IndustrialIT
Panel 800 - PP865
Version 5.1

Hardware and Installation
Hardware and Installation
NOTICE

This document contains information about one or more ABB products and may include a description of or a reference to one or more standards that may be generally relevant to the ABB products. ABB may have one or more patents or pending patent applications protecting the intellectual property in the ABB product(s) described in this publication. The presence of any such description of a standard or reference to a standard is not a representation that all of the ABB products referenced in this document support all of the features of the described or referenced standard. In order to determine the specific features supported by a particular ABB product, the reader should consult the product specifications for the particular ABB product.

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

This product meets the requirements specified in EMC Directive 89/336/EEC and in Low Voltage Directive 72/23/EEC.

TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2005-2011 by ABB.
All rights reserved.

Release: December 2011
Document number: 3BSE043448R501
# TABLE OF CONTENTS

## Section 1 - Introduction
General .................................................................................................................................................................................. 7
Warning, Caution, Information, and Tip Icons ....................................................................................................................... 8

## Section 2 - Safety Precautions
UL and cUL Installation ................................................................................................................................................................. 9
General .......................................................................................................................................................................................... 10
During Installation .......................................................................................................................................................................... 11
During Use .................................................................................................................................................................................. 11
Service and Maintenance ................................................................................................................................................................. 12
Dismantling and Scrapping ............................................................................................................................................................ 12

## Section 3 - Installation
Space Requirements .............................................................................................................................................................................. 13
Installation Process ........................................................................................................................................................................ 14
  - Mode Switches ........................................................................................................................................................................ 17
  - Internal Compact Flash Memory Card .................................................................................................................................... 19
  - Expansion Module for Proﬁbus DP ..................................................................................................................................... 21
  - CB810 - USB to Ethernet Adapter ..................................................................................................................................... 24
  - Connections to the Controller .............................................................................................................................................. 25
  - Other Connections and Peripherals ...................................................................................................................................... 25

## Section 4 - Technical Data

## Section 5 - Chemical Resistance
Metal Casing .................................................................................................................................................................................. 29
# Table of Contents

- Touch Screen and Overlay ................................................................. 30
- Autotex F157/F207 .............................................................................. 30
- Touch Screen Surface ................................................................. 31
- Autoflex EB ..................................................................................... 31

## Section 6 - Operator Panel Drawings

- Communication Ports ........................................................................... 33
- TK212A, Panel 800 - AC 800M ............................................................. 35
- TK854V030, Panel 800 Programming Cable RS232 .......................... 36
- PP865 Outline .................................................................................. 37

## Section 7 - Additional Installation Tips

- Grounding the Operator Panel .......................................................... 40
- Ethernet Connection in the Panel ...................................................... 41
- To Achieve Better EMC Protection .................................................. 42
- Ambient Temperature ....................................................................... 44
- Safety ............................................................................................... 46
- Galvanic Isolation .............................................................................. 48
- Cable and Bus Termination RS485 .................................................. 49
Section 1  Introduction

General

The Panel 800 operator panel is developed to satisfy the demands of human-machine communication. Built-in functions such as displaying and controlling text, dynamic indication, time channels, alarm and recipe handling are included.

The operator panel work, for the most part, in an object-oriented way, making it easy to understand and use. The configuration operation of the panel is made in a personal computer, using the configuration tool Panel Builder 800. The project is then transferred and stored in the operator panel.

The operator panel can be connected to many types of automation equipment, such as PLCs, servos or drives. In this manual the expression “the controller” is used as a general term for the connected equipment.

This manual explains how to install the operator panel. Please refer to the manual Panel Builder 800, Programming and Installation (3BSE043445Rxxx) for further information.

The release history of the Panel 800 is presented below.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>User documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Initial release of the Panel 800 and firmware version 1.0.</td>
<td>3BSE043448R101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MA00794)</td>
</tr>
<tr>
<td>5.0</td>
<td>Release of firmware version 2.0 with support for MMS Alarm and Event and PROFIBUS-DP slave interface (CB801).</td>
<td>3BSE043448R201</td>
</tr>
<tr>
<td>5.0/1</td>
<td>Release of firmware version 3.0.</td>
<td>3BSE043448R301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MA00794A)</td>
</tr>
</tbody>
</table>
Warning, Caution, Information, and Tip Icons

Section 1 Introduction

This publication includes Warning, Caution, and Information where appropriate to point out safety related or other important information. It also includes Tip to point out useful hints to the reader. The corresponding symbols should be interpreted as follows:

Electrical warning icon indicates the presence of a hazard which could result in electrical shock.

Warning icon indicates the presence of a hazard which could result in personal injury.

Caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although Warning hazards are related to personal injury, and Caution hazards are associated with equipment or property damage, it should be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process performance leading to personal injury or death. Therefore, fully comply with all Warning and Caution notices.
Section 2 Safety Precautions

Both the installer and the owner and/or operator of the operator panel must read and understand this installation manual.

UL and cUL Installation

- This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D OR non-hazardous locations only. [Combinations of equipment in your system are subject to investigation by the local Authority Having Jurisdiction at the time of installation].
- Maximum ambient temperature 40 °C when mounted horizontal or 50 °C when mounted vertical.
- WARNING – EXPLOSION HAZARD – Do not disconnect equipment unless power has been removed or the area is known to be non-hazardous.
- For Canada also AVERTISSEMENT – RISQUE D’EXPLOSION – AVANT DE DECONNECTER L’EQUIPEMENT, COUPER LE COURANT OUS’ASSURER QUE L’EMPLACEMENT EST DESIGNE NON DANGEREUX.
- WARNING – EXPLOSION HAZARD - Substitution of components may impair suitability for Class I, Division 2.
- For Canada also AVERTISSEMENT – RISQUE D’EXPLOSION – LA SUBSTITUTION DE COMPOSANTS PEUT RENDRE CE MATERIEL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE I, DIVISION 2.
- WARNING – EXPLOSION HAZARD – only UL and cUL approved expansion units are allowed to be connected to the port designated “EXPANSION”. At the moment there are no such units evaluated or allowed.
General Section 2  Safety Precautions

• WARNING – EXPLOSION HAZARD - Do not replace expansion unit unless power has been switched off or the area is known to be non-hazardous.
• This product contains battery, this must only be changed in an area known to be non-hazardous. Permitted types are shown in the Section 4, Technical Data.
• For use on a flat surface of a type 4X enclosure indoor use only.
• To make wiring connections to the power supply connector, use an AWG 28-12 cable and a tightening torque of min. 0.5 Nm.

General

• Read the safety precautions carefully.
• Check the delivery for transportation damage. If damage is found, notify the supplier as soon as possible.
• Do not use the operator panel in an environment with high explosive hazards.
• The supplier is not responsible for modified, altered or reconstructed equipment.
• Use only parts and accessories manufactured according to specifications of the supplier.
• Read the installation and operating instructions carefully before installing, using or repairing the operator panel.
• Never allow fluids, metal filings or wiring debris to enter any openings in the operator panel. This may cause fire or electrical shock.
• Only qualified personnel may operate the operator panel.
• Storing the operator panel where the temperature is lower/higher than recommended in this manual can cause the LCD display liquid to congeal/become isotopic.
• The LCD display liquid contains a powerful irritant. In case of skin contact, wash immediately with plenty of water. In case of eye contact, hold the eye open, flush with plenty of water and get medical attention.
The figures in this manual serve an illustrative purpose. Because of the many variables associated with any particular installation, the supplier cannot assume responsibility for actual use based on the figures.

The supplier neither guarantees that the operator panel is suitable for your particular application, nor assumes responsibility for your product design, installation or operation.

**During Installation**

- The operator panel is designed for stationary installation on a plane surface, where the following conditions are fulfilled:
  - no high explosive risks.
  - no strong magnetic fields.
  - no direct sunlight.
  - no large, sudden temperature changes.
- Install the product according to the accompanying installation instructions.
- Ground the product according to the accompanying installation instructions.
- Only qualified personnel may install the operator panel.
- Separate the high voltage, signal and supply cables.
- Make sure that the voltage and polarity of the power source is correct before connecting the product to the power outlet.
- Peripheral equipment must be appropriate for the application and location.

**During Use**

- Keep the operator panel clean.
- Emergency stop and other safety functions may not be controlled from the operator panel.
- Do not use too much force or sharp objects when touching the keys, display etc.
Service and Maintenance

- Only qualified personnel should carry out repairs.
- The agreed warranty applies.
- Before carrying out any cleaning or maintenance operations, disconnect the equipment from the electrical supply.
- Clean the display and surrounding front cover with a soft cloth and mild detergent.
- Replacing the battery incorrectly may result in explosion. Only use batteries recommended by the supplier.

Dismantling and Scrapping

- The operator panel or parts thereof shall be recycled according to local regulations.
- The following components contain substances that might be hazardous to health and the environment: lithium battery, electrolytic capacitor and display.
Section 3 Installation

Space Requirements

- Installation plate thickness: 1.5 - 9.0 mm (0.06 - 0.35 inch)
- Space requirements when installing the operator panel:

The openings on the enclosure are for air convection. Do not cover these openings.
Installation Process

1. Unpack and check the delivery. If damage is found, notify the supplier.

Panel cut out 355.5 x 278.5 mm
(14.0 x 10.96 inch)

Place the operator panel on a stable surface during installation. Dropping it or letting it fall may cause damage.

2. Place the panel cut out where the operator panel is to be situated, draw along the outer sides of the holes and cut according to the markings.
3. Secure the operator panel in position, using all the fastening holes and the provided brackets and screws:

![Image of securing operator panel]

- Use 14 M5 screws.
- Use a grounding conductor with a cross-section of minimum 2.5 mm².
- Use only shielded communication cables.
- Separate high voltage cables from signal and supply cables.
- Ensure that the operator panel is dry before connecting it to the power outlet.
- Ensure that the voltage and polarity of the power source is correct.

4. Connect the cables in the specified order:

- Ensure that the operator panel and the controller system have the same electrical grounding (reference voltage level), otherwise errors in communication may occur.
- Use an M5 screw and a grounding conductor (as short as possible) with a cross-section of minimum 2.5 mm².
- Use only shielded communication cables.
- Separate high voltage cables from signal and supply cables.
- The operator panel must be brought to ambient temperature before it is started up. If condensation forms, ensure that the operator panel is dry before connecting it to the power outlet.
- Ensure that the voltage and polarity of the power source is correct.
5. Carefully remove the laminated film over the operator panel display, to avoid static electricity that could damage the panel.
Mode Switches

All mode switches must be in OFF position during operator panel use.
The mode switches should not be touched unless by qualified personnel.
The operator panel has four mode switches (DIP switches) located on the back of the operator panel.
The drawing below shows where the switches are located.

Enter the desired mode in the following steps:
1. Disconnect power from the operator panel.
2. Set the mode switches.
3. Reconnect power to the operator panel.
The mode switches have the following functions:
(1=ON, 0=OFF, each letter in “MODE” has a corresponding Mode Switch)

Table 1. Mode Switches With Functional Description

<table>
<thead>
<tr>
<th>MODE 1234</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Run mode, normal operation.</td>
</tr>
<tr>
<td>0010</td>
<td>System Restore, resets the file system and registry &amp; re-installs the system program (OPsys_bxxx.CAB). Restores the operator panel to factory settings. <strong>Note</strong>: It is possible that the system program in the operator panel has been updated after production (for example in stock or by an integrator). This update/newer version of the system program will be deleted and replaced with the version that was used in production if the operator panel is restored to the factory settings with this System Restore function. However, the system program in the operator panel can be updated again to the latest version by using the <strong>Update Operator Panel System Program</strong> function in the configuration software for the operator panels.</td>
</tr>
<tr>
<td>0100</td>
<td>Image Load mode, allows upgrading of the complete software package in the operator panel. <strong>Note</strong>: All files including the file system in the operator panel will be deleted when upgrading with Image Loader.</td>
</tr>
<tr>
<td>1000</td>
<td>Service Menu mode, the service menu for the system program is shown. Allows the user to set IP configuration, erase the project and calibrate the touch screen.</td>
</tr>
<tr>
<td>1110</td>
<td>Self-test.</td>
</tr>
<tr>
<td>xxx1</td>
<td>Hard reset (forces the panel to reset).</td>
</tr>
</tbody>
</table>
Internal Compact Flash Memory Card

An internal Compact Flash memory card can be used to expand the project memory.

When using an internal Compact Flash memory card, no external Compact Flash memory card can be used. An external USB Flash drive can be used for the same functions as an external Compact Flash card.

Compact Flash cards of type I and II are supported by the operator panels. Recommended Compact Flash memory cards are SiliconSystems SiliconDrive, SanDisk Industrial Grade and Cactus 203-, 302-, 303-series.

Installation

Perform the following steps to install an internal Compact Flash card in the operator panel:

1. Turn off the power to the panel.

   Observe precautions for handling electrostatic sensitive devices.

2. Remove the back cover on the operator panel, using a torx screwdriver (T10*50).
3. Flip the back cover; the CPU board is mounted inside the back cover.
4. Insert the Compact Flash memory card in its slot on the CPU board.

5. Re-attach the back cover to the operator panel.
6. Turn on the power to the operator panel.
7. When the operator panel starts up, you will be asked if you like to move the files to the internal card; select **YES** to this question.

**Settings in Panel Builder 800**

The size of the internal memory card must be entered in the configuration tool for the operator panel.

1. Select **Setup/Terminal Options**.
2. Enter the size of the internal memory card under **Memory card settings/Internal**.
3. Click **OK** to close the dialog.

**Expansion Module for Profibus DP**

An expansion module can be used for connection via Profibus DP.

⚠️ Observe precautions for handling electrostatic sensitive devices.
Space Requirements

Installation

1. Unpack and check the delivery. If damage is found, notify the supplier.

![Image of screws]

Place the operator panel on a stable surface during installation. Dropping it or letting it fall may cause damage.

2. Disconnect the operator panel from the power supply.
3. Remove the plastic cover from the expansion port.

4. Secure the expansion module in position, using the provided screws.

5. Connect the operator panel to the power supply.

**Technical Data**

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size, W x H x D</td>
<td>87 x 70 x 30 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.1 kg</td>
</tr>
</tbody>
</table>
CB810 - USB to Ethernet Adapter

General information

CB810 is a USB 2.0 to Fast Ethernet converter. It converts a standard USB Host port on a PC to a standard network adapter (network card).

To enable project transfer etc. between Panel 800 with built-in Ethernet RJ45 port and a PC using the USB port on the PC; connect the CB810 adapter as follows.

The USB Type A connector on CB810 is connected to a USB Host port on a PC. Crossover Ethernet patch cable (twisted pair cable) with RJ45 connectors is connected between the Ethernet RJ45 port on CB810 and the Ethernet RJ45 port on the Panel 800.
Follow the instructions in the manual for the operator panel to make settings for the Ethernet / TCP/IP project transfer in the configuration tool.

CB810 is not approved for fixed installation or for use when the Panel 800 is installed and/or running. It should only be used for project/file transfer between a PC and the Panel 800. CB810 cannot be connected directly to the Panel 800.

**Technical Specifications**

- Single chip USB to 10/100 Mbps Fast Ethernet.
- Compliant with USB specifications 1.0, 1.1, and 2.0.
- Full/High Speed USB Device with bus power capabilities.
- IEEE 802.3u 100BASE-T, TX, and T4 compatible.
- Embedded 7K*16 bit SRAM, 256*16 bit SRAM and 8 FIFOs.
- Supports both full-duplex or half-duplex operation Fast Ethernet.
- Supports suspended mode and remote wake up.
- Optional PHY power down mode for power savings.
- Supports automatic loading of Ethernet ID, USB Descriptors and Adapter Configuration from EEPROM on power-on initialization.
- Ethernet PHY loop-back diagnostic capability.

**Connections to the Controller**

For information about the cables to be used when connecting the operator panel to the controller, please refer to the help file for the driver in question.

**Other Connections and Peripherals**

Cables, peripheral equipment and accessories must be suitable for the application and its environment. For further details or recommendations, please refer to the supplier.

When using a compact flash card, do not remove the card when the busy indicator is illuminated.
### Section 4  Technical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PP865</th>
<th>PP865A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front panel, W x H x D</td>
<td>398 x 304 x 6 mm</td>
<td></td>
</tr>
<tr>
<td>Mounting depth</td>
<td>60 mm (160 mm including clearance)</td>
<td></td>
</tr>
<tr>
<td>Front panel seal</td>
<td>IP 66</td>
<td></td>
</tr>
<tr>
<td>Rear panel seal</td>
<td>IP 20</td>
<td></td>
</tr>
<tr>
<td>Keyboard material/</td>
<td>Touch screen: Polyester on glass, 1 million finger touch operations.</td>
<td></td>
</tr>
<tr>
<td>Front panel</td>
<td>Overlay: Autotex F157/F207 *</td>
<td></td>
</tr>
<tr>
<td>Reverse side material</td>
<td>Powder-coated aluminum</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>3.7 kg</td>
<td></td>
</tr>
<tr>
<td>Serial port RS422/RS485</td>
<td>25-pin D-sub contact, chassis-mounted female with standard locking screws 4-40 UNC.</td>
<td></td>
</tr>
<tr>
<td>Serial port RS232C</td>
<td>9-pin D-sub contact, male with standard locking screws 4-40 UNC.</td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>Shielded RJ 45</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td>Host type A (USB 1.1), max output current 500mA</td>
<td>Device type B (USB 1.1)</td>
</tr>
<tr>
<td>CF-slot</td>
<td>Compact flash, type I and II</td>
<td></td>
</tr>
<tr>
<td>Flash memory for application</td>
<td>12 MB (incl. fonts)</td>
<td></td>
</tr>
<tr>
<td>Real time clock</td>
<td>±20 PPM + error because of ambient temperature and supply voltage. Total maximum error: 1 min/month at 25 °C</td>
<td>Temperature coefficient: -0.034±0.006 ppm/°C²</td>
</tr>
<tr>
<td>Parameter</td>
<td>PP865</td>
<td>PP865A</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Real time clock battery</td>
<td>CR2450 (UL and cUL: Sanyo or Panasonic)</td>
<td>Rechargeable battery.</td>
</tr>
<tr>
<td></td>
<td>Minimum lifetime: 3 years</td>
<td></td>
</tr>
<tr>
<td>Power consumption at rated voltage</td>
<td>Normal: 1.2 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum: 1.7 A</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>TFT-LCD. 1024 x 768 pixels, 64K color.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCFL backlight lifetime at the ambient temperature of +25 °C: &gt;35,000 h.</td>
<td></td>
</tr>
<tr>
<td>Active area of display, W x H</td>
<td>304.1 x 228.1 mm</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td>Internal DC fuse, 3.15 AT, 5 x 20 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE: The power supply must conform with the requirements according to IEC 60950 and IEC 61558-2-4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UL and cUL: The power supply must conform with the requirements for class II power supplies.</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Vertical installation: 0 ° to +50 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal installation: 0 ° to +40 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20 °C to +70 °C</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5 - 85 % non-condensed</td>
<td></td>
</tr>
<tr>
<td>CE approvals</td>
<td>Noise tested according to EN61000-6-4 emission and EN61000-6-2 immunity.</td>
<td></td>
</tr>
<tr>
<td>UL, cUL approvals (when product or packing is marked)</td>
<td>UL 1604 Class I, Div 2 / UL 508 / UL 50 4x indoor use only</td>
<td>UL 508 / UL 50 4x indoor use only</td>
</tr>
<tr>
<td>DNV</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NEMA</td>
<td>4x indoor use only</td>
<td></td>
</tr>
</tbody>
</table>

* See Section 5, Chemical Resistance for more information.
Section 5  Chemical Resistance

Metal Casing

The frame and casing material is powder-coated aluminum. This powder paint withstands exposure to the following chemicals without visible change:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid 10%</td>
<td>Phosphoric acid 4%</td>
</tr>
<tr>
<td>Citric acid 10%</td>
<td>Phosphoric acid 10%</td>
</tr>
<tr>
<td>Diesel</td>
<td>Sea water</td>
</tr>
<tr>
<td>Distilled water</td>
<td>Sodium chloride 2%</td>
</tr>
<tr>
<td>Edible oil</td>
<td>Sodium chloride 20%</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>Sulphuric acid 20%</td>
</tr>
<tr>
<td>Hydrogen peroxide 3%</td>
<td>Tap water</td>
</tr>
</tbody>
</table>

The powder paint shows limited resistance to the following chemicals at room temperature:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butanol</td>
<td>Nitric acid 3%</td>
</tr>
<tr>
<td>Hydrochloric acid 5%</td>
<td>Nitric acid 10%</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>Phosphoric acid 43%</td>
</tr>
<tr>
<td>Na-hypochlorite 10%</td>
<td>Turpentine</td>
</tr>
</tbody>
</table>

If exposure to any of the above chemicals is demanded, it is recommended to first test the chemical on an “invisible” spot of the metal casing.
The powder paint shows little or no resistance to the following chemicals at room temperature:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid, conc.</td>
<td>Methyl-ethyl ketone</td>
</tr>
<tr>
<td>Acetone</td>
<td>Nitric acid 30%</td>
</tr>
<tr>
<td>Ammonia 5%</td>
<td>Phenol</td>
</tr>
<tr>
<td>Ammonia, conc.</td>
<td>Sodium hydroxide 5%</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>Sodium hydroxide 30%</td>
</tr>
</tbody>
</table>

**Touch Screen and Overlay**

**Autotex F157/F207**

Autotex F157 or F207 covers the overlay surrounding the touch screen.

**Solvent Resistance**

Autotex F157/F207 F250 withstands exposure of more than 24 hours duration under DIN 42 115 Part 2 to the following chemicals without visible change:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrile</td>
<td>Diesel Downey / Lenor¹</td>
</tr>
<tr>
<td>Ajax / Vim in solution</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Alkalicarbonate solution¹</td>
<td>Glycerine</td>
</tr>
<tr>
<td>Ammonia (&lt;40%)¹</td>
<td>Glycol</td>
</tr>
<tr>
<td>Acetic acid (&lt;50%)</td>
<td>Gumption¹</td>
</tr>
<tr>
<td>Ariel powder in solution¹</td>
<td>Hydrochloric acid (&lt;36%)</td>
</tr>
<tr>
<td>Bleach¹</td>
<td>Linseed oil</td>
</tr>
<tr>
<td>Castor oil</td>
<td>Methanol</td>
</tr>
<tr>
<td>Caustic soda (&lt;40%)¹</td>
<td>Nitric acid (&lt;10%)</td>
</tr>
</tbody>
</table>
Autotex withstands DIN 42 115 Part 2 exposure of up to 1 hour duration to glacial acetic acid without visible change.

Autotex is not resistant to high pressure steam at over 100 °C or the following chemicals:

<table>
<thead>
<tr>
<th>Concentrated mineral acids</th>
<th>Benzyl alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated caustic solution</td>
<td>Methylene chloride</td>
</tr>
</tbody>
</table>

1 Extremely faint glossing of the texture was noted.

Outdoor Use

In common with all polyester based films, Autotex F157/F207F250 is not suitable for use in conditions of long term exposure to direct sunlight.

Touch Screen Surface

The touch screen surface on the panel withstands exposure to the following solvents without visible change:

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Toluene</td>
<td>5 hours</td>
</tr>
</tbody>
</table>

Autoflex EB

It is recommended to use the Autoflex EB touch display protection film, that can be ordered from the supplier.
**Solvent Resistance**

Autoflex EB withstands exposure to the same chemicals as Autotex F157 or F207 according to section Autotex F157/F207.

**Outdoor Use**

In common with all polyester based films Autoflex EB is not suitable for use in conditions of long term exposure to direct sunlight.
Section 6  Operator Panel Drawings

Communication Ports

USB

![USB Connection Diagram]

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Signal direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>D–</td>
<td>In/Output</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>In/Output</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>–</td>
</tr>
</tbody>
</table>

Ethernet

![Ethernet Connection Diagram]

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Signal direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
<td>Output</td>
</tr>
<tr>
<td>2</td>
<td>Tx−</td>
<td>Output</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
<td>Input</td>
</tr>
<tr>
<td>4</td>
<td>Rx−</td>
<td>Input</td>
</tr>
<tr>
<td>5, 6</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

*Figure 1. Part 1 of Drawing No. S-05005, Date 2004-10-27*
RS-232

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal</th>
<th>Signal Name</th>
<th>Signal direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>Data Carrier Detect</td>
<td>Input</td>
</tr>
<tr>
<td>2</td>
<td>RX</td>
<td>Receive Data</td>
<td>Input</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
<td>Transmit Data</td>
<td>Output</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>Signal Ground</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Data Set Ready</td>
<td>Input</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request To Send</td>
<td>Output</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear To Send</td>
<td>Input</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Ring Indicator</td>
<td>Input</td>
</tr>
</tbody>
</table>

RS-422/485

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal</th>
<th>Signal direction</th>
<th>Signal</th>
<th>Signal direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TxD+</td>
<td>Output</td>
<td>TxD+</td>
<td>Tx/Output</td>
</tr>
<tr>
<td>15</td>
<td>TxD−</td>
<td>Output</td>
<td>TxD−</td>
<td>Tx/Output</td>
</tr>
<tr>
<td>3</td>
<td>RXD+</td>
<td>Input</td>
<td>RXD+</td>
<td>Rx/Output</td>
</tr>
<tr>
<td>16</td>
<td>RXD−</td>
<td>Input</td>
<td>RXD−</td>
<td>Rx/Output</td>
</tr>
<tr>
<td>4</td>
<td>RTS+</td>
<td>Output</td>
<td>RTS+</td>
<td>Rx/Output</td>
</tr>
<tr>
<td>17</td>
<td>RTS−</td>
<td>Output</td>
<td>RTS−</td>
<td>Rx/Output</td>
</tr>
<tr>
<td>5</td>
<td>CTS+</td>
<td>Input</td>
<td>CTS+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>CTS−</td>
<td>Input</td>
<td>CTS−</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal</th>
<th>Signal direction</th>
<th>Signal</th>
<th>Signal direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Do Not Use</td>
<td></td>
<td>Bus termination</td>
<td>Bus termination</td>
</tr>
<tr>
<td>18</td>
<td>Do Not Use</td>
<td></td>
<td>Bus termination</td>
<td>Bus termination</td>
</tr>
<tr>
<td>7,8</td>
<td>3.3V</td>
<td></td>
<td>0V</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+5V</td>
<td>Output</td>
<td>+5V</td>
<td>Output</td>
</tr>
</tbody>
</table>

(1) Pin no. 20 connected to pin no. 21 internal in the terminal
(2) Directly connected internal to pin no. 2 (TxD+).
(3) Connected to pin no. 15 (TxD−) internally via a 120 ohm 1/4W resistor.
(4) NOTE: Only the first and last unit on the bus should be terminated.

Figure 2. Part 2 of Drawing No. S-05005, Date 2004-10-27
TK212A, Panel 800 - AC 800M

Figure 3. Drawing 3BSC630197 Rev. A (2004-09-28)
TK854V030, Panel 800 Programming Cable RS232
Section 6  Operator Panel Drawings

PP865 Outline

Figure 4. Part 1 of Drawing No. S-05141, Date 2004-10-26
Figure 5. Part 2 of Drawing No. S-05141, Date 2004-10-26
Section 7  Additional Installation Tips

When experiencing communication problems in for example noisy environments or when operating close to temperature limits, the following recommendations are to be noticed.
Grounding the Operator Panel

1. The operator panel’s mounting clamps do not provide a secure grounding connection between the panel and the device cabinet.
2. Connect a 2.5 mm² wire between the operator panel’s quick-connect plinth and the panel chassis.
3. Connect a 6 or 4 mm² wire or grounding braid between the panel’s chassis and the closest grounding point on the door.
4. Connect a strong but short grounding braid between the door and the device cabinet.
5. Twist the cables onto the 24 V DC feed.
6. A ferrite core suppresses disturbances to the 24 V feed.  
   2 turns around the ferrite core provide 4 times the suppression of 1 turn.  
   3 turns around the ferrite core provide 9 times the suppression of 1 turn.

   The grounding wires should be short and the conductor should have a large area.  
   A long, thin grounding wire has a very high impedance (resistance) at high  
   frequencies and will not guide disturbances to the ground.  
   Multi-wire conductors are better than single wire conductors with the same area.  
   A braided conductor wire with the same area is even better.  
   The best is a short, thick grounding braid.

1. In some industrial units for Ethernet, the RJ45 contact’s shield is connected to  
   the chassis via a capacitor.
2. The operator panel’s Ethernet shield is directly connected to the chassis. Check whether the other Ethernet unit has its shield directly grounded or grounded via a capacitor. 

In many cases, connecting the shielded Ethernet cabling to the chassis at both ends is inappropriate. Hum or grounding loops can occur. Unshielded cabling may even result in fewer communication errors.

A good solution may be to use a shielded Ethernet cable, but to connect the shield at one end only.

3. One option is to break the shield.

4. A more elegant method is to expand the shielded Ethernet cabling with a piece of unshielded Ethernet cable.

5. You can ground the shield via an external 0.1 uF/250 V plastic capacitor. This will connect the HF transients to the ground.

To Achieve Better EMC Protection

- Initially, use the original cabling from the supplier primarily.
- Use shielded cables for RS232 communication.
- Use twisted pair and shielded cabling for RS422 and RS485.
- Use the cabling intended for the bus type; Ethernet, Profibus, CC-Link, CAN, Device Net etc.
- Install and connect according to applicable specifications for the relevant bus standard.
- Use shielded cabling for Ethernet, preferably with foil + braided shield.
- D-sub covers should be shielded, and the shield should be connected to the cover 360 ° where the cable comes in.
- Connect the shield at both ends.

With longer distances, there is a risk that the ground potential may be different. In that case, the shield should only be connected at one end. A good alternative is to connect the other end of the shield to the ground via a 0.1 uF/250 V plastic capacitor. Both ends are then connected to the ground in terms of HF, but only connected to the ground at one end in terms of LF, thus avoiding the 50 Hz grounding loops.

- Use an EMC cable gland or regular plastic cable gland, remove the outer jacket and connect the shield to the installation plate with a 360° metal cable clamp.
ambient temperature section 7 additional installation tips

- Place the 24 V DC and communications cabling in one cable trunk/cable duct and 230/380 V AC in another. If the cables need to be crossed, cross them at 90° only. Avoid combining the cabling for stronger 24 V DC outputs with the communication cabling.

- Ferrite cores that are snapped onto the shielded cabling may remove minor disturbances. Large ferrite pieces that are snapped onto unshielded cabling and where the wires go 2-4 times around the cores are approximately 5-25 times more efficient.

ambient temperature

The maximum ambient temperature for the operator panel is provided in the specifications. The ambient temperature refers to the temperature in the device cabinet which cools the panel’s electronics.
In most cases, the ambient temperature for the operator panel is significantly higher than the device cabinet’s ambient temperature.

If the cabinet is tall and there are a number of heat-generating devices, the temperature at the top of the cabinet will be considerably higher than the theoretical temperature increase that would be expected. All electronics are sensitive to heat. The lifespan of an electrolytic capacitor is cut in half with an 8-10 °C increase in temperature. A 15-20 °C temperature increase results in a quarter of the lifespan etc.

Rittal has a good program for estimating the anticipated average temperature in the cabinet as well as a large program for controlling the temperature in the device cabinet.

An enamel-coated steel cabinet has a radiant heat value of 5.5 W/m² and °C.

Installing a fan inside the cabinet will even out the temperature, while moving air provides considerably better cooling than still air. A suitable fan is a 120 x 120 mm axial fan, available in 24 V DC, 115 and 230 V AC.

Install the fan so that it sits in the cooler area and will blow cold air against the operator panel. If the fan is mounted at the top and sucks air upwards, the fan’s ambient temperature will be higher = shorter lifespan.

A good fan with a ball-bearing mounting has an expected lifespan of at least 40,000 hours (not a guaranteed lifespan) at 40 °C. This corresponds to at least 4 years of continuous use. If a thermostat is installed, the fan only needs to come on when needed.

Large graphic terminals draw only one fifth of the current when the background lighting is off. The loss effect drops from e.g. 25 W to only 5 W.

The operator panel’s loss effect = supply voltage x current. Virtually no power goes to external users and no loss effects due to inputs.
Most of the operator panels are fed with 24 V DC.

1. If you use a power supply that meets safety standards and only feeds the operator panel, there is no problem.

2. However, if you have a 24 V unit that also feeds other units, there is reason to be cautious. The operator panel does not have insulation that meets safety requirements in the event of a potential short circuit between 230 V AC and 24 V DC. It is
assumed that the 24 V feed is secure, for example, SELV according to EN 60950 (protection against electric shock) and UL 950.

Here is an example that explains why a secure 24 V DC feed can be ruined by mixing 24 V relay contacts with 230 V AC relay contacts in a smaller controller. Check that the “clearances and creepage distances between 24 V DC and 230 V AC fulfill EN 60950 or UL 950”. If not, input a separate 24 V unit into the operator panel.

3. If there is a substantial distance between the relay contacts for 24 V DC and 230 V AC, it is OK to use the same 24 V devices for all feeds.

4. Connect 0 V on the 24 V feed to the ground. This offers three advantages:
   - Safety is increased. The 24 V feed will not be live in the event of a faulty connection or short circuit between 0 V (24 V) and 230 V phase.
   - Transients on the 24 V feed are connected to the ground.
   - No risk that the 24 V feed is at a high level in relationship to the ground. This is not unusual since there is high static electricity.
Galvanic Isolation

The operator panel has galvanic isolation against the 24 V DC feed but no galvanic isolation between the communication ports for RS232, RS422/485 and USB. Only the Ethernet connection has galvanic isolation.

When a PC is connected to the panel, the panel’s internal 0 V (GND) will be connected to the protective ground via the PC.

A number of USB devices can have the shield connected together with the protective ground. Here, the panel’s 0 V (GND) is connected to the protective ground when, for example, a USB memory stick, keyboard or similar device is plugged in.

If a number of units are connected that have a 0 V and a ground connection, and these are connected to various grounding points, there is a substantial risk of...
problems. Grounding currents go through communication cables, the rear plate of
the controller, and internally in the operator panel, and can cause errors.
Use external units to improve communication and achieve galvanic isolation.
Westermo has good industry-standard insulators that are also insulated from the 24
V DC feed.

It is very important to make sure that the 24 V feed in the external insulation unit
is not connected to one of the communication outlets. If it does not have 100%
insulation against the 24 V feed, disturbances and grounding currents from the 0
V on the 24 V side will disrupt communication.
Using this type of unit solves one problem but creates a larger problem!
A substandard installation may work now, but problems may arise when other
devices are connected.

Cable and Bus Termination RS485

- Use shielded and twisted pair cable.
The pair capacitance may not exceed 52.5 pF/m and area at least 0.25 mm²
(AWG 24), if you want to use the maximum transfer distance and maximum
transfer speed.
- 0 V, the reference voltage for communication should be included in the cabling.
With two-way communication use two pairs; one pair for communication and
one pair for 0 V.
- The shield must be grounded at one end. The other end is usually grounded, but
with longer distances or when there is a difference in the ground potential, the
shield should be connected to the ground via 0.1 uF/250 V plastic capacitor to
prevent ground current in the braided shield.
A number of manufacturers recommend that the shield be grounded at each
node.

Various manufacturers have different systems for bus termination. The RS485
standard does not describe how the “Fail Safe” function would be carried out, just
that the system should be able to handle the error.
Depending on the recipients’ design, the bus wires may be on the same level or require pull-up or pull-down to ensure that no faulty signals are detected when the bus is in resting mode (all transmitters are disconnected).

1. Some (older) operator panels had pull-up and pull-down resistance except for the actual bus termination at 120 ohm, similar to Westermo and Profibus.

2. Newer panels have another type of recipient, so-called built-in “Fail Safe”, where simple bus termination resistance is sufficient.

If other nodes on the RS485 network require pull-up and pull-down and the operator panel is at one end of the loop, one of the following procedures can be carried out:

3. Connect two 1 ohm/0.25 W resistors in the 25-pole D-sub contact. Set jumper pins 6-19.