List of related manuals

<table>
<thead>
<tr>
<th>Drive hardware manuals and guides</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroFlex e190 Quick installation guide</td>
<td>3AXD50000037326</td>
</tr>
<tr>
<td>MicroFlex e190 Wall chart</td>
<td>3AXD50000037323</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certificates</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroFlex e190 EU Single Declaration of Conformity</td>
<td>3AXD10000540919</td>
</tr>
<tr>
<td>MicroFlex e190 STO (TÜV) Certificate</td>
<td>3AXD10000540318</td>
</tr>
<tr>
<td>MicroFlex e190 UL Certificate</td>
<td>3AXD10000540319</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT-MF-201 Resolver Adapter</td>
<td>3AUA00000168581</td>
</tr>
</tbody>
</table>

You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative.
User's manual

MicroFlex e190

Table of contents

1. Safety

4. Mechanical installation

6. Electrical installation: AC input / DC input, motor

9. Start-up
Table of contents

List of related manuals ... 2

1. Safety
 What this chapter contains .. 13
 Use of warnings .. 13
 Safety in installation and maintenance 14
 Electrical safety .. 14
 Grounding ... 16
 Permanent magnet motor drives 17
 General safety .. 18
 Printed circuit boards .. 18
 Safe start-up and operation 19
 General safety .. 19
 Network security .. 20

2. Introduction to the manual
 What this chapter contains .. 21
 Target audience .. 21
 Contents of this manual .. 22
 Related documents ... 23
 Quick installation and start-up flowchart 24
 Terms and abbreviations .. 25
 General terms ... 25
 Trademarks ... 25

3. Operation principle and hardware description
 What this chapter contains .. 27
 Product overview .. 27
 Layout - front .. 28
 Layout - top .. 29
 Layout - bottom .. 29
 Main circuit .. 30
 Type designation label .. 31
 Type designation key ... 31
 Memory unit - MU .. 32

4. Mechanical installation
 What this chapter contains .. 33
 Contents of the package ... 34
 Main dimensions .. 35
 Cabinet construction ... 36
 Cooling and degrees of protection 36
 Disposition of the devices 38
 Preventing the recirculation of hot air 38
 Grounding of mounting structures 39
6. Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet heaters</td>
<td>39</td>
</tr>
<tr>
<td>Installation procedure</td>
<td>39</td>
</tr>
<tr>
<td>Requirements for the installation site</td>
<td>39</td>
</tr>
<tr>
<td>Required tools</td>
<td>39</td>
</tr>
<tr>
<td>Direct wall mounting</td>
<td>40</td>
</tr>
<tr>
<td>Mains filter installation</td>
<td>40</td>
</tr>
<tr>
<td>Braking resistor installation</td>
<td>40</td>
</tr>
<tr>
<td>Motor selection</td>
<td>41</td>
</tr>
<tr>
<td>Supply connection</td>
<td>41</td>
</tr>
<tr>
<td>Supply disconnecting device</td>
<td>42</td>
</tr>
<tr>
<td>Other regions</td>
<td>42</td>
</tr>
<tr>
<td>Thermal overload and short-circuit protection</td>
<td>42</td>
</tr>
<tr>
<td>Protection against short-circuit in motor cable</td>
<td>42</td>
</tr>
<tr>
<td>Protection against short-circuit in the supply cable or the drive</td>
<td>42</td>
</tr>
<tr>
<td>Motor thermal protection</td>
<td>43</td>
</tr>
<tr>
<td>Ground fault protection</td>
<td>43</td>
</tr>
<tr>
<td>Emergency stop devices</td>
<td>43</td>
</tr>
<tr>
<td>Residual current device (RCD) compatibility</td>
<td>43</td>
</tr>
<tr>
<td>Supply disconnecting device</td>
<td>44</td>
</tr>
<tr>
<td>Selecting the power cables</td>
<td>45</td>
</tr>
<tr>
<td>General rules</td>
<td>45</td>
</tr>
<tr>
<td>Alternative power cable types</td>
<td>45</td>
</tr>
<tr>
<td>Motor cable shield</td>
<td>46</td>
</tr>
<tr>
<td>Selecting the control cables</td>
<td>46</td>
</tr>
<tr>
<td>Connection of a motor temperature sensor to the drive</td>
<td>46</td>
</tr>
<tr>
<td>Routing the cables</td>
<td>47</td>
</tr>
<tr>
<td>Control cable ducts</td>
<td>47</td>
</tr>
<tr>
<td>Typical installation example</td>
<td>48</td>
</tr>
<tr>
<td>5. Planning the electrical installation</td>
<td></td>
</tr>
<tr>
<td>What this chapter contains</td>
<td>41</td>
</tr>
<tr>
<td>Motor selection</td>
<td>41</td>
</tr>
<tr>
<td>Supply connection</td>
<td>41</td>
</tr>
<tr>
<td>Supply disconnecting device</td>
<td>42</td>
</tr>
<tr>
<td>Other regions</td>
<td>42</td>
</tr>
<tr>
<td>Thermal overload and short-circuit protection</td>
<td>42</td>
</tr>
<tr>
<td>Protection against short-circuit in motor cable</td>
<td>42</td>
</tr>
<tr>
<td>Protection against short-circuit in the supply cable or the drive</td>
<td>42</td>
</tr>
<tr>
<td>Motor thermal protection</td>
<td>43</td>
</tr>
<tr>
<td>Ground fault protection</td>
<td>43</td>
</tr>
<tr>
<td>Emergency stop devices</td>
<td>43</td>
</tr>
<tr>
<td>Residual current device (RCD) compatibility</td>
<td>43</td>
</tr>
<tr>
<td>Supply disconnecting device</td>
<td>44</td>
</tr>
<tr>
<td>Selecting the power cables</td>
<td>45</td>
</tr>
<tr>
<td>General rules</td>
<td>45</td>
</tr>
<tr>
<td>Alternative power cable types</td>
<td>45</td>
</tr>
<tr>
<td>Motor cable shield</td>
<td>46</td>
</tr>
<tr>
<td>Selecting the control cables</td>
<td>46</td>
</tr>
<tr>
<td>Connection of a motor temperature sensor to the drive</td>
<td>46</td>
</tr>
<tr>
<td>Routing the cables</td>
<td>47</td>
</tr>
<tr>
<td>Control cable ducts</td>
<td>47</td>
</tr>
<tr>
<td>Typical installation example</td>
<td>48</td>
</tr>
<tr>
<td>6. Electrical installation: AC input / DC input, motor and brake</td>
<td></td>
</tr>
<tr>
<td>What this chapter contains</td>
<td>49</td>
</tr>
<tr>
<td>Checking the insulation of the assembly</td>
<td>50</td>
</tr>
<tr>
<td>Drive</td>
<td>50</td>
</tr>
<tr>
<td>Supply cable</td>
<td>50</td>
</tr>
<tr>
<td>Motor and motor cable</td>
<td>50</td>
</tr>
<tr>
<td>Braking resistor assembly</td>
<td>50</td>
</tr>
<tr>
<td>Power cable connection</td>
<td>51</td>
</tr>
<tr>
<td>AC power cable connection diagram</td>
<td>51</td>
</tr>
<tr>
<td>Procedure</td>
<td>52</td>
</tr>
<tr>
<td>DC power cable connection diagram (optional)</td>
<td>54</td>
</tr>
<tr>
<td>24 V control circuit supply (optional)</td>
<td>56</td>
</tr>
<tr>
<td>Motor brake connection</td>
<td>57</td>
</tr>
<tr>
<td>Thermal switch connection</td>
<td>58</td>
</tr>
</tbody>
</table>
Table of contents

7. Electrical installation: input / output

What this chapter contains ... 59
Connecting the control cables ... 60
Analog I/O ... 61
X3: Analog input AI0 ... 61
X3: Analog output AO0 ... 63
Digital I/O .. 64
Using a digital input as a drive enable input (optional) 64
Using a digital input as a home switch input (optional) 64
X4: Digital inputs - Safe Torque Off (STO) inputs 64
X3: Digital inputs - general purpose DI1 & DI2 65
Special functions on inputs DI1 & DI2 ... 66
X3: Digital inputs - general purpose DI0 & DI3 67
X3: Digital outputs - general purpose DO0 - DO3 69
Other I/O ... 70
X2: External power supply for the control unit (optional) 70
SW1 linear switches - startup functions .. 70
Control cable grounding .. 71
Ethernet ports .. 72
E1 / E2: Ethernet fieldbus ... 72
E1 / E2: Ethernet port configuration .. 73
E3: Ethernet host ... 73
Motor feedback (X3) .. 74
Incremental encoder with Halls ... 75
Serial interfaces & SinCos ... 76
Extra incremental encoder ... 79
Incremental encoder input/output (XT) .. 80
OPT-MF-201 Resolver adapter ... 82

8. Installation checklist

Checklist .. 83

9. Start-up

What this chapter contains ... 85
Safety ... 85
Introduction ... 85
Connect the MicroFlex e190 to the PC .. 85
Install Mint WorkBench .. 86
Configure the PC Ethernet adapter .. 86
Enable the Ethernet adapter for Mint WorkBench 87
Start the MicroFlex e190 .. 87
Preliminary checks ... 87
Power on checks .. 87
Start Mint WorkBench ... 88
Commissioning Wizard ... 89
Using the Commissioning Wizard ... 89
Further tuning - no load attached ... 91
Further tuning - with load attached .. 93
Optimizing the velocity response ... 94
8 Table of contents

Correcting overshoot ... 94
Correcting zero-speed noise in the velocity response 95
Ideal velocity response ... 96
Performing test moves - continuous jog 96
Performing test moves - relative positional move 97
Further configuration .. 98
Configuration tool ... 98
EtherCAT tool .. 98
Parameters tool ... 98
Spy window ... 99
Other tools and windows .. 99
Safe Torque Off (STO) acceptance test 100

10. Fault tracing
What this chapter contains .. 101
Problem diagnosis ... 101
SupportMe feature .. 101
Power-cycling the MicroFlex e190 102
MicroFlex e190 indicators 103
EtherCAT® mode .. 103
Ethernet POWERLINK mode 104
Drive status display ... 106
Power ... 108
Communication ... 108
Mint WorkBench .. 108
Tuning ... 109
Spy window ... 99
Parameters tool ... 98
EtherCAT tool .. 98
Configuration tool ... 98
Performing test moves - relative positional move 97
Further configuration .. 98
Configuration tool ... 98
EtherCAT tool .. 98
Parameters tool ... 98
Spy window ... 99
Other tools and windows .. 99
Safe Torque Off (STO) acceptance test 100

11. Maintenance
What this chapter contains .. 111
Safety ... 111
Maintenance intervals .. 111
Heat sink .. 112
Cooling fan .. 113
Removing the fan .. 113
Replacing the fan ... 114
Reforming the capacitors 115
Other maintenance actions 115
Transferring the memory unit to a new drive 115

12. Technical data
What this chapter contains .. 117
Ratings ... 118
Derating ... 119
Cooling .. 120
Cooling characteristics, noise levels 120
Efficiency .. 120
Supply cable fuses ... 121
AC input (supply) connection 122
Table of contents

Effect of AC power supply voltage on DC-bus voltage .. 122
DC input (supply) connection ... 124
Motor connection ... 124
Brake resistor connection .. 124
Control unit .. 125
Feedback ... 126
XF Incremental encoder .. 126
X8 Incremental encoder with Halls .. 126
X8 Serial interfaces + SinCos .. 126
Dimensions and weights ... 127
Ambient conditions .. 127
Degrees of protection ... 128
Materials ... 128
WEEE notice ... 128
RoHS compliance ... 129
China RoHS marking .. 129
Applicable standards .. 130
Design and test standards ... 130
Environmental test standards ... 130
Functional safety standards .. 131
RCM marking .. 131
CE marking .. 131
Compliance with the European EMC Directive .. 131
Compliance with the European Machinery Directive ... 133
UL marking ... 134
UL checklist .. 134

13. Mains filters
What this chapter contains ... 135
When is a mains filter required? .. 135
Installation guidelines .. 137
Connection diagram .. 137
Selection table .. 137
Specifications and dimensions .. 138

14. Resistor braking
What this chapter contains ... 141
Introduction .. 142
System braking capacity ... 142
Braking energy calculation .. 143
Braking energy .. 144
Braking power and average power ... 144
Resistor choice .. 145
Resistor derating .. 146
Duty cycle ... 146
Dimensions ... 147
15. Accessories

What this chapter contains ... 149
24 V power supplies ... 149
Encoder breakout ... 150
Resolver adapter OPT-MF-201 ... 151
Cables ... 152
Motor power cables ... 152
Feedback cables .. 153
Ethernet cables .. 153

16. Appendix: Safe Torque Off (STO)

What this chapter contains ... 155
Drive location ... 158
Hazard analysis ... 158
Additional stopping methods ... 158
IGBT failure .. 158
Terminology ... 158
Wiring principles .. 159
Connected components ... 159
Short-circuit testing .. 159
Power supply .. 159
Drive enable input .. 159
Single drive module: internal power supply ... 160
Single drive module: external power supply ... 160
Multiple drive modules: internal power supply ... 161
Multiple drive modules: external power supply ... 162
Operation of the STO function and diagnostics ... 163
Hardware activation of the STO function .. 163
Firmware monitoring of the STO function ... 163
Software monitoring of the STO function ... 164
STO status indications .. 165
STO software functional diagram ... 166
Monitoring the delay between the STO inputs ... 166
STO function activation and indication delays .. 166
Validating the operation of a safety function .. 167
Authorized person .. 167
Acceptance test reports .. 167
Preliminary checks .. 167
Start-up, acceptance, and proof test interval checklist 168
Restarting the drive .. 169
Maintenance / servicing .. 169
Error messages generated by the drive ... 170
Technical data .. 172
STO safety relay type .. 172
STO cable ... 173
Ambient conditions .. 173
Data related to safety standards .. 174
Table of contents

Safety data .. 174
Failure rates 174
Abbreviations 175
Product and service inquiries 177
Product training 177
Providing feedback on ABB Drives manuals 177
Document library on the Internet 177
12 Table of contents
Safety

What this chapter contains

This chapter contains the safety instructions which you must obey when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, motor or driven equipment. Read the safety instructions before you work on the unit.

Use of warnings

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment and advise on how to avoid the danger. The following warning symbols are used in this manual:

- **Electricity warning** warns of hazards from electricity which can cause physical injury and/or damage to the equipment.
- **General warning** warns about conditions, other than those caused by electricity, which can result in physical injury and/or damage to the equipment.
- **Electrostatic sensitive devices warning** warns of electrostatic discharge which can damage the equipment.
- **Hot surface warning** warns of component surfaces that may become hot enough to cause burns if touched.
Safety in installation and maintenance

These warnings are intended for all who work on the drive, motor cable or motor.

Electrical safety

- **WARNING!** Ignoring the following instructions can cause physical injury or death, or damage to the equipment.

 - Only qualified electricians are allowed to install and maintain the drive!
 - Be sure the system is properly earthed/grounded before applying power. Do not apply AC or DC power before earths/grounds are connected.
 - Never work on the drive, motor cable or motor when input power is applied. After disconnecting the input power, always wait for 5 minutes to let the intermediate circuit capacitors discharge before you start working on the drive, motor or motor cable. Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that:
 1. Voltage between drive input phases L1, L2 and L3 is close to 0 V.
 2. Voltage between terminals UDC+ and UDC- and the frame is close to 0 V.
 3. There is no voltage between terminals R+ and R- and the ground.
 - Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off.
 - Do not make any insulation or voltage withstand tests on the drive.
 - Do not connect the drive to a voltage higher than that marked on the type designation label. Higher voltage can activate the brake chopper and lead to brake resistor overload, or activate the over-voltage controller which can lead to the motor rushing to maximum speed.
 - If a drive is installed on a corner-grounded TN system, the drive could be damaged.
 - All ELV (extra low voltage) circuits connected to the drive must be used within a zone of equipotential bonding, i.e. within a zone where all simultaneously accessible conductive parts are electrically connected to prevent hazardous voltages appearing between them. This is accomplished by proper factory grounding.
 - To prevent equipment damage, be certain that input and output signals are powered and referenced correctly.
 - To ensure reliable performance of this equipment be certain that all signals to/from the drive are shielded correctly.
 - Do not tin (solder) exposed wires. Solder contracts over time and can cause loose connections. Use crimp connections where possible.
• If the drive is subjected to high potential ('hipot') testing, only DC voltages may be applied. AC voltage hipot tests could damage the drive. For further information please contact your local ABB representative.

• The safe integration of the drive into a machine system is the responsibility of the machine designer. Be sure to comply with the local safety requirements at the place where the machine is to be used. In Europe these are the Machinery Directive, the Electromagnetic Compatibility Directive and the Low Voltage Directive. In the United States this is the National Electrical code and local codes.

• To comply with CE directive 2014/13/EU an appropriate AC filter must be installed.

• Motor overtemperature sensing is required to satisfy UL 61800-5-1. The drive has no provisions for motor overtemperature protection, so external provisions are required. The motor thermistor connection must be isolated (see page 58).

• The AC supply, DC supply (if used) and the 24 V DC control circuit supply must be fused.

• The 24 V DC control circuit supply must be installed so that the 24 V DC supplied to the unit is isolated from the AC supply using double or reinforced insulation, or by using basic insulation with a protective earth.

• The input of the control circuit must be limited to Safety Extra Low Voltage circuits.

• For UL installations use 75 °C copper wiring only.

• For UL installations: Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.

• For use in Canada: Transient surge suppression shall be installed on the line side of this equipment and shall be rated 240V (phase to ground), 240V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 2.5kV.

Note:

• The motor cable terminals on the drive are at a dangerously high voltage when the input power is on, regardless of whether the motor is running or not.

• The DC terminals (UDC+, UDC-) carry a dangerous DC voltage that is approximately 1.4 times the AC supply voltage, e.g. 325 V DC when operating on a 230 V AC supply.

• The Safe Torque-Off function does not remove the voltage from the main and auxiliary circuits. The function is ineffective against deliberate sabotage or misuse. See page 155.
Grounding

These instructions are intended for all who are responsible for the grounding of the drive.

WARNING! Ignoring the following instructions can cause physical injury or death, increased electromagnetic interference and equipment malfunction:

- Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and interference.
- Make sure that grounding conductors are adequately sized as required by safety regulations.
- In a multiple-drive installation, connect each drive separately to protective earth (PE).
- Where EMC emissions must be minimized, make a 360° high frequency grounding of cable entries in order to suppress electromagnetic disturbances. In addition, connect the cable shields to protective earth (PE) in order to meet safety regulations.

Note:
- Power cable shields are suitable for equipment grounding conductors only when adequately sized to meet safety regulations.
- Standard EN 61800-5-1 (section 4.3.5.5.2.) requires that as the normal touch current of the drive is higher than 3.5 mA AC or 10 mA DC, you must use a fixed protective earth connection and:
 - cross-section of the protective earthing conductor of at least 10 mm² Cu or 16 mm² Al, or
 - automatic disconnection of the supply in case of discontinuity of the protective earthing conductor, or
 - a second protective earthing conductor of the same cross-sectional area as the original protective earthing conductor.
Permanent magnet motor drives
These are additional warnings concerning permanent magnet motor drives.

WARNING! Ignoring the following instructions can cause physical injury or death, increased electromagnetic interference and equipment malfunction.

- Do not work on the drive when the permanent magnet motor is rotating. Also, when the supply power is switched off and the inverter is stopped, a rotating permanent magnet motor feeds power to the intermediate circuit of the drive and the supply connections become live.
- Before installation and maintenance work on the drive:
 - Stop the motor.
 - Ensure that there is no voltage on the drive power terminals according to step 1 or 2, or if possible, according to both steps:

1. Disconnect the motor from the drive with a safety switch or by other means. Check by measuring that there is no voltage present on the drive input or output terminals (L1, L2, L3, U, V, W, R+/UDC+, UDC-, R-).

2. Ensure that the motor cannot rotate during work. Make sure that no other system, like hydraulic crawling drives, is able to rotate the motor directly or through any mechanical connection like belt, nip, rope, etc. Check by measuring that there is no voltage present on the drive input or output terminals (L1, L2, L3, U, V, W, R+/UDC+, UDC-, R-). Ground the drive output terminals temporarily by connecting them together as well as to the PE.
- Do not run the motor over the rated speed. Motor over-speed leads to over-voltage which may damage or explode the capacitors in the intermediate circuit of the drive.
General safety

These instructions are intended for all who install and service the drive.

WARNING! Ignoring the following instructions can cause physical injury or death, increased electromagnetic interference and equipment malfunction:

• Handle the unit carefully.
• Take care when lifting. When carrying, do not suspend the unit from the front panel as it could detach and cause the unit to be dropped.
• Beware of hot surfaces. The metal heat sink on the left side of the MicroFlex e190 can become very hot during normal operation. The surfaces of drive system components (such as a mains choke or braking resistor, if present) become hot when the system is in use, and remain hot for a while after disconnection of the electrical supply. A brake resistor can generate enough heat to ignite combustible materials. To avoid fire hazard, keep all combustible materials and flammable vapors away from brake resistors.
• Ensure that debris from drilling and grinding does not enter the drive when installing. Electrically conductive debris inside the unit may cause damage or malfunction.
• Drives must be installed inside an electrical cabinet that provides environmental control and protection. Installation information for the drive is provided in this manual. Motors and controlling devices that connect to the drive should have specifications compatible with the drive. If not installed in an electrical cabinet, barriers around the equipment are required.
• Avoid locating the drive immediately above or beside heat generating equipment, directly below water or steam pipes, or in the vicinity of corrosive substances or vapors, metal particles and dust.
• Ensure sufficient cooling.
• Do not attach the drive by riveting or welding.
• The MicroFlex e190 must be installed where the pollution degree according to UL and EN 61800-5-1 shall not exceed 2.

Printed circuit boards

WARNING! Ignoring the following instructions can cause damage to the printed circuit boards and/or void the warranty:

• Wear a grounding wrist band when handling the boards. Do not touch the boards unnecessarily. The printed circuit boards contain components sensitive to electrostatic discharge.
Safe start-up and operation

General safety

These warnings are intended for all who plan the operation of the drive or operate the drive.

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment.

- After changing or maintaining the fan, make sure that the bottom cover is correctly attached before connecting voltage to the drive. Keep the bottom cover attached during operation.
- Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the speed provided by connecting the motor directly to the power line.
- Do not activate any automatic fault reset functions of the drive control program if dangerous situations can occur. When activated, these functions will reset the drive and resume operation after a fault.
- Do not control the motor with an AC contactor or disconnecting device (disconnecting means); instead, use external commands via fieldbus or the I/O of the drive. The maximum allowed number of charging cycles of the DC capacitors (i.e. power-ups by applying power) is one per two minutes.
- Make sure that any safety circuits (for example, emergency stop and Safe torque off) are validated in start-up. See chapter Start-up for reference of the validation instructions.
- The drive is not field repairable. Never attempt to repair a malfunctioning drive; contact your local ABB representative or Authorized Service Center for replacement.
- When operating a rotary motor with no load coupled to its shaft, remove the shaft key to prevent it flying out when the shaft rotates.
- Operating the MicroFlex e190 in torque mode with no load attached to the motor can cause the motor to accelerate rapidly to excessive speed.
- Improper operation or programming of the drive may cause violent motion of the motor and driven equipment. Be certain that unexpected motor movement will not cause injury to personnel or damage to equipment. Peak torque of several times the rated motor torque can occur during control failure.
- Violent jamming (stopping) of the motor during operation may damage the motor and drive.
- The drive can be programmed to start up and begin to turn the motor (auto-enable) immediately after an input voltage break or a fault reset. If an external
source for start command is selected and it is ON, the drive could start immediately after an input voltage break or fault reset.

- **MEDICAL DEVICE / PACEMAKER DANGER**: Magnetic and electromagnetic fields in the vicinity of current carrying conductors and industrial motors can result in a serious health hazard to persons with cardiac pacemakers, internal cardiac defibrillators, neurostimulators, metal implants, cochlear implants, hearing aids, and other medical devices. To avoid risk, stay away from the area surrounding a motor and its current carrying conductors.

Network security

This product is designed to be connected to and to communicate information and data via a network interface. It is the customer’s sole responsibility to provide and continuously ensure a secure connection between the product and the customer network or any other network (as the case may be). The customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.
Introduction to the manual

What this chapter contains
This chapter describes the manual. It contains a flowchart of steps for checking the delivery, installation and start-up of the drive. The flowchart refers to chapters/sections in this manual and to other manuals.

Target audience
This manual is intended for people who plan the installation, install, start-up, use and service the drive. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

The manual is written for readers worldwide. Both SI and imperial units are shown.
Contents of this manual

The manual consists of the following chapters:

- **Safety** (page 13) gives safety instructions you must follow when installing, commissioning, operating and servicing the drive.
- **Introduction to the manual** (this chapter, page 21) describes applicability, target audience, purpose and contents of this manual. It also contains a quick installation and commissioning flowchart.
- **Operation principle and hardware description** (page 27) describes the operation principle, connector layout, type designation label and type designation information in short.
- **Mechanical installation** (page 33) describes how to check the installation site, unpack, check the delivery and install the drive mechanically. It also provides the dimensions of the drive.
- **Planning the electrical installation** (page 41) describes the requirements for the AC supply, cabling and RCDs.
- **Electrical installation: AC input / DC input, motor and brake** (page 49) describes the installation of high power connections including the AC supply, motor output, brake resistor, and optional DC supply / sharing.
- **Electrical installation: input / output** (page 59) describes the installation of low power connections, including analog and digital inputs/outputs (including Safe Torque Off), motor feedback and Ethernet.
- **Installation checklist** (page 83) provides a list of checks to confirm that the physical installation has been completed correctly.
- **Start-up** (page 85) describes the steps for applying power to the drive, installing the Mint Machine Center software, and tuning and optimizing the motor/drive combination.
- **Fault tracing** (page 101) describes the drive’s LED indicators and provides solution to common problems encountered during installation.
- **Maintenance** (page 111) describes the maintenance required to maintain optimum performance from the drive.
- **Technical data** (page 117) contains the technical specifications of the drive, e.g. the dimensions, ratings, technical specifications, and provisions for fulfilling the requirements for CE and other markings.
- **Mains filters** (page 135) describes optional mains filters that can be used with the drive.
- **Resistor braking** (page 141) describes how to select, protect, and wire braking choppers and resistors.
- **Accessories** (page 149) describes additional components that are useful for the drive installation.
- **Appendix: Safe Torque Off (STO)** (page 155) describes STO features, installation, and technical data.
Related documents
See List of related manuals on page 2 (inside the front cover).
Quick installation and start-up flowchart

Task

- Plan the electrical installation and acquire the accessories needed (cables, fuses, etc.).
- Check the ratings, required cooling air flow, input power connection, compatibility of the motor, motor connection, and other technical data.
- Check the installation site.
- Unpack and check the units (only intact units may be started up).
- Check that all necessary optional modules and equipment are present and correct.
- Mount the drive.
- Route the cables.
- Check the insulation of the supply cable, the motor and the motor cable.
- Connect the power cable.
- Connect the motor cable.
- Connect the control cables.
- Check the installation.

See

- Planning the electrical installation (page 41)
- Cooling and degrees of protection (page 36)
- Technical data (page 117)
- Cabinet construction (page 36)
- Contents of the package (page 34).
- Installation procedure (page 38).
- Routing the cables (page 47)
- Checking the insulation of the assembly (page 50)
- Power cable connection (page 51).
- Electrical installation: input / output (page 59).
- Installation checklist (page 83).
- Start-up (page 85)
Terms and abbreviations

The following units and abbreviations might appear in this manual.

General terms

<table>
<thead>
<tr>
<th>Term/Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility.</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor; a voltage-controlled semiconductor type widely used in inverters due to their easy controllability and high switching frequency.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output.</td>
</tr>
<tr>
<td>MU-xx</td>
<td>The memory unit attached to the control unit of the drive.</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio-frequency interference.</td>
</tr>
<tr>
<td>RGJxxx</td>
<td>Series of optional braking resistors for the MicroFlex e190.</td>
</tr>
</tbody>
</table>

See also page 175 for safety related abbreviations.

Trademarks

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Windows 7, Windows 8 and Windows 10 are registered trademarks of the Microsoft Corporation.

Mint™ and MicroFlex® are registered trademarks of Baldor, a member of the ABB group.
Operation principle and hardware description

What this chapter contains
The chapter briefly describes the operation principle, layout, type designation label and type designation information. It also shows a general diagram of power connections and control interfaces.

Product overview
The MicroFlex e190 is an IP20 drive for controlling AC motors. It is to be installed into a cabinet by the customer. The MicroFlex e190 is available with several output power ratings.
Operation principle and hardware description

- Layout - front
 - Fieldbus status LEDs (page 103)
 - 7-segment display (page 106)
 - Fieldbus mode selectors (page 73)
 - Start-up function selectors (page 70)
 - PC host Ethernet connection (page 73)
 - Digital inputs / outputs (pages 64-69)
 - Analog inputs / output (page 61-63)
 - Safe Torque Off inputs (page 155)
 - Motor feedback input (page 74)
 - Motor output (page 51)
 - AC supply connection (page 51)
 - DC supply connection (page 54)
 - Brake resistor connection (page 541)
 - Earth bar
 - Brake resistor connection (page 141)
Operation principle and hardware description 29

- Layout - top

- Layout - bottom

- optional 24 V control circuit supply input (page 56)

- Incremental encoder feedback input (page 80)

- X8 voltage output selector (page 76)
Main circuit

The diagram below shows the main circuit of the drive. For further information on the power unit, see the chapter *Electrical installation: AC input / DC input, motor and brake.*

1. **AC supply.** 1-phase 115-240 V or 3-phase 115-240 V phase-to-phase (±10%).
2. **Rectifier.** Converts alternating current and voltage to direct current and voltage.
3. **DC link.** DC circuit between rectifier and inverter.
4. **Inverter.** Converts direct current and voltage to alternating current and voltage.
5. **Brake chopper.** Conducts the surplus energy from the intermediate DC circuit of the drive to the brake resistor when necessary. The chopper operates when the DC link voltage exceeds a certain maximum limit. The voltage rise is typically caused by deceleration (braking) of a high inertia motor. The user must obtain and install a brake resistor when needed.
Type designation label

Before attempting installation and operation, check the information on the type designation label to verify that the unit is of the correct type. The label is located on the left-hand side of the power unit.

The first digit of the serial number refers to the manufacturing plant. The 2nd and 3rd digits indicate the year of manufacture, while the 4th and 5th digits indicate the week. Digits 6 to 10 are a running integer starting every week at 00001.

Type designation key

The type code contains information on the specifications and configuration of the drive. The type code is explained in the following table. Not all selections are necessarily available for all types; refer to MicroFlex e190 Ordering Information, available on request.

* Motion programming is enabled by fitting optional memory unit MFE190-MU-OCU+N8020 (order code: 3AXD50000048603).
32 Operation principle and hardware description

- Memory unit - MU

The memory unit defines the identity and features of the drive, and holds the drive’s firmware and saved parameters. The memory unit holds the Mint program on models with programming capability. The memory unit is an essential part of the drive and must always be fitted. It is not designed for frequent removal and insertion.

All power to the drive must be turned off before removing or inserting the memory unit.

The memory unit can be inserted into an identical replacement drive. If the replacement drive does not have an identical specification, it must be re-tuned before using it to drive machinery. Retuning the drive using Mint WorkBench allows the correct tuning parameters to be saved in the memory unit.

The memory unit can be used only with MicroFlex e190 drives. It is not compatible with any other product that uses a similar unit, e.g. ZMU-02. The MicroFlex e190 memory unit can be identified by the part MFE190-MU-OCU on the label.

Optional memory unit MFE190-MU-OCU+N8020 (order code: 3AXD50000048603) provides motion programming capability.
Mechanical installation

What this chapter contains
The chapter describes the mechanical installation of the drive.
Contents of the package

The box contains:
- MicroFlex e190 drive
- Connector pack containing terminal blocks for the drive.
- Memory unit
- Quick Installation Guide.
Main dimensions

MicroFlex e190 drives can be installed side by side. The main dimensions of the drive and free space requirements are shown below.

* Approximate dimensions. Allow extra space for feedback and other control cables.

Weights:
- 1.6 A: 1.55 kg (3.44 lb)
- 3 A: 1.70 kg (3.75 lb)
- 6 A: 1.75 kg (3.86 lb)
- 9 A: 1.75 kg (3.86 lb)
Cabinet construction

The cabinet frame must be sturdy enough to carry the weight of the drive components, control circuitry and other equipment installed in it.

The cabinet must protect the drive against contact and meet the requirements for dust and humidity (see the chapter Technical data).

Cooling and degrees of protection

The cabinet must have enough free space for the components to ensure sufficient cooling. Observe the minimum clearances given for each component.

The air inlets and outlets must be equipped with gratings that
- guide the air flow
- protect against contact
- prevent water splashes from entering the cabinet.

The temperature of the cooling air entering the unit must not exceed the maximum allowed ambient temperature (see Ambient conditions in the chapter Technical data).
Consider this when installing heat-generating components (such as other drives and braking resistors) nearby.

The drawing below shows two typical cabinet cooling solutions. The air inlet is at the bottom of the cabinet, while the outlet is at the top.

Arrange the cooling of the drives so that the requirements given in chapter Technical data are met:

- Cooling air flow. Note that the values in Technical data apply to continuous nominal load. If the load is less than nominal, less cooling air is required.
- Allowed ambient temperature.

Make sure the air inlets and outlets are sufficient in size. Note that in addition to the power loss of the drive, the heat dissipated by cables and other additional equipment must also be ventilated.

The internal cooling fans of the drives are usually sufficient to keep the component temperatures low enough in IP22 cabinets.

In IP54 cabinets, thick filter mats are used to prevent water splashes from entering the cabinet. This entails the installation of additional cooling equipment, such as a hot air exhaust fan.

The installation site must be sufficiently ventilated.
Disposition of the devices

For easy installation and maintenance, a spacious layout is recommended. Sufficient cooling air flow, obligatory clearances, cables and cable support structures all require space.

For layout examples, see section *Cooling and degrees of protection*.

Preventing the recirculation of hot air

Outside the cabinet

Prevent hot air circulation outside the cabinet by leading the outgoing hot air away from the area where the inlet air to the cabinet is taken. Possible solutions are listed below:

- gratings that guide air flow at the air inlet and outlet
- air inlet and outlet at different sides of the cabinet
- cool air inlet in the lower part of the front door and an extra exhaust fan on the roof of the cabinet.

Inside the cabinet

Prevent hot air circulation inside the cabinet with leak-proof air baffle plates. No gaskets are usually required.
Grounding of mounting structures

Make sure all cross-members or shelves on which drive system components are mounted are properly grounded and the connecting surfaces left unpainted.

Notes:
Ensure that the components are properly grounded through their fastening points to the installation base. It is recommended that the mains filter (if present) and the drive be mounted on the same mounting plate.

Cabinet heaters

Use a cabinet heater if there is a risk of condensation in the cabinet. Although the primary function of the heater is to keep the air dry, it may also be required for heating at low temperatures. When placing the heater, follow the instructions provided by its manufacturer.

Installation procedure

Requirements for the installation site

The drive must be installed in an upright position with the mounting plate against a wall. MicroFlex e190 drives can be installed tightly side by side. Make sure that the installation site complies with these requirements:

- The installation site has sufficient ventilation to prevent overheating of the drive.
- The operation conditions of the drive agree with the specifications in Ambient conditions (page 127).
- The wall is vertical, not flammable and strong enough to hold the weight of the drive. See Dimensions and weights (page 127).
- The material below the installation is not flammable.
- There is enough free space above and below the drive for cooling air flow, service and maintenance. There is enough free space in front of the drive for operation, service and maintenance.

Required tools

- Slot screwdrivers for the screw type connectors.
- A drill and screws or bolts for mounting the MicroFlex e190.
- Wire stripper.
- For UL installations, use UL listed closed loop connectors that are of appropriate size for the wire gauge being used.

Connectors are to be installed using only the crimp tool specified by the manufacturer of the connector.
40 Mechanical installation

- **Direct wall mounting**
 1. Mark the locations for the two holes. The mounting points are shown in Main dimensions on page 35.
 2. Fix the screws or bolts to the marked locations.
 3. Position the drive onto the screws on the wall. **Note:** Only lift the drive by its chassis.
 4. Tighten the screws.

- **Mains filter installation**
 See the chapter Mains filters on page 135.

- **Braking resistor installation**
 See the chapter Resistor braking on page 141.
Planning the electrical installation

What this chapter contains

This chapter contains the instructions that you must follow when selecting the motor, cables, protections, cable routing and way of operation for the drive. If the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover.

Note: The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations.

Motor selection

Select the (3-phase AC induction) motor according to the rating table in the chapter Technical data. The table lists the typical motor power for each drive type.

Only one permanent magnet synchronous motor can be connected to the inverter output. It is recommended to install a safety switch between the permanent magnet motor and the drive output in order to isolate the motor from the drive during maintenance work on the drive.

Supply connection

Use a fixed connection to the AC power line or DC supply. Alternatively, the drive can be powered from a suitable fixed DC supply.

\[\text{WARNING! As the leakage current of the device typically exceeds 3.5 mA, a fixed installation is required according to EN 61800-5-1.}\]
Supply disconnecting device
Install a hand-operated input disconnecting device (disconnecting means) between
the AC power source and the drive. The disconnecting device must be of a type that
can be locked to the open position for installation and maintenance work.

Europe:
If the drive is used in an application which must meet the European Union Machinery
Directive according to standard EN 60204-1 Safety of Machinery, the disconnecting
device must be one of the following types:
• a switch-disconnector of utilization category AC-23B (EN 60947-3)
• a disconnector that has an auxiliary contact that in all cases causes switching
devices to break the load circuit before the opening of the main contacts of the
disconnector (EN 60947-3).

Other regions
The disconnecting means must conform to the applicable safety regulations.

Thermal overload and short circuit protection

Thermal overload protection
The drive protects itself and the input and motor cables against thermal overload
when the cables are dimensioned according to the nominal current of the drive. No
additional thermal protection devices are needed.

Protection against short-circuit in motor cable
The drive protects the motor cable and the motor in a short-circuit situation when the
motor cable is dimensioned according to the nominal current of the drive. No
additional protection devices are needed.

Protection against short-circuit in the supply cable or the drive
Protect the supply cable with fuses. Fuse recommendations are given in the chapter
Technical data. When placed at the distribution board, standard IEC gG fuses or UL
type CC fuses will protect the input cable in short-circuit situations, restrict drive
damage and prevent damage to adjoining equipment in case of a short circuit inside
the drive.

Operating time of the fuses
Check that the operating time of the fuse is below 0.5 seconds. The operating time
depends on the type, the supply network impedance, and the cross-sectional area,
material and length of the supply cable. US fuses must be of the CC “fast acting”
type. Circuit breakers cannot be used with the MicroFlex e190 for UL compliant
applications. Fuses must be used.
Motor thermal protection

According to regulations, the motor must be protected against thermal overload and the current must be switched off when overloading is detected.

The drive can be configured to include a motor temperature input that protects the motor and switches off the current when necessary. For more information about motor thermal protection see Thermal switch connection on page 58, and the Mint keyword MOTORTEMPERATUREINPUT in the Mint WorkBench help file.

Ground fault protection

The drive is equipped with an internal ground fault protective function to protect the unit against ground faults in the motor and the motor cable. This is not a personal safety or a fire protection feature.

The optional mains filter includes capacitors connected between the main circuit and the frame. These capacitors and long motor cables increase the ground leakage current and may cause fault current circuit breakers to function.

Emergency stop devices

For safety reasons, install the emergency stop devices at each operator control station and at other operating stations where emergency stop may be needed.

Note: Stopping motion and/or disabling the drive in software does not separate the drive from dangerous potential.

Residual current device (RCD) compatibility

MicroFlex e190 drives are suitable to be used with residual current devices of Type B. Other measures for protection in case of direct or indirect contact, such as separation from the environment by double or reinforced insulation or isolation from the supply system by a transformer, can also be applied.
Safe Torque Off

The drive supports the Safe Torque Off function according to standards EN 61800-5-2; EN 60204-1; EN 61508.

The Safe Torque Off function disables the control voltage of the power semiconductors of the drive output stage, thus preventing the inverter from generating the voltage required to rotate the motor (see diagram below). By using this function, short-time operations (like cleaning) and/or maintenance work on non-electrical parts of the machinery can be performed without switching off the power supply to the drive.

WARNING! The Safe Torque Off function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive system from the main supply.

Note: It is not recommended to stop the drive by using the Safe Torque Off function. If a running drive is stopped by using the Safe Torque Off function, the drive will stop by coasting. If this is not acceptable (e.g. causes danger), the drive and machinery must be stopped using the appropriate stopping mode before using this function.

For further information on the function, see Appendix: Safe Torque Off (STO) on page 155.
Selecting the power cables

General rules

Dimension the supply (input power) and motor cables according to local regulations:

- The cable must be able to carry the drive load current. See the chapter Technical data for the rated currents.
- The cable must be rated for at least 70 °C maximum permissible temperature of conductor in continuous use. For UL installations use 75 °C copper wiring only.
- The conductivity of the PE conductor must be equal to that of a phase conductor (i.e. same cross-sectional area).
- 600 VAC cable is accepted for up to 500 VAC.
- Refer to the chapter Technical data for EMC requirements.

Symmetrical shielded motor cable must be used (see the figure below) to meet the EMC requirements of the CE mark.

A four-conductor system is allowed for input cabling, but shielded symmetrical cable is recommended. Compared to a four-conductor system, the use of symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as motor bearing currents and wear.

The motor cable and its PE pigtail (twisted shield) must be kept as short as possible in order to reduce electromagnetic emission.

Alternative power cable types

Power cable types that can be used with the drive are represented below.
Motor cable shield

To function as a protective conductor, the shield must have the same cross-sectional area as a phase conductor when they are made of the same metal. To effectively suppress radiated and conducted radio-frequency emissions, the shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape. The better and tighter the shield, the lower the emission level and the bearing currents.

Selecting the control cables

It is recommended that all control cables be shielded. Double-shielded twisted pair cable is recommended for analog signals. For pulse encoder cabling, follow the instructions given by the encoder manufacturer. Use one individually-shielded pair for each signal. Do not use a common return for different analog signals.

Double-shielded cable (Figure a) is the best alternative for low-voltage digital signals but single-shielded twisted multi-pair cable (Figure b) is also usable.

Run analog and digital signals in separate cables. Never mix 24 VDC and 115/230 VAC signals in the same cable.

Connection of a motor temperature sensor to the drive

See page 58.
Routing the cables

Route the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. It is recommended that the motor cable, input power cable and control cables be installed on separate trays. Avoid long parallel runs of motor cables with other cables in order to decrease electromagnetic interference caused by the rapid changes in the drive output voltage.

Where control cables must cross power cables make sure they are arranged at an angle as near to 90 degrees as possible. Do not run extra cables through the drive.

The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential.

A diagram of the cable routing is below.

Control cable ducts

Not allowed unless the 24 V cable is insulated for 230 V or insulated with an insulation sheathing for 230 V.

Lead 24 V and 230 V control cables in separate ducts inside the cabinet.
Typical installation example

- Footprint filter OFI-01 saves panel space.
- The filter can be inverted if the AC input is above the drive.
- Connect AC power cable shield to metal panel, using conductive shield earth/ground clamps.
- On painted panels, remove paint to expose bare metal.
- AC power wires should be as short as possible, typically less than 0.3 m (1 ft). Longer wires must be shielded as shown.
- Drive earth wire must be at least 10 mm² (7 AWG).
- Protective Earth (PE) DO NOT TOUCH!
- Brake resistors can become extremely hot! Locate away from vulnerable components and wiring.
- Drive cabinet 'star point'
- AC power from fuses or reactor.
Electrical installation: AC input / DC input, motor and brake

What this chapter contains
The chapter describes how to connect input power cables, motor and brake resistor.

⚠️ WARNING! The work described in this chapter may only be carried out by a qualified electrician. Follow the instructions in chapter Safety on page 13. Ignoring the safety instructions can cause injury or death.

Make sure that the drive is disconnected from the input power during installation. If the drive is already connected to the input power, wait for 5 minutes after disconnecting the input power.
Checking the insulation of the assembly

- **Drive**
 Do not make any voltage tolerance or insulation resistance tests (e.g. hi-pot or megger) on any part of the drive as testing can damage the drive. Every drive has been tested for insulation between the main circuit and the chassis at the factory. Also, there are voltage-limiting circuits inside the drive which cut down the testing voltage automatically.

- **Supply cable**
 Check the insulation of the supply (input) cable according to local regulations before connecting to the drive.

- **Motor and motor cable**
 Check the insulation of the motor and motor cable as follows:
 - Check that the motor cable is connected to the motor, and disconnected from the drive output terminals U, V and W.
 - Measure the insulation resistance between each phase and the motor PE conductor by using a measuring voltage of 1 kV DC. The insulation resistance must be higher than 1 Mohm.

- **Braking resistor assembly**
 Check the insulation of the braking resistor assembly (if present) as follows:
 1. Check that the resistor cable is connected to the resistor, and disconnected from the drive output terminals R- and R+.
 2. At the drive end, connect the R- and R+ conductors of the resistor cable together. Measure the insulation resistance between the combined conductors and the PE conductor by using a measuring voltage of 1 kV DC. The insulation resistance must be higher than 1 Mohm.
Power cable connection

AC power cable connection diagram

Notes:

- If shielded supply (input) cable is used, and the conductivity of the shield is less than 50% of the conductivity of a phase conductor, use a cable with a ground conductor or a separate PE cable (1).
- For motor cabling, use a separate ground cable (2) if the conductivity of the cable shield is less than 50% of the conductivity of a phase conductor and the cable has no symmetrical ground conductors. See also section Selecting the power cables on page 45.
52 Electrical installation: AC input / DC input, motor and brake

Procedure

Cabling drawings with tightening torques are presented on page 53.

1. Strip the power cables so that the shields are bare at the cable clamps.
2. Twist the ends of the cable shield wires into pigtails.
3. Strip the ends of the phase conductors.
4. Connect the phase conductors of the supply cable to the L1 and L2 terminals of the drive (or L1, L2 and L3 for three phase supply). Connect the phase conductors of the motor cable to the U, V and W terminals. Connect the conductors of the resistor cable (if present) to the R- and R+ terminals.
5. Tighten the cable clamps onto the bare cable shields.
6. Crimp a cable lug onto each shield pigtail. Fasten the lugs to ground terminals. **Note:** Try to work out a compromise between the length of the pigtail and the length of unshielded phase conductors as both should ideally be as short as possible.
7. Cover visible bare shield and pigtail with insulating tape.
8. Secure the cables outside the unit mechanically.
9. Ground the other end of the supply cable shield or PE conductor(s) at the distribution board. In case a mains choke and/or a mains filter is installed, make sure the PE conductor is continuous from the distribution board to the drive.

Grounding the motor cable shield at the motor end

For minimum radio frequency interference, ground the cable shield 360 degrees at the lead-through of the motor terminal box or ground the cable by twisting the shield so that the flattened shield is wider than 1/5 of its length.
AC power cable connection

- Supply cable
- Cable clamp on bare shield
- Cover bare shield with insulating tape
- Motor cable
- Motor earth wire
- Cable clamp on bare shield

- M4, 10 mm max.
 - 0.5...0.6 N·m (4.4...5.3 lbf·in)
 - 1.0...1.3 N·m (8.9...11.5 lbf·in)

- M4, 10 mm max.
 - 0.5...0.6 N·m (4.4...5.3 lbf·in)
 - 1.0...1.3 N·m (8.9...11.5 lbf·in)
DC power cable connection diagram (optional)
The UDC+ and UDC- terminals are intended for common DC configurations of a number of MicroFlex e190 drives.

AC supply (DC sharing)
DC sharing allows regenerative energy from one drive to be utilized by other drives that are in motoring mode. Each drive is connected to the AC supply* and has its own brake resistor. The MicroFlex e190 drives' DC connections are linked as shown in the diagram below.

* The MicroFlex e190 DC connection is not designed to provide the primary power source to other drives.

DC supply
MicroFlex e190 can use a DC supply as the primary power source (see page 124). Each drive is powered from the DC supply and has its own brake resistor. There is no AC supply.
Each drive has an independent DC capacitor pre-charging circuit.

The ratings of the DC connection are given on page 124.
24 V control circuit supply (optional)

A 24 V DC supply can be provided to power the controlling electronics. This is useful for safety reasons where the main AC (or DC) power supply is removed from the power stage, but the controlling electronics must remain powered to retain position, I/O information and communications.

A separate fused 24 V supply should be provided for the MicroFlex e190.

* Recommended fuse: Bussman S504 20 x 5 mm anti-surge 2 A.
Motor brake connection

A rotary motor might require a brake. The brake prevents the uncontrolled release of suspended or tensioned loads when power to the motor is removed or disconnected, e.g. by a motor circuit contactor. Contact your local supplier for details of appropriate brakes.

You can wire a motor’s brake, via relays, to a digital output on connector X3; see Connecting the control cables on page 60. This provides a way for the MicroFlex e190 to control the motor’s brake. A typical circuit is shown in the following diagram:

This circuit uses DO2 as a motor brake output. The output is configured using Mint keyword MOTORBRAKEOUTPUT; see the Mint help file for details. With this configuration, the following sequences can be used to control the brake.

To engage the brake:
- The motor is brought to rest under normal control;
- The relay is deactivated, causing the brake to engage;
- The drive is disabled, removing power from the motor.

To disengage the brake:
- The drive is enabled;
- The drive applies power to the motor to hold position under normal control;
- The relay is activated, causing the brake to be disengaged.

It is sometimes necessary to include a small delay after the relay has been activated, before starting motion. This delay allows time for the relay contacts to engage and the brake to release. See the Mint keyword MOTORBRAKEDelay.

WARNING! The 24 V DC power supply used to power the brake must be a separate supply as shown in the diagram. Do not use the supply that is powering the MicroFlex e190 digital outputs. The brake wires often carry noise that could cause erratic drive operation or damage. The brake contacts must never be wired directly to the digital outputs. The relay should be fitted with a protective flyback diode, as shown. The separate 24 V DC supply used for the motor brake can also be used to power the relay in the thermal switch circuit (see below).
Thermal switch connection

You can use the motor’s thermal switch contacts (normally closed), to control a relay connected to a digital input on connector X3. This allows the MicroFlex e190 to respond to motor over-temperature conditions. Using the Mint WorkBench Digital I/O tool, the input can be configured to be the motor temperature input. The Mint keyword `MOTORTEMPERATUREINPUT` can also be used to configure a digital input for this purpose. A typical circuit, using DI2 as the input, is shown in the following diagram:

```
+24 V        +24 V
|            |
|            |
DI2+         DI2-
|            |
|            |
```

The relay has normally open contacts and is shown deactivated (contacts open, motor overheated).

WARNING! The 24 V DC power supply connected to the thermal switch must be a separate supply as shown in the diagram. The thermal switch wires often carry noise that could cause erratic drive operation or damage. The thermal switch contacts must never be wired directly to a digital input. The separate 24 V DC supply used for the thermal switch can also be used for the motor brake circuit.
Electrical installation: input / output

What this chapter contains
The chapter describes how to connect low voltage control signals.

The following conventions will be used to refer to the inputs and outputs:

<table>
<thead>
<tr>
<th>I/O</th>
<th>Input / Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Analog Input</td>
</tr>
<tr>
<td>AO</td>
<td>Analog Output</td>
</tr>
<tr>
<td>DI</td>
<td>Digital Input</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Output</td>
</tr>
<tr>
<td>STO</td>
<td>Safe Torque Off</td>
</tr>
</tbody>
</table>

WARNING! The work described in this chapter may only be carried out by a qualified electrician. Follow the instructions in chapter Safety on page 13. Ignoring the safety instructions can cause injury or death.

Make sure that the drive is disconnected from the input power during installation. If the drive is already connected to the input power, wait for 5 minutes after disconnecting the input power.
Connecting the control cables

X1A: Dinkle EC762V-B3253206P-BK
- Wire sizes: 0.2...6.0 mm² (30*...10 AWG)
- Torque: 0.7 N·m (6.2 lbf·in)

X1B: Dinkle EC762V-B3253203P-BK
- Wire sizes: 0.2...2.5 mm² (24...12 AWG)
- Torque: 0.6 N·m (5.3 lbf·in)

X3, X4: Weidmüller B2L 3.50/20/180, Weidmüller B2L 3.50/8/180
- Wire sizes: 0.2...1.0 mm² (28...16 AWG)

Notes: The wiring shown is for demonstrative purposes only. Complete information for all connectors, including X7 and X8, is provided in this chapter and chapter 12.

Wire sizes and tightening torques:
- **X1A**: Dinkle EC762V-B3253206P-BK
 - Wire size: 0.2...6.0 mm² (30*...10 AWG)
 - Minimum size for UL installations is 14 AWG.
 - Tightening torque: 0.7 N·m (6.2 lbf·in)

- **X1B**: Dinkle EC762V-B3253203P-BK
 - Wire size: 0.2...2.5 mm² (24...12 AWG)
 - Tightening torque: 0.6 N·m (5.3 lbf·in)

- **X3, X4**: Weidmüller B2L 3.50/20/180, Weidmüller B2L 3.50/8/180
 - Wire size: 0.2...1.0 mm² (28...16 AWG)

Notes: Differential and single-ended connections are possible.

E1/E2 Ethernet fieldbus IN E2 OUT E1

X1A
- **AC input**
 - 115-240 VAC ±10%
 - L1 1
 - L2 2
 - L3 3
- **DC bus+ / Brake+ R+/UDC+ 6**

X1B
- **Motor output**
 - U1
 - V2
 - W3

E3
- **Ethernet host (PC)**

X3, X4
- **1 Status-/DO0- Status-/DO0+ 11**
- **2 DO2- DO2+ 12**
- **3 DO1- DO1+ 13**
- **4 DI2- DI2+ 14**
- **5 DI3- DI3+ 15**
- **6 DI1- DI1+ 16**
- **7 DI0- DI0+ 17**
- **8 AGND A0 18**
- **9 A0- A0+ 19**
- **10 Shield Shield 20**

X2
- **STO1 STO2 11**
- **2 STO2 STO2 12**
- **3 SGND SGND 13**
- **4 24 V out 24 V out 14**

E1: Safe Torque Off: Both circuits must be closed for the drive to start.

X2 (Optional) Control circuit supply input: 24 V, 1 A

DO0-DO1: Maximum 100 mA per output. \(R_{\text{min}} = 250 \text{ ohm} \).

The wiring shown is for demonstrative purposes only. Compare information for all connectors, including X7 and X8, is provided in this chapter and chapter 12.

Diagram

[Diagram showing the connections and labels]
Analog I/O

The MicroFlex e190 provides:
- One 12-bit resolution ±10 V analog input.
- One 12-bit resolution ±10 V analog output.

An analog input receives the torque / velocity reference signal when operating as an analog drive (see `CONTROLREFSOURCE` in the Mint help file) or it can be used as a general purpose ADC input.

X3: Analog input AI0

The analog input passes through a differential buffer and second order low-pass filter with a cut-off frequency of approximately 1.2 kHz.

The analog input can be connected as either a differential or a single ended input as shown below. The analog input is not optically isolated from internal power rails, so care must be taken to avoid earth/ground loops and similar associated problems. To minimize the effects of noise, the analog input signal should be connected to the system using an individually shielded twisted pair cable with an overall shield. The overall shield should be connected to the chassis at one end only. No other connection should be made to the shield.

When the MicroFlex e190 is connected to Mint WorkBench, the analog input value (expressed as a percentage) can be viewed using the Spy window’s Monitor tab. Alternatively, the command `Print ADC(0)` can be used in the command window to return the value of the analog input. See the Mint help file for full details of ADC, ADCMODE and other related ADC... keywords.

Differential inputs: connect input to AIN+ and AIN-. Leave AGND unconnected.
Typical input circuit to provide 0-10 V (approx.) input from a 24 V source:

Analog input - typical connections from an ABB NextMove e100:

Analog input - typical connections from an ABB AO561:
X3: Analog output AO0

The analog output can be used to drive loads of 1 kΩ or greater. Shielded twisted pair cable should be used. The shield connection should be made at one end only. In Mint, the analog output can be controlled using the DAC keyword. See the Mint help file for full details of DAC and other related DAC... keywords.

Analog output - typical connections to an ABB NextMove e100:

Analog output - typical connections to an ABB AI523:
Digital I/O

The MicroFlex e190 provides:
- 4 general purpose digital inputs.
- 2 dedicated Safe Torque Off (STO) inputs.
- 3 general purpose digital outputs.

Using a digital input as a drive enable input (optional)

A general purpose digital input can be configured as a ‘drive enable input’. This input must be activated to allow the drive to operate. This provides an additional method for stopping the drive using a hardware switch or external PLC/controller (e.g. AC500 or NextMove e100) although it does not provide any of the formal safety features of the Safe Torque Off inputs (see page 155). The optional drive enable input is configured using the Digital I/O tool in Mint WorkBench.

Using a digital input as a home switch input (optional)

If homing is being handled locally by the MicroFlex e190, the axis home switch (if present) must be wired directly to the home input on the MicroFlex e190, otherwise it will not be able to complete its internal homing routines. The home switch input is configured using the Digital I/O tool in Mint WorkBench, or by using the Mint HOMEINPUT keyword. Other HOME... keywords define the homing sequence.

If homing is being handled by an EtherCAT® master over Ethernet, and the master is profiling the motion, there are three options. The choice depends on the accuracy required for the homing and the EtherCAT cycle-time:
- The axis home switch is wired to an input on the MicroFlex e190, and then mapped back to the master over EtherCAT;
- The home switch is wired directly to the EtherCAT master.
- The home switch is wired to one of the fast inputs (DI1 / DI2), and the master enables the drive’s touch probe function. See the Mint WorkBench help file for details.

X4: Digital inputs - Safe Torque Off (STO) inputs

The two safe torque off (STO) inputs are identical. Each input directly enables part of the motor output control circuit. Both inputs must be powered to allow the MicroFlex e190 to supply power to the motor. If an additional hardware drive enable input is used to control the MicroFlex e190, it must not be wired with the STO input circuit. The state of the STO inputs can be viewed using the Mint WorkBench Spy window’s Axis tab. See the Mint help file for details.

See Appendix: Safe Torque Off (STO) on page 155.
X3: Digital inputs - general purpose DI1 & DI2

These general purpose fast digital inputs are buffered by an opto-isolator, allowing the input signal to be connected with either polarity. When the MicroFlex e190 is connected to Mint WorkBench, the digital inputs can be configured using the Digital I/O tool. Alternatively, Mint keywords including \texttt{RESETINPUT}, \texttt{ERRORINPUT}, \texttt{STOPINPUT}, \texttt{FORWARDLIMITINPUT}, \texttt{REVERSELIMITINPUT} and \texttt{HOMEINPUT} can be used. The state of the digital inputs can be viewed using the Mint WorkBench Spy window's Axis tab. See the Mint help file for details.

Digital input - typical connections from an ABB NextMove e100:

Digital input - typical connections from an ABB DO561:
Special functions on inputs DI1 & DI2

DI1 and DI2 can be configured to perform special functions. The ENCODERMODE keyword controls the configuration. When operating as an encoder input or step and direction inputs, DI1 and DI2 can be connected to a master encoder for position following applications. See the FOLLOW and CAM keywords in the Mint help file.

Fast latch input

(ENCODERMODE bit 2 = 0)

DI1 or DI2 can be configured using the LATCHTRIGGERCHANNEL keyword to become a fast latch input. This allows the position of the axis to be captured in real-time and read using the Mint keyword LATCHVALUE. The input can be configured using the LATCHTRIGGEREDGE keyword to be triggered either on a rising or falling edge.

Further control of position capture is provided by various other keywords beginning with LATCH. See the Mint help file for details.

The maximum latency to read the fast position depends on the feedback device. For an incremental encoder, the latency is approximately 150 - 300 ns. For other feedback devices latency can be up to 62.5 μs, resulting from the 16 kHz sampling frequency used for these types of feedback device. The fast interrupt is latched on a pulse width of about 30 μs, although a width of 100 μs is recommended to ensure capture. The captured value is latched in software to prevent subsequent inputs causing the captured value to be overwritten.

Note: The fast inputs are particularly sensitive to noise, so inputs must use shielded twisted pair cable. Do not connect mechanical switches, relay contacts or other sources liable to signal 'bounce' directly to the fast inputs. This could cause unwanted multiple triggering.

Encoder input

(ENCODERMODE bit 2 = 0)

Whilst operating as general purpose digital inputs, DI1 and DI2 are simultaneously interpreted by the drive as an additional quadrature (CHA, CHB) incremental encoder input. DI1 is CHA and DI2 is CHB. In Mint, the input formed by digital inputs DI1 and DI2 is encoder 1. Position can be read using the ENCODER keyword.

Step (pulse) and direction inputs

(ENCODERMODE bit 2 = 1)

If ENCODERMODE bit 2 is set, DI1 and DI2 are interpreted as step and direction inputs. In Mint, the input formed by digital inputs DI1 and DI2 is channel (encoder) 1.

• DI1 is used as the step input. The step frequency controls the speed of the motor.
• DI2 is used as the direction input. The state of the direction input controls the direction of motion.
X3: Digital inputs - general purpose DI0 & DI3

These general purpose digital inputs are buffered by an opto-isolator, allowing the input signals to be connected with either polarity. When the MicroFlex e190 is connected to Mint WorkBench, the digital inputs can be configured using the Digital I/O tool. Alternatively, Mint keywords including `RESETINPUT`, `ERRORINPUT`, `STOPINPUT`, `FORWDLIMITINPUT`, `REVERSELIMITINPUT` and `HOMEINPUT` can be used. The state of the digital inputs can be viewed using the Mint WorkBench Spy window's Axis tab. See the Mint help file for details.

Digital input - typical connections from an ABB NextMove e100:

![Diagram of digital input connections](image)

Digital input - typical connections from an ABB DO561:
Digital input - typical current sourcing connections to a digital input:
X3: Digital outputs - general purpose DO0 - DO3

The general purpose digital outputs are optically isolated. They source current from the user supply as shown below. The maximum saturated voltage across the outputs when active is 1.0 V DC, so it can be used as a TTL compatible output.

The output includes a self-resetting fuse that operates at approximately 200 mA. The fuse can take up to 20 seconds to reset after the load has been removed. If the output is used to directly drive a relay, a suitably rated diode must be fitted across the relay coil, observing the correct polarity. This is to protect the output from the back-EMF generated by the relay coil when it is de-energized. The sense of the output can be configured in Mint WorkBench, and its state is displayed in the Spy window.

When the MicroFlex e190 is connected to Mint WorkBench, the active level of the output can be configured using the Digital I/O tool. Alternatively, the Mint keyword OUTPUTACTIVELEVEL can be used in the command window. Other Mint keywords such as COMPAREROUTPUT, GLOBALERROROUTPUT, DRIVENABLEOUTPUT and MOTORBRAKEOUTPUT can be used to configure the output. The state of the digital outputs can be viewed using the Mint WorkBench Spy window Axis tab.

Note: By default DO0 is configured as a global error output. Use the Digital I/O tool or the Mint command GLOBALERROROUTPUT = -1 to release the output for other purposes. See the Mint help file for details.

Digital output - typical connections to an ABB NextMove e100:
Digital output - typical connections to an ABB DI561:

Other I/O

- **X2: External power supply for the control unit (optional)**
 An external +24 V, 1 A power supply for the control board can be connected to terminal block X2. Using an external supply is recommended if:
 - the application requires fast start after connecting the drive to the main input supply.
 - fieldbus communication is required when the main input supply is disconnected.

- **SW1 linear switches - startup functions**
 The linear switches are read once at startup.
 1: Selects normal IP address configuration, or a fixed IP address. The fixed IP address (192.168.0.1) allows the drive to be accessed if the software assigned IP address is not known.
 2: Selects normal operation or firmware recovery mode. Recovery mode allows new firmware and other configuration files to be downloaded. The fixed IP address 192.168.0.1 is enabled and the symbol is displayed. Mint WorkBench allows you to update firmware and view the file system.
Control cable grounding

The shields of all control cables must be grounded at the earth bar. Use M4 screws to fasten cable clamps.

The shields should be continuous as close to the terminals as possible. Only remove the outer jacket of the cable at the cable clamp so that the clamp presses on the bare shield. At the terminal block, use shrink tubing or insulating tape to contain any stray strands. The shield (especially in case of multiple shields) can also be terminated with a lug and fastened with a screw at the earth bar. Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor (e.g., 3.3 nF / 630 V). The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points.

Keep any signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling.
Ethernet ports

- **E1 / E2: Ethernet fieldbus**

The E1 and E2 Ethernet ports on the top panel of the MicroFlex e190 are used for Ethernet fieldbus connections such as EtherCAT® and Ethernet POWERLINK®. For full details about the fieldbus connections, see the Mint WorkBench help file.

In an EtherCAT network the E2 (IN) port must be connected to the master side of the network. The E1 (OUT) port, if used, must be connected to the IN port of the next slave device in the network. Set both front panel rotary HI / LO switches to 0 to select EtherCAT slave mode.

In an Ethernet POWERLINK network the connectors are identical.

See MicroFlex e190 indicators on page 103 for a description of the fieldbus status indicators.

EtherCAT connections:

* EtherCAT master
E1 / E2: Ethernet port configuration

The rotary switches are read once at startup. The switches select the mode of operation for the E1 and E2 Ethernet fieldbus connectors on the top panel of the drive. See page 72.

<table>
<thead>
<tr>
<th>Value</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI 00</td>
<td>EtherCAT slave mode</td>
</tr>
<tr>
<td>LO 01-EF</td>
<td>Ethernet POWERLINK CN mode: selected value is node ID</td>
</tr>
<tr>
<td>HI F0</td>
<td>Reserved</td>
</tr>
<tr>
<td>HI F1</td>
<td>Reserved</td>
</tr>
<tr>
<td>HI F2-FF</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

E3: Ethernet host

The Ethernet host port is used to connect a PC for configuring the MicroFlex e190. See section Start-up on page 85 for details about configuring the PC’s Ethernet adapter for communication with the MicroFlex e190.
Motor feedback (X8)

MicroFlex e190 supports incremental encoder, BiSS (Bi-directional Synchronous Serial Interface), SSI (Synchronous Serial Interface), EnDat 2.1 and 2.2, Smart Abs absolute encoder, or SinCos feedback, for use with linear and rotary motors.

Resolvers are supported by using the optional resolver adapter (see page 82). There are some important considerations when wiring the feedback device:

- The inputs are not isolated.
- The feedback device wiring must be separated from power wiring.
- Where feedback device wiring runs parallel to power cables, they must be separated by at least 76 mm (3 in)
- Feedback device wiring must cross power wires at right angles only.
- To prevent contact with other conductors or earths / grounds, unearthened / ungrounded ends of shields must often be insulated.
- Linear motors use two separate cables (encoder and Hall). The cores of these two cables will need to be wired to the appropriate pins of the 15-pin D-type mating connector.
- A maximum combined total of 500 mA can be supplied by X8 pin 12 and X7 pin 9 to feedback devices. Self-resetting fuses protect the 5.5 V supplies on X8 and X7.

Connection summary

When using BiSS, SSI, EnDat 2.2 or Smart Abs, an extra incremental encoder can be simultaneously connected.
Twisted pairs must be used for each complementary signal pair e.g. CHA+ and CHA- or Data+ and Data-.

The overall cable shield (screen) must be connected to the metallic shell of the D-type connector.

In Mint, the encoder input formed by digital inputs DI1 and DI2 is encoder 1 (see page 68). The primary motor feedback encoder on connector X8 is encoder 0. The extra incremental encoder input on connector X8 is encoder 2 by default, but alternatively connector X7 can be configured as encoder input 2 (see page 80).

Incremental encoder with Halls

The incremental encoder connections (ABZ channels and Hall signals) are made using the 15-pin D-type female connector X13. The encoder inputs (CHA, CHB and CHZ) accept differential signals only. Twisted pairs must be used for each complementary signal pair e.g. CHA+ and CHA-. The Hall inputs may be used as differential inputs (recommended for improved noise immunity) or single ended inputs. When used as single ended inputs, leave the Hall U-, Hall V- and Hall W- pins unconnected. The overall cable shield (screen) must be connected to the metallic shell of the D-type connector. The encoder supply on pin 12 provides 5.5 V to the encoder (500 mA maximum, less if other encoder inputs are in use; see page 74). Maximum cable length is 30 m.
Serial interfaces & SinCos

The MicroFlex e190 supports the following feedback types, for use with linear and rotary motors:

- BiSS (Bi-directional Synchronous Serial Interface)
- SSI (Synchronous Serial Interface)
- EnDat or SmartAbs absolute encoders
- SinCos encoders (1 V pk-pk, 2.5 V reference).

Twisted pairs must be used for each complementary signal pair e.g. CHA+ and CHA- or Data+ and Data-. Maximum cable length is 30 m.

The overall cable shield (screen) must be connected to the metallic shell of the D-type connector. The encoder supply on pin 12 provides either 5.5 V or 8 V to the encoder, selected using the switch behind connector X7 (500 mA maximum, less if other encoder outputs are in use; see page 74).

WARNING! Check the feedback device’s power input specifications before using the 8 V position. Selecting the wrong voltage could damage your feedback device.
EnDat interface

Incremental and absolute (multi and single turn) devices are supported. It is possible to read and write information to the encoder. The Sin and Cos channels are not required when using a version 2.2 EnDat encoder.

EnDat 2.1 interface cable connections:

![EnDat Interface Diagram]

BiSS interface

The BiSS (Bi-directional Serial Synchronous interface) is an open-source interface that can be used with many types of absolute encoder.

BiSS interface cable connections:

![BiSS Interface Diagram]
SSI encoders

SSI interface cable connections:

```
    Absolute Encoder
      Twisted pairs
```

Smart Abs encoders

Smart Abs interface cable connections:

```
    Absolute Encoder
      Twisted pairs
```

Multifunction Smart Abs encoders require an additional battery supply to retain position information when the drive is not powered.

SinCos interface

SinCos interface cable connections:

```
    SinCos Feedback
      Twisted pairs
```

Connect overall shield to connector backshells.

Connect internal shields to pin 13.
Extra incremental encoder

If the primary feedback type is one that does not use the Hall/sin/cos inputs (BiSS, SSI, EnDat 2.2, Smart Abs) an extra ABZ incremental encoder can be connected. This extra encoder input (encoder 2) is available only when connector X7 has been configured as an encoder output (see page 80). The inputs may be used as differential inputs (recommended for improved noise immunity) or single ended inputs. When used as single ended inputs, leave the CHA-, CHB- and CHZ- pins unconnected. The overall cable shield (screen) must be connected to the metallic shell of the D-type connector. The encoder supply on pin 12 provides 5.5 V to the encoder (500 mA maximum, less if other encoder inputs are in use; see page 74). Maximum cable length is 30 m.

Extra incremental encoder cable connections:
Incremental encoder input/output (X7)

The incremental encoder input/output connection provides A/B channels and a Z index channel. Twisted pairs must be used for each complementary signal pair e.g. CHA+ and CHA-. The Mint keyword ENCODEROUTCHANNEL is used to set the mode of operation for X7. When set to the default value of -1, X7 operates as an input.

Input mode: ABZ incremental encoder (default)

By default, X7 is configured as an ABZ incremental encoder input (encoder 2). When operating as an encoder input, X7 can be connected to a master encoder for position following applications.

Incremental encoder cable connections:

Input mode: Step (pulse) and direction

Optionally, connector X7 can be configured as a step and direction input. Use one of the following methods to select step and direction mode.

- In Mint WorkBench, choose the Parameters tool and expand the Encoder family. Click the EncoderMode entry, then click the value next to EncoderMode (Encoder Channel 2). Check Bit 2: Step/Direction, then click OK. On the menu, choose Tools, Store Drive Parameters.

- In Mint WorkBench, choose the Edit & Debug tool. In the Command window enter the command ENCODERMODE(2)=4 (or other value where bit 2 is set). On the menu, choose Tools, Store Drive Parameters.
The step and direction inputs are both differential and must be controlled from an RS422 differential source, e.g. NextMove e100 (NXE100-16xxDx). Single-ended connections cannot be used.

- The A channel pins (1 & 6) are used as the step input. The step frequency controls the speed of the motor.
- The B channel pins (2 & 7) are used as the direction input. The state of the direction input controls the direction of motion.
- The Z channel input is not used.

Step / direction inputs - typical connections from an ABB NextMove e100:

Encoder output mode

Optionally, connector X7 can be configured as an encoder output (encoder output 0). This automatically enables the extra incremental encoder input on connector X8, which then becomes encoder input 2 (see page 79). When operating as an encoder output, X7 can be connected to the encoder input of a motion controller such as NextMove e100 to provide position feedback. The A/B outputs are a pair of synthesized pulse trains with a 50% duty cycle, 90 degrees out of phase. The ENCODEROUTCHANNEL Mint keyword is used to define the source signal that will be output at X7:

- -1 = (Default) No encoder source assigned, X7 operates as an encoder input.
- 0 = Encoder 0, the primary encoder input on X8.
- 1 = Encoder 1, the encoder input formed by digital inputs DI1 and DI2 when they are set to behave as an encoder input (encoder 1, see Special functions on inputs DI1 & DI2 on page 66).
- 2 = Encoder 2, the extra incremental encoder interface on X8.

The frequency of the A/B outputs is varied according to the source signal, and can be scaled using the ENCODEROUTRESOLUTION Mint keyword. The output at X7 is identical to the input at X8, with no propagation delay, provided the output resolution is set to match the input resolution. In all other cases there is a propagation delay of up to 125 µs.
Use one of the following methods to configure X7 as an encoder output:

- In Mint WorkBench, choose the Drive Setup tool and proceed to the Motor Feedback page. In the Simulated Encoder Output 0 area, click in the Encoder source channel drop down and choose one of the encoder sources 0, 1, or 2 as described above. Proceed to the end of the wizard and follow the instructions to save the changed parameter.
- In Mint WorkBench, choose the Parameters tool and expand the Encoder family. Click the EncoderOutChannel entry, then click the value next to EncoderOutChannel (Encoder Channel 0). Choose one of the encoder sources 0, 1, or 2 as described above. On the menu, choose Tools, Store Drive Parameters.
- In Mint WorkBench, choose the Edit & Debug tool. In the Command window enter the command: \texttt{ENCODEROUTCHANNEL(0)=n}, where \texttt{n} is 0, 1, or 2, as described above. On the menu, choose Tools, Store Drive Parameters.

OPT-MF-201 Resolver adapter

The optional resolver adapter OPT-MF-201 allows a motor with resolver feedback to be connected to the MicroFlex e190. See page 151 for details.
Checklist

Check the mechanical and electrical installation of the drive before start-up. Go through the checklist together with another person.

WARNING! Only qualified electricians are allowed to carry out the work described below. Read the safety instructions on the first pages of this manual before you work on the unit. Ignoring the safety instructions can cause injury or death.

Open the main disconnector of the drive and lock it to open position. Measure to ensure that the drive is not powered.

MECHANICAL INSTALLATION

- The ambient operating conditions are allowable. (See Mechanical installation, Technical data: Ratings, Ambient conditions.)
- The unit is fastened properly to the cabinet. (See Cabinet construction and Mechanical installation.)
- The cooling air will flow freely.
- The motor and the driven equipment are ready for start. (See Planning the electrical installation, Technical data: Motor connection.)

ELECTRICAL INSTALLATION

- The capacitors are reformed if stored over one year (ask local ABB representative for more information).
- The drive is grounded properly.

[To be continued on the next page...]

[Figure and table are not included in the text representation.]
Installation checklist

- The supply (input power) voltage matches the drive nominal input voltage.
- The supply (input power) is connected to L1/L2/L3 (UDC+/UDC- in case of a DC supply) and the terminals are tightened to specified torque.
- Appropriate supply (input power) fuses and disconnector are installed.
- The motor is connected to U/V/W, and the terminals are tightened to specified torque.
- The braking resistor (if present) is connected to R- and R+UDC+, and the terminals are tightened to specified torque.
- The motor cable (and braking resistor cable, if present) is routed away from other cables.
- There are no power factor compensation capacitors in the motor cable.
- The external control connections to the control unit are OK.
- There are no tools, foreign objects or dust from drilling inside the drive.
- The supply (input power) voltage cannot be applied to the output of the drive through a bypass connection.
Start-up

What this chapter contains
This chapter describes software installation and the start-up procedure of the drive.

Safety

WARNING! Read the Safety instructions on the first pages of this manual before performing any maintenance on the equipment. Ignoring the safety instructions can cause injury or death.

Introduction

Before powering the MicroFlex e190 you must connect it to the PC using an Ethernet cable and install the Mint WorkBench software on the PC. This includes a number of applications and utilities to allow you to configure, tune and program the MicroFlex e190. Mint WorkBench and other utilities can be downloaded from the SupportMe pages of www.abbmotion.com.

Connect the MicroFlex e190 to the PC

Connect a CAT5e Ethernet cable between the PC and the MicroFlex e190 E3 Ethernet port on the front panel. Do not connect the cable to the E1 or E2 ports on the top of the drive.

NOTE! You cannot connect an ordinary office PC to the MicroFlex e190 without first altering the PC’s Ethernet adapter configuration. See Configure the PC Ethernet adapter on page 86.
Install Mint WorkBench

The Windows user account requires administrative user rights to install Mint WorkBench. To install Mint WorkBench from www.abbmotion.com, download the application and run it.

Configure the PC Ethernet adapter

It is necessary to alter the PC’s Ethernet adapter configuration to operate correctly with the MicroFlex e190. By default, the MicroFlex e190 has a static IP address of 192.168.0.1. This can be changed using the Configuration tool in Mint WorkBench.

NOTE! You cannot connect an ordinary office PC to the MicroFlex e190 without first altering the PC’s Ethernet adapter configuration. However, if you have installed a second Ethernet adapter dedicated for use with the MicroFlex e190, then this adapter’s configuration can be altered without affecting the PC’s office Ethernet connection. A USB to Ethernet adapter is a convenient way to add a second Ethernet adapter to a PC. If you are unsure about making changes to your PC’s Ethernet adapter configuration, or are prevented by user permission levels, ask your I.T. administrator to assist you.

The following explanation assumes the PC is connected directly to the MicroFlex e190, and not across an intermediate Ethernet network. If you wish to attempt the connection through an intermediate Ethernet network, then the network administrator must be consulted to ensure that the necessary IP address is allowed and is not already allocated on the network.

2. On the left of the window, click Change Adapter Settings (Windows 10: Change adapter options). Double click the icon for the required Ethernet adapter, then click Properties.
4. On the General tab, make a note of the existing settings. Click Advanced... and make a note of any existing settings. Click Cancel and then click the Alternate Configuration tab and make a note of any existing settings.
5. On the General tab, choose the ‘Use the following IP address’ option.
6. In the IP address box, enter an IP address, e.g. 192.168.0.241. This is the IP address that will be assigned to the Ethernet adapter.
7. In the Subnet mask box, enter 255.255.255.0 and click OK.
8. Click Close to close the Local Area Connection Properties dialog.
9. Click Close to close the Local Area Connection Status dialog.
Enable the Ethernet adapter for Mint WorkBench

Before Mint WorkBench can use the Ethernet adapter to discover the MicroFlex e190, the adapter must be enabled in the Mint Sidebar.

1. On the Windows 7/10 task bar in the notification area, right-click the Mint HTTP Server icon and choose Properties. (Windows 8.1: On the Start screen, click the Desktop icon to access the desktop first.)
2. In the Discovery area, check the required local area connection, then click OK.

Start the MicroFlex e190

If you have followed the instructions in the previous sections, you should have now connected the power sources, your choice of inputs and outputs, and the Ethernet cable linking the PC to the MicroFlex e190.

- Preliminary checks

Before you apply power for the first time, check all items in Installation checklist, starting on page 83.

- Power on checks

See section Drive status display on page 106 for symbols that show if the drive has detected a fault.

1. Turn on the 24 V DC control circuit supply (if present).
2. Turn on the AC supply (or DC supply, page 54).
3. The drive status display shows a test sequence which normally takes approximately 15-20 seconds. The sequence ends with the ▼ symbol, or ▲ if an STO input (page 155) is not powered. Start-up can take more than 1 minute after downloading new firmware.
4. To allow the Commissioning Wizard to function, the Safe Torque Off inputs (page 155) must be powered to allow the MicroFlex e190 to be enabled.
Start Mint WorkBench

Mint WorkBench is a fully featured application for programming and controlling the MicroFlex e190. Mint WorkBench includes a comprehensive help file that contains information about every Mint keyword, how to use Mint WorkBench, and background information on motion control topics. Press F1 to display the help file. For help on using Mint WorkBench, click the red Mint WorkBench icon on the opening page.

1. On the Windows Start menu, select All Programs, ABB, Mint WorkBench, Mint WorkBench. (Windows 8.1: On the Apps screen, click the Mint WorkBench icon.)
2. In the opening dialog box, click Start Online Project...
3. Wait until the MicroFlex e190 is listed in the Controllers found box, e.g. “MicroFlex e190 on 192.168.0.1.”
4. Select the MicroFlex e190 in the list, and check Launch Commissioning Wizard.
5. Click Select.

Note: If the MicroFlex e190 is not listed, check the Ethernet cable is connected to the E3 port on the front panel of the drive, not E1 or E2 on the top panel. Check that the MicroFlex e190 is powered correctly and the start-up sequence (see Power on checks, above) has completed. Ensure you have enabled the Ethernet adapter for Mint WorkBench (see page 87). Click Scan to re-scan the ports. It can take up to 5 seconds for Mint WorkBench to detect the MicroFlex e190.
6. Mint WorkBench connects to the MicroFlex e190 and displays the Commissioning Wizard.

Note: If Launch Commissioning Wizard was not checked, Edit & Debug mode is displayed.
Commissioning Wizard

Each type of motor and drive combination has different performance characteristics. Before the MicroFlex e190 can be used to control the motor accurately, the MicroFlex e190 must be 'tuned'. Tuning is the process where the MicroFlex e190 powers the motor in a series of tests. By monitoring the drive's output and the feedback from the motor's encoder, the MicroFlex e190 can make small adjustments to the way it controls the motor. This information is stored in the MicroFlex e190 and can be uploaded to a file if necessary.

The Commissioning Wizard provides a simple way to tune the MicroFlex e190 and create the necessary configuration information for your drive/motor combination, so this is the first tool that should be used. If necessary, any of the parameters set by the Commissioning Wizard can be adjusted manually after commissioning is complete.

Using the Commissioning Wizard

Each screen of the Commissioning Wizard requires you to enter information about the motor, drive or application. Read each screen carefully and enter the required information. When you have completed a screen, click Next > to display the next screen. If you need to change something on a previous screen, click the < Back button. The Commissioning Wizard remembers information that you have entered so you do not need to re-enter everything if you go back to previous screens. If you need extra help, click Help or press F1.

Select your Motor Type:
Select the type of motor that you are using; rotary or linear, brushless or induction.

Select your Motor:
Carefully enter the details of your motor. If you are using a Baldor motor, the catalog number or spec. number can be found stamped on the motor's nameplate. If you are using a motor with EnDat feedback, are using a different manufacturer's motor, or need to enter the specification manually, select the 'Enter motor parameters manually' option.

Confirm Motor and Drive information:
If you entered the catalog or spec. number on the previous page, it is not necessary to change anything on this screen; all the required data is entered already. However, if you selected the 'Enter motor parameters manually' option, it is necessary to enter the required information before continuing.

Motor Feedback:
If you entered the catalog or spec. number on the previous page, it is not necessary to change anything on this screen; the feedback resolution is entered already. However, if you selected the 'Enter motor parameters manually' option, it is necessary to enter the feedback resolution before continuing.
90 Start-up

Drive Setup complete:
This screen confirms that drive setup is complete.

Select Operating Mode and Source:
In the Operating Mode section, choose the required operating mode. In the Reference Source section, it is important to select 'Direct (Host/Mint)' as the Reference Source. This allows the Autotune Wizard to operate correctly, and allows further initial testing to be performed using Mint WorkBench. Although the MicroFlex e190 might eventually be controlled over EtherCAT®, the 'RT Ethernet' reference source should be selected only after the MicroFlex e190 has been commissioned and is ready to add to the EtherCAT network. This is selected by choosing the Operating Mode tool in the Toolbox.

Application Limits:
It is not necessary to change anything on this screen. However, if you wish to adjust the application peak current (App. Peak Current) and/or application maximum speed (App. Max. Speed), then click in the appropriate box and enter a value.

Select Scale Factor:
It is not necessary to change anything on this screen. However, it is recommended to select a user unit for position, velocity and acceleration. This allows Mint WorkBench to display distance, speed and acceleration using meaningful units, instead of encoder counts. For example, selecting a Position User Unit of Revs (r) means that all position values entered or displayed in Mint WorkBench will represent revolutions. The Position Scale Factor value changes automatically to represent the required scale factor (the number of quadrature counts per revolution). If you need to use an alternative unit, for example degrees, type "Degrees" in the Position User Unit box and enter a suitable value in the Position Scale Factor box. Separate velocity and acceleration units can also be defined. See the Mint help file for more information about scale factors.

Profile Parameters:
It is not necessary to change anything on this screen. However, if you wish to adjust the parameters for any control method, click in the appropriate box and enter a value.

Analog input parameters:
It is not necessary to change anything on this screen. However, if you wish to adjust the analog inputs, click Common Settings to select the input range. The Tune Offset button automatically adjusts the input to compensate for any DC offset.

Operation setup complete:
This screen confirms that operation setup is complete.
Start-up 91

Autotune Wizard

The Autotune Wizard tunes the MicroFlex e190 for optimal performance with the attached motor. This removes the need for manual fine-tuning of the system, although in some critical applications this might be required.

Click Options... to configure optional autotuning parameters. These include Triggered Autotune which allows the autotuning process to be delayed until the drive is enabled.

⚠️ **WARNING!** The motor moves during autotuning. For safety it is advisable to disconnect any load from the motor during initial autotuning. The motor can be tuned with the load connected after the Commissioning Wizard has finished.

Autotune:

Click START to begin the auto-tuning process. Mint WorkBench takes measurements from the motor and then performs small test moves.

For further information about tuning with the load attached, see Further tuning - with load attached on page 93.

Note: Even if you do not perform any further tuning or configuration, the STO function must be tested; see Appendix: Safe Torque Off (STO) on page 155.

Further tuning - no load attached

The Autotune Wizard calculates many parameters that allow the MicroFlex e190 to provide good control of the motor. In some applications, these parameters need to be fine-tuned to provide the exact response that you require.

1. Click the Fine-tuning icon in the Toolbox on the left of the screen.

 The Fine-tuning window is displayed at the right of the screen. This already shows some of the parameters that have been calculated by the Commissioning Wizard.

 The main area of the Mint WorkBench window displays the capture window. When further tuning tests are performed, it displays a graph representing the response.

2. The Fine-tuning window has a number of tabs the bottom.

 Click on the Velocity tab.

 Some tabs might not be available depending on the configuration mode you selected in the Commissioning Wizard.

3. In the Test Parameters area at the bottom of the tab, click in the Move Type drop down box and select Forward.
Enter values in the Velocity and Distance boxes to create a short move. The values you enter depend on the velocity scaling factor that was selected in the Commissioning Wizard. This example assumes the velocity scaling factor was selected as Revs Per Minute (rpm), so entering a value of 1000 here creates a move with a velocity of 1000 rpm. Similarly, assuming the position scaling factor had been set to Revolutions (r), the value 10 creates a move lasting for 10 revolutions of the motor.

4. Click Go to start the test move. Mint WorkBench performs the test move and displays a graph of the result.

5. Click on the graph labels to turn off unwanted traces. Leave just Demand Velocity and Measured Velocity turned on.

Typical autotuned response (no load):

Note: The graph that you see will not look exactly the same as this one! Each motor has a different response.

The graph shows that the response reaches the demand quickly and only overshoots the demand by a small amount. This can be considered an ideal response for most systems.

For further information about tuning with the load attached, see Further tuning - with load attached on page 93.
Further tuning - with load attached

To allow Mint WorkBench to adjust the basic tuning to compensate for the intended load, it is necessary to attach the load to the motor and then perform the autotune procedure again.

1. Attach the load to the motor.
2. Click the Autotune icon in the Toolbox on the left of the screen.
3. Clear all of the check boxes. Only Measure the inertia must be selected.
4. Click START to begin the auto-tuning process. Mint WorkBench takes measurements from the motor and then performs small test moves.
5. Click the Fine-tuning icon in the Toolbox on the left of the screen.
6. In the Velocity tab’s Test Parameters area, ensure the same move parameters are entered and then click Go to start the test move.

Mint WorkBench performs the test move and displays a graph of the result.
Optimizing the velocity response

It can be desirable to optimize the default autotuned response to better suit your application. The following sections describe the two main tuning factors and how to correct them.

Correcting overshoot

The following graph shows a response where the measured velocity overshoots the demand by a significant amount.

1. Go to the Fine-tuning window's Velocity tab.

 To reduce the amount of overshoot, click Calculate... and increase the bandwidth using the slider control. Alternatively, type a larger value in the Bandwidth box.

 Click OK to close the Bandwidth dialog.

2. Click Go to start the test move. Mint WorkBench performs the test move and displays a graph of the result.

Velocity overshoots demand:
Correcting zero-speed noise in the velocity response

The following graph shows a response where there is very little overshoot but a significant amount of zero-speed noise. This can cause undesirable humming or ringing in the motor.

1. Go to the Fine-tuning window’s Velocity tab.

To reduce the amount of noise, click Calculate... and decrease the bandwidth using the slider control. Alternatively, type a smaller value in the Bandwidth box.

Click OK to close the Bandwidth dialog.

2. Click Go to start the test move. Mint WorkBench performs the test move and displays a graph of the result.

Zero-speed noise:
Ideal velocity response

Repeat the tests described in Correcting overshoot and Correcting zero-speed noise in the velocity response until the optimal response is achieved. The following graph shows an ideal velocity response. There is only a small amount of overshoot and very little zero-speed noise.

Ideal velocity response:

![Ideal velocity response graph](image)

Performing test moves - continuous jog

This section tests the basic operation of the drive and motor by performing a continuous jog. To stop a move in progress, click the red stop button or the drive enable button on the toolbar. Alternatively, use the Mint WorkBench ‘Red Stop Button’ feature.

1. Check that the Drive enable button is pressed (down).
2. In the Toolbox, click the Edit & Debug icon.
3. Click in the Command window.

 Type:

   ```
   JOG(0)=10
   ```

 This causes the motor to move continuously at 10 units per second. In Mint WorkBench, look at the Spy window located on the right of the screen. Check that
the axis tab is selected. The Spy window's Velocity display should show 10 (approximately). If there seems to be very little motor movement, it is probably due to the scale factor. In the Commissioning Wizard, on the Select Scale Factor page, if you did not adjust the scale factor then the current unit of movement is feedback counts per second. Depending on the motor's feedback device, 10 feedback counts per second could equate to a very small velocity. Issue another JOG command using a larger value, or use the Operating Mode Wizard to select a suitable scale factor (e.g. 4000 if the motor has a 1000 line encoder, or 10,000 for a 2500 line encoder).

4. To stop the test, type:

 STOP(0)

5. If you have finished testing click the Drive Enable button to disable the drive.

Performing test moves - relative positional move

This section tests the basic operation of the drive and motor by performing a positional move. To stop a move in progress, click the red stop button or the drive enable button on the toolbar. Alternatively, use the Mint WorkBench ‘Red Stop Button’ feature.

1. Check that the Drive enable button is pressed (down).
2. In the Toolbox, click the Edit & Debug icon.
3. Click in the Command window.

 Type:

 MOVER(0)=10
 GO(0)=10

 This causes the motor to move to a position 10 units from its current position. The move stops when completed.

4. If you have finished testing click the Drive Enable button to disable the drive.
Further configuration

Mint WorkBench provides a number of other tools for testing and configuring the MicroFlex e190. Every tool is explained fully in the help file. Press F1 to display the help file, then navigate to the Mint WorkBench book. Inside this is the Toolbox book.

- **Configuration tool**
 The Configuration tool shows the MicroFlex e190 integrated configuration interface.
 1. Click the Configuration tool icon in the Toolbox on the left of the screen.
 2. Select **Upload configuration from controller** or **Start new configuration**.
 3. Enter a descriptive name for the controller and click NEXT at the bottom of the screen.
 4. Continue through the screens making the required changes. Press F1 to display help.
 5. Click APPLY to save the changed settings, then CLOSE to complete the configuration.

- **EtherCAT tool**
 The EtherCAT tool shows all information relating to the EtherCAT connection.
 1. Click the EtherCAT tool icon in the Toolbox on the left of the screen.
 2. Wait until data is uploaded from the MicroFlex e190.
 3. The Summary tab shows basic information about the EtherCAT connection.
 4. Click the Object Dictionary tab (above the table) to view the current state of the drive's object dictionary. Press F1 to see the Mint WorkBench help file for instructions about the screen's tool bar.

- **Parameters tool**
 The Parameters tool can be used to view or change most of the drive's parameters.
 1. Click the Parameters icon in the Toolbox on the left of the screen. The main area of the Mint WorkBench window displays the Parameters editor screen.

 Items listed with a grey icon are read only so cannot be changed.
 Items listed with a green icon are currently set to their factory default value.
 Items listed with a yellow icon have been changed from their factory default value, either during the commissioning process or by the user.
 2. In the parameters tree, scroll to the required item. Click on the small + sign beside the item's name. The list expands to show all items in the category. Click on the item you wish to edit.
 3. The adjacent table lists the chosen item. Click in the Active Table cell and enter a value. This immediately sets the parameter, which remains in the MicroFlex e190
Start-up 99

until another value is defined or power is removed. The icon to the left of the item becomes yellow to indicate that the value has been changed. On the menu, choose Tools, Store Drive Parameters to ensure the value remains after a power cycle.

Many of the MicroFlex e190’s parameters are set automatically by the Commissioning Wizard, or when tests are performed in the Fine-tuning window.

• Spy window
The Spy window can be used to monitor and capture parameters in real-time. If you tried the test moves in Performing test moves - continuous jog on page 96 or Performing test moves - relative positional move on page 97 then you have already seen the Spy window, as it is displayed in conjunction with Edit & Debug mode. See the Mint help file for full details of each tab.

1. Click the Edit & Debug icon in the Toolbox on the left of the screen. The Spy window is displayed on the right of the screen. Click on the tabs at the bottom of the window to select the required function.

2. The Axis tab displays the five most commonly monitored parameters, together with the state of special purpose inputs and outputs.

3. The I/O tab displays the state of all the digital inputs and outputs. Click on an output LED to toggle the output on/off.

4. The Monitor tab allows up to six parameters to be selected for monitoring. Click in a drop down box to select a parameter. At the bottom of the Monitor tab, real-time data capture can be configured.

• Other tools and windows
Remember, for help on each tool press F1 to display the help file, then navigate to the Mint WorkBench book. Inside this is the Toolbox book.

Edit & Debug Tool
This tool provides a work area including the Command window and Output window. The Command window can be used to send immediate Mint commands to the MicroFlex e190. If you tried the test moves in Performing test moves - continuous jog on page 96 or Performing test moves - relative positional move on page 97, then you have already used Edit & Debug mode. Press Ctrl+N to open a Mint programming window.

Scope Tool
Displays the capture screen. This screen is also shown when the Fine-tuning tool is selected.
Start-up

Digital I/O Tool

This tool allows you to configure the active states and special assignments for the digital inputs and outputs. For example, a general purpose digital input can be configured as an optional ‘drive enable input’, which must be active to enable the drive; see pages 64 to 67.

If a digital input is to be used as a home switch input, see Using a digital input as a home switch input (optional) on page 64 for important details.

Safe Torque Off (STO) acceptance test

Drive commissioning is not complete until the STO function has been tested.

The acceptance test of the safety function must be carried out by an authorized person with expertise and knowledge of the safety function. The test must be documented and signed by the authorized person.

See Appendix: Safe Torque Off (STO) on page 155.
Fault tracing

What this chapter contains
This section explains common problems and their solutions. The LED indicators are described in MicroFlex e190 indicators on page 103.

Problem diagnosis
If you have followed all the instructions in this manual in sequence, you should have few problems installing the MicroFlex e190. If you do have a problem, read this section first.

- In Mint WorkBench, use the Error Log tool to view recent errors and then check the help file.
- If you cannot solve the problem or the problem persists, the SupportMe feature can be used.

SupportMe feature
The SupportMe feature is available from the Help menu, or by clicking the button on the motion toolbar. SupportMe can be used to gather information which can then be e-mailed, saved as a text file, or copied to another application. The PC must have e-mail facilities to use the e-mail feature. If you prefer to contact ABB technical support by telephone or fax, contact details are provided on the back cover of this manual. Have the following information ready:

- The serial number of your MicroFlex e190 (if known).
- Open the Help, SupportMe menu item in Mint WorkBench to view details about your system.
- The catalog and specification numbers of the motor that you are using.
- A clear description of what you are trying to do, for example trying to establish communications with Mint WorkBench or trying to perform fine-tuning.
Fault tracing

- A clear description of the symptoms that you can observe, for example the Status LED, error messages displayed in Mint WorkBench, or errors reported by the Mint error keywords ERRORREADCODE or ERRORREADNEXT.
- The type of motion generated in the motor shaft.
- A list of any parameters that you have setup, for example the motor data you entered/selected in the Commissioning Wizard, the gain settings generated during the tuning process and any gain settings you have entered yourself.

Power-cycling the MicroFlex e190

The term ‘power-cycle the MicroFlex e190’ is used in the Troubleshooting sections. If the mains AC supply (or DC supply) is removed, wait for 2 minutes before reapplying the supply.
MicroFlex e190 indicators

EtherCAT® mode

The Ethernet LEDs display the overall condition of the Ethernet interface once the startup sequence has completed. The LED codes conform to the EtherCAT Technology Group (ETG) standard at the time of production.

<table>
<thead>
<tr>
<th>NET ERR (Red)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Off: No errors or not powered.</td>
<td></td>
</tr>
</tbody>
</table>

Blinking:

- Invalid mailbox configuration in BOOT.
- Invalid mailbox configuration in PREOP.
- Invalid Sync manager configuration.
- Invalid output configuration.
- Invalid input configuration.
- Invalid watchdog configuration.
- Invalid DC Sync configuration.
- Invalid DC latch configuration.

<table>
<thead>
<tr>
<th>1 flash:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unspecific error.</td>
<td>FreeRun needs 3 buffer mode.</td>
</tr>
<tr>
<td>No memory.</td>
<td>Background watchdog occurred.</td>
</tr>
<tr>
<td>Invalid request state change.</td>
<td>No valid inputs and outputs.</td>
</tr>
<tr>
<td>Unknown requested state.</td>
<td>Fatal sync error.</td>
</tr>
<tr>
<td>Bootstrap not supported.</td>
<td>No sync error.</td>
</tr>
<tr>
<td>No valid firmware.</td>
<td>PLL error.</td>
</tr>
<tr>
<td>No valid inputs available.</td>
<td>DC sync IO error.</td>
</tr>
<tr>
<td>No valid output.</td>
<td>DC sync time-out error.</td>
</tr>
<tr>
<td>Synchronization error.</td>
<td>Invalid DC Sync cycle time.</td>
</tr>
<tr>
<td>Invalid Sync manager types.</td>
<td>DC Sync0 cycle time.</td>
</tr>
<tr>
<td>Slave needs cold start.</td>
<td>DC Sync1 cycle time.</td>
</tr>
<tr>
<td>Slave needs INIT.</td>
<td></td>
</tr>
<tr>
<td>Slave needs PREOP.</td>
<td>Message box EoE error.</td>
</tr>
<tr>
<td>Slave needs SAFEOP.</td>
<td>Message box FoE error.</td>
</tr>
<tr>
<td>Invalid input mapping.</td>
<td>Message box SoE error.</td>
</tr>
<tr>
<td>Invalid output mapping.</td>
<td>Message box VoE error.</td>
</tr>
<tr>
<td>Inconsistent settings.</td>
<td>EEPROM no access.</td>
</tr>
<tr>
<td>SyncMode not supported.</td>
<td>EEPROM error.</td>
</tr>
<tr>
<td>FreeRun not supported.</td>
<td>Slave restarted locally.</td>
</tr>
</tbody>
</table>

| 2 flashes: | Sync manager watchdog. |
Ethernet POWERLINK mode

The Ethernet LEDs display the overall condition of the Ethernet interface once the startup sequence has completed. The LED codes conform to the Ethernet POWERLINK Standardization Group (EPSG) standard at the time of production.

NET RUN (Green)

- **Off**: INITIALISATION state (or not powered).
- **Blinking**: PRE-OPERATIONAL state.
 - 1 flash: SAFE-OPERATIONAL state.
 - 3 flashes: Device identification. This state can be set from the master to locate the device.
- **Continuously illuminated, not flashing**: Node in OPERATIONAL state. EtherCAT is operating normally.

Green (status)

- **Off**: Node in NOT ACTIVE state or a previous initialization state. The controlled node is waiting to be triggered by the manager node.
- **1 flash**: Node in PRE-OPERATIONAL1 state. Ethernet POWERLINK mode is starting.
- **2 flashes**: Node in PRE-OPERATIONAL2 state. Ethernet POWERLINK mode is starting.
- **3 flashes**: Node in READY TO OPERATE state. The node is signalling its readiness to operate.
- **Blinking (continuous flashing)**: Node in STOPPED state. The controlled node has been deactivated.
- **Flickering (very fast flashing)**: Node in BASIC ETHERNET state (Ethernet POWERLINK is not operating, but other Ethernet protocols may be used).
- **Continuously illuminated, not flashing**: Node in OPERATIONAL state. Ethernet POWERLINK is operating normally.
LED flash periods

The following diagram shows the definitions of the terms ‘blinking’, ‘flashing’ and ‘flickering’ used in the previous sections, as defined by the EtherCAT Technology Group.

LED flash timing definitions:

- **Red (error)**
 - Off: Ethernet POWERLINK is working correctly.
 - Continuously illuminated: An error has occurred.

- **LED flash periods**

 - **Off**: (Not illuminated)
 - **1 flash**
 - **2 flashes**
 - **Inverted 2 flashes**
 - **3 flashes, etc.**
 - **Blinking**
 - **Flickering**
 - **On**: (Continuously illuminated)

- **200 ms**
Drive status display

The drive status display indicates errors and general MicroFlex e190 status information. When an error occurs the drive displays a sequence starting with the symbol E, followed by the five digit error code. For example, error code 10015 is displayed:

![Drive Status Display](image)

The decimal point to the right of the number also illuminates to indicate STO errors. If a symbol appears followed by an error code, please contact ABB technical support. For a complete list of error codes, open Mint WorkBench, press F1, and locate the Error Handling book. This contains topics listing the drive status display indicators and basic error codes. See also Start the MicroFlex e190 on page 87.

The following information symbols can be displayed:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Drive disabled, and one or both STO inputs are not powered. The drive must be enabled before operation can continue. Both STO inputs must be powered. If an optional drive enable input has been configured, it must also be powered.</td>
</tr>
<tr>
<td>i</td>
<td>Initialization error / recovery mode. If this is the only symbol shown after powering the drive, remove all power, check the memory unit is inserted correctly, then reapply power. This symbol is also displayed during recovery mode (see page 70).</td>
</tr>
<tr>
<td>-</td>
<td>Drive disabled. The drive must be enabled before operation can continue. If an optional drive enable input has been configured, it must also be powered.</td>
</tr>
<tr>
<td>-</td>
<td>Suspend active. The Mint SUSPEND command has been issued and is active. Motion ramps down to zero demand whilst active.</td>
</tr>
<tr>
<td>-</td>
<td>Firmware loading (segments are illuminated sequentially). This sequence is followed by a numerical sequence representing firmware initialization stages.</td>
</tr>
<tr>
<td>A</td>
<td>Hold to Analog (HTA) mode. The axis is in Hold To Analog mode. See the Mint keyword HTA.</td>
</tr>
</tbody>
</table>
User defined symbols can be displayed using Mint keywords LED and LEDDISPLAY.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Drive enabled, but idle.</td>
</tr>
<tr>
<td>C</td>
<td>Cam move. A cam profile is in progress. See the Mint keyword CAM.</td>
</tr>
<tr>
<td>D</td>
<td>Dwell. A dwell (wait) ‘move’ is in progress. See the Mint keyword MOVEDWELL.</td>
</tr>
<tr>
<td>F</td>
<td>Flying shear. A flying shear is in progress. See the Mint keyword FLY.</td>
</tr>
<tr>
<td>J</td>
<td>Follow move. The drive is in follow mode. See the Mint keyword FOLLOW.</td>
</tr>
<tr>
<td>H</td>
<td>Homing. The drive is currently homing. See the Mint keyword HOME.</td>
</tr>
<tr>
<td>I</td>
<td>Incremental move. An incremental linear move is in progress. See the Mint keywords INCA and INCR.</td>
</tr>
<tr>
<td>J</td>
<td>Jog. The drive is jogging. See the Mint keywords JOG, JOGCMD and related topics.</td>
</tr>
<tr>
<td>O</td>
<td>Offset move. An offset move is in progress. See the Mint keyword OFFSET.</td>
</tr>
<tr>
<td>P</td>
<td>Position move. A linear move is in progress. See the Mint keywords MOVEA and MOVER.</td>
</tr>
<tr>
<td>Q</td>
<td>Torque move. The drive is in torque mode. See the Mint keywords TORQUE, TORQUESOURCE and related commands.</td>
</tr>
<tr>
<td>S</td>
<td>Firmware recovery mode in operation; see SW1 linear switches - startup functions on page 70.</td>
</tr>
<tr>
<td>T</td>
<td>Stop input active. A Mint STOP command has been issued or an optional stop input is active.</td>
</tr>
<tr>
<td>V</td>
<td>Velocity reference move. The drive is under velocity control. See the Mint keywords VELREF and related keywords.</td>
</tr>
<tr>
<td>S</td>
<td>Spline. A spline move is in progress. See the Mint keyword SPLINE and related keyword.</td>
</tr>
</tbody>
</table>

User defined symbols can be displayed using Mint keywords LED and LEDDISPLAY.
Fault tracing

- **Power**

 Drive does not start when applying AC power:
 - Check that the motor output phases are not short circuited. The drive trips on a motor phase short circuit and will not restart unless AC power is removed. Remove all power from the drive, correct the short circuit and restart the drive.

- **Communication**

 Drive status display is off:
 - Check that the 24 V DC control circuit supply is correctly connected at X2, and is switched on. If a 24 V DC supply is not provided, an AC supply (or DC supply, page 54) must be present at X1 to allow communication.

 Drive status display shows ‘r’:
 - The MicroFlex e190 is in firmware recovery mode. This means that it does not boot fully, and allows Mint WorkBench to download firmware from the Choose Firmware dialog. See SW1 linear switches - startup functions on page 70.

 Mint WorkBench fails to detect the MicroFlex e190:
 - Ensure that the MicroFlex e190 is powered and the drive status display is illuminated (page 106).
 - Check that the Ethernet cable is connected between the PC and MicroFlex e190. Check that the cable is connected to port E3 (on the front panel) and not port E1 or E2.
 - Check that the PC’s Ethernet port has been correctly configured for TCP/IP operation, and enabled for use with Mint WorkBench (see Configure the PC Ethernet adapter on page 86).
 - Check that any PC firewall or security software does not prevent communication on TCP ports 5000 and 5001, and UDP port 5050. These ports are essential for communication with the MicroFlex e190.
 - Try an alternative cable or different port on the PC.

- **Mint WorkBench**

 The Spy window does not update:
 - The system refresh has been disabled. Go to the Tools, Options menu item, select the System tab and then choose a System Refresh Rate (500 ms is recommended).

 Cannot communicate with the controller after downloading firmware:
 - After firmware download, always power-cycle the MicroFlex e190.
Tuning

Cannot enable the MicroFlex e190 because there is an error 10010:
• Check the drive enable input, if assigned, is connected and powered correctly.

Cannot enable the MicroFlex e190 because there is an error 10033 and/or 10035:
• Check the Safe Torque Off inputs on connector X2 are both connected and powered correctly.

When the MicroFlex e190 is enabled the motor is unstable:
• Check that the load is firmly coupled to the motor.
• Use the Mint WorkBench Drive Setup Wizard to confirm that the correct motor data has been entered.
• Use the Mint WorkBench Autotune Wizard to re-tune the motor.
• If the motor is still unstable, select the Mint WorkBench Autotune Wizard once more. Click Options... On the Bandwidth tab, move the Current and/or Position and Speed Control sliders to a slower position to select a lower bandwidth. Click OK to exit and then start the Autotune Wizard again.

Ethernet

Cannot connect to the drive:
• Check that the PC's Ethernet adapter has been correctly configured, as described in Configure the PC Ethernet adapter on page 86.

How do I configure my EtherCAT manager to operate with the MicroFlex e190?
• An EtherCAT ESI file (.xml) that describes the drive to the EtherCAT manager can be uploaded from the controller using the Mint WorkBench EtherCAT tool.
I cannot control the MicroFlex e190 from my EtherCAT manager

The drive reference source must be set to allow the EtherCAT manager to take control of the MicroFlex e190. There are several ways to do this:

- Set the `CONTROLREFSOURCESTARTUP` parameter to '1' using the Mint WorkBench Parameter viewer or Command window, and restart the drive. This gives control to the manager each time the MicroFlex e190 starts.
- Set the Control Ref. Source to 'RT Ethernet (CiA402)' in the Mint WorkBench Operating Mode Wizard or Commissioning Wizard.
- Click the Direct button on the Mint WorkBench Motion tool bar, and select 'RT Ethernet (CiA402)' in the Axis 0 drop down.
- Confirm that the reference source on all controlled nodes has been set to EtherCAT in the Mint WorkBench Operating Mode Wizard, and that the master has been configured correctly.
Maintenance

What this chapter contains
This chapter contains preventive maintenance instructions.

Safety

⚠️ WARNING! Read the Safety instructions on the first pages of this manual before performing any maintenance on the equipment. Ignoring the safety instructions can cause injury or death.

Maintenance intervals
If installed in an appropriate environment, the drive requires very little maintenance. This table lists the routine maintenance intervals recommended by ABB.

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Interval</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor reforming</td>
<td>Every year of storage</td>
<td>See Reforming the capacitors</td>
</tr>
<tr>
<td>Heat sink temperature check and cleaning</td>
<td>Depends on the dustiness of the environment (every 6 to 12 months)</td>
<td>See Heat sink.</td>
</tr>
<tr>
<td>Cooling fan change</td>
<td>Every 6 years if the ambient temperature does not exceed 45 °C (113 °F). Every 3 years if the ambient temperature is higher than 45 °C (113 °F).</td>
<td>See Cooling fan.</td>
</tr>
</tbody>
</table>
Heat sink

The heat sink fins pick up dust from the cooling air. The drive might report overtemperature warnings and faults if the heat sink is not clean. In a normal environment, the heat sink should be checked annually, in a dusty environment more often.

WARNING! Obey the instructions in Safety on page 13. Ignoring the instructions can cause physical injury or death, or damage to the equipment.

WARNING! Use a vacuum cleaner with an anti-static hose and nozzle. A normal vacuum cleaner can cause static discharges which can cause damage to circuit boards.

Clean the heat sink as follows (when necessary):

1. Stop the drive and disconnect it from input power.
2. Wait for 5 minutes and measure to make sure that there is no voltage. Refer to Electrical safety on page 14.
3. Remove the cooling fan (see section Cooling fan on page 113).
4. Blow clean, dry, and oil free compressed air from the bottom of the heat sink to the top. Use a vacuum cleaner at the air outlet to trap the dust. If there is a risk that dust can go into other equipment, clean the heat sink in another room.
5. Install the cooling fan.
Cooling fan

The actual lifespan of the cooling fan depends on the drive usage and ambient temperature. Fan failure can be predicted by the increasing noise from fan bearings and the gradual rise in the heat sink temperature in spite of heat sink cleaning. If the drive is operated in a critical part of a process, fan replacement is recommended once these symptoms start appearing. Replacement fans are available from ABB. Do not use other than ABB-specified spare parts.

Removing the fan

Place the drive on its side as shown. Push in the two retaining clips (1) at the back of the drive. Remove the base (2) by pulling on the top edge first. Disconnect the fan cable (3). Carefully bend the clips on the fan holder (4) to release the fan.
Repeating the fan

Insert the new fan (1) ensuring the airflow direction is bottom-to-top. Route the wire through the retaining clip and connect the cable to the circuit board (2). Insert the front edge of the base into the front panel (3). Apply outward pressure at the centre of the base and simultaneously push the fan into the drive (4). Check that the plastic lug fits into the recess in the heat sink (5). Check that the fan cable has not moved or obstructed the encoder voltage switch (6, see page 76 to check the correct position). Check that the retaining clips are fitted into the mounting plate (7).
Reforming the capacitors

The capacitors must be reformed if the drive has been stored for a year or more. See page 31 for information on finding out the manufacturing date. For information on reforming the capacitors, contact your local ABB representative.

Other maintenance actions

- Transferring the memory unit to a new drive

When a drive is replaced, the parameter settings can be retained by transferring the memory unit from the defective drive to the new. However, non-volatile data stored using the NVRAM... keywords is not stored on the memory unit by default. Before removal, use the NVRAMSAVE keyword to store the data on the memory unit.

⚠️ WARNING! Do not remove or insert a memory unit when the drive is powered.
Technical data

What this chapter contains
The chapter contains the technical specifications of the drive, for example, the ratings, sizes and technical requirements as well as provisions for fulfilling the requirements for CE and other marks.
Ratings

The nominal current ratings for the MicroFlex e190 with 230 V AC supply are given below. For example, if a 6 A model is required to provide brief 300% overloads, assume its rated current is only 5.3 A.

<table>
<thead>
<tr>
<th>Drive type MFE190-04xx...</th>
<th>PWM switching frequency (Hz)</th>
<th>300% 3 s overload (I_{300})</th>
<th>200% 3 s overload (I_{200})</th>
<th>Low speed output* (< 2 Hz) (I_{2Hz})</th>
<th>Stationary: DC output, any phase (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01A6-2</td>
<td>8000</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>2.3</td>
</tr>
<tr>
<td>-03A0-2</td>
<td>8000</td>
<td>2.5</td>
<td>3.0</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td>-06A0-2</td>
<td>8000</td>
<td>5.3</td>
<td>6.0</td>
<td>6.0</td>
<td>8.5</td>
</tr>
<tr>
<td>-09A0-2</td>
<td>8000</td>
<td>7.5</td>
<td>9.0</td>
<td>9.0</td>
<td>12.7</td>
</tr>
</tbody>
</table>

The DriveSize dimensioning tool available from ABB is recommended for selecting the drive, motor and gear combination for the required motion profile.

* The maximum overload current between 0 Hz and 2 Hz is 150% of rated current.
Derating

The continuous output currents stated above must be derated if any of the following conditions apply. The final derating factor is a multiplication of all applicable derating factors.

Ambient temperature derating: 1.6 A models

A temperature derating is required when operating the 1.6 A models in ambient temperatures between 45 °C (+113 °F) and the maximum of 50 °C (122 °F).

Derating factor for 1.6 A models:

![Derating factor graph](image)

Ambient temperature derating: 3 A, 6 A & 9 A models

No temperature derating is required when operating 3 A, 6 A and 9 A models in ambient temperatures up to the maximum of 55 °C (131 °F).

Altitude derating

At altitudes from 1000 to 2000 m (3280 to 6560 ft) above sea level, the derating is 1% for every 100 m (328 ft). For a more accurate derating, use the DriveSize PC tool.

Note: If the installation site is higher than 2000 m (6560 ft) above sea level, connection of the drive to an ungrounded (IT).
Cooling

Method
Internal fan, flow from bottom to top, air-cooled heat sink.

Free space around the unit
See Cooling and degrees of protection on page 36

Cooling characteristics, noise levels

<table>
<thead>
<tr>
<th>Drive type</th>
<th>Power loss W</th>
<th>Air flow m³/h</th>
<th>Noise level dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01A6-2</td>
<td>20</td>
<td>(No fan)</td>
<td>(No fan)</td>
</tr>
<tr>
<td>-03A0-2</td>
<td>80</td>
<td>56.4</td>
<td>45</td>
</tr>
<tr>
<td>-05A0-2</td>
<td>80</td>
<td>56.4</td>
<td>45</td>
</tr>
<tr>
<td>-09A0-2</td>
<td>120</td>
<td>56.4</td>
<td>45</td>
</tr>
</tbody>
</table>

Efficiency
Approximately 98% at nominal power level.
Supply cable fuses

Fuses for short circuit protection of the supply cable are listed below. The fuses also protect the adjoining equipment of the drive in case of a short circuit. Check that the operating time of the fuse is below 0.5 seconds. The operating time depends on the supply network impedance and the cross-sectional area and length of the supply cable. See also chapter Planning the electrical installation.

Note: Fuses with a higher current rating must not be used

1Φ AC supply

<table>
<thead>
<tr>
<th>Drive type MFE190-04x...</th>
<th>Input current (A)</th>
<th>IEC fuse</th>
<th>UL fuse</th>
<th>Cross-sectional area of cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rated current (A)</td>
<td>Voltage (V)</td>
<td>Class</td>
</tr>
<tr>
<td>-01A6-2</td>
<td>3</td>
<td>20</td>
<td>500 g0</td>
<td>20</td>
</tr>
<tr>
<td>-03A0-2</td>
<td>7</td>
<td>500 g0</td>
<td>600</td>
<td>1.5...4</td>
</tr>
<tr>
<td>-06A0-2</td>
<td>14</td>
<td>500 g0</td>
<td>600</td>
<td>1.5...4</td>
</tr>
<tr>
<td>-09A0-4</td>
<td>20</td>
<td>500 g0</td>
<td>600</td>
<td>1.5...6</td>
</tr>
</tbody>
</table>

3Φ AC supply

<table>
<thead>
<tr>
<th>Drive type MFE190-04x...</th>
<th>Input current (A)</th>
<th>IEC fuse</th>
<th>UL fuse</th>
<th>Cross-sectional area of cable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rated current (A)</td>
<td>Voltage (V)</td>
<td>Class</td>
</tr>
<tr>
<td>-01A6-2</td>
<td>2</td>
<td>20</td>
<td>500 g0</td>
<td>20</td>
</tr>
<tr>
<td>-03A0-2</td>
<td>4</td>
<td>500 g0</td>
<td>600</td>
<td>1.5...4</td>
</tr>
<tr>
<td>-06A0-2</td>
<td>8</td>
<td>500 g0</td>
<td>600</td>
<td>1.5...4</td>
</tr>
<tr>
<td>-09A0-4</td>
<td>12</td>
<td>500 g0</td>
<td>600</td>
<td>1.5...6</td>
</tr>
</tbody>
</table>
AC input (supply) connection

<table>
<thead>
<tr>
<th></th>
<th>1Φ</th>
<th>3Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (U₁)</td>
<td>115...240 V AC ±10%</td>
<td>115...240 V AC ±10%</td>
</tr>
<tr>
<td>Frequency</td>
<td>50...60 Hz ±5%</td>
<td></td>
</tr>
<tr>
<td>Network type</td>
<td>Grounded (TN, TT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner grounded TN, and IT (ungrounded) systems not allowed.</td>
<td></td>
</tr>
<tr>
<td>Imbalance</td>
<td>Max. 3% of nominal phase to phase input voltage</td>
<td></td>
</tr>
<tr>
<td>Fundamental power factor (cos ϕ₁₁)</td>
<td>0.98 (at nominal load)</td>
<td></td>
</tr>
<tr>
<td>Terminals</td>
<td>Detachable screw terminal block for 0.20..6 mm² wire.</td>
<td></td>
</tr>
<tr>
<td>Short circuit current protection (UL 61800-5-1)</td>
<td>The drive is suitable for use on a circuit capable of delivering not more than 5000 A rms symmetrical amperes, 240 V maximum, when protected by fuses given in the fuse table on page 121.</td>
<td></td>
</tr>
</tbody>
</table>

Effect of AC power supply voltage on DC-bus voltage

![Effect of AC power supply voltage on DC-bus voltage](image-url)
Effect of AC power supply voltage on DC-bus ripple voltage

![Graph showing the effect of AC power supply voltage on DC-bus ripple voltage.](image)

Effect of output current on DC-bus ripple voltage

![Graph showing the effect of output current on DC-bus ripple voltage.](image)
DC input (supply) connection

<table>
<thead>
<tr>
<th>Voltage</th>
<th>162-340 V DC ±10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratings</td>
<td>Drive type MFE190-04xx, IdcN (A), C (µF)</td>
</tr>
<tr>
<td>-01A6-4</td>
<td>2.12, 560</td>
</tr>
<tr>
<td>-03A0-4</td>
<td>4.95, 560</td>
</tr>
<tr>
<td>-06A0-4</td>
<td>9.90, 1120</td>
</tr>
<tr>
<td>-09A0-4</td>
<td>14.14, 1120</td>
</tr>
</tbody>
</table>

IdcN is the average DC input current requirement.

Terminals: Detachable screw terminal block for 0.20...6 mm² wire.

Motor connection

<table>
<thead>
<tr>
<th>Motor types</th>
<th>Asynchronous induction motors, asynchronous servo motors, synchronous permanent magnet motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>0...500 Hz</td>
</tr>
<tr>
<td>Current</td>
<td>See section Ratings</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>8 kHz</td>
</tr>
<tr>
<td>Maximum motor cable length</td>
<td>50 m (164 ft) with screened cable</td>
</tr>
<tr>
<td>Terminals</td>
<td>Detachable screw terminal block for 0.20...6 mm² wire.</td>
</tr>
</tbody>
</table>

Brake resistor connection

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>All models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal switching threshold</td>
<td>V DC</td>
<td>on: 388, off: 376</td>
</tr>
<tr>
<td>Nominal power</td>
<td>kW</td>
<td>0.25</td>
</tr>
<tr>
<td>(10% peak power; r = 57 Ω)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power</td>
<td>kW</td>
<td>2.7</td>
</tr>
<tr>
<td>(10% peak power; r = 57 Ω)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum brake switching current</td>
<td>A pk</td>
<td>10</td>
</tr>
<tr>
<td>Minimum load resistance</td>
<td>Ω</td>
<td>39</td>
</tr>
<tr>
<td>Minimum load inductance</td>
<td>µH</td>
<td>100</td>
</tr>
</tbody>
</table>
Control unit

<table>
<thead>
<tr>
<th>X2: Control circuit supply input</th>
<th>24 V (±10%) DC, 1 A Optional external power supply through connector X2 (pitch 5.08 mm, wire size 2.5 mm²).</th>
</tr>
</thead>
</table>
| X3: Analog input AI0 | Connector pitch 3.5 mm, wire size 1.0 mm²
Voltage input: –10...10 V, R_i: 60 kohm
Differential inputs: common mode ±10 V
Sampling interval per channel: 0.25 ms
Filtering: Adjustable using ADCTIMECONSTANT keyword (see Mint WorkBench help file)
Resolution: 11 bit + sign bit (±4.9 mV) |
| X3: Analog output AO0 | Connector pitch 3.5 mm, wire size 1.0 mm²
AO0 (voltage): –10...10 V, R_{load} > 1 kohm
Update interval: 1 kHz
Resolution: 12 bit (±4.9 mV) |
| X3: Digital inputs DI1...DI2 | Connector pitch 3.5 mm, wire size 1.0 mm²
Logic levels: "0" < 2 V, "1" > 12 V
R_i: 3.3 kohm
Hardware latching:
Minimum pulse width: 250 ns
Minimum step time: 250 ns
Minimum space time: 250 ns
Direction input setup time: 250 ns
Direction input hold time: 100 ns
Maximum input frequency: 2 MHz
Sampling interval: 1 kHz
Filtering: Adjustable using INPUTDEBOUNCE keyword (see Mint WorkBench help file) |
| X3: Digital inputs DI3 | Connector pitch 3.5 mm, wire size 1.0 mm²
Logic levels: "0" < 2 V, "1" > 12 V
R_i: 3.3 kohm
Minimum pulse width: 5 µs
Filtering: Adjustable using INPUTDEBOUNCE keyword (see Mint WorkBench help file) |
| X3: Digital outputs DO0...DO2 | User supply: 24 V DC
Output current: 100 mA max. per output, R_{load} > 250 ohm |
| X4: Safe Torque Off (STO) | Connector pitch 3.5 mm, wire size 1.0 mm²
Output supply: 24 V DC, 30 mA per input
Pulse tolerance: < 1 ms
For the drive to start, both connections STO1 and STO2 must be powered. |
| E1: Ethernet host PC connection | Connector: RJ-45
Cable length < 3 m |
| Memory capacity | 256 KB program / variables, 1 KB non-volatile data |
Feedback

X7 Incremental encoder

<table>
<thead>
<tr>
<th>Encoder interface</th>
<th>RS422 A/B differential, Z index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. input frequency A / B</td>
<td>2 MHz (8 MHz quadrature counts)</td>
</tr>
<tr>
<td>Hall inputs</td>
<td>RS422 A/B differential</td>
</tr>
<tr>
<td>Output power supply to encoder</td>
<td>5.5 V DC (±7%) 500 mA max.*</td>
</tr>
<tr>
<td>Maximum recommended cable length</td>
<td>30 m</td>
</tr>
</tbody>
</table>

* Total combined current for this encoder and X8 primary encoder, which may be connected simultaneously (see page 74).

X8 Incremental encoder with Halls

<table>
<thead>
<tr>
<th>Encoder interface</th>
<th>RS422 A/B differential, Z index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. input frequency A / B</td>
<td>2 MHz (8 MHz quadrature counts)</td>
</tr>
<tr>
<td>Hall inputs</td>
<td>RS422 A/B differential</td>
</tr>
<tr>
<td>Output power supply to encoder</td>
<td>5.5 V DC (±7%) 500 mA max.*</td>
</tr>
<tr>
<td>Maximum recommended cable length</td>
<td>30 m</td>
</tr>
</tbody>
</table>

* Total combined current for this encoder and the X7 encoder input, which may be connected simultaneously (see page 74).

X8 Serial interfaces + SinCos

<table>
<thead>
<tr>
<th>Signals</th>
<th>Differential input pairs for Data, Clock, Sin, Cos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device types:</td>
<td></td>
</tr>
<tr>
<td>BiSS, Smart Abs</td>
<td>Single or multi-turn devices.</td>
</tr>
<tr>
<td>SSI</td>
<td>Single turn devices up to 18-bit.</td>
</tr>
<tr>
<td>EnDat, SinCos</td>
<td>Single or multi-turn devices, 512 or 2048 cycles per turn, absolute positioning up to 65536 steps. SinCos signal: 1 V pk-pk sine wave centered on a 2.5 V reference.</td>
</tr>
<tr>
<td>Output power supply to encoder</td>
<td>5.5 V or 8 V set by switch, 500 mA max.*</td>
</tr>
<tr>
<td>Maximum recommended cable length</td>
<td>30 m</td>
</tr>
</tbody>
</table>

* Total combined current for this encoder and either the X8 extra incremental encoder or X7 encoder, which may be connected simultaneously (see page 74).
Ambient conditions

Environmental limits for the drive are given below. The drive is to be used in a heated, indoor, controlled environment.

<table>
<thead>
<tr>
<th>Installation site altitude</th>
<th>Operation installed for stationary use</th>
<th>Storage in the protective package</th>
<th>Transportation in the protective package</th>
</tr>
</thead>
</table>
| 0 to 2000 m (6560 ft) above sea level. [See also section on page 119.]
| 40 to +70 °C (-40 to +158 °F) |
| - | - |
| Air temperature | 1.6 A model: 0 to +50 °C (32 to 122 °F) 9 A, 9 A, 9 A models: 0 to +55 °C (32 to 131 °F). No frost allowed. See section Derating on page 119. | 40 to +70 °C (-40 to +158 °F) |
| Relative humidity | 0 to 95% | Max. 95% | Max. 95% |
| Contamination levels | No conductive dust allowed. The drive must be installed in clean air according to enclosure classification. Cooling air must be clean, free from corrosive materials and electrically conductive dust. | - | - |
| Sinusoidal vibration: EN 60068-2-6: 2008 | Tested according to, mechanical conditions: 2...9 Hz: 3.0 mm (0.12") 9...200 Hz: 1g | - | - |
| Shock: EN 60068-2-27; 2009 IEC 60068-2-27;2008 | - | Max. 10g, 11 ms | Max. 10g, 11 ms |
| Free fall | Not allowed | 76 cm (30") | 76 cm (30") |
Degrees of protection
MicroFlex e190 complies with EN 60529, IP20.
For UL purposes the MicroFlex e190 is defined as an open-type, three phase single axis servo amplifier.
The drive must be installed in a cabinet to fulfill the requirements for shielding from contact. Access to the cabinet should be restricted to trained maintenance staff.
See chapter Cabinet construction.
The top surface of cabinets / enclosures which are accessible when the equipment is energized shall meet at least the requirement of protective type IP3x with regard to vertical access only.

Materials

<table>
<thead>
<tr>
<th>Drive enclosure</th>
<th>PC/ABS, color NCS 1502-Y (RAL 9002 / PMS 1C Cool Grey) and RAL 9017 (Traffic black). Hot-dip zinc coated steel sheet extruded aluminum AlSi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaging</td>
<td>Corrugated cardboard, PP bands.</td>
</tr>
<tr>
<td>Disposal</td>
<td>The drive contains raw materials that should be recycled to preserve energy and natural resources. The package materials are environmentally compatible and recyclable. All metal parts can be recycled. The plastic parts can either be recycled or burned under controlled circumstances, according to local regulations. Most recyclable parts are marked with recycling marks. If recycling is not feasible, all parts excluding electrolytic capacitors and printed circuit boards can be landfilled. The DC capacitors contain electrolyte, which is classified as hazardous waste within the EU. They must be removed and handled according to local regulations. For further information on environmental aspects and more detailed recycling instructions, contact your local ABB distributor.</td>
</tr>
</tbody>
</table>

WEEE notice
According to the requirements of the Waste Electrical and Electronic Equipment Directive (WEEE) the following information is provided.

This symbol indicates that the product must not be disposed of with other general waste. It is your responsibility to dispose of your waste electrical equipment by handing it over to a designated collection point for the recycling of waste electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal will help conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about where you can recycle your waste, please contact your local authority.
RoHS compliance

MicroFlex e190 is in conformity with Directive 2011/65/EU of the European parliament and of the council of 8th June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The RoHS declaration 3AXD10000540158 is available on www.abb.com/drives.

China RoHS marking

The People’s Republic of China Electronic Industry Standard (SJ/T 11364-2014) specifies the marking requirements for hazardous substances in electronic and electrical products. The green mark is attached to the drive to verify that it does not contain toxic and hazardous substances or elements above the maximum concentration values, and that it is an environmentally-friendly product which can be recycled and reused.

<table>
<thead>
<tr>
<th>Part</th>
<th>Hazardous substances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lead (Pb)</td>
</tr>
<tr>
<td>PCB</td>
<td>O</td>
</tr>
<tr>
<td>Metal parts</td>
<td>O</td>
</tr>
<tr>
<td>Plastic parts</td>
<td>O</td>
</tr>
</tbody>
</table>

O: Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.

X: Indicates that said hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572. The limits are:

- Pb: 1000 ppm (0.1%)
- Hg: 1000 ppm (0.1%)
- Cd: 100 ppm (0.01%)
- Cr6+: 1000 ppm (0.1%)
- PBB: 1000 ppm (0.1%)
- PBDE: 1000 ppm (0.1%)
Applicable standards

MicroFlex e190 complies with the following standards.

Design and test standards

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 61800-5-1</td>
<td>Power Conversion Equipment.</td>
</tr>
<tr>
<td>EN 61800-5-1:2007</td>
<td>Adjustable speed electrical power drive systems. Safety requirements. Electrical, thermal and energy.</td>
</tr>
<tr>
<td></td>
<td>Conducted emissions: When installed as directed in this manual, MicroFlex e190 conforms to Category C2 conducted limits.</td>
</tr>
<tr>
<td></td>
<td>Radiated emissions: When installed as directed in this manual, MicroFlex e190 conforms to Category C2 radiated limits.</td>
</tr>
<tr>
<td></td>
<td>All frame sizes conform to the 'second environment' immunity requirements defined by this standard.</td>
</tr>
</tbody>
</table>

See also the CE Declaration of Conformity available on the internet; see Document library on the Internet on page 177.

Environmental test standards:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 60068-1:2014</td>
<td>Environmental testing, general and guidance.</td>
</tr>
<tr>
<td>EN 60068-2-1:2007</td>
<td>Environmental testing, Test A. Cold.</td>
</tr>
<tr>
<td>EN 60068-2-2:2007</td>
<td>Environmental testing, Test B. Dry heat.</td>
</tr>
<tr>
<td>EN 60068-2-6:2008</td>
<td>Environmental testing, Test Fc. Vibration (sinusoidal).</td>
</tr>
<tr>
<td>EN 60068-2-31:2008</td>
<td>Environmental testing, Test Ec. Rough handling shocks</td>
</tr>
<tr>
<td>EN 60068-2-78:2013</td>
<td>Environmental testing, Test Cab. Damp heat, steady state.</td>
</tr>
</tbody>
</table>
Functional safety standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61508:2010, Parts 1, 2</td>
<td>Functional safety of electrical/electronic/programmable electronic safety-related systems</td>
</tr>
<tr>
<td>EN 61800-5-2:2007</td>
<td>Adjustable speed electrical power drive systems: Safety requirements, Functional</td>
</tr>
</tbody>
</table>

RCM marking

RCM marking is required in Australia and New Zealand. A RCM mark is attached to each drive in order to verify compliance with the relevant standard (IEC 61800-3, Adjustable speed electrical power drive systems - Part 3: EMC product standard including specific test methods).

CE marking

A CE mark is attached to the drive to verify that the unit follows the provisions of the European, EMC, and machinery directives.

CE Declaration of Conformity

The declaration (3AXD10000540159) is available on the internet. See Document library on the Internet on page 177.

Compliance with the European EMC Directive

The cabinet builder is in responsible for the compliance of the drive system with the European EMC Directive. For information on items to consider, see:
- Subsections Compliance with EN 61800-3, category C2 & C3 and Compliance with EN 61800-3, category C4, below.
- The chapter Planning the electrical installation in this manual
- Technical Guide No. 3 – EMC Compliant Installation and Configuration for a Power Drive System (3AFE61348280 [English]).

Definitions

EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.
First environment includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage network which supplies buildings used for domestic purposes.

Second environment includes all establishments other than those directly connected to a low-voltage network which supplies buildings used for domestic purposes.

Drive of category C2. Power drive system with rated voltage less than 1000 V which is neither a plug-in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by a professional.

Drive of category C3. Power drive system with rated voltage less than 1000 V, intended for use in the second environment and not intended for use in the first environment.

Drive of category C4. Power drive system with rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

WARNING! The drive can cause radio interference if used in residential or domestic environment. The user is required to take measures to prevent interference, in association to the requirements for the CE compliance listed above, if necessary.

Compliance with EN 61800-3, category C2 & C3

The drive meets the requirements of the EMC Directive with the following provisions:

1. The drive is equipped with optional mains filter (see page 135).
2. The motor and control cables are selected as specified in the chapter Planning the electrical installation.
3. The drive is installed according to the instructions given in this manual.

Motor cable length does not exceed 50 metres (164 ft)
Compliance with EN 61800-3, category C4

The drive meets the requirements of the EMC Directive with the following provisions:

1. It is ensured that no excessive emission is propagated to neighbouring low-voltage networks. In some cases, the natural suppression in transformers and cables is sufficient. If in doubt, a supply transformer with static screening between the primary and secondary windings can be used.

2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available from the local ABB representative.

3. The motor and control cables are selected as specified in the chapter Planning the electrical installation.

4. The drive is installed according to the instructions given in this manual.

Compliance with the European Machinery Directive

This safety related drive complies with the European Union Machinery Directive requirements for a safety component intended to be integrated into machinery. Compliance with the machinery directive has been verified according to standards EN 61800-5-2, EN ISO 13849-1, EN 62061, and EN 61508 parts 1 & 2. The drive has been designed, constructed and equipped in such a way that when installed as instructed in this manual, all hazards of an electrical nature are, or can be, prevented. The drive complies with EN 61800-5-1 which specifies safety requirements in terms of electrical, thermal and energy.

Note: The final assembler of the machinery must take the necessary precautions to prevent all hazards of an electrical nature when integrating this equipment. General specifications for design of electrical equipment of machinery is given in EN 60204-1 and EN 60204-11. Specifications for electrical equipment are also given in many standards for specific categories of machinery.
UL marking

See the type designation label for the valid markings of your drive.

UL checklist

Input power connection – See section AC input (supply) connection on page 122.

Disconnecting device (Disconnecting means) – See section Supply disconnecting device on page 42.

Ambient conditions – The drive is to be used in a heated indoor controlled environment. See section Ambient conditions on page 127 for specific limits.

Input cable fuses – For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. To fulfill this requirement, use the UL classified fuses given in section Supply cable fuses on page 121.

For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes. To fulfill this requirement, use the UL classified fuses given in section Supply cable fuses on page 121.

Power cable selection – See section Selecting the power cables on page 45.

Power cable connections – For the connection diagram and tightening torques, see section Power cable connection on page 51.

Control connections – For the connection diagram and tightening torques, see section Connecting the control cables on page 60.

Overload protection – The drive provides overload protection in accordance with the National Electrical Code (US).

Braking – The MicroFlex e190 has an internal braking chopper. When applied with appropriately sized braking resistors, the braking chopper allows the drive to dissipate regenerative energy (normally associated with quickly decelerating a motor). Braking resistor selection is discussed in the chapter Resistor braking on page 141.

UL standards – See section Applicable standards on page 130.
What this chapter contains

This chapter describes how to select and install mains filters for the MicroFlex e190. The chapter also contains the relevant technical data.

When is a mains filter required?

The EMC product standard (EN 61800-3) covers the specific EMC requirements stated for drives (tested with motor and cable) within the EU. EMC standards such as EN 55011 or EN 61000-6-3/4 apply to industrial and household equipment and systems including drive components inside. Drive units complying with the requirements of EN 61800-3 are always compliant with comparable categories in EN 55011 and EN 61000-6-3/4, but not necessarily vice versa. EN 55011 and EN 61000-6-3/4 do neither specify cable length nor require a motor to be connected as a load. The emission limits are comparable according to the following table.

<table>
<thead>
<tr>
<th>EMC standards in general</th>
<th>EN 61800-3, product standard</th>
<th>EN 61800-3, product standard</th>
<th>EN 55011, product family standard for industrial, scientific and medical (ISM) equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st environment, unrestricted distribution</td>
<td>Category C1</td>
<td>Group 1 Class B</td>
<td></td>
</tr>
<tr>
<td>1st environment, restricted distribution</td>
<td>Category C2</td>
<td>Group 1 Class A</td>
<td></td>
</tr>
<tr>
<td>2nd environment, unrestricted distribution</td>
<td>Category C3</td>
<td>Group 2 Class A</td>
<td></td>
</tr>
<tr>
<td>2nd environment, restricted distribution</td>
<td>Category C4</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>
A mains filter is required in order for MicroFlex e190 to meet the category C2 level, using a motor with a max. 50 m cable. This level corresponds to the A limits for Group 1 equipment according to EN 55011.

WARNING! A mains filter must not be installed if the drive is connected to an IT power system (i.e. an ungrounded, or a high resistance grounded [over 30 ohm] power system).

Footprint filter (single phase only)

The single-phase footprint AC power filter, part OFI-01, provides mounting holes for the MicroFlex e190. This allows the filter and MicroFlex e190 to use minimal panel mounting space.
Installation guidelines

- If a mains choke is also installed, the mains filter is connected between the mains choke and the drive. See the diagram below.
- For optimal operation of the filter, the drive and the filter must be mounted on the same conductive surface.
- Ensure the filter does not block the airflow through the drive.
- Keep the cable between the drive and the filter as short as possible.

Connection diagram

Selection table

<table>
<thead>
<tr>
<th>Drive type MFE190-04x...</th>
<th>230VAC 1Ø Meets EN 61800-3, category C2 with motor cable <50m</th>
<th>230VAC 3Ø Meets EN 61800-3, category C2 with motor cable <50m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01A6-2</td>
<td>OFI-02</td>
<td>OFI-03</td>
</tr>
<tr>
<td>-03A0-2</td>
<td>OFI-01 or OFI-01</td>
<td></td>
</tr>
<tr>
<td>-06A0-2</td>
<td></td>
<td>JF1-02</td>
</tr>
<tr>
<td>-09A0-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The mains filters are protected to IP20.
Specifications and dimensions

<table>
<thead>
<tr>
<th>Part</th>
<th>Rated volts</th>
<th>Rated amps @ 40°C</th>
<th>Leakage current (mA)</th>
<th>Weight kg (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFI-02</td>
<td>250</td>
<td>8</td>
<td>0.7</td>
<td>0.33 (0.73)</td>
</tr>
<tr>
<td>OFI-03</td>
<td>480</td>
<td>7</td>
<td>33</td>
<td>0.5 (1.1)</td>
</tr>
<tr>
<td>JFI-02</td>
<td>480</td>
<td>16</td>
<td>33</td>
<td>0.8 (1.76)</td>
</tr>
<tr>
<td>OFI-01</td>
<td>250</td>
<td>20</td>
<td>12</td>
<td>0.72 (1.60)</td>
</tr>
</tbody>
</table>

Dimensions, type OFI-01:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>OFI-01 Dimensions: mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>260 (10.23)</td>
</tr>
<tr>
<td>B</td>
<td>72 (2.81)</td>
</tr>
<tr>
<td>C</td>
<td>239.5 (9.43)</td>
</tr>
<tr>
<td>D</td>
<td>50 (1.97)</td>
</tr>
<tr>
<td>E</td>
<td>40 (1.57)</td>
</tr>
<tr>
<td>F</td>
<td>21.5 (0.87)</td>
</tr>
</tbody>
</table>
Dimensions, type OFI-02:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>OFI-02 Dimensions: mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>113.7 (4.47)</td>
</tr>
<tr>
<td>B</td>
<td>57.5 (2.26)</td>
</tr>
<tr>
<td>C</td>
<td>45.4 (1.79)</td>
</tr>
<tr>
<td>D</td>
<td>94 (3.7)</td>
</tr>
<tr>
<td>E</td>
<td>103 (4.06)</td>
</tr>
<tr>
<td>F</td>
<td>25 (0.98)</td>
</tr>
<tr>
<td>G</td>
<td>12.4 (0.49)</td>
</tr>
<tr>
<td>H</td>
<td>32.4 (1.28)</td>
</tr>
<tr>
<td>J</td>
<td>4.4 (0.17)</td>
</tr>
<tr>
<td>K</td>
<td>6 (0.24)</td>
</tr>
<tr>
<td>L</td>
<td>15.5 (0.61)</td>
</tr>
</tbody>
</table>
Mains filters

Dimensions, types OFI-03 / JFI-02:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>OFI-03</th>
<th>JFI-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>190 (7.48)</td>
<td>250 (9.84)</td>
</tr>
<tr>
<td>B</td>
<td>40 (1.57)</td>
<td>45 (1.77)</td>
</tr>
<tr>
<td>C</td>
<td>70 (2.76)</td>
<td>70 (2.76)</td>
</tr>
<tr>
<td>D</td>
<td>160 (6.30)</td>
<td>220 (8.66)</td>
</tr>
<tr>
<td>E</td>
<td>180 (7.09)</td>
<td>235 (9.25)</td>
</tr>
<tr>
<td>F</td>
<td>20 (0.79)</td>
<td>25 (0.98)</td>
</tr>
<tr>
<td>G</td>
<td>4.5 (0.18)</td>
<td>5.4 (0.21)</td>
</tr>
</tbody>
</table>
Resistor braking

What this chapter contains

This chapter contains information about calculating the regenerative power created by the motor when it decelerates or is driven by the load. The chapter then describes the process for selecting an appropriate resistor to dissipate the regenerative power.

⚠️ WARNING! Electrical shock hazard. DC-bus voltages can be present at the brake resistor terminals. Use a suitable heat sink (with fan if necessary) to cool the brake resistor. The brake resistor and heat sink (if present) can reach temperatures in excess of 80 °C (176 °F).
Introduction

Each drive has a braking capacity that defines the amount of regenerative energy its DC bus capacitors can store before the voltage on the capacitors exceeds the drive’s over-voltage level. In a common DC system, all of the drive’s DC bus capacitors are connected, so the system braking capacity becomes the sum of all the drives’ braking capacities. If the total regenerative energy in the system exceeds the system braking capacity, the excess energy must be diverted into a brake resistor (also known as a regeneration or ‘regen’ resistor) to be dissipated as heat. The brake resistor can be connected to one drive in the system, but if that drive’s braking chopper cannot withstand the total regenerative power in the system, more than one drive must be fitted with a brake resistor.

System braking capacity

The braking capacity of the drive is calculated from the following formula:

\[B_{br} = 0.5 \times \text{DC bus capacitance} \times \left(\text{Brake switching threshold}^2 - \left(\frac{V_s}{2} \times \text{Supply voltage}\right)^2\right) \]

where the Brake switching threshold is 388 V. This gives the following typical values:

<table>
<thead>
<tr>
<th>Model</th>
<th>Frame</th>
<th>DC bus capacitance ((\mu)F)</th>
<th>115 V AC supply</th>
<th>230 V AC supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>01A6-2</td>
<td>A</td>
<td>560</td>
<td>34.7</td>
<td>12.5</td>
</tr>
<tr>
<td>03A0-2</td>
<td>A</td>
<td>1120</td>
<td>69.4</td>
<td>25</td>
</tr>
<tr>
<td>09A0-2</td>
<td>A</td>
<td>1120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MicroFlex e190</th>
<th>DC bus capacitance ((\mu)F)</th>
<th>115 V AC supply</th>
<th>230 V AC supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>01A6-2</td>
<td>560</td>
<td>34.7</td>
<td>12.5</td>
</tr>
<tr>
<td>03A0-2</td>
<td>1120</td>
<td>69.4</td>
<td>25</td>
</tr>
<tr>
<td>09A0-2</td>
<td>1120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Braking energy calculation

The following calculations can be used to estimate the type of brake resistor that will be required for the application. To complete the calculation, some basic information is required. Remember to use the worst-case values to ensure that the braking power is not underestimated. For example, use the maximum possible motor speed, maximum inertia, minimum deceleration time and minimum cycle time that the application might encounter.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Enter value here</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Initial motor speed, before deceleration begins, in radians per second.</td>
<td>Initial motor speed, U = _________ rad/s</td>
</tr>
<tr>
<td>Multiply RPM by 0.1047 to give radians per second.</td>
<td></td>
</tr>
<tr>
<td>b) Final motor speed after deceleration is complete, in radians per second.</td>
<td>Final motor speed, V = _________ rad/s</td>
</tr>
<tr>
<td>Multiply RPM by 0.1047 to get radians per second. This value will be zero if the load is going to be stopped.</td>
<td></td>
</tr>
<tr>
<td>c) The deceleration time from initial speed to final speed, in seconds.</td>
<td>Decel time, D = _________ s</td>
</tr>
<tr>
<td>d) The total cycle time (i.e. how frequently the process is repeated), in seconds.</td>
<td>Cycle time, C = _________ s</td>
</tr>
<tr>
<td>e) Total inertia.</td>
<td>Total inertia, J = _________ kg·m²</td>
</tr>
<tr>
<td>This is the total inertia seen by the drive, accounting for motor inertia, load inertia and gearing. Use the Mint WorkBench Autotune tool to tune the motor with the load attached, to determine the value.</td>
<td></td>
</tr>
<tr>
<td>This will be displayed in kg m² in the Autotune tool. If you already know the motor inertia (from the motor spec.) and the load inertia (by calculation) insert the total here.</td>
<td></td>
</tr>
<tr>
<td>Multiply kg·cm² by 0.0001 to give kg m². Multiply lb-ft² by 0.04214 to give kg m². Multiply lb-in-s² by 0.113 to give kg m².</td>
<td></td>
</tr>
</tbody>
</table>
144 Resistor braking

- **Braking energy**

 The braking energy to be dissipated, E, is the difference between the initial energy in
 the system (before deceleration begins) and the final energy in the system (after
 deceleration has finished). If the system is brought to rest then the final energy is
 zero.

 The energy of a rotating object is given by the formula:

 $$ E = \frac{1}{2} \times J \times \omega^2 $$

 where E is energy, J is the moment of inertia, and ω is the angular velocity.

 The braking energy, which is the difference between the initial energy and the final
 energy, is therefore:

 $$ E = \left(\frac{1}{2} \times J \times \omega_1^2 \right) - \left(\frac{1}{2} \times J \times \omega_2^2 \right) $$

 $$ = \frac{1}{2} \times J \times (\omega_1^2 - \omega_2^2) $$

 $$ = \frac{E}{D} (\text{joules}) $$

 Calculate the braking energy for the motor. If the value is less than the system
 braking capacity B_{dc}, calculated on page 142, a brake resistor will not be required.

- **Braking power and average power**

 The braking power, $P_{gen,max}$, is the rate at which the braking energy is dissipated.
 This rate is defined by the deceleration period, D (see page 142). The shorter the
 deceleration period, the greater the braking power.

 $$ P_{gen,max} = \frac{E}{D} $$

 $$ P_{gen,max} = \text{______________ W} (\text{watts}) $$

 The brake resistors shown in the table on page 145 can withstand brief overloads, but
 the average power dissipation must not exceed the stated continuous power rating.
 The average power dissipation is determined by the proportion of the application
 cycle time spent braking. The greater the proportion of time spent braking, the greater
the average power dissipation. This average value can be used to represent an equivalent continuous braking power, where C is the cycle time (see page 143):

$$P_{\text{gen,ave}} = P_{\text{gen,max}} \times \frac{D}{C}$$

$$= \text{__________ W (watts)}$$

Calculate the maximum braking power $P_{\text{gen,max}}$ and the equivalent continuous braking power $P_{\text{gen,ave}}$ for the motor.

Resistor choice

$P_{\text{gen,ave}}$ is the value to use when assessing which brake resistor to use. However, a safety margin of 1.25 times is recommended to ensure the resistor operates well within its limits\(^1\), so:

$$\text{Required resistor power rating} = 1.25 \times P_{\text{gen,ave}}$$

$$= \text{__________ W (watts)}$$

The range of suitable brake resistors is shown in the following table. Choose the resistor that has a power rating equal to or greater than the value calculated above.

<table>
<thead>
<tr>
<th>Part</th>
<th>Resistance</th>
<th>Power rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGJ139</td>
<td>39 Ω</td>
<td>100 W</td>
</tr>
<tr>
<td>RGJ160</td>
<td>60 Ω</td>
<td>100 W</td>
</tr>
<tr>
<td>RGJ260</td>
<td>60 Ω</td>
<td>200 W</td>
</tr>
<tr>
<td>RGJ360</td>
<td>60 Ω</td>
<td>300 W</td>
</tr>
</tbody>
</table>

\(^1\) The brake resistors listed in the following table can withstand a brief overload of 10 times the rated power for 5 seconds. Please contact ABB if larger power ratings are required.
Resistor derating

The brake resistors shown in the previous table can achieve their stated power rating only when mounted on a heat sink. In free air a derating must be applied. Furthermore, in ambient temperatures greater than 25 °C (77 °F), a temperature derating must be applied.

<table>
<thead>
<tr>
<th>Resistor part number</th>
<th>Nominal power rating (W)</th>
<th>In free air</th>
<th>On heat sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGJ139 RGJ160</td>
<td>100</td>
<td>Derate power linearly from: 80% @ 25 °C (77 °F) to 70% @ 55 °C (113 °F)</td>
<td>Derate power linearly from: 100% @ 25 °C (77 °F) to 88% @ 55 °C (113 °F)</td>
</tr>
<tr>
<td>RGJ260 RGJ360</td>
<td>200 300</td>
<td>Derate power linearly from: 70% @ 25 °C (77 °F) to 62% @ 55 °C (113 °F)</td>
<td>Derate power linearly from: 100% @ 25 °C (77 °F) to 88% @ 55 °C (113 °F)</td>
</tr>
</tbody>
</table>

Typical heat sink: 200 mm x 200 mm x 3 mm
Typical heat sink: 400 mm x 400 mm x 3 mm

Duty cycle

The braking duty cycle is the amount of time taken braking as a proportion of the overall application cycle time. For example, the following diagram shows a system which performs a trapezoidal move profile, with braking during part of the deceleration phase. The braking duty is 0.2 (0.5 second braking / 2.5 second cycle time):
Dimensions

<table>
<thead>
<tr>
<th>Part</th>
<th>Power W</th>
<th>Res. Ω</th>
<th>Dimensions mm (inches)</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>F (mm)</th>
<th>G (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGJ139</td>
<td>100</td>
<td>39</td>
<td>165 (6.46)</td>
<td>41 (1.61)</td>
<td>22 (0.87)</td>
<td>152 (5.98)</td>
<td>12 (0.47)</td>
<td>10 (0.39)</td>
<td>4.3 (0.17)</td>
<td></td>
</tr>
<tr>
<td>RGJ160</td>
<td>100</td>
<td>60</td>
<td>165 (6.46)</td>
<td>41 (1.61)</td>
<td>25 (0.98)</td>
<td>152 (5.98)</td>
<td>12 (0.47)</td>
<td>10 (0.39)</td>
<td>4.3 (0.17)</td>
<td></td>
</tr>
<tr>
<td>RGJ260</td>
<td>200</td>
<td>60</td>
<td>165 (6.46)</td>
<td>60 (2.36)</td>
<td>30 (1.18)</td>
<td>146 (5.75)</td>
<td>17 (0.67)</td>
<td>13 (0.51)</td>
<td>5.3 (0.21)</td>
<td></td>
</tr>
<tr>
<td>RGJ360</td>
<td>300</td>
<td>60</td>
<td>216 (8.46)</td>
<td>60 (2.36)</td>
<td>30 (1.18)</td>
<td>196 (7.72)</td>
<td>17 (0.67)</td>
<td>13 (0.51)</td>
<td>5.3 (0.21)</td>
<td></td>
</tr>
</tbody>
</table>

Resistor braking 147
Resistor braking
What this chapter contains
This section describes accessories and options that you might need to use with your MicroFlex e190. Shielded (screened) cables provide EMI / RFI shielding and are required for compliance with CE regulations. All connectors and other components must be compatible with the shielded cable.

- **24 V power supplies**
A range of compact 24 V DIN rail mounting power supplies are available. The supplies include short circuit, overload, over-voltage and thermal protection.

<table>
<thead>
<tr>
<th>Part</th>
<th>Input voltage</th>
<th>Output voltage</th>
<th>Output rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-E 240.75</td>
<td>100-240 V AC</td>
<td>24 V DC</td>
<td>0.75 A</td>
</tr>
<tr>
<td>CP-E 241.25</td>
<td>100-240 V AC</td>
<td>24 V DC</td>
<td>1.25 A</td>
</tr>
<tr>
<td>CP-E 242.5</td>
<td>100-240 V AC</td>
<td>24 V DC</td>
<td>2.5 A</td>
</tr>
<tr>
<td>CP-E 244.0</td>
<td>115/230 V AC</td>
<td>24 V DC</td>
<td>5 A</td>
</tr>
<tr>
<td>CP-E 247.0</td>
<td>115/230 V AC</td>
<td>24 V DC</td>
<td>10 A</td>
</tr>
<tr>
<td>CP-E 2420.0</td>
<td>115/230 V AC</td>
<td>24 V DC</td>
<td>20 A</td>
</tr>
</tbody>
</table>
Encoder breakout

The encoder breakout (part OPT-MF-200) can be used to connect motor feedback and an extra incremental encoder (see page 74). Alternatively, the connectors can be used together to connect a single motor that has separate cables for encoder and Halls (e.g. a linear motor).
Resolver adapter OPT-MF-201

The resolver adapter (OPT-MF-201) allows a motor with resolver feedback to be connected to the MicroFlex e190. The MicroFlex e190 must be power-cycled after connecting the resolver adapter. The resolver adapter sends an absolute position to the MicroFlex e190 at startup, so a phase search is not required. In Mint WorkBench, select a resolver motor in the Drive Setup Wizard. The wizard’s Feedback page will show the feedback type as Resolver Adapter. The resolver adapter can be used in conjunction with the encoder breakout (OPT-MF-200).

Resolver adapter specifications

- Excitation frequency: 10 kHz
- Maximum input speed: 60000 rpm (2 pole resolver)
- Output resolution: 12-bit
- Accuracy: +/-11 arc minutes

Resolver requirements

- Transformation ratio: 0.5
- Excitation supply load: 100 mA maximum.
Cables
A wide range of motor and feedback cables are available.

Motor power cables
For easier installation, it is recommended that a color-coded motor power cable is used. The part number for a BSM rotary motor power cable is derived as follows:

<table>
<thead>
<tr>
<th>m</th>
<th>ft</th>
<th>Current (Amps)</th>
<th>Standard connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>5"</td>
<td>6</td>
<td>Stainless connector</td>
</tr>
<tr>
<td>2.5</td>
<td>8.2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>10"</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>16.4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>20"</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>24.6</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>30"</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>49.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>50"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>65.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.9</td>
<td>75"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 30.5| 100"

*Larger motors requiring ≥50 A cable or greater normally use terminal box connections, so a motor power connector is not required. For this reason connectors are not available on 35 A - 90 A cable.

Examples:
- A 6.1 m cable, with a CE threaded standard connector, rated for 12 A has part number CBL061SP-12.
- A 10.5 m cable, with a CE threaded stainless steel connector, rated for 20 A has part number CBL105SP-20S.
- A 50 ft cable, with no connector, rated for 50 A has part number CBL152RP-50.
Feedback cables

The part number for a feedback cable is derived as follows:

```
<table>
<thead>
<tr>
<th>Cable description</th>
<th>Part</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT5e Ethernet cable</td>
<td>CBL000CM-EXS</td>
<td>0.2 0.65</td>
</tr>
<tr>
<td></td>
<td>CBL005CM-EXS</td>
<td>0.5 1.6</td>
</tr>
<tr>
<td></td>
<td>CBL010CM-EXS</td>
<td>1.0 3.3</td>
</tr>
<tr>
<td></td>
<td>CBL020CM-EXS</td>
<td>2.0 6.6</td>
</tr>
<tr>
<td></td>
<td>CBL050CM-EXS</td>
<td>5.0 16.4</td>
</tr>
<tr>
<td></td>
<td>CBL100CM-EXS</td>
<td>10.0 32.8</td>
</tr>
<tr>
<td></td>
<td>CBL200CM-EXS</td>
<td>20.0 65.6</td>
</tr>
</tbody>
</table>
```

These feedback cables have the outer shield tied to the connector housing(s). If you are using an alternative cable with your chosen feedback device, be sure to obtain a cable that is a shielded twisted pair 0.34 mm² (22 AWG) wire minimum, with an overall shield. Ideally, the cable should not exceed 30.5 m (100 ft). Maximum wire-to-wire or wire-to-shield capacitance is 50 pF per 300 mm (1 ft) length, to a maximum of 5000 pF for 30.5 m (100 ft).

Ethernet cables

The cables listed in this table connect MicroFlex e190 to other Ethernet nodes such as NextMove e100, additional MicroFlex e190s, or other Ethernet compatible hardware. The cables are standard CAT5e shielded twisted pair (S/UTP) ‘crossover’ Ethernet cables:

```
<table>
<thead>
<tr>
<th>Cable description</th>
<th>Part</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBL000CM-EXS</td>
<td>0.2 0.65</td>
</tr>
<tr>
<td></td>
<td>CBL005CM-EXS</td>
<td>0.5 1.6</td>
</tr>
<tr>
<td></td>
<td>CBL010CM-EXS</td>
<td>1.0 3.3</td>
</tr>
<tr>
<td></td>
<td>CBL020CM-EXS</td>
<td>2.0 6.6</td>
</tr>
<tr>
<td></td>
<td>CBL050CM-EXS</td>
<td>5.0 16.4</td>
</tr>
<tr>
<td></td>
<td>CBL100CM-EXS</td>
<td>10.0 32.8</td>
</tr>
<tr>
<td></td>
<td>CBL200CM-EXS</td>
<td>20.0 65.6</td>
</tr>
</tbody>
</table>
```
Appendix: Safe Torque Off (STO)

What this chapter contains
The appendix describes the basics of the Safe torque off function (STO) for the MicroFlex e190. In addition, application features and technical data for the safety system calculation are presented.

Basics
The drive supports the Safe Torque Off (STO) function according to standards:

EN ISO 13849-1: 2015
EN ISO 13849-2: 2012
EN 61508-1/-2/-4/-6/-7: 2010
EN 61800-5-2: 2007

The STO function disables the control voltage of the power semiconductors of the drive output stage, which prevents the inverter generating the voltage required to rotate the motor (see diagram below). By using this function, short-time operations (like cleaning) and/or maintenance work on non-electrical parts of the machinery can be performed without switching off the power supply to the drive.
Using internal 24 V drive source:

MicroFlex e190

- PWM control circuit
- Safe Torque Off connections
- Internal 24V source
- Safety circuit (emergency stop switch, relay etc.)

Motor output (U phase shown)

- Integrated Power Module
- DC+
- DC-

X4:1

- X4:2

Drivers
- High
- Low

PWM power circuit
Using external 24 V sources:

WARNING! The STO function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive system from the main supply. If the drive was connected to the input power, wait for 5 minutes after disconnecting the input power.

Notes:
* The STO function is activated when one or both of the safety circuit contacts open. If the period between both contacts opening or closing exceeds a predefined value, a fault in the safety circuit or wiring is assumed and an error is reported.
* The maximum cable length between drive and the safety switch is 30 m (98 ft).
Special considerations for using the STO function

- Drive location
 The MicroFlex e190 and all associated STO wiring must be installed in an indoor location. The MicroFlex e190 must be installed in a cabinet. The suitability of the cabinet for the intended environment must be determined by the installer. See Ambient conditions on page 127 for further details.

- Hazard analysis
 A hazard analysis of the application should be performed before using the STO function in the application.

- Additional stopping methods
 It is not recommended to stop the drive by using the STO function. If a running drive is stopped by using the function, the drive trips and stops by coasting. If this is not acceptable e.g. causes danger, the drive and machinery must be stopped using the appropriate stopping mode before using this function. For example, suspended or tensioned loads (e.g. cranes, hoists) will require additional brakes or mechanical interlocks.

- IGBT failure
 If a permanent magnet motor drive experiences multiple power semiconductor failure, the drive system can produce an alignment torque which maximally rotates the motor shaft by $180/p$ degrees (p = pole pair number), even if the STO function has been correctly activated.

 Failure of one or more IGBTs can cause the drive output to fail due to:
 - IGBT desaturation protection causing all IGBTs to be stopped.
 - Rupture of the AC input fuse.

Terminology

‘Active’ or ‘activated’ means that the STO function has been triggered. This removes power from the motor and disables the drive. The drive cannot be restarted without further operator intervention.

‘Standby’ means that the STO function has not been triggered. The drive can power the motor, provided all other criteria are satisfied to allow motor operation.
Wiring principles

The Safe Torque Off connector is X4 on MicroFlex e190 drives. Wiring principles are shown in the diagrams below. See chapter Technical data for the cable specification and possible safety relay types.

- The wiring to each STO input must be routed separately.
- Wiring the STO inputs in accordance with the following diagrams provides Safety Integrity Level 3 (SIL3). It is not permissible to control both STO inputs from one safety circuit, as this does not provide SIL3 protection.
- The Safe Torque Off (STO) function provides a stop function equivalent to 'stop category 0' according to EN 60204-1.
- The STO element is classified as type A, according to EN 61508-2.

Connected components

Ensure that all components controlling the STO inputs, including cabling, do not cause the STO inputs to become constantly powered (a 'dangerous failure') or constantly unpowered (a 'safe failure').

Diagnostic pulses produced by Safe Digital Output devices are not recognized by the MicroFlex e190, and will not activate the STO function provided they have a period of less than 1 ms.

Short circuit testing

Short circuit conditions on the STO inputs must be tested within the proof test interval.

Power supply

It is recommended to use the 24 V DC supply provided on pin 4 of connector X4. This supply is derived from the bus voltage (if present) or from the optional 24 V logic supply on connector X2 (if present).

If an external 24 V DC power supply is connected to X4 it must fulfill the following criteria:
- It must be a Safety Extra Low Voltage (SELV) supply.
- It must be suitable for the desired safe application and safety integrity level.
- It must be protected against over voltages.
- It must limit the output voltage under all fault conditions <60V.
- It must be TÜV certified to EN 60950.

Drive enable input

If an additional hardware 'drive enable' input is used to control the drive, it must not be wired as part of the STO input circuit.
Single drive module: internal power supply

![Diagram of internal power supply](image1)

Single drive module: external power supply

![Diagram of external power supply](image2)
Multiple drive modules: internal power supply

Note: The maximum number of drives is 16.
Multiple drive modules: external power supply

Note: The maximum number of drives is 16.
Operation of the STO function and diagnostics

- **Hardware activation of the STO function**

The drive contains two STO inputs. If both STO inputs are powered, the STO function is in the standby state and the drive operates normally.

 If power is removed from one or both of the STO inputs, the STO function is activated. The drive motor output power stage is disabled. Enabling is possible only after both STO inputs have been powered, and the fault has been cleared.

- **Firmware monitoring of the STO function**

 STO function activation

 The firmware detects when the STO function is activated and generates the ‘STO active’ error (10033). The drive can be enabled only after the fault has been cleared.

 STO input states

 The state of the STO inputs are monitored by the firmware. The state of the STO inputs are stored in a hardware register within the drive. The register is monitored by the drive over a period specified by the `STOINPUTMISMATCHTIME` Mint keyword. If the inputs are in different states after the specified period has elapsed, the ‘STO input mismatch’ error (10035) is generated.
Software monitoring of the STO function

The drive can be programmed using the Mint language. The software application Mint WorkBench is available for configuring, programming and monitoring the status of the drive. The SAFETORQUEOFF Mint keyword can be used to report the status of the STO hardware registers. SAFETORQUEOFF contains an array of values indicating the states of the STO1 and STO2 inputs, two internal hardware fault circuits, and one internal STO status output. This array is described in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| SAFETORQUEOFF(0) | The combined state of the two STO inputs:
STO1 = bit 0, STO2 = bit 1 |
| SAFETORQUEOFF(1) | The state of STO1 input:
0 = not powered, 1 = powered |
| SAFETORQUEOFF(2) | The state of STO2 input:
0 = not powered, 1 = powered |
| SAFETORQUEOFF(3) | Not used. |
| SAFETORQUEOFF(4) | Not used. |
| SAFETORQUEOFF(5) | Not used. |
| SAFETORQUEOFF(6) | The state of the internal STO status output:
0 = fault, 1 = no fault |

See the table in STO status indications on page 165 for a complete listing of SAFETORQUEOFF values.

See Error messages generated by the drive on page 170, which describes the error codes displayed by the drive.
STO status indications

The following table lists the state of the STO function with reference to:

- values of the `SAFETORQUEOFF` Mint keyword (see page 164).
- status of the STO inputs STO1 and STO2.

`SAFETORQUEOFF(1)` and `SAFETORQUEOFF(2)` return 1 when the respective STO input is powered (STO in standby, motor output enabled).

`SAFETORQUEOFF(6)` returns 1 when both inputs are powered.

<table>
<thead>
<tr>
<th>STO1 & STO2 powered</th>
<th>No FAULTs</th>
<th>FAULTSTO1 present</th>
<th>FAULTSTO2 present</th>
<th>FAULTSTO1 & FAULTSTO2 both present</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO in standby, Motor output enabled.</td>
<td>SAFETORQUEOFF(1)=3</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=1</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
<td>SAFETORQUEOFF(6)=0</td>
<td>SAFETORQUEOFF(0)=3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STO1 not powered</th>
<th>STO2 not powered</th>
<th>STO1; STO2 both not powered</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=3</td>
<td>SAFETORQUEOFF(2)=3</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
<tr>
<td>STO activated, Motor output disabled.</td>
<td>SAFETORQUEOFF(1)=1</td>
<td>SAFETORQUEOFF(2)=1</td>
</tr>
</tbody>
</table>
Monitoring the delay between the STO inputs

The STO function monitors the switching time difference between the STO inputs. See Operation of the STO function and diagnostics on page 183.

STO function activation and indication delays

Hardware activation delay (the delay between removing power from an STO input and switching off the drive output bridge): < 50 ms.

Hardware indication delay (the delay between switching off the drive output bridge and being indicated to the Mint program): < 50 ms.

Software STO indication delay, Mint program (the delay between a mismatch occurring on the STO inputs and being indicated to the Mint program): < 200 ms user defined period, set by STOINPUTMISMATCHTIME.
Validating the operation of a safety function

EN 61508, EN 62061 and EN ISO 13849-1 require that the final assembler of the machine validates the operation of the safety function with an acceptance test at the installation site. The acceptance tests for the standard safety functions of the drive are described in the drive manual.

The acceptance test must be performed:

- by an authorized person
- at initial start-up of the safety function
- after any changes related to the safety function (wiring, components, settings, etc.)
- after any maintenance work related to the safety function.
- at the proof test interval, \(T_1 \).

Authorized person

Commissioning of the drive and the acceptance test of the safety function must be carried out by an authorized person with expertise and knowledge of the safety function. The test must be documented and signed by the authorized person.

Acceptance test reports

Signed acceptance test reports must be stored in the logbook of the machine. The report shall include documentation of start-up activities and test results, references to failure reports and resolution of failures. Any new acceptance tests performed due to changes or maintenance shall be recorded in the logbook.

Preliminary checks

Before powering the drive, check:

- Grounding has been properly connected.
- Energy sources have been properly connected and are operational.
- Transportation stops and packing materials have been removed.
- No physical damage is present.
- All instruments have been properly calibrated.
- All field devices are operational.
- Interfaces are operational.
- Interfaces to other systems and peripherals are operational.
Start-up, acceptance, and proof test interval checklist

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure that the drive can be run and stopped freely during the commissioning.</td>
</tr>
<tr>
<td>Stop the drive (if running), switch off the input power and isolate the drive from the power line by a disconnector.</td>
</tr>
<tr>
<td>Check the STO circuit connections against the circuit diagram.</td>
</tr>
<tr>
<td>Check that the shield of the STO input cable is grounded to the drive frame.</td>
</tr>
<tr>
<td>Close the disconnector and switch on the power.</td>
</tr>
<tr>
<td>Test the operation of the STO function when the motor is stopped:</td>
</tr>
<tr>
<td>• Disable the drive and ensure the motor shaft is not rotating.</td>
</tr>
<tr>
<td>• Activate the STO function (remove power from the STO inputs) and attempt to enable the drive.</td>
</tr>
<tr>
<td>• Ensure that the drive cannot be enabled (see section Operation of the STO function and diagnostics on page 163.)</td>
</tr>
<tr>
<td>• Deactivate the STO function (apply power to the STO inputs).</td>
</tr>
<tr>
<td>Test the operation of the STO function when the motor is running:</td>
</tr>
<tr>
<td>• Enable the drive and start motion. Ensure the motor is rotating.</td>
</tr>
<tr>
<td>• Activate the STO function (remove power from the STO inputs).</td>
</tr>
<tr>
<td>• Ensure that the drive disables and the motor stops rotating.</td>
</tr>
<tr>
<td>• Attempt to enable the drive.</td>
</tr>
<tr>
<td>• Ensure that the drive cannot be enabled (see section Operation of the STO function and diagnostics on page 163.)</td>
</tr>
<tr>
<td>• Deactivate the STO circuit (apply power to the STO inputs).</td>
</tr>
<tr>
<td>Document and sign the acceptance test report which verifies that the safety function is safe and accepted to operation.</td>
</tr>
</tbody>
</table>
Restarting the drive

Restarting the drive is not part of the STO test or certification processes, but is included here for convenience.

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deactivate the STO circuit (apply power to the STO inputs).</td>
</tr>
<tr>
<td>If the drive holds a Mint program, or is connected to an Ethernet master device that can enable the drive, it is possible for the drive to restart and begin to control the motor without further intervention. If the drive does not hold a Mint program, some of the following actions are necessary, depending on the installation:</td>
</tr>
<tr>
<td>• Activate the additional drive enable input (if present).</td>
</tr>
<tr>
<td>• In Mint WorkBench (if connected), click the Clear errors button on the System toolbar, followed by the Drive Enable button on the Motion toolbar.</td>
</tr>
<tr>
<td>• Enable the drive from the Ethernet master device (if connected).</td>
</tr>
</tbody>
</table>

Maintenance / servicing

Include the STO operation tests described in Start-up, acceptance, and proof test interval checklist on page 168 in the routine maintenance program of the machinery to which the drive is connected.

The STO function must be tested by authorized service personnel as frequently as required by the proof test interval T₁; see Start-up, acceptance, and proof test interval checklist on page 168. See also Data related to safety standards on page 174.

The STO input terminals do not need any maintenance. Maintain the drive according to the instructions given in this manual.

The exchange of safety related systems or subsystems must be performed only in a powerless condition.

The drive may only be opened by ABB authorized personnel.
Error messages generated by the drive

When an error occurs, the drive displays the error code on its front panel 7 segment display. The symbol E is displayed, followed by the digits of the error code in sequence.

For example, error code 10033 is displayed as E...1.0.0.3.3.

Additionally, the right decimal point is illuminated for any STO error.

The STO errors are listed in the following table.

Note: The STO function is activated when one or both of the safety circuit contacts open. If the period between both contacts opening or closing exceeds a predefined value (defined by the STOINPUTMISMATCHTIME Mint keyword) a fault in the safety circuit or wiring is assumed and an error is reported. The maximum allowed cable length between the drive and the activation switch is 30 m (98 ft).
Appendix: Safe Torque Off (STO) 171

Decommissioning

Before decommissioning any safety system from active service:

• Evaluate the impact of decommissioning on adjacent operating units and facilities or other field services.
• Conduct a proper review and obtain required authorization.
• Ensure that the safety functions remain appropriate during decommissioning activities.

Implement appropriate change management procedures for all decommissioning activities.

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 ecSTO_ACTIVE</td>
<td>Either one or both of the STO inputs is not powered. This error is detected when the drive is enabled, or when attempting to enable the drive in software.</td>
<td>Use a test meter to check that the device controlling the STO input is providing the required output. Check the operation of the emergency stop switch. Check that the contacts close correctly when the switch is reset. Check the operation of the safety relay.</td>
</tr>
<tr>
<td></td>
<td>- safe switch or relay has dropped an output that controls the STO input.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- emergency stop switch has been operated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- faulty safety relay</td>
<td></td>
</tr>
<tr>
<td>10035 ecSTO_INPUT_MISMATCH</td>
<td>The drive has detected a mismatch in its internal STO registers. This error can occur while the drive is enabled or disabled.</td>
<td>Check the operation of the emergency stop switch. Check that the contacts close correctly when the switch is reset. Check that the period defined by STOINPUTMISMATCHTIME is long enough to allow both STO inputs to settle. Check the operation of the emergency stop switch. Check that the contacts close correctly when the switch is reset. Check all wiring for the STO inputs.</td>
</tr>
<tr>
<td></td>
<td>- emergency stop switch fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- wiring fault</td>
<td></td>
</tr>
</tbody>
</table>
Technical data

STO safety relay type

<table>
<thead>
<tr>
<th>General requirements</th>
<th>EN 61508 and/or EN 61511 and/or EN ISO 13849-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output requirements</td>
<td></td>
</tr>
<tr>
<td>No. of current paths</td>
<td>2 independent paths (one for each STO path)</td>
</tr>
<tr>
<td>Switching voltage capability</td>
<td>30 V DC per contact</td>
</tr>
<tr>
<td>Switching current capability</td>
<td>10 mA per contact per drive</td>
</tr>
<tr>
<td>Maximum switching delay between contacts</td>
<td><200 ms</td>
</tr>
<tr>
<td>Internal supply/multiple units</td>
<td></td>
</tr>
<tr>
<td>Maximum length of safety circuit from operating contact to most distant drive</td>
<td>30 m (98.4 ft)</td>
</tr>
<tr>
<td>Maximum number of drives in circuit</td>
<td>16</td>
</tr>
<tr>
<td>External supply/multiple units</td>
<td></td>
</tr>
<tr>
<td>External power supply</td>
<td>24 V DC ±10% SELV</td>
</tr>
<tr>
<td>Current requirement</td>
<td>20 mA per connected drive</td>
</tr>
</tbody>
</table>

Example 1

Simple SIL3 approved safety relay

- Type and manufacturer: PSR-SCP-24UC/ESP4/2X1/1X2 by Phoenix
- Contacts: EN 954-1, cat 4; EN 61508, SIL3

Example 2

Programmable safety logic

- Type and manufacturer: PNOZ Multi M1p by Pilz
- Approvals: EN 954-1, cat 4; EN 61508, SIL3; and EN ISO 13849-1, PL e
Appendix: Safe Torque Off (STO)

STO cable

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Unit</th>
<th>1.6 A model</th>
<th>3 A, 6 A, 9 A models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>V DC</td>
<td>°C</td>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum</td>
<td>+0</td>
<td>+32</td>
<td>9</td>
<td>+32</td>
</tr>
<tr>
<td></td>
<td>+50*</td>
<td>+122*</td>
<td>+55</td>
<td>+131</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40 to +185</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ambient conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>1.6 A model</th>
<th>3 A, 6 A, 9 A models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>%</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Maximum installation altitude (above m.s.l.)</td>
<td>m</td>
<td>1000. Above 1000 m derate 1.1% / 100 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ft</td>
<td>3280. Above 3280 ft derate 1.1% / 330 ft</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>G</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>G</td>
<td>1 G, 2-200 Hz</td>
<td></td>
</tr>
</tbody>
</table>

* Subject to derating; see page 119.
Data related to safety standards

Safety data

<table>
<thead>
<tr>
<th>Frame</th>
<th>SIL/IL</th>
<th>PL</th>
<th>SFF (%)</th>
<th>PFHs (1/h)</th>
<th>PFDo (1/h)</th>
<th>MTTF [a]</th>
<th>DC [%]</th>
<th>SC</th>
<th>Cat.</th>
<th>HFT</th>
<th>CCF</th>
<th>Lifetime [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEI</td>
<td>3</td>
<td>98.32%</td>
<td>1.0E-06</td>
<td>2.38E-05</td>
<td>13945</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>80</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proof test interval (PTI) $T_1 = 2$ years.
Mean repair time MRT = 0 h (circuit boards are not intended to be repaired).
Mean time to restoration MTTR = 48 h (MRT plus time used to locate the failure).

Failure rates

<table>
<thead>
<tr>
<th>Channel</th>
<th>λ_{sf} [FIT]</th>
<th>λ_{su} [FIT]</th>
<th>λ_{dd} [FIT]</th>
<th>λ_{du} [FIT]</th>
<th>SFF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>209.2</td>
<td>225.0</td>
<td>0.7</td>
<td>7.4</td>
<td>98.3%</td>
</tr>
<tr>
<td>CHX</td>
<td>15.2</td>
<td>6.8</td>
<td>0.0</td>
<td>2.6</td>
<td>88.8%</td>
</tr>
<tr>
<td>CH1</td>
<td>191.0</td>
<td>217.8</td>
<td>0.7</td>
<td>4.6</td>
<td>99.9%</td>
</tr>
<tr>
<td>CH2</td>
<td>194.0</td>
<td>218.3</td>
<td>0.7</td>
<td>4.6</td>
<td>99.9%</td>
</tr>
</tbody>
</table>

Tested with:
- Control board build version: 3AXD100000451859 Rev.03.
- Power unit build version: 3AXD100000446920 Rev.03.
- Firmware build version: MicroFlex e190 Build 5850.1.34 and later.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCF</td>
<td>EN ISO 13849-1</td>
<td>Common Cause Failure (%)</td>
</tr>
<tr>
<td>DC</td>
<td>EN ISO 13849-1</td>
<td>Diagnostic Coverage</td>
</tr>
<tr>
<td>FIT</td>
<td>EN 61508</td>
<td>Failure In Time: 1×10^9 hours</td>
</tr>
<tr>
<td>HFT</td>
<td>EN 61508</td>
<td>Hardware Fault Tolerance</td>
</tr>
<tr>
<td>IGBT</td>
<td></td>
<td>Insulated-gate bipolar transistor: The electrical components that drive the motor power outputs</td>
</tr>
<tr>
<td>MTTF$_D$</td>
<td>EN ISO 13849-1</td>
<td>Mean Time to dangerous Failure: (The total number of life units) / (the number of dangerous, undetected failures) during a particular measurement interval under stated conditions</td>
</tr>
<tr>
<td>PFD</td>
<td>EN 61508</td>
<td>Probability of Failure on Demand</td>
</tr>
<tr>
<td>PFH</td>
<td>EN 61508</td>
<td>Probability of Dangerous Failures per Hour</td>
</tr>
<tr>
<td>PL</td>
<td>EN ISO 13849-1</td>
<td>Performance Level: Corresponds SIL, Levels a-e</td>
</tr>
<tr>
<td>PTI</td>
<td>EN 61508</td>
<td>Proof Test Interval</td>
</tr>
<tr>
<td>SFF</td>
<td>EN 61508</td>
<td>Safe Failure Fraction (%)</td>
</tr>
<tr>
<td>SIL</td>
<td>EN 61508</td>
<td>Safety Integrity Level</td>
</tr>
<tr>
<td>STO</td>
<td>EN 61800-5-2</td>
<td>Safe Torque Off</td>
</tr>
</tbody>
</table>

CE Declaration of Conformity

The declaration (3AXD10000540159) is available on the internet. See Document library on the Internet on page 177.

TÜV Certificate

The TÜV Certificate (3AXD10000540318) is available on the internet. See Document library on the Internet on page 177.
Further information

Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question.

Product training
For information on ABB product training, navigate to www.abb.com/drives and select Training courses.

Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Go to www.abb.com/drives and select Document Library – Manuals feedback form (LV AC drives).

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet. Go to www.abb.com/drives and select Document Library. You can browse the library or enter selection criteria, for example a document code, in the search field.