Enhancing mold flow control in continuous slab casting process

Produce cleaner steel, faster and at lower cost by adjusting to varying casting conditions in real time

SITUATION

Defects, rejects and steel downgrades due to varying slab casting conditions

- Different electromagnetic settings are needed depending on throughput, slab format, slag type, steel grade, argon flow injection, SEN type and immersion depth mold level, etc.
- Too time consuming to find appropriate settings through trials, by slowly building up an experience database, or by numerically simulating the process

SCOPE OF DELIVERY

- **METALS, Tata Steel Europe, 2018**

SOLUTION

Complete system for online monitoring, measurement and optimization of casting process

- Fiber-optic mold plate temperature measurement for continuous casting
- Simultaneous stirring and braking in the mold from one fixed position
- Automated control and optimization of continuous casting process in real time

SUCCESS

Creating best possible flow for electromagnetic devices that adjust to varying casting conditions

- Increased control of molten steel flows by getting early warnings on defects, predicting mold flow
- Significant reduction of inclusion defects and downgrades for all casting conditions
- Producing cleaner steel, faster and at lower cost (Higher casting speed with FC Mold)

BENEFITS

- **ABB Ability™ Optimold Monitor** with unparalleled spatial resolution - over 4000 fiber-optic measuring points per mold
- **FC Mold** electromagnetic stirring / braking device for elimination of mold powder entrapments, reduced crack formations and more
- **ABB Ability™ Optimold Control** for powerful analysis of casting conditions and flow patterns to regulate symmetry and flow speed

©ABB

EXTERNAL