Get the competitive edge through the Stressometer flatness control health check. Evaluate performance and identify possibilities to enhance the flatness control.

Stressometer flatness control health check is a detailed and comprehensive evaluation of a Stressometer flatness control system. It is a key service for maintaining high measurement accuracy and flatness performance leading to optimal quality and yield.

Overview
Findings from the health check service are evaluated using the Quality Analysis Tool and documented in a Stressometer flatness control Health Check report that can be used to enhance mill performance and yield.

Benefits
- Secure best possible long-term performance and reliability of the Stressometer control system.
- Increases control system utilization and production yield.
- Detect malfunctioning actuators.

Features
- Valid for Stressometer System 7.0 and later.
- Verify roll alignment and make recommendations for correction if needed.
- Check dynamic effects on the measurement and make recommendations for correction and compensation if needed.
- Check thickness profiles of typical strips and make recommendations for flatness control improvements.
- Check cooling system performance and make recommendations for optimization.
- Check flatness influence from the shape of the work rolls. Make recommendations for improvements.
- Check of mechanical actuators. Make recommendations for optimal performance from minimum to maximum rolling speed.

Service duration
Stressometer flatness control health check: Typical 3 days on-site. Additional time for travel, preparation, analysis and reporting is needed.
Quality Analysis Tool

Result of Quality Analysis

<table>
<thead>
<tr>
<th>Strip width (mm)</th>
<th>0.0 - 1000.0</th>
<th>1000.0 - 1500.0</th>
<th>1500.0 - 2500.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 - 1.0</td>
<td>Actuator</td>
<td>In-Act (%)</td>
<td>In-Lim (%)</td>
</tr>
<tr>
<td></td>
<td>Stroking</td>
<td>98.6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>WNBend</td>
<td>98.6</td>
<td>1.3</td>
</tr>
<tr>
<td>1.0 - 5.0</td>
<td>Actuator</td>
<td>In-Act (%)</td>
<td>In-Lim (%)</td>
</tr>
<tr>
<td></td>
<td>Stroking</td>
<td>98.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>WNBend</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5.0 - 10.0</td>
<td>Actuator</td>
<td>In-Act (%)</td>
<td>In-Lim (%)</td>
</tr>
<tr>
<td></td>
<td>Stroking</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>WNBend</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Summary statistics

Overview

- **Actuators**
 - Q1-Q4 classification

Q1-Q4 classification

- **Configuration limits**
 - Q1: 6.0 Units
 - Q2: 4.0 Units
 - Q3: 2.0 Units
 - Q4: 0.0 Units

Note: We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

For more information please contact:

ABB AB

Measurement & Analytics

Force Measurement

S-721 59 Västerås, Sweden

Phone: +46 21 32 50 00

www.abb.com/stressometer

Copyright © 2016 ABB

All rights reserved.