High voltage outdoor current transformers type IMB 72.5 kV to 800 kV
Robust design and proven performance
High voltage current transformers type IMB

ABB – a global leader

ABB is a global leader in Power and Automation technologies that enable utility and industry customers to improve performance while lowering environmental impact. The ABB Group of companies operates in around 100 countries.

In India, ABB serves customers with the complete range of power and automation technologies. The company has a vast installed base, extensive manufacturing facilities and a countrywide marketing and service presence.

The Power Technologies division offers electric, gas and water utilities as well as industrial and commercial customers a wide range of products, systems and services for power generation, transmission and distribution. ABB’s turnkey solution capabilities in the sector range from Electric Balance of Plant (EBoP) for bulk power transmission, turnkey substations and complete electrification to utility automation and distribution systems.

The product offering covers a wide spectrum of technologies across the entire voltage range including indoor and outdoor circuit breakers, air and gas insulated switchgear, disconnectors, capacitor banks, reactive power compensators, power and distribution transformers, instrument transformers, compact secondary substations (CSS) and ring main units (RMU).

Design and construction

The minimum oil current transformers Type IMB are based on a hairpin design and are suitable for operations ranging from 66kV to 765 kV at 50/60 Hz. With over 50 years of experience and 1,50,000 units operating across the globe, these CTs are time tested and proven.

Main features

- The unique ‘filling’ composition of oil and quartz results in a compact design
- No oil change or filtration required as the expansion chamber / cooler is filled with Nitrogen (N2) / Metal bellows
- All external iron parts are MS painted for protection against detrimental effects of atmosphere and chemicals
- High seismic withstand capability in both vertical and horizontal directions
- Flexible design to meet special customer requirements such as low currents, high burden, creepage and high altitude
- All gaskets are below oil level ensuring positive oil sealing

Primary winding

The hairpin shaped conductor with graded insulation ensures uniform voltage distribution. The winding is insulated with special paper which has high mechanical and dielectric strength as well as low dielectric losses and good resistance to ageing.

Ratio selection is generally achieved through suitable secondary tapping in the secondary winding.

For ratios in multiples up to and including 1500 A (e.g. 1500-750, 1400-700, 1000-500-250, etc.) selection can also be achieved by a reconnectable primary winding. The primary winding is divided into equal parts, which can be connected in series or parallel by means of external links on the connection head.

The Short Time Current (STC) rating is as per series connection of primary winding (i.e. minimum cross section). With a parallel connection, the STC rating is therefore doubled.

The primary winding consists of a tube open at both ends allowing the oil to circulate. The heat losses are dissipated in the expansion chamber / cooler.
Tan Delta measuring terminal (D3/F terminal)
The outer shield of primary insulation is connected to a bushing in the secondary terminal box and earthed. This is designated as D3/F terminal.

This Tan Delta (D3/F) terminal must be earthed before the CT is charged.

Core
The Current Transformers can normally accommodate up to five cores. However, more cores can also be provided on request.

High-grade silicon steel CRGO is used for manufacture of cores. Stringent accuracy requirements of metering cores are achieved by using special cores made from nickel-iron alloy.

High-grade enameled wires are used for winding secondary turns on the cores. They are evenly distributed across the periphery of the core, reducing leakage reactance to a minimum.

Tank & Insulator
The lower portion of the CT consists of an aluminium or MS painted tank in which the cores are positioned around the straight limb primary winding. The upper portion of the transformer consists of high-grade brown glazed insulator made from porcelain or polymer. The gaskets are made of oil-proof material.

Important dimensions and shipping data

<table>
<thead>
<tr>
<th>IMB</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E1 (mm)</th>
<th>E2 (mm)</th>
<th>G (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>2280</td>
<td>1790</td>
<td>460</td>
<td>505</td>
<td>520</td>
<td>520</td>
<td>855</td>
</tr>
<tr>
<td>145</td>
<td>2850</td>
<td>2360</td>
<td>460</td>
<td>505</td>
<td>520</td>
<td>520</td>
<td>1055</td>
</tr>
<tr>
<td>245</td>
<td>4020</td>
<td>3370</td>
<td>600</td>
<td>590</td>
<td>670</td>
<td>670</td>
<td>1300</td>
</tr>
<tr>
<td>420</td>
<td>5660</td>
<td>4790</td>
<td>600</td>
<td>880</td>
<td>670</td>
<td>1105</td>
<td>2250</td>
</tr>
<tr>
<td>800</td>
<td>9270</td>
<td>7090</td>
<td>600</td>
<td>755</td>
<td>670</td>
<td>1105</td>
<td>4000</td>
</tr>
</tbody>
</table>

Dimensions in mm.

Flash over and creepage distances

<table>
<thead>
<tr>
<th>IMB</th>
<th>Voltage Rating (kV)</th>
<th>Flash-over Distance (mm)</th>
<th>Nominal Minimum Creepage Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>72.5</td>
<td>750</td>
<td>1815</td>
</tr>
<tr>
<td>145</td>
<td>145</td>
<td>1375</td>
<td>3625</td>
</tr>
<tr>
<td>245</td>
<td>245</td>
<td>2170</td>
<td>6125</td>
</tr>
<tr>
<td>420</td>
<td>420</td>
<td>3220</td>
<td>10500</td>
</tr>
<tr>
<td>800</td>
<td>800</td>
<td>5520</td>
<td>20000</td>
</tr>
</tbody>
</table>

Data and illustration are without engagement. We reserve the right to make changes in the course of technical development.
Note: We receive the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase order the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve the rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents in whole or in parts is forbidden without ABB’s prior written consent.

www.abb.co.in