IMPRS™
Overcurrent Relay

Application

The IMPRS overcurrent relay is a multi-purpose microprocessor-based protective relay system that is designed to provide phase and ground overcurrent protection in industrial, utility, and commercial power systems.

The relay operates from standard 5A secondary current transformers. Models are available for use with either DC or AC control voltage sources.

Settings are programmable in the field by connecting a personal computer or hand-held programmer to the unit, or remotely through a communications systems. The software necessary for the personal computer to communicate with the relay system is provided at no additional cost with each order. This software also gives the user access to the advanced monitoring and event recording features of the IMPRS.

Phase Overcurrent Protection
Device Number: 50/51
The user has the choice of eight overcurrent characteristic curves: Inverse, Very Inverse, Extremely Inverse, Long Time Inverse, Long Time Very Inverse, Long Time Extremely Inverse, Short Time, and Define Time. Time dial selection for the definite time curve is 0-10 seconds in 0.05-second increments. Time dial selection for the other seven curves is 1 to 10 in 0.1-second increments. Pick-up current selection is from 1 to 15 amperes in 0.5-amp increments. A second model offers a current range of 0.2 to 0.3 amperes in 0.1-amp increments.

A three-phase instantaneous element adjustable 1-20 times the tap setting is provided for phase fault protection. The user may select one of three characteristic curves. The inverse instantaneous gives longer tripping times for low and moderate fault levels.

Ground Overcurrent Protection
Device Number: 50N/51N
The ground fault function provides an effective setting range of 0.4 to 3.0 amperes. Standard, inverse, and delayed instantaneous curves are provided for maximum flexibility in selecting the operating time.

Features

- Phase and Ground Fault Protection
- Current Monitoring
- Accumulation of Breaker Interrupting Current
- Fault Event Recording
- Continuous Self-Diagnostics
- Communications Capability
- Non-Volatile Memory
- Drawout Construction
- Breaker Failure to Operate Alarm
Current Monitoring
Continuous three-phase and ground current monitoring is provided, including instantaneous currents, demand, and peak demand currents. An optional Current Display Unit may be mounted on the RS232 connector on the IMPRS front panel to give a continuous readout of the phase currents.

Fault Event Record
The fault event record stores the twenty most recent events that resulted in tripping the breaker. The stored data includes the protective function that operated, current in primary amperes for each phase and ground, the relay tripping time in seconds, and a date and time tag.

Self-Diagnostics
Equipment availability is enhanced by a self-diagnostics program that continuously tests the microprocessor, A/D converter, memory elements, and the internal power supply. Normal conditions are indicated by a green status light on the front panel. On a self-check failure the status light flashes, and an alarm contact transfers for annunciation of the condition.

Output Contact Configuration
Internal switches are provided to program the function of the two output relays. A third output relay, the self-check failure alarm is not programmable in function.

Built-in Trip Test
A recessed trip-test pushbutton allows functional testing of the relay and breaker or starter. The pushbutton may be disabled by a software command.

Drawout Construction
An automatic current transformer shorting feature and sequenced disconnects allow the relay to be totally withdrawn from its case. A unique rear circuit board accepts standard banana plug connectors and is clearly marked for convenient testing. A test plug unit is available for accessing the external wiring connected to the case.

Breaker Interruption Duty
The IMPRS relay system retains a summation by phase of the accumulated contact interruption duty for use as a guide to scheduling circuit-breaker or motor-starter maintenance.

Three-phase Connections

Typical Control Connections

July, 1991
Internal Connections

![Diagram of Internal Connections]

Self-check alarm contact (9-10) is convertible to normally-open or normally-closed.

Output Relay Configurations

The chart shows the available output contact assignments.

The third output (terminals 9-10) is always assigned to the self-check alarm function.

<table>
<thead>
<tr>
<th>Output No. 1 (11-12)</th>
<th>Output No. 2 (13-14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51/51N</td>
</tr>
<tr>
<td>2</td>
<td>50/50N</td>
</tr>
<tr>
<td>3</td>
<td>All Faults</td>
</tr>
<tr>
<td>4</td>
<td>50/51N</td>
</tr>
</tbody>
</table>

July, 1991
Time Characteristic Curves (Device Number: 51)

IMPRS Overcurrent
1. Inverse
2. Very Inverse
3. Extremely Inverse

IMPRS Overcurrent
4. Long Time Inverse
5. Long Time Very Inverse
6. Long Time Extremely Inverse

July, 1991
Time Characteristic Curves (Device Number: 51) Continued

- IMFPS Overcurrent Short Time Inverse
- IMFPS Overcurrent Definite Time
- IMFPS Overcurrent Inverse Instantaneous
- IMFPS Overcurrent Standard Instantaneous
Specifications

Input Current Circuit: Rating: 16A continuous, 450A for 1 second. Burden: Less than 0.05VA at 5A. Frequency: 50 or 60Hz nominal.

Overcurrent Functions: Pickup: 1-15A in 0.5A steps and 0.2-3A in 0.1A steps. Time Dial: 1-10 in 0.1 increments. Definite Time: 1-10 sec. in 0.05 sec. increments. Instantaneous: 0.5-20X pickup setting in steps of 0.1. Curve Selection: Inverse, Very Inverse, Extremely Inverse, Long Time Inverse, Long Time Very Inverse, Long Time Extremely Inverse, Short Time, Definite Time.

Control Voltage: Models available for: 125Vdc/120Vac nominal, 0.12A 48Vdc nominal, 0.32A 250Vdc nominal, 0.08A

Operating Temperature Range: -20 to +70 degrees C. For lower temperature rated models, consult factory.

Metering Accuracy: +/-2% of pickup tap setting.

Output Contact Ratings: at 125Vdc at 250Vdc at 120Vac 30A 30A 30A tripping 5A 5A 5A continuous 0.3A 0.1A 2A break inductive

Dielectric: 1500 Vac, 60 seconds, all circuits to ground.

Transient Immunity: 2500V, 1MHz. bursts at 60Hz repetition rate, Fast Transient Test (ANSI C37.90.1), RFI Test at 10V/m, 27 to 1000MHz.

Weight: Net 9 lbs.; boxed for shipment 10 lbs. (4.6kg).

Further Information

List Prices: PL 41-020 Technical Data: TD 41-025 Instruction Book: IB 7.12.1.7-1© Set of Transparent Time-Current Curves available on request© Other Protective Relays: Application Selector Guide, TD 41-016

© Available upon request, only from Allentown Plant.
Communications Cable

Serial Port Cable Connection to a Terminal (Data Terminal Equipment). Cable Connectors Are Female, 25 Position, D - Subminiature.

See instruction book for other combinations.

Communications Systems
IMPRS relays can be networked up to eight units using RS-232C and a multiplexer unit. Larger numbers can be networked using other communications protocols such as RS-485. Contact your sales representative or the factory for details.

Case Outline and Drilling

1. Dimensions are \(\text{inch} \) or \(\text{mm} \).

Top View

\(10-32 \) Studs x \(.50 \) Long

\(12.7 \)

\(8.625 \)

\(7.125 \)

\(219.1 \)

\(161.0 \)

(4) 21.9 Dia. Mounting Holes

Panel Cutout

\(.344 \)

\(7.25 \)

\(7.937 \)

\(1.062 \)

\(27.0 \)

\(201.6 \)

\(1.00 \)

\(254.0 \)

\(6.50 \)

\(7.797 \)

\(165.1 \)

\(198.0 \)

\(.454 \)

\(11.5 \)

\(1.454 \)

\(36.9 \)

\(4.50 \)

\(114.3 \)

\(6.625 \)

\(169.3 \)

\(.843 \)

\(21.4 \)

\(.6329 \)

\(160.8 \)

\(7.05 \)

\(179.1 \)

Side View

July, 1991
July, 1991
Mailed to: E, D, C/41-000C

Integrated Microprocessor-Based
Overcurrent Relay System
Drawout Construction

IMPRS™
Overcurrent Relay

Overcurrent, IMPRS Protective Relay System (Device Number: 50/51, 50N/51N)

<table>
<thead>
<tr>
<th>Time Unit</th>
<th>Pickup Range</th>
<th>Curves, PH & GRD</th>
<th>Cont. Rating</th>
<th>Int. Conn.</th>
<th>Control* Voltage</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125 Vdc/120 Vac</td>
<td>470A0400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 Vdc</td>
<td>470A0500</td>
</tr>
<tr>
<td>0.2-3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 Vdc</td>
<td>470A1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125 Vdc/120 Vac</td>
<td>470A1400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 Vdc</td>
<td>470A1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 Vdc</td>
<td>470A2300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125 Vdc/120 Vac</td>
<td>470A2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 Vdc</td>
<td>470A2500</td>
</tr>
</tbody>
</table>

Notes: 1. IMPRS is provided with front mounted RS-232 Communications Port. For additional rear RS-232 port change last digit of catalog number from 0 to 1. For additional RS-485 rear port change last digit of catalog number from 0 to 2.

Connection Diagram

612974
IMPRS
Protective Relay System

IMPRS Current Display Unit

Scale	Display	Mounting	Modes	Catalog Number
3 digits in Kilomamps | Ø1, Ø2, Ø3, neutral in load, demand or peak currents | Front mounted on RS-232 of IMPRS Relay | Stationary or Cycling | 470K5000

IMPRS Hand Operated Terminal

Functions

1. Scan Metering Quantities
2. Display/Edit relay settings
3. Determine the self-check status of the IMPRS

Catalog Number

470X4000

Note: The Hand Operated Terminal is used as a portable hand held PC complete with carrying case, communication link, software program and AC adapter.