Dear readers,

I’m pleased to bring you our first Harmony INFI 90 news bulletin intended for users of the ABB Harmony INFI 90 control system. You might wonder why we would start a newsletter now for a control system that was introduced in the 80s as Network 90. It is not a marketing oversight, so let me assure you there are good reasons.

First, it’s an opportunity to remind that your Harmony INFI 90 control system is still being developed and supported by ABB. How can we do that? ABB’s commitment is the “Evolution without obsolescence” concept. This keeps your control system up-to-date by just providing small steps instead of a total replace solution.

This news bulletin will help us share the news about ABB’s investments in new products and software versions for the Harmony INFI 90 control platform.

Secondly, we would like to tell you about all upgrade possibilities designed to increase the performance of this system as well as the seamless, proven migration possibilities for the HMI based on state-of-the-art hardware solutions, both of which can help secure your equipment investments.

And finally, we want to keep you up-to-date regarding worldwide ABB events including Harmony INFI 90 technology as well as status reports and platform notes, which will be of interest to customers who have not yet signed up for a service contract and lack these announcements.

We plan to issue at least an annual news bulletin, packed with valuable information for you. In addition, we encourage your feedback and invite you to share your interests and comments with us. We are delighted to provide any additional information or advice you may need.

I wish you happy reading.

Kind regards
Fabio Fargione
Harmony Evolution Manager
ABB Power Systems Division
ABB Harmony upgrade provides secure, reliable and powerful control

Duvha power station is a six unit, coal-fired power plant operated by the South African electrical utility, Eskom, with a total installed capacity of 3,600 megawatts (MW). The plant is located in approximately 15 km east of Witbank in Mpuumalanga province.

The Duvha plant’s control system consists of the ABB Harmony INFI 90 process control system, with 17 power conditioning units (PCUs), multi-function processors (MFPs), bridge controllers (BRC100) and block I/Os. The original human machine interface (HMI) solution from the late 1990s is based on Process Portal B/Windows 2000.

After more than 15 years of good operation the system faced normal component aging, in addition to fast evolution of the plant operating system.

Site assessment and service solves plant water problem.

The Duvha plant were encountering problems with system stability in its water treatment plant (WTP), where the Harmony INFI 90 control system has been operating since 1998.

The WTP is a critical component of the site, and malfunctions can result in a total plant shutdown. Normal aging of the NTGF modules in this component created a critical situation for the customer, in some cases forcing the shutdown of all units, causing load shedding.

GEC engineers identified the problem and provided Eskom with a solution to fix the instability. Their system site assessment also generated a life cycle report that presented a clear picture of system status, highlighting critical actions and defining a multi-step approach in order to update the system and make it more reliable.

Engineering station upgrades enable new redundancy bridge controller.

The first step was an update of the Harmony engineering to the latest version of Composer for Harmony applications.

All data and parameters was saved and imported into the new engineering server, after the proper project conversion. The work was done in parallel to the running system, without impacting normal plant operations.

The engineering tool upgrade enabled the customer to use the new BRC modules, and upgrade some of the existing MFP modules.

Benefits of the ABB solution

The ABB multi-step evolution approach enables the customer to better manage its maintenance budget. The system evolution guarantees a more powerful and reliable redundant system, eliminating plant outages.

Between the first and the last step of the evolution, all the replaced devices can be “refreshed,” while also ensuring the spare parts needs of almost all the obsolete components still installed. The direct involvement of the ABB GEC Harmony and local ABB teams ensures a fast and proper response to any future customer needs.

Welcome to the ABB events

Here you can find all events and conferences from the power generation industry that may be of interest for you.

All events are hosted by the Power Generation users themselves and focus on meeting, sharing experiences and exchanging best practices. In addition, they are the perfect platform to experience the latest Harmony INFI 90 product updates and system news by ABB.

If you would like to participate in one of the Power Generation events, please do not hesitate to contact us.
ABB control systems Harmony INFI 90 extends its life cycle support

Symphony Harmony is a proven process control system used for demanding applications in various industries.

The wide range of Harmony references includes the power generation, chemical, pharmaceutical, pulp and paper, water and wastewater, petrochemical, metals and mining, food and beverage, cement, and sugar industries – with over 6,000 systems installed worldwide. Originally introduced in 1980 as Network 90, the system has gone through several evolutionary steps: INFI 90, INFI 90 Open, and Symphony Harmony.

For more than 30 years, ABB has evolved the Symphony family, ensuring that each new generation enhances its predecessors and is backwardly compatible with them – all in accordance with our long-held policy of “Evolution without obsolescence. And now Symphony Harmony is taking the next step in its evolutionary path.

Introducing Symphony® Plus – Total plant automation for the power and water industries.

Like its predecessors listed above, Symphony® Plus is designed to meet the requirements of plant owners in all geographic markets and in all types of power generation and water treatment. Automation Sentinel remains the key program for lifecycle system support as customers continue to upgrade and evolve their installed systems to our latest generation offerings.

ABB's life cycle policy statement

ABB’s control systems are designed for continuous evolution. It is ABB's goal to protect our customers' intellectual investment (i.e. application software) beyond the life cycles of the underlying platform products (i.e. hardware and software).

ABB will not “Remove from Active Sale” any product or “family” of products until an equivalent replacement to those products is available.

Once a product has been removed from active sale, ABB will continue to support the product for at least 10 years, although exceptions to this may occur if components or technologies needed are no longer provided to ABB.

It is ABB’s intention to provide support for as long as there are significant customer needs after the “Manufacturing End” through field service, repair and by making replacement spares (new or refurbished modules) available.

Available life cycle parts services

ABB offers a comprehensive range of spare parts with short lead times, which helps minimize downtime if a failure occurs.

ABB’s life cycle parts services portfolio meets customers’ needs to minimize costs and maximize the value of their investments in ABB equipment.

ABB ensures that our customers receive the best possible return on their assets throughout the entire product life cycle.

<table>
<thead>
<tr>
<th>Product</th>
<th>Status</th>
<th>Non-active since</th>
<th>Spare parts service</th>
<th>Refurbished parts service</th>
<th>Parts repair service</th>
<th>Parts exchange service</th>
<th>Parts test service</th>
<th>Preventative maintenance kits</th>
<th>Inventory Access™ Program</th>
<th>Evolution without Obsolescence to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor VMS</td>
<td>2004</td>
<td>Limited</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S+ Operations</td>
</tr>
<tr>
<td>Conductor NT</td>
<td>2010</td>
<td>Limited</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>S+ Operations</td>
</tr>
<tr>
<td>LAN90 PCV</td>
<td>2011</td>
<td>Classic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>S+ Operations</td>
</tr>
<tr>
<td>Symphony Plus Operation</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wintool/CAD EWS</td>
<td>2004</td>
<td>Obsolete</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S+ Engineering</td>
</tr>
<tr>
<td>Composer Harmony 5.x</td>
<td>2011</td>
<td>Obsolete</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S+ Engineering</td>
</tr>
<tr>
<td>Composer Harmony 6.1</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Symphony Plus Engineering</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Network 90 Power System</td>
<td>1999</td>
<td>Obsolete</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MPSIII</td>
</tr>
<tr>
<td>Modular Power System I</td>
<td>2001</td>
<td>Obsolete</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>MPSIII</td>
</tr>
<tr>
<td>Modular Power System II</td>
<td>2003</td>
<td>Limited</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>MPSIII</td>
</tr>
<tr>
<td>Modular Power System III</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bridge Controller</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Multi-Function Processor</td>
<td>2006</td>
<td>Limited</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>BRC410</td>
</tr>
<tr>
<td>Harmony Area Controller</td>
<td>2004</td>
<td>Limited</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>HPC800</td>
</tr>
<tr>
<td>Harmony Rack Controller BRC410</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Harmony Din Controller HPC800</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Harmony Block I/O</td>
<td>2003</td>
<td>Limited</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>S800 I/O</td>
</tr>
<tr>
<td>Harmony Rack I/O HR Series</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Harmony Din I/O 3000 Series</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Harmony with S800 I/O</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Harmony Control Network</td>
<td>—</td>
<td>Active</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Harmony INFI 90 Performance Fingerprint
Identifying system performance improvement opportunities

The Harmony Performance Fingerprint diagnoses system status and performance in order to identify peak system operation. Using ABB’s proprietary analyzer software, Harmony Performance Analyzer™, ensures control system performance is not affected while ABB engineers perform the audit to collect system topology and configuration information. Because life cycle status, operating condition and maintenance practices associated with Harmony have critical roles in cost-effectively managing the system, associated control system equipment and applications are also reviewed. Included in the Harmony Performance Fingerprint is the measurement and analysis of INFINET performance, Controller CPU utilization and PCU nodes communication loading. More specifically, the audit includes network monitoring/peak loading and performance thresholds.

Once the evaluation is complete, a comprehensive report is generated and the detailed findings and strategy for issue resolution are presented to the plant personnel.

What is being checked

- Module firmware levels
- Redundant modules with conflicting firmware revisions
- Potential communication loop performance issues
- Situations that may cause temporary system performance degradation
- System settings that restrict maximum communication performance
- NIS communication poll rate settings
- Module reporting error codes

(A) The Harmony Performance Fingerprint identifies hardware, firmware and software version levels to determine if updates may result in higher system performance. (B) System architecture is mapped during the Fingerprint so that problems such as communication interruptions can quickly and easily be identiﬁed and fixed.

PGP Benchmark and Fingerprint
 Opportunities for system performance improvements

The PGP Benchmark and Fingerprint provides a comprehensive diagnostic analysis of the Power Generation Portal (PGP) system. Performance, conﬁguration and life cycle parameters are read from the installed system and compared to requirements and best practices. Non-optimal system states and settings are automatically identiﬁed. As a result, the Benchmark report provides a quick overview of the system status, and the Fingerprint report presents the evaluated ﬁndings and detailed recommendations for improvement.

What is being checked

The PGP Benchmark and Fingerprint include comprehensive measurement of system parameters which are mandatory for reliable operation.

This includes:
- PGP internal core components health-state
- Database conﬁguration consistency checks
- Hardware components conﬁguration
- Computer runtime parameters
- Network parameters and performance

The PGP Benchmark and Fingerprint establish a perfect initial step in achieving improved system performance levels. ABB continuously improves and expands Health Check Services, and as a result steadily improves the performance of its customer base.
Training programs for engineers, programmers, maintenance and operations personnel provide up-to-date technical expertise for existing and new products, processes, and technology advances. We offer training on-site at ABB training facilities, locally at your plant site, or on-line. We help you to increase the skill level and knowledge of your employees through training assessment programs including competence development, custom courseware and coaching services. Accurate training will increase your capability to respond rapidly and efficiently in any given situation hence improving operational efficiency of your assets.

Course Title

Symphony Harmony Basics and Configuration

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code</th>
<th>Goals</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphony Harmony Basics and Configuration</td>
<td>S-SH-BC</td>
<td>The attendees will receive an overview of the system, a description of the configuration structure, the concepts and the capabilities of Symphony Harmony control system.</td>
<td>4 ½ days Monday to Friday</td>
</tr>
</tbody>
</table>

Symphony Harmony Engineering Composer

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code</th>
<th>Goals</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphony Harmony Engineering Composer</td>
<td>S-SH-COMP</td>
<td>This course covers the a complete methodology used to control system programming, using a familiar Industry Standard Windows User Interface. Using a process control loop model as a base project, the attendees will use the Automation Architect program to create process control configuration strategies and relevant documentation. The attendees will be able to configure and modify the configuration into the automation unit modules. They will learn how to handle the engineering workstation, as well as the usage of on-line functions.</td>
<td>4 ½ days Monday to Friday</td>
</tr>
</tbody>
</table>

Symphony Harmony Diagnostic and Maintenance

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code</th>
<th>Goals</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symphony Harmony Diagnostic and Maintenance</td>
<td>S-SH-MNT</td>
<td>Hands-on exercises give attendees the opportunity to operate, install, and maintain the Harmony Rack I/O DCS. The attendees will be able to follow all operations related to installing and commissioning the system. They will understand hardware documentation and recognize, diagnose and remedy fault conditions within the Symphony system using system diagnostic tools.</td>
<td>4 ½ days Monday to Friday</td>
</tr>
</tbody>
</table>

Power Generation Portal Operation and Configuration

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code</th>
<th>Goals</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Generation Portal Operation and Configuration</td>
<td>S-SH-PGP</td>
<td>The attendees will be able to understand and design basic architecture of a Power Generation Portal system; they will learn to operate and perform basic configuration tasks of a Power Generation Portal system.</td>
<td>4 ½ days Monday to Friday</td>
</tr>
</tbody>
</table>

Power Generation Portal Advanced Configuration

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code</th>
<th>Goals</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Generation Portal Advanced Configuration</td>
<td>S-SH-PGP_ADV</td>
<td>The attendees will be able to design complex Power Generation Portal architectures, to perform advanced editing tasks of databases and custom graphics, to export/import data to external hosts, to modify access rights, and to perform advanced configurations of log and report.</td>
<td>4 ½ days Monday to Friday</td>
</tr>
</tbody>
</table>
Harmony INFI 90 presence worldwide
We are here to support you

Harmony INFI 90 Global Execution
Center ABB Italy – Power Systems Division
Fabio Fargione
Phone: +39 335 6506 0423
Email: fabio.fargione@it.abb.com

Contact

ABB USA: Tom Maczuzak
Phone: +1 440 695 6563
Email: tom.maczuzak_usa@abb.com

ABB Canada: Kevin L. Aris
Phone: +1 403 690 7131
Email: kevin.laris@ca.abb.com

ABB Argentina: Daniel Guerero
Phone: +54 911 602 5606
Email: daniel.guerrero@ar.abb.com

ABB Chile: Hugo Herrera
Email: hugo.herrera@cl.abb.com

ABB Mexico: Carlos Martinez
Phone: +52 55 5521 5252
Email: carlos.martinez@mx.abb.com

ABB Brazil: Alexandre Alves
Phone: +55 11 2646 7412
Email: alexandre.alves@br.abb.com

ABB Colombia: Jorge Garcia
Phone: +57 311 521 6666
Email: jorge.garcia@co.abb.com

ABB Peru: Luis Soto
Phone: +51 622 609 609
Email: luis.soto@pe.abb.com

ABB Ecuador: Carlos Gali
Phone: +593 2 232 5662
Email: carlos.gali@ec.abb.com

ABB Costa Rica: Oscar Murillo
Phone: +506 224 3300
Email: oscar.murillo@cr.abb.com

ABB Paraguay: Andres Maria
Phone: +595 2 720 0932
Email: andres.maria@py.abb.com

ABB Uruguay: Jesus Cardozo
Phone: +598 1 530 1500
Email: jesus.cardozo@uy.abb.com

ABB Venezuela: Juan Carlos De La Rosa
Phone: +58 212 656 5856
Email: juancarlos.delarosa@ve.abb.com

ABB Trinidad & Tobago: Alvaro Torres
Phone: +502 2 228 5194
Email: alvaro.torres@tt.abb.com

ABB Guyana: prueba prueba
Phone: +592 2 228 5194
Email: prueba@prueba.com

ABB Suriname: prueba prueba
Phone: +597 2 228 5194
Email: prueba@prueba.com

ABB Jamaica: prueba prueba
Phone: +876 2 228 5194
Email: prueba@prueba.com

ABB Haiti: prueba prueba
Phone: +509 2 228 5194
Email: prueba@prueba.com

ABB Barbados: prueba prueba
Phone: +1 246 2 228 5194
Email: prueba@prueba.com

ABB Antigua & Barbuda: prueba prueba
Phone: +1 268 2 228 5194
Email: prueba@prueba.com

ABB Grenada: prueba prueba
Phone: +1 473 2 228 5194
Email: prueba@prueba.com

ABB Saint Kitts & Nevis: prueba prueba
Phone: +1 869 2 228 5194
Email: prueba@prueba.com

ABB Saint Lucia: prueba prueba
Phone: +1 758 2 228 5194
Email: prueba@prueba.com

ABB Anguilla: prueba prueba
Phone: +1 649 2 228 5194
Email: prueba@prueba.com

ABB St. Vincent & The Grenadines: prueba prueba
Phone: +1 758 2 228 5194
Email: prueba@prueba.com

ABB St. Barts & St. Martin: prueba prueba
Phone: +599 2 228 5194
Email: prueba@prueba.com

ABB Bonaire, Sint Eustatius & Saba: prueba prueba
Phone: +599 2 228 5194
Email: prueba@prueba.com

ABB Curacao: prueba prueba
Phone: +599 2 228 5194
Email: prueba@prueba.com

ABB Martinique: prueba prueba
Phone: +596 2 228 5194
Email: prueba@prueba.com

ABB French Guiana: prueba prueba
Phone: +594 2 228 5194
Email: prueba@prueba.com

ABB Guadeloupe: prueba prueba
Phone: +590 2 228 5194
Email: prueba@prueba.com

ABB Martinique: prueba prueba
Phone: +596 2 228 5194
Email: prueba@prueba.com

ABB Caribbean: prueba prueba
Phone: +599 2 228 5194
Email: prueba@prueba.com

Contact
Contact us
Harmony Global Execution Center

ABB Italy SpA
Power Systems Division Service
Via Enrico Albareto 35,
16153 Genoa, Italy
Hotline Phone: +39 010 607 37 77
Email: gec.harmony@it.abb.com

ABB Training Center
Power System Division Service
Via Luciano Lama 33,
20099 Sesto San Giovanni MI
Phone: +39 02 24143858
Email: loredana.dialessio@it.abb.com

new.abb.com/power-generation/
power-plant-automation/harmony

Notice
The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document. In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document. This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party nor used for any unauthorized purpose.