1. Safety note:
Warning! Installation by person with
electrotechnical expertise only.

Warning! Installation nur durch
elektrotechnische Fachkraft.

Avvertenza! Fare installare solo da un
elettricista qualificato.

Avertissement! Installation uniquement par
des personnes qualifiées en électrotechnique.

Advertencia! La instalación deberá ser
realizada únicamente por electricistas
especializados.

2. Application

2.1 Furse ESP WT Combined Type 1 & 2 Series
Protectors are suitable for use on wind
turbine distribution board(s) to protect the
three phase 690 V supply. They are suitable
for equipment bonding to protect wind
turbine electronics against damage from
flashover as a result of lightning.

Combined Type 1 and Type 2 protection
enables the ESP WT Series Protector to meet
the requirements for protecting wind turbine
electrical and electronic systems systems
connected to the 690 V supply in line with
DD CLC/TS 50539-2.

Note: Additional ESP mains power
Protectors should be installed on all
230/400V supplies within the wind turbine
to protect these lines. Furthermore, all data,
signal and telecommunications lines at risk
from lightning should be protected by a
suitable Furse ESP Protector - see Furse
Application Note AN015.

3. Installation

3.1 Location

ESP WT Protectors need to be installed very
close to the power supply to be protected.
ESP WT Protectors are installed in a set,
dependent on the system configuration (see
Figures 1 & 2, and Section 3.4). Installation will
usually be at the main power distribution
board, either inside it or right next to it in an
enclosure. Where the distance between the main
distribution board and any subsequent
distribution boards is less than 10 m, a single
set of ESP WT Protectors installed very close
to the 690 V power supply will suffice.

However, where the distance between the
main distribution board and subsequent
distribution board(s) within the wind turbine
exceeds 10 m, then a set of ESP WT
Protectors must be installed at each
distribution board (for example if the main
distribution board is in the wind turbine base,
but a further distribution board is installed in
the nacelle, over 10 m distant, both locations
must be protected).

Installation of ESP WT Protectors should also
be considered:
- between the main distribution board and
the transformer, where the transformer is
external to the wind turbine and the
distance between transformer and
distribution board exceeds 10 m
- at the 690 V supply line from the
generator to any distribution board,
where the distance exceeds 10 m

See Furse Application Note AN015 for further
information.

The ESP WT Protector includes a DIN foot
for mounting onto 35 mm top hat DIN rails.

3.2 Enclose the ESP Protector

The ESP WT Protector has exposed terminals
and therefore, for electrical safety, must be
installed within a distribution board or
enclosure. Suitable enclosures are available
from Furse.

Use cable glands to retain the enclosure’s IP
rating. ESP WT Protectors should always be installed
in a dry environment.

3.3 Parallel connection

The ESP WT Protector should be connected
in parallel with the supply to be protected
(see Figures 1 & 2). The connecting leads do not carry the load
current of the supply, only the current
associated with suppressing the transient
overvoltage.

Connecting leads to the ESP WT Protector
need to be kept short in order to minimise
additive inductive voltages.

3.4 Connection to phase, neutral and earth

Connections are made to each supply
conductor including earth.

Note: A separate ESP WT Protector
should be installed for each line (see Figures
1 & 2).

Connection can be made to either of the top
two terminals (marked L/N) of the ESP WT
Protector, for EITHER live (L) OR neutral (N)
connection as appropriate. However, there must only be one connection
per ESP WT Protector - DO NOT connect to
both terminals on a single protector (see
Figure 3).

... continued overleaf
Earth separate ESP WT Protectors using an appropriate Fuse Connecting & Earthing (CE) Bar, with the final connection to earth from a single ESP WT Protector.

Alternatively, where a Fuse Connecting & Earthing bar is unavailable, all ESP WT Protectors should be earthed from their earth terminal sited at the base of each ESP WT Protector to the local earth bar.

TN-S systems
Terminals must be connected to phase/live, neutral & earth. Install a separate ESP WT Protector for each phase/live connection and neutral (see Figure 1).

Earth separate ESP WT Protectors using an appropriate Fuse Connecting & EarTHING (CE) Bar, with the final connection to earth from a single ESP WT Protector.

Refer to the fuse manufacturer’s operating characteristics to ensure discrimination, particularly where an installation includes a mixture of types of fuse, or of fuses and circuit breakers.

Live:phase connecting leads can be fused by either:
- (a) installing appropriate high rupture capacity (HRC) fuses or switchfuses in the connecting leads at the supply end of the lead, or
- (b) installing an appropriate MCCB

TN-C systems
Terminals must be connected to phase/live & earth. Install a separate ESP WT Protector for each phase/live connection and neutral (see Figure 2).

Earth separate ESP WT Protectors using an appropriate Fuse Connecting & Earthing (CE) Bar, with the final connection to earth from a single ESP WT Protector.

Refer to the fuse manufacturer’s operating characteristics to ensure discrimination, particularly where an installation includes a mixture of types of fuse, or of fuses and circuit breakers.

Live:phase connecting leads can be fused by either:
- (a) installing appropriate high rupture capacity (HRC) fuses or switchfuses in the connecting leads at the supply end of the lead, or
- (b) installing an appropriate MCCB

3.5 Isolation
It is good practice to be able to isolate or disconnect the ESP WT Protector from the supply.

A means of isolation should therefore be installed in the connection to the ESP WT Protector.

Fusing the connection to the ESP WT Protector can be achieved through use of a switchfuse, MCCB or type ‘C’ MCB.

3.6 Fuse connecting leads
The connecting leads to the phase/live terminals of the ESP WT Protector should be fused.

This is to protect the connecting leads in the event of a short circuit.

The fuse to the ESP WT Protector (FSPD) should be lower than the upstream supply fuse FS by a sufficient enough factor to ensure fuse discrimination.

As a general guide a factor of at least 2 could be used (FSPD ≤ 0.5 FS), where the maximum fuse required to the ESP WT Protector is 250 Amps (if the supply fuse is 500 Amps or greater).

3.7 Size of connecting leads
The connecting leads between the terminals of the ESP WT Protector and the power supply, should be multi stranded conductor no less than 16 mm² (copper).

Note: The size of the connecting leads to the ESP WT Protector(s) must not be less than the size of leads of the associated system.

If required, the terminals on the ESP WT Protector will accept connecting leads of up to 25 mm².

During normal operation the status display is clear.

Should a fault occur, the supervision device disconnects the ESP WT Protector from the mains supply and displays a red indicator in the status window.

Note: After the supervision device has disconnected surge protection, the ESP WT Protector should be replaced to prevent the risk of flashover causing dangerous sparking and equipment damage.

3.8 Length of connecting leads
The connecting leads should be kept as short as possible and ideally should not exceed 25 cm (10 inches) from the busbars to the ESP WT Protector’s terminals.

ESP WT Protectors can be mounted upside down or on their side if this facilitates shorter connecting leads.

WARNING: The longer the connecting leads (between the mains cable or busbars and the terminals of the ESP WT Protector) the greater the additive voltage let-through by the installed protector. If the resultant let-through voltage is higher than the withstand voltage of the equipment to be protected, damage will result.

3.9 Bind connecting leads
Connecting leads should be tightly bound together using Ty-Raps®, tape or spiral wrap. This should be done for the entire length of the cable as far as is possible.

4. Protector operation/status indication
4.1 The ESP WT Protector includes an internal thermal supervision device which continually monitors its operation. Status is displayed via the front facing window.

During normal operation the status display is clear.

Should a fault occur, the supervision device disconnects the ESP WT Protector from the mains supply and displays a red indicator in the status window.

Note: After the supervision device has disconnected surge protection, the ESP WT Protector should be replaced to prevent the risk of flashover causing dangerous sparking and equipment damage.

5. Remote indication
5.1 A remote indication facility is provided for linking the ESP WT Protector to a management system/remote alarm. A volt free contact on the ESP WT Protector allows a remote alarm to be tripped if a fault develops within the protector. When a fault occurs terminals 11-12 (14 is NC) break contact and terminals 11-12 (12 is NO) make contact.

Note: Unless further specific surge protection is in place the signalling wires for remote alarm contact should only be routed inside the wind turbine, otherwise the overall surge protection may be affected.

5.2 The terminal for the volt free contact accepts 1.5 mm² cable and is located on the bottom of the ESP WT Protector.

6. Maintenance
6.1 Maintenance should be conducted at least once a year and also following lightning activity. Visually check:

(i) Status indication window (clear = ok, red = fault/disconnected)

(ii) Condition of connecting leads and terminations

7. Application notes
7.1 ESP coordination
ESP WT Series Protectors are designed to operate on 690 V wind turbine power systems. Additional Type 1 and Type 2 ESP Protectors should be installed to provide protection on the 230/400 V AC supply. ESP WT Series Protectors fully coordinate with ESP Type 1 units (such as ESP 415/XXX) on the same installation.

Always ensure ESP Protectors are used on the same installation to ensure coordination. Mixing ESP Protectors with alternative manufacturers’ units could result in damage to both protection units and connected equipment through poor coordination.

Note: For full system protection, data, signal and telecommunications lines within the wind turbine should also be protected against lightning risk. Refer to Fuse Application Note AN015 for further information regarding installation of Fuse ESP Protectors within wind turbines.

7.2 Insulation tests (flash testing)
The ESP WT Protector should be fully disconnected from the circuit before testing. Otherwise the ESP WT Protector will treat the insulation test as a transient overvoltage and control the voltage to a low level.

7.3 Use of powered screwdrivers
The use of powered screwdrivers is not recommended. Hand tighten connections. Maximum torque is 4.5 Nm for power terminals, with cable stripping length 11 mm. The torque rating for the remote contacts is 0.25 Nm and cable stripping length 7 mm.

Contact us

ABB Fuse
UK Office
Wilford Road
Nottingham NG2 1EB
Tel: +44 (0) 115 964 3700
Fax: +44 (0) 115 986 0071
National Sales Tel: +44 (0) 333 999 9900
National Sales Fax: +44 (0) 333 999 9901
E-Mail: enquiry@fuse.com

www.furse.com

Environment

Consider the protection of the environment! Used electrical and electronic equipment must NOT be disposed of with domestic waste. The device contains valuable raw materials which can be recycled. Therefore, contact ABB for disposal of this equipment.

© Copyright ABB. 11/2018 9AKK106713A1374