Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Open Source Software

This product contains open source software. For license information refer to product documentation at www.abb.com.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

www.abb.com/relion
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network. It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of anti virus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2014/30/EU) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2014/35/EU). This conformity is the result of tests conducted by the third party testing laboratory Intertek in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.
Safety information

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Non-observance can result in death, personal injury or substantial property damage.

Only a competent electrician is allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed.

The frame of the protection relay has to be carefully earthed.

The protection relay contains components which are sensitive to electrostatic discharge. Unnecessary touching of electronic components must therefore be avoided.

Whenever changes are made in the protection relay, measures should be taken to avoid inadvertent tripping.
Table of contents

Section 1 Introduction
- This manual................................. 5
- Intended audience........................... 5
- Product documentation..................... 6
 - Product documentation set................ 6
 - Document revision history............... 6
 - Related documentation.................. 6
- Symbols and conventions.................... 7
 - Symbols...................................... 7
 - Document conventions.................... 7
 - Functions, codes and symbols............. 8

Section 2 Relay engineering process
- Monitoring and control system structure... 18
- Default configuration........................ 19
- Workflow.. 20

Section 3 PCM600
- Connectivity packages....................... 24
- PCM600 and relay connectivity package version... 24
 - Installing connectivity packages........ 24
 - Installing connectivity packages by using the connectivity package installer... 25
 - Installing connectivity packages by using Update Manager... 25
 - Activating connectivity packages......... 26
- PCM600 projects.............................. 27
- Technical key.................................. 28
 - IEC 61850 naming conventions for an IED... 29
 - Setting technical key....................... 30
- Communication between PCM600 and protection relay...... 32
 - Setting up IP addresses................... 33
- IED Update...................................... 34
 - Prerequisites for local and remote updates... 34
 - Updating firmware or language............ 35

Section 4 Setting up a project
- Creating a new project...................... 41
- Building the plant structure................ 42
- IED insertion.................................. 43
 - Inserting an IED in online mode........... 44
Section 5 Protection and control engineering

Application Configuration
 Function blocks
 Signals and signal management
 Function block execution parameters
 Execution order and feedback loops
 Configuration parameters
 Connections and variables
 Hardware channels
 User-customized I/O channel configuration
 Online monitoring
 Validation
 Validation when creating application configuration
 Validation on demand
 Validation when writing to protection relay
 Configuration load calculation

Parameter Setting
 Configuration parameter
 Setting parameter
 Setting group
 Parameter import and export
 Parameter organization

Signal Matrix

Load Profile tool
 Opening and closing Load Profile tool
 Load Profile tool user interface
 Information fields

Fault Record tool
 Opening and closing Fault Record tool
 Fault Record tool interface

IED Compare
 Starting IED Compare
 IED Compare interface
Table of contents

Protection and control blocking examples .. 92
Protection blocking example ... 93
Control blocking example ... 94

Section 6 LHMI engineering .. 95

Section 6 LHMI engineering... 95
Graphical Display Editor .. 95
Creating complete LHMI page configuration ... 95
ABB built-in pages .. 96
Measurements page .. 96
Phasors page ... 99
Page Organizer .. 102
Main pages and linked pages ... 103
Templates ... 103
Creating pages ... 103
Changing page order ... 105
Creating templates .. 105
Page Editor ... 105
Adding widgets ... 106
Configuring pages .. 107
Symbol Editor .. 108
Symbols ... 108
Creating custom symbols .. 109
Creating categories .. 113
Creating states ... 113
SLD Editor .. 114
Adding bus bars .. 115
Managing bus bar coloring .. 116
Adding symbols to an SLD page ... 117
Creating SLD pages .. 119
Language Translation .. 120
Saving, reading and writing configuration to IED .. 121
Previewing configuration .. 122
GDE configuration export and import ... 122
Exporting GDE configuration ... 122
Importing GDE configuration ... 123
HMI Event Filtering ... 125
Starting HMI Event Filtering .. 125
Setting visibility of HMI events ... 126
Saving event filter configuration ... 127
Alarm configuration ... 127
Alarm list .. 127
Elevating events to alarms ... 127
Searching for events and alarms ... 129
Saving HMI alarm and fault selection ... 129
Table of contents

<table>
<thead>
<tr>
<th>Section 7 IEC 61850 communication engineering</th>
<th>131</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61850 protocol references and pre-conditions</td>
<td>131</td>
</tr>
<tr>
<td>IEC 61850 interface</td>
<td>131</td>
</tr>
<tr>
<td>IEC 61850 interface in the protection relay</td>
<td>132</td>
</tr>
<tr>
<td>GOOSE data exchange</td>
<td>132</td>
</tr>
<tr>
<td>Function view for IEC 61850 in PCM600</td>
<td>133</td>
</tr>
<tr>
<td>Station configuration description file types</td>
<td>134</td>
</tr>
<tr>
<td>IEC 61850 engineering process</td>
<td>134</td>
</tr>
<tr>
<td>Exporting SCL files from PCM600</td>
<td>135</td>
</tr>
<tr>
<td>Exporting SCD files</td>
<td>135</td>
</tr>
<tr>
<td>Exporting ICD or CID files</td>
<td>137</td>
</tr>
<tr>
<td>Engineering vertical and horizontal communication</td>
<td>138</td>
</tr>
<tr>
<td>Importing SCL files to PCM600</td>
<td>140</td>
</tr>
<tr>
<td>Importing SCD files</td>
<td>141</td>
</tr>
<tr>
<td>Importing ICD or CID files</td>
<td>142</td>
</tr>
<tr>
<td>Writing communication configuration to IED</td>
<td>143</td>
</tr>
</tbody>
</table>

| Section 8 Glossary | 145 |
Section 1 Introduction

1.1 This manual

The engineering manual contains instructions on how to engineer the protection relays using the different tools in PCM600. The manual provides instructions on how to set up a PCM600 project and insert relays to the project structure. The manual also recommends a sequence for engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 61850 and other supported protocols.

1.2 Intended audience

This manual addresses system and project engineers involved in the engineering process of a project, and installation and commissioning personnel, who use technical data during engineering, installation and commissioning, and in normal service.

The system engineer must have a thorough knowledge of the application, protection and control equipment and the configured functional logic in the relays. The installation and commissioning personnel must have a basic knowledge of handling electronic equipment.
1.3 Product documentation

1.3.1 Product documentation set

Figure 1: The intended use of documents during the product life cycle

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision/date</th>
<th>Product connectivity level (PCL)</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/2019-05-08</td>
<td>1</td>
<td>First release</td>
</tr>
</tbody>
</table>

1.3.3 Related documentation

<table>
<thead>
<tr>
<th>Name of the document</th>
<th>Document ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>TISSUES Implementation Conformance Statement (TICS) for the IEC 61850 interface in REX640</td>
<td>1MRS759027</td>
</tr>
<tr>
<td>Protocol Implementation extra Information for Testing (PIXIT) for the IEC 61850 interface in REX640</td>
<td>1MRS759030</td>
</tr>
<tr>
<td>Protocol Implementation extra Information for Testing (PIXIT) for the IEC 61850 9–2LE interface in REX640</td>
<td>1MRS759037</td>
</tr>
<tr>
<td>Protocol Implementation Conformance Statement (PICS) for the IEC 61850 interface in REX640</td>
<td>1MRS759029</td>
</tr>
<tr>
<td>IEC 61850 Ed2 Model Implementation Conformance Statement (MICS) for REX640</td>
<td>1MRS759028</td>
</tr>
</tbody>
</table>
1.4 Symbols and conventions

1.4.1 Symbols

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Document conventions

A particular convention may not be used in this manual.

- Abbreviations and acronyms are spelled out in the glossary. The glossary also contains definitions of important terms.
- Menu paths are presented in bold. Select *Main menu/Settings*.
- Parameter names are shown in italics. The function can be enabled and disabled with the *Operation* setting.
- Parameter values are indicated with quotation marks. The corresponding parameter values are "On" and "Off".
- Input/output messages and monitored data names are shown in Courier font. When the function starts, the *START* output is set to TRUE.
- This document assumes that the parameter setting visibility is "Advanced".
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance protection</td>
<td>DSTPDIS</td>
<td>Z<</td>
<td>21P,21N</td>
</tr>
<tr>
<td>Local acceleration logic</td>
<td>DSTPLAL</td>
<td>LAL</td>
<td>21LAL</td>
</tr>
<tr>
<td>Scheme communication logic</td>
<td>DSOCPSCH</td>
<td>CL</td>
<td>85 21SCHLGC</td>
</tr>
<tr>
<td>Current reversal and weak-end infeed logic</td>
<td>CRWPSCH</td>
<td>CLCRW</td>
<td>85 21CREV,WEI</td>
</tr>
<tr>
<td>Communication logic for residual overcurrent</td>
<td>RESCPSCH</td>
<td>CLN</td>
<td>85 67G/N SCHLGC</td>
</tr>
<tr>
<td>Current reversal and weak-end infeed logic for residual overcurrent</td>
<td>RCRWPSCH</td>
<td>CLCRWN</td>
<td>85 67G/N CREV,WEI</td>
</tr>
<tr>
<td>Line differential protection with inzone power transformer</td>
<td>LNPLDF</td>
<td>3Id/I></td>
<td>87L</td>
</tr>
<tr>
<td>Binary signal transfer</td>
<td>BSTGAPC</td>
<td>BST</td>
<td>BST</td>
</tr>
<tr>
<td>Switch-onto-fault protection</td>
<td>CVPSOF</td>
<td>CVPSOF</td>
<td>SOFT</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, low stage</td>
<td>PHLPTOC</td>
<td>3I></td>
<td>51P-1</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage</td>
<td>PHHPTOC</td>
<td>3I>>></td>
<td>51P-2</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, instantaneous stage</td>
<td>PHIPTOC</td>
<td>3I>>>></td>
<td>50P</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, low stage</td>
<td>DPHLPDOC</td>
<td>3I> -></td>
<td>67P/51P-1</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, high stage</td>
<td>DPHHPDOC</td>
<td>3I>>> -></td>
<td>67P/51P-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage</td>
<td>EFLPTOC</td>
<td>Io></td>
<td>51G/51N-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage</td>
<td>EFHPTOC</td>
<td>Io>>></td>
<td>51G/51N-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, instantaneous stage</td>
<td>EFIPTOC</td>
<td>Io>>>></td>
<td>50G/50N</td>
</tr>
<tr>
<td>Directional earth-fault protection, low stage</td>
<td>DEFLPDEF</td>
<td>Io> -></td>
<td>67G/N-1 51G/N-1</td>
</tr>
<tr>
<td>Directional earth-fault protection, high stage</td>
<td>DEFHDEF</td>
<td>Io>>> -></td>
<td>67G/N-1 51G/N-2</td>
</tr>
<tr>
<td>Three-phase power directional element</td>
<td>DPSRDIR</td>
<td>I1 -></td>
<td>67P-TC</td>
</tr>
<tr>
<td>Neutral power directional element</td>
<td>DNZSRDIR</td>
<td>I2 ->, Io -></td>
<td>67N-TC</td>
</tr>
<tr>
<td>Admittance-based earth-fault protection</td>
<td>EFPADM</td>
<td>Yo> -></td>
<td>21NY</td>
</tr>
<tr>
<td>Multifrequency admittance-based earth-fault protection</td>
<td>MFADPSDE</td>
<td>Io> -> Y</td>
<td>67NYH</td>
</tr>
<tr>
<td>Wattmetric-based earth-fault protection</td>
<td>WPWDE</td>
<td>Po> -></td>
<td>32N</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient/intermittent earth-fault protection</td>
<td>INTRPTEF</td>
<td>I0 -> IEF</td>
<td>67NTEF/NIEF</td>
</tr>
<tr>
<td>Harmonics-based earth-fault protection</td>
<td>HAEFPDOC</td>
<td>I0 -> HA</td>
<td>51NH</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection</td>
<td>NSPTOC</td>
<td>I2 > M</td>
<td>46M</td>
</tr>
<tr>
<td>Phase discontinuity protection</td>
<td>PDNSPTOC</td>
<td>I2/I1></td>
<td>46PD</td>
</tr>
<tr>
<td>Residual overvoltage protection</td>
<td>RVPTOV</td>
<td>U0></td>
<td>59G/59N</td>
</tr>
<tr>
<td>Three-phase undervoltage protection</td>
<td>PHPTUV</td>
<td>3U<</td>
<td>27</td>
</tr>
<tr>
<td>Three-phase overvoltage variation protection</td>
<td>PHVPTOV</td>
<td>3Urms></td>
<td>59.S1</td>
</tr>
<tr>
<td>Three-phase overvoltage protection</td>
<td>PHPTOV</td>
<td>3U></td>
<td>59</td>
</tr>
<tr>
<td>Positive-sequence overvoltage protection</td>
<td>PSPTOV</td>
<td>U1></td>
<td>59PS</td>
</tr>
<tr>
<td>Positive-sequence undervoltage protection</td>
<td>PSPTUV</td>
<td>U1<</td>
<td>27PS</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection</td>
<td>NSPTOV</td>
<td>U2></td>
<td>59NS</td>
</tr>
<tr>
<td>Frequency protection</td>
<td>FRPFRQ</td>
<td>f> / f<, df/dt</td>
<td>81</td>
</tr>
<tr>
<td>Three-phase voltage-dependent overcurrent protection</td>
<td>PHPVOC</td>
<td>3I(U)></td>
<td>51V</td>
</tr>
<tr>
<td>Overexcitation protection</td>
<td>OEPVPH</td>
<td>U/f></td>
<td>24</td>
</tr>
<tr>
<td>Three-phase thermal protection for feeders, cables and distribution transformers</td>
<td>T1PTTR</td>
<td>3Ith>F</td>
<td>49F</td>
</tr>
<tr>
<td>Three-phase thermal overload protection</td>
<td>T2PTTR</td>
<td>3Ith>T/G/C</td>
<td>49T/G/C</td>
</tr>
<tr>
<td>Three-phase overload protection for shunt capacitor banks</td>
<td>COLPTOC</td>
<td>3I> 3I<</td>
<td>51,37,86C</td>
</tr>
<tr>
<td>Current unbalance protection for shunt capacitor banks</td>
<td>CUBPTOC</td>
<td>dl>C</td>
<td>60N</td>
</tr>
<tr>
<td>Three-phase current unbalance protection for shunt capacitor banks</td>
<td>HCUBPTOC</td>
<td>3dl>C</td>
<td>60P</td>
</tr>
<tr>
<td>Shunt capacitor bank switching resonance protection, current based</td>
<td>SRCPTOC</td>
<td>TD></td>
<td>55I/THD</td>
</tr>
<tr>
<td>Compensated neutral unbalance voltage protection</td>
<td>CNUPTOV</td>
<td>CNU></td>
<td>59NU</td>
</tr>
<tr>
<td>Directional negative-sequence overcurrent protection</td>
<td>DNSPDPC</td>
<td>I2> -></td>
<td>67Q</td>
</tr>
<tr>
<td>Low-voltage ride-through protection</td>
<td>LVRTPTUV</td>
<td>UU</td>
<td>27RT</td>
</tr>
<tr>
<td>Voltage vector shift protection</td>
<td>VVSPPAM</td>
<td>VS</td>
<td>78VS</td>
</tr>
<tr>
<td>Directional reactive power undervoltage protection</td>
<td>DQPTUV</td>
<td>Q> ->, 3U<</td>
<td>32Q,27</td>
</tr>
<tr>
<td>Reverse power/directional overpower protection</td>
<td>DOPPDPR</td>
<td>P>/Q></td>
<td>32R/32O</td>
</tr>
<tr>
<td>Underpower protection</td>
<td>DUPPDPR</td>
<td>P<</td>
<td>32U</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-phase underimpedance protection</td>
<td>UZPDIS</td>
<td>ZZ</td>
<td>21G</td>
</tr>
<tr>
<td>Three-phase underexcitation protection</td>
<td>UEXPDIS</td>
<td>X<</td>
<td>40</td>
</tr>
<tr>
<td>Third harmonic-based stator earth-fault protection</td>
<td>H3EFPSEF</td>
<td>dUo>/Uo3H</td>
<td>64TN</td>
</tr>
<tr>
<td>Rotor earth-fault protection (injection method)</td>
<td>MREFPTOC</td>
<td>Io>R</td>
<td>64R</td>
</tr>
<tr>
<td>High-impedance or flux-balance based differential protection</td>
<td>MHZPDIF</td>
<td>3dlHi>M</td>
<td>87HIM</td>
</tr>
<tr>
<td>Out-of-step protection with double blenders</td>
<td>OOSRPSB</td>
<td>OOS</td>
<td>78PS</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection for machines</td>
<td>MNSPTOC</td>
<td>I2>M</td>
<td>46M</td>
</tr>
<tr>
<td>Loss of phase, undercurrent</td>
<td>PHPTUC</td>
<td>3i<</td>
<td>37</td>
</tr>
<tr>
<td>Loss of load supervision</td>
<td>LOFLPTUC</td>
<td>3i<</td>
<td>37</td>
</tr>
<tr>
<td>Motor load jam protection</td>
<td>JAMPTOC</td>
<td>Ist></td>
<td>50TDJAM</td>
</tr>
<tr>
<td>Motor start-up supervision</td>
<td>STTPMSU</td>
<td>Is2t n<</td>
<td>49,66,48,50TDLR</td>
</tr>
<tr>
<td>Motor start counter</td>
<td>MSCPMRI</td>
<td>n<</td>
<td>66</td>
</tr>
<tr>
<td>Phase reversal protection</td>
<td>PREVPTOC</td>
<td>I2>></td>
<td>46R</td>
</tr>
<tr>
<td>Thermal overload protection for motors</td>
<td>MPTTR</td>
<td>3Ith>M</td>
<td>49M</td>
</tr>
<tr>
<td>Stabilized and instantaneous differential protection for machines</td>
<td>MPDIF</td>
<td>3dl>M/G</td>
<td>87M/87G</td>
</tr>
<tr>
<td>Underpower factor protection</td>
<td>MPUPF</td>
<td>PF<</td>
<td>55U</td>
</tr>
<tr>
<td>Stabilized and instantaneous differential protection for two- or three-winding transformers</td>
<td>TR3PTDF</td>
<td>3dl>3W</td>
<td>87T3</td>
</tr>
<tr>
<td>Stabilized and instantaneous differential protection for two-winding transformers</td>
<td>TR2PTDF</td>
<td>3dl>T</td>
<td>87T</td>
</tr>
<tr>
<td>Numerical stabilized low-impedance restricted earth-fault protection</td>
<td>LREFPNDF</td>
<td>dloLo></td>
<td>87NLI</td>
</tr>
<tr>
<td>High-impedance based restricted earth-fault protection</td>
<td>HREFPDIF</td>
<td>dloHi></td>
<td>87NHI</td>
</tr>
<tr>
<td>High-impedance differential protection for phase A</td>
<td>HIAPDIF</td>
<td>dHi_A></td>
<td>87_A</td>
</tr>
<tr>
<td>High-impedance differential protection for phase B</td>
<td>HIBPDIF</td>
<td>dHi_B></td>
<td>87_B</td>
</tr>
<tr>
<td>High-impedance differential protection for phase C</td>
<td>HICPDIF</td>
<td>dHi_C></td>
<td>87_C</td>
</tr>
<tr>
<td>Circuit breaker failure protection</td>
<td>CCBRBRF</td>
<td>3I>/Io>BF</td>
<td>50BF</td>
</tr>
<tr>
<td>Three-phase inrush detector</td>
<td>INRPHAR</td>
<td>3I2></td>
<td>68HB</td>
</tr>
<tr>
<td>Master trip</td>
<td>TRPPTRC</td>
<td>Master Trip</td>
<td>94/86</td>
</tr>
<tr>
<td>Arc protection</td>
<td>ARCSARC</td>
<td>ARC</td>
<td>AFD</td>
</tr>
<tr>
<td>High-impedance fault detection</td>
<td>PHIZ</td>
<td>HIIF</td>
<td>HIIZ</td>
</tr>
<tr>
<td>Function</td>
<td>IEC 61850</td>
<td>IEC 60617</td>
<td>ANSI</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Fault locator</td>
<td>SCEFRFLO</td>
<td>FLOC</td>
<td>FLOC</td>
</tr>
<tr>
<td>Load-shedding and restoration</td>
<td>LSHDPFRQ</td>
<td>UFLS/R</td>
<td>81LSH</td>
</tr>
<tr>
<td>Multipurpose protection</td>
<td>MAPGAPC</td>
<td>MAP</td>
<td>MAP</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breaker control</td>
<td>CBXCBR</td>
<td>I <-> O CB</td>
<td>52</td>
</tr>
<tr>
<td>Three-state disconnector control</td>
<td>P3XSXSWI</td>
<td>I <-> O P3S</td>
<td>29DS/GS</td>
</tr>
<tr>
<td>Disconnector control</td>
<td>DCXSWI</td>
<td>I <-> O DCC</td>
<td>29DS</td>
</tr>
<tr>
<td>Earthing switch control</td>
<td>ESXSWI</td>
<td>I <-> O ESC</td>
<td>29GS</td>
</tr>
<tr>
<td>Three-state disconnector position indication</td>
<td>P3SSXSXSWI</td>
<td>I <-> O P3SS</td>
<td>29DS/GS</td>
</tr>
<tr>
<td>Disconnector position indication</td>
<td>DCSXSWI</td>
<td>I <-> O DC</td>
<td>29DS</td>
</tr>
<tr>
<td>Earthing switch position indication</td>
<td>ESSXSWI</td>
<td>I <-> O ES</td>
<td>29GS</td>
</tr>
<tr>
<td>Emergency start-up</td>
<td>ESMGAPC</td>
<td>ESTART</td>
<td>EST,62</td>
</tr>
<tr>
<td>Autoreclosing</td>
<td>DARREC</td>
<td>O -> I</td>
<td>79</td>
</tr>
<tr>
<td>Autosynchronizer for generator breaker</td>
<td>ASGCSYN</td>
<td>AUTOSYNCG</td>
<td>25AUTOSYNCG</td>
</tr>
<tr>
<td>Autosynchronizer for network breaker</td>
<td>ASNCSYN</td>
<td>AUTOSYNCBT/T</td>
<td>25AUTOSYNCBT/T</td>
</tr>
<tr>
<td>Autosynchronizer co-ordinator</td>
<td>ASCGAPC</td>
<td>AUTOSYN</td>
<td>25AUTOSYN</td>
</tr>
<tr>
<td>Synchronism and energizing check</td>
<td>SECRSYN</td>
<td>SYNC</td>
<td>25</td>
</tr>
<tr>
<td>Tap changer control with voltage regulator</td>
<td>OLSATCC</td>
<td>COLTC</td>
<td>90V</td>
</tr>
<tr>
<td>Transformer data combiner</td>
<td>OLGAPC</td>
<td>OLGAPC</td>
<td>OLGAPC</td>
</tr>
<tr>
<td>Petersen coil controller</td>
<td>PASANCR</td>
<td>ANCR</td>
<td>90</td>
</tr>
<tr>
<td>Condition monitoring and supervision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breaker condition monitoring</td>
<td>SSCBR</td>
<td>CBCM</td>
<td>52CM</td>
</tr>
<tr>
<td>Hot-spot and insulation ageing rate monitoring for transformers</td>
<td>HSARSPTTR</td>
<td>3i hp>T</td>
<td>26/49HS</td>
</tr>
<tr>
<td>Trip circuit supervision</td>
<td>TCSSCBR</td>
<td>TCS</td>
<td>TCM</td>
</tr>
<tr>
<td>Current circuit supervision</td>
<td>CCSPVC</td>
<td>MCS 3I</td>
<td>CCM</td>
</tr>
<tr>
<td>Current circuit supervision for transformers</td>
<td>CTSRCTF</td>
<td>MCS 3I,i2</td>
<td>CCM 3I,i2</td>
</tr>
<tr>
<td>Current transformer supervision for high-impedance protection scheme for phase A</td>
<td>HZCCASPVC</td>
<td>MCS I_A</td>
<td>CCM_A</td>
</tr>
<tr>
<td>Current transformer supervision for high-impedance protection scheme for phase B</td>
<td>HZCCBSPVC</td>
<td>MCS I_B</td>
<td>CCM_B</td>
</tr>
<tr>
<td>Current transformer supervision for high-impedance protection scheme for phase C</td>
<td>HZCCCSPVC</td>
<td>MCS I_C</td>
<td>CCM_C</td>
</tr>
<tr>
<td>Fuse failure supervision</td>
<td>SEQSPVC</td>
<td>FUSEF</td>
<td>VCM, 60</td>
</tr>
<tr>
<td>Protection communication supervision</td>
<td>PCSITPC</td>
<td>PCS</td>
<td>PCS</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime counter for machines and devices</td>
<td>MDSOPT</td>
<td>OPTS</td>
<td>OPTM</td>
</tr>
<tr>
<td>Three-phase remanent undervoltage supervision</td>
<td>MSVPR</td>
<td>3U<R</td>
<td>27R</td>
</tr>
</tbody>
</table>

Measurement

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-phase current measurement</td>
<td>CMMXU</td>
<td>3I</td>
<td>IA, IB, IC</td>
</tr>
<tr>
<td>Sequence current measurement</td>
<td>CSMSQI</td>
<td>I1, I2, I0</td>
<td>I1, I2, I0</td>
</tr>
<tr>
<td>Residual current measurement</td>
<td>RESCMMXU</td>
<td>Io</td>
<td>IG</td>
</tr>
<tr>
<td>Three-phase voltage measurement</td>
<td>VMMXU</td>
<td>3U</td>
<td>VA, VB, VC</td>
</tr>
<tr>
<td>Single-phase voltage measurement</td>
<td>VAMMXU</td>
<td>U_A</td>
<td>V_A</td>
</tr>
<tr>
<td>Residual voltage measurement</td>
<td>RESVMMXU</td>
<td>Uo</td>
<td>VG/VN</td>
</tr>
<tr>
<td>Sequence voltage measurement</td>
<td>VSMSQI</td>
<td>U1, U2, U0</td>
<td>V1, V2, V0</td>
</tr>
<tr>
<td>Three-phase power and energy measurement</td>
<td>PEMMXU</td>
<td>P, E</td>
<td>P, E</td>
</tr>
<tr>
<td>Load profile recorder</td>
<td>LDPRLRC</td>
<td>LOADPROF</td>
<td>LOADPROF</td>
</tr>
<tr>
<td>Frequency measurement</td>
<td>FMMXU</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Tap changer position indication</td>
<td>TPOSYLTC</td>
<td>TPOSM</td>
<td>84T</td>
</tr>
</tbody>
</table>

Power quality

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current total demand, harmonic distortion, DC component (TDD, THD, DC) and individual harmonics</td>
<td>CHMHAI</td>
<td>PQM3IH</td>
<td>PQM ITHD,IDC</td>
</tr>
<tr>
<td>Voltage total harmonic distortion, DC component (THD, DC) and individual harmonics</td>
<td>VHMHAI</td>
<td>PQM3VH</td>
<td>PQM VTHD,VDC</td>
</tr>
<tr>
<td>Voltage variation</td>
<td>PHQVVR</td>
<td>PQMU</td>
<td>PQMV SWE,SAG,INT</td>
</tr>
<tr>
<td>Voltage unbalance</td>
<td>VSQVUB</td>
<td>PQUUB</td>
<td>PQMV UB</td>
</tr>
</tbody>
</table>

Traditional LED indication

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED indication control</td>
<td>LEDPTRC</td>
<td>LEDPTRC</td>
<td>LEDPTRC</td>
</tr>
<tr>
<td>Virtual programmable LED control</td>
<td>LED</td>
<td>LED</td>
<td>LED</td>
</tr>
</tbody>
</table>

Logging functions

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbance recorder (common functionality)</td>
<td>RDRE</td>
<td>DR</td>
<td>DFR</td>
</tr>
<tr>
<td>Disturbance recorder, analog channels 1...12</td>
<td>A1RADR</td>
<td>A1RADR</td>
<td>A1RADR</td>
</tr>
<tr>
<td>Disturbance recorder, analog channels 13...24</td>
<td>A2RADR</td>
<td>A2RADR</td>
<td>A2RADR</td>
</tr>
<tr>
<td>Disturbance recorder, binary channels 1...32</td>
<td>B1RBDR</td>
<td>B1RBDR</td>
<td>B1RBDR</td>
</tr>
<tr>
<td>Disturbance recorder, binary channels 33...64</td>
<td>B2RBDR</td>
<td>B2RBDR</td>
<td>B2RBDR</td>
</tr>
<tr>
<td>Fault recorder</td>
<td>FLTRFRC</td>
<td>FAULTREC</td>
<td>FR</td>
</tr>
</tbody>
</table>

Other functionality

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter setting groups</td>
<td>PROTECTION</td>
<td>PROTECTION</td>
<td>PROTECTION</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time master supervision</td>
<td>GNRLTMS</td>
<td>GNRLTMS</td>
<td>GNRLTMS</td>
</tr>
<tr>
<td>Serial port supervision</td>
<td>SERLCCH</td>
<td>SERLCCH</td>
<td>SERLCCH</td>
</tr>
<tr>
<td>IEC 61850-1 MMS</td>
<td>MMSLPRT</td>
<td>MMSLPRT</td>
<td>MMSLPRT</td>
</tr>
<tr>
<td>IEC 61850-1 GOOSE</td>
<td>GSELPRT</td>
<td>GSELPRT</td>
<td>GSELPRT</td>
</tr>
<tr>
<td>DNP3 protocol</td>
<td>DNPLPRT</td>
<td>DNPLPRT</td>
<td>DNPLPRT</td>
</tr>
<tr>
<td>Modbus protocol</td>
<td>MBSLPRT</td>
<td>MBSLPRT</td>
<td>MBSLPRT</td>
</tr>
<tr>
<td>OR gate with two inputs</td>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>OR gate with six inputs</td>
<td>OR6</td>
<td>OR6</td>
<td>OR6</td>
</tr>
<tr>
<td>OR gate with twenty inputs</td>
<td>OR20</td>
<td>OR20</td>
<td>OR20</td>
</tr>
<tr>
<td>AND gate with two inputs</td>
<td>AND</td>
<td>AND</td>
<td>AND</td>
</tr>
<tr>
<td>AND gate with six inputs</td>
<td>AND6</td>
<td>AND6</td>
<td>AND6</td>
</tr>
<tr>
<td>AND gate with twenty inputs</td>
<td>AND20</td>
<td>AND20</td>
<td>AND20</td>
</tr>
<tr>
<td>XOR gate with two inputs</td>
<td>XOR</td>
<td>XOR</td>
<td>XOR</td>
</tr>
<tr>
<td>NOT gate</td>
<td>NOT</td>
<td>NOT</td>
<td>NOT</td>
</tr>
<tr>
<td>Real maximum value selector</td>
<td>MAX3R</td>
<td>MAX3R</td>
<td>MAX3R</td>
</tr>
<tr>
<td>Real minimum value selector</td>
<td>MIN3R</td>
<td>MIN3R</td>
<td>MIN3R</td>
</tr>
<tr>
<td>Rising edge detector</td>
<td>R_TRIG</td>
<td>R_TRIG</td>
<td>R_TRIG</td>
</tr>
<tr>
<td>Falling edge detector</td>
<td>F_TRIG</td>
<td>F_TRIG</td>
<td>F_TRIG</td>
</tr>
<tr>
<td>Real switch selector</td>
<td>SWITCHR</td>
<td>SWITCHR</td>
<td>SWITCHR</td>
</tr>
<tr>
<td>Integer 32-bit switch selector</td>
<td>SWITCHI32</td>
<td>SWITCHI32</td>
<td>SWITCHI32</td>
</tr>
<tr>
<td>SR flip-flop, volatile</td>
<td>SR</td>
<td>SR</td>
<td>SR</td>
</tr>
<tr>
<td>RS flip-flop, volatile</td>
<td>RS</td>
<td>RS</td>
<td>RS</td>
</tr>
<tr>
<td>Minimum pulse timer, two channels</td>
<td>TPGAPC</td>
<td>TP</td>
<td>62TP</td>
</tr>
<tr>
<td>Minimum pulse timer second resolution, two channels</td>
<td>TPSGAPC</td>
<td>TPS</td>
<td>62TPS</td>
</tr>
<tr>
<td>Minimum pulse timer minutes resolution, two channels</td>
<td>TPMGAPC</td>
<td>TPM</td>
<td>62TPM</td>
</tr>
<tr>
<td>Pulse counter for energy measurement</td>
<td>PCGAPC</td>
<td>PCGAPC</td>
<td>PCGAPC</td>
</tr>
<tr>
<td>Pulse timer, eight channels</td>
<td>PTGAPC</td>
<td>PT</td>
<td>62PT</td>
</tr>
<tr>
<td>Time delay off, eight channels</td>
<td>TOFGAPC</td>
<td>TOF</td>
<td>62TOF</td>
</tr>
<tr>
<td>Time delay on, eight channels</td>
<td>TONGLAPC</td>
<td>TON</td>
<td>62TON</td>
</tr>
<tr>
<td>Daily timer</td>
<td>DTMGAPC</td>
<td>DTM</td>
<td>DTM</td>
</tr>
<tr>
<td>Calendar function</td>
<td>CALGAPC</td>
<td>CAL</td>
<td>CAL</td>
</tr>
<tr>
<td>SR flip-flop, eight channels, nonvolatile</td>
<td>SRGAPC</td>
<td>SR</td>
<td>SR</td>
</tr>
<tr>
<td>Boolean value event creation</td>
<td>MVGAPC</td>
<td>MV</td>
<td>MV</td>
</tr>
<tr>
<td>Integer value event creation</td>
<td>MVI4GAPC</td>
<td>MVI4</td>
<td>MVI4</td>
</tr>
<tr>
<td>Analog value event creation with scaling</td>
<td>SCA4GAPC</td>
<td>SCA4</td>
<td>SCA4</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic control points</td>
<td>SPCGAPC</td>
<td>SPC</td>
<td>SPCG</td>
</tr>
<tr>
<td>Generic up-down counter</td>
<td>UDFCNT</td>
<td>UDCNT</td>
<td>UDCNT</td>
</tr>
<tr>
<td>Local/Remote control</td>
<td>CONTROL</td>
<td>CONTROL</td>
<td>CONTROL</td>
</tr>
<tr>
<td>External HMI wake-up</td>
<td>EIHMI</td>
<td>EIHMI</td>
<td>EIHMI</td>
</tr>
<tr>
<td>Real addition</td>
<td>ADDR</td>
<td>ADDR</td>
<td>ADDR</td>
</tr>
<tr>
<td>Real subtraction</td>
<td>SUBR</td>
<td>SUBR</td>
<td>SUBR</td>
</tr>
<tr>
<td>Real multiplication</td>
<td>MULR</td>
<td>MULR</td>
<td>MULR</td>
</tr>
<tr>
<td>Real division</td>
<td>DIVR</td>
<td>DIVR</td>
<td>DIVR</td>
</tr>
<tr>
<td>Real equal comparator</td>
<td>EQR</td>
<td>EQR</td>
<td>EQR</td>
</tr>
<tr>
<td>Real not equal comparator</td>
<td>NER</td>
<td>NER</td>
<td>NER</td>
</tr>
<tr>
<td>Real greater than or equal comparator</td>
<td>GER</td>
<td>GER</td>
<td>GER</td>
</tr>
<tr>
<td>Real less than or equal comparator</td>
<td>LER</td>
<td>LER</td>
<td>LER</td>
</tr>
<tr>
<td>Voltage switch</td>
<td>VMSWI</td>
<td>VSWI</td>
<td>VSWI</td>
</tr>
<tr>
<td>Current sum</td>
<td>CMSUM</td>
<td>CSUM</td>
<td>CSUM</td>
</tr>
<tr>
<td>Current switch</td>
<td>CMSWI</td>
<td>CMSWI</td>
<td>CMSWI</td>
</tr>
<tr>
<td>Phase current preprocessing</td>
<td>ILTCTR</td>
<td>ILTCTR</td>
<td>ILTCTR</td>
</tr>
<tr>
<td>Residual current preprocessing</td>
<td>RESTCTR</td>
<td>RESTCTR</td>
<td>RESTCTR</td>
</tr>
<tr>
<td>Phase and residual voltage preprocessing</td>
<td>UTVTR</td>
<td>UTVTR</td>
<td>UTVTR</td>
</tr>
<tr>
<td>SMV stream receiver (IEC 61850-9-2LE)</td>
<td>SMVRCV</td>
<td>SMVRCV</td>
<td>SMVRCV</td>
</tr>
<tr>
<td>SMV stream sender (IEC 61850-9-2LE)</td>
<td>SMVSENDER</td>
<td>SMVSENDER</td>
<td>SMVSENDER</td>
</tr>
<tr>
<td>Redundant Ethernet channel supervision</td>
<td>RCHLCCH</td>
<td>RCHLCCH</td>
<td>RCHLCCH</td>
</tr>
<tr>
<td>Ethernet channel supervision</td>
<td>SCHLCCH</td>
<td>SCHLCCH</td>
<td>SCHLCCH</td>
</tr>
<tr>
<td>HMI Ethernet channel supervision</td>
<td>HMLCCH</td>
<td>HMLCCH</td>
<td>HMLCCH</td>
</tr>
<tr>
<td>Received GOOSE binary information</td>
<td>GOOSERCV_BIN</td>
<td>GOOSERCV_BIN</td>
<td>GOOSERCV_BIN</td>
</tr>
<tr>
<td>Received GOOSE double binary information</td>
<td>GOOSERCV_DP</td>
<td>GOOSERCV_DP</td>
<td>GOOSERCV_DP</td>
</tr>
<tr>
<td>Received GOOSE measured value information</td>
<td>GOOSERCV_MV</td>
<td>GOOSERCV_MV</td>
<td>GOOSERCV_MV</td>
</tr>
<tr>
<td>Received GOOSE 8b-it integer value information</td>
<td>GOOSERCV_INT_8</td>
<td>GOOSERCV_INT_8</td>
<td>GOOSERCV_INT_8</td>
</tr>
<tr>
<td>Received GOOSE 32-bit integer value information</td>
<td>GOOSERCV_INT_32</td>
<td>GOOSERCV_INT_32</td>
<td>GOOSERCV_INT_32</td>
</tr>
<tr>
<td>Received GOOSE interlocking information</td>
<td>GOOSERCV_INT_L</td>
<td>GOOSERCV_INT_L</td>
<td>GOOSERCV_INT_L</td>
</tr>
<tr>
<td>Received GOOSE measured value (phasor) information</td>
<td>GOOSERCV_CM_V</td>
<td>GOOSERCV_CM_V</td>
<td>GOOSERCV_CM_V</td>
</tr>
<tr>
<td>Received GOOSE enumerator value information</td>
<td>GOOSERCV_EN UM</td>
<td>GOOSERCV_EN UM</td>
<td>GOOSERCV_EN UM</td>
</tr>
<tr>
<td>Bad signal quality</td>
<td>QTY_BAD</td>
<td>QTY_BAD</td>
<td>QTY_BAD</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good signal quality</td>
<td>QTY_GOOD</td>
<td>QTY_GOOD</td>
<td>QTY_GOOD</td>
</tr>
<tr>
<td>GOOSE communication quality</td>
<td>QTY_GOOSE_CMD</td>
<td>QTY_GOOSE_CMD</td>
<td>QTY_GOOSE_CMD</td>
</tr>
<tr>
<td>GOOSE data health</td>
<td>T_HEALTH</td>
<td>T_HEALTH</td>
<td>T_HEALTH</td>
</tr>
<tr>
<td>Fault direction evaluation</td>
<td>T_DIR</td>
<td>T_DIR</td>
<td>T_DIR</td>
</tr>
<tr>
<td>Enumerator to boolean conversion</td>
<td>T_TCMD</td>
<td>T_TCMD</td>
<td>T_TCMD</td>
</tr>
<tr>
<td>32-bit integer to binary command conversion</td>
<td>T_TCMD_BIN</td>
<td>T_TCMD_BIN</td>
<td>T_TCMD_BIN</td>
</tr>
<tr>
<td>Binary command to 32-bit integer conversion</td>
<td>T_BIN_TCMD</td>
<td>T_BIN_TCMD</td>
<td>T_BIN_TCMD</td>
</tr>
<tr>
<td>Switching device status decoder - CLOSE position</td>
<td>T_POS_CL</td>
<td>T_POS_CL</td>
<td>T_POS_CL</td>
</tr>
<tr>
<td>Switching device status decoder - OPEN position</td>
<td>T_POS_OP</td>
<td>T_POS_OP</td>
<td>T_POS_OP</td>
</tr>
<tr>
<td>Switching device status decoder - OK status</td>
<td>T_POS_OK</td>
<td>T_POS_OK</td>
<td>T_POS_OK</td>
</tr>
<tr>
<td>Controllable gate, 8 Channels</td>
<td>GATEGAPC</td>
<td>GATEGAPC</td>
<td>GATEGAPC</td>
</tr>
<tr>
<td>Security application</td>
<td>GSAL</td>
<td>GSAL</td>
<td>GSAL</td>
</tr>
<tr>
<td>Hotline tag</td>
<td>HLTGAPC</td>
<td>HLTGAPC</td>
<td>HLTGAPC</td>
</tr>
<tr>
<td>16 settable 32-bit integer values</td>
<td>SETI32GAPC</td>
<td>SETI32GAPC</td>
<td>SETI32GAPC</td>
</tr>
<tr>
<td>16 settable real values</td>
<td>SETRGAPC</td>
<td>SETRGAPC</td>
<td>SETRGAPC</td>
</tr>
<tr>
<td>Boolean to integer 32-bit conversion</td>
<td>T_B16_TO_I32</td>
<td>T_B16_TO_I32</td>
<td>T_B16_TO_I32</td>
</tr>
<tr>
<td>Integer 32-bit to boolean conversion</td>
<td>T_I32_TO_B16</td>
<td>T_I32_TO_B16</td>
<td>T_I32_TO_B16</td>
</tr>
<tr>
<td>Integer 32-bit to real conversion</td>
<td>T_I32_TO_R</td>
<td>T_I32_TO_R</td>
<td>T_I32_TO_R</td>
</tr>
<tr>
<td>Real to integer 8-bit conversion</td>
<td>T_R_TO_I8</td>
<td>T_R_TO_I8</td>
<td>T_R_TO_I8</td>
</tr>
<tr>
<td>Real to integer 32-bit conversion</td>
<td>T_R_TO_I32</td>
<td>T_R_TO_I32</td>
<td>T_R_TO_I32</td>
</tr>
<tr>
<td>Constant FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>Constant TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>
Section 2 Relay engineering process

PCM600 is used for various tasks in the protection relay engineering process.

- Relay engineering management
 - Organizing the bay protection relays in the structure of the substation by defining voltage levels and bays below the substation. PCM600 manages the project.
 - Configuring the protection relay functions (for example, protection and control functions) by using Application Configuration
 - Configuring the parameters and setting values for the protection relay and for the process functions by using Parameter Setting
 - Configuring LHMI pages, drawing single-line diagrams and making links to dynamic process values by using Graphical Display Editor. The single-line diagrams are displayed on the LHMI and the WHMI on the bay protection relay.
 - Configuring connections between the application configuration function blocks and physical hardware inputs and outputs by using Signal Matrix or Application Configuration
 - Configuring the events shown on the LHMI using HMI Event Filtering

- Communication management
 - IEC 61850 station communication engineering is done using the internal IEC 61850 Configuration tool or the separate IET600. PCM600 interacts with IET600 by importing and exporting SCL files.
 - Configuring the GOOSE receiving data connections to the protection relay's application configuration function blocks by using the Application Configuration tool and the Signal Matrix tool.
 - Configuring protocol data mapping for Modbus, DNP3 or IEC 60870-5-103 with the Communication Management tool.
 - Configuring the sampled values (process bus) between the devices using Application Configuration, IEC 61850 Configuration and Signal Matrix.
 - Configuring Ethernet ports and other network settings using Ethernet Configuration.

- Record management
 - Generating overviews of the available disturbance recordings in all connected protection relays by using Disturbance Handling
 - Manually reading the recording files (in the COMTRADE format) from the protection relays by using Disturbance Handling or automatically by using PCM600 Scheduler
 - Managing recording files with Disturbance Handling
• Creating overview reports for fast evaluation of the recording file content by using Disturbance Handling
• Reading fault records from the protection relay, saving records to a PC and clearing old records with Fault Record
• Reading load profile records from the protection relay, saving records to a PC and clearing old records using Load Profile

• Service management
 • Monitoring the selected signals of a protection relay for commissioning or service purposes by using Signal Monitoring and Event Viewer (including audit trail)

There are also functions for managing projects and organizing user rights.

• PCM600 user management
 • Organizing users regarding their rights, profiles and passwords to use different tools and tool functions
 • Defining allowed activities for user profiles to use tools in PCM600

Once the engineering of the protection relay is finished, the results must be written to the protection relay.

The connection between the physical IED and PCM600 is established via an Ethernet link on the HMI or LAN port of the protection relay.

2.1 Monitoring and control system structure

The monitoring and control system can be divided into three main parts which require specific engineering and configuration.

• Bay level devices
• Station communication
• Station level devices
A plant structure is used to identify each device in its location within the substation organization. The plant structure is a logical image of the substation and the bays within the substation. The device organization may differ from the structure of the primary equipment in the substation.

In PCM600 it is possible to set up a hierarchical structure of five levels for the device identification.

- Project
- Substation = name of the substation
- Voltage level = identifies to which grid type or part the device belongs in the substation
- Bay = bay within the voltage level
- IED = selection of the IED that is used in the bay; several IEDs can be inserted in a bay, for example, one control device and two protection relays

Default configuration

The protection relay contains a default configuration when delivered. The default configuration contains a simple application configuration and an LHMI configuration which can be used as a basis when the actual application configuration is created for the protection relay installation. The default configuration does not have output relays connected in the application configuration, so the relay and its configuration must not be used in installation as they are; modification of the application configuration is always required before commissioning.

The default configuration is available for IEC 61850 Edition 2 only, though the relay supports the IEC 61850 Edition 1 as well. For instructions on how to enable Edition 1 for the relay, see chapter IED insertion.
2.3 Workflow

Figure 3: Protection relay engineering workflow proposal based on practical experience and dependencies of the steps

It is possible to follow a different sequence based on the information available at the start of the project. This means that several iterations may be needed to complete the project.

PCM600 project setup

- The plant structure is built according to the substation structure.
- To add a protection relay to a project, a suitable connectivity package is needed. Protection relays can be added either while connected or disconnected or through other means such as an IED template.
- IED objects are uniquely named within the PCM600 project.
Application configuration in the Application Configuration tool

• Protection and control functions can be configured as needed.
• The configuration made in Application Configuration is saved to make the interfaces and signals available for other engineering tools within PCM600, for example, for Parameter Setting.

Parameter setting and configuration in the Parameter Setting tool

• The setting values are checked and adjusted with the Parameter Setting tool.

HMI engineering in Graphical Display Editor

• It is possible to create new pages, configure pages by adding widgets, set page visibility to different user categories, create single-line diagrams (shown on the LHMI and the WHMI) and symbols, and to provide language translations for the LHMI elements.

Communication protocol engineering

• The communication engineering details are protocol-dependent.
• The connectivity package creates the IEC 61850 configuration for vertical communication automatically and it is often directly suitable for IEC 61850 client configuration. Either IEC 61850 Configuration tool or IET600 is needed for configuring horizontal and vertical communication.
• The Communication Management tool is used for other protocols; for example Modbus.

The protection relay restarts automatically when writing a relay configuration where changes have been made. It is not possible to communicate with the protection relay during restart.
Protection and Control IED Manager PCM600 offers all the necessary functionality to work throughout all stages of the protection relay's life cycle.

- Planning
- Engineering
- Commissioning
- Operation and disturbance handling
- Functional analysis

The whole substation configuration can be controlled and different tasks and functions can be performed with the individual tool components. PCM600 can operate with many different topologies, depending on the project needs.

PCM600 is used to conduct complete engineering and configuration activities needed for the bay-level protection relays.

Connectivity packages are separate software packages that provide type and version information to PCM600 and assist the tool with communications.

PCM600 communicates with devices over Ethernet using either IEC 61850 or the FTP/FTPS protocols. This communication allows PCM600 to configure and monitor the devices. In addition to IEC 61850, the devices have optional communication protocols and hardware to connect to station engineering tools. PCM600 provides the ability to export the configuration of the devices or an entire substation in a standard file format which enables station engineering in separate IEC 61850 system configuration tools.

A PC with PCM600 can be connected to any Relion protection relay within a station by using the Ethernet connection. The connection can also be used for service and maintenance purposes and to handle disturbance records from the protection relays.

The modern protection relays are designed using the concept of the IEC 61850 standard. This is mainly visible in how functions within the protection relay are modelled and how the protection relay is represented in the substation. The list of logical nodes available in the protection relay reflects the IEC 61850 parameter list. The logical nodes follow the structure and rules defined in part 7 of the standard.

The communication protocol engineering is a separate task and an addition to the engineering of protection and control functions.

As PCM600 can be used for different purposes throughout the protection relay life cycle, a set of tools is available for different applications.

The applications can be organized into groups.
• Relay engineering
• Communication engineering
• Record management
• Device monitoring and diagnostic
• User management

For more information, see the PCM600 documentation.

3.1 Connectivity packages

A connectivity package is a software component that consists of executable code and data which enable system tools to communicate with a protection relay. Connectivity packages are used to create configuration structures in PCM600. The latest PCM600 and connectivity packages are backward compatible with older protection relay versions.

A connectivity package includes all the data which is used to describe the protection relay. For example, it contains a list of the existing parameters, data format used, units, setting range, access rights and visibility of the parameters. In addition, it contains code which allows the software packages that use the connectivity package to properly communicate with the protection relay.

3.2 PCM600 and relay connectivity package version

• Protection and Control IED Manager PCM600 2.9 Hotfix 1 or later
• REX640 Connectivity Package Ver.1.0 or later

Download connectivity packages from the ABB Web site www.abb.com/relion or directly with Update Manager in PCM600.

3.2.1 Installing connectivity packages

• Install connectivity packages either by running the installer which can be downloaded on the ABB Web site or by using Update Manager when a network connection is available.
3.2.1.1 Installing connectivity packages by using the connectivity package installer

1. Close PCM600.
2. Run the connectivity package installer.
 - ABB IED Connectivity Package REX640 Ver. n.msi
 - ABB IED Connectivity Package REX640 Ver. n. User Documentation.msi (optional)
 (n = version number)
3. Follow the steps in the connectivity package installation wizard.

3.2.1.2 Installing connectivity packages by using Update Manager

1. In PCM600, click Help and select Update Manager. Run Update Manager with administrator rights.

![Figure 4: Running Update Manager as an administrator](image)

2. Select Get Connectivity Packages from the menu on the left column.
3. Select all the required connectivity packages.
4. Click Download and Install.
 The status bar shows the installation status.
3.2.2 Activating connectivity packages

The relay connectivity package has to be installed before it can be activated in Update Manager.

1. Select Manage Connectivity Packages from the menu on the left column to access the installed connectivity packages.
2. Browse the tree structure to find the correct product.
3. Select the connectivity package version from the drop-down list beside the product name.

Always use the latest version of the connectivity package.
PCM600 recognizes the installed connectivity packages during start-up, and the corresponding IED types are available in PCM600 when starting a new project.

3.3 PCM600 projects

A typical project in PCM600 contains a plant structure including one or several IED objects, where each IED object contains the engineering data created or modified using the different PCM600 tools.

Several projects can be created and managed by PCM600, but only one project can be active at a time.

Regardless of the protocol used in installation for each project, it is possible to have Edition1 and Edition2 relays configured in the same PCM600 project. The PCM600 project's SCL edition is the highest SCL edition relay in the project. If IEC 61850 is not used for station bus, either version can be applied. The protection relay's IEC 61850 version is by default Edition 2.

With PCM600, it is possible to do various tasks.

- Open existing projects
- Import projects
- Create new projects
- Export projects
- Delete projects
- Rename projects
- Copy and paste projects
The extension of the exported project file is .pcmp. The files are only used for exporting and importing projects between PCM600s.

3.4 Technical key

Both a physical IED and an IED object in PCM600 have a technical key. The technical key in the protection relay and PCM600 must be the same, otherwise it is not possible to download a configuration.

Each IED in a PCM600 project and in an entire substation must have a unique technical key. Therefore, it is not possible to set the same technical key for several IEDs in the same PCM600 project.

The protection relay is delivered with a factory default technical key. The validation of the technical keys between PCM600 and the protection relay does not occur if the protection relay contains the factory default technical key.

The technical key property in PCM600 corresponds to the IED name attribute in SCL files. Avoid changing the IED name attribute outside PCM600, because data in PCM600 may get lost when importing the SCL files.

When writing a configuration to the protection relay, PCM600 checks for a mismatch between the IED object and the physical IED technical key. The technical key can be read from the protection relay and updated to PCM600, or the PCM600 technical key can be written to the protection relay. Alternatively, a user-defined technical key can be defined.

Figure 7: Reboot suggestion

Ensure that the IED object in PCM600 has the same IP address as the physical IED to be connected through the technical key.
3.4.1 IEC 61850 naming conventions for an IED

The IEC 61850 naming conventions to identify an IED are valid only when the IEC 61850 standard is used for station bus communication. According to IEC 61850-6, the SCL model allows two kinds of project designations in the object properties: a technical key and a user-oriented textual designation.

- The technical key is used in engineering drawings and for signal identifications. This is contained in the attribute name as an identification of each object. If the value is used as a reference to an object, it is contained in an attribute name starting with a string denoting the reference target object type and ending with the string Name. The technical key is used within SCL for referencing other objects. The name is a relative identification within a hierarchy of objects. The maximum length of the technical key is 28 characters for Edition 1 and 60 characters for Edition 2.
- User-oriented textual designation is contained in the desc attribute. Attributes are not allowed to contain carriage return, line feed, tab, greater than, less than, double quotes or ampersand characters. The semantics of desc must also be relative within an object hierarchy. The maximum length is 100.

PCM600 supports both possibilities. The two signal designations are available per object in Object Properties for all the hierarchical levels beginning with the station as the highest level.

The technical key is automatically generated based on the rules and type specifications of IEC 61346 and the extended definitions assigned for substations by a technical committee. The technical key is shown in the Object Properties dialog box under SCL Technical Key or Technical Key.

- The station is predefined by “AA1” where 1 is the index. To get the real station name that is used, it is possible to rename the SCL Technical Key for the station as the name used by the project. To minimize the word length, a short form should be used because this name is also used in the transmitted messages to identify the events, for example.
- The voltage level. In Figure 8 it is 20 kV and J1 is selected from the list below SCL Technical Key in the Object Properties dialog box.
- The bay and the IED are appended with the coding defined in the IEC 61346 standard and the substation definition lists. In the example, the bay SCL Technical Key part is Q03 and IED is A1.

The user-oriented textual designation is visible in the Plant structure view for each object. It is the name given by default or changed with the Rename function.
Figure 8: IEC 61850 signal designation concept in PCM600

The created technical key for the full path name of the IED would be: AA1J1Q03A1.

- AA1 = substation in the project
- J1 = voltage level from 20 to 30 kV
- Q03 = third bay in the voltage level
- A1 = first IED in bay Q03

3.4.2 Setting technical key

The maximum length of the technical key is 28 characters for Edition 1 and 60 characters for Edition 2.

1. In the **Plant Structure** view, right-click the IED and select **Set Technical Key in IED**.
Figure 9: PCM600: Setting the technical key on the IED level

A dialog box opens to inform about the technical key concept.

Figure 10: Technical key information

2. Click OK.
The technical key is read from the IED and the **Set Technical Key** dialog box opens.

![Set Technical Key dialog box](image)

Figure 11: Setting the technical key

3. In the **Set Technical Key** dialog box, select the technical key to be used. There are three alternatives.
 - Use the technical key in the IED
 - Use the technical key defined for the IED object in PCM600
 - Set a user-defined technical key, which changes the technical key for both the physical IED and IED object in PCM600

4. Click **OK** to confirm the selection.

 ![Warning icon](image)

 It is not possible to set a user-defined name or select **Technical key in IED** if the value is already given to another IED object in the PCM600 project. An error message is displayed if this happens.

3.5 Communication between PCM600 and protection relay

The communication between the protection relay and PCM600 is independent of the used communication protocol within the substation or to the NCC.

All communication is done over Ethernet using either IEC 61850 or the FTP/FTPS protocol. The Ethernet connector can be used.

When an Ethernet-based station protocol is used, the same Ethernet port and IP address can be used for PCM600 communication.

Two basic variants have to be considered for the connection between PCM600 and the protection relay.
• Direct point-to-point link between PCM600 and service port X1.2 on the protection relay's LHMI or, if an LHMI is not used, the HMI port X0 of the communication module
• Indirect link via station LAN or remotely via network

1. If needed, the IP address for the protection relay is set.
2. A PC or workstation is set up for a direct link (point-to-point), or the PC or workstation is connected to the LAN/WAN network.
3. The protection relays' IP addresses in the PCM600 project are configured to match the IP addresses of the physical IEDs.
4. Technical keys of the IEDs in the PCM600 project are configured to match the technical keys of the physical IEDs.

For successful protection relay engineering and usage, the workstation firewall TCP and UDP port configurations should be checked, especially for IEC 61850 and FTP. Other protocols are not used for engineering or they are optional.

Table 2: IP ports used by the relay

<table>
<thead>
<tr>
<th>Port number</th>
<th>Type</th>
<th>Default state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 21</td>
<td>TCP</td>
<td>Open</td>
<td>File transfer protocol (FTP and FTPS)</td>
</tr>
<tr>
<td>102</td>
<td>TCP</td>
<td>Open</td>
<td>IEC 61850</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>Open</td>
<td>Web server HTTPS</td>
</tr>
<tr>
<td>123</td>
<td>UDP</td>
<td>Client service not active by default in relay</td>
<td>SNTP</td>
</tr>
<tr>
<td>502</td>
<td>TCP</td>
<td>Closed</td>
<td>Modbus TCP</td>
</tr>
<tr>
<td>200000</td>
<td>TCP</td>
<td>Closed</td>
<td>DNP3 TCP</td>
</tr>
<tr>
<td>200000</td>
<td>UDP</td>
<td>Closed</td>
<td>DNP3 UDP</td>
</tr>
<tr>
<td>1468</td>
<td>TCP</td>
<td>Closed</td>
<td>CAL</td>
</tr>
<tr>
<td>514</td>
<td>UDP</td>
<td>Closed</td>
<td>CAL</td>
</tr>
</tbody>
</table>

3.5.1 Setting up IP addresses

The IP address and the corresponding subnet mask can be set via LHMI for the Ethernet interface in the protection relay. Each Ethernet interface has a default factory IP address when the protection relay is delivered. The configured Ethernet interface IP address is preserved if the communication card is replaced.

• Set the IP address for the protection relay's Ethernet interface and the corresponding subnet mask via the LHMI path Configuration/Communication/Ethernet.

Table 3: Default IP address for the LAN port and the corresponding subnet mask

<table>
<thead>
<tr>
<th>IP address</th>
<th>Subnet mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.2.10</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>
When using redundant Ethernet (HSR or PRP), configure all devices in the network before connecting cables to ports LAN A and LAN B. Avoid using the LAN A or LAN B ports on redundant communication modules while changing the Switch mode parameter.

3.6 IED Update

The firmware update tool is used for updating the following:

• IED firmware
• Communication card firmware
• LHMI firmware and application
• License in case of Modifications Sales related update

The tool can also be used for adding or replacing IED languages. Update packages are provided by Customer Support.

The update tool can be used either locally or remotely.

Separate update packages are needed for updating the communication card, the LHMI and license and default configuration files. If the new communication card firmware, LHMI firmware or application need new IED firmware, it is updated at the same time, otherwise a second update with the same package is needed to update the IED firmware.

3.6.1 Prerequisites for local and remote updates

Local update

• It is recommended to use the LHMI’s service port X1.2 or, if an LHMI is not used, the HMI port X0 of the communication module. The IED should be removed from the network especially with redundant network topologies (HSR or PRP).

Remote update

• Communication should be secured either by setting up a VPN connection or by enabling secure communication in the IED via LHMI (Configuration/Communication/Protocols/Network1/FTP).
• Remote update can be enabled in the IED either via the LHMI (Configuration/Authorization/Security/Remote Update) or by an administrator in Parameter Setting in PCM600 (IED Configuration/Configuration/Authorization/).
Remote Update. If the IED is in local control mode, remote update proceeds only after a confirmation is received from the user.

- Remote update can be disabled manually after the update.
- Remote update only works when the IED is connected from the Ethernet interface connector of the communication module with a custom IP address.

3.6.2 Updating firmware or language

1. Select the update mode.
 - Firmware
 - Language

2. Select the update package and click Next.

![Choosing the update mode and package](image)

3. Select the relay to be updated and click Next. Currently only one relay can be selected.
Figure 13: Choosing the relay for the update

4. If required, clear the life cycle handling indication by selecting the Clear Lifecycle Handling indication on Local HMI after update check box.
Figure 14: Clearing lifecycle handling indication

5. When updating remotely, wait for 30 seconds for the local user confirmation before proceeding with the update.
 • The local user can cancel the update via the LHMI by pressing Cancel Update during the 30-second window.
 • IED use is allowed after the update is completed successfully.
Figure 15: Waiting for local user confirmation with remote update
Figure 16: Completing the update
Section 4 Setting up a project

4.1 Creating a new project

1. Start PCM600.
2. To see the projects that are available in the PCM databases, click **File** and select **Open/Manage Project** on the menu bar.
3. In the **Open/Manage Project** window, click **Projects on my computer**.
4. Click **New Project**.
 If there are projects or object tools open, a confirmation dialog box opens.

![Confirming project and object tool closing](image)

Figure 17: Confirming project and object tool closing

5. In the **Create New Project** dialog box, fill in the project name and optional description.
 - In the **Project Name** box, type a unique name for the project.
 - In the **Description** box, type a description of the project.
6. Click Create.

PCM600 sets up a new project that is listed under Projects on my computer.

4.2 Building the plant structure

Building a plant structure is useful when a complete grid with the necessary IEDs has to be built.

1. Create a new plant structure in one of the alternative ways.
 - Right-click the Plant Structure view, point to New and select Create from Template.
 - Right-click the Plant Structure view, point to New, select General and select either IED Group or Substation.
2. On the View menu, select Object Types.
3. Select the needed elements and drag them into the plant structure.
4. Rename each level in the structure by the names or identifications used in the grid.
 Use one of the alternative ways.
 • Right-click the level and select **Rename**.
 • Rename the levels in the **Object Properties** view.

4.3 IED insertion

The context menu or the **Object Types** view shows the available IEDs that can be inserted on the bay level of the plant structure according to the installed connectivity package.

It is possible to do various tasks in the plant structure.

• Insert either an offline or an online IED
• Import a template IED that is available in the template library as a .pcmt file
• Import a preconfigured IED available as a .pcmi file
PCM600 uses two kinds of IED files: .pcmt and .pcmi. Both files include the complete IED configuration but their usage differs. The .pcmt files are always accessed through the PCM600 template manager while the .pcmi files are meant for sharing the IED instances between different PCM600 users enabling quick import and export from the plant structure context menu.

4.3.1 Inserting an IED in online mode

To set up an IED online, the protection relay must be connected to PCM600.

When the protection relay is connected to PCM600, PCM600 can read the composition code directly from the relay. It is possible to read the full configuration from the relay by using the Read from IED function.

1. In the **Plant Structure** view, right-click the bay, point to **New**, point to the relay application area such as **Multiapplication IEDs** and select the protection relay type to be inserted.

 Alternatively, drag an IED from the Object Types view to the bay level.

 ![Figure 20: Selecting the protection relay type](image)

2. On the **Configuration mode selection** page, select **Online Configuration** and click **Next**.
Figure 21: Selecting the configuration mode

3. On the **Communication protocol** page, select the communication protocol from the **IED Protocol** list and click **Next**.
4. On the IEC 61850 communication settings page, select the port from the Port list.
 • If the LAN port is selected, type the correct IP address (of the physical protection relay to be configured) to the IP address box.

Figure 22: Selecting the communication protocol
Communication configuration is now defined.

5. Click **Next** to scan/read the composition code of the protection relay.
6. On the **Composition code detection** page, click **Next**.
Section 4
Setting up a project

7. On the Configuration selection page, select the configuration type and click Next.
 - Select Empty Configuration to create an empty configuration.
 - Select Import configuration from file (PCMI/PCMT) to import any existing example configuration. Click Browse to select the .pcmi or .pcmt file that has the example configuration.
 - Select Default configuration (available only for IEC 61850 Edition 2) to generate a default configuration.
If a default configuration is selected, the next page is skipped as default configuration is only supported for the IEC 61850 Edition 2 IEDs. To configure an IEC 61850 Edition 1 IED, select empty or example configuration and make the proper selections on the next page.

8. On the **Version Selection** page, select the IEC 61850 version and click **Next**.
Figure 26: Selecting the IEC 61850 version

Regardless of the protocol used in the installation for each project, it is possible to have Edition1 and Edition2 relays configured in the same PCM600 project. The PCM600 project's SCL edition is the highest SCL edition relay in the project.

9. On the Summary page, click Finish to confirm the configuration and insert the IED.
The Summary page shows the protection relay's IED type, IP address and the selected composition code.
Figure 27: Confirming the configuration

If an error is shown on the Summary page, it is not possible to go back and make modifications. If an error is detected, cancel the insertion by clicking Cancel and insert the IED again.

10. From the Plant structure view, check that PCM600 has turned online the IED that was inserted to the bay level.

Data cannot be scanned from the protection relay and proceeding is prevented if the IED is not online or if the IP address is not correct.

4.3.2 Inserting an IED in offline mode

When the protection relay is not available or is not connected to PCM600, engineering can be done offline. The offline configuration in PCM600 can be written to the protection relay later when it is connected.

Working in the offline mode has an advantage over the online mode because the preparation for the configuration can be started even though the protection relay is not available.
1. In the **Plant Structure** view, right-click the bay, point to **New**, point to the relay application area such as **Multiapplication IEDs** and select the protection relay type to be inserted.

 Alternatively, drag an IED from the **Object Types** view to the bay level.

2. On the **Configuration mode selection** page, select **Offline configuration** and click **Next**.
 Setting up an IED in the offline mode is similar to the online mode; however, with the offline mode it is not necessary to type the correct IP address in the **IP address** box.

 ![Figure 28: Selecting the configuration mode](image)

3. On the **Composition code selection** page, select the correct composition codes and click **Next**.

 Ensure that the composition code is correct. PCM600 verifies that the composition code matches the relay. If the composition code digits related to the configuration, I/O or version do not match the relay, PCM600 does not allow writing the configuration to the relay. If other digits in the composition code
do not match, PCM600 informs about the mismatch with a dialog box.

![Figure 29: Selecting the composition code](image)

Figure 29: Selecting the composition code

4. On the **Configuration selection** page, select the configuration type and click **Next**.
 - Select **Empty configuration** to create an empty configuration.
 - Select **Import configuration from file (PCMI/PCMT)** to import an example configuration. Click **Browse** to select the .pcmi/.pcmt file that has the example configuration.
 - Select **Default configuration (available only for IEC 61850 Edition 2)** to generate a default configuration.

If a default configuration is selected, the next page is skipped as default configuration is only supported for the IEC 61850 Edition 2 IEDs. To configure an IEC 61850 Edition 1 IED, select...
empty or example configuration and make the proper selection on the next page.

5. On the Version Selection page, select the IEC 61850 version and click Next to generate the functions.

6. The Summary page shows the summary of the IED type, IP address and the selected composition code. Click Finish to confirm the configuration and conduct the insertion.

4.3.3 Inserting an IED from template directory

IED templates can be used to replicate IEDs with the same order code in PCM600 projects. The template includes an IED application configuration, graphical display configuration (single-line diagram), communication protocol mappings and parameters. An IED in the plant structure can be exported as a template (.pcmt file). The template library can be built from all the exported IED templates.

It is also possible to insert an IED from the template library to create a new IED in the plant structure. After a template IED has been imported, IP address and Caption in IED’s Object Properties and Technical Key of the physical IED have to be changed.

1. In the Plant Structure view, select the bay, right-click, point to New and select Create from template.

 ![Figure 30: PCM600: Selecting an IED from the template library](image)

 A template IED can be inserted only when the bay is selected in the plant structure.

2. In the Create New Object from Template dialog box, select the IED under Available Object Types.

3. Click the icon on the rightmost column in the list of available templates.

4. In the Template Properties dialog box, verify the template information and click Close.
5. In the **Create New Object from Template** dialog box, delete, import or create a template by clicking the corresponding button.
 - To delete the selected template, click **Delete Template**.
 - To import a template from the selection window, click **Import Template**.
 - To insert the selected IED to the bay, click **Create**.

 ![Figure 31: PCM600: Template information](image)

<table>
<thead>
<tr>
<th>Template info</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: REX640</td>
<td>User-Defined Template</td>
</tr>
<tr>
<td>Path: C:\PCM\Data\Base\Template\PCM600-REX640Pool.pcm</td>
<td>Description:</td>
</tr>
<tr>
<td>Created on:</td>
<td></td>
</tr>
<tr>
<td>Product name: PCM600 2.9</td>
<td>Object type: REX640</td>
</tr>
<tr>
<td>Connectivity Package:</td>
<td></td>
</tr>
<tr>
<td>IED Connectivity Package REX640</td>
<td></td>
</tr>
</tbody>
</table>

It is possible to insert more than one IED from the **Create New Object from Template** dialog box. The dialog box remains open until **Close** is clicked.

6. Click **Close** when finished.

4.3.4 Inserting an IED by importing a .pcmi file

1. In the **Plant Structure** view, right-click the bay and select **Import**.

 A .pcmi file can be imported only when the bay is selected in the plant structure.
2. In the **Import** dialog box, select the .pcmi file to be imported and click **Open**. After importing, the IED object is created in the plant structure.

After the .pcmi file has been imported, the IP address, the name and the technical key of the physical IED have to be changed.

4.4 Setting IED's IP address in a project

The IP address and subnet mask of the IED object in PCM600 must match the HMI and LAN ports of the protection relay (physical IED) to which the PC is connected. The IP address of the protection relay can only be set via the LHMI or Parameter Setting in PCM600. The PC and protection relay need to be on the same subnet.

There are two ways to set the IP address of an IED object in PCM600: on the first page of the wizard when including a new IED into a project or in the IP address box of the IED's Object Properties pane.
Choosing between the two ways depends on when the IP address is set. Typing the IP address via the IED's Object Properties pane is possible at any time while entering it via the configuration wizard can only be done when inserting the IED in online or offline mode.

1. In the **Plant Structure** view, select the IED whose IP address must be entered.
2. On the **View** menu, select **Object Properties**.
3. In the **Object Properties** pane, type the IP address in the **IP Address** box.

Figure 33: **Alternative 1: Setting the IP address on the first wizard page**

![Alternative 1: Setting the IP address on the first wizard page](image)

Figure 34: **Alternative 2: Setting the IP address in the IED's Object Properties pane**

![Alternative 2: Setting the IP address in the IED's Object Properties pane](image)
4.5 COM600S project

The relay connectivity package supports SAB600. An REX640 protection relay is imported as an REX640 device. It is also possible to import a full PCM600 project including several protection relays to SAB600. In this case, PCM600 project information is imported to SAB600 using a SCD file.

The REX640 device supports several functions in COM600S.

- Controlling the switchgear
- Monitoring the measured values
- Reading disturbance recordings
- Setting parameters

4.5.1 Selecting communication port for configuration

When a relay is configured in a PCM600 project, the connection between the relay and the tool can be established using a point-to-point link between the relay's HMI port and the computer or by connecting the computer to the relay's LAN port over an Ethernet station bus. In PCM600, the HMI or LAN communication port can be selected from the project structure.

When using the HMI port, DHCP server functionality must be activated in the computer network adapter settings to get the IP address from the relay. Alternatively, the computer network adapter IP address can be set manually to the same subnet range as the HMI port.

![Communication port options](image)

- Check that the settings are correct to ensure successful configuration access to the relay.
 - Computer port settings must match the relay settings (IP address, subnet mask, DHCP).
 - Any firewall in the computer or in the network must allow the required communication services.
 - When using the HMI port and switching the connection from the computer to another relay, it takes some time before the computer refreshes the relay's MAC address for the HMI port IP address automatically. The MAC address can also be reset manually by clearing the computer ARP table.
4.5.2 Importing a protection relay in a COM600S project

1. Create a PCM600 project including several IEDs.

![Creating a PCM600 project including several IEDs](image)

2. Export the SCD file from PCM600.
 In the **Plant structure** view, select the substation, right-click and select **Export**.
3. Import the SCD configuration into the SAB600 project. In the Project Explorer view, right-click the IEC61850 OPC Server object and select SCL Import.
Figure 38: Importing the SCD configuration into the SAB600 project

4. In the SCL Import view, click Select File to select the SCD file exported from PCM600.

Figure 39: Creating a new IED in the SAB600 project
5. Check the default settings in the **SCL Import** view and change them if needed. The default settings in the **SCL Import** dialog should be correct in most cases.

6. Click **Import** to import the SCD file.

7. Check the IP address on the IEC 61850 subnetwork and change it if needed. When the SCD file is directly exported from PCM600, it uses the IP address of the PCM600 computer, not that of COM600S.

The communication towards the protection relays is now ready. For information on how to finalize the single-line diagram and enable parameter setting through COM600S HMI, see the COM600S documentation.

4.6 Using Web HMI

Connection to WHMI can be established using different communication card ports. X0/HMI has always WHMI enabled and is intended to be used with HMI. For other ports, WHMI is enabled by default and can be disabled in the protection relay configuration. As only secure communication is supported for the WHMI, it must be accessed from a Web browser using the HTTPS protocol. Three WHMI sessions at a time are supported.

1. To enable the WHMI, select **Configuration/HMI/Web HMI mode** via the LHMI.

2. To disable the WHMI for station ports, select **Communication/Protocols/Network1/HTTPS** and **Communication/Protocols/Network2/HTTPS** via the LHMI and set the parameter to "Off".

3. Reboot the relay for the change to take effect.

4. Log in with the proper user rights to use the WHMI.

 - **To establish a remote WHMI connection to the protection relay,** contact the network administrator to check the company rules for IP and remote connections.

 - **Disable the Web browser proxy settings or make an exception to the proxy rules to allow the protection relay's WHMI connection,** for example, by including the relay's IP address in **Internet Options/Connections/LAN Settings/Advanced/Exceptions**.

 - **The WHMI write access can be limited with the parameter** HTTPS write access in **Configuration/Authorization/Network1**.
4.7 Relay user management

The user account management and role-based access control in the protection relay have been handled as specified in IEC 62351-8. The relay supports both local user account and central account management. For information on how to set up user account management, see user management in the cyber security deployment guideline.

4.8 PCM600 project's IEC 61850 version identification

The IEC 61850 version of a PCM600 project can be identified from the Object Properties pane of the project.

To change IEC 61850 version Edition 1 of an IED to Edition 2, the configuration has to be written to the IED from a PCM600 project that has IEC 61850 version Edition 2. A dialog box notifies of the version difference.
5.1 Application Configuration

Application Configuration is used to modify an application configuration for a protection relay and is based on IEC 61131-3 Function Block Diagrams. The function blocks are dedicated to different functions.

- Control-related functions
- Protection-related functions
- Monitoring functions
- Communication

For more information on the function blocks, see the technical manual.

Most function blocks are mapped as logical nodes according to the IEC 61850 standard. See the IEC 61850 parameter list for more information.

If a function block is removed with Application Configuration, the function-related data disappears from the menus as well as from the IEC 61850 data model, with the exception of some basic function blocks, which are mandatory and thus cannot be removed from the relay configuration by removing them from Application Configuration.

Other function blocks are not mapped as logical nodes; for example, logical gates.

The basic features of Application Configuration include the ability to organize a configuration into several MainApplications as well as providing different application programming features.

- Organizing an application configuration
 - Organizing an application configuration into a number of logical parts (MainApplication)
 - Organizing a MainApplication over a number of pages
- Features for programming an application configuration
 - Inserting function blocks, making connections and creating variables
 - Including the hardware I/O channels directly in the application configuration
 - Calculating the execution order automatically by clicking Calculate execution order on the toolbar
- Documenting the application configuration, for example, by making
 printouts
- Saving application configurations as templates in an application library to
 reuse them in other protection relays. Function blocks and the related logic
 can be fully or partially reused depending on the functionality available in
 the other protection relay.
- Validating the application configuration during the configuration process
 on demand and while writing the application configuration to the protection
 relay

For instructions on how to perform the different tasks in PCM600, see
PCM600 online help.

5.1.1 Function blocks

Function blocks are the main elements of an application configuration. They are
designed for a various number of functions and organized into groups according to
type. The different function block types are shown in the Object Types view. Function
block data can be modified with Application Configuration in PCM600.

- User-defined names can be given for function blocks and signals.

 Signals that have a user-defined name created with Application
 Configuration are visible in Parameter Setting in PCM600 only if
 the relay configuration is written to the protection relay and read
 back to PCM600. Otherwise, only the default signal name is
 shown in Parameter Setting.

 Restart the relay to ensure that all user-defined names for the
 disturbance recorder's Channel id texts are updated on the LHMI,
 WHMI and Parameter Setting menus.

 If possible, set the user-defined name to a signal before
 connecting the signal to other function blocks.

- IEC 61850, ANSI or IEC 60617 symbol standard can be set.
- IEC or ANSI naming style can be set.
- Function blocks can be locked.
- Visibility for execution order, cycle time and instance number can be set.
- Signals can be managed.
- Boolean inputs and outputs can be inverted.
5.1.2 Signals and signal management

The function block has a set of input and output signals. The placement of function block signals is from left to right. Input signals are placed on the left and output signals on the right.

Function blocks can contain more signals than needed in an application part. Unused signals can be hidden to get a clear picture.

Signals are located up and down on both sides of the middle position. When there is space left, some signals may be moved up or down for better visibility and connection routing.
Boolean input and output signals may need to be inverted to fulfil the logic. The Application Configuration tool supports the adding of inversion logic to a binary signal.

All input signals have a default value that is used when the signals are not connected in the configuration.

The input signal on glue logic function blocks can be inverted only if a glue logic function block with lower execution order in the same cycle time is available. Similarly, the output signal can only be inverted if a glue logic function block with higher execution order in the same cycle time is available. Up to two input signals and two output signals can be inverted for glue logic blocks in the same cycle time.

5.1.3 Function block execution parameters

Three function block execution parameters influence the runtime execution of the function block within the application configuration.

- Execution order
- Cycle time
- Instance number

When a new function block is inserted, these parameters are shown in the Function Block Instance dialog box in Application Configuration. The three parameters are selectable or not selectable depending on the function block type. The cycle time is predefined to one value. The instance number is a counter for the total possible number of function blocks of that type used within the application configuration.

Execution Order and *Instance Number* are a combination that is predefined within a product. It is possible to select a pair out of the list.
Figure 43: Application Configuration tool: an example of function block organization parameters

Cycle Time is automatically set and it cannot be modified.

To automatically calculate the execution order, click Calculate Execution Order on the tool bar.

5.1.4 Execution order and feedback loops

It is possible to draw a multi-layer configuration logic that contains feedback loops with the Application Configuration tool. The execution order of logic functions is calculated automatically in the Application Configuration tool, but it can also be set manually. If the automatically calculated value causes the function to be executed one task cycle time after the other logic functions in the same loop, the execution order number can be set manually to prevent delays, for example, in output activation.

To perceive accurate time stamps from binary input signals to function blocks, direct logic connection should be used in the Application Configuration tool. Due to the internal execution order, time stamps may not be accurate if an additional logic is used to connect priority signals to function blocks.
Figure 44 shows a simple situation where the execution order causes one cycle time delay if the NOT gate is executed in the order determined by the automatic calculation.

By setting a smaller execution number to the NOT gate than to the AND gate, it is possible to fix the execution order of all functions in a loop so that they are handled in the same task.

The execution number can be changed by right-clicking the function and selecting "Change CycleTime ExecOrder."

After manually defining the execution number, the function is excluded from the automatic execution order calculation. The function can be included back to the automatic calculation by right-clicking the function and selecting "Include FB in calculation."

5.1.5 Configuration parameters

Configuration parameters can be viewed and set with the Parameter Setting tool.

5.1.6 Connections and variables

A connection is the link or "wire" between function block outputs and inputs.

Connections can be made in two ways:

- Dragging a line between two signals
- Linking two signals by using variables
It is possible to search and replace variable names in Application Configuration tool.

Connect the variables to a destination, for example to a function block or a hardware output channel. The connectivity package automatically removes the orphan variables which are not connected to any destination.

Connect at least one analog input signal from AIM or SMVRCV.

Connection validation

A connection is only useful or even possible between two signals of the same base attribute type.

![Image of Application Configuration Validation Error](https://image.com)

Figure 46: Application Configuration tool: an error message of a signal mismatch for a connection

5.1.7 Hardware channels

Hardware channels can be connected only to a function block input or output. A hardware connection can be established with the Application Configuration tool or Signal Matrix tool.
When a hardware channel is connected, a graphical symbol appears in the Application Configuration tool. The connection is also indicated in the Signal Matrix tool with a cross mark. Hardware channels are always visible in the Signal Matrix tool.

There are three types of supported hardware channels:

- Binary input channels
- Binary output channels
- Analog input channels

A hardware input channel can be used as often as needed. A hardware binary output channel is taken from the list of available channels when a new channel is requested. This prevents using the same hardware binary output channel twice.

5.1.7.1 User-customized I/O channel configuration

Instead of pre-configured I/O channel connections to pre-processing function blocks, user-customized configurations can be used. There are some rules which must be followed to create a working configuration. Application Configuration automatically checks if configuration is valid and results are shown in the output pane. See the technical manual for the minimum I/O requirement per application function block.

Example 1:

![Diagram of user-customized I/O channel configuration]

Figure 48: Missing required input connection for output
Figure 49: All required input connections configured for output

In Figure 48, the output connection requires more input channels to be connected. Figure 49 has correction for Figure 48 where all required inputs are configured and the input order is according to installation.

When an output is not connected to any function block, Application Configuration considers the configuration valid. Check validation warnings from the output pane for possible missing connections. Once the output is connected, the complete configuration is validated again.

Example 2:

Figure 50: Output connection requiring only one input

Figure 51: Two output connections requiring two inputs
UTVTR ULx inputs can be used as one-, two- or three-phase connection. The ACT blocks connected to U3P may further demand two- or three-phase connection. URES input must be connected if URES_MEAS output is used. Figure 50 illustrates the use case of only residual voltage being used in UTVTR1. Figure 51 illustrates a case where one residual voltage and one phase voltage are sufficient.

Example 3:

![Diagram](image)

Figure 52: Remote samples as input connections

Instead of local hardware inputs in Figure 52, remote samples can be used by local function blocks. Remote samples sender can also be configured as described in Figure 53, where GRP_OFF is used to indicate that channel is not available locally. See the technical manual for details about GRP_OFF.
TVTR and TCTR function blocks accept analog channels connected only either from local or remote, that is, local and remote channels cannot be mixed within a TVTR/TCTR function block.

It is not possible to forward the received remote analog channels.

An analog input can only be connected to one function block. Triplets (for example, U3P and I3P) should be used instead in the application to connect analog inputs to other function blocks.

Example 4:

![Diagram](image)

Figure 54: **Hardware binary input channel shared by function blocks**

![Diagram](image)

Figure 55: **GOOSE input shared by function blocks**
Online monitoring

Online monitoring enables the continuous monitoring of the signal or channel values in the configuration. In the Online monitoring mode, the configuration cannot be edited in the Application Configuration tool.

Online monitoring can be started by clicking the Work online button in the toolbar. If the application configurations in the IED and PCM600 are the same, the online monitoring starts. The online monitoring ends and the tool returns to the configuration mode if the Work Offline button is clicked.

Online monitoring cannot be started if the application configurations in IED and PCM600 are different.

In some cases when the function block input is directly mapped to the function block output, the input is internally forced to the correct value depending on the function block's settings. This function block design is present in control blocks, setting group handling and tap changer.

Validation

Validation checks the application configuration for errors based on the rules that govern the application creation at three different times.

- During the logic creation, while making a connection or placing a function block
- On demand by starting the validation
- When writing the application configuration to the protection relay
5.1.9.1 Validation when creating application configuration

Certain conditions require the validation to be made when creating the application configuration.

- A connection between two input or two output signals is not possible
- A connection between two different data types is not possible: for example, from a binary output to an analog input

5.1.9.2 Validation on demand

The validity of an application configuration can be checked by clicking Validate Configuration on the toolbar. The Application Configuration tool checks the application configuration for formal correctness. The found problems are divided into warnings and errors.

- Warnings, marked with a yellow warning icon
 - Example: a variable connected to an output signal that is not connected
 - Example: if an output from a higher execution order function is connected to the inputs of a lower execution order function
- Errors, marked with a red circle with a cross
 - Example: unconnected hardware output

Warnings do not prevent writing to the protection relay. However, errors must be corrected before writing the application configuration to the protection relay. The application configuration can be saved and the Application Configuration tool can be closed with open errors, but the application configuration cannot be written to the protection relay.

These problems are listed in the Output view under the Application Configuration tab. Double-clicking the error or warning row navigates to the MainApplication/Page/Area, where the problem was identified.
5.1.9.3 Validation when writing to protection relay

When writing the application configuration to the protection relay, an automatic validation is performed. Errors abort the writing.

5.1.10 Configuration load calculation

The connectivity package calculates an estimated application configuration load every time it is saved in Application Configuration or written to the IED. This functionality prevents too complex configurations from being used and possibly risking IED protection functionality.

Calculation results are divided into two different sections: OK and Error. At 100 percent, PCM600 can give either an OK or an error message because the connectivity package rounds the actual limit to the closest percentage. If the calculation result is above 100 percent, PCM600 always gives an error message and prevents writing the configuration to the IED as the configuration is too large for the IED to handle. The configuration is written to the IED if the result is below the error range.
The calculation result is visible only in PCM600 output window on the Logging tab.

![Figure 58: Configuration load result: an example of different messages shown in PCM600](image)

5.2 Parameter Setting

Configuration and setting parameters can be changed with LHMI, WHMI or with the Parameter Setting tool in PCM600.

Some parameters are only visible in the Parameter Setting tool and some only on the LHMI.

A common writing from PCM600 to the protection relay, where parameters are changed in the Parameter Setting tool, overwrites any parameter changes made locally with LHMI.

All parameters displayed in the parameter list can be sorted into two groups.

- Configuration parameters
- Setting parameters

5.2.1 Configuration parameter

The configuration parameter specifies the operation mode of an application function or of the protection relay. These are basic configurations that are normally configured only once and then not modified again. The protection relay configures itself during start-up according to the given configuration parameter values.

5.2.2 Setting parameter

Setting parameter (short form: “setting”) is a parameter that can be changed in the protection relay at runtime.
5.2.3 Setting group

Nearly all settings used by the protection relay for protection application functions are organized into a group of settings. Up to six setting groups can be configured with different values.

The protection relay supports the selection of a setting group at runtime.

5.2.4 Parameter import and export

The parameter export and import function can be used, for example, when the protection relay's parameters are set using the WHMI instead of PCM600. The relay settings engineered with PCM600 can be exported to XRI0 files and imported to the WHMI, which can be used to write the settings to the protection relays. The WHMI can also be used to read the relay setting parameters and to export those to files, which can be used by PCM600.

The setting export and import are sensitive to the protection relay's content. Settings are exported and imported for one protection relay at a time. The export files of a protection relay can be exchanged between PCM600, WHMI and the actual physical IED. To avoid errors and to efficiently manage the setting export and import, for example, in a substation with several protection relays, ensure that the names of the export files identify the protection relay to which the file should be imported.

The parameter import and export functionality is available via the File menu when the Parameter Setting tool is open.

Figure 59: Parameter import and export
5.2.5 Parameter organization

The organization of parameters into a tree structure can be seen in the Plant Structure by expanding the setting tree.

5.3 Signal Matrix

Signal Matrix is used to make cross-references between the physical I/O signals, function blocks and SMV and for the GOOSE signal input engineering.

Application Configuration is used for adding or removing function blocks, for example, GOOSE receiving function blocks.
Figure 60: Signal Matrix: operation principles

A binary input channel can be connected to one or more function block inputs. If a binary input channel is connected to several different function blocks in the Application Configuration tool, the connection appears as glue logic in Signal Matrix.

A binary output channel can only be activated from one function block output. If it is activated from more than one function block output, the glue logic has to be used.

Glue logic means inserting a logical gate (OR and AND blocks) between the binary input and the function blocks or between the function blocks and the binary output channel. This can be engineered with Signal Matrix.
Connections made with Signal Matrix are automatically shown in Application Configuration.

Figure 61: Signal Matrix: a connection between binary input channels to binary input signals

Each SMVRCV block used in Application Configuration needs to be connected to the desired SMV stream in Signal Matrix. Connections need to be one-to-one and unconnected SMVRCV blocks are not allowed.

Signal Matrix has a separate sheet for each possible combination.

- Binary inputs
- Binary outputs
- Analog inputs
- GOOSE
- SMV

5.4 Load Profile tool

Load Profile tool is used for reading load profile records of COMTRADE format from a protection relay, clearing old records and viewing records via an external COMTRADE viewer. The default viewer included with PCM600 is Wavewin, but a third-party viewer can be used.
5.4.1 Opening and closing Load Profile tool

- To open the Load Profile tool, right-click an IED in the PCM600 project tree and select **Load Profile Tool**.

- To close the Load Profile tool, click **Close** in the tool.

The Load Profile tool runs in the same process as PCM600 but in a separate window. Multiple instances of the tool can be run at the same time. Any open tool instances are closed without confirmation when PCM600 is closed.

Figure 62: Opening the Load Profile tool
Figure 63: Load Profile tool

By default, the Load Profile tool uses the \PCMDBases\LPR directory as a saving target directory.
5.4.2 Load Profile tool user interface

Figure 64: Load Profile tool interface

Table 4: Available actions on the user interface

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Path</td>
<td>Default local path (C:\PCMDBases\LPR) is the location from which the records are shown on the Load Profile tool. It is also the default path for saving records. The location where the records are saved can be changed in the Local Path field. The grid of the Load Profile tool shows only the records in the default local path including any unsaved records in C:\Temp\Load\Profile Tool. Therefore records can be saved at a user-specified location on the local machine but those records are not visible in the grid of the Load Profile tool.</td>
</tr>
<tr>
<td>Load</td>
<td>Clicking Load downloads all available records from C:\LDP\COMTRADE directory in the protection relay to a temporary folder C:\Temp\LoadProfileTool on the local machine. In this temporary folder, the target file name is constant, and loading again overwrites the file. An unsaved record is deleted when the tool is closed.</td>
</tr>
<tr>
<td>Save</td>
<td>Clicking Save moves the records to the default or specified local path, Load transfers the records to a temporary folder. Each load profile record comprises two files with file extensions .dat and .cfg. Clicking Save adds a time stamp to the file names and moves the two files pertaining to the record to the default or specified folder. Saving another record creates a new record in addition to the old ones.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clicking Clear clears the record from either the Load Profile tool or protection relay or both. Before deleting the records, a confirmation dialog box is shown.</td>
</tr>
<tr>
<td>Open</td>
<td>Clicking Open opens any selected record to be viewed in Wavewin, provided that this external software is installed. Additionally, any record row can be double-clicked to view that record.</td>
</tr>
</tbody>
</table>

Table continues on next page
5.4.3 Information fields

The IP box shows the IP address of the selected IED and the Local Path box shows the selected location for reading or viewing records.

The record grid shows the name, creation time, modification time and size of each record. The times and dates shown in the grid are the times when the files have been read rather than the original date stamps in the device.

![Information fields](image)

Figure 65: Information fields

5.5 Fault Record tool

The Fault Record tool is used for reading the fault records from the protection relay and it is included in the connectivity packages. The tool makes analyzing the fault records easier by showing them separately in their own user control components. It also includes save, copy and clear functions where all the fault records are saved or copied in text format for later viewing or cleared from the protection relay or the tool.

▌ The fault record is saved to a local PC with the default name `FaultRecords.txt`. Rename the file before saving it to avoid overriding the old record.

5.5.1 Opening and closing Fault Record tool

- To open the Fault Record tool, right-click an IED node in the PCM600 project tree and select **Fault Record Tool**.
Figure 66: Opening the Fault Record tool

- To close the Fault Record tool, click the **Close** button in the tool. The Fault Record tool runs in the same process as PCM600 but in a separate window. Multiple instances of the tool can be run at the same time. Any open tool instances are closed without confirmation when PCM600 is closed.

The Fault Record tool is a connectivity package tool. The main functionality is divided into three parts: reading the fault record parameters from the protection relay, displaying their names, values and units on the user interface and saving them to a text file. It is also possible to clear all the fault records from both the tool and the protection relay and copy the fault records either individually or all at once to a word processor.
5.5.2 Fault Record tool interface

![Fault Record Tool](image)

Figure 67: Fault record tool

Table 5: Available actions on the user interface

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Clicking Read reads all available fault records from the protection relay into the tool. One fault record, 20 fault records or all fault records can be read. The Read button opens up a progress bar to indicate an ongoing read operation. Clicking Cancel on the Read progress bar cancels the read operation. On operation completion, the available fault records are shown in the record grid. Clicking the + icon expands the record details for viewing.</td>
</tr>
<tr>
<td>Save</td>
<td>Clicking Save saves the fault records on the local machine as .txt file.</td>
</tr>
<tr>
<td>Clear</td>
<td>A record can be cleared from the Fault Record tool, the protection relay or both. Before deleting the records, a confirmation dialog box is shown.</td>
</tr>
</tbody>
</table>

Table continues on next page
5.6 IED Compare

IED Compare is used to compare the IED configurations of two IEDs of the same type. It generates a text report which lists the differences between the IED configurations. IED Compare provides an option to compare an IED configuration stored in PCM600, IED or .pem file. IED Compare can compare certain types of IED configurations and parameters.

- Application configuration
- Display configuration
- GOOSE receive configuration
- Parameters

Application comparison also compares the system function blocks.

Display comparison compares the LHMI page configurations.

Detailed instructions are shown in PCM600 documentation.

5.6.1 Starting IED Compare

- Start IED Compare in the shortcut menu in plant structure.
 1. In the PCM600 plant structure, right-click **Substation, Voltage level, Bay** or **IED**.
 2. Select IED Compare.
- Start IED Compare from the PCM600 main menu.
1. Select **Substation**, **Voltage level**, **Bay** or **IED** in the PCM600 plant structure.
2. On the PCM600 menu bar, point to **Tools** and select **IED Compare**.

5.6.2 IED Compare interface

The comparison report shows differences in the configuration of two IEDs. Hardware, application, display, GOOSE and parameter configuration differences are grouped and listed under the corresponding headings.

![Image of IED Compare interface](image)

Figure 68: Compare options

Each configuration group can be expanded or collapsed by clicking the plus (+) or minus (-) button next to it in the result grid.

The reports must be read from left to right row-wise.
5.7 Protection and control blocking examples

All the relay’s logical nodes are set with Test mode. Test mode is selected through one common parameter via the HMI path Tests/IED test. By default, Test mode can only be set locally through LHMI. Test mode is also available via IEC 61850 communication (LD0.LLN0.Mod).

<table>
<thead>
<tr>
<th>Test mode</th>
<th>Description</th>
<th>Protection BEH_BLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>Normal operation</td>
<td>FALSE</td>
</tr>
<tr>
<td>IED blocked</td>
<td>Protection working as in Normal mode but ACT configuration can be used to block physical outputs to process. Control function commands are blocked.</td>
<td>TRUE</td>
</tr>
<tr>
<td>IED test</td>
<td>Protection working as in Normal mode but protection functions work in parallel with test parameters.</td>
<td>FALSE</td>
</tr>
<tr>
<td>IED test and blocked</td>
<td>Protection working as in Normal mode but protection functions work in parallel with test parameters. ACT configuration can be used to block physical outputs to process. Control function commands are blocked.</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Table 6: Acronyms used in a report

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>Data attribute</td>
</tr>
<tr>
<td>DO</td>
<td>Data object</td>
</tr>
<tr>
<td>IED</td>
<td>Intelligent electronic device</td>
</tr>
<tr>
<td>LN</td>
<td>Logical node</td>
</tr>
<tr>
<td>SIG</td>
<td>Signal</td>
</tr>
</tbody>
</table>

Table 7: Test mode

Figure 69: Compare report
The mode of all logical nodes located under the CTRL logical device is set with *Control mode*. *Control mode* is selected via the HMI or PCM600 path *Configuration/Control/General*. By default, *Control mode* can only be set locally through LHMI. *Control mode* inherits its value from *Test mode* but *Control mode* "On", "Blocked" and "Off" can also be independently set. *Control mode* is also available via IEC 61850 communication (CTRL.LLN0.Mod).

<table>
<thead>
<tr>
<th>Control mode</th>
<th>Description</th>
<th>Control BEH_BLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Normal operation</td>
<td>FALSE</td>
</tr>
<tr>
<td>Blocked</td>
<td>Control function commands blocked</td>
<td>TRUE</td>
</tr>
<tr>
<td>Off</td>
<td>Control functions disabled</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

According to IEC 61850, the physical outputs to process should be blocked when the device is set to blocked or test blocked mode. The usage depends on the ACT configuration. In the protection blocking example the main trip from TRPPTRC1 is blocked, and in the control blocking example CBXCBR1 is blocked. Both comply with IEC 61850. In real applications some of PTRC’s might also be used for signalling purposes (GOOSE) and blocking and interlocking via IO.

5.7.1 Protection blocking example

The physical outputs to process can be blocked with “IED blocked” and “IED test and blocked” modes. If physical outputs need to be blocked, the application configuration must block the signals or the function blocks that affect primary apparatuses. The blocking scheme needs to use the BEH_BLK output of the PROTECTION function block.

![Diagram](https://example.com/diagram.png)

Figure 70: Master trip TRPPTRC blocked using Protection function block BEH_BLK output
5.7.2 Control blocking example

The physical outputs to process can be blocked with “Blocked” mode. If physical outputs need to be blocked, the application configuration must block the signals or the function blocks that affect primary apparatuses. The blocking scheme needs to use BEH_BLK output of Control function block.

![Diagram of Control blocking example]

Figure 71: Circuit-breaker control CBXCBR1 blocked using Control function block BEH_BLK output
Section 6 LHMI engineering

6.1 Graphical Display Editor

Graphical Display Editor is a tool for configuring the touch screen graphical display (LHMI) of a protection relay.

Graphical Display Editor can be used to create new pages, configure pages by adding widgets, set page visibility to different user categories, create single-line diagrams and symbols and provide language translations.

6.1.1 Creating complete LHMI page configuration

• Configure the protection relay functions such as protection, measurements and control functions with Application Configuration. The configuration made in Application Configuration can be saved to make the interfaces and signals available for other engineering tools within PCM600 such as Parameter Setting or Graphical Display Editor.

• Make connections between the application configuration function blocks and physical hardware inputs and outputs by using Signal Matrix or Application Configuration.

• Configure HMI pages by using Graphical Display Editor. Create new pages, configure the pages by adding widgets, set page visibility to different user categories, create single-line diagrams shown on the LHMI and WHMI and symbols, and provide language translations for the added LHMI elements.

1. To configure the single-line diagram, check if any new symbols are required in addition to the default symbols in SLD Editor. Use Symbol Editor to create the missing symbols.

2. Use SLD Editor to create a single-line diagram. Add bus bars, symbols and texts and create links between the symbols. Link the dynamic symbols to the corresponding function blocks in the application configuration. The function blocks control the objects represented by symbols on the HMI. Add 10 SLD pages at the maximum.

3. Use Page Organizer to configure the main screen of HMI and to create main pages and linked pages by using the predefined ABB built-in pages and template pages. Set also the page visibility to Basic or Advanced access rights and define unique page names.

4. Use Page Editor to configure the main and linked pages and, for example, to add widgets.

5. Use Language Translation to translate the configuration data text into different languages. Configuration data includes widget properties, page properties and symbol captions. If needed, add a new language from the list.
of languages supported by the relay and set the translated text for the language for available configuration.

6. Save the configuration.
7. Preview the configuration before writing it to the relay.
8. Write the configuration to the relay.

6.1.2 ABB built-in pages

The ABB built-in pages contain information and functionality which are common to most of the applications. Widget properties are usually fixed on these pages but some, such as measurement page and phasors page contents, can be modified.

6.1.2.1 Measurements page

The Measurements page contains two configurable measurement lists. The buttons at the bottom of the page are used to navigate to other measurement-related pages: Phasors, Load Profile, Harmonics and Temperatures.

Only the Measurements and Phasors pages are user-configurable.

The Measurements page configuration data is also used by the WHMI, that is, even if the LHMI is not used with the relay, if the measurements need to be seen on the WHMI, the Measurements page configuration must be created in Graphical Display Editor.
Adding and removing measurements

1. In Page Editor, select the **Measurements** page and then select a measurement list by clicking it.
2. In the **Object Properties** pane, click … on the **listId** row to browse the available signals.

![Object Properties pane](image)

Figure 73: Accessing the signals

3. In the **Signal Group Selection** dialog, select check boxes to add the required signals or clear them to remove any unused signals.
4. Click OK.

Configuring measurement items

The measurement limits, scaling and order can be independently configured in the Object Properties pane.

- Set the measurement properties. If the property value is set to "Automatic", the LHMI uses the value defined by the data model.

Figure 74: Selecting signals
Figure 75: Configuring measurement items

- Apply custom scaling, if needed.
 1. In the **scaling** box, define the correct value which is a coefficient applied to the measurement value. The supported scaling is linear: new_value = read_measurement_value × scaling_property + offset_property.
 2. In the **offset** box, define the offset value.
 3. In the **unit** box, define the unit (string).
 4. Adjust the other limit properties to better fit the scaled measurement value.

- In the **order** box, define custom order for the measurements, if needed.
The smaller the order property, the higher the measurement's position in the measurement list.
By default, all measurement list items are arranged in alphabetical order. Modifying the order property overrides the default behavior.

6.1.2.2 Phasors page

By default, the Phasors page template available in Page Organizer contains an empty Custom signal group. Measurements can be added to the Custom signal group or new signal groups can be added and removed by opening the Phasors page in Page Editor.

Opening Signal Grouping Editor

1. In Page Editor, open the **Phasors** page.
2. Click ⬇️ in the lower-right corner of the Phasors page.
Figure 76: Opening Signal Grouping Editor

The Signal Grouping Editor dialog opens.

Adding and removing signal groups

- Add a new signal group.
 1. In Signal Grouping Editor dialog, click Add.
 2. In Enter Group Name dialog, type the signal group name.
 3. Click OK.

- Remove an existing signal group.

Figure 77: Adding a signal group
1. In Signal Grouping Editor dialog, select a group from the Signal Group drop-down list.
2. Click Remove.

![Figure 78: Removing a signal group](image)

Adding and removing signals

- Add new signals.
 1. In Signal Grouping Editor dialog, select a group from the Signal Group drop-down list.
 2. In List of All Signals list, select the required signals and click Add.

 Add seven signals at the maximum to a single group.

 3. Click OK.
Figure 79: Adding a signal

- Remove existing signals.
 1. In **Signal Grouping Editor** dialog, select a group from the **Signal Group** drop-down list.
 2. Select the required signals and click ![add](add.png).
 3. Click **OK**.

6.1.3 Page Organizer

Page Organizer is used for configuring the main screen of LHMI by creating main pages and linked pages. Pages can be added, removed or reordered in Page Organizer and, for example, their visibility can be set to "Basic" or "Advanced". These access rights are mapped to user roles with User Management in PCM600 and the pages are filtered based on the mapping.

- ABB built-in pages are marked with a padlock symbol. They are locked and cannot be modified.
6.1.3.1 Main pages and linked pages

Main pages can be navigated using the Home button on the LHMI. The main page visibility is bound to access rights. Linked pages are pages which are linked from other pages; they can be opened from a main page when a button is tapped. Depending on the selected role, linked pages are shown under the main page area.

Both the main pages and the linked pages are defined in Page Organizer.

6.1.3.2 Templates

Templates allow replicating the same configuration with less effort. New pages can be created by selecting a template page so that the new page becomes a new instance of the template page. Templates also contain empty pages.

In Page Organizer, the ABB built-in pages are seen as page templates. Both ABB built-in pages and template pages require unique names.

6.1.3.3 Creating pages

The relay supports 10 main pages and 20 linked pages at the maximum.

1. In Page Organizer, create new pages in one of the alternative ways.
 - Under **Main Pages**, click **Add Page** to create a main page.
 - Under **Linked Pages**, click **Add Page** to create a linked page.
2. In the **Add Page** dialog, select a predefined ABB built-in page or a template page and click **Add**.

Define unique names for all main and linked pages regardless of their type.

![Image of Add Page dialog with ABB built-in pages and templates]

Figure 82: Using ABB built-in pages or templates
6.1.3.4 Changing page order

- In Page Organizer, change the order of the pages by dragging a page to the required place.
- Pages can also be dragged from Main Pages to Linked Pages and vice versa.

6.1.3.5 Creating templates

When a template is created out of an existing page, it becomes available under the Templates section in the Add Page dialog. Templates allow replicating the same configuration with less effort.

- Save pages as templates in one of the alternative ways.
 - Click Options in the upper-right corner of the page and select Save as Template from the shortcut menu.
 - Right-click the page and click Save as Template.

![Figure 83: Saving templates](image)

6.1.4 Page Editor

Page Editor is used for configuring pages. Pages can be configured, for example, by adding widgets that are the building blocks of the LHMI configuration or by creating a single-line diagram.

Any graphical object drawn on the LHMI page is a widget. All the supported widgets are populated in the Object Types pane.

Page Browser is shown at the bottom of Page Editor. It displays all editable pages selected for the Main Pages and Linked Pages categories in Page Organizer. When a page is clicked, it opens in Page Editor. Page templates are not shown in Page Browser.
6.1.4.1 Adding widgets

- Add a widget to the page by dragging it from the Object Types pane.
- Set the widget properties.

Adding SLDViewPort

The SLDViewPort widget displays the single-line diagram configured in SLD Editor.

1. Drag the SLDViewPort widget from the Object Types pane to the page.
2. In Object Properties, select the required page from the page drop-down list.
Adding ViewPort
The ViewPort widget displays the contents of a page.

1. Drag the ViewPort widget from the Object Types pane to the page.
2. In Object Properties, select the required page from the page drop-down list.

6.1.4.2 Configuring pages

- Add new widgets by dragging them from Object Types to the page.
- Resize the selected widgets in one of the alternative ways.
 - Click and hold any resize point on the edge or corner of the widget and drag the mouse to resize the widget.
 - Change the width and height properties of the widget in the Object Properties pane.
- Set the properties of the selected widget by modifying the values in the Object properties pane.

Once widgets are placed on the HMI page, some of them (Monitors) can be linked to the corresponding function block in the application configuration by using the source property. The values are updated by the protection relay either periodically (measurement) or in case of an event. Some of the widget properties can be in an automatic mode. When the property is in the automatic mode, the values are set automatically by the protection relay’s LHMI. If a value is specified for an automatic property, the LHMI displays the specified value.

Some of the widget properties cannot be edited as they are read-only values.

- Group or ungroup multiple widgets regardless of their type.

Figure 86: Grouping widgets
When a group is created, all the individual widget properties such as the widget name followed by the dot and the property name, are shown in the Object Properties pane. Only properties x and y are common for all the widgets in the group.
The widget group property naming (aliases), visibility and read-only can be modified.
The grouped widgets can be ungrouped by right-clicking the group and selecting **Ungroup**.

- Bind the widget property values to the same or to another widget property values or to signal values from the application configuration function.
 It is possible to specify simple if...else conditions. The property values are then changed based on those conditions.
 For example, the LED color can be changed to red if the signal value is high or to green if button2 is checked. Otherwise the LED color is yellow.

![Binding property data](image)

Figure 87: Binding property data

6.1.5 Symbol Editor

Symbol Editor is used to create symbols for a single-line diagram. It has different drawing tools available such as line, rectangle and ellipse to draw the symbols. These symbols can be saved in .svg format and written to the IED. This is displayed on the LHMI.

6.1.5.1 Symbols

Symbols are used in the single-line diagram. Each symbol has at least one state that represents the graphics of a symbol at different positions.
Symbol Editor supports three types of symbol standards. New symbols can only be created under the custom standard.
Symbor Editor can be used to create dynamic symbols that have different states corresponding to the different signal values supported by the symbol. For example, the symbol states of a breaker (open, close, intermediate and faulty) can be illustrated in Symbol Editor with the help of drawing tools such as line, rectangle, ellipse, curve or polyline. The symbol State value should match the signal Enum value. On the LHMI the symbols are displayed according to the signal value and the matching symbol state value. One of the states is always the default state. Symbols used in SLD Editor show the default state graphics.

The symbol graphics are saved in .svg format and written to the IED. There are several options for the symbol size: 1x1 (normal size), 1x2 (height is doubled), 2x1 (width is doubled) and 2x2 (both the height and width are doubled).

Custom symbols can be exported from the Graphical Display Editor and reused in other projects.

6.1.5.2 Creating custom symbols

New symbols can only be created under the custom standard. The available options are the category, size and states. At least one state should be selected when creating any symbol.

Before creating a new custom symbol, check that the states and category required for the new symbol are available by default. Otherwise, it may be necessary to create new states or categories.
1. Create a new symbol in one of the alternative ways.
 • On the menu bar, point to **Graphical Display Editor**, point to **Symbol Editor** and select **Create Symbol**.
 • Right-click the symbol library and click **Create Symbol**.
 • On the toolbar, click 🌿.

2. In the **Create Symbol** dialog, specify a name, category, size and states and click **Create**.

![Creating a new symbol](image)

Figure 89: Creating a new symbol
The new symbol becomes available in Symbol Editor with the states selected for drawing. Different drawing tools such as line, rectangle and ellipse can be used to draw the graphics for the different states.

3. Select the symbol state to be used as the default and set `is default` to `True` in the **Object Properties** pane.

4. Select the signals that should be connectable in SLD Editor via the symbol's Signals property.

4.1. On the menu bar, point to **Graphical Display Editor**, point to **Symbol Editor**, point to **Symbol** and select **Object Properties**.

4.2. Select **Signals property** and click `...`.

4.3. In the **Signals Selection** dialog, use `" " ` and ` " ` to add or remove signals and click **OK**.

The connectable signal types for symbols are shown on the left side of the Signal Selection dialog. Any signal type can be moved from the left side to the right side and vice versa. These signal types are used to connect to the symbol if the instance is available in the configuration.
Figure 91: Selecting the signals for a symbol

4.4. If the symbol is of control type, select the correct value in the control dialog drop-down list.

Figure 92: Selecting the control dialog type

5. Save the symbol to make it available in SLD Editor.
6.1.5.3 Creating categories

1. Create a new category in one of the alternative ways.
 • On the menu bar, point to Graphical Display Editor, point to Symbol Editor and select Create Category.
 • Right-click the symbol library and click Create Category.
 • On the toolbar, click ✬.

2. In the Create Category dialog, specify a name and click Create.

6.1.5.4 Creating states

The symbol can have different states that represent the graphics for the symbol. The symbol graphics are different for each state. The state is selected when creating a new symbol.

1. Create a new state in one of the alternative ways.
 • On the menu bar, point to Graphical Display Editor, point to Symbol Editor and select Create State.
 • On the toolbar, click ✬.

2. In the Create State dialog, select Create new state.
3. Specify a name and numeric value and click Create.
SLD Editor

SLD Editor is used to create single-line diagrams. In SLD Editor, bus bars, symbols and text can be added from the object type window and links can be created between symbols.

Once the symbols are placed on the HMI page, they must be linked in Application Configuration to the corresponding function block that protects or controls the object represented by the symbol. The values are updated by the protection relay either periodically (measurement) or in case of an event.

Single-line diagrams support both ANSI and IEC standards. Single-line diagrams created in ANSI can be changed to IEC and vice versa by changing the symbol standard in PCM600. Custom symbols can be used in both ANSI and IEC standards. In the object type window, symbols are grouped by their category.

The single-line diagram created in SLD Editor can be used on the main pages with a special widget called SLDViewPort. The widget is available under the Container group and its page property populates the list of SLD pages. The single-line diagram size can be selected from the Object Properties pane. In ViewPort the single-line diagram can be zoomed and paned on the LHMI.
Figure 95: SLD Editor

All SLD pages are shown at the bottom of SLD Editor. When a page is clicked, it opens in SLD Editor. New SLD pages can be added by clicking the Add Page button. To remove an SLD page, right-click the SLD page and select the Remove Page option in the context menu.

The relay supports a maximum of 10 SLD pages.

SLD Page Editor is used for various tasks.

- Adding static text
- Adding measurands
- Adding bus bars
- Adding symbols to the display page
- Drawing lines (creating links)

6.1.6.1 Adding bus bars

1. In SLD Editor, drag a **BusBarHorizontal** or **BusBarVertical** object from the **Object Types** pane to the page view.
Figure 96: Adding a bus bar

2. Select the left or right connection point and drag it to increase the size of the bus bar.

6.1.6.2 Managing bus bar coloring

Bus bar coloring is used to assign a color to a bus bar or links. New bus bar color groups can be created and each color group can have one or more logic conditions; each logic condition is associated with one color.

- Apply the bus bar coloring.
 1. Right-click anywhere on the page and select Show Bus Bar Coloring.
 2. In the SLD Logic Window dialog, click + to add a new color group or x to remove an existing color group.
 3. Expand any color group and click + to add IF and ELSE conditions and x to remove them.
 4. Click … to add another And condition inline. Click And to change or remove the condition.
 5. To add a value for a condition, click Value Button, select any signal value or widget property value and press ENTER.
 6. Select any color from the drop-down list.
 7. Select Color Group and click on any bus bar to apply the coloring.
Figure 97: Managing bus bar coloring

- Remove the bus bar coloring.
 1. Right-click anywhere on the page and select **Show Bus Bar Coloring**.
 2. Select any color group and click the bus bar to remove the bus bar coloring.

Bus bar coloring example based on the CBXCBR position value

If the CBXCBR position is open, all the bus bars and links associated with the “Color Group1” group should be displayed in red color. If the CBXCBR position is closed, it should be indicated in green color. Otherwise the color is black.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBXCBR1:1.POSITION == open</td>
<td>Line Color is Red</td>
</tr>
<tr>
<td>ELSE</td>
<td>CBXCBR1:1.POSITION == closed THEN Line Color is Green</td>
</tr>
<tr>
<td>ELSE</td>
<td>Line Color is black</td>
</tr>
</tbody>
</table>

Right-click anywhere on the page and select **Highlight Conditional Bus Bar** to show bus bars that have the coloring applied.

6.1.6.3 Adding symbols to an SLD page

1. In SLD Editor, prepare the body of the single-line diagram by placing symbols to the wanted positions on the page view.
2. Drag the apparatus or transformer symbols to the SLD Editor view.
3. Drag the connection symbols.
4. Place the junction points.

5. Connect the symbols where necessary by drawing lines between the symbols’ source and destination ports.

6. In the **Object Properties** pane, set the symbol properties.
 - Use the x and y coordinates to adjust the placement of symbols in the single-line diagram.
 - Use **controlState** to define the default state of the symbol to be displayed in the view.
 - Use **indicationOnly** to define if the symbol is controllable (true = status only; false = controllable).
 - Use **control** to link the symbol to the function block in the application configuration that protects or controls the object.
 - Use **stateColorMap** to specify colors for the different states of the symbol.
If custom symbols have been used in the SLD configuration and then deleted, the symbol graphics show an error and all the related connections are removed from the configuration.

6.1.6.4 Creating SLD pages

1. On the Graphical Display Editor toolbar, select the symbol standard from the drop-down list.
 - IEC
 - ANSI
2. Ensure that the Snap to grid and Show grid functions are available. These are the default and recommended settings when designing a single-line diagram.
3. Place the primary equipment on the single-line diagram approximately in the wanted position. If required, rotate the symbols using the Rotate Left or Rotate Right functions.
4. Consider the necessary symbol connections, that is, links.
 4.1. Click on the source port and click on the desired position to add a connection point.
 4.2. Draw a perpendicular line by moving the mouse while pressing SHIFT and clicking on the target port.
5. Connect the symbols where necessary.
 5.1. Move the mouse pointer over the symbol's connection ports.
The connection ports of all symbols are activated.

5.2. Drag the connection from the source connection port and drop it in the target connection port.
A connection line between the source and target connection ports is drawn.
Alternatively, click on the source port and then click once at the target port to create the connection. Move the mouse pointer on the nearest connection port to ensure the target port. A “+” sign appears.

5.3. Right-click or press ESC to cancel the connection creation.

Once a link has been used to connect the symbols, the link follows the symbol when it is moved to a new position or when it is rotated.

6. Move the mouse pointer away from the symbol’s port for all the connection ports of the symbols to become deactivated.

7. Select a symbol and modify its properties in the **Object Properties** pane.
The symbol name can also be changed by double-clicking the symbol.

8. In the **Object Properties** pane, use **control** to relate dynamic symbols to their source data.

6.1.7 Language Translation

Language Translation is used to translate configuration data text into different languages. Configuration data includes widget properties, page properties and symbol captions. All the translatable properties, that is, text properties, are displayed on the language translation tab.

With Language Translation the users can add a new language from the list of languages supported by the IED and set the translated text for the language. Once the translations are written to the IED they can be displayed on the LHMI based on the language selected.
New languages can be added by clicking the Add Language button, selecting any available language and clicking the OK button. The options Language 1...10 can be used to specify a custom language.

PCM600 shows all the languages supported by the IED. When adding a new language and writing it to the IED, it must be ensured that the corresponding language binary is loaded in the IED and that the corresponding language pack for the connectivity package is installed in the PC.

A warning message is displayed by the tool if the language binary is not loaded in the IED.

6.1.8 Saving, reading and writing configuration to IED

1. Save the LHMI configuration in one of the alternative ways.
 - On the **File** menu, select **Save**.
 - Click the **Save** button on the toolbar.
 - Press CTRL+S.

2. To write the configuration to the IED, click the **Write to IED** button on the toolbar.
This action must be confirmed before it is carried out, because it overwrites the IED's existing display configuration. The writing operation can take a few seconds or minutes to complete.

3. To read the configuration from the IED, click the **Read from IED** button on the toolbar.

6.1.9 Previewing configuration

After the pages have been configured, the configuration can be previewed with a soft LHMI before it is written to the IED. The soft LHMI is a Windows version of the actual LHMI.

- To launch the soft LHMI and to preview the configuration, click the **Show Preview** button.

![Launching the LHMI preview](image)

Figure 101: Launching the LHMI preview

6.1.10 GDE configuration export and import

The GDE configuration can be exported and then imported to any other IED.

6.1.10.1 Exporting GDE configuration

1. On the **File** menu, point to **Display Editor Template** and select **Export**.
2. In the **GDE Export** dialog, select the pages, SLD pages, custom symbols and translations to be exported.
3. Click Export.
 The selected items are exported in .pgdep format.
 If the configuration contains custom symbols that are not selected, a warning dialog is displayed.
4. Select the location to save the template and click Save.

6.1.10.2 Importing GDE configuration

1. On the File menu, point to Display Editor Template and select Import.
2. Click Browse to select any previously exported template file in .pgdep format and click Open.
3. In the GDE Import dialog, select the pages, SLD pages, custom symbols and translations to be imported.
 - Items present in the current configuration have a green border.
 - Items present in the current configuration with differences have a red border.
 - Items not present in the current configuration (new items) have a blue border.
4. Click **Import**.

All page names must be unique. If a page is imported with a name that is used by an existing page, a confirmation dialog is displayed. The options are to overwrite the existing page, to create a new page with a different name or to cancel the import.

Figure 103: Selecting objects for import

![Selecting objects for import](image)

Figure 104: Confirming action after name conflict

![Confirming action after name conflict](image)
6.2 HMI Event Filtering

HMI Event Filtering is a tool that helps in configuring the visibility of the events shown on the IED's LHMI and WHMI. This tool does not modify the actual events on the protocol level.

The event visibility is modified in the event tree view. The events in the tree view are structured in the same way as the functions in the PCM600 plant structure.

![HMI Event Filtering interface](image)

Figure 105: HMI Event Filtering interface

6.2.1 Starting HMI Event Filtering

- Start HMI Event Filtering in one of the alternative ways.
 - Right-click an IED and select **HMI Event Filtering**.
 - On the **Tools** menu, click **HMI Event Filtering**.
6.2.2 Setting visibility of HMI events

The event tree view is used to modify the visibility of the events shown on the LHMI and WHMI. Events in the tree view are structured similarly to the functions in the PCM600 plant structure.

1. Browse the event tree for the event. Event nodes in the tree have more detailed description in the tool tip.
2. Select or clear the check box next to the event name to specify its visibility.

![Event Tree View]

Figure 106: Setting visibility of the HMI events

The event is visible on both LHMI and WHMI only when the check box is selected.

Select the check box of the parent node in the event tree view to modify the HMI visibility for multiple events.

Some events in the event tree are read-only and cannot be modified. The readonly events appear dimmed on the user interface.
6.2.3 Saving event filter configuration

- Save the event filter configuration in one of the alternative ways.
 - On the File menu, select Save.
 - Click Save on the toolbar.
 The Save button on the toolbar is activated when the configuration is modified.

6.3 Alarm configuration

The HMI supports two alarm handling approaches.

- Alarm list
- Programmable LEDs

The alarm list approach uses event configuration to elevate an event to an alarm. The programmable LEDs approach is similar to the traditional programmable LEDs where instead of a physical LED, a virtual LED user interface element is used.

6.3.1 Alarm list

Any visible event can be configured as an alarm. HMI Event Filtering in PCM600 is used to configure the event visibility on the LHMI and WHMI. See Setting visibility of HMI events.

6.3.1.1 Elevating events to alarms

Alarm configuration is done in the HMI Alarm and Fault Selection view. Any visible events can be elevated to an alarm or priority alarm. An alarm configuration text can also be added to describe the alarm context.
Events can be grouped into a fault (group of selected events) on the LHMI and WHMI event list. Grouping of events as a fault starts when any of the events selected in the Fault column is activated and ends when all the events selected in the Fault column are deactivated.

The group of selected events is shown as a Fault Events row on the event list. Each event is visible by expanding this row.

1. Browse the **HMI Alarm and Fault Selection** view to find the event to be configured as an alarm.
 The event rows in the data grid view have more detailed description in the tool tip.

2. Select or clear the check box in the **Alarm** column to elevate an event to an alarm.
 The event is visible as an alarm on both LHMI and WHMI only when the check box is selected.

3. Select or clear the check box in the **Priority** column to elevate an event to a priority alarm.
 When the check box is selected, the event is visible as a priority alarm on both LHMI and WHMI. The priority alarm is always the topmost in the alarm list. If the check box is cleared, the event is visible as a normal alarm on both LHMI and WHMI if the alarm check box is selected.

4. Select or clear the check box in the **Fault** column to create an event group on the HMI event list.
 When the check box is selected, the event in question (if activated) is included in a fault.

5. In the **Alarm Configuration Text** column, write some text to describe an alarm context.

![Figure 108: Elevating events to alarms](image)

The alarm configuration text can be specified only if an event is elevated to an alarm.
Select the check box in the column header of a column in the data grid view to modify the alarm configuration, priority or fault selection of all events.

6.3.1.2 Searching for events and alarms

- In HMI Event Filtering, locate an event or alarm in the event filtering or alarm selection views in one of the alternative ways.
 - Use the predefined search strings.
 - Type a search string manually.

6.3.1.3 Saving HMI alarm and fault selection

- Save the HMI alarm and fault selection in one of the alternative ways.
 - On the File menu, select Save.
 - Click Save on the toolbar.
 The Save button on the toolbar is activated when the configuration is modified.

6.3.2 Virtual programmable LEDs

6.3.2.1 Configuring virtual programmable LEDs

Three steps must be completed to enable programmable LEDs in the relay’s HMI.

1. Instantiate at least one LED and connect the OK and ALARM signals in application configuration.
2. Clear all events elevated as alarms in HMI Event Filtering so that the HMI Home button LED can follow the programmable LED state instead of the alarm list.
3. Add the Programmable LEDs page to the relay’s page list in Graphical Display Editor.
 When these steps are completed and the new configuration is successfully written to the relay, the states of the configured virtual programmable LEDs are shown on the programmable LEDs page.
Section 7 IEC 61850 communication engineering

7.1 IEC 61850 protocol references and pre-conditions

To engineer the IEC 61850 protocol interface for the protection relay, the following additional manuals or knowledge of their contents is required.

• Knowledge of the IEC 61850 engineering process as described in the IEC 61850 standard
• The technical manual describes the function blocks defined as logical nodes.
• IEC 61850 engineering guide
• IEC 61850 conformance documents for the protection relay to be engineered
• IEC 61850 parameter list

7.2 IEC 61850 interface

For more information on the implementation of IEC 61850 in protection relays, see IEC 61850 engineering guide and conformance documents.
7.2.1 IEC 61850 interface in the protection relay

IEC 61850 provides a method for identifying all signals that belong to a function. These signals are identified through the logical nodes representing the functions. All signal information for relay parameters, settings, control and monitoring are available in logical nodes.

Whenever a function block is instantiated in Application Configuration, PCM600 automatically generates the corresponding logical node data.

7.2.1.1 GOOSE data exchange

The IEC 61850 protocol supports a method to directly exchange data between two or more devices (IEDs). This method is described in the IEC 61850-7-2 clause 15.
The concept is based on sending a multicast over Ethernet. The receiver detects the telegram by its multicast destination address and application identifier, and decodes the telegram for further processing by the application.

When a GOOSE message is sent, it is defined by configuring the data set with the defined trigger option and GoCB. This engineering process is done in a station configuration tool, for example, IEC 61850 Configuration tool or IET600. The task involves configuring lists with the signal, value and quality (data attributes or data objects) that belong to the GOOSE message data set.

In the opposite direction, the standard only defines the IED as a receiver of a GOOSE message. How the GOOSE input signals are handled must be defined in the device's application configuration. The SCL data generated by the IEC 61850 Configuration tool or IET600 (or any other station configuration tool) contains the GOOSE data sets as input data. The input data must be connected to a GOOSE receive function block in Signal Matrix.

7.2.2 Function view for IEC 61850 in PCM600

The IED design is directly based on IEC 61850. Thus, the function blocks in PCM600 use IEC 61850 logical node naming for function blocks. This relation is automatically handled by the PCM600 tools.

In the IED, the IEC 61850 data for each function instance is available in the data model, even when the function is not used in the application. This means that it is not necessary to handle any instance information for the functions regarding IEC 61850.
7.2.3 Station configuration description file types

The IEC 61850 standard defines SCL file types in the engineering sequence. These files have a different definition, which is explained in IEC 61850-6. Three of the file types are used in the IED's engineering process.

- **ICD** = IED capability description
 - Capability description of the IED in logical nodes and their data. No information about, for example, the communication configuration is included.
 - An IED is already extended by default data sets and report control blocks. They are predefined by ABB. Changes or additional data sets, for example, are handled with IEC 61850 Configuration tool or IET600.

- **SCD** = Station configuration description
 - A complete configuration description of all IEDs in a station and full engineering of the process signals and communication structure are included. This includes all the needed data sets and control blocks.

- **CID** = Configured IED description
 - The CID file contains the information needed for configuring one specific IED. The CID file contains the complete configuration description of the IED: the configured IED name, communication part, data sets and all control blocks.

- **IID** = Instantiated IED description
 - The IID file contains a complete IED configuration, like the CID file. The IID file can include references to other devices which are not present in the file. The IID file is meant for transferring configuration data from the IED configuration tool to a system configuration tool.

7.3 IEC 61850 engineering process

The IEC 61850 standard defines how information is communicated in a substation. The information communication can be divided into different parts.

- Description of the substation part, including the used logical nodes
- Description of the IEDs with their logical nodes
- Description of the communication network
- Description of the engineering process

When exporting an SCL file from PCM600, the tool builds a default substation structure and creates default data sets and control blocks for vertical communication between the substation client and IEDs. For more information, see the IEC 61850 standards.
In the following example, it is assumed that PCM600 and IET600 are used as the system configuration tools. Another option is to use IEC 61850 Configuration tool or Application Configuration in PCM600. In that case, the SCL file export and import (steps 1 and 3) are not needed. For more information on the GOOSE engineering in IEC 61850 Configuration tool and Application Configuration, see the IEC 61850 engineering guide.

1. SCL files are exported from PCM600. In this case, a SCD file. It is also possible to export other SCL file types.
2. Horizontal and vertical communication is configured using the station configuration tool, for example, IEC 61850 Configuration tool or IET600.
3. SCL files are imported to a PCM600 project. In this case, it is the updated SCD file.

![Diagram of IEC 61850: signal engineering procedure flow when a complete station is exported as a SCD file](image)

Figure 111: IEC 61850: signal engineering procedure flow when a complete station is exported as a SCD file

7.3.1 Exporting SCL files from PCM600

A pre-condition for exporting SCL files from PCM600 is that all IEDs in the project must be engineered in PCM600. The IEDs require a unique name and IP addresses and they must be set according to the project definitions. IED configurations must be finalized as far as possible before starting the IEC 61850 configuration part.

7.3.1.1 Exporting SCD files

1. Select the station in the **Plant Structure** view.
2. Right-click the station and select **Export**.
3. In the open standard Windows dialog box, select the location to store the file and name it.
4. Click **Save**.

5. In the **SCL Export Options** dialog box, click **Advanced** to change the SCL file version if required by the receiving configuration tool.
6. Click **Export** to generate the SCD file. A progress window shows the ongoing export of the station.

7.3.1.2 Exporting ICD or CID files

1. Select the IED in the **Plant Structure** view.
2. Right-click the IED and select **Export**.
3. In the **Export** dialog box, from the **Save as type** list, select the type of file to export.
 - Configured IED description (.cid) for the IEC 61850 structure as needed for the IED at runtime
 - IED capability description (.icd) for the IEC 61850 structure

4. Click **Save**.
5. In the **SCL Export Options** dialog box, select the export options.
6. Click **Advanced** to change the SCL file version if required by the receiving configuration tool.

7. Click **Export**.

7.3.2 Engineering vertical and horizontal communication

For IEC 61850 engineering a separate system configuration tool needs to be used with PCM600. The recommended tool for smaller projects is the IEC 61850 Configuration
tool. For larger projects it is recommended to use IET600, which is available as a standalone tool.

1. Create a project in IET600. [1]
2. Import the SCD file created by PCM600. [1]
3. Conduct vertical communication engineering (monitoring direction).
 3.1. Check the default data sets.
 3.2. Configure the default data sets.

 Data sets meant for vertical reporting can only contain data on the data object level, not on the data attribute level.

 The data set for GOOSE can contain signals on the data attribute or data object level. Data object level GOOSE entries can only be received of the following CDC types: SPS, SPC, ACD, ACT, DPS, DPC, INC, INS, ENC and ENS.

3.3. Configure additional Report Control Blocks when needed for each data set used for vertical communication.
3.4. Link the IED clients to the Report Control Blocks.

 Up to five report clients can be configured.

4. Conduct horizontal communication engineering.
 4.1. Configure GOOSE control blocks for each data set configured for GOOSE messages.

 One data can be included in the GOOSE data set only once.

 4.2. Define the client IEDs for each GOOSE control block.
 4.3. Link the IEDs to the GOOSE control block that must receive the GOOSE control block.

5. Export the updated SCD file. [1]

All data sets, Report Control Blocks and GOOSE control blocks must be located in LLN0.

[1] Applicable when using IET600
7.3.3 Importing SCL files to PCM600

The IED engineering tool must be able to receive an SCD file or an ICD file as an import to receive the engineered communication extensions, for example, for the different IEDs.

To be able to import an SCD file at station level, the option IED 61850 configuration engineering mode enabled has to be cleared in PCM600.

1. On the Tools menu, select Options and click IEC 61850 Configuration.
2. On the Engineering tab, clear the option IED 61850 configuration engineering mode enabled and click OK.

If the IED 61850 configuration engineering mode is enabled, SCD files cannot be imported and an error message is shown.

![Enabling SCD file import at station level](image1.png)

Figure 118: Enabling SCD file import at station level

![Error message when SCD files cannot be imported](image2.png)

Figure 119: Error message when SCD files cannot be imported
7.3.3.1 Importing SCD files

To be able to import an SCD file at station level, the option IED 61850 configuration engineering mode enabled has to be cleared in PCM600.

1. Select the station in the Plant Structure view.
2. Right-click the station and select Import.
3. On the open standard Windows menu, select the file to be imported and start the reading.

![Image of SCL Import Options]

Figure 120: Selecting SCL file import options

4. In the SCL Import Options dialog box, select how to handle the file during the import.
 - Click Don’t import IEDs of unknown type to protect the existing IEDs if the SCD file does not match the original configuration in PCM600.
 - Click Replace unknown if the file includes additional IEDs that are needed. The IED of type “Generic IEC 61850 IED” is used to integrate this kind of IEDs into the plant structure, for example.
 - Click Ignore PCM Object Type to update the IED objects in PCM600 with the IED types in the SCD file, whether or not the IED types in the SCD file match the IED objects in PCM600. This option can be used, for example, when third-party IEDs are included in the system and the SCD file sends GOOSE messages to ABB IEDs included in the project.
 - Click Ignore Substation Section to not import the SSD file part of the SCD file.

5. Click Import when the file definition has been completed. A progress view displays the importing procedure.
6. Make connections from the sending IEDs to the receiving function blocks with Signal Matrix.
 Make connections between the signals that the server sends and the function blocks on the receiver's side.
7. Write the configuration to the IED.
 In the Plant Structure view, select the IED, right-click and select Write to IED.
The engineered data is written to the IED when executing a common *Write to IED* operation.

7.3.3.2 Importing ICD or CID files

1. Select an existing IED.
2. From the **Files of type** list, select the IEC 61850 file type to be imported (ICD or CID).
3. In the **SCL Import Option** dialog box, select how the file is to be handled during the import.
Figure 122: SCL Import Options

- **Don't import** protects the existing IEDs if the SCD file does not match the original configuration in PCM600.
- **Replace unknown** can be used when the file includes additional IEDs that are needed. The IED of type “Generic IEC 61850 IED” is used to integrate this kind of IEDs into, for example, the plant structure.
- **Ignore PCM Object Type** updates the IED objects in PCM600 from the IED types in the SCD file, whether or not the IED types in the SCD file match the IED objects in PM600.
- **Ignore Substation Section** does not import the SSD file part of the SCD file.

4. Click **Import** when the definition has been completed. A progress view displays the importing procedure.

7.3.4 Writing communication configuration to IED

IEC 61850 communication depends on the proper communication configuration in all IEDs that communicate via IEC 61850.

It is possible to make a configuration change in one IED, without affecting the horizontal communication (GOOSE or IEC 61850-9-2 LE) engineering between IEDs. For example, when the Application Configuration tool configuration is changed, but no changes are done to the instantiation or deletion of functions that represent a logical node.

When a changed configuration is written to the IED, the horizontal communication configuration needs to be updated.
1. Select which configuration part to include in writing.
 • Select **GOOSE** to update the GOOSE configuration part in the IED.
 • Select **Process bus (IEC 61850-9-2)** to update the IEC 61850-9-2 configuration part in the IED.

The options can be left unselected. In this case, other parts of the configuration are updated.

2. Select whether or not to update the configuration.
 • Click **Continue** to update the selected communication configuration parts in the IED.
 • Click **Cancel** to cancel the writing operation.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| ACT | 1. Application Configuration tool in PCM600
2. Trip status in IEC 61850 |
<p>| AIM | Analog input module |
| ANSI | American National Standards Institute |
| ARP | Address Resolution Protocol |
| CAL | Central activity logging |
| CID | Configured IED description |
| CMT | Communication Management tool in PCM600 |
| COM600S| Substation Management Unit. An all-in-one communication gateway, automation platform and user interface solution for utility and industrial distribution substations. |
| COMTRADE| Common format for transient data exchange for power systems. Defined by the IEEE Standard. |
| Connectivity package | A collection of software and information related to a specific protection and control IED, providing system products and tools to connect and interact with the IED |
| DA | Data attribute |
| DHCP | Dynamic Host Configuration Protocol |
| DNP3 | A distributed network protocol originally developed by Westronic. The DNP3 Users Group has the ownership of the protocol and assumes responsibility for its evolution. |
| DO | Data object |
| EMC | Electromagnetic compatibility |
| Ethernet| A standard for connecting a family of frame-based computer networking technologies into a LAN |
| FTP | File transfer protocol |
| FTPS | FTP Secure |
| GDE | Graphical Display Editor in PCM600 |
| GoCB | GOOSE control block |
| GOOSE | Generic Object-Oriented Substation Event |
| HMI | Human-machine interface |</p>
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSR</td>
<td>High-availability seamless redundancy</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol Secure</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>ICD</td>
<td>IED capability description</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEC 61850</td>
<td>International standard for substation communication and modeling</td>
</tr>
<tr>
<td>IEC 61850-9-2</td>
<td>A communication protocol based on the IEC 61850 standard series</td>
</tr>
<tr>
<td>IED</td>
<td>Intelligent electronic device</td>
</tr>
<tr>
<td>IET600</td>
<td>Integrated Engineering Toolbox</td>
</tr>
<tr>
<td>IID</td>
<td>Instantiated IED description</td>
</tr>
<tr>
<td>Instance</td>
<td>Identical protection function blocks available in a standard configuration. By setting the application-specific parameters of an instance, a protection function stage can be established.</td>
</tr>
<tr>
<td>IP</td>
<td>Internet protocol</td>
</tr>
<tr>
<td>IP address</td>
<td>A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a unique IP address that specifies the location for the TCP/IP protocol.</td>
</tr>
<tr>
<td>LAN</td>
<td>Local area network</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>LHMI</td>
<td>Local human-machine interface</td>
</tr>
<tr>
<td>LN</td>
<td>Logical node</td>
</tr>
<tr>
<td>MAC</td>
<td>Media access control</td>
</tr>
<tr>
<td>Modbus</td>
<td>A serial communication protocol developed by the Modicon company in 1979. Originally used for communication in PLCs and RTU devices.</td>
</tr>
<tr>
<td>NCC</td>
<td>Network control center</td>
</tr>
</tbody>
</table>
| PC | 1. Personal computer
<p>| | 2. Polycarbonate |
| PCL | Product connectivity level |
| PCM600 | Protection and Control IED Manager |
| PRP | Parallel redundancy protocol |
| PST | Parameter Setting tool in PCM600 |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD</td>
<td>Resistance temperature detector</td>
</tr>
<tr>
<td>SAB600</td>
<td>Substation automation builder tool</td>
</tr>
<tr>
<td>SCD</td>
<td>Substation configuration description</td>
</tr>
<tr>
<td>SCL</td>
<td>XML-based substation description configuration language defined by IEC 61850</td>
</tr>
<tr>
<td>SLD</td>
<td>Single-line diagram</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal Matrix tool in PCM600</td>
</tr>
<tr>
<td>SMV</td>
<td>Sampled measured values</td>
</tr>
<tr>
<td>SNTP</td>
<td>Simple Network Time Protocol</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>A set of four numbers used to create IP address numbers that are used only within a particular network, subnet</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User datagram protocol</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide area network</td>
</tr>
<tr>
<td>WHMI</td>
<td>Web human-machine interface</td>
</tr>
<tr>
<td>Widget</td>
<td>Any graphical object drawn on the LHMI page with Page Editor in PCM600</td>
</tr>
<tr>
<td>XRIO</td>
<td>eXtended Relay Interface by OMICRON</td>
</tr>
</tbody>
</table>