The application of IEC 61508/IEC 61511 requires a detailed understanding of Failure Modes and Effects Analysis (FMEA). This course focuses on FMEA in the context of these two international standards. FMEA is a vital compliance requirement for the design and engineering of a safety product and/or safety instrumented system.

The goal of this course is to understand the principles of FMEA, FMECA, FMEDA, in the context of IEC 61508, including the process and practices to perform an FMEA study.

Whilst the systems integration will be undertaken to meet the compliance requirements of IEC 61511 these elements or devices will have been designed to meet the requirements of IEC 61508.

Course Duration
The course is expected to be completed in full within 12 weeks of course licence activation. Course material can be accessed for 12 months for reference purposes.

Course Type
This is an e-learning training course. Delegates will be able to access the course modules and complete the course to fit in with their day to day workload. The modules include a series of multiple-choice worked examples. In addition a number of modules feature multiple choice and multiple response tests.

Successful completion of the tests, allows the delegate to progress to the next module. The tests can be undertaken several times with feedback given each time a test is undertaken.

Participant profile
This training is targeted at control and systems engineers, application engineers, especially those involved in executing safety system application projects.

Prerequisites and Recommendations
Delegates should have knowledge of and experience in working on automation, control and safety applications, and systems. This includes selection and engineering of complex and non-complex elements/sub systems.

Course Objectives
Upon completion of this course the participants will:
- Gain an understanding of FMEA in the context IEC 61508
- Be able to understand, at a basic level, a third party manufacturers data sheet developed by an FMEA process
- With technical support, be able to undertake an FMEA for a low complexity element/device (e.g. electromechanical contactor or relay)
- Be able to act as an intelligent observer when participating in a team undertaking an FMEA on a complex element/device
- Understand the relationship between the device FMEA and its integration into sub-systems and systems
- Be able to detail the FMEA process, specifically for use in demonstrating compliance to IEC 61508. (See IEC 61508-2, Annex D - Safety manual for compliant items)
- Understand the sources of failure rate, failure mode and diagnostic coverage values
Course Type and Methods
This is an e-learning training course. Delegates will be able to access the course modules and complete the course to fit in with their day to day workload. The modules include a series of multiple-choice worked examples. In addition a number of modules feature multiple-choice and multiple-response tests.

Successful completion of the tests allows the delegate to progress to the next module. The tests can be undertaken several times with feedback given each time a test is completed.

Course Outline
Details of the training course content are found in the table below, each module covering a specific topic.

<table>
<thead>
<tr>
<th>Module 1</th>
<th>Module 2</th>
<th>Module 3</th>
<th>Module 4</th>
<th>Module 5</th>
<th>Module 6</th>
<th>Module 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Basic Concepts</td>
<td>Fundamentals of FMEA and FMECA</td>
<td>Undertaking an FMEA</td>
<td>Component Failure Rate Data</td>
<td>FMEA Outputs</td>
<td>Team Structure</td>
<td>Worked Examples</td>
</tr>
<tr>
<td>- Course Objective and Scope</td>
<td>- Failure Mode Effect Analysis (FMEA)</td>
<td>- Sub-dividing the system into appropriate function blocks</td>
<td>- Sources of failure rate data</td>
<td>- FMEA outputs for specific applications</td>
<td>- Range of required skills</td>
<td>- Worked examples for non complex and complex devices/safety elements</td>
</tr>
<tr>
<td>- Underpinning Definitions and Concepts</td>
<td>- Failure Mode Effect and Criticality Analysis (FMECA)</td>
<td>- Defining the application scenarios</td>
<td>- Selecting failure rate data</td>
<td>- Functional blocks</td>
<td>- Competence of personnel</td>
<td></td>
</tr>
<tr>
<td>- Relationship with IEC 61508</td>
<td>- Failure Mode Effect and Diagnostic Analysis (FMEDA)</td>
<td>- Identifying the failure modes</td>
<td>- Determining failure mode distribution</td>
<td>- Failure modes</td>
<td>- Role of chair person</td>
<td></td>
</tr>
<tr>
<td>- Abbreviations</td>
<td>- FMEA and Compliance to IEC 61508</td>
<td>- Identifying the effects of different modes of failures</td>
<td>- Failure modes of redundant components</td>
<td>- Failure modes of communication channels</td>
<td>- Documenting the FMEA</td>
<td></td>
</tr>
<tr>
<td>- References</td>
<td>- Identifying detection methods</td>
<td>- Assigning failure rates</td>
<td>- Failure modes of redundant components</td>
<td>- Diagnostic coverage and method</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to order
ABB University UK
www.abb.com/AbbUniversity/CourseInfo/COUR2014060614455403080052.aspx

Contact us:
Email: training@gb.abb.com
Tel: +44 (0) 1785 235 939
Web: www.abb.com/abbuniversity