Media

3BSE035980-510 205

5. On clicking Yes, a list of identified removable media appears. If the card is not
present in the list of removable media, then try the following:

– Unmount and then remount the media again.

– Make sure that the card is formatted in a file system. If not, use the
Windows format tool or Diskpart to format it in FAT or FAT32 file
system.

Figure 107. Card details for PM865 PA/TP830

Figure 108. Card details for PM891

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

206 3BSE035980-510

6. Click the required removable media to select it, and then click Yes to proceed.
Either of the following cases will happen:

– If the media used is CF, the Diskpart tool then formats the CF card to
FAT 16 with a maximum size of 2 GB (even if the size of the card is
greater). The progress of the Diskpart tool will be displayed in a command
prompt window. Upon completion the window closes automatically and
the firmware image is copied to the card

– If the media is an SD card, then no formatting is required at this point. The
firmware image is copied to the card.

If the above operations are a success, then:

• There will be four files on the card (see Figure 109 for CF card and Figure 110
for SD card). If the media card is CF, then it has been formatted as FAT.

• The file content.txt has been rewritten and the first row describes the selected
controller. Other rows remain either untouched or partly rewritten.

Figure 109. Firmware image files on CF card

Section 1 Basic Functions and Components Upgrading Controller Firmware using Backup Media

3BSE035980-510 207

 If the operation is a failure, a message is displayed conveying the same. Further
information about the failure can be found in the Control Builder session log.

Figure 110. Firmware image files on SD card

While Diskpart is formatting the CF card, it is possible that Windows may
discover the card as an unformatted disk. In such a case, the following dialogue
will be dislayed. Here, select Cancel. If not, there will be two program instances
trying to format the card at the same time.

Figure 111. Windows dialog for formatting unformatted disks

Restoring Formatted CF Cards to Original Size Section 1 Basic Functions and Components

208 3BSE035980-510

Upgrading Controller Firmware from a CF/SD card

1. Insert the CF card or SD card in the card reader slot of the CPU and Power-On.

2. Perform a Controller Reset, by pressing and holding the INIT button till the
green Run LED starts flashing.

3. Release the INIT button to start the loading firmware . The process to load the
Firmware starts, and the Run and the Battery LEDs indicate the progress.

At the end of the operation, the hardware reset starts the newly programmed system.

Restoring Formatted CF Cards to Original Size

In some cases the CF card used for copying the firmware from Control Builder, may
have a size of more than 2GB. During copying of the firmware, Diskpart will format
this card to FAT 16, and the size will be limited to 2GB. In such a case, to restore
the card to its full original size, follow the steps given below:

1. Start the Diskpart tool by selecting Start > All Programs > Accessories >
Run and then type diskpart.exe. The Diskpart tool opens in the command
prompt. You can then procced with the commands written in bold in the
following steps.

2. List all volumes to identify the actual media by using the list volume
command.

3. Select the volume by its number or drive letter n by using the command
select volume n.

4. Clean the selected volume using the command clean.

5. Create a partition using create partition primary command.

6. List all partitions to identify the partition by using list partition command.

7. Select the partition by its number n by using the command select partition n.

8. Activate the partition using the active comand.

9. Proceed to format the card with default settings using the format command.

10. When the format is complete, exit.

Section 1 Basic Functions and Components Compiler Switches

3BSE035980-510 209

Compiler Switches
Compiler Switches are used to control the behavior of the compiler by setting
additionally language restrictions.

Global restrictions are valid for all code. Restrictions can be set to generate errors or
warnings at compilation. For SIL applications it is also possible to set additionally
compiler restrictions. At compilation, errors and warnings are generated according
to these settings and global restrictions. These restrictions can be used to stop the
use of complex constructions in code, which might cause instabilities or errors.

Global restrictions and SIL restrictions are combined as follows:

• A global error and a SIL warning always generate an error

• A global warning and a SIL error generate a warning for non-SIL applications
and an error for SIL applications.

It is possible to exclude a library from checking with user-defined compiler
switches. Only warnings can be excluded for a library, not errors.

Settings

Right-click the control project (root object) and select
Settings > Compiler Switches to open the Compiler Switches dialog.

You may try the above steps in also cases where the card is shown as unformatted
and/or unreadable.

If a library is excluded from a certain restriction, this restriction will not be
checked for any type belonging to that library.

If restrictions are changed, a re-compilation is required before the next download.

Restrictions are checked both at compilation and when checking the code.

Settings Section 1 Basic Functions and Components

210 3BSE035980-510

Figure 112. Compiler Switches dialog

The possible settings of compiler switches are described in Table 15.

Table 15. Compiler Switches

Switch Description
Global

(Non-SIL)
SIL 1-2 SIL 3

Simultaneous Execution in
SFC(1)

Simultaneous sequences in
SFC

A E & M E & M

Loops In ST Loops in Structured Text (FOR,
WHILE, REPEAT and EXIT)

A E & M E & M

Nested IF or CASE Nested IF and CASE
statements in Structured Text

A A A

Implicit Cast(2) Automatic conversion of data
types (e.g. integer to real)

A A A

Instruction List language Instruction List A E & M E & M

Ladder Diagram language Ladder Diagram A E & M E & M

Loops in Control Modules(1) Code sorting loops E E E

SFC Language Sequential Function Chart
Language

A A E & M

Section 1 Basic Functions and Components Settings

3BSE035980-510 211

Notes to Table 15
“A”: - Allowed, Gives no error or warning
“W”: - Gives a compiler Warning if the rule is violated, acknowledge required

Force I/O from code The compiler switch for forcing
I/O signals from 1131 code. It
restricts changes of the Forced
component in variables of one
of the data types BoolIO,
RealIO, DintIO and DwordIO
and results in either warning or
error when the switch is
activated.

Example: MyBoolIOVar.Forced
:= true; Not allowed since this
assignment directly affects the
“Forced” component.

A E & M E & M

Multiple calls to the same
Function Block

This switch defines if the
compiler should check if a POU
Type contains more than one
call to a specific Function Block
instance

W W E

None or multiple calls to
ExecuteControlModules

The ExecuteControlModules
function is called once in every
scan from a Function Block
Type that contains
ControlModule instances. This
switch decides if the compiler
checks that the call is made
correctly.

W W E

(1) This switch does not affect the “sequence selection” functionality of SFC.
(2) In SIL applications it is recommended to set this switch to Error.

Table 15. Compiler Switches (Continued)

Switch Description
Global

(Non-SIL)
SIL 1-2 SIL 3

Reports Section 1 Basic Functions and Components

212 3BSE035980-510

before download is allowed.
“E”: - Gives an compiler Error if the rule is violated, download is blocked.
The default settings are marked with boldface letters in the table.
“E & M’’ - Error and mandatory, same as "Error" but can not be changed by the
user.

Reports

Difference Report

If the Difference Report function is enabled, the Difference Report Before
Download dialog displays (in the same dialog):

• Difference report,
• Source code report.

Based on the information presented in the reports you can either accept or reject the
changes, if you want the download to be carried out or cancelled.

The function is enabled/disabled by right-click the control project folder (root
object) and select Settings > Difference Report.

The Difference report setting is only available for non-High Integrity controllers.

Difference report shows the difference between data downloaded to the controller
and the data present in Control Builder, see Figure 113. The tree view to the left
shows the parts of the application that have changed. By clicking an item in the tree,
you can display the present controller code to the left, and the new code to the right.
Differences are also indicated by colors (the color coding is explained on the status
bar at the bottom of the report window).

See Control Builder online help for more specific information how to configure
compiler switches.

The Difference Report and start value analysis functions is always enabled when
downloading SIL applications to High Integrity controllers.

Section 1 Basic Functions and Components Difference Report

3BSE035980-510 213

 Figure 113. Difference report before download

The difference report presents found differences, see Table 16.

Table 16. Differences presented in difference report.

Data Example

Application data User defined types, start values,
execution order, connected libraries.

Controller configuration data Access variables, hardware units,
HW types, task properties, connected
applications, settings from external
configuration tool (such as Fieldbus
Builder FF), controller settings (error
handler), communication interval
settings.

Difference Report Section 1 Basic Functions and Components

214 3BSE035980-510

History of Difference Report

The accepted Difference Reports could be accessed again after a download is
conducted. Select View Accepted Difference Reports from Tools menu to view
the list of reports with date and time of download.

Printing Difference Report as a PDF File

It is possible to print to a PDF-file instead of a printer if a PDF printer driver (Adobe
PDF or PDF995 or others) and the corresponding converter is installed.

To print the Difference Report as PDF File:

1. Select File > Print in the Difference Report.

Project constants

System variable EnableStringTransfer

To reduce the compilation time during download of a project to a controller, it is
possible to exclude the start values from the difference report. The start value
analysis is enabled/disabled via Project > Settings > Difference Report.

The start value analysis cannot be disabled for a High Integrity controller.

Table 16. Differences presented in difference report.

Section 1 Basic Functions and Components Source Code Report

3BSE035980-510 215

2. Select PDF995/Adobe PDF in the Print Dialog. Click OK.

3. A Save As dialog displays. Enter the file name/folder and click Save.

4. The PDF Viewer application is launched to display the difference report in
PDF format.

Source Code Report

The source code report shows the complete source code for the current project in the
Control Builder, and enables a review of the source code that is independent of
editors and user interfaces of the Control Builder.

You perform the review by comparing the code presented in the report with the code
in the editors of the Control Builder, checking that the source codes correspond with
each other. If you find discrepancies, for example in the controller configuration,
you can try to compile and download again.

The main difference compared with the difference report is that the source code
report shows all source code from the different parts.

The source code report is mainly used for High Integrity applications, where it is
important to verify application and controller configuration. The source code
report is particularly useful the first time a project is downloaded, when the
difference report contains no information.

Source Code Report Section 1 Basic Functions and Components

216 3BSE035980-510

 Figure 114. Source code report before download

The left part of the dialog displays a tree containing the different parts of the report
(see table below). To view the source code for a specific item, navigate the tree until
you find the item, and then double-click the item (or right-click the item and select
Show Source Code).

The source code report presents information as shown in Table 17.

Table 17. Information presented in source code report .

Data Example

Application data User defined types, execution order,
connected libraries.

Controller configuration data Access variables, hardware units,
HW types, task properties, connected
applications, controller settings (error
handler), communication interval
settings, structural changes, simulation
mark, signature.

Section 1 Basic Functions and Components Reports Generated at Download

3BSE035980-510 217

Information about execution order will be part of the report, provided that a
compilation has been performed.

Source code for protected types will not be displayed in the report. In the report, a
protected type is indicated by a padlock icon . If the protected type is part of a
library, it is possible to override the protection by entering the password.

To print the source code for the whole project, select File > Print. To print the
source code for selected parts of the project, navigate the tree to the item you want
to print, right-click the item and select Print Source Code. Alternatively, you can
select File > Print, and select print range Selection in the Print dialog.

Reports Generated at Download

Difference Report and Source Code Report Generated at Download

For a description of the difference report and source code report generated when
you perform a download of a project from the Control Builder to the controller, see
Difference Report on page 212 and Source Code Report on page 215.

Project constants

System variable EnableStringTransfer

The source code report has a filter function to increase the readability of the
source code for Function Block Diagrams and Control Modules. This filter is by
default turned on (select Tools > Filter).

You can generate a source code report without compilation or download. See
Source Code Report Generated for Project in Control Builder on page 218.

You can also generate a source code report for the project in the controller. See
Source Code Report Generated for Project in Controller on page 218.

If a High Integrity controller is used, it is not possible to disable the Difference
Report and start value analysis functions.

Table 17. Information presented in source code report (Continued).

Data Example

Reports Generated at Download Section 1 Basic Functions and Components

218 3BSE035980-510

Source Code Report Generated for Project in Control Builder

To generate a source code report for the project in the Control Builder, without
performing any compilation or download, select Tools > Source Code Report.

Figure 115. Source code report generated without prior compilation

Source Code Report Generated for Project in Controller

A source code report for the project running in the controller can be generated
provided that:

• A successful download to the controller, with difference report enabled, has
been performed.

• The project in the Project Explorer is the same as the project in the controller.

To generate a source code report for the project in the controller, right-click the
controller in the Project Explorer and select Remote System, and then click Show
Downloaded Items. In the Downloaded Items dialog, click Source Code Report.

Section 1 Basic Functions and Components Portability Verification

3BSE035980-510 219

Figure 116. Source code report generated for project in controller.

Portability Verification

This menu is located under the menu option Tools > Verify Portability in the
Project Explorer. This functionality verifies that the source code doesn't contain any
characters with an ASCII value above 127. If a project, containing characters with
ASCII values above 127, is moved between computers with different local system
settings it may result in errors when the Control Builder project is loaded.

Performance Management
The compiler statistics is a separate tool accessible from the tools menu in the
Control Builder as shown in Figure 117. When it is started, the currently opened
project in the Control Builder is compiled, and the collected information is saved in
XML format in the 'Results' subfolder of the working folder, which is presented in a
separate dialog, see Figure 118. Only information about compilable applications

Performance Management Section 1 Basic Functions and Components

220 3BSE035980-510

can be gathered by the tool. If a project contains applications with errors, only
statistics of the correct applications is presented. In this case the statistics presented
is taken from a part of the project. One file is generated per application and it
replaces old ones if it previously exists for that application. The tool can also be
started from a Control Builder with no project loaded. In that case only information
gathered from previously generated files is displayed.

Figure 117. Compiler Statistics Tool

Section 1 Basic Functions and Components Performance Management

3BSE035980-510 221

 The tool presents the following information:

• The number of runtime instances of a type.

• The number of sub-instances of a type and total number of instances caused by
the type.

• The memory cost of one instance of the type, both including sub-instances and
without sub-instances.

• The total memory cost for all instances of the type. Both including sub-
instances and without sub-instances.

• The number of code blocks of the type.

• The number of execution entities (Code calls) for all instances of the type, both
including sub-instances and without sub-instances.

• The number of parameters passed by value of a type and the number of bytes
passed by value.

• As above for all instances of the type, both including sub-instances and without
sub-instances.

Figure 118. Compiler Statistics dialog

Project Documentation Section 1 Basic Functions and Components

222 3BSE035980-510

Project Documentation
The project documentation function provides you with filter options while
documenting your control project. The filter helps you specify parts of the control
project and keeping the document size to a minimum. All documentation is
produced as Microsoft Word documents as default, hence Microsoft Office must be
installed.

A complete overview of a library, an application, a controller, or an object in these
folders can be exported to a file for printout from Project Explorer. However, it is
not possible to select a folder at the root level, for example the Libraries object
folder. As an example, it is possible to filter out all ColdRetain variables and
Parameters in an application.

If the project documentation function is used in Online mode, the cold retain values
can also be obtained.

Printing Project Documentation

To print documentation, in Project Explorer:

1. Right-click any object in the tree view and select Documentation. A
‘Documentation’ dialog will open.

2. Click More to filter information. An ‘Edit Properties’ dialog opens.

All project documentation will be connected to a standard template. But you can
create templates of your own for the documentation.

Section 1 Basic Functions and Components Objects and Types

3BSE035980-510 223

Figure 119. Editor Properties dialog for filter options.

The Editor Properties dialog inside the Documentation function, contains three
main areas, which are represented by tabs in the dialog, see Figure 119.

• Objects and Types,

• Editor Items,

• Used Types.

Objects and Types

This is the start level for filtering the contents of your application or library. As you
can see, all options have been selected by default. You adjust the filter setting by
exclude an option.

Editor Items Section 1 Basic Functions and Components

224 3BSE035980-510

Editor Items

Figure 120. Editor item tab for selecting items inside filtered types and objects.

After adjusting the filter settings for types and objects, another filtering can be done
per item. You can now specify which items to include/exclude for the previous
selected types and objects. The items are grouped under Declaration Pane, Source
code and Properties and Settings. All items are set by default, except the Access
Level option, (see Figure 120).

Access Levels are used for controlling access to online resources in SIL
applications.

Section 1 Basic Functions and Components Used Types

3BSE035980-510 225

Used Types

Figure 121. Used Types dialog for printing used types only.

This filtering option selects types in a library that has an object (instance) in an
application or inside another library. The resulting documentation from this dialog
will only include the information for those types that have been matched as a
reference in the selected application or library (see the drop-down menus in
Figure 121).

In order to select a library or an application/library reference from the drop-down
menus, you must first check the Used Types check box.

Used Types must
be checked.

Used Types Section 1 Basic Functions and Components

226 3BSE035980-510

3BSE035980-510 227

Section 2 Alarm and Event Handling

Introduction
An important part of an automation system is to be able to supervise and interact
with the system. For this to be possible, information about the status of the
supervised processes must be made available to the operator. Both the operator and
the controllers need to be able to interact with the process.

This requires that information is transferred to and from the operator interface, in
the form of commands, alarms, and events.

Alarms and events are generated in three ways:

• by using objects based on library types containing alarm and event functions,

• by using objects especially made for alarm and event handling (based on the
types in the Alarm and Event library),

• by hardware units throughout the system (system alarms).

This section describes how to add alarm and event handling when there are no built-
in functions for this. For information on how to configure alarm and event handling
using objects that already contain alarm and event handling functions, refer to the
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981*), and
to online help for the object in question.

This chapter describes the alarm handling functions in the Alarm and Event
library. Signal objects, process objects, and a number of control objects have
built-in alarm functionality that is similar to the functions described in this
section. For a description of built-in alarm functions, see the references above.

Alarms and Events Section 2 Alarm and Event Handling

228 3BSE035980-510

Alarms and Events

Alarms and events inform the operator of the status of processes and systems. An
alarm represents a named state, also called an alarm condition (this is an OPC
standard term). Events give information about changes that is needed to analyze
various error situations. The OPC standard defines three kinds of events:

• Condition-related events, which are created when an alarm state changes.

• Simple events, which are created at occurrences like when a motor starts.

• Tracking-related events, which are created at occurrences like an operator
action.

Alarms are usually presented to the operator in alarm lists, while events are
presented in event lists. Alarms and events can also be handled by various parts of
the system without the involvement of an operator, so that, for example, a process is
stopped when a certain alarm goes on. Alarms and events, the functions can be used
in SIL applications, but they are restricted to be used only for non-SIL purposes, for
example indications and does not influence the critical loop. Any violation of this
might corrupt the safety application and in SIL3 it could also lead to a safety
shutdown.

Alarms and events are collected from controllers and other parts of the system, and
transferred to subscribing OPC clients (operator interfaces) using an OPC server,
see Alarm and Event Communication on page 259.

Alarms and events are often logged, for use in trouble-shooting and when tracing
the origins of an error, see Section 5, Maintenance and Trouble-Shooting.

There are two main types of alarms and events:

• Process alarms and events are generated by changes in the alarm condition of a
monitored process signal, see Process Alarm and Event Generation on page
229.

• System alarms and events are generated by a change in the status of the system
itself, for example by a hardware failure or by the application via function

The behavior of an AC 800M High Integrity controller is in some cases different
from the behavior of other controllers. Limitations that apply when running SIL
applications in a High Integrity controller are described in the System 800xA
Safety AC 800M High Integrity Safety Manual (3BNP004865*).

Section 2 Alarm and Event Handling Alarm and Event Library

3BSE035980-510 229

block (SystemAlarmCond). See Detection of Simple Events on page 239 and
System Alarm and Event Generation on page 252.

Alarm and event handling also requires clock synchronization, in order for time
stamps to be reliable when trying to analyze a sequence of events. See Time Stamps
on page 256 and Sequence of Events (SOE) on page 244.

All alarms and events follow the OPC Alarm and Event specification.

Alarm and Event Library
The Alarm and Event library contains function blocks and control modules for:

• Creating alarms and events when a monitored signal of type bool changes,

• Creating simple events with user-defined data, for use in, for example, batch
applications,

• Printing alarms and events.

Additional Information

For examples of how to use components from the Alarm and Event library, see
Alarm Examples on page 267. For details on how to use alarm and event functions,
see Alarm and Event Functions on page 286. This sub-section also describes how to
set up printers and print queues.

For a complete list of all objects in the Alarm and Event library, see the manual
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981*).For
information on which alarm and event types that can be used in SIL applications,
see online help for the Alarm and Event library or the reference above.

Process Alarm and Event Generation
Process alarms and events can be generated using a number of objects based on
types in the Alarm and Event library.

Process Alarms and Events Section 2 Alarm and Event Handling

230 3BSE035980-510

• The function block types AlarmCond and AlarmCondBasic, as well as the
control module types AlarmCondM and AlarmCondBasicM, can be used to
generate alarms and events each time there is a change in a monitored signal
(of type bool). See Process Alarms and Events on page 230.

• The function block type SimpleEventDetector can be used to generate a simple
event whenever a monitored signal of type bool changes. See Detection of
Simple Events on page 239.

• The function block type DataToSimpleEvent can be used to create a simple
event and add user-defined data to it. Detection of Simple Events on page 239.

There are also system generated alarms and events, see System Alarm and Event
Generation on page 252.

Process Alarms and Events

Alarm condition-driven alarms and events are created when the monitored signal
changes, that is, when an alarm condition is fulfilled. This monitored signal must be
of type bool and is typically taken from another function block or module in the
system, or from an external device. The alarm condition function blocks and control
modules are state machines, which change from one state to another following a set
of configurable rules, whenever the monitored signal changes. This is defined as a
change in the alarm condition. Each time an alarm condition changes, an event is
created as well.

AlarmCond and AlarmCondM

The two basic types for creating alarm conditions are the function block type
AlarmCond and the control module type AlarmCondM. The principle behind the
two is the same. Through parameters, it is possible to connect to the monitored
signal, add information to the alarm, provide other objects with status information,

The function block type AlarmCondBasic and the control module type
AlarmCondBasicM are versions of AlarmCond and AlarmCondM, which
consume less memory. These types do not allow inverting the monitored signal
and they support internal time stamps only.

All alarm condition objects can be used in time-critical tasks and also most of
them in SIL certified applications.

Section 2 Alarm and Event Handling Process Alarms and Events

3BSE035980-510 231

and to control the behavior of the alarm condition. In Figure 122, the function block
type AlarmCond is used to illustrate the function of the different parameters.

Figure 122. The function block AlarmCond.

In parameters used for
the monitored signal

Signal

SignalID

AlarmCond
function block

Out parameters for the
status of the alarm condition

Error

CondState

Status

Message

SrcName

CondName

Severity

Class

In parameters used
to add information
to the alarm

FilterTime

UseSigToInit

EnDetection

AckRule

EnCond

DisCond

AckCond

Inverted

In parameters used to
control the behavior of
the alarm condition

ExtTimeStamp

TransitionTime

Process Alarms and Events Section 2 Alarm and Event Handling

232 3BSE035980-510

.

The control module type AlarmCondM has similar functions and uses the same
parameters as the AlarmCond function block type.

Alarm Condition Types with Reduced Functionality

In applications where it is necessary to minimize memory consumption, the
function block type AlarmCondBasic and the control module type
AlarmCondBasicM offer an alternative to AlarmCond and AlarmCondM.

Basically, they are the same as their counterparts AlarmCond and AlarmCondM,
with the following differences:

• They consume less memory.

• They always use acknowledgement rule number 1 (AckRule=1).

• It is not possible to invert the in signal, that is, the Inverted parameter cannot be
used.

• External time stamps cannot be used, that is, the parameters ExtTimeStamp and
SignalID are not used.

• Remote time stamps cannot be used, since the parameter TransitionTime
cannot be used.

If you change the value of an Edit parameter, this change will not take effect until
after a warm or cold download.

The following alarm condition parameters are Edit parameters:

• ExtTimeStamp,

• SignalID,

• UseSigToInit,

• SrcName,

• CondName,

• Inverted,

• AckRule.

The Description field in the parameter editor starts with EDIT if the parameter is
an Edit parameter.

For more information on parameters and their possible values, also see online
help and the Description column in the parameter editor.

Section 2 Alarm and Event Handling Process Alarms and Events

3BSE035980-510 233

Select Signal to Monitor

The monitored signal can be internal (that is, reside in the controller), or external
(that is, reside outside the controller).

Which type of signal that is monitored is indicated by the parameter ExtTimeStamp.
If this parameter is True, the external signal indicated by the hardware address in the
parameter SignalID is monitored. If ExtTimeStamp is false, the parameter Signal is
used to connect to the monitored signal.

The parameter Inverted can be used to invert the in signal (True=invert signal).

UseSigToInit is used to indicate from where the initial value of the signal should be
taken (the state machine needs a start value). This parameter is only relevant when
the monitored signal is external. When UseSigToInit is True, Signal is used to get an
initial value.

Control the Behavior of the Alarm Condition

The following parameters can be used to control the behavior of an alarm condition:

• AckRule determines which acknowledgement rule is used. The
acknowledgement rule decides the behavior of the alarm condition when an
alarm has been created. This parameter is an EDIT parameter (that is, it is used
for configuration purposes only, and cannot be changed without a restart) and it
cannot be changed from the code.

• FilterTime determines how long the signal must deviate before a change is
considered to have taken place. The filter time should be set so that glitches do
not cause an alarm.

• TransitionTime determines the time of the event occurrence when the Signal
change. If the value is equal the default value (the time) will be read inside this
FB instead

• EnDetection enables detection when True. When this parameter becomes
False, the alarm condition goes to an inactive state and the signal is no longer
monitored. By setting this parameter to False, you will stop detection of new
alarms and leave existing alarms unacknowledged.

Process Alarms and Events Section 2 Alarm and Event Handling

234 3BSE035980-510

• AckCond is used to acknowledge an alarm (True = acknowledge). It is
normally used to acknowledge alarms from simple devices such as push
buttons.

• DisCond disables the alarm condition when True.

• EnCond enables the alarm condition when True.

How the condition state changes when an alarm is acknowledged depends on the
value of the acknowledgement rule (AckRule) parameter. This parameter is
available in the AlarmCond and AlarmCondBasic function blocks, and in the
AlarmCondM and AlarmCondBasicM control modules.

There are five acknowledgement rules:

• AckRule = 1, “normal handling”, alarms must be acknowledged and inactive
before the “normal” state is resumed,

• AckRule = 2, alarms need no acknowledgement,

• AckRule = 3, alarms return to “normal” state on acknowledgement,

• AckRule = 4, not used (reserved for future use),

• AckRule = 5, alarms return to “normal” state when a sum system alarm is
acknowledged and returns to its normal state.

For more information about the different acknowledgement rules, see
Acknowledgement Rules – State Diagrams on page 287.

Alarm and Event Information

There are a number of parameters for adding information to alarms and events:

• Message can be used to add a textual description of the alarm condition, for
example, “temperature low”.

• SrcName identifies the alarm source, for example, “Motor101”.

• CondName identifies the alarm condition, for example, “Level_High“.

The AckRule parameter is normally set to 1 (normal). It cannot be changed
online.

Section 2 Alarm and Event Handling Process Alarms and Events

3BSE035980-510 235

• Severity indicates the degree of severity, where 1 is the least severe, and 1000
is the most severe level. This parameter is very useful when filtering alarms
and events.

• Class can be used to classify the alarm (1-9999). This parameter is also useful
when filtering events,

This information can be displayed in the operator interface and written to various
logs. It can also be used to sort and filter alarms and events.

Since the source name and the condition name identify the alarm, the combination
of the two must be unique within a controller. Any attempt to define an alarm
condition that results in a non-unique combination of source name and condition
name will result in an error (the Error parameter will become True). Also, a simple
event is generated.

If an OPC server detects a non-unique alarm (that is, two controllers have the same
combination of source name and condition name), a system simple event is
generated.

There are two alternatives for indicating the source of an alarm or event:

• Leave the SrcName parameter empty. The Name parameter of the alarm owner
(see Alarm Owner Concept on page 238) will be used as the source name.

• Set the SrcName parameter to whatever source name you want to use.

The condition name is normally the name of the alarm condition function block or
control module instance, for example Level_High, but could also be set via the
CondName parameter.

The same condition names should be used throughout the whole project, since it is
important that the operator has a limited set of condition names to deal with. Using

For a program or application to have a source name, you need to create a variable
called Name in the program or application. If the SrcName parameter is left
empty and the alarm owner is a program or application, the value of the Name
variable will be used as the source name.

All alarms belonging to the same alarm owner must have the same source name.

Condition names are case sensitive, that is, Level_High is not the same as
LEVEL_HIGH.

Process Alarms and Events Section 2 Alarm and Event Handling

236 3BSE035980-510

condition names in a consistent and structured manner also makes it easier to
understand the process.

The class parameter (Class) can be used to classify all alarms.

Status Information

There are three parameters that can be used to retrieve status information for an
alarm condition:

• CondState indicates the state of the alarm condition (0-6, see below).

• Error indicates an error in the alarm condition.

• Status gives the status code from the latest execution.

Alarm conditions are state machines, which change from one state to another
following fixed rules. The most important reason for an alarm condition to change is
a change in a monitored signal. The alarm condition (indicated by the parameter
CondState) also changes if:

• an alarm is acknowledged,

• an alarm is disabled,

• an alarm is enabled,

• auto-disable occurs.

For detailed information about source name and condition name restrictions and
syntax, see online help for the Alarm and Event library. For information on NLS
handling for alarms and events, see Translation – NLS Handling of Strings on
page 266.

The default class is 9950 for all system alarms and system events. All other
numbers can be used as required. Possible values are 1-9999. The default value
can be changed by changing the CPU setting AE System AE class.

If a parameter is outside its defined range, the Status parameter will take a
negative value or the value 703.

Section 2 Alarm and Event Handling Process Alarms and Events

3BSE035980-510 237

The condition state (CondState) parameter indicates the state of an alarm. An alarm
can be in one of seven states:

The CondState parameter can be used to pass the state of an alarm to other parts of
the software.

Autodisable

AC 800M controllers have a CPU parameter called AE Limit auto disable. This
setting controls the number of times an alarm can go on and off, without being
acknowledged. When the limit is reached, the alarm condition is automatically
disabled, and the state AutoDisabled is entered. The default setting is 3, and the
maximum setting is 127. If AE Limit auto disable is set to 0, autodisabling is turned
off and alarms can be activated an unlimited number of times.

Integer value State

0 Alarm condition not defined

1 Disabled

2 Enabled, Inactive, Acked - Idle

3 Enabled, Inactive, Unacked

4 Enabled, Active, Acked

5 Enabled, Active, Unacked

6 Enabled, AutoDisabled, Unacked

To see the state of all alarm conditions for a certain object in Project Explorer,
right-click the object and select Alarm Conditions from the context menu.

An alarm that is in AutoDisabled state does not send any event (even though the
alarm condition changes), until it is acknowledged. See Acknowledgement
Rule 1 on page 287.

Process Alarms and Events Section 2 Alarm and Event Handling

238 3BSE035980-510

Alarm Owner Concept
The alarm owner concept is important, since it is the key to manipulating the source
of an alarm. Not all objects in the Project Explorer tree hierarchy are alarm owners.

For an object (for example, a tank object) to be an alarm owner, it must fulfill three
criterias:

1. It must have the attribute Alarm Owner set to True.

2. It has to be the last link in an unbroken chain of alarm owners, all the way from
the program or application, down to this particular object. For an illustration of
the concept, see Alarm Owner Examples on page 274.

3. It must have Aspect Object set to true.

If an object is not an alarm owner, or the alarm owner chain is broken, the system
looks further up in the hierarchy, until it finds an object on a higher level that is
directly above the origin of the alarm or event, and fulfills the above criteria.

This is the point of the alarm owner concept. By not setting the Alarm Owner
attribute for low-level objects, alarms and events can be connected to an object on a
level higher than their true origin. If no alarm owner is found, the program or
application itself becomes the alarm owner. The following objects are always alarm
owners:

• Applications,
• Programs.

Each object that is an alarm owner creates three aspects, which can be viewed from
both the Object Type Structure and the Control Structure:

• The Control Alarm Event aspect lists all alarm conditions associated with the
object.

• The Alarm List aspect presents alarms associated with the object during
operation.

• The Event List aspect is used to present an event list.

The Name parameter of the alarm owner or the Name variable corresponding to
the name of the alarm owner must be initialized before the alarm condition
changes (triggering an alarm).

If you want to, fshow alarms for all objects, you can override the above aspects.

Section 2 Alarm and Event Handling Detection of Simple Events

3BSE035980-510 239

Detection of Simple Events
A simple event detector generates a simple event each time there is a change in the
monitored signal. A simple event detector can be implemented by means of the
function block type SimpleEventDetector.

SimpleEventDetector can be used with internal, external or remote time stamps.
This function block type is connected to the monitored signal exactly the same way
as the function block type AlarmCond, that is, using the parameters Signal,
SignalID and UseSigToInit. See Select Signal to Monitor on page 233. It is also
possible to set the filter time (via a FilterTime parameter).

The function block DataToSimpleEvent can be used to add data to a simple event.
See Simple Events on page 256.

For more information on how to configure these function blocks, see alarm and
event online help.

Built-in Alarm and Event Handling in Other Libraries

This section deals with alarm and event handling based on the Alarm and Event
library. However, alarm and event functions are built in to a number of other types
in the standard libraries that are delivered with the 800xA system.

This sub-section gives a short introduction to signal objects and to the built-in alarm
and event functions of process objects and control loops. It also describes the inhibit
and disable functions for these objects, since they are relevant to the interaction with
the types in the Alarm and Event library.

Alarm and Event Handling Using Signal Objects

The Signal Library contains types that can be used to create representations of
objects with an input or output signal, for example a temperature sensor. By using a
signal object, you can go to manual mode and set the value of the signal, as well as
supervise the signal and generate alarms when the signal deviates.

For SimpleEventDetector, the following applies:
If ExtTimeStamp is True, FilterTime is not used.

Built-in Alarm and Event Handling in Other Libraries Section 2 Alarm and Event Handling

240 3BSE035980-510

For more information about the Signal Libraries, see online help and the manual
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981*).

Alarm and Event Handling in Control Loops and Process Objects

Alarm and event handling is built into a number of library types, such as control
loops and process objects. These alarms and events are handled the same way as
other process alarms and events.

Alarms and events can be generated directly by those objects, each time the alarm
condition is fulfilled, or the object can generate a bool signal that can be connected
to an alarm condition object.

Inhibit and Disable Alarms and Events

Sometimes there is a need for temporarily suspending alarm and event generation.
This can be done for all objects with built-in alarm handling:

• Disable – the alarm condition is disabled, no alarms and events are generated,
nothing is sent, and no control action is taken (that is, the system does not act
upon the alarm condition).

• Inhibit – the control action itself is inhibited (that is, the system does not act
upon this alarm or event), while alarms and events are still presented to the
operator in the operator interface.

Never use types from the Signal Libraries to represent all I/O channels and if
used, types from SignalBasicLib should be taken. This will consume a lot of
memory and will result in poor performance. Use signal objects when there is a
real need to control and monitor an I/O signal. Signal objects normally represent
an object with a single signal.

For a description of how to configure built-in alarm handling for various library
types, see online help for the type in question, and the System 800xA Control AC
800M Binary and Analog Handling (3BSE035981*).

Normally, the control action will be a boolean signal that causes a certain
reaction, for example, a signal that stops a motor. However, a control action
could also cause a more complex series of actions.

Inhibit is only available in the types listed under Inhibit Parameters on page 242.

Section 2 Alarm and Event Handling Built-in Alarm and Event Handling in Other Libraries

3BSE035980-510 241

Alarms and events can be disabled from the faceplate and from alarm list, as well as
from the application, via interaction parameters.Figure 123 illustrates the difference
between inhibiting and disabling an alarm.

Figure 123. Inhibit and disable functions in alarm handling for AC 800M (for a list
of objects with inhibit functionality, see Inhibit Parameters on page 242). Event
handling works in a similar way.

In a SIL application, alarms cannot be enabled or disabled via the MMS event
service. However, alarms can be disabled or enabled from the IEC-61131-3 code.

&

&

Alarm
Cond

Alarm
Server

Controller
Operator
Workplace

Faceplate

Alarm List

&

Disable (from faceplate)

Enable

Alarm
Condition

Alarm & Action

Control Action
Inhibit

Auto-disable

Disable (from Alarm List)

Hide

Built-in Alarm and Event Handling in Other Libraries Section 2 Alarm and Event Handling

242 3BSE035980-510

In the above figure, the alarm can be disabled from the faceplate and from the alarm
list. It can also be disabled if the auto-disable function is triggered.

When Inhibit is set, the alarm still exists and can be seen in logs, face plates and
alarm lists. It is only the control action that is inhibited.

Hide is set from the operator interface, see operator workplace documentation.

Inhibit Parameters

The inhibit function is present in the following standard library types.

• Signal library
– SignalInReal
– SignalReal
– SignalInBool
– SignalBool
– SDLevelM
– SignalBoolCalcInM
– SignalInBoolM
– SignalInRealM
– SignalReadCalcInM
– SignalSimpleInRealM

• Standard Control library
– Level6CC
– Level4CC
– Level2CC

• Supervision library
– DetectorBool
– Detector1Real
– Detector2Real
– DetectorRemote
– DetectorLoopMonitorReal
– OutputBool

Disable from the alarm list only disables the alarm itself, while Disable from the
faceplate disables both the alarm and the control action connected with it.

For an example of how to use the inhibit function, see Alarm Examples on page
267.

Section 2 Alarm and Event Handling Built-in Alarm and Event Handling in Other Libraries

3BSE035980-510 243

– SupervisionOverview (no disable function)
– OutputOrder (no disable function)

• Supervision Basic library
– SDBool
– SDInBool
– SDInReal
– SDLevel
– SDOutBool
– SDReal
– SDValve
– InfoAlarmSDInReal

• Fire&Gas library
– FGOutputOrder (no disable function)
– CO2 (no disable function)

In these types, control actions are inhibited by setting a parameter InhXAct, where X
stands for the name of the condition, for example InhGTHAct (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition (event generation)
has been inhibited or not.

Disable/Enable Parameters

The disable function is available in all types that contain built-in alarm handling. An
alarm condition is disabled by setting the EnableY parameter to False, where Y
stands for the name of the condition, for example EnableGTH (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition has been disabled or
not.

There are additional parameters that affect the behavior of built-in alarm
conditions, for example AEConfigX. For more information on parameters, see
online help for the object in question (select and press F1).

External Time Stamps (S800 I/O) Section 2 Alarm and Event Handling

244 3BSE035980-510

External Time Stamps (S800 I/O)

Sequence of Events (SOE)

Some I/O modules add a low-level time stamp to an alarm or event when it detects a
change in a signal. Instead of using the time stamp created by the controller when it
detects a change in the monitored signal (that is, when the task is executed), the
controller simply adds the time stamp created by the I/O module. In this way, the
time stamp shows when the change actually occurred, instead of when it was
detected by the controller.

For this to work, the I/O module will have to support Sequence of Events (SOE).
SOE is currently supported on ModuleBus and PROFINET IO only. For
information on enabling/disabling and configuring SOE, see online help for S800
I/O.

External Time Stamps (PROFINET IO)

Sequence of Events (SOE) for PROFINET IO

Time stamped events are passed by PROFINET IO and CI871 through the controller
and are indicated in the AC 800M OPC Server in the Engineering Workplace. The
timestamping is done by the PNIO device. The PROFINET IO SOE is supported by
use of the ABB SOE profile.

The following are the definitions and functions of ABB SOE Profile:

1. Alarms from the PNIO device are converted into an External Event. These
External Events transferred through the AC 800M OPC-Server are indicated in
the EventList with their corresponding source address.

2. The external event can be picked up from the IEC-61131 Application by a
Function block like alarm condition and converted to a process alarm.

A special form of external time stamp is created by external units with Sequence-
of-Event (SOE) support, such as DI831. A low level event is then time-stamped
by the I/O unit and sent to the controller to be dealt with. This triggers alarms or
simple events in the controller. The change of status is time-stamped with the low
level event time stamp.

Section 2 Alarm and Event Handling External Time Stamps (PROFINET IO)

3BSE035980-510 245

3. The time synchronization of PNIO device is done externally and not by the
CI871. It is the responsibility of the PNIO devices to get a time
synchronization managed (through access to the central time master in the
system). The PNIO device defines the information to be time stamped.

4. The ABB SOE profile is handled as a process alarm on PROFINET IO with a
vendor specific User Structure Identifier (USI).

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

246 3BSE035980-510

5. Once the SOE alarm is acknowledged (to ensure that it is not lost). The PNIO
device deletes the alarm only after receiving the acknowledgement from the
controller. The controller sends the acknowledgement after storing the alarm in
the non-volatile memory.

External Time Stamps (INSUM)

Creating an Application that Handles INSUM Alarms

All INSUM devices (MCU, Circuit Breaker) have supervision functions that can
report alarms. The different device types supervise and report specific alarm types.
The alarms are reported in specific Network Variables.

MCUs report the alarms in the Network Variable NVAlarmReport.

The user can decide if there should be a summary entry that tells that there are some
alarms (one or more) in the device. It is possible to have a separate summary alarm
for warnings and a separate alarm for trips.

This subsection discusses both methods, receiving INSUM alarms in the application
program, and generating alarm to the alarm lists. The user can decide to use either
methods or just one of them. For more information refer to System 800xA Control
AC 800M Binary and Analog Handling (3BSE035981*) manual.

Receiving INSUM Alarms in the Application

To receive alarms in the application program the INSUMReceive function block is
used in the same way as when receiving other input network variables from an
INSUM device, choose the correct NVindex and data type. The data type should in
this case be NVAlarmReport (see also the MCUAlarmTrips/WarningsStructs
regarding how to interpret the bits).

The time stamp set by the INSUM device in the alarm variable is presented in the
two time fields of the NVAlarmReport. This time information is only correct if the
clock in the INSUM device is synchronized. The system software does not fill in

It is recommended to configure Function blocks as Alarm condition for process
signals only where the process values can be used as initial value in case of restart
behavior. Otherwise alarms can get frozen.

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

3BSE035980-510 247

these fields if the time stamp received from the INSUM device is incorrect. (See
below).

Generating Alarms for Alarm Lists

The controller system software generates alarms for the alarm and event lists in the
system, based on the updates of the INSUM alarm information if the parameter
Generate Alarms on the device is set to Enabled or Enabled Trip/Warning or
Enabled Detailed.

If the time stamp received from the INSUM device is correct (a valid time) this time
stamp is used for the generated alarm message. If it is not, the system software tags
the generated alarm message with the current controller time.

In this case, the alarm messages are time stamped in the controller. If this time
accuracy is sufficient, this method is probably to be recommended because it is
easier to configure. No System Clock is needed in the INSUM system. If you let the
system software generate the alarms it can use the time stamp given by the INSUM
devices. If the INSUM System Clock is used this is a much more accurate time
stamp.

Summary Alarms, One Alarm Object Per Device

Generate Alarms = Enabled means that the system software internally (without
needing INSUMReceive) creates a subscription of the alarm variable from the
INSUM device. When this variable is updated from the INSUM system, the system
software evaluates the content.

If a bit (one or more) which is classified as an alarm (e.g. not the bit "Started1") is
set and no such bit previously was set, the system software generates one alarm
message.

If an alarm update is received with the change that no alarm classified bits are set
any more, the system software generates the alarm-off message.

If the parameter Generate Alarms is set to disabled, alarm information can
anyway be sent to the alarm and event lists by the application. This can be done
by creating an AlarmCond function block and to connect information received
from an INSUM device to the parameter Signal and to set
External Time Stamp = FALSE.

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

248 3BSE035980-510

Summary Alarms, One Alarm Object For Warnings and One for Trips

Generate Alarms = Enabled Trip/Warning. The difference compared to the
handling for Enabled is that the system software generates one specific alarm
message when a warning bit is set and another alarm message when a trip bits are
set.

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

3BSE035980-510 249

This means that there will be one alarm message for the first warning and one for
the first trip. To use this setting two AlarmCond blocks should be created for each
INSUM device, one for the warnings and one for the trips. If an alarm update is
received with the change that no warning bits are set there will be an alarm off
message for the warnings. The same applies for the trip bits.

Detailed Alarms

Generate Alarms = Enabled Detailed. The difference compared to the handling for
Enabled (see Summary Alarms, One Alarm Object Per Device on page 247) is that
for each alarm classified bit which is set (and previously was not set) the system
software generates one separate alarm message. If an alarm update is received with
the change that an alarm classified bit that previously was set now is reset, the
system software generates the alarm off message for that bit.

Creating AlarmCond Blocks for Generated Alarms

The function block AlarmCond should be used to get descriptive messages in the
event and alarm list and get an association with an alarm object. AlarmCond is
associated with the alarm messages that the system generates by setting
ExternalTimeStamp=TRUE and to identify the alarm object with the parameter
SignalId.

Alarm Generation = Enabled

The SignalId should be a string that specifies the hardware position for the INSUM
device. This is done with the syntax C.G.D, where:

• C is the position of the CI857,

• G is the position of the INSUM Gateway and,

• D is the position of the INSUM device. The position numbers are separated by
a dot '.'.

Using Enabled Detailed means that one AlarmCond block should be created for
each alarm type that the INSUM device sends. For a large INSUM configuration
where more than just a few alarm types per device should be supervised this
easily leads to a very large number of AlarmCond blocks.

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

250 3BSE035980-510

Example:

• The syntax 2.1.204 means the alarm for device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Trip/Warning

The SignalId should be a string that in addition to the hardware position for the
INSUM device, also specifies a trip or a word.

This is done with the syntaxes C.G.D-T or C.G.D-W, where:

• C, G and D as above,

• T represents Trips and W represents Warnings.

Examples:

• The syntax 2.1.204-W means a warning for device #204 connected via
Gateway #1 on CI857 #2.

• The Syntax 2.1.204-T means a trip in device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Detailed

The SignalId should be a string that, in addition to the hardware position for the
INSUM device, also specifies the alarm word and bit within the word. This is done
with the syntax C.G.D-X/B, where:

• C, G, and D as above, and,

• X is the word within NVAlarmRep (preceded by a dash “-”),

• B is the bit within the word.

There are four words with warnings called W0-W3 and four words with trips called
T0-T3. The bits are numbered from 0 to 15. The word and the bit is separated by a
slash ‘/’.

Example:

The syntax 2.1.204-W1/3 means the alarm bit 3 in word W1 in device #204
connected via Gateway #1 on CI857 #2.

Section 2 Alarm and Event Handling Choose Alarm Handling Method for INSUM Alarms

3BSE035980-510 251

Choose Alarm Handling Method for INSUM Alarms

This section contains some suggestions about choosing and handling INSUM
alarms. Whether to send alarms to alarm list or not:

• If Alarms should be possible to view, but are not necessary to see in the Alarm
lists:

– Set Generate Alarms = Disabled.

– Do not create any AlarmCond blocks.

• If the INSUM Alarms should be sent to the alarm list:

– Use AlarmCond function blocks. See INSUM Alarms in Alarm Lists
below.

INSUM Alarms in Alarm Lists

Time stamping:

• If local (in the INSUM devices) time stamping should be used:

– Use a system clock in the INSUM system.

– Set Generate Alarms = Enabled, Enabled Trip/Warning, Enabled
Detailed

– Use an AlarmCond block with External Time Stamp = TRUE.

• If it is sufficient with time stamping in the application in the controller:

– Set Generate Alarms = Disabled

– Use an AlarmCond block with External Time Stamp = FALSE.

– Connect it to the variable with the INSUM device information to be
supervised. The accuracy of this time stamping cannot be better than the
cycle time of the application where the AlarmCond is executed.

Separation of alarms in the alarm list:

• If the timing between different alarms within a device must be possible to see
in the alarm list than it is required to:

– Set Generate Alarms = Enabled Detailed.

System Alarm and Event Generation Section 2 Alarm and Event Handling

252 3BSE035980-510

– Use one AlarmCond per alarm type.

• If it is sufficient to be able to identify the device than it is possible to:

– Set Generate Alarms = Enabled.

– Use one AlarmCond per INSUM device.

• If it is sufficient to be able to identify the first warning and the first trip in a
device than it is possible to:

– Set Generate Alarms = Enabled Trip/Warning

– Use two AlarmCond blocks per INSUM device.

Number of devices:

• If there are a lot of devices needing external time stamping than required for:

– Use two (or one) AlarmCond per INSUM device.

– Set Generate Alarms = Enabled Trip/Warning (or Enabled)

• If there are a few devices that need external time stamping than it is possible to:

– Use one AlarmCond per alarm type.

– Set Generate Alarms = Enabled Detailed

System Alarm and Event Generation
System alarms and system simple events that are generated in a controller are
distributed to OPC alarm and event clients and locally connected printers, according
to the current system configuration.

All system alarms available in a controller can be located by printing all alarms (use
the PrintAlarms function block type and set the parameters to show the alarms you
want to see). They can also be displayed by and interacted with applications, by
means of the function block AttachSystemAlarm (this function block type retrieves
the alarm condition state and some other information for an alarm condition). When
units that are visible in Project Explorer (hardware units or program tasks) generate
system alarms or system simple events, a warning icon is displayed on the
corresponding unit.

Section 2 Alarm and Event Handling Controller Generated System Alarms and System Simple

3BSE035980-510 253

System alarms and system simple events are used to draw attention to deviations
from normal system behavior. All system alarms and system simple events can be
sent to the OPC Alarm and Event Clients and even printed to the system log file,
depending on the current system configuration.

Alarm Source name

The Alarm Source name functionality makes it easier to identify units in an alarm
list. Its function can be accessed from the Controller aspect and is used to add an
OPC Source Name aspect to all underlying hardware units and System Alarm and
Event units.

For a hardware unit the name set in the OPC Source Name aspect will be a
combination of the controller name and the unit path e.g. Controller_1-0.4.0.

For a system alarm and event unit, the name set in the OPC Source Name aspect will
be the system alarm and event unit with the IP address replaced by the controller
name.

From the Controller aspect.

1. Select the System Alarm Info tag in the Controller's aspect preview pane.

2. Click the 'Generated System Alarm Info' button.

The text in the Name field (in the OPC Source Name aspect) will be the name
presented in the alarm list.

Controller Generated System Alarms and System Simple Events

Controller generated system alarms and system simple events are defined within the
controller. A list of all defined system alarms and system simple events within an
AC 800M controller can be found in Appendix B, System Alarms and Events.

Filter out system alarms from hardware units

The function is used to reduce the number of alarms generated from hardware units,
as important alarms tend to disappear in a crowd of alarms.

A example is when commissioning the system or a new part of an existing system,
there might be transmitters that are connected and disconnected and the system
generates a lot of underflow, overflow and channel error alarms.

Controller Generated System Alarms and System Simple Events Section 2 Alarm and Event

254 3BSE035980-510

The function is configured on the hardware object on the controller. Select
Controller > Hardware AC 800M >Editor > Settings, then select Filter out
system alarms from hardware units as shown in the Figure 124.

The parameter has five possible values:

Off: The filter function is shut off. The hardware status generates system alarms and
systems events for all status changes. This is the default setting.

Underflow: Underflow status changes will not generate any alarms.

Over- and underflow: Neither underflow nor overflow status changes generate
alarms.

Channel error: Channel error and IO warning will not generate system alarms or
events.

All: Alarms and events from all the status changes above are suppressed.

Figure 124. Filter out system alarms

Even if the setting is set to filter out alarms, the errors and warnings will still be
visible in the hardware tree and the Unit Status tab in the hardware online editors.
The change to the filter is performed in offline mode and downloaded to the
controller to activate the change.

Section 2 Alarm and Event Handling User Generated System Alarms

3BSE035980-510 255

User Generated System Alarms

User generated system alarms can be defined in your applications via the function
block SystemAlarmCond.

Handling Alarms and Events
When implementing alarm and event handling, it is very important to create a good
system for:

• classifying alarms and events,

• setting the severity of different types of alarms,

• indicating the source of an alarm or event,

• naming alarm conditions.

The most obvious reason for this is that you will be able to create an operator
environment in which the operator will quickly be alerted to various things that
require attention. The operator will also be able to quickly obtain additional
information and decide on the best course of action.

However, alarms and events are also logged, in order to be used for trouble-
shooting, and when analyzing things in order to improve performance of the plant.

This subsection describes:

• How to send data in XML format, see Simple Events on page 256. This is
useful when creating batch records.

• How to handle system alarms and events, see System Alarms and Events on
page 256.

• Internal, remote, and external time stamps (Sequence of Events, SOE),
including time synchronization, see Time Stamps on page 256.

If the function is used during commissioning to decrease the number of alarms, it
might be crucial to shut off the filter before entering normal operation.

Simple Events Section 2 Alarm and Event Handling

256 3BSE035980-510

Simple Events

The DataToSimpleEvent function block is used to send data in XML format, for
example, to record data for batch processes.

For more information on how to use this function block, see online help. For
examples on how to use the DataToSimpleEvent function block, see Alarm
Examples on page 267.

System Alarms and Events

The handling of system alarms and events is to a certain degree configurable. The
function block AttachSystemAlarm can be used to retrieve information on system
alarms and events, such as state, and whether the alarm has been disabled or
acknowledged.

The function block SystemAlarmCond can be used to retrieve system alarms and
events via the application.

Time Stamps

When an alarm or event is created, a time stamp can be added to it, showing the
exact time when the event occurred. There are three types of time stamp:

• Internal Time Stamps, that are created by the controller.

• Remote Time Stamps that are read from external communication partners via
the parameter TransitionTime.

• External Time Stamps that are created by an I/O unit and transferred together
with the event.

The TransitionTime parameter (of type date_and_time) can be used to read a remote
time from a remote partner, via other protocols than MMS. The parameter is read
each time a change is detected in the monitored signal. If it is left unconnected, it
will have no effect.

When adding remote time stamps, it is possible to add any time. However,
settings in the operator interface might filter out alarms and events with times that
are outside the “normal” range (in the future or far back).

Section 2 Alarm and Event Handling Time Stamps

3BSE035980-510 257

Internal time stamps simply show when the execution cycle in which the alarm was
created started. External and remote time stamps show the actual time at which the
alarm condition occurred in the external device or partner. All time stamps have a
resolution of 1 ms; however, it is the interval time of the task where the alarm
function block or module runs that determines the accuracy of the internal time
stamps. All alarm function blocks and modules in the same task are given the same
time stamp, if activated concurrently.

This is the point of using external and remote time stamps. Internal time stamps can
never be more accurate than the execution time of the task allows for. With external
or remote time stamps, the accuracy of the time-stamping mechanism in the external
or remote device (for example, an S800 I/O unit) sets the limit, something which
could seriously improve the accuracy of the time given in entries with external or
remote time stamps.

If external time stamps are to be used, the external time stamp parameter
(ExtTimeStamp) has to be set to True. When using external time stamps, there is
also a SignalId parameter that is used to indicate the source of the external alarm or
event.

All time stamps use UTC (Coordinated Universal Time).

External time stamps can only be created by external units with Sequence-of-
Event (SOE) support.

Time Stamps Section 2 Alarm and Event Handling

258 3BSE035980-510

Clock Synchronization

For time stamps to be useful, the whole system must use the same time, that is, the
time must be synchronized. See also Clock Synchronization in the AC 800M
Communication Protocols (3BSE035982*).

Depending on the type of controller, clock synchronization is possible by four
different protocols: CNCP, SNTP, MB 300 TS, and MMS Time Service. Clock
synchronization is set up in the controller hardware editor.

It is important to understand the difference between accuracy and resolution when
calculating how much a time stamp may deviate from the true system time:

• Resolution is the number of decimals that are used to write the time. If the time
is given as, for example, 2004-02-19 19:43:22:633, the resolution might
be 1 ms (but could also be, for example, 0.5 ms).

• Accuracy is a measure of how accurate a time stamp is, that is, how much it
may deviate from the true system time. If the accuracy is 1 ms, then
2004-02-19 19:43:22:633 actually means any time between
2004-02-19 19:43:22:632 and 2004-02-19 19:43:22:634.

It is also important to understand that the accuracy deteriorates if a time stamp is
created in a unit that is supplied with the time from a controller, via ModuleBus.

The possible difference between the time stamps of two events that occurred at
exactly the same time, but in two different units in two different controllers, is the
sum of the accuracy of time synchronization in the network and two times the
accuracy of the ModuleBus time synchronization.

This means that the difference between external time stamps can be far greater than
the accuracy of time synchronization between controllers.

The highest accuracy is achieved by using the CNCP protocol, with an AC 800M
controller as master.

For a more detailed, conceptual description of time synchronization, see the AC
800M Communication Protocols (3BSE035982*) and the System 800xA Network
Configuration (3BSE034463*). For information on how to set up time
synchronization or a controller, see online help for the processor unit (PM unit) in
question.

Section 2 Alarm and Event Handling Alarm and Event Communication

3BSE035980-510 259

Alarm and Event Communication
Alarm and event information is communicated throughout the control network via
OPC servers, that is, a number of OPC Server for AC 800M. When the state of an
alarm condition changes, an event notification is sent to all subscribing OPC
servers, which then forward these notifications to their clients. Changes in alarms in
the OPC server are also forwarded to its clients. Clients can be third party OPC
clients, or an 800xA operator station.

Subscriptions

An OPC server subscribes to event notifications from a control system. Each
controller compiles an internal list of all servers interested in various events.
Condition-related events are generated when alarm conditions change their state.
Simple events can be generated, for example, by the start of a motor. When an event
occurs, the control system sends event notifications to all servers on the subscription
list.

Configuration of OPC AE Communication – Overview

The whole system for transferring alarms and events, that is, controllers, OPC
servers, and OPC clients, must be configured so that there are no disturbances in the
alarm and event traffic.

There are several basic rules regarding system configuration:

• A control system can send data or event notifications to one or two subscribing
OPC servers.

Units with SOE require time synchronization throughout the system, see Clock
Synchronization on page 258. The time used by units on ModuleBus is based on
the synchronized time received by the controller, but the accuracy is somewhat
lower. For information on the accuracy of SOE time stamps, see S800 I/O
documentation.

For detailed information on how to configure OPC Server for AC 800M, refer to
the AC 800M OPC Server (3BSE035983*).

Configuration of OPC AE Communication – Overview Section 2 Alarm and Event Handling

260 3BSE035980-510

• A maximum of seven OPC clients can subscribe to data or event notifications
from the same OPC server.

• A maximum of four Ethernet links (two redundant) are supported via Ethernet
cards.

• A maximum of four Point-to-Point Protocols (PPP) are supported via serial
cards.

The OPC server must be configured to recognize the control systems it is to
communicate with. The OPC client must be configured to recognize the OPC
server(s) it is to communicate with. See Figure 125.

Figure 125. Example of a control network configuration.

Information about how to configure individual OPC servers is found in the AC
800M OPC Server (3BSE035983*), and in the online help, which can be opened
from the OPC server panel.

OPC Client 1 OPC Client 2 OPC Client 3

OPC Server 1
Subscr. list:

OPC client 1

OPC Server 2
Subscr. list:

OPC client 3

Control System 1

Subscr. list:

OPC server 1

Control System 2

Subscr. list:

OPC server 1

Control System 3

Subscr. list:

OPC server 2

Control System 4

Subscr. list:

OPC server 2

Control Systems:

Control System 1
OPC client 2 Control System 2

Control System 3
Control System 4

Control Systems:

Control System 1
Control System 2

OPC server 2 OPC server 2

Panel 800
Control Systems:

Control System 1
Control System 2

Section 2 Alarm and Event Handling Buffer Queues

3BSE035980-510 261

Buffer Queues

For each connected OPC Alarm and Event client, there is an OPC Alarm and Event
Server queue. All data passing the OPC Server, such as event notifications, will also
pass this queue. Figure 126 shows aa control system buffer configuration example,
where OPC clients subscribe to alarms and events from different OPC Servers.
When a buffer is full, a system simple event is sent upwards to the 800xA System.
All buffers are created in accordance with OPC server and CPU settings. Also, see
System Diagnostics on page 286.

Figure 126. Example of buffer configuration. When a buffer is full, a system simple
event is sent upward to the 800xA system and the third party client. In Controller 1,
there is also a low level event buffer receiving events from an external device (in the
example, an INSUM device).

Buffer

Buffer
Buffer

Buffers

Buffer

Buffers Buffer

Buffer

OPC
Server1

OPC
Server2

Connectivity Server
1

Third party client

Connectivity Server

3

Controller 1

Controller 2

Printer

INSUM

Application

SOE*

Low level
event
Buffer

* Sequence of Events

Buffer Configuration Section 2 Alarm and Event Handling

262 3BSE035980-510

Buffer Configuration

Alarm and event handling requires a number of buffers. The memory for these
buffers must be allocated in the controllers. These settings have to be made in the
Settings tab for each controller CPU.

Table 18 describes the parameters in the Settings tab that need to be configured for
the buffer. See also System Diagnostics on page 286.

These settings affect the Available memory. For more information regarding
Available memory, refer to the System 800xA System Guide Technical Data and
Configuration (3BSE041434*) manual.

For controller types with limited memory, the settings for the buffer
configuration should be carefully chosen or else the memory becomes full.

Table 18. Memory planning for buffer configuration

Parameter Comment

AE Local printer event queue size Each position allocates approximately 300
bytes of memory. The total memory need
for local printers is:

300 * AE Local printer event queue size *
AE Max number of local printer event
queues

AE Max number of local printer event
queues

The maximum number of event queues in
the controller

AE Event subscription queue size Each position allocates approximately 300
bytes of memory. Total memory need for
subscribing OPC Servers are:

300 * AE Event subscription queue size *
AE Max number of event subscriptions

AE Max number of event subscriptions Number of subscribing OPC Servers

Section 2 Alarm and Event Handling Local Printers

3BSE035980-510 263

 Local Printers

A local printer can be connected to the serial port of a controller, and print out event
lists and/or alarm lists as needed.

Figure 127. Example of a controller and local printer configuration.

There can be only one local alarm/event printer connected to each controller.
Additional printers are invalid. There is limited data flow support for alarm/event
printers connected to controllers. Alarms and events that occur when the printer is
offline may not be printed when the printer goes online again. This applies to all
printers with direct connection to a controller.

Print Format

The print format for alarm conditions and events is governed by a special format
syntax.

The system supports the 8-bit ASCII character set (according to Windows). This
means that the serial and parallel printers must support the 8-bit character set.

AE Buffer size of low level event Each position allocates 72 bytes of
memory. Total memory need for
Sequence of Events are:

72 * AE Buffer size of low level event

Set this setting to 2 if Sequence of Events
is not used

AE Max no of Name Value items The maximum number of XML tagged
events

AE Max percent of log strings The percentage of Name Value items that
are strings. Used to allocate memory for
Name Value item strings.

Table 18. Memory planning for buffer configuration (Continued)

Parameter Comment

Buffer

AC 800M

Printer

Print Format Section 2 Alarm and Event Handling

264 3BSE035980-510

The abbreviations used in these format strings are given in Table 19. The character
length of each field is given within parentheses..

The fields may be in any order.

Ti, Sr, Co, Me, Cs, and Tt have user-defined dynamic lengths. If the length of a
string is defined as longer than a presentation function that is already set, the
presentation is reduced accordingly

The text for the condition state originates from project constants such as
cAlarmCondStatetext.On1, cAlarmCondStatetext.Off1, and so on.

A maximum of 132 characters can be printed for each alarm/event.

Globally Defined Print Formats

Global print formats are defined in the project constants, which are categorized
based on alarm and event conditions or transitions:

• For Alarm Conditions

– cPrintAlarmPres.AlarmCondFormat

– cPrintAlarmPres.TimeFormat

Table 19. Abbreviations in format strings

Abbreviation
Explanation of the identification

parameters

Ti Time stamp (MM-DD-HH:MI:SS)

Sr Source name (maximum 30)

Co Condition name (maximum 15)

Me Message (maximum 70)

Cs Condition state text (maximum 20)

Tt Transition type text (maximum 20)

S Severity (4)

C Class(4)

Section 2 Alarm and Event Handling Sending an Alarm to the Application

3BSE035980-510 265

– cPrintAlarmPres.FooterFormat

• For Events

– cPrintEventPres.CondEventFormat

– cPrintEventPres.SmpEventFormat

– cPrintEventPres.TimeFormat

• For Alarm Condition State Texts

– cAlarmCondStateText.Undefined

– cAlarmCondStateText.On1

– cAlarmCondStateText.Off1

– cAlarmCondStateText.Acked

– cAlarmCondStateText.Disabled

– cAlarmCondStateText.Idle

– cAlarmCondStateText.Autodisabled

• For Event Transition Texts

– cEventTransitionText.Undefined

– cEventTransitionText.On1

– cEventTransitionText.Off1

– cEventTransitionText.Ack

– cEventTransitionText.Disable

– cEventTransitionText.Enable

– cEventTransitionText.Autodisable

Sending an Alarm to the Application

Instead of sending your alarms to a local printer you can choose to only redirect the
alarm to the application. The function block PrintEvents contain two parameters;
the first parameter EventItem catch the values (Source Name, Condition name,
Time stamp, Severity etc.) and the second parameter EventItemText format these

Third Party OPC Clients Section 2 Alarm and Event Handling

266 3BSE035980-510

values as if they was send to a printer and bring it to the application as well. Hence,
these values can then be sent and processed by your local code.

However, sending an alarm only to the application requires that you do not connect
the Channel parameter (leaving the Parameter field empty).

Third Party OPC Clients

Normally, all OPC traffic is kept within the 800xA system, which integrates all
alarm and event function into a single system. However, it is still possible to connect
third party OPC clients to the OPC servers, since OPC Server for AC 800M
supports the OPC standard. In this case, it is important to know that there are
extensions and limitations in relation to the standard. For further information, refer
to the AC 800M OPC Server (3BSE035983*).

Translation – NLS Handling of Strings
Translation of alarm and event strings requires that the strings to be translated
contain control characters indicating that they should be translated, and that they
follow the National Language Support (NLS) syntax.

The operator environment supports NLS handling and this is set up for the operator
workplace. When the operator environment discovers a string that uses NLS syntax,
it will automatically translate this string to the language that has been set, provided
that there is a corresponding string in that language and that the Alarm and Event
Translator aspects has been set up correctly.

Translation supports the UNICODE standard and is triggered by two pipe characters
(||). Parameters can be used inside the string. The position of each parameter is
indicated inside brackets, {1} {2} etc. Parameter values are given at the end of the
string, separated by backslashes (\).

A string prepared for translation might look as in the below example:
T220 ||PR1_ACOF_sup_time_changed_to_{1}ms_for
motor_{2}\5\M101\

By sending an alarm to the application you can then redirect this information to
your cell phone. Every time an incoming alarm has a severity higher than 700,
you should be notified with a SMS.

Section 2 Alarm and Event Handling Alarm Examples

3BSE035980-510 267

This would result in the following string if no translation is applied:
T220 ACOF supervision time changed to 5ms for motor M101

For more information on NLS syntax, refer to online help for alarm and event
handling.

The following strings have NLS support:

• The condition name (parameter CondName). Condition names cannot be
longer than 15 characters.

• Alarm/event messages (parameter Message).

When printing alarms and events, all NLS control characters are removed.

Alarm Examples
The following subsection contains a number of examples designed to help you
understand how alarm and event handling works and how to use the types in the
Alarm and Event library.

• AlarmSimple_M example shows how function blocks (AlarmCond,
SimpleEventDetector), and control modules (AlarmCondM) from the Alarm
and Event library can be used, and how different parameters affect the
condition state. See AlarmSimple_M Example on page 268.

• The AlarmSimple_M example can also be used to study the aspects that are
generated by alarm conditions. See Alarm and Event Aspect Example
(AlarmSimple_M) on page 273.

• The alarm owner concept is illustrated by a couple of examples. See Alarm
Owner Examples on page 274.

• How to set up functions for inhibiting and disabling alarms is shown in Inhibit
Example on page 280.

It is also possible to translate the source name (parameter SrcName). However,
due to the fact that this is normally handled by other functions in the operator
interface, this is not recommended.

NLS handling must be setup in the operator workplace. For instructions on how
to enter translations and select language, refer to system and operator workplace
documentation.

AlarmSimple_M Example Section 2 Alarm and Event Handling

268 3BSE035980-510

• There are three examples of how to use simple event data. See Simple Event
Examples on page 282.

AlarmSimple_M Example

The example project AlarmSimple_M is located in the Example folder (under
Program Files in Windows) and is installed with the system. Run AlarmSimple_M
simultaneously when studying this section.

The example contains:

• A motor, named M101, with two supervised out signals: SwitchGearError and
M101OverLoad.

– SwitchGearError has severity 50 and belongs to class 15. This signal is
connected to an AlarmCond function block named SwitchGearAlarm.

– M101OverLoad has severity 100 and belongs to class 50. This signal is
connected to an SimpleEventDetector function block named
OverLoadEvent.

• Two tanks, named Tank11 and Tank12, both with supervision of the tank level.
Each tank contains two alarm conditions, High and Low, which are based on
the AlarmCondM control module type.

The example file has the suffix .afw. Browse to the Example folder inside the
Import/Export function in Plant Explorer, and import the example project to the
Control Structure. See the System 800xA Control AC 800M Getting Started
(3BSE041880*).

Section 2 Alarm and Event Handling AlarmSimple_M Example

3BSE035980-510 269

Figure 128 shows a partial view of the two tanks, Tank11 and Tank12. Figure 129
shows the Project Explorer view of the defined types and control modules.

Figure 128. Project Explorer view

This example uses control modules, but function blocks might as well be used.

Figure 129. Tank11 and Tank12 in Project Explorer.

Once you have imported the example, you can set it in test mode and study how
different parameters affect the behavior of an alarm condition and how simple
events are generated:

Project Explorer view

Tank11 : TankType

Tank12 : TankType

High : AlarmCondM

Low : AlarmCondM

High : AlarmCondM

Low : AlarmCondM

AlarmSimple_M Example Section 2 Alarm and Event Handling

270 3BSE035980-510

1. Open the AlarmSimple_M example project.

2. Select Tools > Test Mode to enter test mode.

3. Select View > Expand All to expand the project tree. The following window
will be displayed.

4. Under Applications, alarmsimple_m and Programs, double-click Program2.
The online editor is displayed. The two function blocks, one for each
supervised signal, are shown under the Function Blocks tab in Figure 130.

Figure 130. Part of Online editor for Program2.

5. Try changing the below variables (see Table 20) under the Variables tab or in
the code pane, to generate and acknowledge the alarm, or to generate the
simple event. Note that in this example, not all parameters are used. Function
blocks can be viewed in their online editor. The variable SwitchGearState
shows the current alarm state.

Section 2 Alarm and Event Handling AlarmSimple_M Example

3BSE035980-510 271

6. Double-click alarmsimple_m under Applications to display the corresponding

online editor (Figure 131). Here, you can study variables connected to control
module parameters.

Figure 131. Par of Online editor for alarmsimple_m.

Table 20. Variables used to generate alarm and events.

SwitchGearError Supervised signal. Set/reset alarm condition here.

M101OverLoad Supervised signal. Set/reset simple event here.

SwitchGearAck Acknowledge alarm here.

SwitchGearDis Disable alarm here.

SwitchGearEn Enable alarm here.

AlarmSimple_M Example Section 2 Alarm and Event Handling

272 3BSE035980-510

7. Under Applications, alarmsimple_m, and Control Modules, double-click
Tank11 or Tank12. The corresponding online editor is displayed (Figure 132).

Figure 132. Part of Online editor for Tank11.

8. Try to generate, acknowledge, or disable/enable alarm conditions by changing
the values of the parameters. Note how the condition state changes
(HighCondState and LowCondState).

When ready, exit test mode and close all windows.

Section 2 Alarm and Event Handling Alarm and Event Aspect Example (AlarmSimple_M)

3BSE035980-510 273

Alarm and Event Aspect Example (AlarmSimple_M)

The Tank objects in the AlarmSimple_M example project are aspects objects. The
alarm conditions are collected in one aspect of the tank object. The reason for this is
that the control module type AlarmCondM has a predefined attribute Alarm. All
objects based on types with the Alarm attribute set are shown in the Control Alarm
Event aspect of the parent object. The condition name and instance name of an
alarm condition module are identical, unless the CondName parameter has been
used to set another condition name.

Some Tank11 aspects are shown in Figure 133, which shows part of the Control
Structure in Plant Explorer. The Control Alarm Event aspect is created whenever
the object has the Alarm Owner attribute set to True. The AlarmList aspect has been
added. This aspect has no connection with Control Builder.

Figure 133. Aspect Object Tank11 in Plant Explorer, showing some aspects.

Condition/Instance names presented in the Control Alarm Event aspect are shown in
Figure 134.

Control Module

Control Alarm Event

AlarmEvent AlarmList

Control structure in Plant Explorer

Tank11

Tank12

Alarm Owner Examples Section 2 Alarm and Event Handling

274 3BSE035980-510

Figure 134. Example project in the Plant Explorer, with alarm conditions shown in
the Control Alarm Event aspect.

Alarm Owner Examples

The following examples show how the alarm owner concept can be used to control
which object is considered to be the source of an alarm or event.

Figure 135 shows a library called PipeLib:

• PipeLib contains two types, MyMotor_type and MyPipe_type.

• MyMotor_type contains an alarm control module (of the type AlarmCondM).

• MyPipe_type contains two motors of the type MyMotor_type, and two alarm
condition control modules (of the type AlarmCondM).

Section 2 Alarm and Event Handling Alarm Owner Examples

3BSE035980-510 275

 Figure 135. PipeLib. AO=Alarm Owner (setting in type), ao=alarm owner (setting
is inherited from type).

We use the PipeLib library and two single control modules (SM1 and SM2) to
create a structure containing three tanks of the type MyPipe_type, see Figure 136.
We set the Alarm Owner attribute to False for SM1, but to True for SM2.

PipeLib

MyMotor_type
FeedbackError (AlarmCondM)

Motor10 (MyMotor_type)
FeedbackError (AlarmCondM)

MyPipe_type

Motor20 (MyMotor_type)
FeedbackError (AlarmCondM)

HiLevelAlarm (AlarmCondM)

LowLevelAlarm (AlarmCondM)

AO

AO

Object Type Structure

ao

ao

Alarm Owner Examples Section 2 Alarm and Event Handling

276 3BSE035980-510

Figure 136. Three pipes with different alarm owner conditions.

Application

Motor10 (MyMotor_type)
FeedbackError (AlarmCondM)

Pipe100 (MyPipe_type)

Motor20 (MyMotor_type)

FeedbackError (AlarmCondM)
HiLevelAlarm (AlarmCondM)

LowLevelAlarm (AlarmCondM)

AO
Control Structure

ao

ao

ao

SM1

Motor10 (MyMotor_type)

FeedbackError (AlarmCondM)

Pipe200 (MyPipe_type)

Motor20 (MyMotor_type)

FeedbackError (AlarmCondM)
HiLevelAlarm (AlarmCondM)

LowLevelAlarm (AlarmCondM)

ao

ao

ao

SM2

Pipe300 (MyPipe_type)
ao

AO

Motor10 (MyMotor_type)

FeedbackError (AlarmCondM)

Motor20 (MyMotor_type)

FeedbackError (AlarmCondM)
HiLevelAlarm (AlarmCondM)

LowLevelAlarm (AlarmCondM)

ao

ao

Section 2 Alarm and Event Handling Alarm Owner Examples

3BSE035980-510 277

What happens if an alarm is created inside this structure? Which object will be the
alarm owner? The answer is that the alarm ownership will depend on the existence
of an unbroken chain of alarm owners:

• For Pipe100 and Pipe300, the HiLevel and LowLevel alarms will be associated
with the pipe, since there is an unbroken chain of alarm owners from the tanks,
up to the application.

• For Pipe200, the HiLevel and LowLevel alarms will be associated with the
application, since there is no unbroken chain of alarm owners leading from the
application down to the pipe.

• For Pipe100 and Pipe300, FeedbackError alarms from the motors will be
associated with the motor in question, since there is an unbroken chain of alarm
owners from each motor, up to the application.

• For Pipe200, FeedbackError alarms from the motors will be associated with the
application, since there is no unbroken chain of alarm owners leading from the
application down to the motors.

It is easy to manipulate the alarm ownership. The alarm owner chain can always
be broken by inserting a “blind object” which is not an alarm owner. For
example, inserting such an object between Pipe100 and Motor10 in the above
example would cause FeedbackError from Pipe100 to be the owner of
FeedbackError alarms from Motor10, while Motor20 would still be the owner of
FeedbackError alarms from Motor20. See Figure 137.

The situation where all alarms from the SM1 single module have the application
as alarm owner is of course not desirable. It is simply included to illustrate what
happens when the alarm owner chain is broken.

Condition State Example Section 2 Alarm and Event Handling

278 3BSE035980-510

Figure 137. Inserting a “blind object” to break the alarm owner chain.

Condition State Example

The following example shows how to use the condition state parameter (CondState)
to control a pump.

Application

Motor10 (MyMotor_type)
FeedbackError (AlarmCondM)

Pipe100 (MyPipe_type)

Motor20 (MyMotor_type)
FeedbackError (AlarmCondM)

HiLevelAlarm (AlarmCondM)

LowLevelAlarm (AlarmCondM)

AO

ao

ao

ao

BlindObject (Control Module_type)

Breaks the chain of
alarm owners for Motor10

Section 2 Alarm and Event Handling Condition State Example

3BSE035980-510 279

 Figure 138. Manipulating the condition state using I/O.

Figure 138 shows two alternative ways of stopping a pump when the temperature is
too high. The TEMP signal goes high when the temperature is too high.

In alternative A, the TEMP signal is simply used to stop the pump (using the
blocking function, note that the TEMP input is inverted). There is no way to disable
this alarm. The pump is blocked as long as TEMP is high.

Alternative B uses an AlarmCond function block, which makes it possible to wait
for an action from the operator, before unblocking the pump. The blocking signal to
the pump does not go high until CondState > 2, that is, the alarm is enabled and not
idle (for a list of possible states, see Status Information on page 236). Once it has
gone high, it does not go low until Condstate => 1, that is, the alarm is disabled or
has returned to its idle state (this means that the alarm must be acknowledged by the
operator and TEMP must go low before the pump is unblocked, as long as
acknowledgement rule 1 is used).

&

Signal

AlarmCond

CondState

2

time
>

TEMP

Blocking

B

Start

Stop

energize

A

Inhibit Example Section 2 Alarm and Event Handling

280 3BSE035980-510

Alternative B also makes it possible to disable the blocking function by simply
disabling the alarm condition.

Inhibit Example

The below example shows how to implement the inhibit function for a motor M103
(see Figure 139):

• An oil pressure sensor, P103, is used to stop the motor M103 if the oil pressure
is too low.

• A SignalInReal object is used to supervise the sensor and a MotorUni is used to
control the motor.

• The LTLLAct output from SignalInReal is connected to the PriorityCmd01 in
MotorUni. This means that the motor will be forced to stop when the oil
pressure is below the LL level. LTLLStat may be connected to a warning lamp
in a panel.

During start up of the equipment it is known that the oil pressure will be below the
limit, but it must be possible to start the motor. Therefore, the application logic will
set the EnableLL parameter in SignalInReal to False during start-up. This means
that LTLLAct will not be set, that is, the motor will not be stopped and no alarm is
sent to the alarm list as long as the motor is starting up. LTLLStat will not be set and
the lamp will not be lit.

Suppose the operator, maybe for testing, wants to run the equipment at an oil
pressure below the LL level. He could then inhibit SignalInReal from the faceplate.
The motor will still run during the test, but an alarm will be sent to the alarm list.
LTLLStat will be set and the lamp will be lit.

This example has been simplified to illustrate a principle. In reality, it would not
be desirable to have a motor start when an alarm is acknowledged. Instead, the
operator would acknowledge the alarm, and then start the motor with a separate
command.

Section 2 Alarm and Event Handling Inhibit Example

3BSE035980-510 281

Figure 139. Example of how to implement inhibition of an alarm.

P103

M103

Simple Event Examples Section 2 Alarm and Event Handling

282 3BSE035980-510

Simple Event Examples

The below examples show how to use the DataToSimpleEvent function block to
send simple event data, for example for a batch process, where data records should
be generated for the process at a number of points. There are three examples:

• Simple Data on page 282,

• Structured Data – Example 1 on page 284,

• Structured Data – Example 2 on page 284.

Simple Data

Presume that an engineer wants to record three parameters in the process:
a temperature, a pressure and a stirring rate. Consequently, the engineer names
them:

varTEMP = “TEMP”

varPRESS = “PRESS”

varSTRAT = “STRAT”

These are the names the user wants to see on the screen when the recording is done,
but these names are not the same as the variable names. Instead, the names are
coupled to the extensible parameters in the Name field:

Name[1] = varTEMP

Name[2] = varPRESS

Name[3] = varSTRAT

During execution TEMP=300.2, PRESS=23.1, and STRAT=10. Temp and press are
real values (real) and STRAT is an integer, which causes no problem since Values is
of AnyType.

Section 2 Alarm and Event Handling Simple Event Examples

3BSE035980-510 283

NestingLevel “1” is chosen and this is how it could look in Control Builder:

varTEMP = “TEMP”
tempValue := 300.2;
pressValue := 23.1;
My Log(SrcName := SrcName,

Message := Message,
Class := Class,
EventCode := thisNbrEvent
RecipePath := myLongPath,
Status => Status,
Name[1] := varTEMP,
Value[1] := tempValue,
NestingLevel[1] := 1,
Name[2] := varPRESS,
Value[2] := pressValue,
NestingLevel[2] := 1,
Name[3] := varSTRAT,
Value[3] := stratValue,
NestingLevel[3] := 1);

In OPC Server for AC 800M, this will be encoded into an XML string.

<DATA_EV_LOG>
<TEMP Value=”300.2” type=”real”/>
<PRESS Value=”23.1” type=”real”/>
<STRAT Value=”10” type=”int”/>

</DATA_EV_LOG>

Simple Event Examples Section 2 Alarm and Event Handling

284 3BSE035980-510

Structured Data – Example 1

An engineer wants to record data that belong together, that is, he or she wants to
create a structure named PHYS_DATA containing physical properties of an object,
in this case a tank.

The structure (PHYS_DATA) has no value in itself and the NestingLevel=1 when
PHYS_DATA is coupled to the first extensible parameter.

The next step is to give PHYS_DATA properties, and three components are created
in the following three extensible parameters:

height=4.1

length=3.0

depth=1.0

Since the parameters above are physical properties of PHYS_DATA, they are
assigned with NestingLevel=2. They are all floats.

In this case, the XML data in OPC Server for AC 800M will look like:

<DATA_EV_LOG>
<PHYS_DATA Value=”” type=””>
<height Value=”4.1” type=”real”/>
<depth Value=”3.0” type=”real”/>
<length Value=”1.0” type=”real”/>

</PHYS_DATA>
</DATA_EV_LOG>

Structured Data – Example 2

In this example, the engineer is in the same situation as in the previous example, but
now he or she also wants to record the recipe parameters in one of the batch objects.
The same procedure as in Example 1 is performed but a new parameter
“RecipePar” is added and NestingLevel=-1 is set. With NestingLevel=-1 it is
indicated that the recipe parameters to be fetched are placed on NestingLevel=1,
since the height, depth, and length values in the previous example were to be placed
on NestingLevel=2.

Section 2 Alarm and Event Handling Simple Event Examples

3BSE035980-510 285

The recipe parameters are fetched in the controller and are:

heat=3.4

temp=349.4

heating=true

From a Control Builder M view, this would look like:

structName := “PHYS_DATA”;
varHeight := “height”;
heightValue := 4.1;

varRecipe := “RecipePar”

LogThis(SrcName := SrcName,
Message := Message,
Severity := Severity,
Class := Class,
EventCode := thisNbrEvent,
RecipePath := myLongPath,
Status => Status,
Name[1] := structName,
Value[1] := EmptyValue,
NestingLevel[1] := 1,
Name[2] := varHeight,
Value[2] := heightValue,
NestingLevel[2] := 2,
Name[3] := varDepth,
Value[3] := depthValue,
NestingLevel[3] := 2,
Name[4] := varLength,
Value[4] := lengthValue,
NestingLevel[4] := 2,
Name[5] := varRecipe,
Value[5] := EmptyValue,
NestingLevel[5] := -1);

Alarm and Event Functions Section 2 Alarm and Event Handling

286 3BSE035980-510

The XML data will look as below. The last three parameters are fetched from a
Batch Object.

<DATA_EV_LOG>
<PHYS_DATA Value=”” type=””>
<height Value=”4.1” type=”real”/>
<depth Value=”3.0” type=”real”/>
<length Value=”1.0” type=”real”/>

</PHYS_DATA>
<RecipePar Value=”” type””/>
<heat Value=”3.4” type=”real”/>
<temp Value=”349.4” type=”real”/>
<heating Value=”true” type=”bool”/>

</DATA_EV_LOG>

Alarm and Event Functions
There are a number of functions that can be used to analyze and supervise alarm and
event handling:

• The function block SystemDiagnostics contains a part that displays alarm and
event related information. See System Diagnostics on page 286.

• For those who need detailed information about the alarm and event state
machine, there is a collection of state diagrams. See Acknowledgement Rules –
State Diagrams on page 287.

System Diagnostics

When in online mode, it is possible to view information regarding memory via the
interaction window of the function block SystemDiagnostics (located in the Basic
library).

The advanced mode of the interaction window displays system memory
information.

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

3BSE035980-510 287

There is also an Alarm and Event button which, if clicked, displays information
regarding:

• Used amount of buffer size,

• The number of:

a. alarms in the controller,

b. different condition names in the controller,

c. local printer queues,

d. subscribing OPC Servers.

• The IP-addresses of the subscribing OPC Servers.

Acknowledgement Rules – State Diagrams

The control system handles four different condition state diagrams according to five
different acknowledgement rules.

Acknowledgement Rule 1

Rule number 1 uses three different state diagrams.

Figure 140. State diagram for enabled alarm conditions with AckRule 1, part 1.

In Figure 140 above, the alarm is in its normal state when it becomes active. It is
then acknowledged, and on becoming inactive it returns to its normal state.

State 4
Active, Acked

State 2
Inactive, Acked

State 5
Active, Unacked

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

288 3BSE035980-510

Figure 141. State diagram for enabled alarm conditions with AckRule 1, part 2.

In Figure 141 above, the alarm is in its normal state when the alarm becomes active.
It then becomes inactive, and on being acknowledged returns to its normal state.

Figure 142. State diagram for enabled alarm conditions with AckRule 1, part 3.

State 3
Inactive, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

State 6
Autodisabled

State 3
Inactive, Unacked

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

3BSE035980-510 289

The third instance occurs when an alarm switches between active and inactive
without being acknowledged. In Figure 142, the alarm starts in its normal state and
becomes active. It then switches twice between active and inactive without being
acknowledged. When the alarm becomes inactive a third time it is automatically
placed in the Auto-disabled state. Whether the alarm is active or inactive in this state
is of no significance. When acknowledged the alarm returns to its normal state.

Acknowledgement Rule 2

Figure 143. State diagram for enabled alarm conditions with AckRule 2.

Alarm conditions with AckRule 2 does not require acknowledgement and therefore
follow a different state diagram. When the alarm becomes active it switches to an
active and acknowledged state. On becoming inactive it returns to its normal state.

The default setting for auto-disable is three times. This can be changed through
the CPU setting AE Limit Auto Disable. If it is set to 0, there will be no auto-
disable function. There is also a system variable called AlarmAutoDisableLimit
which affects all process alarms with acknowledgement rule number 1
(AckRule=1).

State 2
Inactive, Acked

State 4
Active, Acked

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

290 3BSE035980-510

Acknowledgement Rule 3

Figure 144. State diagram for enabled alarm conditions with AckRule 3.

Regardless of the signal being monitored, alarm conditions with AckRule 3 changes
immediately to is normal state on acknowledgement. The alarm is no longer active
and disappears from the alarm list provided by an OPC client.

Acknowledgement Rule 4

Presently, Acknowledgement Rule 4 (AckRule 4) is reserved for future use.

Acknowledgement Rule 5

Figure 145. State diagram for enabled alarm conditions with AckRule 5, part 1.

AckRule 5 is used for so called sum system alarms. System alarms associated with
hardware units are typical examples of sum system alarms. They are used to indicate
several different errors that occur at the same time.

State 2
Inactive, Acked

State 5
Active, Unacked

State 4
Active, Acked

State 2
Inactive, Acked

State 5
Active, Unacked

Section 2 Alarm and Event Handling Alarm Shelving

3BSE035980-510 291

There are two procedures for sum system alarms, that is, for AckRule 5. The first of
these is described in Figure 145 above. The sum system alarm is in its normal state
when it becomes active. Sum system alarms are used as a collection of errors and
Acknowledgement means that all errors are acknowledged. On becoming inactive it
returns to its normal state.

Figure 146. State diagram for enabled alarm conditions with AckRule 5, part 2.

The second instance is shown in Figure 146 above. The sum system alarm is in its
normal state when it becomes active. It then becomes inactive, and on being
acknowledged returns to its normal state.

Any alarm can be disabled from any state, and when re-enabled placed in the
Inactive and Acked state. If the alarm state engine receives an incorrect Enable,
Disable or Acknowledgement request, the request is ignored.

Alarm Shelving
The alarm shelving function allows operators to temporarily handle undesired
alarms. Shelving occurs for a specified time limit, and calls for operator attention
when that time has elapsed.

Alarm Shelving allows the operator to customize alarm settings temporarily in
specific situations, and avoids unintended change to the alarm system design. This
also retains operator effectiveness and helps improve overall plant reliability.

Hidden alarms and disabled alarms cannot be shelved.

For more details about Alarm Shelving refer to System 800xA Operation
(3BSE036904*) and System 800xA Configuration (3BDS011222*) manuals.

State 3
Inactive, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

Alarm Shelving Section 2 Alarm and Event Handling

292 3BSE035980-510

3BSE035980-510 293

Section 3 Communication

Introduction
This section describes how to configure communication throughout your control
network. How to design your control network, and which protocol(s) to choose for
this is described in the AC 800M Communication Protocols (3BSE035982*).

This section is split into the following parts:

• Communication Libraries on page 294 gives a brief overview of the
Communication standard libraries.

• Supported Protocols on page 309 gives a brief overview of the protocols
supported by control builder.

• Control Network on page 310 describes Control Network, which is used to
communicate between controllers, engineering stations, and external devices.

• Variable Communication on page 312 describes variable communication
briefly, and contains references to more detailed information.

• Reading/Sending Data on page 316 describes reading and sending data.

• Fieldbus Communication on page 323 describes the supported fieldbus
protocols briefly.

• HART Communication on page 326 describes HART support (tool routing).

• SIL Certified Communication on page 326 describes communication between
SIL certified applications, both between High Integrity controllers and between
applications residing in the same High Integrity controller.

Special restrictions apply to communication with SIL certified applications, see
the System 800xA Safety AC 800M High Integrity Safety Manual
(3BNP004865*).

Communication Libraries Section 3 Communication

294 3BSE035980-510

Communication Libraries
The Communication libraries contains a number of libraries, one for each protocol,
with function block types for reading and writing variables from one system to
another. Typical communication function block types are named using the protocol
name and function, for example, COMLIRead or INSUMConnect.

COMLI Communication Library

The COMLI Communication library (COMLICommLib) contains function block
types and data types for COMLI communication.

COMLI function block types follow the IEC 1131 standard, but some divergences
occur. COMLI can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. Only address-oriented COMLI is supported on serial
channels.

Foundation FIELDBUS HSE Communication Library

The Foundation FIELDBUS HSE Communication library (FFHSECommLib)
contains data types, function block types and control module types for
FOUNDATION Fieldbus HSE (FF HSE) communication. Types from the library
can be used for direct communication with FF HSE devices via CI860, or to create a
FF HSE Link system, using CI860 communication units to communicate with the
controller.

Types from the FF HSE communication library can be used for:

• Publisher/Subscriber (also called Subscriber/Provider) communication, see
Publisher/Subscriber Communication on page 321 (for FF HSE, this method
only allow communication using the data types DS65 and DS66).

All supported protocols are described in the AC 800M Communication Protocols
(3BSE035982*), which also contains general information about how to set up
communication in a control network. For detailed information on how to connect
and configure function block types and control module types, see the
corresponding online help (select the type and press F1).

Section 3 Communication Foundation FIELDBUS HSE Communication Library

3BSE035980-510 295

Function Block Types

Figure 147. BoolIOToFFOut

Figure 148. DWordIOToFFOut.

Figure 149. FFToBoolIOIn

Foundation FIELDBUS HSE Communication Library Section 3 Communication

296 3BSE035980-510

Figure 150. FFToDWordIOIn

Control Module Types

Figure 151. AnalogInFFToCC

Figure 152. AnalogOutCCToFF

Section 3 Communication Foundation FIELDBUS HSE Communication Library

3BSE035980-510 297

Examples of FOUNDATION Fieldbus HSE Connections

The below figures show examples of FOUNDATION Fieldbus HSE signal and IEC-
61131 variable connections in the Connections tab of CI860, using the DS65 and
DS66 data types.

I addition to communication I/O channels, there are 10 channels containing
extended status information from the CI860 unit, and the UnitStatus channel. See
figure below.

INSUM Communication Library Section 3 Communication

298 3BSE035980-510

INSUM Communication Library

The INSUM Communication library (INSUMCommLib) contains function block
types and data types for INSUM (Integrated System for User-optimized Motor
control) communication.

INSUM is a system for protection and control of motors and switchgear. AC 800M
controllers communicate with the INSUM system via TCP/IP, using the
communication interface CI857.

Usage and Status Information for INSUMConnect Function Block

To establish connection using INSUMConnect, set the value of the En_C parameter
to ‘true’, and specify the remote system with the CIPos and GWPos parameters. A
reference to the connection is inserted into the Id parameter so that this parameter
can be used by other function blocks communicating via the same connection (for
example, INSUMReceive and INSUMWrite function blocks).

The execution status of INSUMConnect is presented via the following parameters:

• Valid

A "bool" parameter that indicates if the connection is working (true) or not
(false)

• Error

A "bool" parameter that is true during one execution cycle, after the detection
of an error.

• Status

Section 3 Communication INSUM Communication Library

3BSE035980-510 299

A "dint" parameter that gives a value about the execution status of the function
block. A negative value means an error.

• MsgStatus

A "INSUMGWMsgStatus" structure that contains status information about the
connection. This information is received from the gateway.

• GWStatus

A "INSUMGWStatus" structure that contains status information about the
gateway. This information is collected by other means that just handles the
connection (for example, the supervision of the CI857 module).

Usage and Status Information for INSUMReceive Function Block

To activate cyclic reading of data through INSUMReceive, set the value of EN_R
parameter to ‘true’, and connect the Id parameter of INSUMReceive to the Id
parameter of an INSUMConnect function block.

The execution status of INSUMReceive is presented via the following parameters,
apart from the common paramters like Valid, Error, and Status (which are described
for INSUMConnect):

• Ndr

A "bool" parameter that is set to ‘True’ during one execution cycle, after the
new data is received through the Rd parameter or any of the status parameters.

• MsgStatus

An "INSUMDeviceMsgStatus" structure that contains status information about
the Network Variable subscription created by this INSUMReceive block. This
information is received from the gateway.

• DeviceStatus

A "dint" value that contains status information about the INSUM device from
which the INSUMReceive block receives data. This information is received
from the Field Device List in the gateway.

INSUM Communication Library Section 3 Communication

300 3BSE035980-510

Usage and Status Information for INSUMWrite Function Block

To run the write operation through INSUMWrite, set the value of the Req parameter
to ‘true’, and connect the Id parameter of INSUMWrite to the Id parameter of an
INSUMConnect function block.

The execution status of INSUMReceive is presented via the GWMsgStatus
parameter, apart from the common paramters like Error and Status (which are
described for INSUMConnect). The GWMsgStatus is a "dint" field that contains
status information about how the write operation is executed. This information is
received from the gateway.

The INSUM system consists of devices that are connected via a LonWorks network.
There are different device types for different types of equipment that can be
controlled and supervised. The device type used for motor control is called a Motor
Control Unit (MCU). The MCU is located in the motor starter module.

Network Variables in Motor Control Units (MCU)

The table shows Network Variables that are defined in the INSUM Motor Control
Unit.

Function/Object
in MCU

NV name in MCU Dir. Description

Current
Measurement

nvoCurrRep In Current information: A, % and Earth
current

TOL (Thermal
overload)

nvoCalcProcVal In Thermal capacity: % to Thermal
Overload

nvoTimeToTrip In Estimate of time until the motor will trip
due to thermal overload based on the
current load.

Section 3 Communication INSUM Communication Library

3BSE035980-510 301

Motor Control nvoTimeToReset In Remaining time until it is possible to
reset the MCU after a thermal overload
trip.

nviDesState Out Commands: Start, Stop etc

nvoCumRunT In Cumulated run hours

nvoMotorStateExt In Motor status: Running, Stopped, Alarm
etc

Contactor 1 nvoOpCount1 In Number of switch cycles for contactor 1.

Contactor 2 nvoOpCount2 In Number of switch cycles for contactor 2.

Contactor 3 nvoOpCount3 In Number of switch cycles for contactor 3.

Control Access nviCAPass Out Control access commands:
Local/Remote control of the device

nvoActualCA1 In Feedback of Control access commands

Node nvoAlarmReport In Alarmreport with Warning- and Trip
information

Voltage
Measurement

nvoVoltRep In Phase voltages and frequency

Power
Measurement

nvoPowRep In Motor power: Active power, reactive
power and power factor

General Purpose
I/O

nviGpOut1 Out General Purpose Output 1

nvoGpOut1Fb In Feedback of General Purpose Output 1

nviGpOut2 Out General Purpose Output 2

nvoGpOut2Fb In Feedback of General Purpose Output 2

nvoGpIn1 In General Purpose Input 1

nvoGpIn2 In General Purpose Input 2

Function/Object
in MCU

NV name in MCU Dir. Description

MB300 Communication Library Section 3 Communication

302 3BSE035980-510

Network Variables in Circuit Breakers

The table shows Network Variables that are defined in the INSUM Circuit Breakers.

MB300 Communication Library
The MB300 Communication library (MB300CommLib) contains function block
types for MB300 communication. The MasterBus 300 (MB 300) protocol can be
used with AC 800M and AC 400. The CI855 communication interface unit for AC
800M is used to connect to AC 400 controllers via MasterBus 300.

Dataset communication between controllers connected to MasterBus 300 is handled
by three function blocks. A dataset consists of an address part and up to 24 elements
(32-bit values). Values can be a 32-bit integer, a 16-bit integer, a real or 32 booleans.

Each CI855 unit behaves as a unique node on the MasterBus 300 network it is
connected to, and has to be configured accordingly in the Control Builder hardware
tree.

Function/Object in
Circuit Breaker

NV name in Circuit
Breaker

Dir. Description

Node nvoNodeAlarmRep In Alarm report with Warning- and Trip
information

nviNodeCommand Out Commands: Open, Close etc

nvoNodeStatusRep In Circuit Breaker Status: Closed, Open,
Alarm etc

RMS Current nvoAmpsCurrRep In Current information: A, % and Earth
current

Control Access nviCAPass Out Control access commands:
Local/Remote control of the device

nvoCAOwner In Feedback of Control access commands

Section 3 Communication MMS Communication Library

3BSE035980-510 303

MMS Communication Library
The MMS Communication library (MMSCommLib) contains MMS data types,
function block types and control module types for establishing communication with
systems using the MMS protocol. MMS (Manufacturing Message Specification) is
used as a common application layer protocol. MMS defines communication
messages transferred between units, and has been specifically designed for
industrial applications.

MMS is the base protocol in Control Network. All communication between Control
Builders/OPC Servers and controllers uses MMS, for example, project download,
firmware download and online communication. Alarm and event handling also uses
MMS.

If the MMS Communication library is used, the communication between controllers
can be defined using access variables and function block types and/or control
module types from the MMS Communication library.

For more information on MMS communication, see the AC 800M Communication
Protocols (3BSE035982*).

SIL Certified Communication (MMS)

The MMS communication library provides data types, function block types and
control module types for safe communication with other controllers or between
applications running in the same controller.

A number of the MMS communication function blocks and control modules are SIL
marked, see SIL Certified Application in the System 800xA Control AC 800M
Getting Started (3BSE041880*).

SIL certified communication is supported, see the AC 800M Communication
Protocols (3BSE035982*), and SIL Certified Communication on page 326.

It is also possible to define the communication between controllers without using
MMSCommLib, by using the IAC feature and communication variables.

For more information on safe communication, see SIL Certified Communication
on page 326.

MODBUS RTU Communication Library Section 3 Communication

304 3BSE035980-510

MODBUS RTU Communication Library

The MODBUS RTU Communication library (ModBusCommLib) contains data
types and function block types for communication via the MODBUS protocol.

MODBUS can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. MODBUS slave communication is not supported, only
master communication.

MODBUS TCP Communication Library

The MODBUS TCP communication library (ModBusTCPCommLib) contains
function blocks types supporting the MODBUS TCP protocol. The types are used
for MODBUS TCP communication through Ethernet ports on CI867.

MODBUS is a request response protocol and offers services specified by function
codes and supports both master and slave functionality.

The master functionality provides the possibility to access registers and coils in
other MODBUS TCP devices for both write and read operations. It is also possible
for masters to retrieve status/diagnostic information from the slaves.

The slave functionality provides the possibility for other devices to access Access
Variables. Both read and write operations are possible.

Modem Communication Library

The Modem Communication library (ModemCommLib) contains function block
types used for serial communication over a modem. To use a modem connection, the
modem must be configured to a serial (Com) port and the COMLI protocol must be
added and configured (for more information, see Control Builder online help).

For more information about modem communication, see also the AC 800M
Communication Protocols (3BSE035982*).

Siemens S3964 Communication Library

The Siemens S3964 Communication library (S3964CommLib) contains function
block types to establish communication with a system supporting the Siemens
3964R protocol.

Section 3 Communication SattBus Communication Library

3BSE035980-510 305

Siemens 3964R is a point-to-point protocol, which means that only one Siemens
system can be connected to each channel. The Siemens system requires an
Interpreter RK 512 unit.

SattBus Communication Library

The SattBus Communication library (SattBusCommLib) contains function block
types supporting SattBus. The types are used to communicate through Ethernet,
using the SattBus name-oriented model.

SattBus is only available for TCP/IP on Ethernet.

MTM Communication Library

The MOD5-to-MOD5 communication library, MTMCommLib, provides function
blocks to implement variable communication client in MOD5 controller to
AC 800M communication.

The MTMCommLib contains function block types.

The MOD5-to-MOD5 (MTM) protocol consists of request and response messages
that are exchanged each second.

The requests sent to other connected systems are determined by the control
application. The response sent at each second is determined by the requests received
at the previous second from other connected systems. The application programmer
accesses the protocol functions through standard function blocks.

The library uses the functions blocks MTMConnect, MTMReadCyc, MTMDefCyc,
and MTMDefERCyc to translate the request and to answer the MOD5 commands.

Serial Communication Library Section 3 Communication

306 3BSE035980-510

Serial Communication Library

The Serial Communication library (SerialCommLib) contains function block types
for communication with external devices (for example printers, terminals, scanner
pens) via serial channels with user-defined protocols. You can write an application
which controls the characters sent and checks whether the correct answer is
received, using serial channel handling function blocks.

Some of the function block types in SerialCommLib are certified SILx Restricted.
They are allowed to be used in SIL classified applications, but the communicated
data can not be used for safety critical functions without adding a safety layer as
described in SIL Certified Communication on page 326.

The following use cases help in understanding the libraries used in serial
communication.

Establishing a valid connection for serial communication

The prerequisites to establish a valid serial port connection for reading data from a
physical device or writing data to a physical device are:

• Download the 61131-3 application that contains SerialCommLib and
SerialHWLib.

• Instantiate the SerialConnect function block.

After the connection is established, the protocol is configured with the default
behavior (read and write messages ended by an EOM (End of Message)). The
default behavior is described by the parameters like En_C, Channel, Partner, Valid,
Error, Status, and ID, which are present in the function block.

If a malfunction of the connected CI853 communication module is detected, the
module can be replaced by a new one, and the connection to the serial port is
automatically reestablished.

Adding a CRC calculation to a message in serial communication

The prerequisites to add a CRC calculation to a message are:

• Establish a valid connection to the serial port.

• Instantiate the SerialSetup function block in the 61131-3 application.

Section 3 Communication Serial Communication Library

3BSE035980-510 307

After the CRC calculation is added, the settings of CRC remain intact even after a
disconnect operation.

Enabling basic listening for serial communication

The prerequisites to enable the basic listening of serial communication data from a
device are:

• Establish a valid connection to the serial port.

• Instantiate the SerialListen function block in the 61131-3 application.

The input parameters for basic listening are message length, end of message, and
number of trailing characters.

After the basic listening is enabled, the string message (which is the output seen in
the Rd parameter) is received by the input device.

Enabling basic writing of serial communication data

The prerequisites to enable the basic writing of serial communication data to a
device are:

• Establish a valid connection to the serial port.

• Instantiate the SerialWrite function block in the 61131-3 application.

After the basic writing is enabled, the output is an acknowledgment from the Sd
parameter.

Example (Buffer handling)

A SerialListen function block is set up to read a specified message length of for
example 5 characters (MsgLength = 5).

While the Enable parameter has the value True and the buffer contains characters
the Ndr parameter will be True and 5 characters at a time will be passed to the Rd
parameter.

If an incoming message "012345678901234" has been received with a size of 15
characters (3x5) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (012345678901234), Buffer = 5678901234

Second scan: Rd = 56789 (012345678901234), Buffer = 01234

Serial Communication Library Section 3 Communication

308 3BSE035980-510

Third scan: Rd= 01234 (012345678901234), Buffer is empty

There will be no fourth scan since the buffer is empty.

If the message length is not a multiple of the MsgLength parameter the buffer will
keep the remaining characters until the number of characters in the buffer again is
greater than or equal to the MsgLength parameter value.

If an incoming message "0123456789012" has been received with a size of 13
characters (2x5+3) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (0123456789012), Buffer = 56789012

Second scan: Rd = 56789 (0123456789012), Buffer = 012

There will be no third scan as the buffer does not contain at least 5 characters. The
buffer will retain these values until additional characters are added to the buffer and
it once again equals, or exceeds, 5 characters in length. At that time, the first 5
characters will be passed to the Rd parameter.

By setting the En_C parameter of the SerialConnect function block to value False
(disconnecting), the buffer of the serial channel will be cleared.

Section 3 Communication Supported Protocols

3BSE035980-510 309

Supported Protocols
Table 21 lists all supported protocols.

For more information on supported protocols, see the AC 800M Communication
Protocols (3BSE035982*).

Table 21. Protocols supported by Control Builder

Protocol Port/Interface

MMS on Ethernet CN1, CN2 (TP830)

MMS on RS-232C (PPP) COM3 (TP830), CI853

MasterBus 300 CI855

SattBus on TCP/IP CN1 (TP830)

COMLI(1)

(1) Both master and slave

COM3 (TP830), CI853

Siemens 3964R(2)

(2) Master only

COM3 (TP830), CI853

MODBUS RTU(3)

(3) Master only

COM3 (TP830), CI853

MODBUS TCP on Ethernet(1) Ch1, Ch2, CI867

IEC 61850 Ch1, CI868

FOUNDATION Fieldbus HSE CI860

PROFIBUS DP CI854

DriveBus CI858

INSUM CI857

MOD5-to-MOD5 CI872

AF 100 CI869

PROFINET IO CI871

EtherNet/IP Ch1, CI873

Control Network Section 3 Communication

310 3BSE035980-510

Control Network
Control Network is a private IP network domain especially designed for industrial
applications. This means that all communication handling will be the same,
regardless of network type or connected devices. Control Network is scalable from a
very small network with a few nodes to a large network containing a number of
network areas with hundreds of addressable nodes (there may be other restrictions
such as controller performance).
Control Network uses the MMS communication protocol on Ethernet and/or
RS-232C to link workstations to controllers. In order to support Control Network on
RS-232C links, the Point-to-Point Protocol (PPP) is used.

Control Network, as well as other protocols and fieldbuses, is configured using
Control Builder (via the Project Explorer interface). Control Network settings are
specified in the parameter lists, accessed by right-clicking CPUs, Ethernet ports
and/or PPP connections.

Network Redundancy

The Redundant Network Routing Protocol (RNRP), developed by ABB, handles
alternative paths between nodes and automatically adapts to topology changes.

For more information on redundancy and RNRP, see the System 800xA Network
Configuration (3BSE034463*).

For information on time stamps and clock synchronization within Control
Network, see the AC 800M Communication Protocols (3BSE035982*). Time
synchronization is also briefly described in Section 2, Alarm and Event
Handling.

The address of controller Ethernet ports should in some cases be set using the
IPConfig tool. See the System 800xA Control AC 800M Getting Started
(3BSE041880*).

For information on communication parameter settings, see Control Builder
online help for the object in question. Select the object in Project Explorer, then
press F1 to display the corresponding online help topic.

Section 3 Communication Statistics and Information on Communication

3BSE035980-510 311

Statistics and Information on Communication
Statistics concerning all MMS communication in a system are displayed in the
Remote System dialog. Information can be viewed at any engineering station that is
connected to the network, by selecting Tools>Maintenance>Remote System,
followed by Show Remote Systems. You can get the following MMS-related
information:

• Tools>Maintenance>Show MMS Variables shows which MMS variables are
present in the selected remote system

• Tools>Maintenance>Show MMS Connections shows all connections,
including information on the type of connection, the destination system, and a
number of statistics.

There is also a function block type System Diagnostics that is stored in the Basic
library. This function block will (among other things) show Communication
variables, IAC, and Ethernet statistics.

For more information on the contents of the Remote System dialog and the
System Diagnostics function block type, see Control Builder online help.

Variable Communication Section 3 Communication

312 3BSE035980-510

Variable Communication
Communication between applications uses access variables and communication
variables. The communication variables are not supported in SIL applications.

Access variables are defined in the access variable editor, which is displayed by
double-clicking Access Variables in the Controllers folder. The access variable
editor can also be displayed from the application editor, by double-clicking an
access variable field in the Access Variables column.

Access variables can use the MMS, COMLI, MODBUS TCP and SattBus protocols.
MMS and SattBus variables are declared in the Access Variable Editor under the
corresponding tab, COMLI and MODBUS TCP variables under the Address tab.
Paths to local variables are given using the syntax
ApplicationName.ProgramName.FunctionblockName.VariableName

Communication variables are used for cyclic communication between diagrams,
programs, and top level single control modules. These objects can exist in the same
application, the same controller, or in another controller. The name of the
communication variable must be unique on the network to resolve the IP-address
during compilation.

Communication variables behave differently depending on where the variables are
placed:

• Communication variables in the same application connected to the same
IEC 61131-3 task

– In this case, the in and out variable represents the same physical memory
location, hence no communication is setup.

• Communication variables in the same application but connected to different
IEC 61131-3 tasks or between different applications in the same controller

– In this case, fast data copying is performed at each 61131-3 task scan for
the in variable. This is controlled by the task time, hence no external
communication is setup.

• Communication variables in different applications in different controllers

In this case external communication is setup. The protocol used is IAC_MMS,
which is based on User Datagram Protocol (UDP).

Section 3 Communication StartAddr

3BSE035980-510 313

Five different interval time categories are used and these are configured on the
IAC_MMS hardware unit in Control Builder.

Communication variables are declared in the editor for programs and top level
single control modules in Control Builder, and in the Function Diagram in
Function Designer.

The variables are not updated in synchronization with IEC-61131 code. This must
be taken into account when designing variable communication.

StartAddr
All read and write function blocks have a StartAddr parameter. The StartAddr
identifies the first requested variable in the remote system.

Set a prefix and a start address via the StartAdr parameter. This sets the access
variable which identifies the memory area in the remote system from which data is
to be read or to which it is to be written.

For further information regarding memory addressing: see IEC 61131-3 Variable
Representation for IEC 61131-3 direct addressing and Access Variable Syntax for
direct addressing.

Example 1

You can read 16 bits from a subsystem, starting from the decimal address 64 (octal
address 100), as follows.

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

The communication using the declared communication variables happens only if
the IP and IAC MMS hardware types are inserted under the controller in the
hardware tree in Control Builder.

For more information about variable communication, see Variables and
Parameters on page 66.

Communication with SIL-certified applications and AC 800M High Integrity
controllers is restricted, and must use SIL certified communication function
blocks. For more information on SIL communication restrictions, see the System
800xA Safety AC 800M High Integrity Safety Manual (3BNP004865*).

StartAddr Section 3 Communication

314 3BSE035980-510

 Text in bold face indicates the most commonly used values.

Example 2

You can read a Register 45 from a subsystem, starting from the decimal address 45,
as follows:

Table 22. StartAddr parameter setting (16 bits)

Protocol IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)

MODBUS RTU/
MODBUS TCP

%IX8#100 (input)
%QX8#100 (output)
%IX10#64 (input)
%QX10#64 (output)
%IX16#40 (input)
%QX16#40 (output)

Not supported

COMLI %MX8#100
%MX10#64
%MX16#40

%X100 or X100

Siemens 3964R %MX8#100
%MX10#64
%MX16#40

%X100 or X100

If you exclude the base from the format it is assumed to be base 10. For example,
%MX64 is interpreted as %MX10#64.

Section 3 Communication StartAddr

3BSE035980-510 315

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

Text in bold face indicates the most commonly used values.

Table 23. StartAddr parameter setting (Register 45)

Protocol IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)

MODBUS RTU/
MODBUS TCP

%MW8#55
%IW8#55 (input)
%QW8#55 (output)

%MW10#45
%IW10#45 (input)
%QW10#45 (output)

%MW16#2D
%IW16#2D (input)
%QW16#2D (output)

Not supported

COMLI %MW8#55

%MW10#45

%MW16#2D

%R45 or R45

Siemens 3964R %MW8#55

%MW10#45

%MW16#2D

%R45 or R45

If you exclude the base from the format it is assumed to be base 10. For example,
%MW45 is interpreted as %MW10#45.

Reading/Sending Data Section 3 Communication

316 3BSE035980-510

Reading/Sending Data
The communication libraries contain all types you need to set up communication for
the supported protocols. For most protocols, there are three main types:

• Connect Types
Connect types are used to initiate a communication channel and establish a
connection to a remote system with a unique node address in a network.
Connect types are used to open a communication channel. The identity of the
opened channel is communicated to the Read and Write types via an identity
parameter (the exact name of this parameter varies between protocols). For
example, MMSConnect is used by MMSRead and MMSWrite.

A connection is established when an enable parameter is set to true. This means
that a communication channel can be opened whenever needed. The identity of
the system to which a connection has been established is communicated to the
corresponding read and write types via an Id parameter.

Connect types have a built-in continuous supervisory function, which detects if
communication is interrupted after connection has been established.

Due to variations between various protocols, the name of individual types and
parameters may vary slightly between the different communication libraries.
However, the communication principles are still the same.

Communication function blocks should not be called more than once per scan.
Exceptions to this are stated explicitly in the corresponding online help. Do not
call communication function blocks in SFC, in IF statements, in CASE
statements, etc.

Normally you use the VarName parameter in MMSRead function block for
reading different variables online. However, all the MMSRead4* function blocks
are a little bit different. For example, you cannot change the VarName parameter
directly in Online for these MMSRead4* function blocks. Instead, after changing
the VarName parameter (for reading another variable), you must also set the
parameter EN_C in the MMSConnect function block to false (one scan) and then
back to true again before the new variable can be read.

Section 3 Communication Reading/Sending Data

3BSE035980-510 317

g

• Read Types
Read types read data (often an access variable) from a target system. The
source system (the communication channel) is indicated by the Id parameter,
which is passed from the corresponding connect function block or control
module.

• Write Types
Write types write data to a target system. The target system (the
communication channel) is indicated by the Id parameter, which is passed from
the corresponding connect function block or control module.

For some protocols, there are also additional types, such as types for cyclic reading
of data, data conversion, download of measuring ranges, etc.

The MMSWrite is used for communication between applications.
Communication between applications residing in different controllers is called
external, and is asynchronous. Communication between applications within the
same controller is called internal. The internal copy is synchronous or
asynchronous based on the amount of data copied.
The basic algorithm is based on how much data that can be copied synchronously
without disturbing the execution of 1131 tasks, that is the task latency must be
less than 2 ms. The total amount of data to be copied is about 800 bytes of
variable data. If the total of 800 bytes is exceeded the internal copy may affect the
task latency negatively and therefore the internal copy is executed
asynchronously.

Connection Methods Section 3 Communication

318 3BSE035980-510

Connection Methods

Function blocks from the communication libraries are used to read and write
variables from a remote system:

Figure 153. Function blocks in the communication libraries.

In the application program, a common Connect function block is used in a client
(master) to establish connection to a server (slave). The function blocks Read and
Write can then be used repeatedly. Refer to online help for a description of the
parameters concerned. Variables to be accessed must be declared in the server
Access variable editor.

To display the editor, right-click the Access Variables object and select Editor.

Example 1:

Controller 2 (client) connects to Controller 1 (server) by means of a Connect
function block. Refer to online help for a description of how Partner and Channel
are specified for different communication protocols. Read and Write function blocks
with the same identity (ID) as the Connect block can then be used repeatedly.

As an example, Controller 2 has a Read function block in its application program
that sends a Read request to Controller 1 for an access variable named %R100. This
name must exist in the access variable list in Controller 1, which then reads the
value of Program1.A (%R100) and sends it to Controller 2. The value is then written
to the application variable named in Rd.

Section 3 Communication Connection Methods

3BSE035980-510 319

In the same way, the value of a variable in the Controller 1 access variable list can be
changed by means of a Write function block in Controller 2.

Figure 154. Variable read by controller 2, from controller 1.

The function blocks ReadCyc and WriteCyc perform in a similar manner, but are
used to cyclically read or write to/from a server system with the interval specified by
the SupTime parameter.

Example 2:

Write and read requests are triggered by the Req parameter being set to True after
having been False for at least one scan. This problem can be avoided if two function
blocks are executed, one after the other. In this way, a request is always outstanding.
Additional requests triggered by the Req parameter will be ignored by the function
block, until the Done (or Ndr) parameter has become True.

Controller 1 (server) Controller 2 (client)

Partner

ID

Access
variable

list

%R100

Program1.A

%R100

IDID

Connect

Read Write
StartAddr

StartAddr
Rd

Sd

Channel

Communication Concepts Section 3 Communication

320 3BSE035980-510

Figure 155. Resetting the Req parameter using two function blocks.

Communication Concepts

When setting up communication with external devices and other controllers, it is
also important to be familiar with the following:

• The client/server concept (master/slave), see Client/Server Communication on
page 320,

• The publisher/subscriber (also called subscriber/provider) concept, see
Publisher/Subscriber Communication on page 321.

• There is also the choice between cyclic and asynchronous communication, see
Cyclic vs. Asynchronous Communication on page 322.

Client/Server Communication

The main principle of client/server communication is the following:

• The client is the active party, which requests (reads) data from the server.

• The server is a passive provider of information that simply answers to requests
from the clients.

Client/server communication could also be described as master/slave
communication. In that case, the client is the master, and the server is the slave.

Req Done

Done

Write

Write

Req•

StartAddr

StartAddr

Section 3 Communication Communication Concepts

3BSE035980-510 321

Figure 156 shows the principle.

Figure 156. Client/server principle. The client reads data from the server. The
server sends data to the client when requested.

Publisher/Subscriber Communication

The main principle of publisher/subscriber communication is the following:

• The publisher publishes (the publisher is also known as the provider) data
cyclically, in a pre-determined location.

• The subscriber is a consumer of information, which subscribes to published
data.

Figure 157 shows the publisher/subscriber principle.

Read function
block (client)

Client application

Function block
providing data
(server)

Server application

Request for data (cyclic or triggered)

Data (sent on request)

(Communication Channel)

Communication Concepts Section 3 Communication

322 3BSE035980-510

Figure 157. Publisher/subscriber principle. The publisher publishes data to a pre-
defined location, which is read by the subscriber.

Cyclic vs. Asynchronous Communication

An important decision when setting up communication is whether communication
should be cyclic, that is, take place regularly, with a certain time interval, or
asynchronous, that is, take place when triggered by a certain event or condition.

Which method to use depends on things such as:

• How much does the execution of communication code affect performance?

• How often can a value be expected to change?

Read function
block (subscriber)

Subscriber application

Function block
providing data
(server)

Publisher application

Request for data (cyclic or triggered)

Data (written cyclically)

(Communication Channel)Data storage

(Communication Channel)

Data (sent on request)

Section 3 Communication Fieldbus Communication

3BSE035980-510 323

• How important is it that a change in a certain value is communicated
immediately?

Fieldbus Communication
Fieldbuses offer communication on a dedicated bus, using a special fieldbus
communication protocol. Fieldbus devices often contain distributed code, which
means that they need to be set up not only from Control Builder, but also using a
fieldbus-specific configuration tool.

PROFIBUS DP

PROFIBUS (PROcess FIeld BUS) is a fieldbus standard, especially designed for
communication between systems and process objects. This protocol is open and
vendor independent. It is based on the standard EN 50 170. With PROFIBUS,
devices from different manufacturers can communicate without special interface
adjustments. PROFIBUS can be used for both high speed, time critical transmission
and extensive, complex communication tasks.

PROFIBUS has defined the three types of protocol: PROFIBUS FMS, DP and PA.
With AC 800M access to PROFIBUS DP and PA is supported.

PROFIBUS DP is connected to the controller via the CI854/CI854A communication
interface unit. The connection to PROFIBUS PA can be established by use of the
Linking Device LD 800P that links between PROFIBUS DP and PROFIBUS PA.

For more information about communication, performance and design, see System
800xA Control AC 800M Planning (3BSE043732*).

For information on how to make part of your code execute with a different
interval, see Control the Execution of Individual Objects on page 88.

For detailed information on how to configure the fieldbuses, refer to the
corresponding, fieldbus-specific documentation. For detailed information on how
to configure communication with fieldbus devices, see the corresponding Control
Builder online help.

Fieldbus communication requires separate licenses.

Fieldbus Communication Section 3 Communication

324 3BSE035980-510

The original version of PROFIBUS DP, designated PROFIBUS DP-V0, has been
expanded to include version DP-V1 and DP-V2. With CI854/CI854A support for
DP-V1 and the acyclic services (toolrouting) is given. In addition CI854/CI854A
supports line and slave redundancy and CI854A supports master redundancy as
well.

The PROFIBUS DP-V0 configuration and parameter data for slave devices are
engineered in Control Builder and downloaded via CI854/CI854A.

PROFIBUS slave types are usually supplied with a *.gsd file. This file describes the
properties of the slave type. The *.gsd file must be converted with the Device Import
Wizard, in order to be used in the project.

PROFINET IO

PROFINET is a manufacturer-independent Fieldbus standard for applications in
manufacturing and process automation. PROFINET technology is described in fixed
terms in IEC 61158 and IEC 61784 as an international standard.

PROFINET IO uses Ethernet communication to integrate simple distributed I/O and
time-critical applications.

PROFINET IO describes a device model oriented to the PROFIBUS framework,
which consists of places of insertion (slots) and groups of I/O channels (subslots).
The technical characteristics of the field devices are described by the General
Station Description (GSD) on an XML basis. The PROFINET IO engineering is
performed in a way familiar to PROFIBUS. The distributed field devices are
assigned to the controllers during configuration.

The PROFINET IO is interfaced to the IEC 61131 controller AC 800M, using the
PROFINET IO module CI871.

PROFINET IO is based on IEEE 802.3. PROFINET IO uses Ethernet, TCP, UDP,
and IP as the basis for communication. It is designed to work with other IP-based
protocols on the same network.

The transmission of time-critical process data within the production facility, occurs
in the Real-Time (RT) channel.

Section 3 Communication Fieldbus Communication

3BSE035980-510 325

DriveBus

The DriveBus protocol is used to communicate with ABB Drives and ABB
Special I/O units. DriveBus is connected to the controller via a CI858
communication interface unit.

Advant Fieldbus 100

Advant Fieldbus 100 (AF 100) is a high performance fieldbus, which is used for:
• Communication between Advant Controllers.
• Communication between Advant Controllers and S800 I/O Stations, AC 800M

controllers, and so on.

Advant Fieldbus 100 supports three transmission media:
• Twisted pair (Twp)
• Coaxial (RG59 and RG11)
• Optical media.

An AF 100 bus can be built up with all the three media, where a part of one kind of
media is a specific segment.

The CI869 communication interface that is attached to the AC 800M controller
provides connectivity to other AC 800M, AC 160 or connectivity server over
AF 100. An AC 800M controller with the communication interface CI869 behaves
as an AF 100 station, receiving data from other AF 100 stations/devices. The CI869
has integrated Twisted Pair modems.

The Advant Fieldbus 100 supports two different kinds of communication:
• Process data—Dynamic data used to monitor and control a process
• Message transfer—Used for parameters, program loading, and diagnostic

purposes.

HART Communication Section 3 Communication

326 3BSE035980-510

HART Communication

HART (Highway Addressable Remote Transducer) is an open system
communication protocol that supports remote configuration and supervision of
devices with HART support, via ModuleBus or via PROFIBUS DP-V1 (tool
routing).

SIL Certified Communication

For SIL certified exchange of data between controllers, the following rules apply:

1. Non-SIL data must never be available to a SIL application without notification.
This means, for instance, that transferred data must be marked with the correct
SIL-level (the application SIL level or lower).

2. During the transfer of data, it must be guaranteed that all errors originating
from software, hardware, or other sources, are detected.

The protocols used by the supported fieldbuses are described in detail in the AC
800M Communication Protocols (3BSE035982*).

For more information on HART support, see the AC 800M Communication
Protocols (3BSE035982*), and the Control Builder online help. For information
on how to configure tool routing, see online help for Control Builder and online
help for the Tool Routing Service, which is part of the 800xA system installation.

SIL certified communication is only possible within and between High Integrity
controllers, and only between SIL certified applications.

SIL3 variables that are connected to IO, but not accessed by .Value in the
IEC 61131 code (that is, unaccessed SIL3 variables) are not copied by a
background task. They are copied only by the same task as the other connected
and accessed variables.
But, unaccessed Non-SIL and SIL1-2 variables are copied by a background task.

Data may be marked with the SIL level of the application, or lower. Data with a
lower SIL level than the application SIL level may also be transferred

Section 3 Communication SIL Certified Communication

3BSE035980-510 327

If data is transferred over non-SIL media (this is the case when transferring
data between controllers), applications in both ends must add diagnostics to the
data transfer:

a. Verification of contents (read sufficient CRC protection).

b. Verification of sender and receiver address/application.

c. Verification of sequence.

d. Verification of timing (detection of “old” data).

MMS Communication library contains control modules which fulfills all the
requirements for transferring data over non-SIL media.

For more information on individual MMS SIL types, see online help or select the
type in Project Explorer and press F1.

SIL Communication Section 3 Communication

328 3BSE035980-510

SIL Communication

A SIL communication link for transferring variable values between controllers
requires basically two things. The first application (in controller A) must have some
sort of a server or encoder module which can store the variable values in a secure
way, before transfer. This can be done by having the control module define a
structured access variable that protects the integrity of these variable values.
However to do so, the access variable must contain not only the IEC61131 variables,
but also necessary security measures for data transmission.

Secondly, the requesting application (in controller B) must have a client or decoder
module which can send cyclically requests to the first application. This control
module must decode the access variable and verify the contents against the safety
measures defined. The control module will then after security checks, hand over the
receiving variable values to the requested client’s application code.

The MMS communication library contains six SIL 2 control modules and two SIL 3
control modules for data transfer between applications running in different
controllers. These control modules may also be used for communication between
applications running in the same controller.

SIL Communication with Function Blocks

The MMS communication library contains a number of SIL2 function blocks for
data transfer between applications running in the same SIL2 certified environment.
These functions may be used for communication of data between applications
running in different controllers, only if both the applications are non-SIL. If one of
the applications is SIL then the communication is restricted to be within one
controller. However in this case the SIL of the transferred data will be degraded to
SIL 0 (i.e. non-SIL).

The MMSReadHI and MMSDefHI control modules in MMSCommLib allows the
user to set-up SIL3 classified peer-to-peer communication between controllers as
well as between applications within the same controller. These Control Modules can
be used to communicate both within the application, and between non-SIL, SIL1-2
and SIL3 applications.

For more information on how to use the control modules, see Control Builder
online help.

Section 3 Communication How to Choose Function Block/Control Modules in MMSCommLib

3BSE035980-510 329

MMS SIL communication function blocks have a parameter for input and output of
the SIL level.

How to Choose Function Block/Control Modules in MMSCommLib

MMSCommLib contains of function block types and control modules for different
communication purposes. Different communication types have to be used
dependent on controller type and if the communication is between non-SIL
applications, SIL2 applications or between a non-SIL and SIL 2 application. See
Figure 158 how to choose correct function blocks/control modules.

The function block MMSRead4xxx can be used for communication of data
between applications running in different controllers, only if both the applications
are non-SIL. If one of the applications is SIL, then the communication is
restricted to be within one controller.

When using MMS SIL 2 communication function blocks, the SIL level is always
degraded to SIL 0 for all data, both between controllers and between applications
running in the same controller. For safe data transfer between controllers, always
use the MMS SIL control modules.

How to Choose Function Block/Control Modules in MMSCommLib Section 3 Communication

330 3BSE035980-510

Figure 158. How to choose MMSCommLib function blocks/control modules.

Section 3 Communication Parameter Errors (ParError)

3BSE035980-510 331

Parameter Errors (ParError)

If a parameter that is connected to a SIL certified function block or control module
goes outside its range, this is indicated by the output parameter ParError being set
to True. The ParError parameter is connected to interaction windows and
faceplates, where a parameter error is indicated by a red triangle.

ParError also checks the values of components of structured variables, such as
RealIO.

You can read more about ParError in the Extended Control Software manual.

Parameter Errors (ParError) Section 3 Communication

332 3BSE035980-510

3BSE035980-510 333

Section 4 Online Functions

Introduction
When a controller project is in online mode and test mode, it is possible to inspect
the code while running it, and interact with the code. Furthermore, you can issue
operations to the controller. There are also functions to help the user to find online
errors and to document the control project.

The following functions are available in online mode and test mode:

• Online editors, see Online Editors on page 334.

• Dynamic display of I/O channels and forcing, see Dynamic Display of I/O
Channels and Forcing on page 336.

• Scaling analog signals, see Scaling Analog Signals on page 339.

• Unit status and channel status, see Supervising Unit Status on page 339.

• Hardware and task status indications, see Status Indications on page 344.

• Tasks, see Tasks on page 346.

• Interaction windows, see Interaction Windows on page 346.

• Status and error messages, see Status and Error Messages on page 349.

• Reports and analysis, see Search and Navigation in Online and Test Mode on
page 350.

• Project documentation, see Project Documentation on page 354.

Which online changes and interactions that can be performed depends on the user
permission. All user configuration is made from the Plant Explorer workplace.
See Security on page 179 for more information.

Online Editors Section 4 Online Functions

334 3BSE035980-510

Online Editors
From the Project Explorer in online mode, you have access to editors similar to
those in offline mode, such as the application editor, the program editor, the
hardware configuration editor and the function block editor. By using the online
editors the code currently running in the controller(s) can be inspected. Variable
values and parameters can be changed.

You can open one or several new online editor windows from the Project Explorer
by double-clicking on the Program Organization Unit (POU, see Application Types
and Instances on page 39) you want to view. You can also select the POU, click the
right mouse button and select View.

Figure 159. Part of Program editor in online mode

In online mode there are fewer menu entries in the menu bar than in the offline
editor. Edit and Insert are not available in online mode. The options available in
online menus are also somewhat different from those in offline mode. Columns in
the editor that are dimmed are not accessible.

An online editor window consists of a title row, menu bar, tool bar, and a status bar
at the bottom. The window is split into three panes, as follows.

Section 4 Online Functions Online Editors

3BSE035980-510 335

• In the upper declaration pane the variables and parameters of the POU are
displayed in forms that resemble Excel data sheets. Each sheet, with its tab, has
a unique appearance with respect to the number of columns and their names.
Select a tab to see its sheet, available columns and their names. See also Online
Change of Variable Values in the online help.

• The middle code pane displays the various code blocks in the POU, in any of
the 1131 programming languages.

• The lower description pane displays descriptions of the types and POUs.

It is possible for the user to enter editor settings in the Setup Editor dialog, using the
Tools > Setup menu.

From the online editor window you can activate the POU editor window using the
Tools > Edit Type menu or the Edit Type button .

You can activate an online window for the POU parent via the Tools > View Parent
menu or the View Parent button .

To access filter select a column in the grid and select Tools > Filter or Filter button
.

From the 'Filter' dialog one can decide which rows to display or hide by selecting or
deselecting criteria items. The Criteria items can also be text filtered. An icon in the
column header informs shows an active filter on that column.

Alphabetical sorting of the column is possible by selecting Tools > Sort A to Z or
Sort Z to A, or click the Sort A to Z /Sort Z to A button in toolbar .

If column is not selected, the name column will be sorted. In offline Editor, when
sorting the parameter column, a warning is presented which informs that the
parameter order might be changed.

See the Control Builder online help for more information about the Setup Editor
dialog, Edit Type and View Parent.

Dynamic Display of I/O Channels and Forcing Section 4 Online Functions

336 3BSE035980-510

Dynamic Display of I/O Channels and Forcing
In test mode and online mode, you can use the hardware configuration editor for
dynamic online display of I/O channel values and forcing.

Forcing of I/O channels is performed in the hardware configuration editor under the
Status tab, or in the POU editor in online mode. All I/O channels that can be
connected to a variable in an application can also be forced in online mode, except
for channels such as UnitStatus on each I/O unit and AllUnitStatus on the current
controller (see Supervising Unit Status on page 339).

Normally, only channels with variable connections to application programs can be
forced. However, if no variable is connected, you have to change the parameter
Copy unconnected channels under the Settings tab for the current controller to
obtain a status update. The I/O channels you can copy are None, Inputs or Outputs,
or both the Inputs and Outputs.

When selected, the unconnected I/O channels are copied once a second so their
status is available in the Status tab like normally connected I/O channels.

Application programs requiring information about forcing and forced values, can
use the I/O data types when connecting variables to I/O channels. In this way, you
can use the Forced component (which indicates if the I/O channel is forced) and the
IOValue component (contains the value of the I/O channel) of the I/O data type.

The user must have Security Force I/O permission for the application, where the
variable that is connected to the I/O is declared, to be able to force the I/O
channel. For more information how to set permission, see the System 800xA
Administration and Security (3BSE037410*).

If the application is SIL certified and runs in a High Integrity controller, I/O
channels cannot be forced from Control Builder.

Copy unconnected channels is for test purposes only and should never be selected
for a controller in a running plant, since it will increase CPU load.

To be able to force unconnected I/O channels, the user must have Security Force
I/O permission for the hardware unit with the unconnected I/O channels. For
more information how to set permission, see the System 800xA Administration
and Security (3BSE037410*).

Section 4 Online Functions Forcing I/O Channels in SIL Applications

3BSE035980-510 337

When a channel is forced, all copying between the I/O value and the application
value stops. The forced value is different for inputs and outputs. For inputs, forcing
changes the variable value sent to the application. For outputs, forcing changes the
physical I/O channel value. In this way, the application can see both the Variable
(application) value and the Channel (I/O) value.

Forcing can be activated or deactivated using a check box in the Forced column for
the channel. The background of the forced Variable Value changes to yellow to
indicate forcing. To change the channel value, type in a new value for the Variable
Value. This value overrides the values for the channel.

Figure 160. I/O channel with the variable Photo_Cell forced to true.

Forcing I/O Channels in SIL Applications

In SIL applications, forcing I/O channels are restricted. For each SIL application,
you can define the maximum number of I/O channels that can be set in forced state.
This setting decides the maximum number of connected I/O channels that can be
forced at the same time.

More information is given in Control Builder the online help. Search the Index
for “I/O”.

Forcing I/O Channels in SIL Applications Section 4 Online Functions

338 3BSE035980-510

To set maximum number of forced I/O channels

1. In Project Explorer, right-click the SIL application and select Properties >
Force. A ‘Force Properties’ dialog open.

Figure 161. The ‘Force Properties’ dialog for setting the maximum number of
forced I/O channels in a SIL application.

2. Set the maximum number of forced I/O channels and click OK.

The new value for the Maximum number of forces must not be less than the
actual number of forced I/O channels in the running application. If the new value
is less, a warning appears during download, and continuing the download leads to
a controller shutdown.

Besides the Access Enable digital input signal, there are also two other signals
that can be connected to the SM810 module. One digital output signal for
indicating that I/O channels are forced (normally a lamp) and one digital output
signal for resetting all forced I/O channels (normally via a switch).

It is possible to release all forced I/O channels from the code by using the
function block type ForcedSignals or the control module type ForcedSignalsM.

For more information on how to configure the ForcedSignals(M) types, see
corresponding online help.

The ForcedSignals types are used to reset forced I/O signals in both SIL1-2 and
SIL3 applications. Whereas, the ForcedSignalsM control module is used to reset
forced I/O signals in SIL1-2 applications only. If a SIL3 application exists, the
ForcedSignals function block should be executed from SIL3 application to reset
both SIL1-2 and SIL3 forces.

Section 4 Online Functions Scaling Analog Signals

3BSE035980-510 339

Scaling Analog Signals
It is possible to temporarily change the scaling values for analog signals in online
mode.

Supervising Unit Status
Each hardware unit has a UnitStatus channel that describes the current error status
of the unit. Both dynamic and static warnings and errors are collected in this
channel.

The data type, for the variable connected to the UnitStatus channel of the hardware
unit, can be either of dint data type or of HwStatus data type. If a variable of dint
data type is connected to the UnitStatus channel, the possible unit status values are:
0 (OK), 1 (Error), or 2 (Warning).

The HwStatus data type contains the same information as shown under the
Unit Status tab of the hardware configuration editor, that is, unit status information
and status message acknowledgement functions. These components will be
available by using the HwStatus data type as a variable connection to the UnitStatus
channel.

In the example below, see Figure 162, the DO814UnitStatus variable of dint data
type is connected to UnitStatus of DO814 (unit status is 0=OK!). The
DO810UnitStatus variable of HWStatus type is connected to UnitStatus of DI810
(HWState is 1, that is, unit status is Error).

If scaling values for an analog signal are changed in online mode, the change will
be lost if you enter offline mode, make configuration changes and then perform a
download.

Find Out What is Wrong by Using HWStatus Section 4 Online Functions

340 3BSE035980-510

Figure 162. The UnitStatus connection gives access to the status of individual
hardware units.

Find Out What is Wrong by Using HWStatus

You cannot find out exactly what is wrong by using the simple data type dint, only
that something is wrong. Table 9 on page 100 shows that, in addition to using the
dint type, you can also use the data type HWStatus. By using the structured data type
HWStatus, instead of the simple data type dint, you may also find out what is wrong
with the unit.

Among other things, the structured data type HWStatus contains the component
ErrorsAndWarnings, which contains a bit pattern, representing the different errors
that may occur in the unit. Each bit in the word represents a unique error.

Figure 163 illustrate how the component ErrorsAndWarnings in HWStatus can be
accessed.

For example, the word takes the value of 16#80020000 (hexadecimal notation), if
the CPU battery suffers from low voltage.

It is not possible to connect the UnitStatus channel on the hardware unit to a
variable in a SIL1-2 or SIL3 application and obtain the status. However, the
UnitStatus channel can be used in a HI controller configuration, but connect the
channel only to a variable in a Non-SIL application.

For more information on error codes, see Control Builder online help.

Section 4 Online Functions AllUnitStatus

3BSE035980-510 341

By combining AC800MStatus.ErrorsAndWarnings with the bit pattern 800200001
and using the AND operator, it is possible to trigger an error (or warning) from the
hardware unit, together with the specific error code for “low CPU battery voltage”.
The result is assigned to the boolean variable BatteryLow. The ST code for this
condition is as follows:
(*Set the Boolean variable "BatteryLow" when AC 800M has low
battery*)
BatteryLow := (AC800MStatus.ErrorsAndWarnings AND
16#80020000) <>0;

In online mode it will be displayed as below in Figure 163.
I

Figure 163. The variable AC800MStatus (of HWStatus type) has been used to
access the component ErrorsAndWarnings.

AllUnitStatus

Each controller hardware object has one channel called AllUnitStatus, containing
the summarized status of all hardware units added to the controller. The most
serious unit status (dint) is forwarded up to the controller object, that is, the unit
status of the controller is error if one unit has an error, and one has a warning.

AllUnitStatus can be used in the same way as UnitStatus, that is, the variable
connected to AllUnitStatus can be of dint data type or of HWStatus data type.

Figure 164. The AllUnitStatus connection gives access to the status of all units for a
controller.

1. Typed in ST editor in hexadecimal notation as 16#80020000.

Binary Channels Section 4 Online Functions

342 3BSE035980-510

The variable connected to AllUnitStatus can be used in the application program, to
write different conditions depending on status value (see UnitStatus Example
Figure 163).

Binary Channels

Access All Inputs and All Outputs

Some units return a binary value, as a number of inputs divided on 8 or 16 channels.
Typically, this applies to different types of sensors. These values can be collected
via an overall channel, namely “All input”’. This means that, instead of reading all
variable values from each channel, one variable can be connected to the channel
“All inputs” (IW0, see Table 9 on page 100), provided the variable is of dword data
type. This technique can also be used for digital outputs. However, for digital output
units, you must choose either to connect all individual channels or connect one
variable to the channel “All outputs” (QW0, see Table 9 on page 100). You cannot
use both methods simultaneously.

Check Channel Status

There are two ways to check the channel status for an I/O unit. You can either use
the structured data type BoolIO, that is, read the component Status via BoolIO, or
you can connect a variable of type dword to the “Channel status” (IW0, see Table 9
on page 100).

The component Status in BoolIO only gives you the status for that connected
channel, whereas a variable of type dword that is connected to channel “Channel
status” will read the status for all channels, given with bit 0 equivalent to channel 1,
bit 1 equivalent to channel 2, etc. However, a variable of type BoolIO that is
connected to each channel contains more information, since the component Status is
a 32 bit dword, whereas AllChannel is a 16 bit dword. Connecting each channel to
BoolIO gives more information, but also more variables to connect.

ISP and OSP values are not set for variables connected to All Inputs/All Outputs!

ISP/OSP (Input/Output Set as Predetermined) will not work when using the
channel "All Inputs" or "All Outputs". I/O values will be lost in an error situation.

Section 4 Online Functions Supervising Communication Variable Status

3BSE035980-510 343

Connecting a variable to AllChannel will give you less information, but only one
variable to connect.

Supervising Communication Variable Status
The status of a communication variable can be accessed using the :status notation.

For example:
dword1:=CVMain:status;

In this example, the :status notation is used to obtain the status of the
communication variable, CVMain. The status appears as dword.

Table 24 describes the different status values for communication variables.

Do not try to connect the component Status (inside BoolIO) directly to the
channel. You must connect BoolIO. For information about connecting structured
data types to IO channels, see I/O Data Types on page 99 and the variable
example given in Figure 30 on page 99.

Table 24. Status values for communication variables

Value Description

16#C0 The status is OK.

16#10000 The values are not communicated in time, but no timeout
has occurred. This status appears only for communication
between controllers, and not for communication within the
same controller.

16#20000 The values are not communicated in time, and a timeout
has occurred. This status appears only for the
communication between controllers, and not for the
communication within the same controller.

16#30000 The IP address has not been resolved for the
communication variable.

16#40000 The type does not match the type of the corresponding
out variable. This status appears only for communication
within the same controller.

Status Indications Section 4 Online Functions

344 3BSE035980-510

Status Indications

In the Project Explorer, dynamic status indications for the hardware units and tasks
are displayed as shown below.

Figure 165. Status indications of hardware and tasks in Project Explorer.

• OK
No errors or warnings.

16#50000 The corresponding out variable is declared, but not
downloaded yet.

16#60000 The protocol handler is not configured.

16#70000 The task is halted (or task is aborted due to overrun). This
results in ISP handling on the client side.

Status indications are not displayed in Test mode.

Table 24. Status values for communication variables (Continued)

Value Description

Error

Warning

OK

Section 4 Online Functions Acknowledge Errors and Warnings

3BSE035980-510 345

• Error!
Hardware objects are marked with a red triangle icon if an error is detected in
the hardware, for example, if a hardware unit is missing.
The task is marked with a red triangle when a serious error has occurred, for
example, when a task is aborted as a consequence of too long execution time.
The error is described in the Remark field of the Task Properties dialog. See
Task Abortion on page 168 for more information.

• Warning!
Hardware objects are marked with a warning icon if there is an overflow or
underflow at an analog channel, if the forcing of a channel is detected, or if an
unacknowledged fault disappears. The task icon is marked with a warning icon
if the task is not used (“Not in use”), in the case of overload, or when the task is
in debug mode and the task is halted, that is, non-cyclic mode (see Debug
Mode in the System 800xA Control AC 800M Getting Started (3BSE041880*).
The warning is described in the Remark field of the Task Properties dialog. See
Task Control on page 150 for more information about tasks.

An error has higher priority than a warning, for example, an error is indicated if an
error occurs at the same time as channel forcing is detected.

A collapsed object folder shows status indications for all underlying objects, that is,
status indication is always forwarded up to the controller icon. It is not until an
object folder is fully expanded that you can be sure that status indications are shown
next to the unit they actually belong to. If, for example, a single task has a warning,
both its task folder icon and its controller icon are marked with a warning. Status
indications are displayed up to the controller level only.

Acknowledge Errors and Warnings

All hardware unit errors and warnings have to be acknowledged by the user. Use the
status tab in the hardware editor to obtain information about the error or the
warning.

Warnings concerning tasks do not have to be acknowledged.

There is a possibility to acknowledge errors and warnings for all hardware
subobjects by right click the main hardware object (Hardware AC 800M in
Figure 165) and select Clear Latched Unit Status.

Tasks Section 4 Online Functions

346 3BSE035980-510

See Control Builder online help for more information about dynamic online display
of I/O channel values and forcing and how to acknowledge errors and warnings.

Tasks

Use the Task Overview dialog to display task information in online mode.

For each task, you can make changes to the Requested Interval Time, Offset,
Priority and Latency using the Task Properties dialog. The maximum encountered
intervals and the maximum encountered execution time can be reset.

Debug mode can be used, but for debugging only. Functions based on the real-time
clock (PID controllers, timers etc.) do not work properly when debug mode is used
(also, see Debug Mode in the System 800xA Control AC 800M Getting Started
(3BSE041880*).

You can also select Always update output signals last in next execution, or select
Always update output signal first in next execution.

Interaction Windows
An interaction window contains the graphics of a control module and is only
accessible in online mode. An interaction window may contain both supervisory
features, such as signal status, and interactive features, such as push buttons. The
window can be accessed from:

• A control module in the Project Explorer.

Changes to SIL applications are not allowed in online mode.

The SetPriority function does not work in a High Integrity controller.

It is not possible to change the task priority to/from 0 (Time-Critical priority) in
online mode.

If debug mode is used in a running plant, task execution will be stopped.

For further basic information about tasks, see Task Control on page 150. For
Latency information, see Latency Supervision on page 166. See also Control
Builder online help for how to carry out task changes.

Section 4 Online Functions Interaction Windows

3BSE035980-510 347

• A function block in the Project Explorer. This is, however, only available under
the condition that at least one control module exists and is connected to the
selected function block type. By default, the first control module in the list will
appear in the interaction window (this can be changed in offline-mode by right-
clicking on the type name in the Project Explorer and selecting Properties>
Set Interaction Window Control Module).

• An online program editor containing a control module.

Interaction Windows Section 4 Online Functions

348 3BSE035980-510

• An online program editor containing a function block (compare with item 2
above).

• From interaction window objects in a control module.

Figure 166. The left window is an interaction window activated from an application
window interaction object. The right window (supervision only) appears after
clicking the info interaction window button.

Section 4 Online Functions Status and Error Messages

3BSE035980-510 349

Status and Error Messages
There are function block types, control module types and functions that contain a
parameter named Status. The Status parameter shows, in online mode and in test
mode, a status code that correspond to a status message. The status code changes
depending on the current state of the function block, control module or function.

There are function-specific status codes that are used within its range of application
only, for example, communication-specific status codes. Some status codes are
general and are used for most function blocks and control modules, and for
functions with a Status parameter.

Function block types and control module types with a Status parameter also have an
Error parameter. The Error parameter is set to true if the Status parameter < 0, for
example, if Status is -35 (Maximum size limit has been exceeded). Status codes >1
is used as warnings and do not set the Error parameter.

Figure 167. A function block with Status parameter and Error parameter
(operation successful=1).

The Error and Status parameters can be used in the application program, for
example, a condition can be written in the program for a specific status code.

The different status messages are described in Control Builder online help.

Search and Navigation in Online and Test Mode Section 4 Online Functions

350 3BSE035980-510

Search and Navigation in Online and Test Mode
The Search and Navigation tool can be used to conduct simple searches and iterative
searches when the project is in Online mode or Test mode.

This functionality makes it possible to search for input/output of a certain signal as a
result of a single search, irrespective of name changes at parameter connections.
This means all information concerning reading and writing from the whole
Application/Controller(s) about a signal is found in the search.

The appearance of the Search and Navigation dialog in the Online mode and Test
mode depends on the setting of the option Iterative searches in Online/Test Mode
in the Search and Navigation Settings dialog. By default, this option is set. See
Search and Navigation Settings on page 191.

Iterative Search

In Online mode or Test mode, if the option Iterative searches in Online/Test Mode
is set (the checkbox is checked) in the Search and Navigation Settings dialog, the
iterative search hits are directly presented in one pane – the References pane.
It is not possible to search for another item in the window. See Figure 168.

Section 4 Online Functions Search and Navigation in Online and Test Mode

3BSE035980-510 351

In Online mode or Test mode, if the option Iterative searches in Online/Test Mode
is not set (the checkbox is not checked) in the Search and Navigation Settings
dialog, the search hits are presented in two panes—the Symbol and Definition pane,
and the References pane. In this case, right click the symbol and select Iterative
Search to start its iterative search. See Figure 169.
It is also possible to search for another item in the window and obtain the new
results.

Figure 168. Iterative search results for the variable AC800MStatus in Online mode

Search and Navigation in Online and Test Mode Section 4 Online Functions

352 3BSE035980-510

After the Iterative Search option is selected (see Figure 169), the search results for
the selected symbol are replaced by new search results in the References pane,
which shows the header as References (iterative search).

General Considerations for Search in Online/Test Mode

The tree view in the References pane shows where the signal is read or written.

It is possible to navigate from the Search and Navigation dialog to the references of
a found symbol by double clicking a reference. Then a suitable editor is displayed
and the symbol is highlighted in the editor.

Figure 169. Search results for the variable AC800MStatus in Online mode, with the
option for Iterative Search

Section 4 Online Functions Search and Navigation in Online and Test Mode

3BSE035980-510 353

The references are followed both upwards towards its first definition in a parent
node, and downwards to the leaves of the project structure, in order to cover all
usage. Every time a reference is followed, there is a new query to the search
database. By means of those user hidden repetitive queries, all relevant information
is collected from a single search.

There are following differences in online/test mode (compared to offline mode):

• Search In: drop-downs can only contain search paths for objects that you can
see in online/test mode, for example, libraries cannot be searched.

• References only show information concerning where the symbol is used, as can
be seen in online and test mode.The references tree (i.e. the tree presented in
the references pane of the Search and Navigation dialog) presents instance
paths in online mode and test mode.

• It is only possible to navigate to online editors and to the Project Constant
dialog. The online editors that can be navigated to are the following:

– POU editor
– Connection editor
– Control Module Diagram editor
– Hardware configuration editor
– Access variables editor

In online mode, it is also possible to navigate from the Search and Navigation
function to the corresponding object in the Project Explorer.

Project Documentation Section 4 Online Functions

354 3BSE035980-510

Project Documentation
Project Documentation in online mode is used to document (part of) the application
tree in online or test mode. You can select any application object, set the “tree
depth” in relation to the selected object, to document part of the tree only. You can
also use filter conditions for a more specific search. Unlike the offline mode, the
values of variables, parameters, etc. are included. For example, it is possible to filter
out all coldretain variables and parameters in an application. The output is a
Microsoft Word file, hence Microsoft Office must be installed.

1. Enter online or test mode and select an application object in Project Explorer.

2. Select File > Documentation Online... to open the Project Documentation
dialog.

Figure 170. The Documentation Online dialog.

All project documentation will be connected to a standard template.

Section 4 Online Functions Project Documentation

3BSE035980-510 355

3. See Control Builder online help for information about dialog settings and
selections.

See Project Documentation on page 222 for information about Project
Documentation in offline mode.

Project Documentation Section 4 Online Functions

356 3BSE035980-510

3BSE035980-510 357

Section 5 Maintenance and Trouble-Shooting

This section provides important information for maintenance and trouble-shooting
Control Builder products. It mainly advises you on how to maintain your system,
and how to collect information from a malfunctioning control system. The latter
information is particularly valuable if your supplier’s service department is to be
involved.

Introduction
Software maintenance and trouble-shooting includes the following activities:

• Remote Desktop Connection Remote Desktop Connection on page 358
describes how to start and run the Control Builder Professional as a terminal
session on a Terminal Server.

• Backup and Restore on page 363 gives a short overview of backup and restore
of an 800xA system. For detailed instructions on how to upgrade or restore a
complete system, see 800xA system documentation.

• Migration on page 365 describes how to migrate from Compact Control
Builder to 800xA and how to migrate from 800xA to Compact Control Builder,
within same system version.

• Import and Export on page 369 describes how to import and export libraries,
programs and individual objects.

• About Library Import/Export on page 374 points out a number of things that
are of importance from a maintenance perspective.

• Detailed Difference Report During Import on page 375 describes how to
configure handling and logging of system alarms and events, using the Error
Handler.

Remote Desktop Connection Section 5 Maintenance and Trouble-Shooting

358 3BSE035980-510

• Online Upgrade on page 384 lists the requirements, preparations and the steps
of the process.

• Trouble-Shooting on page 398 lists a number of error symptoms, and suggest
actions upon these.

• Error Reports on page 441 describes how to write a complete error report, so
that the support engineers get a complete picture of an error situation.

Remote Desktop Connection
It is possible to connect to a terminal server and run the Control Builder
Professional as a terminal session, by using Windows standard Remote Desktop
Connection. All you need is network access and permissions to connect to the other
computer.

There are some restrictions when using Control Builder Professional as a terminal
session:

• A maximum of 10 concurrent Control Builder sessions can run on the terminal
server.

• There can be only one active Control Builder session per interactive Windows
user.

• It is not recommended to run a Soft Controller on the terminal server.

For a normal IndustrialITUser, the "Local Security Policy" on the Terminal Server
must be modified to launch the Control Builder Professional in a remote terminal
session on a Terminal Server.

To modify the setting:

1. Open the Local Security Policy window in the Terminal Server.

Section 5 Maintenance and Trouble-Shooting Remote Desktop Connection

3BSE035980-510 359

2. Select Local Policies > User Rights Assignment to view the policies.

3. Right-click the Create global objects policy, and select Properties.

4. Add the IndustrialITUser user group to the policy.

Figure 171. Policies under User rights Assignment

Characteristics of Control Builder as Terminal Server Section 5 Maintenance and Trouble-Shooting

360 3BSE035980-510

In a standard Windows installation you open Remote Desktop Connection, from
Windows Start menu, by selecting Programs > Accessories> Communications,
and then click Remote Desktop Connection.

Figure 172. Remote Desktop Connection dialog.

For further information about how to configure Microsoft Windows Terminal Server
and Remote desktop, see Windows online help.

Characteristics of Control Builder as Terminal Server

There are some things that differ a Control Builder terminal session from a locally
executing Control Builder session.

MMS Process Number

The MMS process number of the Control Builder process is usually 1. It will still be
1 for a Control Builder session that is executing locally on the terminal server
console. For a remote Control Builder session the MMS process number will be in
the interval of 31-40. The MMS process number will be 31 for the first remote
Control Builder session, 32 for the second and so on.

Section 5 Maintenance and Trouble-Shooting Characteristics of Control Builder as Terminal Server

3BSE035980-510 361

The MMS process number can be shown, for example, by selecting Help > About
Control Builder M Professional in the Control Builder.

Figure 173. About Control Builder M Professional dialog

Characteristics of Control Builder as Terminal Server Section 5 Maintenance and Trouble-Shooting

362 3BSE035980-510

Working Folder

In a standard installation of Control Builder the working folder is C:\ABB Industrial
IT Data\Engineer IT Data\Control Builder M Professional. For each remote Control
Builder session ...\Terminal Sessions\”UserId” will be added to that path. “UserId”
is the user id of the interactive Windows user logged on to the terminal server. This
is only valid for remote sessions. A Control Builder running on the terminal server
console will use the normal working folder.

Figure 174. TS1 and TS2 users added as Control Builder terminal sessions.

The working folder can be changed by using the Control Builder Setup Wizard. A
remote Control Builder session will then add ...\Terminal Sessions\”UserId” to
the specified file path of Working Folder for File Locations, in the Setup Wizard.

Section 5 Maintenance and Trouble-Shooting Backup and Restore

3BSE035980-510 363

Note that each Control Builder terminal session has a LogFiles folder, where the log
files are saved for that particular session. Log files for a Control Builder running
locally on the terminal server will be found in the LogFiles folder under the Control
Builder M Professional folder.

Remote Session Indication

When dealing with support engineers it is important to know if the Control Builder
is running as a remote session or as a local session A small visual indication
together with the user name will be shown in the status bar of the Control Builder, if
it is running as a remote session.

Figure 175. Remote session indication in Control Builder

Backup and Restore

Introduction

The Backup function prevents data loss if a complete system crash should occur.
The Backup function saves the complete system on a local disk.

For backup of individual projects, applications, libraries, etc., the Import/Export
function should be used, since this function handles individual files. The
Import/Export function is described in Import and Export on page 369.

For instructions on how to perform a backup or restore, see the System 800xA
Tools (2PAA101888*). Coldretain, structure and domain files are included at
backup/restore.

Files for Separate Backup Section 5 Maintenance and Trouble-Shooting

364 3BSE035980-510

Files for Separate Backup

There are some settings files that are stored locally. These need to be backed up
separately:

• OPC Server Configuration and System Setup Files
The OPC Server stores configuration files (*.cfg) and system setup files
(*.sys) on local disc. These files are stored in the OPC server working
directory and need to be manually copied to safe media on a regular basis. See
the AC 800M OPC Server (3BSE035983*) for more information.

• Control Builder Settings File
Each Control Builder client saves its settings in the file systemsetup.sys.
This file is saved on local disk, in the Control Builder working directory, and
has to be manually backed up to safe media on a regular basis.

Remove and Add FSD Server Files

Cold retain files, and files associated with Control aspects, such as applications,
controllers and projects, are stored in the File Set Distribution (FSD) server in
800xA. The FSD tool makes it possible to view, add, extract and delete files that are
stored in the FSD server.

To start the tool, go to the Windows Start-menu and select
ABB Industrial IT 800xA > Engineering > Utilities > FSD Tool.

Some examples of how to use the tool:

• Extract files and store them on local disk for further examination.

• Replace lost or corrupted files.

This tool should be used with extreme caution, since a mistake when deleting or
changing files in the FSD server might cause serious problems.

For more detailed information on the tool, see its online help, which is opened
from inside the tool.

Section 5 Maintenance and Trouble-Shooting Migration

3BSE035980-510 365

Migration
Within the same system version, it is possible to migrate a project from 800xA to a
Compact Control Builder project as well as to migrate a project from a Compact
Control Builder to a project in 800xA.

Migration from 800xA to Compact Control Builder

When migrating a project from 800xA to Compact Control Builder there are some
things to consider:

• It is not possible to migrate projects containing High Integrity controllers or
controllers containing a PM865 CPU.

• It is not allowed to migrate a project containing more than one version of a
user-defined library. However, it is possible to migrate projects containing
several versions of standard libraries.

• Projects containing controllers with undefined hardware units cannot be
migrated. The migration will be aborted and the user has to define all undefined
hardware units before a migration can be done.

• A project containing hardware that is not supported in Compact Control
Builder, for example CI860, will be migrated. When the migrated project is
opened in Compact Control Builder error messages are displayed and all
hardware types of not supported hardware units will be displayed as undefined
hardware units in Compact Control Builder.

Only complete projects can be migrated. It is possible to migrate smaller objects,
such as single libraries, applications, controllers or types, by packaging them
within small or empty projects.

Migration from 800xA to Compact Control Builder Section 5 Maintenance and Trouble-Shooting

366 3BSE035980-510

Figure 176. Undefined hardware units in Project Explorer.

• Online files, such as Cold Retain files and Difference Report files, are not
migrated.

To migrate a project in 800xA to Compact Control Builder, open the project to be
migrated in Control Builder Professional and select:
Tools>Maintenance>Compact CB>Save in Compact CB Format.

Figure 177. Save in Compact CB Format dialog

Section 5 Maintenance and Trouble-Shooting Migration from Compact Control Builder to 800xA

3BSE035980-510 367

A dialog to select where to save the project is opened. The migrated project will be
placed in the selected folder, together with all applications and controllers within the
project. All user-defined libraries (both POU and hardware) will also be placed in
this folder.

Migration from Compact Control Builder to 800xA

When migrating a project from Compact Control Builder to 800xA there are some
things to consider:

• Before migrating, make sure that all used libraries in the project are available.
Move/copy the complete installed project structure, including the Libraries
folder, to the location where you want to do the migration from.

Figure 178. Project structure with “Libraries” and the “Plant” project.

• It is only possible to migrate a project once.

• It is not possible to use the migration to overwrite anything that already exists
in 800xA.

• Projects containing controllers with undefined hardware units cannot be
migrated. The migration will be aborted and the user has to define all undefined
hardware units before a migration can be done again.

• A user-defined library is opened from Compact Control Builder format and
written to 800xA, if it does not exist in 800xA. If a user-defined library exists
in 800xA it is always read from 800xA, no matter what state it has.

To make the OPC server work properly, it is recommended to place the folder
with the migrated project in the configured project folder of Compact Control
Builder, before the migrated project is opened.

Migration from Compact Control Builder to 800xA Section 5 Maintenance and Trouble-Shooting

368 3BSE035980-510

• The migration is aborted, if the project to be migrated has a library that
contains different types and it has same name as a library that already exists in
800xA. The library has to be renamed before it can be migrated again.

• If a standard library is missing in 800xA, the migration is stopped. The missing
library has to be installed in 800xA before a complete migration can be done.

To migrate a Compact Controller project to 800xA, start Control Builder
Professional and select:
Tools>Maintenance>Compact CB>Open from Compact CB Format.

Figure 179. Open from Compact CB Format dialog.

A dialog to select the project (*.prj) to be migrated is displayed.

If more than one system and/or more than one environment are available, a dialog
where to select destination system and destination environment is displayed, after
the Open from Compact CB Format dialog.

Section 5 Maintenance and Trouble-Shooting Import and Export

3BSE035980-510 369

Import and Export

Introduction

The import and export function is used for selective backup of entities such as
projects, applications, libraries, etc. or for moving solutions between systems.

For backup of a complete system, use the Backup/Restore function. The
Backup/Restore function is described in Backup and Restore on page 363.

Any entity of your automation solution can be exported for import at a later stage.
The export is stored as an afw file.

Exporting an entity can be done either with or without dependencies. If
dependencies is included, the export file will be consistent and include everything
needed to be able to import it at a later stage.

Exporting an entity can be done with or without children. For normal maintenance,
the selection with children shall always be used.

Import and Export Alternatives on page 372 shows how to export and import
entities and the differences between exporting with or without
dependencies/children.

Export a Library

This option lets you backup/export a single library. When you are done, an afw file
is created. This file can be used to import the library into other systems.

 See also Applying Cold Retain Values when Importing Applications on page
373.

The user defined permissions that are used to configure property permissions are
not included when exporting the entities (project, application, library etc.) with or
without dependencies.
The user defined permissions have to be manually exported separately by the
user.

For information on how to change the development state of a library, see Library
Management on page 122.

Export a Library Section 5 Maintenance and Trouble-Shooting

370 3BSE035980-510

Make sure you are in the Library Structure:

1. In the Library Structure, select the library version (for example MyDevLib 1.0-
0). The aspect pane opens.

2. Select the Library Version Definition aspect and click the General tab. The
aspect preview pane opens.

Figure 180. The Library Version Definition aspect preview pane, with the State
selected as ‘Released’.

3. Click Export Library. The Export Library dialog opens.

4. Name the library file (it is advisable to use the library name, for example
MyDevLib) and click Save. Plant Explorer saves an afw library file.

When importing a library that already is present in the system, types that are not
existing in the afw file will be removed automatically. Use the Show Differences
alternative on the Import/Export menu to find these types, then delete them
manually.

If a library is already present and its status is Closed or Released, it cannot be
imported.

Plant Explorer will display the text Library export succeeded under the Library
Archive button, when done. The library will be saved as an afw file (in this
example MyDevLib.afw)

Section 5 Maintenance and Trouble-Shooting Export an Application/Controller

3BSE035980-510 371

Export an Application/Controller

You can also Backup/Export an application or a controller. Drag the
application/controller object and drop it onto the Import/Export window, then select
whether to export with dependencies and/or children.

Import an Application/Controller

Rollback Application/Controller Version

To rollback to an application/controller backup, import the backup
MyApplication/MyController.afw file.

Re-import of Project

For more information on how to use the Import/Export Tool, see the System 800xA
Tools (2PAA101888*) manual.

The Applications/Controllers that are added in the project after exporting the
project, are not deleted if the exported project is imported again. If required, they
can be deleted manually.

Import and Export Alternatives Section 5 Maintenance and Trouble-Shooting

372 3BSE035980-510

Import and Export Alternatives

To reach an expected result when exporting/importing, the following table can be
used as a guide.

Table 25. Export settings

Object Export Settings Result (afw file) Notes for Import

Project Including
dependencies
and children.

Entire Project including
applications, controllers and
user-defined libraries.

Answer “No” to import the
Control Network object.

Project No dependencies,
including children.

Entire Project including
applications and controllers.

All libraries used in the
project must exist in the
system when importing

Application No dependencies,
including children.

Entire Application without
connected libraries.

Connected libraries must
exist in the system when
importing.

Application Including
dependencies
and children.

Entire Application, Project object
plus all user-defined libraries
inserted in the project.

Choose to not import the
Project object and Control
Network object.

Controller No dependencies,
including children.

Entire Controller (without
connected libraries) plus
connected application objects
(only the positions of the
applications, not the entire
application entities).

Connected libraries and
applications must exist in the
system when importing.

Controller Including
dependencies
and children.

Entire Controller, all connected
applications, the Project object,
and all user-defined libraries
inserted in the project.

Choose if you want to import
the Project, connected
applications and libraries.

Library
version

Including
dependencies
and children.

Entire Library plus all user-
defined libraries, connected to
the library.

Section 5 Maintenance and Trouble-Shooting Applying Cold Retain Values when Importing

3BSE035980-510 373

Applying Cold Retain Values when Importing Applications

When importing an application the cold retain files are imported to the system only
if the application does not exist in the system or if the application exists but no
download has been made (no cold retain values exist in the system).

Library
version

No dependencies,
including children.

Entire Library without connected
libraries.

Connected libraries must
exist in the system when
importing.

Library
version

Export Library
button in Library
Version Definition
aspect.

Entire Library without connected
libraries.

Connected libraries must
exist in the system when
importing.

Control
Module /
Function
Block Type

No dependencies,
including children

Only the type. If the type has any formal
instances, the formal
instances types must exist in
the system when importing.

Control
Module /
Function
Block Type

Including
dependencies
and children.

Entire application or library
where the type is placed,
including the application or
libraries dependencies.

By default, the VMT application under a High Integrity controller is not included
in the export, when the High Integrity controller is exported. If this controller
(from the Production system) is to be re-imported, the VMT Application must be
manually included in the export.
It is recommended to always include all the applications that are connected to the
controller while exporting.

Entities in other structures (for example, the Functional Structure) are not
included in the export even if it is done including dependencies. AC 800M
entities existing in Functional Structure (for example) must then be exported
separately.

Table 25. Export settings (Continued)

Object Export Settings Result (afw file) Notes for Import

About Library Import/Export Section 5 Maintenance and Trouble-Shooting

374 3BSE035980-510

This applies when importing to a non version handled system (i.e. a system not
having Configure-Deploy Support enabled) or when importing to the production
environment of a version handled system.

The cold retain values are never imported when importing an application to the
engineering environment of a version handled system. It is possible to force an
import of the cold retain values to the system (except to engineering environment).
To do that the cold retain files (.crs and .crv files) associated with the application
should be removed using the FSD Tool. When no changes (apart from saving new
cold retain values) have been made in the application since when the export was
done a dummy change of the application in the system is necessary in addition to
removing the associated files.

About Library Import/Export

Library management is described in Library Management on page 122. However,
there are some things that are worth emphasizing from a maintenance perspective:

• When importing and exporting libraries, it is of importance which version of a
library that is used. If a library is imported that depends on another version than
the one already in the system, one of two things will happen:

– If the library was exported with all libraries it depends on, then you will
simply get two versions of the same library in your system.

– If the library was exported without dependencies, there will be an error
and your imported library will not work.

• If a library is exported without having reached the development state Released,
there is a risk that there might be two libraries with different content, but with
the same version number. If the “wrong” library is imported, then serious
problems might arise.

If you need more information about libraries and library maintenance, refer to
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981*).

Section 5 Maintenance and Trouble-Shooting Detailed Difference Report During Import

3BSE035980-510 375

Detailed Difference Report During Import

The detailed difference report shows data differences from the aspects.

A number of aspect types support detailed difference report, enabling the
comparison of data differences during import.

The aspect types that are supported include Control Module Type, Function Block
Type, Single Control Module, Data Type, Application, Program, Diagram, Project,
Controller, Library, Hardware library, Hardware Type, Hardware unit, Task, Access
variables, and Project constants.

For more details about Detailed Difference Report refer to System 800xA
Maintenance (3BSE046784*) manual.

Controller Configuration
The Error Handler is used to configure controller behavior on system alarms and
events of different severities, and how different errors are logged.

Error Handler settings are made for each controller, in the Controller Settings
dialog. There are certain settings that cannot be changed (they are dimmed in the
dialog). You can add additional actions, but you cannot change the original settings.

Error Handler settings are slightly different for High Integrity and non-High
Integrity controllers:

• Controller Settings in Non-High Integrity Controllers on page 377 describes
how to configure the Error Handler in a non-High Integrity controller.

• Controller Settings in High Integrity Controllers on page 380 describes Error
Handler settings that are specific to a High Integrity controller.

AC 800M High Integrity (HI) controllers have a number of settings that are not
present in a non-HI controller, see Controller Settings in High Integrity
Controllers on page 380.

Errors can be reported from the code using the ErrorHandler function block type
or the ErrorHandlerM control module type. Using these types, errors identified by
the code can be handled in the same way as other errors. For more information on
how to configure the ErrorHandler(M) types, see corresponding online help.

Controller Configuration Section 5 Maintenance and Trouble-Shooting

376 3BSE035980-510

The ErrorHandler(M) types should be used with care, since they can be used to
reset the controller.

Section 5 Maintenance and Trouble-Shooting Controller Settings in Non-High Integrity Controllers

3BSE035980-510 377

Controller Settings in Non-High Integrity Controllers

Figure 181 shows the Controller Settings dialog for a non-High Integrity AC 800M
controller. It is displayed by right-clicking the controller in Project Explorer and
selecting Properties > Controller Settings.

Figure 181. Controller Settings dialog for an AC 800M controller (non-HI).

If load balancing is enabled, overrun and latency supervision is automatically
disabled, see Overrun and Latency on page 163.

The default setting for a non-High Integrity controller is that load balancing is
enabled and overrun and latency supervision disabled. If you disable load balancing
overrun and latency supervision is automatically enabled.

Fatal overrun settings are used only if overrun and latency supervision is enabled
(this part will be dimmed if load balancing is enabled, see Figure 181).

Controller Settings in Non-High Integrity Controllers Section 5 Maintenance and Trouble-Shooting

378 3BSE035980-510

The Fatal Overrun part of the dialog lets you set how many overruns (missed scans)
that are allowed before a fatal error is considered to have occurred. The Reaction
setting is used to select which action the controller should take when a fatal overrun
error occurs. The options are Nothing, Stop Application, and Reset Controller (The
default option is Nothing). The default setting for the Limit is 10 interval cycles.

For a non-High Integrity controller, the Error Reaction part lets the user set the
following, see Table 26.

It is important to avoid configuring the error handler in such a way that a fatal
overrun error has two corresponding reactions, one that is set in the Fatal Overrun
part of the dialog (for example, Stop Application) and one that is set in the Error
Reaction dialog (for example, Controller Shutdown for the corresponding
severity). Note that severity Fatal and Critical always lead to a controller
shutdown.

If settings are inconsistent, you will receive a warning when trying to save the
new settings.

Table 26. Error Reaction – non-High Integrity controller. This part of the dialog is used to set
controller actions at system alarms of different severity.

Severity Log Event Controller Shutdown

1 Low Configurable for all Configurable for all Configurable for all

2 Medium Always for system
diagnostics and
execution
Configurable for I/O

Configurable for all Configurable for all

3 High Always for system
diagnostics and
execution
Configurable for I/O

Always for system
diagnostics and
execution
Configurable for I/O

Configurable for all

4 Critical Always Always Always

5 Fatal Always Always Always

Section 5 Maintenance and Trouble-Shooting Controller Settings in Non-High Integrity Controllers

3BSE035980-510 379

The above table shows controller reactions (fixed and configurable) when alarms of
different severities are received by the Error Handler in a non-High Integrity
controller.

There are three tabs in the Error Reaction part of the dialog:

• The System Diagnostics tab contains settings for system alarms generated by
the System Diagnostics module, for example, CEX module errors, protocol
handler errors.

• The Execution tab contains settings for system alarms generated during
execution of IEC-61131 code, for example, latency errors, CRC check failures.

• The I/O tab contains settings for I/O module errors.

The following definitions have been used for the severity of system errors when
designing error handling for different modules:

• 1 Low
Minor, of diagnostic or informative sort. Does not affect system integrity or the
functionality of the reporting module.

• 2 Medium
An error, such as I/O channel failure, communication failed, or similar, has
occurred. Does not affect system integrity, but affects functionality in the
reporting module.

• 3 High
Severe error, but not critical, for example I/O module failure. May affect
system integrity. Functionality in the reporting module is affected. Redundancy
may maintain the system integrity

• 4 Critical
A severe error has occurred, for example, a task has stalled, ModuleBus stalled,
I/O cluster down. Will affect system integrity, since the reporting module has
failed. Redundancy may maintain the safety of the system.

• 5 Fatal
Systematic software errors have been found. The whole reporting subsystem
has failed. Redundancy will not maintain the system integrity. This severity is
only used when there is no possibility to safely continue using a backup PM.

Controller Settings in High Integrity Controllers Section 5 Maintenance and Trouble-Shooting

380 3BSE035980-510

Controller Settings in High Integrity Controllers

The Controller Settings dialog is different for an AC 800M High Integrity (HI)
controller. It is displayed by right-clicking the (HI) controller in Project Explorer
and selecting Properties > Controller Settings. There are also differences
regarding what can be configured for the Error Handler, see Figure 182.

Figure 182. Controller Settings dialog for an AC 800M High Integrity controller.

Fatal Overrun settings are used to set how many overruns (missed scans) that are
allowed before a fatal error is considered to have occurred. The Reaction setting is
used to select which action the controller should take when a fatal overrun error
occurs. The options are Nothing, Stop Application, and Reset Controller (The
default option is Nothing). The default setting for the Limit is 10 interval cycles.

Section 5 Maintenance and Trouble-Shooting Controller Settings in High Integrity Controllers

3BSE035980-510 381

The Diagnostic Configuration part of the dialog is only there if your controller is an
AC 800M High Integrity controller. The Application Type setting affects the Error
Handler Configuration options.

There are two possible values for Application Type:

• Normally Energized/Shutdown (default setting).

• Normally De-energized/Supervision which lets the user configure controller
reset for system diagnostics and execution errors with severity High. Otherwise
the settings are the same as for Low demand/Shutdown.

FDRT (Diagnostic Cycle Time) must contain a value that is 1000 or higher. The
default value is 3000. Any value lower than 1000 is ignored. FDRT is the maximum
elapsed time from the moment an error occurs, until action is taken. If FDRT is
reached without any action being taken, an error with the severity Critical will be
generated.

After a power fail the SIL3 applications are restarted using cold retain marked
values which are periodically saved in the controller with a cycle time set by the
user. The update interval can be set to a value between 1 hour and 24 hours to
configure how often the values should be saved in the controller. Default value is 24
hours. See Table 6.

For a High Integrity controller, the Error Reaction part lets the user set the
following, see Table 27.

It is important to avoid configuring the error handler in such a way that a fatal
overrun error has two corresponding reactions, one that is set in the Fatal Overrun
part of the dialog (for example, Stop Application) and one that is set in the Error
Reaction dialog (for example, Controller Shutdown for the corresponding
severity). Note that severity Fatal, Critical and High always lead to a controller
shutdown.

If settings are inconsistent, you will receive a warning.

Controller Settings in High Integrity Controllers Section 5 Maintenance and Trouble-Shooting

382 3BSE035980-510

 The severities (left column in the table) are the same as for non-High Integrity
controllers, see page 379.

The System Alarm column in Table 27, is only there for High Integrity controllers.
If System Alarm is checked for a certain severity, a system alarm will be generated
each time an error of the corresponding severity occurs.

Table 27. Error Reaction – High Integrity controller. This part of the dialog is used to set controller
actions at system alarms of different severity .

Severity Log Event
Controller
Shutdown

System Alarm
Output

1 Low Configurable for all Configurable for all Configurable for all Configurable for all

2 Medium Always for system
diagnostics and

execution
Configurable for I/O

Configurable for all Configurable for all Configurable for all

3 High Always Always Always(1)

(1) If Application Type is set to Normally Energized/Shutdown, it is possible to configure controller shutdown for
system diagnostics and execution errors with severity High.

Configurable for all

4 Critical Always Always Always Configurable for all

5 Fatal Always Always Always Configurable for all

Section 5 Maintenance and Trouble-Shooting Error Handler Log Entries

3BSE035980-510 383

Error Handler Log Entries

If an error of a certain severity is configured to be logged, it will generate a
Controller System log (see Controller System Log on page 410) entry with the
following general structure.

E yyyy-mm-dd hh:mm:ss:ms ErrorHandler PM: Error descr.(x,y,R)

• Such an entry should be read according to the below table.

Table 28. How to read a log entry generated by the Error Handler.

Part Description Allowed Value(s)

E Error

yyyy-mm-dd Date

hh:mm:ss:ms Time when error was time
stamped

ErrorHandler PM/SM: Error detected by ErrorHandler PM:

=Processor Module

ErrorHandler SM:

=SM810 (HI controller
only)

Error descr. A text describing the error

(x,y,ERS)

x=error type 1 (System Diagnostics)
2 (Execution),
3 (I/O)

y=severity 1 (Low)
2 (Medium)
3 (High)
4 (Critical)
5 (Fatal)

ERS=action type E (Event)
R (Reset)
S (System Alarm)

Online Upgrade Section 5 Maintenance and Trouble-Shooting

384 3BSE035980-510

Online Upgrade
Redundant AC 800M controllers can be upgraded to new firmware versions online.

Why You Need to Read this First

Online upgrade is initiated from Control Builder by a 9-step wizard that will guide
you through the complete upgrading process. At a certain point during this process
some actions will occur in the control system. The wizard will for example
temporarily stop the application, temporarily disconnect the redundancy and freeze
the I/O update (see more thorough information about each communication interface
(CI) unit in the System 800xA System Guide Technical Data and Configuration
(3BSE041434*). Single CI units will be stopped during firmware download. All of
these actions are harmless to your process – provided that you have prepared your
online upgrade in a correct manner!

In order to perform an online upgrade successfully, you are strongly advised to start
by acknowledging the preparations, requirements and prerequisites given in the sub-
sections Restrictions for Online Upgrade on page 385 and Preliminary Actions for
Online Upgrade on page 387.

After that, proceed with the description in sub-section Online Upgrade Process on
page 390, to fully comprehend the concept behind an online upgrade process.

The last sub-section Running Online Upgrade on page 396, will help you to start the
wizard and begin an online upgrade. You will be guided by a 9-step wizard. And
although these steps require a simple Next button click to proceed, some steps will
contain additional buttons, which demands your special attention. For that reason,
the wizard has also been equipped with context sensitive Help buttons that will lead
you directly to a descriptive topic page in online help.

For example, the wizard will sometimes during the process prompt you for different
sub-actions inside a step which mean clicking buttons in a certain order of priority.
When you enter a wizard-step that contains multiple choices; click Help and follow
the short suggestions for correct operations within that step.

Online upgrade is not possible on system versions prior to 5.0 for AC 800M
controllers and 5.0 SP1 for AC 800M High Integrity controllers.

Section 5 Maintenance and Trouble-Shooting Restrictions for Online Upgrade

3BSE035980-510 385

Restrictions for Online Upgrade

Even though the wizard will check the selected hardware configuration and analyze
the applications status in the Project Explorer, you should confirm that your
hardware configuration is not affected by the following restrictions.

Controllers

You can only perform online upgrade on a redundant controller, which include
redundant PM units. I units are not necessary; you can have a non-redundant CI unit
in a redundant controller, but then communication will be disturbed.

Both primary and backup controllers must be available on the primary network
during the online upgrade process.

The online upgrade process demands 2 MB of free memory in the redundant
controller.

Before start of an online upgrade session it is not allowed to make changes in the
applications except for changes caused by new library versions. Especially no
application is allowed to be added or deleted. It is not allowed to change any
settings for the controller or tasks. If such changes have been made, a download is
needed before start of the online upgrade.

During the online upgrade session, it is always advisable to choose the
configurable hand over time limit with a margin.

The formula used for calculating the hand over time limit can be found in
System 800xA System Guide Technical Data and Configuration (3BSE041434*).

SM811 for SIL3 application has a dedicated synchronization link to synchronize
Active and redundant SM for hot-insert and online upgrade. The synchronization
link is needed during hot-insert and on-line upgrade situations to copy data
between two SM811s in a redundant setup.

Restrictions for Online Upgrade Section 5 Maintenance and Trouble-Shooting

386 3BSE035980-510

CI Restrictions

The communication interfaces CI851 and CI852 are not supported by the online
upgrade procedure. Furthermore, if you run PPP on CI853 it will prevent an online
upgrade.

Communication Using SerialCommLib

If SerialCommLib is used in the communication, the online upgrade process stops
after the seventh step of the Online Upgrade Wizard.

Technical Data and Performance

During the switchover of plant control, communication is interrupted for a while.
Measurements have been done to exhibit the impact on different communication
protocols.

All the values listed below are typical values and they might vary from system to
system:

• The trend values in Process Portal are interrupted for approximately 20s.

• The alarms are delayed in the range of 20-30s during switch of primary
controller.

• ComliSBConnect is down for approximately 2s before and 250ms after the
switch over.

• MMSConnect is down for approximately 2s before and 2s after the switch over.

• SBConnect is down for approximately 2s before and 250ms after the switch
over.

For more information about each CI unit’s ability to support online upgrade, refer
to the System 800xA System Guide Technical Data and Configuration
(3BSE041434*).

To continue the online upgrade after the seventh step, disable the function blocks
in SerialCommLib, and enable them again.

Section 5 Maintenance and Trouble-Shooting Preliminary Actions for Online Upgrade

3BSE035980-510 387

Firmware Compatibility

The new versions of the firmware come from the new versions of the connected
hardware libraries. The protocol handler in Control Builder analyzes the new
firmware versions for compatibility.

Based on the compatibility check, the following settings are displayed during the
upgrade process of the firmware in the hardware unit:

• Mandatory–This means that the unit must be upgraded with the new firmware
due to compatibility reasons. It is not possible to deselect this option.

• Recommended–This means that it is possible to choose whether to upgrade or
not by checking/unchecking the item. This item is checked, by default. If it is
decided not to upgrade the item, the latest corrections made to the firmware
will not be available, eventhough the firmware is compatible.

• Not Available–This appears when no valid upgrade is possible as no new
firmware version is available.

• Uncertain–This appears when the old firmware versions in the primary unit
and the backup unit are different. The protocol handler is unable to determine
which firmware version is to be upgraded.

Preliminary Actions for Online Upgrade

Online upgrade is required in the following situations:

• In case of need to correct an error in the firmware.

• In case of need for a new library version, which involves a complete new
installation of all AC 800M products.

Online Upgrade of an AC 800M using CI857

Follow the guidelines below for a smooth online upgrade of C1857 connected to the
INSUM system:

Online upgrade cannot be performed without a new 800xA for AC 800M.

Some of these guidelines are related to the nine steps in the Online Upgrade
wizard in the Control Builder. See Online Upgrade Process on page 390.

Preliminary Actions for Online Upgrade Section 5 Maintenance and Trouble-Shooting

388 3BSE035980-510

• Set the parameter “FailSafe Heartbeat” on the INSUM TCP/IP Gateway to a
value that is 1/4 of the shortest “Failsafe TimeOut” on the connected INSUM
devices (MCUs and Circuit Breakers). Use the INSUM MMI or the INSUM
OS to set this value to the parameter.

• During the online upgrade, CI857 disconnects from the INSUM system for
some time. Before CI857 disconnects from the INSUM system, it requests the
INSUM TCP/IP Gateway to continue sending Failsafe Heartbeat to all INSUM
subnets, until the CI857 reconnects.

• Since there is no redundancy for CI857, no commands can be sent to the
INSUM system and the measurement values are not updated during this time.

• The duration of the broken connection between CI857 and the INSUM system
depend on the upgradation of the firmware of CI857. If the firmware of CI857
is not upgraded, then it will be upgraded in the eighth step of the online
upgrade wizard (together with the remaining units). See Eighth Step –
Upgrading Firmware in the Remaining Units on page 396.

• After the online upgrade, CI857 reconnects to the INSUM system and the
communication is reestablished.

• If CI857 does not reconnect within the expected time, the INSUM TCP/IP
Gateway stops sending Failsafe Heartbeat to the INSUM devices (MCUs and
Circuit Breakers) and they go to Failsafe.

• During the switching in the seventh step, the status of the INSUMReceive and
INSUMWrite blocks may be -5324 or -15 for up to 8 seconds.
ProcessObjInsumLib takes care of this internally. See Seventh Step –
Switching the Process Control on page 395.

• If an upgrade has been started and the communication between the CI857 and
the INSUM TCP/IP Gateway is interrupted during the third step, where
Redundancy is turned off, the upgrade will be terminated. See Third Step –
Disabling the Redundancy on page 392.

Expected Time for Online Upgrade of an AC 800M using CI857

The expected time for online upgrade depends on the following factors:

• If the firmware is already up-to-date before the online upgrade of the controller
and an upgrade of CI857 is indicated as “Not Available” in the second step of

Section 5 Maintenance and Trouble-Shooting Preliminary Actions for Online Upgrade

3BSE035980-510 389

the online upgrade, the expected time is reduced. See Second Step – Selecting
Units to Upgrade on page 392.

• If an upgrade of CI857 is indicated as “Recommended” in the second step of
the online upgrade, but the user decides not to upgrade, there will be a time
delay of 15 seconds after the switching in step 7, after which the INSUM
devices go to Failsafe.

• If an upgrade of CI857 is indicated as “Recommended” and the user decides to
do the upgrade, the communication between CI857 and the INSUM system is
broken two times. First, for some seconds during the seventh step, and later for
a longer time during the eighth step while the firmware is downloaded.

• If the CI857 does not reconnect within 300 seconds after the start of the
firmware download, the INSUM devices go to Failsafe.

• If an upgrade of CI857 is indicated as “Mandatory”, the communication
between CI857 and the INSUM system is broken at the switching in the
seventh step. This connection will not be reestablished until the upgrade of the
firmware of CI857. If the CI857 does not reconnect within 900 seconds after
the switching, the INSUM devices go to Failsafe. See Seventh Step –
Switching the Process Control on page 395.

Prepare and Plan for an Online Upgrade

Put your process in a stable state, in which you can perform an online upgrade with
as little interference as possible. Basically, this mean that you should try to identify
a stage in the process where you will not receive alarm bursts, and where the process
can handle a time interval of a few seconds without I/O communication and
controller execution.

Settings for High Integrity Controller

Access Enable

Before performing an online upgrade, ensure that all network cables are properly
connected to the controller and the network is functional.

For controllers using a redundant network configuration, ensure that both primary
and secondary network are operational before starting the online upgrade
sequence.

Online Upgrade Process Section 5 Maintenance and Trouble-Shooting

390 3BSE035980-510

Enable the Access Enable switch in the controller to complete the online upgrade.

Enable Extended Timeout for Safe Peer to Peer Clients

Enable the Access Enable switch in the controllers acting as Safe Peer to Peer
Clients (Safe MMS) to the system, to extend the timeout handling in the
communicating Control Modules.

Handover Limit Time

Before the online upgrade, the Handover limit time in the High Integrity Controller
must be specified in the Controller Settings dialog, and this setting must be
downloaded to the controller. This is important because the time out cannot be
adjusted without redoing the whole online upgrade procedure.

Online Upgrade Process

Even though this subsection is based on the online upgrade wizard, it merely
describes the process in a conceptual manner. Do not try to run the online upgrade
wizard solely on the basis of these steps.

To get a complete and comprehensive guidance to a successful online upgrade;
study this conceptual explanation and then carefully follow the instructions given in
the subsection Running Online Upgrade on page 396.

Primary, Backup and Trainee are three specific roles for redundant hardware units
during the online upgrade procedure. Consider the following to avoid any
misunderstanding of the meaning for these roles:

• Primary is a process role responsible for executing the application(s).

• Backup is a process role responsible for maintaining redundancy. This means
basically taking over the execution of a running application in case the Primary
shuts-down.

• Trainee is a process role the backup unit enters after disabling redundancy in
the online upgrade.

All components of the controller must be fully operational before starting the
Online Upgrade process and before performing the switch.

Section 5 Maintenance and Trouble-Shooting Online Upgrade Process

3BSE035980-510 391

 The online upgrade process can be performed using the nine steps in the Online
Upgrade Wizard, as follows:

First Step – Analyzing the Project

The first step starts the wizard and initiates the online upgrade sequence. The wizard
begins by analyzing the project in the Control Builder and in the controller, and
checks if an online upgrade is possible. The analysis checks that:

• Hardware configuration is correct, a redundant controller with supported CI
units only.

• All configured hardware units are available and functional.

• The applications in the redundant controller and in the Project Explorer are the
same. Thus no additional changes in the Control Builder applications are
permitted, besides connecting the new (hardware) libraries delivered with the
800xA for AC 800M system extension.

If you decide to terminate an upgrade procedure by clicking Cancel in the
wizard, there are more or less serious consequences attached to that decision.
Needless to say, performing an online upgrade demands thorough planning
before execution! There are some steps in the upgrade procedure that are more
critical than others.

For example (step 4 and 7), interrupting the procedure after upgrading firmware
in the fourth step will leave you with different firmware versions in the PMs, thus
no possibility to easily regain redundancy. After such an interruption in the fourth
step, you have to run online upgrade again or do an offline upgrade.

If the online upgrade process should be interrupted or fail, always try to run the
wizard at least one more time.

If your upgrade process still fails, study the subsection Solving an Interrupted
Online Upgrade on page 397.

Online Upgrade Process Section 5 Maintenance and Trouble-Shooting

392 3BSE035980-510

•

Figure 183. A schematic illustration of a redundant controller configuration before
start of Online Upgrade.

Second Step – Selecting Units to Upgrade

The wizard performs a firmware version check on the redundant controller (PM and
CI units) and another in the hardware libraries. An analysis compares the result of
the read-outs and lists mandatory firmware, recommended firmware and not
available firmware in a dialog box. The mandatory firmware must be upgraded, but
firmware listed as recommended can be skipped in the upgrade, since the existing
firmware is compatible with the new ones.

Third Step – Disabling the Redundancy

The wizard lists which corresponding units that will be upgraded. The backup will
be disconnected from the redundant controller and from now on it will be
considered as a Trainee. After the backup PM is changed to a trainee its application
will be removed and the PM 2 can no longer work as a backup. Thus the control
system is no longer redundant, the system is singular.

The purpose of the figure above and figures in the following steps, is to show the
components of a redundant controller and their different roles during the upgrade.
Hence, the figure does not illustrate how to connect a redundant control system.

PM 1CI 1

PM 2CI 2

Redundant controller:

Primary

Backup

Section 5 Maintenance and Trouble-Shooting Online Upgrade Process

3BSE035980-510 393

Figure 184. The redundancy is disabled and the backup is preparing for an
upgrade. Thus the role switches from Backup to Trainee.

Fourth Step – Upgrading Firmware

The firmware is downloaded to the backup redundant CI units (if any) and to the
Trainee.

This step provides three options:

1. Download firmware to the units and then wait until the upgrade is done (the
Next button can be selected),

2. Remove the unit and download the firmware from another system and then
insert the unit again.

A Refresh will verify that the upgraded units are physically present and have
correct firmware versions. A typical user-case for this option is when a unit has
been dismounted and upgraded elsewhere and then re-mounted afterwards

The redundancy line is marked with a cross to symbolize disabled redundancy. It
does not imply disabled communication, as the RCU cable or BC810 is still
physically attached. This means that PM 1 and PM 2 can still communicate).

During online upgrade of an HI Controller with SM811 and SIL3 applications, a
hot insert with activation is always needed either to regain redundancy after a
successful online upgrade, or if the redundancy has been broken during an
unsuccessful online upgrade attempt. Activate digital input 3 on the SM811 after
finishing the online upgrade wizard.

PM 1CI 1

PM 2CI 2

Before:

Primary

Backup

PM 1CI 1

PM 2CI 2

After:

Primary

Trainee

Online Upgrade Process Section 5 Maintenance and Trouble-Shooting

394 3BSE035980-510

again. Selecting refresh helps you proceed to the next upgrade step without
downloading firmware a second time to the unit.

3. Proceed to the next step (only possible if all units are physically present and
already have correct firmware versions).

Fifth Step – Downloading Applications to the Trainee

Before the Control Builder downloads the application to the trainee the Difference
Report is displayed. Study the report and decide whether to accept the difference
report or not. It is completely normal that the report reflects different library
versions. If you do not accept the difference report, you will return to step 5.

Sixth Step – Deciding the Online Upgrade Handover Limit

Although Online Upgrade Handover Limit is a quite simple timer function in online
upgrade, it still needs some considerations. At this stage the Primary is preparing to
switch over control to the Trainee. It is a critical step for the controlled process,
because during that time the task execution is halted. For more specific behavior of
CI units, see System 800xA System Guide Technical Data and Configuration
(3BSE041434*).The Online Upgrade Handover Time consists of time for stopping
applications in the Primary, copying and transferring all application values, and
handing over the control to the Trainee.

If the roll-back procedure fails, the I/O channels will immediately go to their Output
Set as Predefined (OSP) values.

Singular CI units will not be upgraded at this time. Instead they will be upgraded
in step eight.

If the defined Online Upgrade Handover Limit time is exceeded, the online
upgrade procedure will be interrupted, and a roll-back of control to the Primary
will take place. At the switch over control from Primary to the Trainee, a rollback
will conclude within the specified handover limit time.

Section 5 Maintenance and Trouble-Shooting Online Upgrade Process

3BSE035980-510 395

The suggested Online Upgrade Handover Limit in the wizard is based on the value
in the controller settings. The online upgrade accepts an Online Upgrade Handover
Limit of up to maximum 10 seconds (default is 3000 ms).

Seventh Step – Switching the Process Control
Performing a switching means basically that the online upgrade function sends a
switch command to the Primary to switch over alarm states, variable values etc, to
the Trainee and then resets itself. After the reset, the Trainee will exit its role and
enter the Primary role and take over the process control.

Figure 185. PM 1 and PM 2 are shifting roles. After this step the PM 2 will become
the Primary and execute the running application.

The Online Upgrade Handover Time is not equivalent to the total time that the
I/O channel values are frozen. When the new Primary starts up, the Applications
will start in the same way as at a “normal” warm restart after a download, for
example. All tasks will be started according to their priority, interval, and Offset.
This means that the Output freeze time is approximately equal to the Online
Upgrade Handover Time, plus task offset and execution time for the first scan,
plus delays incurred by higher-priority tasks.

If the error message -7000 is displayed for the SerialConnect function block,
disable and enable the SerialConnect function block to resume the
communication using Serial Protocol.

PM 1CI 1

PM 2CI 2

Before:

Primary

Trainee

PM 1CI 1

PM 2CI 2

After:

Trainee

Primary

Running Online Upgrade Section 5 Maintenance and Trouble-Shooting

396 3BSE035980-510

Eighth Step – Upgrading Firmware in the Remaining Units

This step upgrades the remaining units in the redundant controller, which means any
single CI units, the previous primary CI units and the old Primary PM. Similar to the
previous forth step it provides three options, download firmware to the units and
then wait until the upgrade is done (Next button can be selected). The Trainee resets
and read the applications states from Primary. After that it becomes a backup and
you should have full redundancy again.

Figure 186. The redundancy has been re-established.

Ninth Step – Summarizing the Upgrade Process

The wizard summarizes the results of the online upgrade procedure. It is possible to
save the summary by using the Save Summary button.

Running Online Upgrade

This subsection assumes that you have made all the necessary arrangements in your
applications for an online upgrade. If you are not sure about all the necessary
preparations, study the prerequisites given in Control and I/O, Release Notes,
(3BSE021377*) before running an online upgrade.

Make sure you have access to the Control Builder online help. To make sure: On the
Help menu, click Help Topics. Control Builder online help Welcome page opens.

The online upgrade function will perform all necessary controller resets
automatically. Thus you should not try to perform any reset on the redundant
controller while running an online upgrade.

PM 1CI 1

PM 2CI 2

Before:

Trainee

Primary

PM 1CI 1

PM 2CI 2

After:

Backup

Primary

Section 5 Maintenance and Trouble-Shooting Solving an Interrupted Online Upgrade

3BSE035980-510 397

Starting the Online Upgrade Wizard

From the Project Explorer hardware tree:

1. Right-click the controller and select Upgrade from the context menu. The
online upgrade wizard will open.

2. Click the Help button in the wizard. An easy to follow 9-step instruction will
open and guide you through the online upgrade.

The online upgrade instructions end here in the manual, and continue in the online
help!

Solving an Interrupted Online Upgrade

The solutions provided in this subsection assume that you have already tried to
restart the wizard but failed to continue the online upgrade process.

Error case handling different firmware versions in PM1 and PM2

The online upgrade has been interrupted with failure, which implies that PM1 and
PM2 have different firmware versions. The current situation is that one PM is
running your process and the other one is not responding (dead).

Perform a controller reset on the dead PM. Then down/upgrade the PM either with
the Serial Firmware Upgrade Tool or in another control system (by Hot Insert).

Error case handling different firmware versions in CI1 and CI2

The online upgrade has been interrupted with failure which implies that CI1 and CI2
have different firmware versions.

Start by correcting the PM firmware version according to the suggestions given
above in (PM1 and PM2). Then restart the wizard again and continue upgrading
firmware in the remaining CI unit(s).

If the failure should still remain then you must down/upgrade the CI unit(s) in
another control system (by Hot Insert).

A PM can be marked as Uncertain. This means that the Wizard cannot yet
determine firmware version for that PM. If a PM is marked as Uncertain, it can
either mean that the PM has been upgraded in another system previously or the
online upgrade was disrupted.

Trouble-Shooting Section 5 Maintenance and Trouble-Shooting

398 3BSE035980-510

Error case handling when I/O Channels have returned to OSP

The online upgrade has initially been interrupted due to time-out and then failed to
rollback the application to Primary. The consequence is that the I/O channels have
returned to OSP and neither one of the PMs are running the process. At this stage,
there is no possibility for online upgrade. You must start over by performing a
complete reset on all units and then begin downloading firmware and applications
again.

Trouble-Shooting

General

When a control system error occurs, it is important to investigate it as soon as
possible. In doing this, the possibility of finding and eliminating the problem will be
substantially increased. The reasons are:

• The personnel involved will not have forgotten what happened.

• The application software involved will not have been changed.

• The systems involved will not have been changed (location, setup etc.).

• You may need a work-around quickly, to be able to continue your work.

• Some errors only occur under very special circumstances and/or in special
hardware/software configurations. The person who reports the problem may
have the only installation/configuration where we know it could occur.

Hot Insert or more precisely the insertion of a SM811 into a running system
affects SIL3 applications. The applications will be stopped while getting
synchronized. When running SIL3 applications, the start of the synchronization
must be accepted by the user, to configure the inserted module. This is performed
by activating digital input 3 on the SM811.

A well-described error, with all vital information included, will always increase
the probability of correcting the error quickly and effectively. Error Reports on
page 441 provides some hints when writing an error report.

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 399

The task of trouble-shooting is usually very difficult, and requires a great deal of
intuition and ability to draw conclusions from known facts. This subsection aims to
provide some guidelines on solving problems.

Here are some basic troubleshooting questions which should first be answered.

• What is the problem?

• Is it a known problem? Check the available information (for example, Release
Notes and Product Bulletins) and discuss it with colleagues.

• Has the system worked previously (with the same hardware)? If so, the
problem may have occurred due to poor installation or due to setup problems.

• Has anything been modified recently? The problem is often to be found in
modifications. If possible, revert to the previous state, and test.

• Can the problem be linked to any special event?

• Is it possible to reproduce the problem?

Log Files

The Industrial IT products described in this subsection have built-in logging
routines that continuously write to log files. Log files will contain important
information whenever a failure occurs during a programming session, or when a
controller is running. These files and the crash files (see section Crash Dumps for
Analysis and Fault-Localization on page 415) are very useful for troubleshooting
and contain crucial information for analyzing malfunctions.

System Log File

The system log is created the first time Control Builder is started (or if there is no
log file), and is used to store general information concerning Control Builder.
Examples of information logged are start/stop of Control Builder and changes in the
setup of Control Builder via the Tools menu. The System log can be read via the

If Control Builder is running on a terminal server the log files are saved in a
particular folder for the used session. For further information, see Remote
Desktop Connection on page 358.

Log Files Section 5 Maintenance and Trouble-Shooting

400 3BSE035980-510

menu entry Tools > Maintenance > Analysis > System Log. Figure 187 shows an
example of the system log.

The path and file name of the System log are given in Table 29.

Session Log Files

At start-up, Control Builder, OPC Server for AC 800M, MMS Server for AC 800M,
SoftController, and the Tool Routing Service for AC 800M, automatically creates a
session log file on the hard disk. If the controller is a High Integrity controller, it
also creates a Controller Configuration Integrity log. These files contain information
generated during one session, that is, from the time the product is started, until it is
stopped. New files will be created upon each new start-up.

At start-up, information about hardware and software versions, and later,
information on system events, such as mode changes (Offline to Online, or vice
versa) and error print-outs, will be logged in the session log. For High Integrity
controllers, the Controller Configuration Integrity log will show the result of all test
compilations that are made to make sure that the controller is not corrupted. Session

Figure 187. An example of the system log

Table 29. The System log file path.

Denomination Path/Note

Control
Builder M
System Log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\

Control Builder M Professional \LogFiles\System.log

Note

Only one version of this file exists.

(1) The default working directory is shown.

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 401

logs are continuously updated in a running system, and whenever a problem occurs
it is a good idea to look at the logs to see if there are any printouts. It is possible to
read log files for the current session via the menus.

Ten successive start-ups will generate the following session log files; Session.log
(from last start-up), Session.log _bak1 (next to last), Session.log _bak2, etc to
Session.log _bak9 (the first start-up or oldest saved start-up). This means that when
you start-up the system a eleventh time Session.log _bak9 will be overwritten and
the previous Session.log will be renamed as Session.log _bak1 and a new
Session.log will be created.

• Session.LOG

• Session.LOG_bak1

• Session.LOG_bakn.......

• Session.LOG_bak9

• Session.LOG_bak9

Below is an excerpt from Control Builder session log.

Session logs are saved from the previous nine sessions. It is important to save a
file containing information about a problem, with a new name, before it is
overwritten.

You will lose the oldest saved file because all the files are pushed one step after
each start-up. This means that (_bak8) is pushed to (_bak9), (_bak7) to (_bak8)
etc and Session.log to (_bak1).

Log Files Section 5 Maintenance and Trouble-Shooting

402 3BSE035980-510

Figure 188. The first section of the Control Builder session log. Pay special
attention to Warnings (W) and Errors (E)

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 403

The paths and file names of the session logs are given in Table 30.

Table 30. Session log file paths.

Denomination Path/Note

Control
Builder M
session log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional \LogFiles\Session.log

Note

Session log files stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

Controller
Configuration
Integrity Log

(This log is only generated for High Integrity controllers.)

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professiona\LogFiles\CCI_Session.log

Note

Session log files stored from the last 9 sessions:
CCI_Session.log
CCI_Session.log_bak1, CCI_Session.log_bak2, CCI_Session.log_bakn...
CCI_Session.log_bak9

OPC Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\OPC Server for AC 800M\
LogFiles\Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

Log Files Section 5 Maintenance and Trouble-Shooting

404 3BSE035980-510

MMS Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ MMS Server for AC 800M\
Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

Tool Routing
Service
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ Tool Routing Service for AC 800M \
Session.log

Note

Session log files are stored from the last sessions:
Session.log
Session.log_Bak

SoftController
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ SoftController \ Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

(1) The default working directory is shown.

Table 30. Session log file paths. (Continued)

Denomination Path/Note

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 405

OPC Server (Session.log) Example

The list example shows an extract from an OPC Server session log file and how to
interpret the given data in four separate error occurrences. Important information
has been highlighted with typeface bold.

E = error, AE = Alarm Event, DA = Data Access.

E 2003-11-07 11:11:54.867 On Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:03.335 On Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

E 2003-11-07 11:12:04.913 Off Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:27.398 Off Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

1. The first event description tells us that the OPC server lost connection (On) to
controller for Alarm and Event subscription (and when this error occurred).

2. The second event description tells us that the OPC server also lost connection
(On) to controller for Data and Access subscription.

3. The third event description tells us that the OPC server regained connection
(Off) to controller for Alarm and Event subscription.

4. The forth event description tells us that the OPC server regained connection
(Off) to controller for Data and Access subscription.

As you can see, letter (E) stands for error and it occurs both when error activates
(On) and when the same error is gone (Off).

Log Files Section 5 Maintenance and Trouble-Shooting

406 3BSE035980-510

Control Builder Start Log

Control Builder creates a Start Log file for logging the last Offline to Online transfer
(in Test or Online mode). Information, such as warnings and error messages, will be
logged. The Start log is very useful when investigating errors that might occur
during or just after an Offline -> Online transition. Sometimes the Start log will give
a natural explanation of what at first looks like an error (for example, lost Cold
Retain values).

The nine latest Start logs are saved.

The path and file name of the Control Builder start log, are given in Table 31.

It is important to save a file containing information about a problem, with a new
name before it is overwritten. Furthermore, check that the date and time in the
Start log correspond with the time when the problem occurred.

Table 31. The Control Builder start log file path.

Denomination Path/Note

Control
Builder M Start
log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\startlog.txt

Note

The nine latest Start log files are saved:
startlog.txt
startlog.txt_bak1,startlog.txt_bak2, startlog.txt_bakn....
startlog.txt_bak9

(1) The default working directory is shown.

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 407

Field Bus Parameter Log Files

During compilation and simulation, CI851, CI854 and CI860 master parameters
will be automatically calculated.

The calculation is performed for all controllers in the project and for all masters
connected to the controllers. The result is sent to text files, which is stored in the
same place as the Control Builder log files. The text files have no backup, and are
replaced at every compilation and simulation.

The path and file name of the Field bus parameter log files, are given in Table 32.

Table 32. The Field bus parameter log files path.

Denomination Path/Note

CI851
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\Profibus_DP_Calculation.txt

(1) The default working directory is shown.

CI854
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\Profibus_DPV1_Calculation.txt

CI860
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\FF_HSE_Calculation.txt

Log Files Section 5 Maintenance and Trouble-Shooting

408 3BSE035980-510

Device Import Wizard Log File

When Device Import wizard is used a log file is created. If any failure during the
import occurs, errors and/or warnings are written to the log file, together with a text
describing the error/warning.

For a successful creation of a hardware definition file the log file contains some
entries: date and time of use, version of wizard and parser component, contents of
the device description file and contents of the generated hardware definition file.

When the file size of a log file reaches 10MB it will be renamed next time the
Device Import Wizard is invoked and a new log file is created. If there are an backup
file at that time, it will be deleted.

PROFINET configuration log file

The Control Builder creates a log file PROFINET_Configuration.txt during
download. This log file will have the result of the download compilation for the
current and previous configurations. The log file can store data upto 10 MB and is
stored in the LogFiles directory in Control Builder. The current compilation result is
stored at the end of the log file.

If the log file exceeds the maximum size of 10 MB, then the file is automatically
saved as PROFINET_Configuration1.txt and a new
PROFINET_Configuration.txt is created. A maximum of nine old log files will be
saved before the oldest file gets overwritten. The log file also contains internally
calculated data that are not available in the Control Builder.

Table 33. The Device Import Wizard log file path

Denomination Path/Note

Device Import
Wizard log file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\DIW.log

(1) The default working directory is shown

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 409

Control Builder System Information Report

The system information report is a list of hardware, software and setup information
for an engineering station. This information is generated by a menu command and
presented in a text editor.

To generate a new report perform either of these two alternatives.

• Select menu Help > About Control Builder M > List all Information

• In the Control Builder Setup Wizard, click Show Settings button.
This alternative generates almost the same information as the alternative above,
but fewer Environment variables are printed.

The path and file name of the Control Builder M System information report file are
shown in Table 35.

Table 34. The Device Import Wizard log file path

Denomination Path/Note

PROFINET
Configuration
log file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\PROFINET_Configuration.txt

(1) The default working directory is shown

It is important to generate a new file containing information that was valid at the
time the problem occurred.

Table 35. The Control Builder system information report file path.

Denomination Path/Note

Control
Builder M
System
information
report

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Control Builder M Professional\LogFiles\ SystemInformation.txt

(1) The default working directory is shown.

Log Files Section 5 Maintenance and Trouble-Shooting

410 3BSE035980-510

Heap Statistics Log

There is heap statistics log file for SoftController. Every time a message “memory
full” occurs (see Figure 189) in these products, the system software will
automatically generate a heap statistics log file containing information about the
content of the heap1.

If “memory full” occurs in a situation that cannot be explained as normal, then this
file should be included in an error report to your supplier’s service department.

When a system is unable to store more information in the heap, an error message
will be displayed. In most cases (more than 98%), this is due to an attempt to store
too much information in too small a heap. If this occurs for a product running on an
engineering station, increase the heap size for that product, using the Setup Wizard.

Figure 189. The “memory full” message.

The paths and file names of the heap statistics log files are given in Table 36

Controller System Log

Controllers have a circular log buffer that can hold a certain amount of information,
normally all information that has been generated during the last 5 to 8 start-ups.

1. A product, for example, a soft controller, uses a general memory area to store information. This area is called a
heap. In the engineering station this area does not necessarily reside in the RAM memory.

Table 36. The heap statistics log file path

Denomination Path/Note

SoftController
heap statistics
log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\SoftController \heapstat.dat

Note

The file is intended to be stored and included in an error report.

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 411

A lot of the information gathered in a controller log file can be of great assistance,
but a controller file is circular, which means that the last error often disguises more
important previous errors. This means that the original error can be hard to discover.
Therefore, you are advised to first save the log file to a safe location (no risk of
deleting history) and then fault-find your way back. After renaming the first
controller log file, it is safe to fetch as many controller log files as necessary.

Log Files Section 5 Maintenance and Trouble-Shooting

412 3BSE035980-510

The Controller System log is never deleted. Provided that the battery backup is
working properly, the information can be retained during a power failure. This
function makes it possible to restart a faulty system immediately to regain control of
the process, without losing vital information about the error.

The recommended way to access the Controller System log information is to fetch it
via Control Builder. Selecting Tools > Maintenance > Remote System… will
show a Remote System dialog, see Figure 190.

Figure 190. The Remote System dialog box.

Enter the controller identity (the IP address) and click on the Show Controller Log
button to show the Controller System Log.

The information will be shown in a text editor and also be stored in a file.

You must first save the Controller system log file on a safe location before fault-
finding; it is much more difficult to identifying the original error after several
startups.

A redundant controller creates one log file for the primary unit and one for the
backup unit, hence two different log files.

Section 5 Maintenance and Trouble-Shooting Log Files

3BSE035980-510 413

However, the first controller log can still be overwritten. The 'First-in-First-out'
principle is still valid for controller logs if you activate the ‘Show Controller Log’
function from the Project Explorer.

Figure 191 below, is an excerpt of the controller system log.

Figure 191. One section of the controller system log showing the actual firmware in
the controller.

The path and file name of the Controller System log file are given in Table 37.

Controller Logs Sent to Computers at Shutdown of Controller

At a controller shutdown the Controller System log automatically is sent out on the
Control Network as a broadcast message. It is fetched and stored in the working
folder for the MMS Server on all computeors running an MMS Server.

If the Controller System log, fetched via the Remote System dialog, after a
shutdown is empty due to a battery failure in the controller, the log will still be
present at all computers running an MMS Server. It is then possible to find it in
the following path:

C:\ABB Industrial IT Data\Control IT Data\MMS Server for AC 800M\
Controller_a_b_c_d.log

In this path you will also find the communication interface log file
(CI_a_b_c_d.log).

Log Files Section 5 Maintenance and Trouble-Shooting

414 3BSE035980-510

Table 37. The controller system log and communication interface log file paths .

Denomination Path/Note

Controller
System log

Primary CPU

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(1)\Control Builder M
Professional\LogFiles\Controller_a_b_c_d.log

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 410.
The nine latest Controller System logs are saved:
Controller_a_b_c_d.log
Controller_a_b_c_d.log_bak1, Controller_a_b_c_d.log_bak2, etc
Controller_a_b_c_d.log_bak9

Controller
System log

Backup CPU

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(2)\Control Builder M
Professional\LogFiles\BackupCPU_a_b_c_d.log

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 410.
The nine latest Controller System logs are saved:
BackupCPU_a_b_c_d.log
BackupCPU_a_b_c_d.log_bak1, BackupCPU_a_b_c_d.log_bak2, etc
BackupCPU_a_b_c_d.log_bak9

Section 5 Maintenance and Trouble-Shooting Crash Dumps for Analysis and Fault-Localization

3BSE035980-510 415

Crash Dumps for Analysis and Fault-Localization

If a crash occurs (in Control Builder, OPC Server, SoftController, MMS Server
for AC 800M, or the Tool Routing Service for AC 800M), two new files are
generated at the same location as the session log files. The first one is a dump file
and the second is a rewritten session log file. These two files contain crucial
information that should be delivered to the support personnel

If a Control Builder crash occurs at 16:20 on the 19:th of May, then a dump file and
a rewritten session log file will look like:

ControlBuilderPro 2006-05-19 16.20.29.184.dmp

Communication
Interface log

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(1)\Control Builder M
Professional\LogFiles\CI_a_b_c_d.log

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 410.
The nine latest Communication Interface logs are saved:
CI_a_b_c_d.log
CI_a_b_c_d.log_bak1, CI_a_b_c_d.log_bak2, etc
CI_a_b_c_d.log_bak9

(1) The default working directory is shown.
(2) The default working directory is shown.

The Communication Interface log (Example, the log in SM810, CI867 and
CI868) is not battery protected. Hence, the log will be erased when the power to
the controller is cut. The log includes vital information after a controller
shutdown due to safety measures e.g. task latency etc. It is important to restart the
AC 800M HI controller by pressing the INIT button, because this will preserve
the log. Note that any attempt of restarting the AC 800M HI controller by
toggling power will erase the log.

Table 37. The controller system log and communication interface log file paths (Continued).

Denomination Path/Note

Remote Systems Information Section 5 Maintenance and Trouble-Shooting

416 3BSE035980-510

ControlBuilderPro 2006-05-19 16.20.29.184 Session.LOG

Remote Systems Information

A connected remote control system1 can be inspected and maintained from Control
Builder. This can be an important tool when troubleshooting the system.

Select Tools > Maintenance > Remote System to open the Remote System dialog,
see Figure 192.

Figure 192. Remote System dialog.

1. Remote systems are controllers, OPC servers, and engineering stations connected to the same Control network
as your own local system.

The “Show Remote System” function can only list nodes on the same physical
network! Thus, you must connect a Control Builder PC on the same Ethernet
network; you cannot Show Remote System on nodes beyond routers, sub-
networks etc.

Section 5 Maintenance and Trouble-Shooting Remote Systems Information

3BSE035980-510 417

The following remote system functions are available, see the Table 38 below. Click
on a button in the dialog to retrieve information.

Table 38. The available remote system dialog functions.

Menu Item Function

Show Remote Systems Shows a list of all addresses to the control
systems (including MMS process numbers)
connected to the same network as the requesting
system.

Show Downloaded Items Shows information about controller configuration
and about the application(s) running in the
selected remote controller system, such as
application name, application status, compilation
date and time, compiling engineering station
identity, and the checksum of the application. You
can also remove a running application here.

You can also access the source code report from
the Show Downloaded Items dialog, see Source
Code Report Generated for Project in the System
800xA Control AC 800M Getting Started
(3BSE041880*).

Show Firmware Information Shows information from a controller, such as unit
position, type of hardware unit, name and version
of the current firmware and firmware creation date.
Firmware can also be loaded to selected
controllers here.

Show MMS Variables Shows all the MMS variables in the system.

Show Controller Log Shows the Controller System log, described in the
section Controller System Log on page 410.

Show MMS Connections Shows connection information about the remote
systems, such as IP address, server/client
function, identity of the connected system
(destination system), usage, and number and
maximum of transactions sent since connection
was established.

Remote Systems Information Section 5 Maintenance and Trouble-Shooting

418 3BSE035980-510

Show Controller Analysis Shows the Controller Analysis dialog that is used
to:

• Reset the Module Bus Fail Counters in the
selected controller.

• Get the selected result/data from the
controller.

The user can obtain results for "Heap Statistics",
"Module Bus Fail Counters", "Module Bus I/O
Revisions", "Network Information" and "Thread
Execution".

The respective result, obtained from the controller
log, is saved to a new log file. The file name of the
new log contains the "Controller ID" and the
selected result. For example, 172.16.85.187_Heap
Statistics.log.

Show Diagnostics for
Communication Variables

Shows a diagnostic overview of the internal and
external communication using the communication
variables in the controller. For details, see
Diagnostics for Communication Variables on page
419.

The dialog displays:

• Unresolved communication variables

• Different counters for errors/warnings, cycle
times, and timeout.

• Details about variable transaction in each
server connection and client connection.

• Out variables of the selected node.

For further information, refer to Control Builder online help. Use the Help button
in the Remote System dialog, see Figure 192.

Table 38. The available remote system dialog functions. (Continued)

Menu Item Function

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

3BSE035980-510 419

Diagnostics for Communication Variables

The diagnostics tool for communication variables can be launched from the
Remote System dialog of the selected controller. Click Show Diagnostics for
Communication Variables in the Remote System dialog.

The first window that appears is the overview window. This window is a modeless
window, that is, it is possible to bring up and work in other windows in parallel.

The Diagnostic Overview for Communication Variables dialog contains three panes
that display information about the communication variables that are communicating
through the applications in the selected controller.

Figure 193. Diagnostic Overview for Communication Variables dialog

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

420 3BSE035980-510

The information is cyclically updated. The update interval is set to 5 seconds.

Counters Pane

The first pane lists different counters for the communication variables in the
controller. Each column in the pane corresponds to a cycle time category of the
communication variables.

The counters display the following values corresponding to the cycle time category
in different columns:

• Internal type errors–Type mismatch during communication between
applications within this controller.

• External type errors–Type mismatch during communication with an application
in another controller.

• Uncertains/Warnings–Variables that are not updated within the requested time
interval.

• Timeouts–Variables that are not updated within the requested timeout interval.

• Min Cycle Time–The lowest detected cycle time.

• Max Cycle Time–The highest detected cycle time.

• Average Cycle Time–The average cycle time.

In From and Out To Panes

The second pane "In From" contains information about the external client
connections with respect to communication variables in the selected controller. The
third pane "Out To" contains information about the external server connections with
respect to communication variables in the selected controller.

Each pane contains columns for:

• Variables/s–An average value, calculated since last reset time.

• Transactions–Number of transactions since last reset time.

• Transactions/s–An average value, calculated since last reset time.

• Max. Transactions/s–Maximum number of transactions per second since last
reset time.

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

3BSE035980-510 421

• Expected Transactions/s–Number of expected transactions per second from the
client. This column appears in the In From pane only.

The Last reset time shows the time when the Reset button was pressed.

Buttons

There are seven buttons in the overview:

• Show Unresolved Variables–Click to open the Unresolved Variables dialog.

• Show Out Variables–Click to open the Out Variables dialog.

• Reset–Click to reset the information in the controller. New values will be
fetched.

• Details–Click to open the Detailed Diagnostics dialog for the selected client
connection.

• Overview–Click to open the Diagnostic Overview for the selected server or
client connection.

• Help–Click to open the online help topic for the diagnostic tool.

• Close–Click to close the window.

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

422 3BSE035980-510

Show Unresolved Variables

The Unresolved Variables dialog displays the list of unresolved variables. Select the
variable and click Search to open the Search & Navigation tool for the selected
variable.

Figure 194. Unresolved Variables dialog

The Search works in Offline mode and when the setting "Iterative Search in
Online Mode" is set to false.

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

3BSE035980-510 423

Show Out Variables

The Out Variables dialog displays the list of out variables in the controller.

Figure 195. The Out Variables dialog

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

424 3BSE035980-510

Details

The Detailed Diagnostics dialog displays the information for the different cycle time
groups in a selected client connection. The following values are shown:

• Variables per second. An average value, calculated since last reset time.

• Number of transactions since last reset time.

• Transaction per second. An average value, calculated since last reset time.

• Maximum number of transactions per second since last reset time.

• Expected number of transaction per second. A value that is calculated at
compile time.

Click Overview to open the Diagnostic Overview (Figure 193) for the controller
that owns this client connection.

The information is cyclically updated. The interval is set to 5 seconds and it cannot
be changed.

Figure 196. Detailed Diagnostics dialog

Section 5 Maintenance and Trouble-Shooting Analysis Tools

3BSE035980-510 425

Analysis Tools

Control Builder Tools

The Control Builder Tools menu contains more useful tools for troubleshooting.
Note that a great deal of the information is only valuable for your supplier’s service
department.

Select Tools > Maintenance > Analysis to open the following menu items, see
Table 39.

For further information, refer to Control Builder online help.

Table 39. The menu items of the Analysis tool.

Menu Item Function

Disable Double-buffering Not useful for troubleshooting

Disable Information Zoom Not useful for troubleshooting

Disable Clipping Not useful for troubleshooting

Image Selector Info in Online
Mode

Not useful for troubleshooting

Image Selector Information Not useful for troubleshooting

Show control modules in
Online Mode

Not useful for troubleshooting

Write Variable Memory Used for counting modules and instances.

Write Exported Variables Not useful for troubleshooting

Write Variables in View Not useful for troubleshooting

Start log Shows the Control Builder Start log, described in
Control Builder Start Log on page 406.

System log Shows the Control Builder System log, described in
System Log File on page 399.

Analysis Tools Section 5 Maintenance and Trouble-Shooting

426 3BSE035980-510

Statistics for Application

The user can get the statistics about the application, for example, the number of
instances that exists in the application. This is useful when the maximum number of
instances has been exceeded. From the context menu of the selected application,
select Statistics as shown in Figure 197.

Figure 197. Obtaining statistics for the application

Section 5 Maintenance and Trouble-Shooting System Diagnostics

3BSE035980-510 427

The maximum number of instances in an application is 65536. When this number is
exceeded, the following dialog is shown.

Figure 198. Error message shown at download, when an application has too many
instances.

System Diagnostics

System Diagnostics Function Block

The Basic library contains a function block type called System Diagnostics. You can
use this function block type to measure and display the following functions.

• Cyclic load resulting from task execution,

• Stop time and memory usage during a controller download,

• Current memory in use,

• Maximum memory used since the last cold start,

• Alarm and event information,

• Total CPU Load,

• Ethernet statistics:

– number of data packages sent,

– number of sent data packages that were lost,

– number of data packages received,

– number of received data packages that were lost.

The System Diagnostics function block is, as default, located in one of the Program
folders of the Project Explorer tree, see Figure 199.

System Diagnostics Section 5 Maintenance and Trouble-Shooting

428 3BSE035980-510

Figure 199. The System Diagnostics function block

Values can be updated either on command or cyclically using the Interaction
Window, which is opened by selecting the System Diagnostics function block, right-
clicking, and then selecting Interaction Window.

System Diagnostics Interaction Window.

The System Diagnostics Interaction window contains system memory and program
download information. The interaction windows can be displayed in two versions,
Simple and Advanced.

The Simple Interaction window contains the following information:

The System Diagnostics Interaction window is only available in Test/Online
mode.

The values shown in Test mode are not those valid in Online mode. You cannot
use this information to check in advance which controller size you have to
purchase.

Table 40. The Simple Interaction window

Function Description

System Displays the TCP/IP address of the supervised system.

Cyclic load Displays cyclic load due to task execution in percent.

Latest update Displays the time of the last update.

Section 5 Maintenance and Trouble-Shooting System Diagnostics

3BSE035980-510 429

 Click on the Advanced button, and the Advanced Interaction window will appear. It
contains the following additional information.

Cyclic update Cyclic update is activated by checking the check box.
Cyclic update interval is set in time format, for example 5 m
(5 minutes).

Total Load CPU Shows the total CPU load for the controller. The total load
is available as a parameter of type dint, called
TotalSystemLoadPerCent.

Ethernet Statistics By clicking the Ethernet button, you display Ethernet
statistics in a separate window.

This window shows the number of sent/received
packages, and how many of those that were lost. These
statistics are available as parameters. There are also
parameters for resetting the counters. See online help for
the SystemDiagnostics function block.

Table 41. The Advanced interaction window.

Function Description

Memory size The allocated heap size, see Figure 200.

Used memory The part of the heap used in bytes and percent of the total
heap size.

Max used memory The maximum part of the heap used in bytes and percent of
the total heap size.

Memory quota The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.
Note. This setting is only used for a warning indication.

Stop time Stop time during the last download.

Init peak memory Memory used during initiation phase.

Table 40. The Simple Interaction window (Continued)

Function Description

System Diagnostics Section 5 Maintenance and Trouble-Shooting

430 3BSE035980-510

In the System Diagnostics function block, “Memory size” is the total physical
memory, minus executing firmware. This is sometimes also called the “heap”.

Used memory at
stop

The part of the heap used during the stop phase in bytes
and percent of the total heap size.

Max used memory at
stop

The maximum part of the heap used during the stop phase
in bytes and percent of the total heap size.

Memory quota at
download

The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.

Alarm Event A summary of alarm and event information

Table 41. The Advanced interaction window. (Continued)

Function Description

Section 5 Maintenance and Trouble-Shooting System Diagnostics

3BSE035980-510 431

Memory usage is also displayed in the dialog “Heap Utilization” which can be
displayed for each controller. The available memory is called “Non-Used Heap” and
the rest is called “Used Shared Heap”.

Figure 200. Memory organization

SystemDiagnosticsSM Function Block

This function block displays the RAM usage on the SM810/SM811 module. It also
displays execution cyclicity and time for the SM diagnostic running in the PM
module. Update is made by an operator request or cyclically if decided in the
operator interface. Extreme values are locked and displayed. This locked
information may be reset by a button in the operator interface. The type of SM is
noted as well as if the SM does not exist.

Available Memory

“Non-used heap”
Memory Size
“Heap”

Empty Project

Used by Firmware

Executing Firmware

Spare
(20-50%)

8-256 MB
RAMUsed

Shared
Heap

Max
Used
Shared
Heap

System Diagnostics Section 5 Maintenance and Trouble-Shooting

432 3BSE035980-510

The object is non-SIL. The object can not be executed in the time critical task.

SystemDiagnosticsSM Interaction Window.

The interaction window contains information about the supervised system, the loads
on the System Memory, SM type, cyclic update rate, and startup status information.

The values displayed do not have any physical reality.

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting Error Symptoms

3BSE035980-510 433

Trouble-Shooting Error Symptoms

Below are some examples of error symptoms and suggested measures.

Table 42. Examples of error symptoms and suggested measures.

Error Symptom Measure

Control Builder fails. 1.Click OK.

2.Copy the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 415), the
Start Log and the Heap Statistics Log files (if there are
any).

3.Read the Session Log, and see if there is any
information that indicates the source of the problem.

4.Try to start Control Builder. If it starts, select
Help>About Control Builder M>List all information
in the Project Explorer and the Control Builder System
Information Report will be created.

5.Try to reproduce the fault, if possible. If the problem is
reproducible, export the project with all dependencies
and include the .afw file in the error report.

6.Check basic things, such as if the hard disk full.

7.If the fault appears during Offline to Online transfer,
and it is possible to reproduce the fault, check the
message written in the message pane, just prior to
fault occurrence. This will give a hint about what
operation (for example, sorting, compiling) and what
application is involved in the problem.

8.Make an error report and include the log files.

A Memory Full message appears. The
Heap Statistics log (SoftController)
states that the heap is full.

Increase the heap size in SoftController, see Heap
Statistics Log on page 410. Open Help > About and
check the amount of free memory. Free memory should
not be lower than 30%.

Trouble-Shooting Error Symptoms Section 5 Maintenance and Trouble-Shooting

434 3BSE035980-510

A Too many instances in application
message appears.

The maximum number of above 65535
instances has been reached.

1.Try to reduce your application, see Statistics for
Application on page 426.

Cannot create/open a control project. An
Action denied message appears.

License Error. When the Control Builder
connects to an 800xA system a Control
Builder license is checked out. If the
license does not exist or the license
count has been exceeded, a dialog
window appears on the screen,
displaying that the action was denied.

1.Close a running Control Builder client temporarily, in
order to release a license.

2.Contact your System Administrator to extend the
number of license features.

Cannot download to a controller without
a system wide annoyance behavior.

License Error. After the Project Explorer
has made a successful download to a
controller, the Controller Capacity Points
(CCP) information is stored and a
license enforcement cycle is started by a
license agent. If the maximum number of
CCP counts is exceeded, the license
server will start a system wide
annoyance behavior.

1.Check the CCP count of each controller (that
participated in the download) from the corresponding
Controller aspect pane (select CCP tab) for each
controller, and add the CCP counts. See Checking the
CCP Count for a Controller in System 800xA Control,
AC 800M, Getting Started (3BSE041880*) manual.

2.Contact your System Administrator to increase the
maximum number of CCP counts in the CCP license.

The MMS Server, OPC Server, Tool
Routing Service, or SoftController fails.

1.Click OK.

2.Locate the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 415).

3.Read the Session Log, and see if there is any
information that points to the source of the problem.

4.Make an error report and include the log file.

Table 42. Examples of error symptoms and suggested measures. (Continued)

Error Symptom Measure

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting Error Symptoms

3BSE035980-510 435

The controller fails. The red F LED is lit,
and the green R LED is off.

1.Press the Init push-button on the controller until the
Run LED starts to blink. Note that the controller will be
empty if the red F LED is lit, that is, the application
program has been deleted.

2.Fetch the Controller System log and save it, see
Remote Systems Information on page 416.

3.Study the log, and find the marked reason for the stop
(normally, at the end of the log).

4.If an OPC Server for AC 800M is involved in
communication, check the OPC Server function.

5.Make an error report and include the saved log files.

6.Reload the application.

7.If possible, try to reproduce the problem. If the
problem is reproducible, export the project with all
dependencies and include the .afw file in the error
report.

Note that behavior similar to the example above is when
there is no firmware installed in the controller (for
example, when a new controller has been installed).

Table 42. Examples of error symptoms and suggested measures. (Continued)

Error Symptom Measure

Common Reason for Shut-Down AC 800M HI Controller Section 5 Maintenance and Trouble-

436 3BSE035980-510

Common Reason for Shut-Down AC 800M HI Controller

A number of different safety measures are used for supervision which all is potential
reasons for a deliberate shutdown of the system. Some of the more common reasons
are listed below:

Table 43. Common reasons for shutdown

Measure Initial solution for download Problem solution

FDRT Error text in log file

FDRT tests not finished

Increase the FDRT setting for the
controller to 10000 ms.

FDRT needs to be larger than the
sum of the first scan execution time
for all tasks in the largest
application executing in the
controller.

The first scan execution time of a
task is presented as Max execution
time in the Task Properties dialog.

Task latency Error text in CI log file

Latency in task

Increase the Accepted latency
setting for each task (default
10%, minimum 10ms, max.
100%).

• Run each task to get an idea
of execution time. Configure
the controller so that tasks are
not scheduled to run
simultaneously. Use the Offset
setting for tasks to prevent
them interfering with each
other. See Overrun and
Latency on page 163.

• Let tasks with low accepted
latency have higher priority

• Use different priority for all
tasks if possible.

Section 5 Maintenance and Trouble-Shooting Common Reason for Shut-Down AC 800M HI

3BSE035980-510 437

Modulebus Scan Time Error text in log file

Modulebus: Scan time
error

Increase the modulebus scan
time.

The default setting is 100 ms
with also is the maximum value.

Calculate the minimum scan time
possible for the I/O configuration
that is used, using the formula in
section Modulebus Scanning of
Digital/Analog modules in the
System 800xA System Guide
Technical Data and Configuration
(3BSE041434*).
Set the modulebus scan time to a
value as high as possible but
higher than the calculated
minimum value and lower than the
interval time of the fastest task
using I/O signals.

A Supervision function
implemented in the controller
generates a system alarm if the
time taken to scan all modules
exceeds the configured value +10
ms. If the configured value is set to
0, then the Supervision is disabled.

Table 43. Common reasons for shutdown

Measure Initial solution for download Problem solution

Common Reason for Shut-Down AC 800M HI Controller Section 5 Maintenance and Trouble-

438 3BSE035980-510

Collection of Cold Retain
Values CoRV (only SIL3)

Cold Retain values are stored
cyclically for SIL3 applications. If
storing fails, it leads to a failed
warm restart after power fail.

Error text in log file:

a)Failure - CoRV saving
in PM

or

b) Time-out during
collection of CoRV data
in SM

The collection of Cold Retain
values has failed for a SIL3
application.

a) Find the next error message
starting the variable identified as
the root of the problem e.g.
CRC error detected.
POUInstance index: 2,
Varoffset: 127

Analyze why the variable is
detected as different between PM
and SM, e.g. to check if the
variable is an output parameter
from an NonSIL/SIL restricted
function.

b) The controller load is too high to
finish the collection of Cold Retain
values in time. If persistent, this will
lead to a failing warm restart at
next power fail.

Cold Retain Values missing
for SIL3 application at
power fail restart

Controller shut down at power
fail warm restart with error text in
log file:

Invalid CoRV data
detected for some SIL-3
application

Restart controller and be aware of
system events indicating problems
with Cold Retain storage for SIL3
applications. Correct any problems
as described above.

Table 43. Common reasons for shutdown

Measure Initial solution for download Problem solution

Section 5 Maintenance and Trouble-Shooting Common Reason for Shut-Down AC 800M HI

3BSE035980-510 439

Normally when a redundant controller has been halted/crashed then the F(ault) LED
will flash on the primary CPU unit. However, to obtain the latest information in the
Controller log it is important to restart this CPU by shortly pressing the INIT push
button (less than 2.5 seconds). The backup CPU will then automatically be restarted
as well. In some situations the F(ault) LED may flash on both CPU units. Then
restart the CPU that was primary before the halt/crash.

Study the following example of printouts from normal shutdown due to task latency:

Modulebus Discrepancy Modulebus frame discrepancy

Example of text in log file:
4180 MBM1 SM vs PM CRC32
fail ad 0x44 (1,3,ES)

E: Modulebus frame
discrepancy

Address AccessType
Data(bin) Unused
To Fr Mi Ma Ci

PM: 404 WriteDigital
0100010101010101
00000000 44 00 00 0A 10

SM: 404 WriteDigital
0101010101010101
00000000 44 00 00 0A 10

The rows beginning with PM: and
SM: shows the data that has
shown a discrepancy.

Find the affected IO unit address
and compare the bits to find out
what channel that has a
discrepancy. After the channel is
located; analyze the application
code used to manoeuvre the signal
to find out if any nonSIL/SIL
Restricted functions is used which
leads to this discrepancy

The Error printouts referred to in Table 43, will only be presented in the CI log
file.

For more information, see Error Handler Log Entries on page 383.

Table 43. Common reasons for shutdown

Measure Initial solution for download Problem solution

Connection to Aspect Server Section 5 Maintenance and Trouble-Shooting

440 3BSE035980-510

Controller Log
E 2004-12-08 15:01:24.539 ErrorHandler SM: Latency in task
with parameters: 1000 11 (1,4,ERS)

This PM has been intentionally stopped.
Reason:
- CPU stall timer has expired (Acknowledged)
- Manual shutdown was requested
Press init button or remove power to restart...

CI log
I 2004-12-08 15:01:24.248 (EHTask)[ERRORHANDLER]Send
ErrorReport to PM. ('Latency in task with parameters:',Sev =
4, ActionsToTake = 0xf)

Connection to Aspect Server

When the connection to the Aspect Server is broken, the Control Builder does not
automatically indicate the loss of connection. However, if the user runs any action
that requires the Aspect Server to be accessed (for example, saving or refreshing a
type or program), a message is displayed.

If the connection to the Aspect Server is broken while some configuration is being
saved in Control Builder, the Control Builder might stop functioning. The solution
is to re-establish the connection to the Aspect Server, or to stop the Control Builder
process using Task Manager.

Section 5 Maintenance and Trouble-Shooting Error Reports

3BSE035980-510 441

Error Reports
An error report contains information to the problem in question. A detailed report is
particularly valuable if your supplier’s service department is to be involved.

The following information should always be included in an error report.

• Name of the person reporting the error (and the project, site, customer, etc.).

• Product (including the type of product and version).

• A listing of all information from the faulty system, such as the appropriate logs
and reports, see Log Files on page 399. The latter includes a great deal of
information such as software version and revision, setup, etc. If the fault
occurred during, or just after downloading a new version of the application
program, the Control Builder Start Log and the Control Builder Session Log
from the engineering station that performed the download should be included.
Whenever a problem involving I/O handling occurs, it is very important to
include a complete description of the I/O configuration.

• A description of the problem. Add all information that could help solve the
problem, for example, what happened just before the error occurred, and other
important circumstances. If it is possible to reproduce the error, describe the
circumstances under which the error occurs. Sometimes it is advisable to create
a small application to demonstrate the error, and add it to the error report.

If several systems are involved, information about the system configuration must
be included (hardware type, etc.).

Error Reports Section 5 Maintenance and Trouble-Shooting

442 3BSE035980-510

3BSE035980-510 443

Appendix A Array, Queue and Conversion
Examples

In this section you will find examples on how to handle arrays, queues, and some
examples on how to use bit conversion functions.

Arrays
It is possible to create a one-dimensional array with elements of any type, that is, the
elements can be a struct with variables of any type, or a single variable of any type.
Using PutArray and/or CopyArray, it is possible to build a tree structure of arrays.
Array elements are accessed direct via an index. A lower and upper boundary of the
index should be defined. The array must first be created using CreateArray.

The size of an array is limited to 65,524 components (variables of simple data type).

Example

In this example, there is a data type trec1 with the components b (bool), i (dint), and
st (string).

The following variables are also needed:

Name Data Type Initial Value

MyArray ArrayObject

lrec trec1

lrec1 trec1

lrec2 trec1

lrec3 trec1

Status dint

FirstScan bool TRUE

Arrays Appendix A Array, Queue and Conversion Examples

444 3BSE035980-510

Create and initialize an array with 20 array elements of the type trec1.

Use an IF – THEN statement for the CreateArray function and let it be controlled by
a variable, which is executed once during startup.
IF FirstScan THEN
FirstScan := false;
CreateArray(MyArray,1,20,lrec,status);
end_if;

Set up values for the different variables:
lrec1.b := TRUE
lrec1.i := 123
lrec1.st := A variable contaning the string 'Hello'
lrec2.b := FALSE
lrec2.i := 27
lrec2.st := A variable contaning the string 'BYE'
lrec3.b := TRUE
lrec3.i := 53
lrec3.st := A variable contaning the string 'BYE'

Set up the array contents:
PutArray (MyArray,1,lrec1,status);
PutArray (MyArray,2,lrec2,status);
PutArray (MyArray,3,lrec3,status);

Appendix A Array, Queue and Conversion Examples SearchStructComponent

3BSE035980-510 445

The array now contains the following:

SearchStructComponent
SearchStructComponent is a boolean function which searches for a specific part in a
record component. The corresponding components in Exrecord are scanned to find a
part in the component which matches the SearchComponent.
Variable = SearchStructComponent(Struct, SearchIndex,
SearchCount, SearchStruct, SearchComponent, FoundStruct,
Status)

Table 44.

Parameter Data type Direction

Struct AnyType in_out

SearchIndex dint in_out

SearchCount dint in

SearchStruct AnyType in_out

SearchComponent AnyType in_out

FoundStruct AnyType in_out

Status dint in_out

b = TRUE
i = 123
st = 'Hello'

1

b = FALSE
i = 27
st = 'BYE '

2

b = TRUE
i = 53
st = 'BYE '

3

b = Undef.

i = Undef.
st = Undef.

4

b = Undef.
i = Undef.
st = Undef.

20

SearchStructComponent Appendix A Array, Queue and Conversion Examples

446 3BSE035980-510

The data type SearchComponent is either a single variable or a record containing a
couple of variables corresponding to a subset of the record component in Struct. The
SearchComponent could be either a boolean, integer, real or string data type or a sub
record which contains these data types. The SearchRecord shall consist of a variable
of SearchType and variables of the data types as the remaining variables in the
record component and at the same positions.

Figure 201. An example of the SearchComponent and a SearchRecord.

The SearchComponent may contain structured data types but the match is only
carried out on the boolean, integer, real and string data types. The variables in
SearchComponent of string data types must have the same length and content for a
match. The content of string is not case sensitive and the space characters are treated
as any other character. On match the whole record component is copied to
FoundStruct and the function returns true.

Appendix A Array, Queue and Conversion Examples SearchStructComponent

3BSE035980-510 447

Figure 202. The working principal of the SearchStructComponent.

The search starts in the index SearchIndex + 1 and ends at the first equivalent
component located or, if there are no more sub-records, in the last component of the
record.

A maximum number of record components given by SearchCount are scanned. The
component, in which a match occurs, is returned in FoundStruct and the index is
returned in SearchIndex.

Note that SearchIndex always points to the last record component that was scanned,
even if no matching occurs. This index can then be used in a repeated call to find all
occurrences of SearchComponent within the record.

SearchStructComponent Appendix A Array, Queue and Conversion Examples

448 3BSE035980-510

Restrictions

The following data types in ExRecord will NOT be copied: QueueObject and
tObject.

The status returns:

• (1 Success)
– The Search was successful

• (- 5 ErrTypeMismatch)
– 1: Found sub-record was not of the same type as the structRecord.
– 2: SearchComponent was not a subset of SearchRecord

• (- 6 ErrSizeMismatch)
– 1: SearchRecord was not of the same size as the StructRecord.
– 2: SearchComponent size is zero.

• (-30 ErrInvalidPar)
– 1: SearchIndex was less than 0 or greater than the number of the Struct

minus one.
– 2: SearchCount was less or equal to zero.
– 3: SearchComponent has no valid components (i.e., boolean, real, integer

or string)

Appendix A Array, Queue and Conversion Examples InsertArray

3BSE035980-510 449

InsertArray

InsertArray(Array, Index, ArrayElement, Status)

Procedure: Inserts a new element in an array. All successive elements are moved one
step, and the last element overwritten. Inserts the contents of ArrayElement into the
record at position Index in the array Array. The records at position Index + 1 to
position LastIndex will be moved one position higher. The contents (even objects) of
the record at position LastIndex will be lost. Variables of the data type tObjects will
not be copied, unless the variable is an ArrayObject, then this array and its whole
tree structure of arrays will be copied into an identical tree structure. If the record at
position Index lacks some array in the tree structure, the array will be created.

Table 45.

Parameter Data type Direction

Array ArrayObject in_out

Index dint in

ArrayElement AnyType in_out

Status dint in_out

SearchArray Appendix A Array, Queue and Conversion Examples

450 3BSE035980-510

SearchArray

SearchArray(Array, SearchIndex, SearchCount, SearchElement,
SearchComponent, FoundElement, Status)

This boolean function searches the array Array for a certain component in an array
element. All elements in the array are scanned to find an element with a component
(e.g. a string, or an entire record) that matches the search variable component.

The component SearchComponent in the element SearchElement is tested for
equality with corresponding components in each array element. The function
returns true if there is a find.

The search starts in the index SearchIndex + 1 and ends at the first equivalent
component located or if there are no more elements in the array to be scanned. A
maximum of number of array elements indicated by SearchCount are scanned. The
array element, in which a find occurs, is returned in FoundElement and the index for
the find is also returned in SearchIndex.

Note that SearchIndex always points to the last element that was scanned, even if no
find occurs. This index can then be used in a repeated call in order to find all
occurrences of SearchComponent within the array.

An error status is returned if:
• the index SearchIndex points outside array limits.
• the counter SearchCount is less then or equal to 0.
• the element SearchElement is not of the same type as FoundElement.
• the element SearchElement has a different size than FoundElement.
• the SearchComponent is not a part of the element SearchElement.

Appendix A Array, Queue and Conversion Examples SearchArray

3BSE035980-510 451

Example

Table 46.

Parameter Data type Direction

Array ArrayObject in_out

SearchIndex dint in_out

SearchCount dint in

SearchElement AnyType in_out

SearchComponent AnyType in_out

FoundElement AnyType in_out

Status dint in_out

Table 47. Data Type Definitions

Name Data Type

trec1 Struct

b Boolean

i dint

s String

tSearchStruct STRUCT

b Boolean

SSR tSearchSubRec

tSearchSubStruct Struct

i dint

s String

SearchArray Appendix A Array, Queue and Conversion Examples

452 3BSE035980-510

 Create and initialize an array with 20 array elements of type trec1.

IF Firstscan THEN
Firstscan = false;
CreateArray(Array,1,20,lrec,status);
ENDIF;

Set up values for the different variables e.g. via interaction objects:
lrec1.b <- TRUE
lrec1.i <- 123
lrec1.s <- "hello"
lrec2.b <- FALSE
lrec2.i <- 27
lrec2.s <- "BYE"
lrec3.b <- TRUE
lrec3.i <- 53
lrec3.s <- "BYE"

Table 48. Variables

Name Data type Initial value

Array ArrayObject

HitBoolean Boolean

HitRec trec1

Lrec trec1

Irec1 trec1

Irec2 trec1

Irec3 trec1

Status dint

SearchRec tSearchStruct

FirstScan Boolean TRUE

The Create function may be in a Start_Code and in that case it is not necessary to
use the IF -THEN statement and Firstscan variable.

Appendix A Array, Queue and Conversion Examples SearchArray

3BSE035980-510 453

Set up array contents:
PutArray (Array,1,lrec1,status);
PutArray (Array,2,lrec2,status);
PutArray (Array,3,lrec3,status);

The array now contains the following:

Figure 203. An example of an Array.

Access the array by index:
Index = 3;
GetArray(Array,Index,lrec,status);

lrec now contains:
TRUE 53 "BYE "

Now access the array by searching. First set up the search component.
SearchRec.SSR.i = 27;

Queues Appendix A Array, Queue and Conversion Examples

454 3BSE035980-510

SearchRec.SSR.s has its default value "BYE" Search a maximum of 10 array
elements for the search component. A find occurs where the integer element is 27
and the string element is "BYE", in this case at array index no 2. Start searching in
the first element number 1.

Index = 0;
IF SearchArray(Array,Index,10,SearchRec,SearchRec.SSR,
HitRec,Status) THEN
IF Status > 0 THEN
HitBoolean = HitRec.b;(Save Boolean content of hit element)
ENDIF;
ENDIF;

Queues
A queue may consist of elements of any type, that is, the elements could be a struct
with variables of any type, or a single variable of any type. Queue elements can be
accessed at both ends of the queue, that is, only the first and last element can be
accessed, but any element in the queue can be read. When using PutFirstQueue and
GetFirstQueue, the queue act as a stack. When using PutLastQueue and
GetFirstQueue, the queue will act as a FIFO queue. The size of the queue is not
dynamic, and has to be defined. The number of elements in the queue is dynamic.

The size of a queue is limited to 65,524 components (variables of simple data type).

Appendix A Array, Queue and Conversion Examples Queues

3BSE035980-510 455

Example 1

The following structured variable Item is needed:

The following variables are needed:

Create and initialize an array with 10 elements of data type item:

Name Data Type Initial Value

b bool TRUE

i dint 123

st string 'Hello'

Name Data Type Initial Value

data1 Item

data2 Item

Queue QueueObject

Status dint

FirstScan bool TRUE

flag1 bool

flag2 bool

Queues Appendix A Array, Queue and Conversion Examples

456 3BSE035980-510

In an IF – THEN statement the CreateQueue function may be controlled by a first
scan variable.
if FirstScan then

FirstScan := false;
CreateQueue(Queue := Queue,

Size := 10,
QueueElement := data1,
Status := status);

end_if;
if flag1 then

PutLastQueue(Queue := Queue,
QueueElement := data2,
Status := status);
flag1 := false;

elsif flag2 then
GetFirstQueue(Queue := Queue,

QueueElement := data2,
Status := status);

flag2 := false;
end_if;

Example 2

The following parameters are needed:

Name Data Type Description

Size dint Max no. of elements in queue

InData AnyType In element, of same type as OutData

OutData AnyType Out element, of same type as InData

Put bool Put InData in queue on up edge

Get bool Get OutData from queue on up edge

Clear bool Clear contents of queue

Error bool Out: type or size of error

Appendix A Array, Queue and Conversion Examples Queues

3BSE035980-510 457

The following variables are needed:

Code block 1 called Start_name
(*CreateQueue*)
CreateQueue(Queue,Size,InData,status);
Error := status < 0;

Code block 2 (queue statement)
PutState := Put;
GetState := Get;
if PutState:NEW and not PutState:OLD then

PutLastQueue(Queue,InData,status);
Error := status < 0;

end_if;
if GetState:NEW and not GetState:OLD then

GetFirstQueue(Queue,OutData,status);
Error := status < 0;

end_if;
if Clear then

ClearQueue(Queue,status);
Error := false;

end_if;

Name Data Type Description

Queue QueueObject Queue object

PutState bool state

GetState bool state

Status dint

Conversion Functions Appendix A Array, Queue and Conversion Examples

458 3BSE035980-510

Conversion Functions

DIntToBCD

The DIntToBCD function converts an integer to a BCD value. An error status is
returned if overflow occurs and no BCD value is produced.

Example

The following variables are needed:

Convert an integer into a BCD value:

N = 12345 (N is 0 0 0 1 2 3 4 5)

N can be divided into eight four-bit nibbles, where each nibble represents one BCD
digit. The least significant nibble is 5, the next 4, etc. These nibbles can be written in
binary form as below:

DIntToBCD (N, BCD, Status) ;

BCD now contains the value 74565.

Name Data Type

N dint

BCD dint

Status dint

All four-
bit
nibbles

0000 0000 0000 0001 0010 0011 0100 0101

which is
equiv. to

00 000 000 000 000 010 010 001 101 000 101

BCD as
decimal
value

0 0 0 0 0 0 7 4 5 6 5

Appendix A Array, Queue and Conversion Examples BCDToDInt

3BSE035980-510 459

BCDToDInt

BCDToDInt converts a BCD value to an integer. An error status is returned if the
BCD value is illegal (no integer value in these cases).

Example

The following variables are needed:

Convert the BCD value into an integer:

BCD = 74565

Each nibble represents one BCD digit. The least significant nibble is 5, the next 4,
etc. These nibbles can be written in decimal form as: 0 0 0 1 2 3 4 5.

BCDToDInt (BCD, N, Status) ;

N now contains the value 12345.

Name Data Type

N dint

BCD dint

Status dint

BCD as
decimal
value

0 0 0 0 0 0 7 4 5 6 5

BCD as
32-bit
pattern

00 000 000 000 000 010 010 001 101 000 101

BCD as
four-bit
nibbles

0000 0000 0000 0001 0010 0011 0100 0101

ASCII Appendix A Array, Queue and Conversion Examples

460 3BSE035980-510

ASCII

ASCII character codes

ASCII (American Standards Committee for Information Interchange) originally
defined a set of codes for 128 characters and commands. Manufacturers later
extended the ASCII codes to provide another 128 characters.

ASCII is a method of coding characters and command sequences, which is
extensively used by manufacturers of peripheral equipment. Many devices transmit
information in ASCII code (for example bar-code readers, keyboards) and many
devices accept information in this form (for example VDUs and printers).

ASCII-coded strings allow for the transmission of non-printable characters and
control characters. ASCII character sequences can be used to change the mode of a
VDU display, or the character set of a printer.

Control Builder provides three procedures and one function manipulating ASCII
strings (ISO Latin-1 only). These are useful when a device requires ASCII-coded
information, and can be used to send ASCII-coded strings to printers, terminals etc.

Any ASCII character code may be used, thus it is possible to send control characters
and sequences to switch printers and VDUs into various display modes. (Bold,
Double Space, Reverse video etc.).

Before describing the procedures and functions available for ASCII strings, it is
useful to examine the way in which an integer is stored in the system memory.

Integers are represented by a four-byte (32-bit) storage area. In normal usage, the
bits are used to store both the value and the sign of the integer. This 4-byte storage
space may also be used to store a series of values which represent an ASCII string.

Each ASCII character requires 1 byte of storage space. Therefore, it is possible to
store up to 4 ASCII characters in a single memory area reserved for an integer.

Figure 204. Integers are stored as four bytes in memory.

Bit31 Bit0

Byte 0Byte 1Byte 2Byte 3
MSB LSBMSB LSBMSB LSBMSB LSB

Appendix A Array, Queue and Conversion Examples ASCII

3BSE035980-510 461

The procedures below allow 1, 2 or 4 characters to be stored per integer.

Each ASCII character is coded with an integer value (in binary) between 0 and 255
(decimal). ASCII codes are normally represented as either their decimal equivalent,
or as a hexadecimal number. If the character is represented as a hexadecimal
number, then 2 digits are required for each character.

The hexadecimal digits, their decimal, and binary bit pattern equivalents are given in
the table below:

The letter capital “A” is represented by the ASCII code 6510 or 41HEX. Thus the
letter “A” is stored as a byte having the bit pattern 0100 0001.

Table 49. ASCII code representatives

Hexadecimal digit Decimal digit Binary bit pattern

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

ASCII Conversion Appendix A Array, Queue and Conversion Examples

462 3BSE035980-510

ASCII Conversion

StringToASCIIStruct (String1, NoOfCharsPerDint, DintStruct, Status)

This procedure converts a string to an ASCIIStruct. An ASCIIStruct consists of any
number of integer components (see below).

The value of the parameter NoOfCharsPerDint determines how many ASCII
characters are stored within each ASCII record component. This value can be 1, 2, 4
or –1, –2, –4 only. A negative value means that the sequence of bytes is reversed.

NoOfCharsPerDint determines how many character codes are packed into the four
bytes available for the integer. If one character is stored per integer, then only the
first eight least significant bits of each integer are used for storage, if positive, or the
last eight, if negative.

DintStruct must be defined as follows: the type definition and its components can be
given any name, but the components must all be of integer data type. The number of
components (of integer type) should be decided based on the length of the string to
be converted, and also the number of characters which are to be stored in each
integer. The converted string may need to be transmitted to a peripheral device, so
the characteristics of this device should also be taken into account.

The maximum length for any string is 140 characters, and if this maximum is to be
stored in the minimum number of integer components, then this will require 35
integer components in the integer record (at four ASCII characters per integer). If
you anticipate the need to store this number of characters, then an integer record of
35 integer components should be defined.

Status returns an indication of the result of the operation.

Appendix A Array, Queue and Conversion Examples ASCII Conversion

3BSE035980-510 463

Storage with Different Character Packing Factors

When NoOfCharsPerDint is set to 1, each integer variable holds the value for one
ASCII character. Thus the character capital “A” is stored as decimal 65 in the
integer, as a bit pattern of 0100 (Nibble1) and 0001 (Nibble0).

When NoOfCharsPerDint is set to 2, each integer variable stores the value for two
ASCII characters. The characters “AB” are stored as decimals 65 and 66 in the
integer. The value 65 for “A” is stored in the first byte of the integer, and that for “B”
in the second byte.

When NoOfCharsPerDint is set to 4, each integer variable contains the value for
four ASCII characters. The characters “ABCD” are stored as decimals 65, 66, 67
and 68 in the integer. The value 65 for “A” is stored in the first byte of the integer,
“B” in the second byte, “C” in the third byte, and “D” in the fourth byte.

Figure 205. The ASCII code for “A” stored in an integer (packing = 1 character per
integer)

Figure 206. The ASCII codes for “AB” stored in an integer (packing = 2 characters
per integer)

Figure 207. The ASCII codes for “ABCD” stored in an integer (packing = 4
characters per integer)

Bit31

Byte 0Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

AMSB LSB

Bit31

Byte 0Byte 1Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

Nibble2Nibble3
0 1 00 0 0 01

AB MSB LSB

Bit31

Byte 0Byte 1Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

Nibble2Nibble3
0 1 00 0 0 01

Nibble4Nibble5Nibble6Nibble7
0 1 00 0 0 110 1 00 0 1 00

ABCD MSB LSB

ASCII Conversion Appendix A Array, Queue and Conversion Examples

464 3BSE035980-510

Definition of DintStruct type

The appropriate length of an integer struct to store ASCII code is defined by the
number of components required as follows.

Suppose we want to be able to store the maximum string length at a packing factor
of 4 characters per integer. A data type called, for instance, ASCIIMaxStringType,
should be defined consisting of 35 components which must be of integer data type
called, for example Chars1_4, Chars5_8 etc.

Usage

A string interaction is used to input the value of a string, (to a string variable called
String1), which is to be converted to ASCII code. The code is stored in an integer
struct called IntStruct which has 4 components (Comp1 to Comp4).

The procedure call:

StringToASCIIStruct(String1,1,IntStruct,Status1)

will write to the integer record components.

If the input string is “ABCD”, then the components will have the values 65, 66, 67
and 68, respectively. The literal value of 1 for the NoOfCharsPerDint determines
that there is to be one character code in each component.

If NoOfCharsPerDint had been set to 2, then the first integer component would have
the value 16961 (which is the decimal equivalent of 65 in the first byte and 66 in the
second), and the second component would have the value 17475, which is the
decimal equivalent of 67 in the first byte and 68 in the second. The other two bytes
in each integer component are set to 0000.

Unused components

NoOfCharsPerDint determines how many bits are allocated for storage (8 bits – 1
byte per character) for a component. For example, if NoOfCharsPerDint is set to 2,
then only the first two bytes are used in each component for data storage. The
remaining bytes are set to 0 (zero).

Appendix A Array, Queue and Conversion Examples ASCII Conversion

3BSE035980-510 465

This is illustrated below:

Figure 208. The diagram shows four integer components of an integer record.
NoOfCharsPerDint has been set to 2, so that each component stores two ASCII
characters. The character string “ABCD” has been transferred to the struct.

Bit31

Byte 0Byte 1Byte 2Byte 3

0 1 00 0 0 100 1 00 0 0 01

AB

Bit31

Byte 0Byte 1Byte 2Byte 3

0 1 00 0 0 110 1 00 0 1 00

CD

Bit31

Byte 0Byte 1Byte 2Byte 3

Bit31

Byte 0Byte 1Byte 2Byte 3

0 0 00 0 0 000 0 00 0 0 00

0 0 00 0 0 000 0 00 0 0 00

NullNull

0 0 000 0 00 0 0 00

NullNull

0 0 00

0 0 000 0 00 0 0 00

NullNull

0 0 00 0 0 010 0 01 0 0 00

SpaceSpace

0 0 00

0 0 010 0 01 0 0 00

SpaceSpace

0 0 00

Component1

Component2

Component3

Component4

Null Null

ASCII Conversion Appendix A Array, Queue and Conversion Examples

466 3BSE035980-510

Note the following

If there are two characters per integer, the allocated storage areas Byte 0 and Byte 1
contain either the code for the string character, or if there is no character available,
the code for a space (20HEX). Unused bit positions (Bytes 2 and 3 in this case)
contain zero.

Note:

• Characters from the string to be transferred are read from the current pointer
position in the source string.

• Space characters are inserted into the allocated storage areas within each
component. They are also inserted into all records to which no characters have
been transferred, for example, if the actual string requires less than the number
of components available for storage.

• An error status is returned to the value of Status, if the string to be transferred is
longer than the storage space allocated. In this case, no transfer of any part of
the string occurs.

ASCIIStructToString(DIntStruct, NoOfCharacters, NoOfCharsPerDint, String1,
Status)

This procedure is the reverse of StringToASCIIStruct described above. It takes an
integer struct, which contains the codes for an ASCII string, and recreates the string
from the values in the components of the record. (See StringToASCIIStruct for full
details of the structure of the integer struct and the encoding method.)

The component values of the integer struct, DIntStruct are read and translated to the
value of the destination string, String1.

The value of the parameter NoOfCharacters determines how many ASCII
characters are read from the source record, DIntStruct, and the value of the
parameter NoOfCharsPerDInt informs the procedure how many characters are to be
expected in each integer component. Status returns an indication of the result of the
operation.

The DIntStruct parameter must be structured as an integer struct, that is, it must
have integer components only. (See details in StringToASCIIStruct.)

Appendix A Array, Queue and Conversion Examples ASCII Conversion

3BSE035980-510 467

NoOfCharacters and NoOfCharsPerDInt may be variables, module parameters or
literals.

Usage

Suppose the integer struct DIntStruct from the previous example is to be converted
back to a string. The destination string is called String1 and the three characters are
to be copied. It is known that the original storage protocol defined 2 characters per
integer component.

The following code will perform the task:

ASCIIStructToString(DIntStruct,3,2,String1,Status2)

After execution the value of String1 value will be “ABC”.

Note

• The number of characters per integer of the original record must be known,
only values of 1, 2, 4 or –1, –2, –4 are allowed.

• The new output string will be inserted at the current pointer position in the
destination string.

• An error status is reported as a value to Status if the generated string results in a
new string which is longer than the permitted length for the destination string.

ASCII Conversion Appendix A Array, Queue and Conversion Examples

468 3BSE035980-510

3BSE035980-510 469

Appendix B System Alarms and Events

This section is divided in sub-sections for system alarms and system simple events
and it describes system alarms and system simple events from a controller
perspective. Additional information can also be found in the Control Builder online
help.

General

OPC Server

System alarms and system simple events generated within OPC server can be
divided in two general groups regarding to originating part of the OPC server
(source).

• Software

• Subscriptions

Controller

System alarms and system simple events generated within controller can be divided
in two general groups regarding to originating part of the controller (source).

• Software generated system alarms and system simple events.

• Hardware generated system alarms and system simple events.

OPC Server – Software Appendix B System Alarms and Events

470 3BSE035980-510

OPC Server – Software
All system alarms and system simple events triggered by base code executing in
OPC Server belong to this group. This group is further divided into appropriate parts
uniquely identified by source name suffix.

• _SWFirmware – for common base code

• _SWDataAccess – for OPC Data Access specific code

• _SWAlarmEvent – for OPC Alarm and Event specific code

The SrcName shall be automatically formed as:

SrcName = SystemIP address- SrcNameSuffix

Example: SrcName = 172.16.85.90:200-_SWFirmware

SrcNameSuffix = _SWFirmware

System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

SrcNameSuffix = _SWDataAccess

System Simple Event SaveColdRetainFailed

Generated when OPC Data Access server can not save cold retain files for an
application.

SrcNameSuffix = _SWFirmware;
Message = "(5000) Save Cold Retain failed for {1}";
{1} = The name of the application.
SeverityLevel = Medium;

Appendix B System Alarms and Events OPC Server – Software

3BSE035980-510 471

SrcNameSuffix = _SWAlarmEvent

System Simple Event AlarmNotUnique

Generated when OPCAE server discover that there are two alarms with same
combination SouceName ConditionName defined in two different controllers.

SrcNameSuffix = _SWAlarmEvent ;
Message = "(6000) Alarm not unique {1}, {2}";
{1} = Source name of the alarm
{2} = Condition name of the alarm
SeverityLevel = Medium;

System Simple Event AlarmHandler overflow

Generated when an item in the EventHandler must be deleted because of overflow.
If there is space again in the EventHandler, the system initializes an AlarmSummary
and updates the missing information. The size of the EventHandler is limited by the
system variable MaxNoOfAlarms.

SrcNameSuffix = _SWAlarmEvent ;
Message = "(6001) AlarmHandler overflow. MaxNoOfAlarms exceeded";
SeverityLevel = Medium;

System Simple Event FailedToSubscribe

Generated when a try from OPC AE server to subscribe to a certain control system
was not successful. The corresponding control system name shall be concatenated to
this message.

SrcNameSuffix = _SWAlarmEvent;
Message = "(6002) Failed to subscribe on {1}";
{1} = The IP address of the control system.
SeverityLevel = Medium;

OPC Server – Subscription Appendix B System Alarms and Events

472 3BSE035980-510

System Simple Event Overflow in queue to OPC client

Generated after an overflow of the event queue to an OPC client queue and when the
queue is filled less than 75% of the actual size. The system event is generated and
sent to the client to announce the overflow. On overflow the latest event is thrown
away. The size of every event queue to an OPC client queue is limited by the system
setting "Queue size".

SrcNameSuffix = _SWAlarmEvent;
Message = "(6003) Overflow in queue to OPC client";
SeverityLevel = Medium;

OPC Server – Subscription
OPC server can subscribe a number of controllers from both Data Access and Alarm
and Event part. Thus, each subscribed controller may have one or two system alarms
for its disposal, depending on number of subscription to controller from OPC server.
These system alarms must be created in a moment of corresponding connection i.e.
subscription establishing.

The SrcNameSuffix for Data Access subscriptions group is:

SrcNameSuffix = SubDataAccess
Example: SourceName = 172.16.85.90:22-SubDataAccess

The SrcNameSuffix for Alarm and Event subscriptions group is:

SrcNameSuffix = SubAlarmEvent
Example: SourceName = 172.16.85.90:22-SubAlarmEvent

The ConditionName for these system alarms is supposed to provide a unique
combination of SrcName and ConditionName (since SrcName is the same for whole
category). Thus, ConditionName has form that contains controller IP address.

Example: ConditionName = 172.16.85.90:2-ConnectionError

The following category of system alarms and system simple events handle errors
and warnings concerning connection towards subscribed controllers.

Appendix B System Alarms and Events OPC Server – Subscription

3BSE035980-510 473

SrcNameSuffix = SubDataAccess

Each controller subscribed from Data Access should have one system alarm for its
disposal. Note that these system alarms shall be:

• defined when a new subscription (connection) is established

• activated when an error occurs on this connection

• inactivated when all errors are corrected or disappeared

• deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = 10.46.37.121:2-ConnectionError.

System Alarm ConnectionError to DA subscription

SrcNameSuffix = SubDataAccess;
Condition name = -ConnectionError;
Message = "(5500) Connection error to DA subscribed controller";
Severity Level = Critical;

SrcNameSuffix = SubAlarmEvent

Each controller subscribed from Alarm and Event should have one system alarm for
its disposal. Note that these system alarms shall be:

• defined when a new subscription (connection) is established

• activated when an error occurs on this connection

• inactivated when all errors are corrected or disappeared

• deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = "10.46.37.121:2-ConnectionError".

Controller – Software Appendix B System Alarms and Events

474 3BSE035980-510

System Alarm ConnectionError to AE subscription

SrcNameSuffix = SubAlarmEvent;
Condition name = -ConnectionError;
Message = "(6500) Connection error to AE subscribed controller";
Severity Level = Critical;

Controller – Software
All system alarms and system simple events triggered by base code belongs to this
group.

This is important to note that system alarms and system simple events issued by
protocol specific code may belong to this group. Normally system alarms and
system simple events issued by protocol specific code are handled within 'Hardware
group'. Under certain circumstances when it is necessary to define errors or
warnings that are not cowered by HW state error handling, this group i.e.
corresponding dedicated SrcNameSuffix should be used. The following set of
source name suffixes are defined for this group.

• _SWFirmware - for base code

• _SW1131Task - for 1131 task execution specific code

• _SWTargets - for HW and OS abstraction layer of the base code

• _SWInsum-, _SWS100-, _SWMB300-, _SWProfibus-, _SWModbus- 1for
protocol specific code

SrcNameSuffix = _SWFirmware

System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

1. System alarms and system simple events generated by respective communication protocol are described in the
online help function for respective protocol.

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 475

System Alarm ErrorHandler sum alarm

SrcNameSuffix = _SWFirmware
Condition name = ErrorHandler;
Message = "(1001) ErrorHandler sum alarm created";
SeverityLevel = Medium;

System Alarm Data transfer failed during FW-upgrade of Alarm&Event

This alarm is generated when Alarm&Event failed in the transfer of
Alarm&Event data from Primary CPU to Trainee CPU. It shows how many
items of different Alarm&Event data that failed. The consequence after
upgrade could be that inactive alarms disappear but active alarms will be
activated again.

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1002) Alarm&Event failed in FW-upgrade. No of Static alarms =
{1}. No of Simple events = {2}. No of Dynamic alarms = {3}. No of SOE-
events = {4}";
{1} = Number of failed items.
{2} = Number of failed items.
{3} = Number of failed items.
{4} = Number of failed items.
SeverityLevel = High;

System Simple Event EventNotificationLost

An event notification was lost. This can happen when the particular OPC-
Server or printer queue containing event notification is full. A system simple
event is generated when there is space again in this queue. After this the
missing information about alarms in the subscribing systems-OPC Servers is
updated, but this does not mean that all missed events are regenerated.

SrcNameSuffix = _SWFirmware;
Message = "(1010) Lost event notification(s) to {1}";
{1} = The remote systems (the OPC Servers) IP address when generated
event indicates full OPC-Server queue or with string "local printer" when
there is a lost event notification from a filled buffer in printer queue.
Severity Level = Medium;

Controller – Software Appendix B System Alarms and Events

476 3BSE035980-510

System Simple Event Alarm definition failed

An attempt to define a process alarm in controller, or a system alarm in
controller or in OPC server was not successfully completed.

SrcNameSuffix = _SWFirmware;
Message = "(1011) Alarm definition failed for {1}, {2}";
{1} = Source name
{2} = Condition name
Severity Level = Low;

System Simple Event Undeclared External event

A low level event issued by external device is received, but no declaration was
found in applications.

SrcNameSuffix = _SWFirmware;
Message = "(1012) Undeclared external event; {1}";
{1} = Signal ID and new value delivered by low level event.
Severity Level = Medium;

System Simple Event No enable/disable of alarms in SIL applications

An attempt enable/disable an alarm (via MMS) in a SIL application which is
not permitted.

SrcNameSuffix = _SWFirmware;
Message = "(1013) No enable/disable of alarms in SIL applications ({1},
{2})";

This message is concatenated with source name and condition name of the
alarm.

Severity Level = Medium;

System Simple Event Event notification(s) lost during firmware upgrade

Generated if events are lost during firmware upgrade

SrcNameSuffix = _SWFirmware;
Message = "(1014) Event notification(s) lost during firmware upgrade"
SeverityLevel = Medium

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 477

System Simple Event Alarm definition(s) failed during firmware upgrade

Generated if there are attempting to create alarms during firmware upgrade.

SrcNameSuffix = _SWFirmware;
Message = "(1015) Alarm definition(s) failed during firmware upgrade"
SeverityLevel = Medium

System Simple Event CommandedSwitchover

The system event below is issued when a commanded switchover has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1020) CPU Switchover was commanded";
SeverityLevel = Medium;

System Simple Event CommandedSwitchoverFailed

The system event below is issued when a commanded switchover has been
unsuccessfully executed.

SrcNameSuffix = _SWFirmware;
Message = "(1021) CPU Switchover command failed";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU was commanded

The system event below is issued when a commanded reset of backup CPU has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1022) Reset of backup CPU was commanded";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU command failed

The system event below is issued when a commanded reset of backup CPU has
unsuccessfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1023) Reset of backup CPU command failed";
SeverityLevel = Medium;

Controller – Software Appendix B System Alarms and Events

478 3BSE035980-510

System Simple Event Error found in DataToSimpleEvent

The system event below is generated during calls to DataToSimpleEvent
function block.

SrcNameSuffix = _SWFirmware;
Message = "(1030) AE setting NamValItem/LogStrings to low";
Message = "(1031) Error in FB parameters";
Message = "(1032) Data overflow in communication buffer";
SeverityLevel = Medium;

System Simple Event Reset of controller forces performed

System event generated from Access Management. Message when Override
Control has made a reset of controller forces.

SrcNameSuffix = _SWFirmware;
Message = "(1033) Reset of controller forces performed";
SeverityLevel = Medium;

System Simple Event Ack of event denied

System event generated from Access Management, when acknowledgement of
an alarm is denied.

SrcNameSuffix = _SWFirmware;
Message = "(1034) Acknowledge of event denied ({1}, {2})";
{1} = source name of the alarm
{2} = condition name of the alarm
SeverityLevel = Medium;

System Simple Event No configuration image found at compact flash card

The system event below is issued when a compact flash card, without a
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = ">(1040) No configuration image found at compact flash
card";
SeverityLevel = Medium;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 479

System Simple Event Configuration image found at compact flash card is
corrupt

The system event below is issued when a compact flash card, with a corrupt
configuration image, is detected during startup of controller

SrcNameSuffix = _SWFirmware;
Message = "(1041) Configuration image found at compact flash is
corrupt";
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash does not
match controller

SrcNameSuffix = _SWFirmware;
Message = "(1042) Configuration image found at compact flash does not
match controller"
SeverityLevel = Medium

System Simple Event Configuration load is started from compact flash

SrcNameSuffix = _SWFirmware;
Message = "(1043) Configuration load is started from compact flash"
SeverityLevel = Medium

System Simple Event Configuration image found at compact flash has different
format

SrcNameSuffix = _SWFirmware;
Message = "(1044) Configuration image found at compact flash has
different format"
SeverityLevel = Medium

Controller – Software Appendix B System Alarms and Events

480 3BSE035980-510

System Simple Event Configuration image found at compact flash does not
match controller

The system event below is issued when a compact flash card, with a
configuration image created for another type of CPU, is detected during startup
of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1042) Configuration image found at compact flash does not
match controller"
SeverityLevel = Medium;

System Simple Event Configuration load is started from compact flash

The system event below is issued when a compact flash card, with a valid
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1043) Configuration load is started from compact flash"
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash has not equal
format

The system event below is issued when a compact flash card, with a
configuration image created in a format not supported, is detected during
startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1044) Configuration image found at compact flash has
different format"
SeverityLevel = Medium;

System Simple Event

SrcNameSuffix = _SWFirmware;
Message = “(1045) Write attempt to constant variable {1} of instance
{2}";
Severity Level = High;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 481

System Simple Event

SrcNameSuffix = _SWFirmware;
Message = “(1046) System variable LogConstAbuse set to 0 since limit on
{1} messages reached";
Severity Level = High;

This message can occur on process alarms when the alarms have not executed yet.
For example, after an OLU. It should only occur temporarily and will disappear
when the execution has started and the alarm have changed state or when OPC/AE
clients (example PPA) are refreshed.

Message = “(1047) The message text is temporarily unavailable since the
alarm is issued before 1131 has been run.";
Severity Level = Medium;

Controller – Software Appendix B System Alarms and Events

482 3BSE035980-510

SrcNameSuffix = _SW1131Task

System Alarm TaskAbort

SrcNameSuffix = _SW1131Task;
Condition name = TaskAbort;
Message = "(2000) Execution time too long in Task {1}";
{1} = Task name will be added to message, for example, "Execution time
too long in Task Fast"
Severity Level = Fatal;

System Simple Event Interval time in ordinary tasks inc

SrcNameSuffix = _SW1131Task;
Message = "(2001) Interval time in ordinary tasks increased {1}%";
{1} = The increase of the interval time in percent with the precision of one
decimal.
Severity Level = Medium;

System Simple Event Interval time in ordinary tasks dec

SrcNameSuffix = _SW1131Task;
Message = "(2002) Interval time in ordinary tasks decreased {1}%";
{1} = The decrease of the interval time in percent with the precision of
one decimal.

Severity Level = Medium;

System Simple Event Interval Time was changed

Only used for tasks executing at Time-Critical priority.

SrcNameSuffix = _SW1131Task;
Message = "(2003) Interval time changed to {1} ms. Task={2}";
{1} = New interval time ,
{2} = Name of the task.
Severity Level = Medium;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 483

System Alarm Latency high in normal tasks

The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;
Message On = "(2004) Latency high in task {1}, {2} ms"
{1} = Name of the task,
{2} = Actual latency.
Message Off = "(2004) Latency high inactive "
Condition name = High Latency
SeverityLevel = Medium

System Alarm Latency high in time critical task

The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;
Message On = "(2005) Latency high in task {1}, {2} ms"
Message Off = "(2005) Latency high inactive "
{1} = Name of the task,
{2} = Actual latency.

Condition name = High Latency
SeverityLevel = Medium

SrcNameSuffix = _SWTargets

System Simple Event RCU error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4000) Primary CPU: RCUError(0x{2})";
{2} = Content of the RCU Error Register in hexadecimal format.
Severity Level = High;

This event is issued from the RCU Driver if redundancy has been shut down due to
an internal error in the RCU Driver found at the end of synchronization.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4025) Failed to set RCU Driver state to

Controller – Software Appendix B System Alarms and Events

484 3BSE035980-510

eRCUTakeoverPossible";
Severity Level = High;

This event is issued from the RCU Driver if redundancy has been shut down due to
an internal error in the RCU Driver found at the start of synchronization.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4026) Failed to set RCU Driver state to eRCUNormal";
Severity Level = High;

This event is issued from the RCU Driver if Online Upgrade has been suspended
due to an internal error in the RCU Driver.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4027) Failed to set RCU Driver state to eRCUOLU";
Severity Level = High;

System Simple Event RCU test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4001) Primary CPU: RCUTestError({2}, 0x{3})";

{2} = Test Number
1 = RCU Register test
2 = Log Parity test
3 = Log test
4 = Log Range test
5 = I O Emulation test
6 = CPU Bus Timeout test

{3} = The Error status is printed in hexadecimal format.

Severity Level = High;

System Simple Event Dual test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4002) Primary CPU: DualTestError({2}, 0x{3})";
{2} = The Dual Test status (see Table 50)

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 485

{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

Table 50. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup CPU

CPUCEXBusMessageError Failed to receive test message from the Backup CPU

CheckpointTestError Failed to upgrade memory of the Backup CPU

Controller – Software Appendix B System Alarms and Events

486 3BSE035980-510

System Simple Event Backup CPU CEX-Bus test error detected in the Primary
CPU

SrcNameSuffix = _SWTargets;
Message = "(4003) Primary CPU: BkpCEXBusTestError({2}, 0x{3})";
{2} = The Test status (see Table 51)
{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

System Simple Event Error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4004) Primary CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 52)
{3} = The state when the error was detected.
Severity Level = High;

Table 51. Test status from Backup CPU

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup
CPU

CPUCEXBusMessageError Failed to receive response message from the
Backup CPU

CEXBusTestError Failed to test the CEX-Bus interface in the
Backup CPU

Table 52. The name of the detected error.

Message Description

SDCError RCU Service data channel error

RCUConnectorOpen The RCU Link cable is not connected to the own CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the peer CPU

RCUDrvErro Failed when calling the RCU driver

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 487

System Simple Event A Backup CPU is recognized and started

SrcNameSuffix = _SWTargets;
Message = "(4005) Primary CPU: Backup CPU started";
Severity Level = Medium;

System Simple Event The system has reached the Synchronized state

The Backup CPU is ready to take-over if the Primary CPU fails

SrcNameSuffix = _SWTargets;
Message = "(4006) Primary CPU: Synchronized state";
Severity Level = Medium;

InitCommError Failed to initialize interrupt handling with the peer CPU

InformCommParamError Failed to inform other CPU about communication
parameters

GetCommParamError Failed to get communication parameters from other
CPU

BkpCPUNotAlive The Backup CPU is not alive

BkpCPUCEXBusError Backup CPU not connected to the CEX-bus

BkpCPUIllegalExternalState Backup CPU has an illegal External state

Timeout Backup CPU has not sent a response message within
a specified timeout time

CloningStartError Failed to start cloning in state Upgrading

CloningNotCompletedError Cloning not completed in state Unconfirmed

CloningError Cloning failed in state Synchronized

BkpFirmwareError Backup CPU’s firmware id not equal to Primary CPU’s
firmware id

Table 52. The name of the detected error.

Message Description

Controller – Software Appendix B System Alarms and Events

488 3BSE035980-510

System Simple Event Switchover has occurred

SrcNameSuffix = _SWTargets;
Message = "(4007) Switchover to {2} has occurred";
{2} = "Lower CPU" or "Upper CPU"
Severity Level = Medium;

System Simple Event Report of Backup CPU error after a switchover

SrcNameSuffix = _SWTargets;
Message = "(4008) Primary CPU: {2} in {3}";
{2} = The error reported from the backup CPU
{3} = The position reported from the backup CPU
Severity Level = Medium;

System Simple Event The Backup CPU has stopped

SrcNameSuffix = _SWTargets;
Message = "(4009) Primary CPU: Backup CPU stopped ({2})";
{2} = Stop reason (seeTable 53)
Severity Level = High;

System Simple Event The Primary CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4010) Primary CPU: CPU halted";
Severity Level = High;

Table 53. Stop reason.

Message Description

BkpCPUCEXBusError Backup CPU not connected to the CEX bus

BkpHaltRequest A Backup CPU problem has been detected in the Primary
CPU. The Backup CPU however seems fully alive

BkpCPUNotAlive The Backup CPU has stopped or been removed without
reporting its status to the Primary CPU

Status sent from backup CPU Backup CPU status received via the CEX bus

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 489

System Simple Event RCU error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4020) Backup CPU: RCUError(0x{2})";
{2} = The contents of the RCU Error Register in hexadecimal format.
Severity Level = High;

System Simple Event RCU test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4021) Backup CPU: RCUTestError({2}, 0x{3})";
{2} = Test Number (see Table 54)
{3} = Error Status. in hexadecimal format.
Severity Level = High;

System Simple Event Dual test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4022) Backup CPU: DualTestError({2}, 0x{3})";
{2} = Dual Test status (see Table 55)
{3} = Error Status. in hexadecimal format.
Severity Level = High;

Table 54. Test Number

Test Number Error Status

1 RCU Register test

2 Log Parity test

3 Log test

4 Log Range test

5 I/O Emulation test

6 CPU Bus Timeout test

Controller – Software Appendix B System Alarms and Events

490 3BSE035980-510

System Simple Event Error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4023) Backup CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 56)
{3} = The state when the error was detected.
Severity Level = High;

Table 55. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Primary
CPU

CPUCEXBusMessageError Failed to receive test message from the
Primary CPU

RCUDrvError Failed when calling the RCU driver to set
threshold value for the Log Data Buffer

Table 56. The name of the detected error.

Message Description

SDCError RCU Service data channel error

RCUConnectorOpen The RCU Link cable is not connected to the own
CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the
peer CPU

RCUDrvError Failed when calling the RCU driver

InitCommError Failed to initialize interrupt handling with the
peer CPU

InformCommParamError Failed to inform other CPU about
communication parameters

GetCommParamError Failed to get communication parameters from
other CPU

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 491

System Simple Event The Backup CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4024) Backup CPU: CPU halted";
Severity Level = High;

System Simple Event Stopped due to ModuleBus inaccessible from Backup
CPU

This event is issued from the MBTestMC unit if the Backup CPU has been stopped
due redundancy supporting modules on the module bus turned out to be inaccessible
from the Backup CPU.

SrcNameSuffix = _SWTargets;
Message = "(4030) Stopped due to ModuleBus inaccessible from Backup
CPU";
Severity Level = "High";

This event is issued from the RCU Driver if the Backup CPU has been halted due to
an overload situation in the redundancy control HW.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4028) RCU LDB overflow has occured in Backup/trainee
PM";
Severity Level = High;

EqualityCheckFailed Memory upgrading of Backup CPU has failed

RCUMessageHaltReceived A Halt request has been received from the
Primary CPU

PrimCPUExitConnection Primary CPU has exit connection

Table 56. The name of the detected error. (Continued)

Message Description

Controller – Software Appendix B System Alarms and Events

492 3BSE035980-510

This event is issued if the Backup CPU has been halted during start-up due to that it
uses the same MAC address as the Primary CPU. (This can happen if the original
Primary CPU unit has been removed from a redundant controller and the same unit
is later re-inserted as spare part in the same running controller.)

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4042) Backup CPU has the same MAC Address as Primary
CPU";
Severity Level = High;

System Simple Event Switched over due to ModuleBus inaccessible from
Primary CPU

This event is issued from the MBTestMC unit if a switch-over occurred due to
redundancy supporting modules on the module bus turned out to be inaccessible
from the Primary CPU.

SrcNameSuffix = _SWTargets;
Message = "(4031) Switched over, ModuleBus inaccessible from Primary
CPU";
Severity Level = High;

Events from Network Interface Supervision

System Simple Event Backup CPU halted: Bad Network interface

This event is issued from the NIS primary task if the Backup CPU has been halted
due to both network interface in Backup CPU are not working properly.

SrcNameSuffix = _SWTargets;
Message = "(4040) Backup CPU halted: Bad Network interface";
Severity Level = High;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 493

Events from Checking of Available MAC address in Backup

System Simple Event No MAC address in Backup CPU

This event is issued to the primary PM if the backup PM has no MAC address.

SrcNameSuffix = _SWTargets;
Message = "(4041) No MAC address in backup PM";
Severity Level = High;

Events from Modulebus driver

System Simple Event Diverse pointer check

This event is issued from the check of pointers to the DPM which is used in all
accesses to read/write data to/from IO modules.

SrcNameSuffix = _SWTargets;
Message = "(4050) Fatal Error in diverse pointer check";
Severity Level = Fatal;

System Simple Event Failed to send message to queue

SrcNameSuffix = _SWTargets;
Message = "(4051) Mbus msgQ failed: control of Primary/Backup Leds
not run";
Severity Level = Low;

System Simple Event Null pointer

SrcNameSuffix = _SWTargets;
Message = "(4052) Null pointer check failed";
Severity Level = Fatal;

System Simple Event Failed to create message queue

SrcNameSuffix = _SWTargets;
Message = "(4053) Failed to create message queue";
Severity Level = High;

System Simple Event Test of RAM Error in MBM1 failed

Controller – Software Appendix B System Alarms and Events

494 3BSE035980-510

SrcNameSuffix = _SWTargets;
Message = "(4054) Cyclic test of Ram Error in MBM1 failed";
Severity Level = Critical;

System Simple Event Runtime RAM Error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4055) Runtime Ram Error in MBM1";
Severity Level = Critical;

System Simple Event Diagnostic test of CRC32 calculator in FPGA failed

SrcNameSuffix = _SWTargets;
Message = "(4056) Cyclic test of CRC32 calculator failed in {1}";
{1} = Cause of failure. Example: checkFailed, timeout
Severity Level = Critical;

System Simple Event Switch PM is performed via errorHandler

SrcNameSuffix = _SWTargets;
Message = "(4057) Failure in SM detected by PM";
Severity Level = Critical;

System Simple Event Switch PM is performed via errorHandler due to Bus
Error

SrcNameSuffix = _SWTargets;
Message = "(4058) Try to switch PM due to Bus Error";

Severity Level = Critical;

System Simple Event CPU interface error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4059) CPU interface error in FPGA";
Severity Level = Critical;

Events from the MMU

System Simple Event Software errors

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 495

SrcNameSuffix = _SWTargets;
Message = "(4060) Software error detected by MMU";
Severity Level = Fatal;

System Simple Event Memory violation

SrcNameSuffix = _SWTargets;
Message = "(4061) Attempted write access in write-protected memory";
Severity Level = Fatal;

System Simple Event MMU checker error

SrcNameSuffix = _SWTargets;
Message = "(4062) Unexpected write in protected memory";
Severity Level = Critical;

System Simple Event DMA checker error

SrcNameSuffix = _SWTargets;
Message = "(4063) DMA Checker time. Test failed";
Severity Level = Critical;

System Simple Event Primary CPU: DMA memory violation

SrcNameSuffix = _SWTargets;
Message = "(4064) Primary CPU: DMA memory violation at {2}"
{2} = General fail address information
SeverityLevel = High

Events from FW Integrity Verification

Indication that FW CRC did not match original in primary PM.

SrcNameSuffix = _SWTargets;
Message = "(4070) FW Integrity Verification primary:CRC did not
match original";
Severity Level = Medium;

Indication that FW CRC did not match original in backup PM.

Controller – Software Appendix B System Alarms and Events

496 3BSE035980-510

SrcNameSuffix = _SWTargets;
Message = "(4071) FW Integrity Verification backup:CRC did not match
original";
Severity Level = Medium;

Indication that FW CRC did not match in stand alone PM.

SrcNameSuffix = _SWTargets;
Message = "(4072) FW Integrity Verification standalone:CRC did not
match original";
Severity Level = Medium;

Address parameter failure in FW Integrity Verification.

SrcNameSuffix = _SWTargets;
Message = "(4073) FW Integrity Verification: Address parameter
failure";
Severity Level = Medium;

System Simple Event CRC error in FW Integrety Verification

SrcNameSuffix = _SWTargets;
Message = "(4074) FW Integrity Verification trainee CRC did not match
original"
SeverityLevel = Critical

Events from the Heap: Software Errors

SrcNameSuffix = _SWTargets;
Message = "(4080) Software error detected by Heap manager";
Severity Level = Fatal;

Events from the Heap: Memory Violation

SrcNameSuffix = _SWTargets;

Message = "(4081) Heap violation during allocation of an element";
Severity Level = Fatal;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 497

Message = "(4082) Heap violation during deallocation of an element";
Severity Level = Fatal;

Message = "(4083) Null element is deallocated in the heap";
Severity Level = Fatal;

Message = "(4084) Corrupt element is deallocated in the heap";
Severity Level = Fatal;

Message = "(4085) Corrupt elements are detected after a power fail";

Severity Level = Fatal;

Message = "(4086) The Protected Heap is out of memory";
Severity Level = Low;

Message = "(4087) The Shared Heap is out of memory";
Severity Level = Low;

Message = "(4093) The max boundary size of an element is exceeded in
the Shared Heap";
Severity Level = Medium;

Message = "(4094) The max boundary size of an element is exceeded in
the Protected Heap";
Severity Level = Medium;

Events from the Heap: Heap Checker Error

System Simple Event MemFree error - CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4088) Heap Checker detects a corrupt element during
deallocation of an element";
Severity Level = Critical;

System Simple Event MemFree error - no CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4089) Heap Checker detects a corrupt element during
deallocation of an element";
Severity Level = Fatal;

Controller – Software Appendix B System Alarms and Events

498 3BSE035980-510

System Simple Event Synchronous heap check error - logging

SrcNameSuffix = _SWTargets;
Message = "(4090) Corrupt element during synchronous heap check";
Severity Level = Low;

System Simple Event Cyclic heap check error - CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4091) Corrupt element during cyclic heap check";
Severity Level = Critical;

System Simple Event Cyclic heap check error - no CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4092) Corrupt element during cyclic heap check";
Severity Level = Fatal;

System Simple Event Max boundary size exceeded in the Shared Heap

SrcNameSuffix = _SWTargets
Message = "(4093) The max boundary size of an element is exceeded in
the Shared Heap."
SeverityLevel = Medium

System Simple Event Max boundary size exceeded in the Protected Heap

SrcNameSuffix = _SWTargets
Message = (4094) The max boundary size of an element is exceeded in the
Protected Heap."
SeverityLevel = Medium

Events from Irq Supervisor

These messages are short (twelve characters) since most of them have to be printed
from interrupt context when an irq error has occurred, which means there is only a
very small time margin.

SrcNameSuffix = _SWTargets;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 499

Message = "(4100) Irq error. Unable to spawn Reset Irq Supervisor
thread";
Severity Level = Medium;

Message = "(4101) Irq error. MSCallout array full; not possible to add
SuperviseIrq; the IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4102) Irq error. Irq supervisor: Irq timed out; primary PM
will be shut down";
Severity Level = Medium;

Message = "(4103) Irq error. Irq supervisor: Irq timed out; backup PM
was shut down";
Severity Level = Medium;

Message = "(4104) Irq error. Irq supervisor: Irq timed out error in
standalone PM";
Severity Level = Medium;

Message = "(4105) Irq error. Unable to create a OS periodic timer, the
IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4106) Iirq error. Unable to raise thread priority, the
IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4107) Irq supervisor: Irq timed out; trainee PM was shut
down"
SeverityLevel = Medium

Events from CEX Bus Interrupt Handler

SrcNameSuffix = _SWTargets;

Message = "(4110) Hanging CEX IRQ: All CEMs on the upper CEX bus
segment are disabled";
Severity Level = Medium;

Controller – Software Appendix B System Alarms and Events

500 3BSE035980-510

Message = "(4111) Hanging CEX IRQ: All CEMs on the lower CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4112) Hanging CEX IRQ: The upper PM has been shut
down";
Severity Level = Critical;

Message = "(4113) Hanging CEX IRQ: The lower PM has been shut
down";
Severity Level = Medium;

Message = "(4115) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4116) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM.
Severity Level = Medium;

Message = "(4117) Invalid CEX IRQ backup PM: The upper PM has
been shut down";
Severity Level = Medium;

Message = "(4118) Invalid CEX IRQ backup PM: The lower PM has
been shut down";
Severity Level = Medium;

Message = "(4119) Spurious CEX IRQ: {1} spurious IRQs since system
startup";
{1} = Number of spurious IRQ since start
Severity Level = Low;

Message = "(4120) Hanging CEX IRQ: All CEMs on the dir CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4121) Hanging CEX IRQ: All CEMs on the indir CEX bus
segment are disabled";
Severity Level = Medium;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 501

Message = "(4122) Hanging CEX IRQ: The PM has been shut down";
Severity Level = Critical;

Message = "(4123) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4124) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4125) Insufficient memory to create the Reset BC thread";
Severity Level = Medium;

Events from DMA Supervisor

SrcNameSuffix = _SWTargets;

Message = "(4126) Error in DMA Supervisor configuration";
Severity Level = Fatal;

Events from Internal Diagnostics Engine

SrcNameSuffix = _SWTargets;

Message = "(4130) Software error detected by Diagnostic Engine";
Severity Level = Medium;

Message = "(4131) Diagnostic Engine: FDRT deadline passed";
Severity Level = Medium;

Message = "(4132) Diagnostic Engine: Diurnal deadline passed";
Severity Level = Medium;

Events from RAMTest

SrcNameSuffix = _SWTargets;

Message = "(4133) RAMTest Primary Parity error self test;
Severity Level = Critical;

Controller – Software Appendix B System Alarms and Events

502 3BSE035980-510

Message = "(4134) RAMTest Backup Parity error self test";
Severity Level = Critical;

Message = "(4135) RAMTest Standalone Parity error self test";
Severity Level = Critical;

Message = "(4136) RAMTest Primary Address line test 0x{1}";
{1} = Fail address
Severity Level = Critical;

Message = "(4137) RAMTest Backup Address line test 0x{1}";
{1} = Fail address
Severity Level = Critical;

Message = "(4138) RAMTest Standalone Address line test 0x{1}";
Severity Level = Critical;
{1} = Fail address

Message = "(4139) RAMTest Primary Internal error";
Severity Level = Fatal;

Message = "(4140) RAMTest Backup Internal error";
Severity Level = Fatal;

Message = "(4141) RAMTest Standalone Internal error";
Severity Level = Fatal;

Events from the RCU CRC Checker

SrcNameSuffix = _SWTargets;

Message = "(4142) Hardware error detected by RCU CRC Checker";
Severity Level = Critical;

Events from RAMTest

Message = "(4143) RAMTest Trainee Parity error self test"
SeverityLevel = = Critical

Message = "(4144) RAMTest Trainee Address line test 0x{1}"
{1} = Fail address
SeverityLevel = Critical

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 503

Message = "(4145) RAMTest Backup Internal error"
SeverityLevel =Critical

Events from SSPActiveTest

Message = "(4146) SSP error detected by SSPActiveTest"
SeverityLevel = Fatal

Events from HWSetupVerification

These events are issued if HW Setup Verification detected an error in HW Setup.
The message also contains a test label, specifying the failing test.

SrcNameSuffix = _SWTargets;

Message = "(4150) HW Setup Verification in Primary: {1}";
{1} = Subtest strings used to specify the failing test method.
Severity Level = Medium;

Message = "(4151) HW Setup Verification in Backup: {1}";
Severity Level = Medium;
{1} = Subtest strings used to specify the failing test method.

Message = "(4152) HW Setup Verification in Standalone: {1}";
{1} = Subtest strings used to specify the failing test method.
Severity Level = Medium;

Message = "(4153) HW Setup Verification in Trainee: {1}"
{1} = Subtest strings used to specify the failing test method.
SeverityLevel = Critical

Events from EXTCLKSupervision

These events are issued from the EXTCLK Supervision if etiher the EXTCLK
frequency is or the FPGA divider is working incorrect.

SrcNameSuffix = _SWTargets;

Message = "(4160) EXTCLK Error Allowed range {1} us";
{1} = Sleep-time information
Severity Level = Medium;

Controller – Software Appendix B System Alarms and Events

504 3BSE035980-510

Message = "(4161) EXTCLK Supervision Error: FATAL error";
Severity Level = Medium;

Events from HRESETSupervision

This event is issued from the Oscillator Supervision task if etiher the SPPL or
EXTCLK frequency is working incorrect.

SrcNameSuffix = _SWTargets;
Message = "(4170) HRESET Error asserted by {1}";
{1} = Strings used to specify the signals generating HRESET
Severity Level = High;

Events from Modulebus Driver

System Simple Event Comparision of CRC32 from SM and PM failed

SrcNameSuffix = _SWTargets;
Message = "(4180) MBM1 SM vs PM CRC32 failed, address 0x{1}";
{1} = Address (hexadecimal)
Severity Level = Low;

System Simple Event Failed to create SMDrv in Modulebus

SrcNameSuffix = _SWTargets;
Message = "(4181) Failed to create SMDrv From Modulebus";
Severity Level = Medium;

System Simple Event BusErrorIn interrupt routine

SrcNameSuffix = _SWTargets;
Message = "(4182) Bus Error In Modulebus ISR address 0x{1}";
{1} = Address (hexadecimal)
Severity Level = Critical;

System Simple Event BS Exception in MBM1scanner

SrcNameSuffix = _SWTargets;

Message = "(4183) BS EXCEPTION In MBM1 Scanner";
Severity Level = Critical;

Appendix B System Alarms and Events Controller – Software

3BSE035980-510 505

Message = "(4184) Incoming safety header failure, address 0x{1}"
{1} = Address (hexadecimal)
SeverityLevel = Medium

Message = "(4185) Primary shutdown due to suspect SM"
SeverityLevel = Medium

Message = "(4186) No answer from SM address 0x{1}, error code 0x{2}"
SeverityLevel = Medium

Message = "(4187) Failure in safety IO, address 0x{1}, error code 0x{2}"
{1} = Address (hexadecimal)
{2} = Error code (hexadecimal)
SeverityLevel = Medium

Events from ModuleBus

System Simple Event

Message = "((4901) Event overflow in module: {1}{2}"
{1} = Path to ModuleBus unit.
{2} = Unit number.
SeverityLevel = Medium

Controller – Hardware Appendix B System Alarms and Events

506 3BSE035980-510

Controller – Hardware
Hardware generated system alarms are automatically available when the hardware is
configured. They may however be disabled.

All Hardware Units in the hardware configuration have one system alarm and one
system simple event each for its disposal. The intention is to have a sum alarm and a
sum event for different errors and warnings that can be detected on the hardware
unit.

.

Table 57. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions

Class All hardware generated system alarms and events have the same
value of parameter 'Class' that is determined by the value of CPU
setting 'AE System AE class'.

Severity Values of severity are defined through the CPU setting 'AE System
AE high severity' for hardware generated system alarms, respective
'AE System AE medium severity' for hardware generated system
simple events.

Appendix B System Alarms and Events Controller – Hardware

3BSE035980-510 507

Message The message contains reference to more detailed information,
because each alarm is a sum alarm that can indicate many different
errors on the unit. This information is given in the description of
Errors and Warnings in Control Builder and/or in the System status
viewer in Plant Explorer.

The error code is stored in two 32 bit words first word is
ErrorsAndWarnings and the second is ExtendedStatus.

In each hardware generated system alarm or event message,
ErrorsAndWarnings and ExtendedStatus bit patterns are translated
into a text in the OPC-server. General status bits are translated into
a explaining text e.g. "I/O configuration error". Device specific bits
from ErrorsAndWarnings are translated into a text in the
OPC-server, if a matching text is available in the hardware definition.
Otherwise they are displayed as "Device specific bit xx" in the
message e.g. "Device specific bit 31". The same goes for
ExtendedStatus. If a matching text is not available in the hardware
definition, unit specific bits from ExtendedStatus are displayed as
"Extended status bit xx" in the message e.g. "Extended status bit 0".
The bits for every unit are explained later in this section.

Example
"Controller_1 (0000) I/O configuration error, Device specific bit 31,
Extended status bit 0"

If the Unit in this example is a PM865, "Device specific bit 31"=
"Battery low" and "Extended status bit 0" = "Backup CPU stopped"

In the controller log ErrorsAndWarnings and ExtendedStatus are
presented as HEX format.

Example:

"E 2004-03-08 10:25:06.677 On Unit= 2 HWError Controller_1
Errorcode=16#80004000 16#00000001 (0000) See HW-tree

Table 57. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions

Alarms and Events Common for all Units Appendix B System Alarms and Events

508 3BSE035980-510

Alarms and Events Common for all Units

Table 58 lists those status bits that have the same meaning for all hardware units.

Note however that different units have different capabilities. A specific unit will
typically only be able to generate alarms and events for an assortment of the
common status bits.

These general bits do not apply to the IAC MMS hardware object (for Unit Status of
IAC MMS object, see Table 60)

SrcName The syntax for the source name in the SrcName parameter is
dynamically based on the IP address together with the
SrcNameSuffix that is the hardware unit address in the hardware
tree configuration.

Example: IP address (172.16.85.33) + SrcNameSuffix (2.5.101)
= "172.16.85.33-2.5.101".

CondName All hardware generated system alarms have "HWError" as common
condition name in the CondName parameter.

AckRule Ack Rule 5 is used for these system alarms,.

Table 58. General status bit ErrorsAndWarnings

Bit Status Bit Value Indication Generation Severity Description

0 ConnectionDown 16#00000001 Error Alarm High Connection down

1 IoError 16#00000002 Error Alarm Medium I/O error

2 ModuleMissing 16#00000004 Error Alarm High Module missing

3 WrongModuleType 16#00000008 Error Alarm High Wrong module
type

4 StatusChannelError 16#00000010 Warning Alarm Medium Channel error

5 IoWarning 16#00000020 Warning Event Low I/O warning

6 StatusUnderflow 16#00000040 Warning Alarm Low Underflow

Table 57. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions

Appendix B System Alarms and Events Alarms and Events Common for all Units

3BSE035980-510 509

7 StatusOverflow 16#00000080 Warning Alarm Low Overflow

8 StatusForced 16#00000100 Warning Event Low Forced

9 WatchdogTimeout 16#00000200 Error Alarm High Watchdog timeout

10 DeviceFailure 16#00000400 Error Alarm High Device failure

11 DeviceNotFound 16#00000800 Error Alarm High Device not found

12 WrongDeviceType 16#00001000 Error Alarm High Wrong device type

13 IOConnectError 16#00002000 Error Alarm Medium I/O connection
error

14 IOConfigError 16#00004000 Error Alarm Medium I/O configuration
error

15 HWConfigError 16#00008000 Error Alarm High Hardware
configuration error

16 GeneralError 1 16#00010000 Error – – –

17 GeneralWarning 1 16#00020000 Warning – – –

18 RedWarningPrimary 2 16#00040000 Warning Event Low Warning on
primary unit

19 RedWarningBackup 2 16#00080000 Warning Event Low Warning on
backup unit

20 RedErrorBackup 2 16#00100000 Warning Alarm Medium Error on backup
unit

21 Reserved 16#00200000 – – – –

22 DeviceSpecific10 16#00400000 3 3 3 3

23 DeviceSpecific9 16#00800000 3 3 3 3

24 DeviceSpecific8 16#01000000 3 3 3 3

25 DeviceSpecific7 16#02000000 3 3 3 3

26 DeviceSpecific6 16#04000000 3 3 3 3

27 DeviceSpecific5 16#08000000 3 3 3 3

Table 58. General status bit ErrorsAndWarnings (Continued)

Bit Status Bit Value Indication Generation Severity Description

Alarms and Events Common for all Units Appendix B System Alarms and Events

510 3BSE035980-510

28 DeviceSpecific4 16#10000000 3 3 3 3

29 DeviceSpecific3 16#20000000 3 3 3 3

30 DeviceSpecific2 16#40000000 3 3 3 3

31 DeviceSpecific1 16#80000000 3 3 3 3

1 Used together with other status bits.
2 Used only if hte unit is configured as a redundant unit.
3 Depends on the specific hardware device ,defined within hardware definition file.

Table 59. General status bit ExtendedStatus

Bit Status Bit Value Indication Generation Severity Description

0 ExtendedStatus1 16#00000001 1 1 1 1

1 ExtendedStatus2 16#00000002 1 1 1 1

2 ExtendedStatus3 16#00000004 1 1 1 1

3 ExtendedStatus4 16#00000008 1 1 1 1

4 ExtendedStatus5 16#00000010 1 1 1 1

5 ExtendedStatus6 16#00000020 1 1 1 1

6 ExtendedStatus7 16#00000040 1 1 1 1

7 ExtendedStatus8 16#00000080 1 1 1 1

8 ExtendedStatus9 16#00000100 1 1 1 1

9 ExtendedStatus10 16#00000200 1 1 1 1

10 ExtendedStatus11 16#00000400 1 1 1 1

11 ExtendedStatus12 16#00000800 1 1 1 1

12 ExtendedStatus13 16#00001000 1 1 1 1

13 ExtendedStatus14 16#00002000 1 1 1 1

14 ExtendedStatus15 16#00004000 1 1 1 1

15 ExtendedStatus16 16#00008000 1 1 1 1

Table 58. General status bit ErrorsAndWarnings (Continued)

Bit Status Bit Value Indication Generation Severity Description

Appendix B System Alarms and Events Alarms and Events Common for all Units

3BSE035980-510 511

16 ExtendedStatus17 16#00010000 1 1 1 1

17 ExtendedStatus18 16#00020000 1 1 1 1

18 ExtendedStatus19 16#00040000 1 1 1 1

19 ExtendedStatus20 16#00080000 1 1 1 1

20 ExtendedStatus21 16#00100000 1 1 1 1

21 ExtendedStatus22 16#00200000 1 1 1 1

22 Reserved 16#00400000 – – – –

23 PrimaryIncompatibleFW 2 16#00800000 Error Alarm High Version of
the Running
Primary is

incompatible

24 BackupIncompatibleFW 2 16#01000000 Warning Alarm Medium Version of
the Running
Backup is

incompatible

25 PrimaryNotPrefrdFW 2 16#02000000 Warning Alarm Medium Version of
the Running
Primary is

not preferred

26 BackupNotPrefrdFW 2 16#04000000 Warning Alarm Medium Version of
the Running
Backup is

not preferred

27 TimeouOnBackup 2 16#08000000 Warning Alarm Low Watchdog
timeout on

backup

28 DeviceFailureBackup 2 16#10000000 Warning Alarm Low Backup
device failure

Table 59. General status bit ExtendedStatus (Continued)

Bit Status Bit Value Indication Generation Severity Description

Alarms and Events Common for all Units Appendix B System Alarms and Events

512 3BSE035980-510

29 SwitchoverInProgress 2 16#20000000 Warning Event Low Switchover in
progress

30 ConfiguredAsRedundant 2, 3 16#40000000 - - - Redundant
mode

enabled

31 UnitBPrimary 2 16#80000000 - - - Unit B acts
primary

1 Depends on the specific hardware device, defined within the hardware definition file.
2 Used only if the unit is configured as a redundant unit.
3 If this bit is set and bit 31 is not set, the text Unit A acts primary will be shown.

Table 60. Unit Status for IAC MMS hardware object

Value Description

16#00000000 The status is OK.

16#07000000 The type does not match the corresponding out variable.

16#08000000 Wrong message type in the response message.

16#0A000000 The out variable cannot be found.

16#0B000000 Initiate request was unsuccessful.

16#0C000000 The PhIAC_MMS version between client and server does
not match.

16#0D000000 The heap is full.

16#0E000000 Permanent MMS error.

16#FF000000 Unspecified Protocol Handler error.

Table 59. General status bit ExtendedStatus (Continued)

Bit Status Bit Value Indication Generation Severity Description

Appendix B System Alarms and Events Unit Specific Alarms and Events

3BSE035980-510 513

Unit Specific Alarms and Events

This subsection lists the unit specific alarms and events, sorted in the following
categories of units:

• Controller units and communication interfaces (see Controller Units and
Communication Interfaces on page 513).

• Adapters (see Adapters on page 569).

• S800 I/O (see S800 I/O on page 576).

• S900 I/O (see S900 I/O on page 624).

• S100 I/O (see S100 I/O on page 661).

• INSUM devices (see INSUM Devices on page 662).

• FF devices (see FF Devices on page 665).

• MB300 nodes (see MB300 Nodes on page 665).

• ABB Standard drive (see ABB Standard Drive on page 666).

Controller Units and Communication Interfaces

Table 61. PM851 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

Controller Units and Communication Interfaces Appendix B System Alarms and Events

514 3BSE035980-510

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

Table 62. PM856 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

Table 61. PM851 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 515

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

Table 63. PM860 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

Table 62. PM856 / TP830

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

516 3BSE035980-510

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

Table 64. PM861 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

Table 63. PM860 / TP830

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 517

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

Table 64. PM861 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

518 3BSE035980-510

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 65. PM864 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

Table 64. PM861 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 519

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 65. PM864 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

520 3BSE035980-510

Table 66. PM865 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 521

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 67. PM866

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Warning Alarm Medium Battery Low

30 ErrorsAndWarnings Warning Alarm Medium RPB

29 ErrorsAndWarnings Warning Alarm Medium RPA

28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

27 ErrorsAndWarnings Warning Alarm Medium No Time sync

26 ErrorsAndWarnings Warning Alarm Medium Battery Low on Backup

25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on Backup

0 ExtendedStatus Warning Alarm Medium Backup CPU stopped

1 ExtendedStatus Warning Alarm Medium Switchover occured

Table 66. PM865 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

522 3BSE035980-510

2 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

upper CEX bus segment
are disabled.

3 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

lower CEX bus segment
are disabled

4 ExtendedStatus Warning Alarm Medium Hanging or invalid CEX
IRQ: A PM has been shut

down.

5 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

direct CEX bus segment
are disabled.

6 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

indirect CEX bus segment
are disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable connector is
open

Table 68. PM891

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Warning Alarm Medium Battery Low

30 ErrorsAndWarnings Warning Alarm Medium RPB

29 ErrorsAndWarnings Warning Alarm Medium RPA

27 ErrorsAndWarnings Warning Alarm Medium No Time sync

26 ErrorsAndWarnings Warning Alarm Medium Battery Low on Backup

Table 67. PM866 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 523

25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

0 ExtendedStatus Warning Alarm Medium Backup CPU stopped

1 ExtendedStatus Warning Alarm Medium Switchover occured

2 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

upper CEX bus segment
are disabled.

3 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

lower CEX bus segment
are disabled

4 ExtendedStatus Warning Alarm Medium Hanging or invalid CEX
IRQ: A PM has been shut

down.

5 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

direct CEX bus segment
are disabled.

6 ExtendedStatus Warning Alarm High Hanging or invalid CEX
IRQ: All CEMs on the

indirect CEX bus segment
are disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable connector is
open

Table 68. PM891 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

524 3BSE035980-510

Table 69. SM810

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Alarm High Internal error
Unit B

 31 ErrorsAndWarnings Warning Alarm High Internal error
Unit A

Table 70. SM811

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus None None None Unit A UNINITIALIZED

1 ExtendedStatus None None None Unit A SYNCHRONIZING

2 ExtendedStatus None None None Unit A RUNNING

3 ExtendedStatus None None None Unit A PENDING STOP

4 ExtendedStatus None None None Unit A STOPPED

5 ExtendedStatus None None None Unit B UNINITIALIZED

6 ExtendedStatus None None None Unit B SYNCHRONIZING

7 ExtendedStatus None None None Unit B RUNNING

8 ExtendedStatus None None None Unit B PENDING STOP

9 ExtendedStatus None None None Unit B STOPPED

10 ExtendedStatus None None None SynchLink Down

11 ExtendedStatus None None None Awaiting HotInsert Confirmation

31 ErrorsAndWarnings Warning Alarm High Internal error Unit A

30 ErrorsAndWarnings Warning Alarm High Internal error Unit B

29 ErrorsAndWarnings Warning Alarm Low Internal warning Unit A

28 ErrorsAndWarnings Warning Alarm Low Internal warning Unit B

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 525

Table 71. CF Card

Bit StatusType Indication Generation Severity Description

27 ErrorsAndWarnings Warning Alarm Medium Image is corrupt

28 ErrorsAndWarnings Warning Alarm Medium Controller version
mismatch

29 ErrorsAndWarnings Warning Alarm Medium Invalid save setting

 30 ErrorsAndWarnings Warning Alarm Medium Application version
mismatch

 31 ErrorsAndWarnings Warning Alarm Medium No card present

Table 72. SD Card

Bit StatusType Indication Generation Severity Description

27 ErrorsAndWarnings Warning Alarm Medium Image is corrupt

28 ErrorsAndWarnings Warning Alarm Medium Controller version
mismatch

29 ErrorsAndWarnings Warning Alarm Medium Invalid save setting

 30 ErrorsAndWarnings Warning Alarm Medium Application version
mismatch

 31 ErrorsAndWarnings Warning Alarm Medium No card present

Table 73. CI852

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Warning Alarm Medium Ext FF Config
missing

 25 ErrorsAndWarnings Error Alarm High CIff DB
Compatibility Error

 26 ErrorsAndWarnings Warning Alarm Medium CIff EEPROM
error

 27 ErrorsAndWarnings Error Alarm High CIff Power Up Test
Fail

Controller Units and Communication Interfaces Appendix B System Alarms and Events

526 3BSE035980-510

 28 ErrorsAndWarnings Error Alarm High Ctrl WD Stall

 29 ErrorsAndWarnings Error Alarm High CIff WD Stall

 30 ErrorsAndWarnings Error Alarm High Syst Mgm Not Op

 31 ErrorsAndWarnings Warning Event Medium H1 Bus Idle

Table 74. CI854

Bit StatusType Indication Generation Severity Description

23 ErrorsAndWarnings Error Alarm Medium Hardware
watchdog on

CI854(A) expired

24 ErrorsAndWarnings Error Alarm Medium Error in
PROFIBUS master

configuration

25 ErrorsAndWarnings Warning Alarm Medium PROFIBUS com.
failure between

Primary and
Backup

26 ErrorsAndWarnings Warning Event High Communication
memory obtained

too long

27 ErrorsAndWarnings Warning Alarm Medium Duplicate slave
address

28 ErrorsAndWarnings Warning Alarm Medium No activity on
PROFIBUS line A

29 ErrorsAndWarnings Warning Alarm Medium No activity on
PROFIBUS line B

30 ErrorsAndWarnings Error Alarm High Hardware fail of
CI854(A)

31 ErrorsAndWarnings Error Alarm Medium Firmware needs to
be reloaded

Table 73. CI852

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 527

0 ExtendedStatus Warning Event Low Timeout on bus,
maybe duplicate

slave address
(TTO)

1 ExtendedStatus Warning Event Low Bus
synchronization

failure, check
hardware (SYN)

2 ExtendedStatus Warning Event Low Taken out of ring
by another master,

check system
conf.

3 ExtendedStatus Warning Event Low Fatal medium
access error

4 ExtendedStatus Warning Event Low Fatal hardware
error

5 ExtendedStatus Warning Alarm Medium All slaves failed

6 ExtendedStatus Warning Event Low Hardware
configuration error

on backup

7 ExtendedStatus Warning Event Low Backup device not
found

8 ExtendedStatus Warning Alarm Medium I/O configuration
error on backup

9 ExtendedStatus Warning Alarm Medium I/O connection
error on backup

10 ExtendedStatus Warning Event Low Hardware
watchdog on

Backup CI854(A)
expired

Table 74. CI854 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

528 3BSE035980-510

11 ExtendedStatus Warning Event Low Error in
PROFIBUS master

configuration of
Backup

12 ExtendedStatus Warning Alarm Medium No activity on
PROFIBUS line A

of Backup

13 ExtendedStatus Warning Alarm Medium No activity on
PROFIBUS line B

of Backup

14 ExtendedStatus Warning Alarm Medium Hardware fail of
CI854A Backup

15 ExtendedStatus Warning Alarm Medium Firmware needs to
be reloaded on

Backup

16 ExtendedStatus Warning Alarm Medium CEX-Bus com.
failure between

Primary and
Backup

17 ExtendedStatus Error Alarm High Fatal error on
Primary detected

18 ExtendedStatus Warning Alarm Medium Fatal error on
Backup detected

Table 74. CI854 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 529

Table 75. CI855

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Warning Alarm Medium No communication
on port 1

23 ErrorsAndWarnings Warning Alarm Medium No communication
on port 2

31 ErrorsAndWarnings Warning Event Low MB300 System
message received.

Check log-file

Table 76. CI856

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Warning Event Low CPU overload

1 ExtendedStatus Warning Event Low Scan task
overload

2 ExtendedStatus Warning Event Low Lack of scan
resources

3 ExtendedStatus Warning Event Low PTC status queue
full

4 ExtendedStatus Warning Event Low PTC event queue
full

5 ExtendedStatus Warning Event Low SOE status queue
full

6 ExtendedStatus Warning Event Low DI queue full

7 ExtendedStatus Warning Event Low AI queue full

8 ExtendedStatus Warning Alarm Medium Unknown I/O
module type

Controller Units and Communication Interfaces Appendix B System Alarms and Events

530 3BSE035980-510

9 ExtendedStatus Warning Alarm Medium Illegal I/O module
ID

10 ExtendedStatus Warning Alarm Medium I/O module ID
conflict

11 ExtendedStatus Warning Alarm Medium Max number of
PTC devices

exceeded

Table 77. CI857

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High FW downl mode

23 ErrorsAndWarnings Error Alarm High Internal Supv

24 ErrorsAndWarnings Error Alarm High Appl Task Failed

25 ErrorsAndWarnings Error Alarm High Init Failed

26 ErrorsAndWarnings Error Alarm High Device Not Found

27 ErrorsAndWarnings Error Alarm High FW Watchdog
Error

28 ErrorsAndWarnings Error Alarm High Ethernet Error

29 ErrorsAndWarnings Error Alarm High Device Failure

30 ErrorsAndWarnings Warning Event Low Warning!

31 ErrorsAndWarnings Error Alarm Medium Error!

0 ExtendedStatus Error Alarm High No MAC Addr

1 ExtendedStatus Error Alarm High HW Fail

2 ExtendedStatus Error Event Medium Error reading CI
status reg.

3 ExtendedStatus Warning Alarm Medium Suspend State

4 ExtendedStatus Warning Alarm Medium Shutdown State

Table 76. CI856 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 531

6 ExtendedStatus Warning Event Medium Cfg State

7 ExtendedStatus Warning Event Medium Init State

8 ExtendedStatus Error Alarm High Incompat driver
version

9 ExtendedStatus Error Alarm High Incompat FW
version

10 ExtendedStatus Error Alarm Medium PH task stalled

12 ExtendedStatus Error Alarm High Wrong dev type

13 ExtendedStatus Warning Event Low Data Trans Q Full

14 ExtendedStatus Warning Event Low Status Trans Q
Full

15 ExtendedStatus Warning Event Low Misc Trans Q Full

16 ExtendedStatus Warning Event Low Dev Trans Q Full

17 ExtendedStatus Warning Event Low Trans Q Full

18 ExtendedStatus Warning Event Low Net Q Full

19 ExtendedStatus Warning Event Low Intern Q Full

20 ExtendedStatus Error Alarm High FW Corrupt

Table 78. CI860

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Warning Event Low No HSE
configuration

 23 ErrorsAndWarnings Warning Alarm Medium Overrun in HSE
processing

 24 ErrorsAndWarnings Error Alarm High HSE stack failed

 25 ErrorsAndWarnings Warning Alarm High Ethernet cable
dropped

Table 77. CI857 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

532 3BSE035980-510

 26 ErrorsAndWarnings Warning Event Low

 27 ErrorsAndWarnings Error Alarm High PNA configuration
failed

 28 ErrorsAndWarnings Error Alarm High HSE stack
configuration failed

 29 ErrorsAndWarnings Error Alarm High Configuration error

 30 ErrorsAndWarnings Error Alarm High Self test failed

 31 ErrorsAndWarnings Error Alarm High Firmware needs to
be reloaded

 0 ExtendedStatus Error Alarm Medium Transceiver
channel failed

1 ExtendedStatus1 Warning Alarm Medium HSE cross
communication

failed

2 ExtendedStatus1 Warning Alarm Medium CEX cross
communication

failed

3 ExtendedStatus1 Error Alarm High Fatal error on
Primary

4 ExtendedStatus1 Warning Alarm Medium HSE stack of
Backup failed

5 ExtendedStatus1 Warning Alarm Medium Ethernet cable at
Backup dropped

6 ExtendedStatus1 Warning Event High PNA configuration
of Backup failed

7 ExtendedStatus1 Warning Event High HSE stack config.
of Backup failed

8 ExtendedStatus1 Warning Alarm Medium Configuration error
on Backup

Table 78. CI860 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 533

9 ExtendedStatus1 Warning Alarm Medium Self test of Backup
failed

 10 ExtendedStatus1 Warning Alarm Medium Firmware needs to
be reloaded on

Backup

 11 ExtendedStatus1 Warning Alarm Medium Transceiver
channel of Backup

failed

 12 ExtendedStatus1 Warning Alarm Medium Fatal error on
Backup

 13 ExtendedStatus1 Warning Event High I/O connection
error on Backup

 14 ExtendedStatus1 Warning Event High I/O configuration
error on Backup

 15 ExtendedStatus1 Warning Event High Hardware
configuration error

on Backup

 16 ExtendedStatus1 Warning Event High Backup device not
found

1 The ExtendedStatus codes 1 to 16 are only used for a redundant CI860 pair.

Table 79. CI862 (TRIO/Genius Interface)

Bit StatusType Indication Generation Severity Description

 24 ErrorsAndWarnings Warning - - Trio Lan Warning

 25 ErrorsAndWarnings Error - - Trio Lan Error

 26 ErrorsAndWarnings Warning - - Redundancy Link
Warning

 27 ErrorsAndWarnings Error - - Redundancy Link
Error

Table 78. CI860 (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

534 3BSE035980-510

 28 ErrorsAndWarnings Warning - - Geni Board
Warning

 29 ErrorsAndWarnings Error - - Geni Board Error

 30 ErrorsAndWarnings Warning - - Cex Board
Warning

 31 ErrorsAndWarnings Error - - Cex Board Error

0 ExtendedStatus Warning - - HHM In Use

1 ExtendedStatus Warning - - Bus Idle

2 ExtendedStatus Error - - Initialization Failed

3 ExtendedStatus Error - - Blocked Failed

Table 80. CI865 (Satt I/O Interface)

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Alarm Medium Overload

Table 81. CI867 (MODBUS TCP)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm High Internal task failure

1 ExtendedStatus Error Alarm High Firmware not
working properly
due to e.g. failed
initialization of

objects, tasks etc.

2 ExtendedStatus Error Alarm High Out of memory

3 ExtendedStatus Error Alarm High Failed to open or
create transceiver

channel(s)

4 ExtendedStatus Error Alarm High Wrong module
type

Table 79. CI862 (TRIO/Genius Interface)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 535

5 ExtendedStatus Error Alarm High Incompatible driver

6-7 Reserved - - - -

8 ExtendedStatus Error Alarm Medium Internal task failure
in the backup

9 ExtendedStatus Error Alarm Medium Firmware not
working properly
due to e.g. failed
initialization of
objects in the

backup

10 ExtendedStatus Error Alarm Medium Out of memory in
the backup

11 ExtendedStatus Error Alarm Medium Failed to open or
create transceiver
channel(s) in the

backup

12 ExtendedStatus Error Alarm Medium Backup is of wrong
module type

13 ExtendedStatus Error Alarm Medium Incompatible
backup driver

Table 81. CI867 (MODBUS TCP)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

536 3BSE035980-510

Table 82. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description

31 ErrorsAndWarnings Error Alarm High Internal HW error (see
CI log).

Set when a fatal
software hardware
error has been
detected. See
controller log and the
CI log for more
information.

30 ErrorsAndWarnings Error Alarm High Internal FW Error (see
CI log).

Set when a fatal
software error has
been detected. See
controller log and the
CI log for more
information.

29 ErrorsAndWarnings Error Alarm High Error generated by
task supervisor.

Set when the task
supervision detects
that a task is not
responding.

0 ExtendedStatus Error Alarm Medium BAP DMA error.

The BAP fails to
perform DMA access
to the Traffic Memory.

1 ExtendedStatus Error Alarm Medium BAP failure.

Malfunction of the BAP.

2 ExtendedStatus Error Alarm Medium Traffic memory corrupt.

The Traffic Memory is
corrupt.

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 537

3 ExtendedStatus Warning - - Redundant Line A
error.

Bus traffic only on line
A. This is only reported
if it is configured that
cable redundancy
should be used.

4 ExtendedStatus Warning - - Redundant Line B
error.

Bus traffic only on line
B. This is only reported
if it is configured that
cable redundancy
should be used.

5 ExtendedStatus Warning Alarm Low No bus traffic.

No traffic at all on the
AF 100 bus.

6 ExtendedStatus Error Alarm Medium Time sync lost.

No time sync
transmitted (slave
frame) on the AF100
bus.

Reported if no Time
Sync Slave Frame has
been received for 2.3
seconds.

7 ExtendedStatus Error Alarm Medium Multiple time masters.

The slave frame of the
time sync CDP is
corrupt (Only tested if
time sync mode =
slave).

Table 82. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

538 3BSE035980-510

8 ExtendedStatus Warning - - CDP error.

No master frame for
the CI869 station
status CDP.

9 ExtendedStatus Error Alarm Medium Stn status CDP config
err.

CDP state = Config
error for the Station
Status CDP.

10 ExtendedStatus Error Alarm Medium Stn status CDP not
addressed.

The Station Status
CDP is not sent on the
bus.

11 ExtendedStatus Warning - - Backup address is 255.

12 ExtendedStatus Warning - - Partner sup not active.

Partner supervision is
not active.

14 ExtendedStatus Warning - - Permanent sender
detected.

15 ExtendedStatus Warning - - Invalid bus length.

The CI869 is
configured for a bus
length not valid on the
bus.

16 ExtendedStatus Warning - - Too many CDPs on the
bus.

Table 82. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 539

17 ExtendedStatus Warning - - Too many CDPs on
CI869.

Too many CDP has
been configured on the
CI869 (dependent on
bus length, longer bus
means less CDPs).

18 ExtendedStatus Warning Alarm Low No bus traffic on
backup.

19 ExtendedStatus Warning - - Redundant Line A error
on backup

20 ExtendedStatus Warning - - Redundant Line B error
on backup

Table 82. CI869 (AF 100)

Bit StatusType Indication Generation Severity
Status Text and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

540 3BSE035980-510

Table 83. CI871 (PROFINET IO)

Bit Status Type Indication Generation Severity
Status text and

Description

27 ErrorsAndWarnings Error Event High PNIO Alarms blocked.

The alarm handling on
CI871 is blocked.
Further alarms from
the devices cannot be
operated.

28 ErrorsAndWarnings Error Event High CEX watchdog expired
on CI871.

The CEX-Bus
watchdog on CI871
was not triggered by
the PM8xx processor
module through the
CEX-Bus.

29 ErrorsAndWarnings Warning Event High Communication
memory obtained too
long.

Overload of the
communication
memory access.
There is too much
access from the
application tasks to the
PROFINET IO-data in
the shared memory on
the CI871 so that the
CI871 cannot update
the memory on time.

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 541

30 ErrorsAndWarnings Error Alarm High Ethernet cable
dropped.

The Ethernet
connector on CI871 is
unplugged.

31 ErrorsAndWarnings Error Event High Hardware failure.

The CI871 has
identified a serious
failure and cannot
proceed execution.

Extended Status bits are not supported in PROFINET IO.

Table 84. PNIO Device, Modules, Submodules (PROFINET IO)

Bit Status Type Indication Generation Severity
Status text and

Description

0 ErrorsAndWarnings Error Alarm High Connection down.

No communication with
the device. For the
device and all connected
modules and
submodules
ConnectionDown will be
set.

2 ErrorsAndWarnings Error Alarm High Module missing.

A configured
module/submodule is
physically missing.

Table 83. CI871 (PROFINET IO) (Continued)

Bit Status Type Indication Generation Severity
Status text and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

542 3BSE035980-510

3 ErrorsAndWarnings Error Alarm High Wrong module type.

The configured
module/submodule is of
different type than the
physical one.

26 ErrorsAndWarnings Error Alarm High Parameterization fault.

Wrong, too less or too
many parameters are
written.

28 ErrorsAndWarnings Warning Event Medium Locked by other
controller/supervisor.

Indicates a change of
parameter for a
module/submodule. Will
only be set if parameter
was changed without
download.

29 ErrorsAndWarnings Warning Event Medium Diagnosis active.

HW-unit has active
diagnosis.

30 ErrorsAndWarnings Warning Event Medium Maintenance is
demanded.

31 ErrorsAndWarnings Warning Event Medium Maintenance required.

Maintenance is
requested.

Extended Status bits are not supported in PROFINET IO.

Table 84. PNIO Device, Modules, Submodules (PROFINET IO) (Continued)

Bit Status Type Indication Generation Severity
Status text and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 543

Table 85. CI872 (MOD5)

Bits Status Type Indication Generation Severity
Status text and

Description

3 ExtendedStatus - - - MOD5 Task State is
LEFT FOX on primary.

The state of the Primary
CI872module is LEFT
FOX.

4 ExtendedStatus - - - MOD5 Task State is
RIGHT FOX on primary.

The state of the Primary
CI872 module is RIGHT
FOX.

5 ExtendedStatus MOD5 Task State is
RIGHT ECHO.

The state of the CI872
module is RIGHT ECHO.

9 ExtendedStatus - - - MOD5 Task State is
LEFT DOG on backup.

The state of the Backup
CI872 module is LEFT
DOG.

10 ExtendedStatus - - - MOD5 Task State is
RIGHT DOG on backup.

The state of the Backup
CI872 module is RIGHT
DOG.

11 ExtendedStatus - - - MOD5 Task State is
LEFT ECHO.

The state of the CI872
module is LEFT ECHO.

Controller Units and Communication Interfaces Appendix B System Alarms and Events

544 3BSE035980-510

29 ErrorsAndWarnings Error1 Alarm High Error generated by task
supervisor

A supervised task has not
replied to a ping. For
more details, see the log
files.

30 ErrorsAndWarnings Error1 Alarm High Internal FW Error (see CI
Log)

An error has occurred in
the firmware of CI872.
For more details, see the
log files.

31 ErrorsAndWarnings Error1 Alarm High Internal HW Error (see CI
Log)

An error has occurred in
the hardware. For more
details, see the log files.

1 This error results in a reboot of the CI872. The reason for the error appears in the CI log.

Table 85. CI872 (MOD5) (Continued)

Bits Status Type Indication Generation Severity
Status text and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 545

Table 86. Status Bits of CI872 Ports (Port1, Port2, and Port3)

Bits Status Type Indication Generation Severity
Status text1 and

Description

0 ExtendedStatus Error Alarm Medium Port x: Eye Contact not
successful in Primary.

The hardware is not able to
make a successful eye
contact on the primary
CI872 module. This could be
due to cable break or timing
issues.

1 ExtendedStatus Error Alarm Medium Port x: CPUID conflict in
Primary.

This is due to any of the
following reasons:

• The CPUID of the
remote MOD5 system
is same as the Primary
host system.

• The CPUID of the
configured remote
MOD5 controller in the
Hardware Tree (in the
Control Builder) is
different from the
CPUID of the physically
connected remote
MOD5 controller.

2 ExtendedStatus Error Alarm Medium Port x: Failed to initialize
Port in Primary.

No activation or
configuration of the port in
the Primary CI872 module.

Controller Units and Communication Interfaces Appendix B System Alarms and Events

546 3BSE035980-510

3 ExtendedStatus Error Alarm Medium Port x: Parity Error in
Primary.

Received message on the
port has incorrect parity.

4 ExtendedStatus Error Alarm Medium Port x: Framing Error in
Primary.

Request/Response frame
received has error.

5 ExtendedStatus Error Alarm Medium Port x: StuckOn Error in
Primary.

Remote MOD5 controller is
stuck and sends continuous
light signal, trying to perform
Eye Contact.

6 ExtendedStatus Error Alarm Medium Port x: TimeOut Error in
Primary.

The message is not sent
within a period of 1 second.

7 ExtendedStatus Error Alarm Medium Port x: Buffer Overload Error
in Primary.

Hardware Rx Buffer is full.

8 ExtendedStatus - - - Port x: Communication is
good on Remote Port in
Primary.

Communication is good on
remote MOD5 controller
connected to this port.

Table 86. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 547

9 ExtendedStatus Error Alarm Medium Port x: Wrong address
received from Remote
MOD5 in Primary.

Remote MOD5 requested
for address which is not
supported.

10 ExtendedStatus Warning - - Port x: Check for Cable
Break in Primary

After successful Eye
Contact, the cable is not
connected properly or the
cable is removed from the
port (it may be removed
from CI872 port or from
Remote MOD5 port).

Table 86. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

548 3BSE035980-510

11 ExtendedStatus Error Alarm Medium Port x: Eye Contact not
successful in Backup.

The hardware is not able to
make a successful eye
contact on the backup CI872
module. This could be due
to cable break or timing
issues.

12 ExtendedStatus Error Alarm Medium Port x: CPUID conflict in
Backup.

This is due to any of the
following reasons:

• The CPUID of the
remote MOD5 system
is same as the Primary
host system.

• The CPUID of the
configured remote
MOD5 controller in the
Hardware Tree (in the
Control Builder) is
different from the
CPUID of the physically
connected remote
MOD5 controller.

13 ExtendedStatus Error Alarm Medium Port x: Failed to initialize
Port in Backup.

No activation or
configuration of the port in
the Backup CI872 module.

Table 86. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 549

14 ExtendedStatus Error Alarm Medium Port x: Parity Error in
Backup.

The received message on
the port has incorrect parity.

15 ExtendedStatus Error Alarm Medium Port x: Framing Error in
Backup.

Request/Response frame
received has error.

16 ExtendedStatus Error Alarm Medium Port x: StuckOn Error in
Backup.

Remote MOD5 controller is
stuck and sends continuous
light signal, trying to perform
Eye Contact.

17 ExtendedStatus Error Alarm Medium Port x: TimeOut Error in
Backup.

The message is not sent
within a period of 1 second.

18 ExtendedStatus Error Alarm Medium Port x: Buffer Overload Error
in Backup.

Hardware Buffer is full.

19 ExtendedStatus - - - Port x: Communication is
good on Remote Port in
Backup.

Communication is good on
remote MOD5 port
connected to this port.

Table 86. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

550 3BSE035980-510

20 ExtendedStatus Error Alarm Medium Port x: Wrong address
received from Remote
MOD5 in Backup.

Remote MOD5 requested
for address which is not
supported.

21 ExtendedStatus Warning - - Port x: Check for Cable
Break in Backup.

After successful Eye
Contact, the cable is not
connected properly or the
cable is removed from the
port (it may be removed
from CI872 port or from
Remote MOD5 port).

1 The term ‘Port x’ in the messages in this column corresponds to any of the ports (Port1, Port2, or Port3).

Table 86. Status Bits of CI872 Ports (Port1, Port2, and Port3) (Continued)

Bits Status Type Indication Generation Severity
Status text1 and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 551

Table 87. CI872 - Remote MOD5 Controller Status Bits

Bits Status Type Indication Generation Severity
Status Text and

Description

0 ExtendedStatus - - - Remote MOD5 is in
RIGHT FOX state on
primary.

The Right MOD5
controller is
connected to the
Primary CI872
module and is in FOX
state.

1 ExtendedStatus - - - Remote MOD5 is in
RIGHT DOG state on
primary.

The Right MOD5
controller is
connected to the
Primary CI872
module and is in DOG
state.

2 ExtendedStatus - - - Remote MOD5 is in
RIGHT ECHO state
on primary

The MOD5 controller
is connected to the
Primary CI872
module and is in
ECHO state.

Controller Units and Communication Interfaces Appendix B System Alarms and Events

552 3BSE035980-510

3 ExtendedStatus - - - Remote MOD5 is in
LEFT FOX state on
primary.

The Left MOD5
controller is
connected to the
Primary CI872
module and is in FOX
state.

4 ExtendedStatus - - - Remote MOD5 is in
LEFT DOG state on
primary.

The Left MOD5
controller is
connected to the
Primary CI872
module and is in DOG
state.

5 ExtendedStatus - - - Remote MOD5 is in
LEFT ECHO state on
primary.

The MOD5 controller
is connected to the
Primary CI872
module and is in
ECHO state.

Table 87. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 553

6 ExtendedStatus Warning Alarm Medium No successful Eye
Contact with Remote
MOD5 System on
primary.

No eye contact with
the Primary CI872
module, due to optical
fiber break or time out
on Rx port.

7 ExtendedStatus - - - Remote MOD5 is in
RIGHT FOX state on
backup.

The Right MOD5
controller is
connected to the
Backup CI872
module and is in FOX
state.

8 ExtendedStatus - - - Remote MOD5 is in
RIGHT DOG state on
backup.

The Right MOD5
controller is
connected to the
Backup CI872
module and is in DOG
state.

Table 87. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

554 3BSE035980-510

9 ExtendedStatus - - - Remote MOD5 is in
RIGHT ECHO state
on backup.

The MOD5 controller
is connected to the
Backup CI872
module and is in
ECHO state.

10 ExtendedStatus - - - Remote MOD5 is in
LEFT FOX state on
backup.

The Left MOD5
controller is
connected to the
Backup CI872
module and is in FOX
state.

11 ExtendedStatus - - - Remote MOD5 is in
LEFT DOG state on
backup.

The Left MOD5
controller is
connected to the
Backup CI872
module and is in DOG
state.

Table 87. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 555

12 ExtendedStatus - - - Remote MOD5 is in
LEFT ECHO state on
backup.

The MOD5 controller
is connected to the
Backup CI872
module and is in
ECHO state

13 ExtendedStatus Warning Alarm Medium No successful Eye
Contact with Remote
MOD5 System on
backup.

No eye contact with
the Backup CI872
module, due to optical
fiber break or time out
on Rx port.

Table 88. Device Specific Status of CI873 Hardware Unit

Bit StatusType Indication Generation Severity Description

29 ErrorsAndWarnings Error Alarm Medium Set when the Task
Supervisor Error
occurs

30 ErrorsAndWarnings Error Alarm High Set when internal
Firmware Error
occurs

Table 87. CI872 - Remote MOD5 Controller Status Bits (Continued)

Bits Status Type Indication Generation Severity
Status Text and

Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

556 3BSE035980-510

31 ErrorsAndWarnings Error Alarm High Set when internal
Hardware Error
occurs

1 ExtendedStatus Error Alarm High Set when the
Ethernet cable is
removed from
CI873

Table 89. Unit status of the LD 800DNEthernet to DeviceNet Linking Device

Bit StatusType Indication Generation Severity Description

13 ErrorsAndWarnings Error Alarm High Set when the
connection to the
LD 800DN
Ethernet to
DeviceNet Linking
device fails

14 ErrorsAndWarnings Error Alarm High Set when
configuration of LD
800DN Ethernet to
DeviceNet Linking
device fails

22 ErrorsAndWarnings Error Alarm High Set when the CAN
bus is OFF

23 ErrorsAndWarnings Error Alarm High Set when
DeviceNet
network’s power
supply is OFF

Table 88. Device Specific Status of CI873 Hardware Unit (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 557

24 ErrorsAndWarnings Error Alarm High Set when ADR
error occurs during
auto configuration
message
sequence

25 ErrorsAndWarnings Error Alarm High Set when Major
Unrecoverable
Error occurs

26 ErrorsAndWarnings Error Alarm High Set when Major
Recoverable Error
occurs

27 ErrorsAndWarnings Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device switches to
Fault mode

28 ErrorsAndWarnings Error Alarm High Set when Internal
Errors such as
Shared Master
Error and Shared
Master Choice
Error occurs

29 ErrorsAndWarnings Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device returns error
for its configuration

Table 89. Unit status of the LD 800DNEthernet to DeviceNet Linking Device (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

558 3BSE035980-510

30 ErrorsAndWarnings Error Alarm High Set when the
identity of the LD
800DN Ethernet to
DeviceNet Linking
device mismatch
with the configured
LD 800DN
Ethernet to
DeviceNet Linking
device in Control
Builder

31 ErrorsAndWarnings Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device is not
available in the
EtherNet/IP
network

0 ExtendedStatus Warning Alarm Low Set when the minor
revision of the LD
800DN Ethernet to
DeviceNet Linking
device mismatch
with the configured
LD 800DN
Ethernet to
DeviceNet Linking
device in Control
Builder

1 ExtendedStatus Warning Alarm Low Set when no data
is received to LD
800DN Ethernet to
DeviceNet Linking
device

Table 89. Unit status of the LD 800DNEthernet to DeviceNet Linking Device (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 559

2 ExtendedStatus Warning Alarm Low Set when LD
800DN is in Idle
mode

3 ExtendedStatus Error Alarm Medium Set when LD
800DN Ethernet to
DeviceNet Linking
device checks for
duplicate MAC ID
on DeviceNet
network

4 ExtendedStatus Error Alarm High Set when LD
800DN Ethernet to
DeviceNet Linking
device fails to
check for duplicate
MAC ID on
DeviceNet network

5 ExtendedStatus Error Alarm High Set when wrong
MAC ID is
configured in
Control Builder for
LD 800DN
Ethernet to
DeviceNet Linking
device

Table 89. Unit status of the LD 800DNEthernet to DeviceNet Linking Device (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

560 3BSE035980-510

Table 90. Unit Status of EtherNet/IP Device

Bit StatusType Indication Generation Severity Description

25 ErrorsAndWarnings Error Alarm High Set when Major
Unrecoverable
Error occurs

26 ErrorsAndWarnings Error Alarm High Set when Major
Recoverable Error
occurs

27 ErrorsAndWarnings Error Alarm High Set when Minor
Unrecoverable
Error occurs

28 ErrorsAndWarnings Warning Alarm High Set when Minor
Recoverable Error
occurs

29 ErrorsAndWarnings Error Alarm High Set when
EtherNet/IP device
returns error
during its
configuration

30 ErrorsAndWarnings Error Alarm Medium Set when the
identity of
EtherNet/IP device
mismatch with the
configured
EtherNet/IP device
in Control Builder

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 561

31 ErrorsAndWarnings Error Alarm Medium Set when the
EtherNet/IP device
is not available

0 ExtendedStatus Warning Alarm Low Set when the
minor revision of
EtherNet/IP device
mismatch with the
configured
EtherNet/IP device
in Control Builder

Table 91. Unit Status of the DeviceNet Device

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High Indicates CAN
controller is in
bus-off state

23 ErrorsAndWarnings Error Alarm High Set when
DeviceNet
network’s power
supply is OFF

24 ErrorsAndWarnings Error Alarm High Set when ADR
Error occurs due to
slave returning
error during auto
device
replacement

Table 90. Unit Status of EtherNet/IP Device (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

562 3BSE035980-510

25 ErrorsAndWarnings Warning Set when
connection
initialization from
LD 800DN
Ethernet to
DeviceNet Linking
device to
DeviceNet device
is in progress

26 ErrorsAndWarnings Warning Set when keeper
space in LD800DN
cannot
accommodate the
slave device
configuration

27 ErrorsAndWarnings Error Alarm High Set when a
duplicate MAC ID
is found for the
DeviceNet device

28 ErrorsAndWarnings Error Alarm High Set when
connection from
LD 800DN
Ethernet to
DeviceNet Linking
device to the
DeviceNet device
is timed out.

29 ErrorsAndWarnings Error Alarm High Set when
DeviceNet device
returns error
during its
configuration

Table 91. Unit Status of the DeviceNet Device (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 563

30 ErrorsAndWarnings Error Alarm Medium Set when the
identity of
DeviceNet device
mismatch with the
configured
DeviceNet device
in Control Builder

31 ErrorsAndWarnings Error Alarm Medium Set when a
DeviceNet device
is not available

0 ExtendedStatus Warning Alarm Low Set when the
minor revision of
DeviceNet device
mismatch with the
configured
DeviceNet device
in Control Builder

Table 92. Errors and Warning of the CI868

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm High Internal HW Error(see CI Log)

30 ErrorsAndWarnings Error Alarm High Internal FW Error(see CI Log)

29 ErrorsAndWarnings Error Alarm High Error generated by task
supervisor

28 ErrorsAndWarnings Error Alarm High IEC61850 Stack Error

1 ErrorsAndWarnings Warning Alarm High Cable break on ethernet port

Table 91. Unit Status of the DeviceNet Device (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

564 3BSE035980-510

Table 93. Errors and Warning of the IED

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this IED

Table 94. Errors and Warning of the DPSGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 95. Errors and Warning of the INSGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 96. Errors and Warning of the ACTGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 97. Errors and Warning of the ACDGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 98. Errors and Warning of the MVGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 565

Table 99. Errors and Warning of the SPSGroup

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High No Data Received from this
Receive Block

Table 100. Ethernet Ch1 and Ch2 (on CI867)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm High Cable break on
Ethernet port X1

1 X = port 1 or port 2

 1 ExtendedStatus Error Alarm High IP conflict

 2 ExtendedStatus Error Alarm High Failed to initialize
Ethernet port X1

 3-7 Reserved - - - -

8 ExtendedStatus Error Alarm Medium Cable break on
Ethernet port X1

on backup

9 ExtendedStatus Error Alarm Medium IP conflict on the
backup

10 ExtendedStatus Error Alarm Medium Failed to initialize
Ethernet port X1
on the backup

Table 101. Gateway to Modbus Serial Slave

Bit StatusType Indication Generation Severity Description

 16 ExtendedStatus Error Alarm Low TCP Connection
to Gateway Down

Controller Units and Communication Interfaces Appendix B System Alarms and Events

566 3BSE035980-510

Table 102. Modbus Serial Slave (under the gatyeway)

Bit StatusType Indication Generation Severity Description

 24-31 ErrorsAndWarnings - - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 0-15 ExtendedStatus -r - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 16 ExtendedStatus Error Alarm Low TCP Connection
to Serial Slave(s)
Gateway Down

17 ExtendedStatus Warning Event Medium Diagnostic
Retrieval Error

18 ExtendedStatus Warning Event Medium Exception
Retrieval Error

19 ExtendedStatus Warning Event Medium Polling Retrieval
Error

Table 103. ModuleBus

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 0 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

Appendix B System Alarms and Events Controller Units and Communication Interfaces

3BSE035980-510 567

 1 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 2 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 3 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 4 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 5 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 6 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

Table 104. Ethernet

Bit StatusType Indication Generation Severity Description

29 ErrorsAndWarnings Warning Alarm Medium No communication
Backup CPU

 30 ErrorsAndWarnings Warning Alarm Medium No communication

Table 105. MODBUS

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Event Medium Offline

Table 103. ModuleBus (Continued)

Bit StatusType Indication Generation Severity Description

Controller Units and Communication Interfaces Appendix B System Alarms and Events

568 3BSE035980-510

Table 106. Modbus TCP Slave

Bit StatusType Indication Generation Severity Description

 24-31 ErrorsAndWarnings - - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 0-15 ExtendedStatus -r - - (Intended to be
used in an

application by
connecting an
variable to the

UnitStatus
channel)

 16 ExtendedStatus Error Alarm Low TCP Connection
Down

17 ExtendedStatus Warning Event Medium Diagnostic
Retrieval Error

18 ExtendedStatus Warning Event Medium Exception
Retrieval Error

19 ExtendedStatus Warning Event Medium Polling Retrieval
Error

Table 107. PPP

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Medium No communication

Appendix B System Alarms and Events Adapters

3BSE035980-510 569

Adapters

Table 108. DSBC 173A

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Table 109. DSBC 174

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Table 110. DSBC 176

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Adapters Appendix B System Alarms and Events

570 3BSE035980-510

Table 111. CI801

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event High Station warning

 26 ErrorsAndWarnings Warning Alarm Low Power B error

 27 ErrorsAndWarnings Warning Alarm Low Power A error

0 ExtendedStatus Error Alarm Medium Slave does not
exist

1 ExtendedStatus Error Alarm Medium Configuration data
fault

2 ExtendedStatus Error Alarm Medium Parameter data
fault

3 ExtendedStatus Warning Event Low Static diagnostic

5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

6 ExtendedStatus Warning Event Medium Report diagnostics
fault

10 ExtendedStatus Warning Alarm Low Station address
warning

Table 112. CI830

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Alarm Low Power B error

 29 ErrorsAndWarnings Warning Alarm Low Power A error

 30 ErrorsAndWarnings Warning Event High Peripheral HW
error

 31 ErrorsAndWarnings Error Alarm Medium Error

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

Appendix B System Alarms and Events Adapters

3BSE035980-510 571

 1 ExtendedStatus Error Alarm Medium Configuration data
fault

 2 ExtendedStatus Error Alarm Medium Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

4 ExtendedStatus Warning Alarm Low Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report diagnostics
fault

Table 113. CI840

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event High Station warning

 26 ErrorsAndWarnings Warning Alarm Low Power B error

 27 ErrorsAndWarnings Warning Alarm Low Power A error

 28 ErrorsAndWarnings Warning Alarm Low Cable B error

 29 ErrorsAndWarnings Warning Alarm Low Cable A error

 30 ErrorsAndWarnings Warning Alarm Low Unit A error

 31 ErrorsAndWarnings Warning Alarm Low Unit B error

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm Medium Configuration data
fault

 2 ExtendedStatus Error Alarm Medium Parameter data
fault

Table 112. CI830

Bit StatusType Indication Generation Severity Description

Adapters Appendix B System Alarms and Events

572 3BSE035980-510

 3 ExtendedStatus Warning Event Low Static diagnostic

 4 ExtendedStatus Warning Alarm Low Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report diagnostics
fault

 10 ExtendedStatus Warning Alarm Low Station address
warning

Table 114. S900

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error - - Slave does not
exist

 1 ExtendedStatus Error - - Configuration data
fault

 2 ExtendedStatus Error - - Parameter data
fault

 3 ExtendedStatus Warning - - Static diagnostic

 4 ExtendedStatus Warning - - Redundant slave
does not exist

Table 115. CI920* (CIPB)

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Low Red. CIPB missing

 31 ErrorsAndWarnings Warning Event Low Red. CIPB error

 0 ExtendedStatus Error Alarm Medium ROM error

 1 ExtendedStatus Error Alarm Medium RAM error

Table 113. CI840 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events Adapters

3BSE035980-510 573

 2 ExtendedStatus Error Alarm Medium EEPROM error

 3 ExtendedStatus Warning Event Low Cold start

 4 ExtendedStatus Warning Event Low Error 20

 5 ExtendedStatus Warning Event Low Error 21

 6 ExtendedStatus Error Event Medium Internal bus fault

 7 ExtendedStatus Warning Event Low Internal bus fault
(passive)

 8 ExtendedStatus Warning Event Low Power supply 1
error

 9 ExtendedStatus Warning Event Low Power supply 2
error

 10 ExtendedStatus Warning Event Low Reset after
watchdog

 11 ExtendedStatus Warning Event Low Redundancy
switchover

 12 ExtendedStatus Warning Event Low Red. CIPB missing

 13 ExtendedStatus Warning Event Low Red. CIPB not
ready

 14 ExtendedStatus Warning Event Low Red. CIPB error

 15 ExtendedStatus Warning Event Low Red. CIPB no DP
comm.

Table 115. CI920* (CIPB) (Continued)

Bit StatusType Indication Generation Severity Description

Adapters Appendix B System Alarms and Events

574 3BSE035980-510

Table 116. RPBA-01 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm High Configuration data
fault

 2 ExtendedStatus Error Alarm High Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

 4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

10 ExtendedStatus Warning Event Low Communication
temporary lost

11 ExtendedStatus Warning Event Low Communication
permanently lost

Table 117. NPBA-12 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm High Configuration data
fault

 2 ExtendedStatus Error Alarm High Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

Appendix B System Alarms and Events Adapters

3BSE035980-510 575

 4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

Table 117. NPBA-12 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

576 3BSE035980-510

S800 I/O

Table 118. AI801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 577

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 119. AI810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

Table 118. AI801 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

578 3BSE035980-510

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 120. AI815

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

Table 121. AI820 and AI825

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

Table 119. AI810 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 579

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 122. AI830

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 121. AI820 and AI825 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

580 3BSE035980-510

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 122. AI830 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 581

Table 123. AI835

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

S800 I/O Appendix B System Alarms and Events

582 3BSE035980-510

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 124. AI835A

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm High Error

30 ErrorsAndWarnings Warning Event Low Warning

0 ExtendedStatus Warning Event Low OSP

4 ExtendedStatus Warning Event Low Not configured

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 125. AI843

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

Table 123. AI835 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 583

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 125. AI843 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

584 3BSE035980-510

Table 126. AI845

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Event Low Backup Warning

 27 ErrorsAndWarnings Warning Alarm Medium Backup Error

 28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

 29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

 30 ErrorsAndWarnings Warning Event Low Warning

 31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedWarning Warning Event Low OSP

 1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

 4 ExtendedStatus Warning Event Low Not configured

 5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

 8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 585

Table 127. AI890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

586 3BSE035980-510

Table 128. AI893 RTD

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 587

Table 129. AI893 TC

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

588 3BSE035980-510

Table 130. AI895

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 589

Table 131. AO801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

590 3BSE035980-510

Table 132. AO820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 591

Table 133. AO810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

S800 I/O Appendix B System Alarms and Events

592 3BSE035980-510

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 134. AO815

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

Table 135. AO845

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

Table 133. AO810 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 593

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 136. AO890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

Table 135. AO845

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

594 3BSE035980-510

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 137. AO895

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 136. AO890

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 595

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 138. DI801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 137. AO895

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

596 3BSE035980-510

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 138. DI801

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 597

Table 139. DI802

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

598 3BSE035980-510

Table 140. DI803

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 599

Table 141. DI810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

600 3BSE035980-510

Table 142. DI811

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Warning

 0 ExtendedStatus Warning Event Low OSP

 4 ExtendedStatus Warning Event Low Not configured

Table 143. DI814

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 601

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 144. DI820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

Table 143. DI814

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

602 3BSE035980-510

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 145. DI821

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

Table 144. DI820 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 603

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 146. DI830

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

Table 145. DI821 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

604 3BSE035980-510

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 147. DI825

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 146. DI830 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 605

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 148. DI831

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

Table 147. DI825 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

606 3BSE035980-510

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 148. DI831 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 607

Table 149. DI840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

608 3BSE035980-510

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 150. DI885

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

Table 149. DI840 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 609

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 151. DI890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

Table 150. DI885 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

610 3BSE035980-510

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 152. DO801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

Table 151. DI890 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 611

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 153. DO802

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

Table 152. DO801 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

612 3BSE035980-510

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 154. DO810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 153. DO802 (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 613

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 154. DO810 (Continued)

Bit StatusType Indication Generation Severity Description

S800 I/O Appendix B System Alarms and Events

614 3BSE035980-510

Table 155. DO814

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 615

Table 156. DO815

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

616 3BSE035980-510

Table 157. DO820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 617

Table 158. DO821

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

618 3BSE035980-510

Table 159. DO840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 619

Table 160. DO890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

620 3BSE035980-510

Table 161. DP820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 621

Table 162. DP840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

S800 I/O Appendix B System Alarms and Events

622 3BSE035980-510

Table 163. AI880

Bit StatusType Indication Generation Severity Description

 24 ErrorsAndWarnings Warning Alarm High Error State, soft
resetable

 25 ErrorsAndWarnings Warning Alarm High Error State

 28 ErrorsAndWarnings Warning Event Low Backup Warning

 29 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

 30 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

 31 ErrorsAndWarnings Warning Alarm Medium Backup Error

Table 164. AI880 as DI

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

 24 ErrorsAndWarnings Warning Alarm High Error State, soft
resetable

 25 ErrorsAndWarnings Warning Alarm High Error State

 28 ErrorsAndWarnings Warning Event Low Backup Warning

 29 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

 30 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

 31 ErrorsAndWarnings Warning Alarm Medium Backup Error

Appendix B System Alarms and Events S800 I/O

3BSE035980-510 623

Table 165. DI880

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

 24 ErrorsAndWarnings Warning Alarm Medium Error State, soft
resetable

 25 ErrorsAndWarnings Warning Alarm Medium Error State

 28 ErrorsAndWarnings Warning Event Low Backup Warning

 29 ErrorsAndWarnings Warning Alarm Low Backup Module
Missing

 30 ErrorsAndWarnings Warning Alarm Low Backup Wrong
module type

 31 ErrorsAndWarnings Warning Alarm Low Backup Error

Table 166. DO880

Bit StatusType Indication Generation Severity Description

8 ExtendedStatus Warning Event Low Internal channel
error

 24 ErrorsAndWarnings Warning Alarm Medium Error State, soft
resetable

 25 ErrorsAndWarnings Warning Alarm Medium Error State

 28 ErrorsAndWarnings Warning Event Low Backup Warning

 29 ErrorsAndWarnings Warning Alarm Low Backup Module
Missing

 30 ErrorsAndWarnings Warning Alarm Low Backup Wrong
module type

 31 ErrorsAndWarnings Warning Alarm Low Backup Error

S900 I/O Appendix B System Alarms and Events

624 3BSE035980-510

S900 I/O

Table 167. AI910* (AI4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 625

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 168. AI920* (AI4I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

Table 167. AI910* (AI4) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

626 3BSE035980-510

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 169. AI921* (AI4I U)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

Table 168. AI920* (AI4I) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 627

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 170. AI930* (AI4H A)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

Table 169. AI921* (AI4I U) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

628 3BSE035980-510

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

Table 170. AI930* (AI4H A) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 629

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 171. AI930* (AI4H A 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning - - Line fault ch. 1

 1 ExtendedStatus Warning - - Line fault ch. 2

 2 ExtendedStatus Warning - - Line fault ch. 3

 3 ExtendedStatus Warning - - Line fault ch. 4

Table 170. AI930* (AI4H A) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

630 3BSE035980-510

 4 ExtendedStatus Warning - - Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning - - Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning - - Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning - - Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning - - Lower limit
underrun ch. 1

 9 ExtendedStatus Warning - - Lower limit
underrun ch. 2

 10 ExtendedStatus Warning - - Lower limit
underrun ch. 3

 11 ExtendedStatus Warning - - Lower limit
underrun ch. 4

 12 ExtendedStatus Warning - - HART status
available ch. 1

 13 ExtendedStatus Warning - - HART status
available ch. 2

 14 ExtendedStatus Warning - - HART status
available ch. 3

 15 ExtendedStatus Warning - - HART status
available ch. 4

 16 ExtendedStatus Warning - - HART
communication

error ch. 1

Table 171. AI930* (AI4H A 1H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 631

 17 ExtendedStatus Warning - - HART
communication

error ch. 2

 18 ExtendedStatus Warning - - HART
communication

error ch. 3

 19 ExtendedStatus Warning - - HART
communication

error ch. 4

Table 172. AI930* (AI4H A 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 171. AI930* (AI4H A 1H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

632 3BSE035980-510

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 172. AI930* (AI4H A 4H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 633

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 173. AI930* (AI4H A 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 172. AI930* (AI4H A 4H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

634 3BSE035980-510

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 173. AI930* (AI4H A 8H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 635

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 174. AI931* (AI4H P)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 173. AI930* (AI4H A 8H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

636 3BSE035980-510

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 174. AI931* (AI4H P) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 637

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 175. AI931* (AI4H P 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning - - Line fault ch. 1

 1 ExtendedStatus Warning - - Line fault ch. 2

 2 ExtendedStatus Warning - - Line fault ch. 3

 3 ExtendedStatus Warning - - Line fault ch. 4

 4 ExtendedStatus Warning - - Upper limit
exceeded ch. 1

Table 174. AI931* (AI4H P) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

638 3BSE035980-510

 5 ExtendedStatus Warning - - Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning - - Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning - - Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning - - Lower limit
underrun ch. 1

 9 ExtendedStatus Warning - - Lower limit
underrun ch. 2

 10 ExtendedStatus Warning - - Lower limit
underrun ch. 3

 11 ExtendedStatus Warning - - Lower limit
underrun ch. 4

 12 ExtendedStatus Warning - - HART status
available ch. 1

 13 ExtendedStatus Warning - - HART status
available ch. 2

 14 ExtendedStatus Warning - - HART status
available ch. 3

 15 ExtendedStatus Warning - - HART status
available ch. 4

 16 ExtendedStatus Warning - - HART
communication

error ch. 1

Table 175. AI931* (AI4H P 1H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 639

 17 ExtendedStatus Warning - - HART
communication

error ch. 2

 18 ExtendedStatus Warning - - HART
communication

error ch. 3

 19 ExtendedStatus Warning - - HART
communication

error ch. 4

Table 176. AI931* (AI4H P 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 175. AI931* (AI4H P 1H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

640 3BSE035980-510

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 176. AI931* (AI4H P 4H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 641

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 177. AI931* (AI4H P 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 176. AI931* (AI4H P 4H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

642 3BSE035980-510

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 177. AI931* (AI4H P 8H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 643

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 178. AI950* (TI4 R)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 177. AI931* (AI4H P 8H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

644 3BSE035980-510

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 179. AI950* (TI4 T)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

Table 178. AI950* (TI4 R) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 645

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 180. AO910* (AO4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

Table 179. AI950* (TI4 T) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

646 3BSE035980-510

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 181. AO920* (AO4I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 180. AO910* (AO4) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 647

Table 182. AO930* (AO4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

S900 I/O Appendix B System Alarms and Events

648 3BSE035980-510

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 183. AO930* (AO4H 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

Table 182. AO930* (AO4H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 649

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 184. AO930* (AO4H 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

Table 183. AO930* (AO4H 1H) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

650 3BSE035980-510

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 184. AO930* (AO4H 4H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 651

Table 185. AO930* (AO4H 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

S900 I/O Appendix B System Alarms and Events

652 3BSE035980-510

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 186. DO910* (DO4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 185. AO930* (AO4H 8H) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 653

Table 187. DO930* (RO6)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

Table 188. DO940* (TO8)

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event Medium External power
supply missing

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

S900 I/O Appendix B System Alarms and Events

654 3BSE035980-510

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 189. DO980* (TO16)

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event Medium External power
supply missing

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

Table 188. DO940* (TO8) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 655

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

 8 ExtendedStatus Warning Event Low Line fault ch. 9

 9 ExtendedStatus Warning Event Low Line fault ch. 10

 10 ExtendedStatus Warning Event Low Line fault ch. 11

 11 ExtendedStatus Warning Event Low Line fault ch. 12

 12 ExtendedStatus Warning Event Low Line fault ch. 13

 13 ExtendedStatus Warning Event Low Line fault ch. 14

 14 ExtendedStatus Warning Event Low Line fault ch. 15

 15 ExtendedStatus Warning Event Low Line fault ch. 16

Table 190. DP910* (FI2 P)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

Table 189. DO980* (TO16) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

656 3BSE035980-510

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 191. DP910* (FI2 F)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

Table 190. DP910* (FI2 P) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 657

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 192. DX910* (DIO8)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 191. DP910* (FI2 F) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

658 3BSE035980-510

Table 193. DX910* (DIO8 S)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 194. DX910* (DIO8 8I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

Appendix B System Alarms and Events S900 I/O

3BSE035980-510 659

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 195. DX910* (DIO8 8I S)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

Table 194. DX910* (DIO8 8I) (Continued)

Bit StatusType Indication Generation Severity Description

S900 I/O Appendix B System Alarms and Events

660 3BSE035980-510

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 196. DI920* (DI4)

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Error Alarm Medium Module error

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistant

26 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Line fault ch. 1

1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 195. DX910* (DIO8 8I S) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events S100 I/O

3BSE035980-510 661

S100 I/O

Table 197. DSAI 130/130A (S100 I/O)

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 198. DSAI 130D

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 199. DSAI 133/133A

Bit StatusType Indication Generation Severity Description

 27 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

INSUM Devices Appendix B System Alarms and Events

662 3BSE035980-510

 INSUM Devices

Table 200. DSAX 110

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 31 ErrorsAndWarnings Warning Event Low Reference level
error

Table 201. DSAX 110A

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 31 ErrorsAndWarnings Warning Event Low Reference level
error

Table 202. INSUM Device

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

Appendix B System Alarms and Events INSUM Devices

3BSE035980-510 663

Table 203. INSUM Gateway

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Error Alarm Medium GW Disconnected

 23 ErrorsAndWarnings Error Alarm Medium CI857 Connection
error

 25 ErrorsAndWarnings Warning Event Low HA Offline

 26 ErrorsAndWarnings Warning Event Low GW paused

 27 ErrorsAndWarnings Warning Alarm Medium GW shutdown

 28 ErrorsAndWarnings Warning Event Low Status unknown

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

 3 ExtendedStatus - - - Gateway sending
lifelist

 4 ExtendedStatus Warning Alarm Medium Consistency check
failed

 5 ExtendedStatus Warning Event Low Switched Offline
via LNT

Table 204. Circuit Breaker (INSUM)

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

INSUM Devices Appendix B System Alarms and Events

664 3BSE035980-510

 7 ExtendedStatus Warning Event Low LocalOpMode

 14 ExtendedStatus Warning Event Low Tripped

 15 ExtendedStatus Warning Event Low Warning

Table 205. MCU, MCU A+ and MCU v2 (INSUM)

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error - - GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning - - Warning!

 31 ErrorsAndWarnings Error - - Error!

0 ErrorsAndWarnings - - - Runs1

1 ExtendedStatus - - - Runs2

2 ExtendedStatus - - - Stopped

 3 ExtendedStatus Warning1 - - Tripped

 4 ExtendedStatus Warning1 - - Alarm

5 ExtendedStatus - - - Acuator open

6 ExtendedStatus - - - Acuator closed

7 ExtendedStatus - - - StaggStart

 8 ExtendedStatus Warning1 - - Failsafe

 9 ExtendedStatus Warning1 - - TOLBypass

10 ExtendedStatus Warning1 - - TestPos

11 ExtendedStatus - - - Star

Table 204. Circuit Breaker (INSUM) (Continued)

Bit StatusType Indication Generation Severity Description

Appendix B System Alarms and Events FF Devices

3BSE035980-510 665

FF Devices

MB300 Nodes

12 ExtendedStatus - - - Delta

13 ExtendedStatus - - - Soft

14 ExtendedStatus Warning1 - - No remote reset

15 ExtendedStatus Warning1 - - LocalOpMode

1 Indication applies only for MCU and MCU A+. For MCU v2 these indications are disabled.

Table 206. FF Device

Bit StatusType Indication Generation Severity Description

 27 ErrorsAndWarnings Error Alarm High FF CIff Power Up
Test Fail

 28 ErrorsAndWarnings Error Alarm High FF Ctrl WD Stall

 29 ErrorsAndWarnings Error Alarm High FF CIff WD Stall

 30 ErrorsAndWarnings Error Alarm High FF Resources Low

 31 ErrorsAndWarnings Warning Event Medium FF H1 Bus Idle

Table 207. MB300 Node

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Alarm Medium Node unreachable

Table 205. MCU, MCU A+ and MCU v2 (INSUM) (Continued)

Bit StatusType Indication Generation Severity Description

ABB Standard Drive Appendix B System Alarms and Events

666 3BSE035980-510

ABB Standard Drive

Table 208. ABB Standard Drive

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Mediu
m

Communicati
on broken

1 ExtendedStatus Error Alarm High Wrong drive
type

2 ExtendedStatus Error Alarm High Wrong
application ID

3 ExtendedStatus Warni
ng

Event Low Undefined
error

4 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

5 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

6 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

Table 209. ABB Engineering Drive

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error

Appendix B System Alarms and Events ABB Standard Drive

3BSE035980-510 667

Table 210. ABB Drive Template (basic)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error

Table 211. ABB Drive Template (extension)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error

Process Panel Appendix B System Alarms and Events

668 3BSE035980-510

Process Panel

Table 212. ABB Process Panel

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Slave does not
exist

1 ExtendedStatus Error Alarm High Configuration data
fault

2 ExtendedStatus Error Alarm High Parameter data
fault

3 ExtendedStatus Warning Event Low Static diagnostic

4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

Appendix B System Alarms and Events ITS

3BSE035980-510 669

ITS

Table 213. ITS

Bit StatusType Indication Generation Severity Description

23 ErrorsAndWarnings Error - - GW Connection
error

28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

30 ErrorsAndWarnings Warning - - Warning!

31 ErrorsAndWarnings Error - - Error!

0 ExtendedStatus Warning - - Fuse Ph1 blown

1 ExtendedStatus Warning - - Fuse Ph2 blown

2 ExtendedStatus Warning - - Fuse Ph3 blown

3 ExtendedStatus Warning - - Tripped

4 ExtendedStatus Warning - - Warning

10 ExtendedStatus Warning - - Overcurr Ph1

11 ExtendedStatus Warning - - Overcurr Ph2

12 ExtendedStatus Warning - - Overcurr Ph3

13 ExtendedStatus Warning - - Overtemp Ph1

14 ExtendedStatus Warning - - Overtemp Ph2

15 ExtendedStatus Warning - - Overtemp Ph3

NAIO ff Appendix B System Alarms and Events

670 3BSE035980-510

NAIO ff

Table 214. NAIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 215. NBIO-21

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

Appendix B System Alarms and Events NAIO ff

3BSE035980-510 671

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 216. NBIO-31

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 215. NBIO-21 (Continued)

Bit StatusType Indication Generation Severity Description

NAIO ff Appendix B System Alarms and Events

672 3BSE035980-510

Table 217. NCTI

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 218. NDIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

Appendix B System Alarms and Events NAIO ff

3BSE035980-510 673

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 219. NDSC

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 218. NDIO

Bit StatusType Indication Generation Severity Description

NAIO ff Appendix B System Alarms and Events

674 3BSE035980-510

Table 220. NPCT

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 221. NTAC

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

Appendix B System Alarms and Events NAIO ff

3BSE035980-510 675

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 222. NWIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 221. NTAC (Continued)

Bit StatusType Indication Generation Severity Description

PPO Appendix B System Alarms and Events

676 3BSE035980-510

PPO

Table 223. PPO Type1

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 224. PPO Type2 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Appendix B System Alarms and Events PPO

3BSE035980-510 677

Table 225. PPO Type 2

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 226. PPO Type 3

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

PPO Appendix B System Alarms and Events

678 3BSE035980-510

Table 227. PPO Type 4 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 228. PPO Type 4

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Appendix B System Alarms and Events PPO

3BSE035980-510 679

Table 229. PPO Type 5 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 230. PPO Type 5

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Special IO Template Appendix B System Alarms and Events

680 3BSE035980-510

Special IO Template

Table 231. Special IO template

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

3BSE035980-510 681

A
abort

tasks 168
access control

double authenticate 105
access variables 79
accuracy 258
acknowledge

errors 345
warnings 345

acknowledgement rules 234, 287
add

files to FSD server 364
message to alarm 234
to libraries 134

AF 100 325
afw file 371
alarm condition

name 234
alarm conditions 230
Alarm handling

INSUM 251
Alarm lists

INSUM 251
AlarmCond 230

parameters 231
AlarmCondBasic 232
AlarmCondBasicM 232
AlarmCondM 230
alarms

add message 234
classify 235
communication 259
condition name 234
disable 240

disable condition 234
enable 233
examples 267
in control loops 240
inhibit 240
local printer 263
logging 255
severity 235
source name 234
state diagrams 287
status 236
subscribe to 259
system 252

alarms and events
ABB standard drive 666
adapters 569
controller units and communcation

interfaces 513
FF devices 665
INSUM devices 662
MB300 nodes 665
S100 I/O 661
S800 I/O 576
S900 I/O 624
unit specific 513

all inputs 342
all outputs 342
all unit status 341
analog signals

scale 339
analysis tools 425
applicable specification 17
applications

export 371
rollback 371

INDEX

Index

682 3BSE035980-510

Index

682 3BSE035980-510

arrays
example 443

ASCII codes 460
ASCII conversion 462
aspect object

set 65
set attribute 65
suppress 65

aspect objects 64
aspects

Library Version Definition 370
asynchronous communication 322
attributes

aspect object 65
Hidden 144
initial value 78
override 106
Protected 144

authentication
at download 179
levels 106

authentication at download
enable 179

B
backup 363

individual files 364
BasicLib 38
buffer queues 261
buffers

configure 261
memory planning 262

C
CASE 210
change

library state 130
library version 132

Change Library Version 132
channel status

check 342
check

channel status 342
classify

alarms 235
client/server 320
Closed 129
CNCP 258
codes

ASCII 460
COMLI 294
communication

alarm and event 259
client/server 320
cyclic vs. asynchronous 322
function blocks 318
libraries 294, 318
master/slave 320
modem 304
provider/subscriber 321
serial 306
SIL restrictions 293
statistics 312
using access variables 81
using global variables 82
variables 312

communication libraries
library 298

Communication Variables 83, 312
Diagnostics 419

complex types
modify 51

condition name
alarms 234

condition-related events 228
configure

buffers 261
Error Handler 375
OPC AE communication 259

Confirmed Online Write 179

Index

3BSE035980-510 683

connect
I/O channels 97
libraries 123
library 125
objects 53
to other system 316

Control Builder
start log 406
system information report 409

Control Builder start log
file path 406

control loops
alarms 240

control module types
AlarmCondBasicM 232
AlarmCondM 230

control modules
execution 60
single 63

Control Network 310
network areas 310

control project
create 22
insert library 124
remove library 127

control projects
projects 22

controller logs
file paths 414

controller system log 410
controllers

export 371
rollback 371
system alarms 253

conversion
ASCII 462

conversion functions
example 458

conversions
ASCII 460

Coordinated Universal Time 257
crash dumps 415
create

control project 22
library 128
new library version 132
objects 53

Create New Library Version 132
cyclic communication 322

D
data

read 316
send 316

data types 71
simple 71

debug mode 170
decisions

when creating types 52
declare

external variables 43
function blocks 44
parameter 42
types 41
variables 42

define
variables 70

delete
library 128

Deploy 26, 28
development state

libraries 129
Device Import Wizard 138
DeviceNet EDS 138
dialogs

Remote System 311
disable

alarm condition 234
alarms 240
authentication at download 179

Index

684 3BSE035980-510

Index

684 3BSE035980-510

events 240
disconnect

library 127
document conventions 16
Double Authenticate 105
download

reports 217

E
EDIT parameters 232
editors

declare types 41
graphics 46
programming 44

enable
alarm detection 233
authentication at download 179

Engineering Environment 26
enter

variables 70
Entity 24

Deploy 28
Environment

Engineering 26
Production 26

Environments 26
Error Handler

configure 375
log entries 383

error messages 349
Error Reaction

settings 378
error reports 441
errors

acknowledge 345
non-unique alarms 235
suggested actions 433
symptoms 433

ErrorsAndWarnings 541
events

communication 259
condition-related 228
disable 240
inhibit 240
logging 255
low level 244
simple 228
system 252
tracking-related 228

examples
alarm and event 267
arrays 443
conversion functions 458
queues 454
type protection 146

execution
control for individual objects 88
control modules 60
control using external variables 88
control using parameter 89
debug mode 170
function blocks 58
non-cyclic 170

EXIT 210
export 369

alternatives 372
application 371
applications 371
controller 371
controllers 371
libraries 369, 374
library 128, 369

extensible parameters 102
external 78
external time stamps 256
external variables 78

declare 43

F
Fatal Overrun 381

Index

3BSE035980-510 685

fatal overrun 377
fault localization

crash dumps 415
FDRT 381
file paths

Control Builder start log 406
controller logs 414
heap statistics log 410
session logs 403

firmware functions 29
folders

System 29
FOR 210
force

I/O channels 181
FOUNDATION Fieldbus

HSE 294
Foundation FIELDBUS

HSE 294
FSD server

add files 364
remove files 364

FSD util tool 364
function block types

AlarmCond 230
AlarmCondBasic 232
System Diagnostics 427
SystemDiagnostics 286

function blocks
communication 318
declare 44
execution 58

Function Diagram
Execution Order 120
Viewer 107

functions 29

G
graphical editor 46

H
hardware

monitor 101
hardware status 340
heap 430
heap statistics log 410

file path 410
Heap Utilization 431
Hidden

attribute 144

I
I/O addressing 96
I/O channels

connect 97
force 181
force values 336
monitor 101
online mode 336

IAC MMS 313
IEC 61131-3 23
Implicit Cast 210
import 369

alternatives 372
library 128

inhibit
alarms 240
events 240

init values
set 77

Init_Val 77
initial values 76

priority order 78
retain attributes 78

Instruction List 210
INSUM 296

Alarm handling method 251
Alarm lists 251

INSUM Alarms 246
InsumCommLib 298

Index

686 3BSE035980-510

Index

686 3BSE035980-510

interaction windows 346
internal time stamps 256
interval time

tasks 157
intervals

tasks 157
IP 324

K
keywords

in parameter descriptions 103

L
Ladder Diagram 210
latency 163, 166
latency supervision 377
levels

authentication 106
libraries

add to 134
Alarm and Event 229
BasicLib 38
communication 294, 318
connect 123
connect to application 125
connect to library 125
create 128
delete 128
disconnect 127
export 128, 369, 374
import 128
insert into control project 124
InsumCommLib 298
management 122
remove from control project 127
states 129
version handling 130, 133

library management 122
library state

change 130

library states
Closed 129
Open 129
Released 129

library version
change 132
create new 132

License
CCP (Controller Capacity Points) 434

load balancing 169, 377
Load Firmware 204
local printers 263
log

alarms and events 255
simple events 256

log entries
Error Handler 383

log files 399
Control Builder start log 406
controller system log 410
heap statistics 410
session 400
system log 399

logging
alarms and events 255

Loops In ST 210
low level event 244

M
maintenance

tools 374
master

time synchronization 258
master/slave 320
maximum number of forced I/O channels 338
MB 300 TS 258
MB300 302
memory size 430
MMS 303
MMS Time Service 258

Index

3BSE035980-510 687

ModBus 304
modem communication 304
monitor

hardware 101
I/O channels 101

MTMCommLib 305
Multi-User Engineering 24

N
National Language Support 266
Nested If or Case 210
network areas 310
network redundancy 310
NLS

syntax 266
non-cyclic execution 170
non-unique alarms

errors 235
number conversion

example 458

O
objects 39

connect 53
control execution 88
create 53

offset
tasks 158

online mode 101
all inputs/outputs 342
all unit status 341
force I/O channels 336
hardware status 340
I/O channels 336
interaction windows 346
messages 349
project documentation 354
search and navigation 350
status indications 344
task overview 346

unit status 339
OPC AE communication

configure 259
OPC Server

session log example 405
OPC server

subscriptions 259
OPC Server for AC 800M 259
Open 129
open

code block menu 46
override

attributes 106
property attributes 106
protection 146
type protection 145

overrun 163
overrun supervision 377

P
parameter

declare 42
parameters 66

AckCond 234
AckRule 233
AE Limit auto disable 237
AlarmCond 231
Class 235
CondName 234
CondState 236
DisCond 234
EDIT 232
EnCond 234
EnDetection 233
Error 236
extensible 102
ExtTimeStamp 233
FilterTime 233
Inhibit 242
Inverted 233

Index

688 3BSE035980-510

Index

688 3BSE035980-510

keywords 103
Message 234
Severity 235
Signal 233
SignalID 233
SrcName 234
Status 236
TransitionTime 256
UseSigToInit 233

permissions
Re-Authenticate 105

POU 23
definition 23

printers
local 263

priorities
tasks 155

priority
initial values 78

priority order
initial values 78

process alarms 229
Production Environment 26
PROFIBUS

DP-V1 323
PROFIBUS GSD 138
PROFINET IO 324

C871 324
GSD 324

PROFINET IO GSD 138
programming editor 44
project

insert library 124
remove library 127

project constants 92
structured 93

project documentation 222, 354
property attributes

override 106
property permissions 105

set 106
Protected

attribute 144
protection

example 146
override 146
override for types 145

Protocols
PROFINET IO 324

protocols
COMLI 294
FF HSE 294
INSUM 296
MB300 302
MMS 303
ModBus 304
modem communication 304
SattBus 305
serial communication 306
Siemens S3964R 304
supported 309

provider/subscriber 321
publisher/subscriber 321

Q
queues

buffer 261
example 454

R
Reaction

settings for HI controller 380
read

data 316
Re-Authenticate 105
Re-authenticate 105
redundancy

network 310
Released 129
Remote System dialog 311

Index

3BSE035980-510 689

remote systems information 416
remove

files from FSD server 364
REPEAT 210
reports

at download 217
system information 409

Reservation 24
Release 25
Reserve Entity 25

resolution 258
restore 363
retain attributes

initial values 78
Reverse attribute 87
rollback

application 371
controller 371

RS-232C 310
RT 324

S
S3964R 304
SattBus 305
scale

analog signals 339
search and navigation 181

online mode 350
Secure Digital 199
Security 179
security

double authenticate 105
re-authenticate 105

self-defined types 145
send

data 316
Sequence-of-Events (SOE) 244
serial communication 306
session log

OPC server example 405

session log files 400
session logs

file paths 403
set

aspect object 65
aspect object attribute 65
authentication level 106
property permissions 106
specific initial values 77

settings
import/export 372

severity
alarms 235

SFC 210
Siemens

S3964R protocol 304
SIL

communication 293
Confirmed Online Write 179
no disabling of alarms via MSS 241

simple data types 71
simple events 228

log 256
Simultaneous Execution in SFC 210
single control modules 63
SNTP 258
Source Code Report 215
source name

alarms 234
specific initial values

set 77
start code blocks 46
state

libraries 129
state diagrams

alarms 287
alarms,alarms

state diagrams 287
statistics

communication 312

Index

3BSE035980-510 690

status
alarms 236
indications 344

status messages 349
structured project constants 93
subscribe

to alarms 259
sum system alarms 290
supervise

hardware 101
I/O channels 101
unit status 339

supervision
latency 166
overrun 163

supported protocols 309
suppress

aspect object 65
syntax

NLS 266
System alarms

List 253
system alarms

controller generated 253
sum 290

system alarms and events 252
System Diagnostics 311, 427
system diagnostics 286, 427
System folder 29
system information 409
system log file 399

T
Task Analysis 171
tasks 346

abort 168
execution 155
interval time 157
offset 158
priorities 155

time-critical 155
TCP/IP 324
terminology 17
time stamps 256

external 256
internal 256

time synchronization 258
time-critical tasks 155
tools

analysis 425
FSD util 364
maintenance 374

tracking-related events 228
TransitionTime 256
trouble-shooting 398

symptoms and measures 433
type concept 39
types 39

document 222
in applications 49
in libraries 50
self-defined 145

U
UDP/IP 324
UNICODE 266
unit status

supervise 339
UTC 257

V
variable communication 312
variables 66, 78

access 79
attributes 72
declare 42
define 70
initial values 76
list 69

version handling

Index

3BSE035980-510 691

libraries 130, 133

W
warnings

acknowledge 345
WHILE 210

Index

692 3BSE035980-510

Index

692 3BSE035980-510

Copyright © 2003-2010 by ABB.
All Rights Reserved

ABB AB
Control Systems
Västerås, Sweden
Phone: +46 (0) 21 32 50 00
Fax: +46 (0) 21 13 78 45
E-Mail: processautomation@se.abb.com
www.abb.com/controlsystems

ABB Industry Pte Ltd
Control Systems
Singapore
Phone: +65 6776 5711
Fax: +65 6778 0222
E-Mail: processautomation@sg.abb.com
www.abb.com/controlsystems

ABB Automation GmbH
Control Systems
Mannheim, Germany
Phone: +49 1805 26 67 76
Fax: +49 1805 77 63 29
E-Mail: marketing.control-products@de.abb.com
www.abb.de/controlsystems

ABB Inc.
Control Systems
Wickliffe, Ohio, USA
Phone: +1 440 585 8500
Fax: +1 440 585 8756
E-Mail: industrialitsolutions@us.abb.com
www.abb.com/controlsystems

Power and productivity
for a better worldTM

Contact us

3B
S

E
03

59
80

-5
10

	AC 800M
	TABLE OF CONTENTS
	About This Book
	General
	Document Conventions
	Warning, Caution, Information, and Tip Icons
	Terminology
	Related Documentation

	Section 1 Basic Functions and Components
	Introduction
	Control Project Templates
	Control Projects
	Program Organization Units, POU
	Entities and Reservation (Multi-User Engineering)
	Entities
	Reservation

	Environments
	Engineering and Production Environments
	Remove Environment Changes

	System Firmware Functions
	Hardware
	Standard System Libraries with Hardware
	Customized Hardware Types
	Configuring the Controller
	Basic Hardware

	Basic Library for Applications
	Application Types and Instances
	Types and Instances - Concept
	Define a Type in the Editor
	Control Modules and Function Blocks
	Types in Applications
	Types in User defined Library
	Modify Complex Types
	Decisions When Creating Types
	Create and Connect instances

	Function Block Execution
	Control Module Execution
	FD Port
	Single Control Modules
	Aspect instances

	Variables and Parameters
	Variable and Parameter Concept
	Variables
	Variable Entry
	Specific Initial Values
	External Variables
	Access Variables
	Communication between Applications Using Access Variables
	Communication in an Application Using Global Variables
	Communication Variables
	Control the Execution of Individual Objects
	Project Constants
	I/O Addressing Guidelines
	Connecting Variables to I/O Channels
	Extensible Parameters in Function Blocks
	Keywords for Parameter Descriptions
	Property Permissions
	Property Attribute Override

	Viewer for Function Diagrams
	Viewing the Diagram
	Common Viewing Operations in Diagram
	Objects in Diagram Viewer
	Diagram Viewer in POU Online Editor (Online or Simulation View)
	Connecting the Diagram to Controller Tasks
	Changing the Execution Order

	Library Management
	Connect Libraries
	Import/Export Libraries
	Create Libraries
	Library States
	Library Versions
	Library Password Protection
	Add Types to Libraries Used in Applications
	Add Customized Hardware Types to Library
	Device Import Wizard
	Additional Files for Libraries with Hardware
	Delete Hardware Types
	Type Usage for Hardware Types

	Hide and Protect Control Module Types, Function Block Types and Data Types
	Protect a Self-Defined Type
	Protect MySupervision Type Example

	Task Control
	Task Connections
	Task Execution
	Task Priority
	Interval Time
	Offset
	Execution Time

	Overrun and Latency
	Overrun Supervision
	Latency Supervision
	Task Abortion
	Load Balancing
	Non-Cyclic Execution in Debug Mode

	Task Analysis
	Exploring the Interface
	Modifying Task Execution Time
	Error and Warning Categories

	Security
	Authentication at Download
	Confirmed Online Write

	Search and Navigation
	Search and Navigation Dialog
	Search Settings
	Symbol and Definition
	References
	Navigation to Editors
	Search and Navigation Settings
	Search Data
	Reports

	Input and Output Signal Handling
	Backup Media
	Compact Flash
	Secure Digital
	Adding CF Card or SD Card to Hardware
	Saving Cold Retain Values on Files
	Downloading the Application to Removable Media
	Configuration Load
	Upgrading Controller Firmware using Backup Media
	Restoring Formatted CF Cards to Original Size

	Compiler Switches
	Settings

	Reports
	Difference Report
	Source Code Report
	Reports Generated at Download
	Portability Verification

	Performance Management
	Project Documentation
	Objects and Types
	Editor Items
	Used Types

	Section 2 Alarm and Event Handling
	Introduction
	Alarms and Events
	Alarm and Event Library

	Process Alarm and Event Generation
	Process Alarms and Events
	Detection of Simple Events
	Built-in Alarm and Event Handling in Other Libraries
	External Time Stamps (S800 I/O)
	External Time Stamps (PROFINET IO)
	External Time Stamps (INSUM)
	Choose Alarm Handling Method for INSUM Alarms

	System Alarm and Event Generation
	Controller Generated System Alarms and System Simple Events
	User Generated System Alarms

	Handling Alarms and Events
	Simple Events
	System Alarms and Events
	Time Stamps

	Alarm and Event Communication
	Subscriptions
	Configuration of OPC AE Communication - Overview
	Buffer Queues
	Buffer Configuration
	Local Printers
	Print Format
	Sending an Alarm to the Application
	Third Party OPC Clients

	Translation - NLS Handling of Strings
	Alarm Examples
	AlarmSimple_M Example
	Alarm and Event Aspect Example (AlarmSimple_M)
	Alarm Owner Examples
	Condition State Example
	Inhibit Example
	Simple Event Examples

	Alarm and Event Functions
	System Diagnostics
	Acknowledgement Rules - State Diagrams

	Alarm Shelving

	Section 3 Communication
	Introduction
	Communication Libraries
	COMLI Communication Library
	Foundation FIELDBUS HSE Communication Library
	INSUM Communication Library
	MB300 Communication Library
	MMS Communication Library
	MODBUS RTU Communication Library
	MODBUS TCP Communication Library
	Modem Communication Library
	Siemens S3964 Communication Library
	SattBus Communication Library
	MTM Communication Library
	Serial Communication Library

	Supported Protocols
	Control Network
	Network Redundancy
	Statistics and Information on Communication

	Variable Communication
	StartAddr

	Reading/Sending Data
	Connection Methods
	Communication Concepts

	Fieldbus Communication
	HART Communication
	SIL Certified Communication
	SIL Communication
	How to Choose Function Block/Control Modules in MMSCommLib
	Parameter Errors (ParError)

	Section 4 Online Functions
	Introduction
	Online Editors
	Dynamic Display of I/O Channels and Forcing
	Forcing I/O Channels in SIL Applications

	Scaling Analog Signals
	Supervising Unit Status
	Find Out What is Wrong by Using HWStatus
	AllUnitStatus
	Binary Channels

	Supervising Communication Variable Status
	Status Indications
	Acknowledge Errors and Warnings

	Tasks
	Interaction Windows
	Status and Error Messages
	Search and Navigation in Online and Test Mode
	Project Documentation

	Section 5 Maintenance and Trouble-Shooting
	Introduction
	Remote Desktop Connection
	Characteristics of Control Builder as Terminal Server

	Backup and Restore
	Introduction
	Files for Separate Backup
	Remove and Add FSD Server Files

	Migration
	Migration from 800xA to Compact Control Builder
	Migration from Compact Control Builder to 800xA

	Import and Export
	Introduction
	Export a Library
	Export an Application/Controller
	Import an Application/Controller
	Import and Export Alternatives
	Applying Cold Retain Values when Importing Applications
	About Library Import/Export
	Detailed Difference Report During Import

	Controller Configuration
	Controller Settings in Non-High Integrity Controllers
	Controller Settings in High Integrity Controllers
	Error Handler Log Entries

	Online Upgrade
	Why You Need to Read this First
	Restrictions for Online Upgrade
	Preliminary Actions for Online Upgrade
	Online Upgrade Process
	Running Online Upgrade
	Solving an Interrupted Online Upgrade

	Trouble-Shooting
	General
	Log Files
	Crash Dumps for Analysis and Fault-Localization
	Remote Systems Information
	Diagnostics for Communication Variables
	Analysis Tools
	System Diagnostics
	Trouble-Shooting Error Symptoms
	Common Reason for Shut-Down AC 800M HI Controller
	Connection to Aspect Server

	Error Reports

	Appendix A Array, Queue and Conversion Examples
	Arrays
	SearchStructComponent
	InsertArray
	SearchArray

	Queues
	Conversion Functions
	DIntToBCD
	BCDToDInt
	ASCII
	ASCII Conversion

	Appendix B System Alarms and Events
	General
	OPC Server - Software
	OPC Server - Subscription
	Controller - Software
	Controller - Hardware
	Alarms and Events Common for all Units
	Unit Specific Alarms and Events
	Controller Units and Communication Interfaces
	Adapters
	S800 I/O
	S900 I/O
	S100 I/O
	INSUM Devices
	FF Devices
	MB300 Nodes
	ABB Standard Drive
	Process Panel
	ITS
	NAIO ff
	PPO
	Special IO Template

	INDEX

