
Application manual
Robot Application Builder

Industrial Software Products
RobotWare 5.0

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Application manual

Robot Application Builder
RobotWare 5.0

Document ID: 3HAC028083-001

Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The information in this manual is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to persons
or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written
permission, and contents thereof must not be imparted to a third party nor be used for
any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

© Copyright 2007 - 2009 ABB All rights reserved.

 ABB AB
Robotics Products

SE-721 68 Västerås
Sweden

Table of Contents

33HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Overview . 7
Product documentation, M2004 . 10
Safety . 12

1 Introduction 13

1.1 About Robot Application Builder. 14
1.2 Documentation and help. 16
1.3 Terminology . 18

2 Installation and development environment 21

2.1 Installation overview . 22
2.2 How to obtain and install a license key for RAB 5.09 or earlier . 26
2.3 How to set up your PC to robot communication . 27
2.4 Development environment . 29
2.5 Two development models - virtual and real . 31
2.6 Conversion of VS 2005 projects to Visual Studio 2008. 33

3 Run-time environment 35

3.1 Two platforms - PC and FlexPendant. 36

3.2 Running PC Applications . 40
3.2.1 Licence verification - applies only to versions earlier than RAB 5.10 . 40
3.2.2 Mastership . 41
3.2.3 PC application configuration . 43
3.2.4 Communication between PC and controller. 46

3.3 Running FlexPendant Applications. 47
3.3.1 Components, assemblies and dlls . 47
3.3.2 Deployment of FlexPendant application to a robot system . 48
3.3.3 Communication between FlexPendant and controller . 51
3.3.4 Understanding FlexPendant application life cycle . 52
3.3.5 FlexPendant TpsView attribute . 54
3.3.6 ITpsViewSetup and ITpsViewActivation . 58

3.4 Release upgrades and compatibility . 60

4 Developing RAB applications 63

4.1 Introduction . 64
4.2 Analysis and design . 65
4.3 Controller events and threads . 67
4.4 User Authorization System. 70
4.5 Exception handling . 72
4.6 How to use the online help . 75

5 Using the FlexPendant SDK 77

5.1 Introduction . 77
5.1.1 About this chapter. 77
5.1.2 System features supporting the use of customized screens . 78

5.2 Setting up a new project. 80
5.2.1 Using the project template in Visual Studio. 80
5.2.2 Setting up design support for FlexPendant controls. 83

5.3 Building the user interface. 84
5.3.1 Introduction to visual design support . 84
5.3.2 GUI controls and memory management. 93
5.3.3 Container style . 97
5.3.4 Command bar . 101

Table of Contents

4 3HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.5 FlexPendant fonts . 103
5.3.6 The use of icons . 104
5.3.7 TabControl . 106
5.3.8 Button, TextBox and ComboBox. 109
5.3.9 AlphaPad . 110
5.3.10 ListView. 114
5.3.11 CompactAlphaPad and NumPad . 116
5.3.12 GTPUMessageBox. 117
5.3.13 GTPUFileDialog . 119
5.3.14 DataBinding of RAPID data and IO signals . 122

5.4 Launching other views. 128
5.4.1 Using launch service . 128
5.4.2 Using standard dialogs to modify data. 131

5.5 Using the Controller API . 133
5.5.1 ABB.Robotics.Controllers . 133
5.5.2 Accessing the controller . 136
5.5.3 Rapid domain . 140

5.5.3.1 Working with RAPID data . 140
5.5.3.2 Handling RAPID arrays . 148
5.5.3.3 ReadItem and WriteItem methods . 151
5.5.3.4 UserDefined data . 152
5.5.3.5 RAPID symbol search. 157
5.5.3.6 RAPID execution . 162
5.5.3.7 Modifying modules and programs . 164

5.5.4 IO system domain . 166
5.5.5 Event log domain . 172
5.5.6 Motion domain . 174
5.5.7 File system domain . 177
5.5.8 System info domain . 179

6 Robust FlexPendant applications 181

6.1 Introduction . 182
6.2 Memory management. 184
6.3 Performance . 188
6.4 Reliability . 193

7 Using the PC SDK 199

7.1 Controller API . 200
7.2 Create a simple PC SDK application . 202
7.3 Discovery domain . 210
7.4 Accessing the controller . 212

7.5 Rapid domain . 219
7.5.1 Working with RAPID data. 219
7.5.2 Handling arrays . 227
7.5.3 ReadItem and WriteItem methods . 230
7.5.4 UserDefined data . 231
7.5.5 RAPID symbol search . 239
7.5.6 Working with RAPID modules and programs . 245
7.5.7 Enable operator response to RAPID UI-instructions from a PC . 248

7.6 IO system domain. 254
7.7 Event log domain . 261
7.8 Motion domain . 263
7.9 File system domain. 265
7.10 Messaging domain . 268

Table of Contents

53HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8 Debugging and troubleshooting 279

8.1 FlexPendant - Debugging and troubleshooting . 279
8.1.1 Debug output . 279
8.1.2 Debugging the virtual FlexPendant . 282
8.1.3 Debugging the FlexPendant device . 286
8.1.4 Troubleshooting FlexPendant applications . 289

8.2 PC - Debugging and troubleshooting . 292
8.2.1 Debugging . 292
8.2.2 Troubleshooting . 296

9 Localizing a FlexPendant application 299

9.1 Adding support for several languages . 300

10 Packaging RAB applications 309

10.1 Deployment of a PC SDK application . 309
10.1.1 Overview . 309

10.2 Deployment of a FlexPendant SDK application . 311
10.2.1 Overview . 311
10.2.2 Deployment of an application without a license . 312
10.2.3 Deployment of a licensed application . 315
10.2.4 Deployment using FTP. 318

 Overview

73HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Overview

About this manual

Robot Application Builder (RAB) is a software tool, which enables programmers to develop

customized operator interfaces for the IRC5 robot controller.

The purpose of this manual is to help software developers get started with RAB application

development.

Usage

Robot Application Builder targets two different platforms. To develop a FlexPendant

application you use the FlexPendant SDK. To develop a PC application, on the other hand,

you use the PC SDK. This manual covers application development using both of these SDKs.

Who should read this manual?

This manual is mainly intended for software developers, who use RAB to create robot

applications adapted to end-user needs, but is also useful for anyone who needs an overview

of Robot Application Builder.

Prerequisites

The reader should

• be familiar with IRC5, the FlexPendant and Robot Studio.

• be used to Microsoft Visual Studio and Windows programming.

• be familiar with one of the .NET programming languages C# or Visual Basic.NET. For

PC applications Visual J# and Visual C++ should also work.

• be used to object oriented programming.

Organization of chapters

Most chapters in this manual deal with topics that apply to both platforms (PC and

FlexPendant). Chapter 5, 6 and 9, however, cover the FlexPendant SDK specifically, whereas

chapter 7 deals only with the PC SDK. Code samples are written in C# and Visual Basic. The

manual is organized as follows:

Chapter Contents

1. Introduction. Terminology. Safety.

2. Installation and setup. Development environment . Virtual robot technology.

3. Two run-time platforms: PC and FlexPendant. Selecting the platform. Software
architecture. Run-time environment for PC/FlexPendant applications. How
clients access controller resources and communicate with the robot controller.
Application configuration. Life cycle of a FlexPendant application. Upgrades
and compatibility.

4. Developing RAB applications. Analysis and design. Important programming
issues: controller events and threads, UAS, exception handling. Online help.

5. Using the FlexPendant SDK. Visual design support. GUI controls. Launching
standard views. Data binding. How to add controller functionality using the
Controller API. Programming issues and code samples in VB and C#.

6. How to develop well performing and robust FlexPendant applications. Memory
management, performance and reliability. Exception handling.

Continues on next page

 Overview

3HAC028083-001 Revision: D8

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

References

Revisions

7. Using the PC SDK. How to add controller functionality using the Controller
API. Programming issues and code samples in VB and C#.

8. Testing, debugging and troubleshooting RAB applications. Using printouts,
error codes in exceptions etc. Checklist for contacting a service organization.

9. How to add support for several languages to a custom FlexPendant applica-
tion.

10. How to deploy RAB applications. How to create an additional option and how
to make a product of a FlexPendant application.

Chapter Contents

Reference Document Id

Operating Manual -IRC5 with FlexPendant 3HAC 16590-1

Operating Manual - RobotStudio 3HAC032104-001

Technical reference manual - RAPID Instructions, Functions and Data
types

3HAC16581-1

Revision Description

- First edition

From RAB 5.08 onwards this manual replaces:

Robot Application Builder - PC SDK User's Guide (3HAC 024913-001) and
Robot Application Builder - FlexPendant SDK User's Guide (3HAC 024914-
001)

A Improvements and updates for RAB 5.09.

B Additions and further improvements for RAB 5.10:

Installation chapter: no license required, working with several PC SDK
versions. (2.1- 2.2)

PC application configuration, how to use App.config. (3.2.3)

TpsFont internally retrieves appropriate font for the active language, e.g.
Chinese (5.3.5).

The operating system of the first generation FlexPendant device (SX TPU 1)
does not support images of more than 256 colors. (5.3.6, 8.1.4)

New FP SDK domain SystemInfoDomain (5.5.8).

Maximum size of an FP SDK application (6.1).

No initial events guaranteed (4.3, 5.5.2, 5.5.4, 7.3, 7.6).

Create a simple PC SDK application (7.2).

FP and PC SDK Controller API, working with RAPID data. (5.5.3.1 and 7.5.1).

High priority event subscriptions in PC SDK (7.5.1).

New PC SDK domain Messaging (7.10).

Troubleshooting PC SDK applications (8.2.2).

Localizing a FlexPendant application (9).

C Improvements and updates for RAB 5.11.

New installation described in Installation overview (2.1)(

Continued

Continues on next page

 Overview

93HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

D Additions and improvements for RAB 5.12:

RobotStudio Community (1.2)

Some details about installing RAB on Windows Vista (2.1)

Description of improved Project Wizard (3.3.5 and 5.3.3)

Removed obsolete section about TpsFont.FontName (5.3.5)

How to access user defined data (5.5.3.4 and 7.5.4)

SearchRapidSymbol (5.5.3.5 and 7.5.5)

How to access data declared in Shared module (5.5.3.4, 5.5.3.5 and 7.5.4,
7.5.5)

Enable operator response to RAPID UI-instructions from a PC (7.5.7)

Messaging - new system parameter RmqMode (7.10).

Revision Description

Continued

 Product documentation, M2004

3HAC028083-001 Revision: D10

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Product documentation, M2004

General

The robot documentation may be divided into a number of categories. This listing is based on

the type of information contained within the documents, regardless of whether the products

are standard or optional. This means that any given delivery of robot products will not contain

all documents listed, only the ones pertaining to the equipment delivered.However, all

documents listed may be ordered from ABB. The documents listed are valid for M2004 robot

systems.

However, all documents listed may be ordered from ABB. The documents listed are valid for

M2004 robot systems.

Product manuals

All hardware, robots and controllers, are delivered with a Product manual, which is divided

into two parts:

Product manual, procedures

• Safety information

• Installation and commissioning (descriptions of mechanical installation, electrical

connections)

• Maintenance (descriptions of all required preventive maintenance procedures

including intervals)

• Repair (descriptions of all recommended repair procedures including spare parts)

• Additional procedures, if any (calibration, decommissioning)

Product manual, reference information

• Safety information

• Reference information (article numbers for documentation referred to in Product

manual, procedures, lists of tools, safety standards)

• Part list

• Foldouts or exploded views

• Circuit diagrams

The product manual published as a PDF consists of only one file where the two parts are

presented together, as one Product manual.

Technical reference manuals

The following manuals describe the robot software in general and contain relevant reference

information:

Product manual, procedures

• RAPID overview: An overview of the RAPID programming language.

• RAPID Instructions, Functions and Data types: Description and syntax for all

RAPID instructions, functions and data types.

• System parameters: Description of system parameters and configuration workflow

Continues on next page

 Product documentation, M2004

113HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Application manuals

Specific applications (e.g. software or hardware options) are described in Application

manuals. An application manual can describe one or several applications.

An application manual generally contains information about:

• The purpose of the application (what it does and when it is useful)

• What is included (e.g. cables, I/O boards, RAPID instructions, system parameters, CD

with PC software)

• How to use the application

• Examples of how to use the application

Operating manuals

This group of manuals is aimed at those having first hand operational contact with the robot,

i.e. production cell operators, programmers and trouble shooters. It includes:

• Getting started - IRC5 and RobotStudio

• IRC5 with FlexPendant

• RobotStudio

• Trouble shooting

Continued

 Safety

3HAC028083-001 Revision: D12

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Safety

Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long stop in

movement can be followed by a fast hazardous movement. Even if a pattern of movement is

predicted, a change in operation can be triggered by an external signal resulting in an

unexpected movement.Therefore, it is important that all safety regulations are followed when

entering safeguarded space.

Safety of regulations

Before beginning work with the robot, make sure you are familiar with the safety regulations

described in Operating manual - IRC5 with FlexPendant.

1 Introduction

 Safety

133HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

1 Introduction

1 Introduction

1.1. About Robot Application Builder

3HAC028083-001 Revision: D14

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

1.1. About Robot Application Builder

Flexible user interfaces

Robots are usually delivered with a general operator interface. However, different processes

require different operator handling and customers need flexible solutions, where the user

interface is adapted to user specific needs.

Robot Application Builder (RAB) allows system integrators, third parties or end-users to add

their own customized operator interfaces for the IRC5 controller. Such custom applications

can either be added to the standard views of the FlexPendant or realized as independent PC

applications, which communicate with the robot controller over a network.

To accommodate this, RAB includes the following two components:

• FlexPendant SDK

• PC SDK

NOTE!

RAB applications are not platform independent. You must choose to develop the application

for either the FlexPendant or the PC platform.

Ease-of-use on the factory floor

A well-designed user interface presents relevant information and functionality at the right

time. In this respect, customized user interfaces are clearly very desirable to the end-user. As

tailored solutions are easier to operate, they also optimize user’s investment in automation.

RAB is the tool enabling customized user interfaces for IRC5. It is important to keep in mind,

however, that RAB itself does not guarantee increased customer value. To achieve this, RAB

applications should be developed with care and with a heavy emphasis placed on ease-of-use.

Understanding end-users’ needs is in fact crucial to realizing the benefits of customized

interfaces.

Continues on next page

1 Introduction

1.1. About Robot Application Builder

153HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

.NET and Visual Studio

Robot Application Builder uses Microsoft .NET and Microsoft Visual Studio. It is thus

assumed that the user knows how to program Windows platforms using Visual Studio.

Among programmers .NET distinguishes itself by the programming model provided by the

Microsoft .NET Framework. The programming model is very similar for the two run-time

platforms supported by Robot Application Builder.

One feature is the programming language independence, leaving the choice to the developer

to use any language provided by the integrated development environment Visual Studio. Most

prefer C# or Visual Basic, which both offer safe and efficient development. For FlexPendant

applications only these two languages are available. For PC applications any of the .NET

languages should work, but ABB support is only offered for Visual Basic and C#.

For a Windows programmer familiar with Visual Studio and .NET, developing a customized

operator view is rather straight-forward. RAB is fully integrated with Visual Studio, which

means that a .NET programmer will recognize wizards for project setup and tools for visual

design support and debug etc.

Considerable efforts have been made to allow RAB programmers to start working without

having to overcome a steep learning curve. To further speed up the development process, the

virtual IRC5 of RobotStudio can be used to test and debug RAB applications.

NOTE!

Some knowledge in Windows programming, object orientation and a .NET programming

language is necessary to be able to use Robot Application Builder.

Robustness and performance

Do not underestimate the concern and effort required to achieve the quality and performance

needed in industry.

Developing an application for the FlexPendant, a device with limited process and memory

resources, can be quite demanding. Issues such as performance and memory management

need to be addressed.

As for PC SDK applications as well, there are issues related to performance and reliability

that you need to know about before getting started.

In short, even if you are an experienced Windows programmer, you are strongly

recommended to read this manual to learn about specific RAB issues when moving to RAB

development.

NOTE!

Take the time to study this manual along with the release notes, and avoiding rushing into

coding.

Continued

1 Introduction

1.2. Documentation and help

3HAC028083-001 Revision: D16

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

1.2. Documentation and help

Introduction

Robot Application Builder includes an extensive on-line help module, which comes with the

installation of the product. After having installed RAB, by clicking Windows’ Start menu,

then pointing at Programs > ABB Industrial IT > Robotics IT > Robot Application Builder

5.xx you will find:

• User’s Guide - Application manual - Robot Application Builder

• FP SDK Reference

• PC SDK Reference

• FP StyleGuide

User’s Guide

This user’s guide, Application manual - Robot Application Builder, is the recommended way

to get started if you are new to RAB development. It explains how RAB works. It has code

examples in C# and VB and provides hands-on exercises.

The user’s guide is provided in two formats, Html Help and PDF. Html is the recommended

format for the PC screen and PDF is the best choice if you want printouts.

NOTE!

User’s Guide.PDF can be found in the installation directory, at \Program Files\ABB Industrial

IT\Robotics IT\Robot Application Builder 5.xx\.

SDK Reference Help

The SDK Reference Help files should be used while programming.

Notice that the FlexPendant SDK and the PC SDK have separate help files:

• FP SDK Reference

• PC SDK Reference

These make up the complete reference to the RAB class libraries. Method signatures are

provided in C# and Visual Basic.

Please note that they are not integrated with the Visual Studio Help function. Pressing F1

when pointing at code, for example, will open the Visual Studio Programmer’s Reference or

the .NET Framework Class Library for the specific language and topic. Many times this is

what you want, but if your problem is RAB-related you need to open the appropriate SDK

Reference Help to find a solution.

NOTE!

You are recommended to keep the help files open while programming, as you will frequently

need them for RAB-related issues.

FP StyleGuide

Good usability is achieved when the program itself communicates possible actions and how

to perform them. To encourage careful design of the visual appearance the FP StyleGuide is

also part of the RAB installation. It is ABB Robotics’ best practices for visual design of the

FlexPendant user interface.
Continues on next page

1 Introduction

1.2. Documentation and help

173HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

RobotStudio Community

In 2008 ABB Robotics launched a new site, RobotStudio Community, for its PC Software

users. The Developer Section of RobotStudio Community has information and some videos

about programming with the FlexPendant and PC SDKs. At Content Sharing there is a

complete FlexPendant SDK application available for download. It is recommended for

average users and for beginners.

ABB encourage open conversations and believe everyone has something to contribute. The

User Forum of RobotStudio Community has a section dedicated to Robot Application

Builder. Here beginners as well as experts discuss code and solutions online. If you are facing

a coding problem the User Forum should be your first choice, as there is a good chance that

someone will give you the help you need to proceed.

RobotStudio Community also provides the means to share code and videos. Your contribution

will be appreciated. Working together is many times the key to success.

RobotStudio Community is also where you find RAB releases for free download.

TIP!

Try it out at www.abb.com/robotics > RobotStudio Community.

RAB Product Specification

The product specification for Robot Application Builder (3HAC025595-001) is available

from RobotStudio Community and from ABB Library. It is updated for each new release.

MSDN

MSDN (Microsoft Developer Network) at www.msdn.com is a one of many sources of

information for general programming issues related to .NET and Visual Studio.

Continued

1 Introduction

1.3. Terminology

3HAC028083-001 Revision: D18

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

1.3. Terminology

About terms and acronyms

Some terms used in this manual are product specific and crucial for understanding. Moreover,

acronyms, words formed from initial letters, are sometimes used instead of long terms. To

avoid confusion, important terminology is clarified below.

Definitions

Term Definition

IRC5 ABB’s new generation robot controller.

Virtual IRC5 Virtual robot technology makes it possible to run a virtual IRC5
controller, virtual mechanical units and a virtual FlexPendant on
the desktop. Included as freeware in ABB’s RobotStudio from
RAB 5.11.

FlexPendant ABB’s new generation hand held device, used with the IRC5
robot controller. It is developed with Microsoft’s latest
technology for embedded systems, Windows CE and .NET
Compact Framework.

Device The FlexPendant is a “smart device” in the .NET vocabulary, i.e.
a complete computer in itself with its own processor, operating
system etc.

Robot Application Builder ABB software tool, which enables the development of custom
operator interfaces for IRC5. Often referred to as RAB.

RAB programmer A programmer who uses RAB to develop custom applications.

RAB application A custom application developed with Robot Application Builder.

Controller Application
Programming Interface

The public class libraries of Robot Application Builder, which
offer robot controller functionality. Also referred to as CAPI.

Network socket A communication end-point unique to a machine communicat-
ing on an Internet Protocol-based network.

Microsoft Visual Studio The integrated development environment that developers work
inside when using the .NET Framework.

Microsoft .NET Framework An integral Windows component supporting the building and
running of applications.

.NET Compact Framework
(.NET CF)

Version of Microsoft's .NET framework providing the run-time
environment for applications running on embedded devices,
such as the FlexPendant. It includes a class library, which is
almost a subset of the rich .NET framework for the desktop.

Common Language
Runtime

The core runtime engine in the .NET Framework for execution
of managed code. Provides services such as cross-language
integration, code access security, object lifetime management,
and debugging and profiling support.

C# and Visual Basic.NET .NET programming languages.

Windows CE The embedded operating system running on the FlexPendant-
device.

managed code Code that is executed and managed by the Microsoft .NET
Framework’s common language runtime. All code produced by
Visual Studio executes as managed code.

Continues on next page

1 Introduction

1.3. Terminology

193HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

unmanaged code Code that is executed directly by the operating system, outside
the .NET Framework. Unmanaged code must provide its own
memory management, type checking, and security support,
unlike managed code, which receives these services from the
common language runtime. All code executing in the robot
controller, as well as part of the code executing in the
FlexPendant is unmanaged.

JIT compiler When compiling managed code, the compiler translates the
source code into Microsoft Intermediate Language (MSIL),
which is a CPU-independent set of instructions. Before code
can be executed, MSIL must be converted to CPU-specific
code, usually by a just-in-time (JIT) compiler.

Acronym Definition

CAPI Controller Application Programming Interface

CLR Common Language Runtime

GUI Graphical User Interface

MSDN Microsoft Developer Network, source of information for .NET
developers at:

http://msdn2.microsoft.com/en-au/netframework/default.aspx

VS Visual Studio

RAB Robot Application Builder

SDK Software Development Kit

VB Visual Basic

TAF Teach Pendant Application Framework, all applications using
the FlexPendant SDK must run as TAF clients. See TAF -
Application host framework on page 52 for detailed information.

TCP/IP Transmission Control Protocol (TCP) and Internet Protocol (IP)

Term Definition

Continued

1 Introduction

1.3. Terminology

3HAC028083-001 Revision: D20

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2 Installation and development environment

1.3. Terminology

213HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2 Installation and development environment

2 Installation and development environment

2.1. Installation overview

3HAC028083-001 Revision: D22

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2.1. Installation overview

About this section

This section describes how to install Robot Application Builder. When the installation is

complete, you can program, compile and test PC and FlexPendant applications for the IRC5

controller.

Supported platforms

The following software requirements have to be met:

• Operating system: Microsoft Windows XP + SP2 or Windows Vista + SP1

• Microsoft Visual Studio: VS 2005 (Standard Edition or better is required to use the FP

SDK) or VS 2008 (Professional Edition or better is required to use the FP SDK). To

use the PC SDK Standard or Express edition will do.

The following hardware requirement have to be met:

• 50 MB free disc-space on the installation disc

Both FlexPendant generations are supported:

• SxTPU-1, which executes with .NET CF 2.0 and WinCE 4.2.

• SxTPU-2, which executes with .NET CF 2.0 and WinCE 5.0.

NOTE!

When installing RAB on Windows Vista OS you may get a Visual Studio error message

saying “The operation could not be completed. The requested operation requires elevation”.

This error is due to failure of the installation of the FP SDK templates and project wizard,

which is prevented when Vista's User Account Control (UAC) feature is enabled. To solve

the problem you need to uninstall RAB, disable UAC, reinstall RAB, then re-enable UAC (if

desired). It is now possible to use the Project Wizard and create a FlexPendant project.

NOTE!

Robot Application Builder is developed and tested for the English version of Visual Studio.

If you are running Visual Studio in another language you are therefore recommended to

switch to the English version.

Requirements for installing and using Robot Application Builder

To install and use Robot Application Builder, the following requirements have to be met. Also

make sure that you have administrator permissions on the computer that you are using.

Before... you must...

installing Robot Application Builder install RobotStudio and Microsoft Visual Studio 2005
or 2008.

Note! If you are running under windows Vista you
need to disable Vista’s User Account Control (UAC)
feature.

debugging using a virtual IRC5 learn how to run the virtual IRC5 in RobotStudio.

Continues on next page

2 Installation and development environment

2.1. Installation overview

233HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The Visual Studio installation installs .NET and Compact Framework 2.0.

About the Robot Application Builder installation

The RAB installation includes both PC and FlexPendant SDK. It is distributed as freeware on

the RobotWare DVD. It can also be downloaded for free along with robotware and

RobotStudio from http://www.abb.com/robotics > RobotStudioCommunity >To Download

page >Developer Tools > Robot Application Builder.

For RAB 5.11, the installation was simplified. Before, any existing PC SDK was upgraded

when a later RAB was installed. This is no longer the case; both SDK:s will now be installed

side-by-side with any existing installation. This section describes the installation of RAB 5.11

and later.

RAB 5.11and later

RAB 5.11 and later installs PC SDK and FP SDK side by side with any previously installed

versions. This makes it easier to work with several versions of the PC SDK on a single

computer.

The figure below shows what it looks like when clicking the Window’s Start button of a PC

that has both RAB 5.10 and RAB 5.11 installed.

2.1_0

debugging using the real
FlexPendant device

install the .NET Compact Framework 2.0 Service Pack
1 or 2, which can be downloaded from http://
www.microsoft.com/downloads. The User Forum has
information on how to attach the Visual Studio
debugger to the device. See also Debugging the
FlexPendant device on page 286.

executing the application targeting a
real IRC5 system

check that the robot system has the controller option
PC Interface (for PC applications) or FlexPendant
Interface (for FlexPendant applications).

set up a connection between your PC and the robot
controller. See How to set up your PC to robot commu-
nication on page 27 for details about how this is done.

Before... you must...

Continued

Continues on next page

2 Installation and development environment

2.1. Installation overview

3HAC028083-001 Revision: D24

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

RAB 5.10

RAB 5.10 upgraded any previously installed PC SDK to 5.10 and installed FlexPendant SDK

5.08, 5.09 and 5.10 side-by-side. The reason for the side-by-side installation of several FP

SDK versions was to make it easier for FP SDK users to work on FP SDK applications

targeting different RobotWare versions. Today, as the use of RAB is free of charge you can

just download any version you need, and work with several versions on your PC if you need

to. Earlier RAB releases can be downloaded from http://www.abb.com/robotics >

RobotStudioCommunity >Developer Tools > Robot Application Builder Overview.

What is installed?

The installation generates the following features on your PC:

• SDK assemblies and resources

• This User’s Guide (Application manual - Robot Application Builder)

• FlexPendant Style Guide

• PC SDK Reference

• FP SDK Reference

Working with several versions

A RAB application normally targets a specific RobotWare release. Assuming that you are

developing a FP SDK application for a new customer, who will use RW 5.12 and at the same

time you are maintaining an existing FP SDK application for a customer whose robot system

uses RW 5.09. You will then need to work with two different RAB releases on your PC. See

Release upgrades and compatibility on page 60 for details about releases and compatibility.

FlexPendant applications

If you install RAB 5.10 and RAB 5.12 you will have FP SDK 5.08, 5.09, 5.10 and 5.12 on

your PC. You choose which FP SDK version to use when you set up your application project

in Visual Studio. See Using the project template in Visual Studio on page 80 for detailed

information.

You should make sure that the FP SDK GUI controls the Visual Studio Designer uses is of

the same version. If you have worked with another FP SDK version before, you will need to

remove the GUI controls that you have added to the Visual Studio Toolbox and then add them

again, pointing to the correct version in the browser. See Setting up design support for

FlexPendant controls on page 83 for details.

From RAB 5.10 no license is required to develop, build or run RAB applications.To be able

to use the 5.08 or 5.09 FP SDK versions of the 5.10 release, however, you will need to install

a license key. RAB license keys are no longer available via the order form or SoFa, but ABB’s

software support organization can supply a license key at no charge if necessary.

PC applications

If you install RAB 5.10 and RAB 5.12, PC SDK 5.10 and 5.12 will exist on your PC. You

choose which PC SDK version to use when adding PC SDK references to your application

project in Visual Studio (browse to the installation directory that matches the version when

adding the PC SDK references to the project). You should also set the Reference Property

Specific Version to true to ensure that the correct version of the PC SDK dlls in the Global

Assembly Cache (GAC) is used in run-time.

Continued

Continues on next page

2 Installation and development environment

2.1. Installation overview

253HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Installation procedure

The installation procedure is very simple. An installation wizard will guide you through it.

NOTE!

Click Window’s Start button and locate the Robot Application Builder folder when the

installation is ready (Start >Programs >ABB Industrial IT > Robotics IT >Robot Application

Builder 5.XX). This is where you find the user documentation: User’s guide, FP Style Guide

and the PC and FP SDK References.

You are also strongly advised to study the Release Notes that you will find on the RW DVD

and on the web, as these hold the most up-to-date information, including new features and

any known limitations of the release.

Continued

2 Installation and development environment

2.2. How to obtain and install a license key for RAB 5.09 or earlier

3HAC028083-001 Revision: D26

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2.2. How to obtain and install a license key for RAB 5.09 or earlier

Overview

In RAB 5.10 the license check was removed from the software, which allows anyone to use

Robot Application Builder for free. This means you do no longer need to bother about getting

a license, or including a licx file in your PC application.

NOTE!

For RAB version 5.09 and earlier, licensing is the second part of the installation procedure.

In case you need to develop a RAB application for RW 5.09 or earlier you need to turn to

support to get a free license key.

Install licence key

Follow these steps when you have received the e-mail with the license key file:

NOTE!

To execute RAB applications towards a real robot controller you must connect your PC to the

robot controller, either via a network or directly to the service port on the controller. For

detailed information, see How to set up your PC to robot communication on page 27.

Step Action

1 Detach the license key file from the e-mail and save it to a folder on your PC.

2 Double-click the license key file. This opens the License Install Wizard.

3 Follow the instructions in the wizard.

2 Installation and development environment

2.3. How to set up your PC to robot communication

273HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2.3. How to set up your PC to robot communication

Overview

This section describes how to connect your PC to the robot controller.

You can either connect the PC to the controller via an Ethernet network or directly to the

controller service port. When using the controller service port, you can either obtain an IP

address for the PC automatically, or you can specify a fixed IP address.

When the PC and the controller are connected correctly, the controller is automatically

detected by RobotStudio.

NOTE!

A PC SDK application requires RobotStudio or ABB Robot Communications Runtime to

connect to a controller in run-time. The latter is included in the RAB installation. If

RobotStudio is not (and will not be) installed on your PC, you must run the Setup.exe located

at C:\Program Files\ABB Industrial IT\Robotics IT\Robot Application Builder

5.xx\redistributable\RobotCommunicationRuntime.

Why is a connection needed?

Connecting the PC to the controller is necessary for all online tasks performed in

RobotStudio: downloading a robot system or files to the controller, editing configuration

files, programming and so on.

It is necessary for executing a RAB PC application targeting a real robot controller.

The connection is also used for downloading a FlexPendant application to the controller file

system and test it on the real FlexPendant device.

It also enables you to communicate with the controller by means of a console window on the

PC and get valuable information about controller status, FlexPendant memory consumption

and the like.

Ethernet network connection

If the controller is connected to an Ethernet network, you can connect the PC to that network

as well. The settings to use on the PC depends on the network configuration. To find out how

to set up your PC, contact the network administrator.

Continues on next page

2 Installation and development environment

2.3. How to set up your PC to robot communication

3HAC028083-001 Revision: D28

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Service port connection with automatic IP address

An alternative to network connection is using the controller service port. It has a DHCP server

that automatically gives your PC an IP address if it is configured for this. See Windows Help

on Configure TCP/IP settings for detailed information about configuring the PC to obtain an

IP address automatically.

NOTE!

Obtaining an IP address automatically might fail if the PC already has an IP address from

another controller or Ethernet device. To make sure that you get a correct IP address if the PC

has already been connected to an Ethernet device, do one of the following:

• Restart the PC before connecting to the controller.

• Run the command “ipconfig /renew” from the command prompt after connecting the

PC to the controller

Service port connection with fixed IP address

Instead of obtaining an IP address automatically, you can specify a fixed IP address on the PC

you connect to the controller.

Use the following settings for connecting with a fixed IP address:

Related information

Property Value

IP address 192.168.125.2

Subnet mask 255.255.255.0

Default Gateway 192.168.125.1

For information about See

How to set up PC network connections Windows Help - Configure TCP/IP settings.

How to connect the PC to the Controller
service port

Connect a PC to the Service Port in the
RobotStudio help.

Continued

2 Installation and development environment

2.4. Development environment

293HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2.4. Development environment

Overview

This section presents an overview of the development environment used to create RAB

applications for PC or the FlexPendant. In either case, you program and debug the application

using Microsoft Visual Studio 2005 or 2008.

Microsoft .NET and Microsoft Visual Studio

Microsoft Visual Studio is supported by the .NET Framework. A core component of the .NET

Framework is the common language runtime (CLR). It manages code execution, threads and

memory, while also enforcing type safety.

Another major component is the Base Class Library, which is a comprehensive, object-

oriented collection of reusable types. To become a skilled .NET programmer it is essential to

learn the functionality offered by the Base Class Library.

It is not in the scope of this manual to teach how to use Visual Studio. For this purpose Msdn

(Microsoft Developer Network) at http://msdn.microsoft.com is a useful source of

information.

NOTE!

From RAB 5.11 Visual Studio 2008 is also supported. See Conversion of VS 2005 projects to

Visual Studio 2008 on page 33 for information about upgrading an existing RAB project to

Visual Studio 2008.

Visual design support and data binding

The most significant improvement of Robot Application Builder with Visual Studio 2005 was

the visual design support for FlexPendant applications. Thanks to enhanced abilities of the

.NET Compact Framework 2.0. for building user interfaces, FlexPendant specific controls are

available in the Visual Studio toolbox since RAB 5.08.

Another very useful feature of .NET CF 2.0 is data binding, which allows you to connect a

RapidDataBindingSource or a SignalBindingSource to a GUI control without having

to write a single line of code. (Except the Dispose call when the binding sources are no

longer needed.)

Continues on next page

2 Installation and development environment

2.4. Development environment

3HAC028083-001 Revision: D30

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Choosing a programming language

Together with Visual Basic, C# is the most widely used.NET language.

 C# is an object-oriented language derived from C, with some features from C++, Java and

Visual Basic. It was designed for .NET and offers the power and richness of C++ along with

the productivity of Visual Basic. Both PC and FlexPendant SDK are implemented using C#.

As for FlexPendant SDK applications only C# and Visual Basic are supported. As for PC

SDK applications, on the other hand, any of the .NET languages can be used. ABB support,

however, is offered only in C# and Visual Basic. Likewise, in this manual there are code

samples in C# and Visual Basic, but none in J# or Visual C++.

At run-time it does not matter which language you have used, as compiled .NET code is

language independent. The source code compiles from a high-level language into

Intermediate Language (IL), which is then executed, at runtime, by the Common Language

Runtime. This makes it possible to use different programming languages, even within the

same application. See Definitions on page 18 for further explanation of .NET terms.

NOTE!

It is presumed that you are already a .NET programmer. If not, you need to start by learning

the programming language to be used. There are numerous books teaching C# and Visual

Basic.

Integration with Visual Studio

When Robot Application Builder is installed on your computer, it is integrated with Visual

Studio. You will notice when starting a new project, for example, that the project type /Smart

Device/FlexPendant is available in the New Project window. When using the wizard to

create a FlexPendant project, common SDK references are added to the project and some

code is auto generated.

The visual design support for the FlexPendant will be accessible from the Toolbox in VS and

work the same way as the design support for an ordinary Windows application. As for a PC

application you use the standard design support. As you will see, using RAB is quite intuitive

for a developer used to Visual Studio programming.

NOTE!

The help module is not integrated with the Visual Studio Help function. Pressing F1 when

pointing at code, for example, will open the Visual Studio Programmer’s Reference or the

.NET Framework Class Library for the specific language and topic. If your problem is RAB-

related this will not help you.

TIP!

Depending on what kind of application you are working at, locate the FP SDK or PC SDK

Reference. You will find it by clicking Windows’ Start button, then pointing at Programs >

ABB Industrial IT > Robotics IT > Robot Application Builder 5.xx. Keep the reference file

open while programming, as you will be needing it all the time.

Continued

2 Installation and development environment

2.5. Two development models - virtual and real

313HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2.5. Two development models - virtual and real

About this section

When trying out a custom application, you can either use a virtual robot controller or a real

robot system. This section provides information on how to use both development models.

Virtual robot technology

The virtual IRC5 of ABB’s RobotStudio allows the IRC5 controller software to execute on a

PC, and supports RAB application developers with a purely virtual environment to be used

for development, test and debug.

When you start the virtual IRC5 in RobotStudio, a virtual robot cabinet along with a virtual

FlexPendant will appear on the PC screen.

As a real robot controller is normally not readily at hand for application development, virtual

technology is very valuable.

Requirements for virtual environment

The following software components must be installed to develop, test and debug using the

virtual environment:

• ABB RobotStudio (including the virtual IRC5 and RobotStudio Online)

• ABB Robot Application Builder

• Microsoft Visual Studio 2005 or 2008

Controller option PC Interface or FlexPendant Interface may not be needed in the virtual

environment.

Requirements for real environment

The following software components must be installed to develop, test and debug using a real

robot controller:

• ABB RobotStudio (RobotStudio Online is needed to create the robot system)

• ABB Robot Application Builder

• Microsoft Visual Studio 2005 or 2008

• Controller option PC Interface or FlexPendant Interface

• Network connection between PC and robot controller

For information about how to set up the network, see How to set up your PC to robot

communication on page 27.

Virtual test and debug

Using the virtual environment a FlexPendant application executes on the Virtual FlexPendant

as an assembly (dll). You start the application from the ABB menu of the Virtual FlexPendant

just like you start it on the real FlexPendant.

A PC application, on the other hand, will run as an independent executable (exe). Using the

virtual environment it targets the virtual IRC5 instead of a real robot controller.

Debugging is easy using the virtual IRC5 and Visual Studio. You attach the application

process to Visual Studio, set a break point in the code and step through it as it executes. See

Debugging the virtual FlexPendant on page 282 for further information.

Continues on next page

2 Installation and development environment

2.5. Two development models - virtual and real

3HAC028083-001 Revision: D32

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Real tests necessary

The virtual environment is a very convenient choice, especially for testing and debugging.

You should be aware, however, that the virtual FlexPendant is more forgiving than the real

device. Using only the virtual FlexPendant, it is very easy to neglect the restraints on memory

consumption imposed by the real device. Images, for example, can easily consume all the

FlexPendant memory available for custom applications!

This means that potential problems may be hard to detect until you test the application using

a real robot system. It is almost as easy to debug code running on the real FlexPendant device.

See Debugging the FlexPendant device on page 286 for detailed information.

You should also be aware that your application shares CPU, memory and application host

with all other FlexPendant applications. This means that a custom application can impact the

overall performance of the FlexPendant.

NOTE!

Before shipping a FlexPendant application, it has to be tested properly, using a real system.

Relying only on the virtual environment is far too risky. Also study the chapter Robust

FlexPendant applications on page 181 carefully.

Porting the application from virtual to real IRC5

As for a PC SDK application, you will hardly notice any difference when using it with a real

IRC5 controller. The only real difference is that the communication between the application

and the controller will now be done over a network, which may have an impact on

performance.

A FlexPendant application, on the other hand, may run perfectly on the Virtual FlexPendant,

but not work at all on the real device. There may be a lag in response time due to TCP/IP

communication, but the main problem is limited resources on the device, both memory and

processor power.

The FlexPendant SDK does not slow down performance. Therefore your application is

supposed to perform like any standard application of the FlexPendant. See Performance on

page 188 for some advice on how to speed up a slow FlexPendant application.

Deployment to customer

During development, deployment to the controller is done manually. When the development

phase is over and the application needs to be deployed to the customer, this should be done

differently.

For information about how this should be done, see Packaging RAB applications on page

309.

Continued

2 Installation and development environment

2.6. Conversion of VS 2005 projects to Visual Studio 2008

333HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2.6. Conversion of VS 2005 projects to Visual Studio 2008

Overview

Converting an existing RAB Visual Studio 2005 project to Visual Studio 2008 is simple.

When you open a VS 2005 project in VS 2008, the Visual Studio Conversion Wizard will

automatically appear. The procedure which converts the project to VS 2008 is easy to follow.

It consists of a few dialogs providing information about what will happen.

NOTE!

If the RAB project is an FP SDK projects, you need to manually edit the post-build event that

builds the *gtpu.dll. Find Build Events in the Project Properties and adapt the path to

vcvarsall.bat to the new development environment.

2 Installation and development environment

2.6. Conversion of VS 2005 projects to Visual Studio 2008

3HAC028083-001 Revision: D34

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3 Run-time environment

2.6. Conversion of VS 2005 projects to Visual Studio 2008

353HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3 Run-time environment

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

3HAC028083-001 Revision: D36

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.1. Two platforms - PC and FlexPendant

About this chapter

There are two different platforms that a custom application may use: PC and FlexPendant.

Accordingly, RAB consists of two platform dependent SDKs the PC SDK and the

FlexPendant SDK.

This chapter provides an overview of the run-time environment of custom applications,

including illustrations of the software architecture of the FlexPendant and PC SDK

respectively.

How communication is carried out between the client and the robot controllers is explained,

as well as how clients access controller resources.

Application configuration is detailed as well as deployment of a FlexPendant application to

a robot controller. The life cycle of a FlexPendant application is also explained.

Most of the contents of this chapter is separated in PC and FlexPendant specific sections, as

their respective run-time environments considerably differ.

Selecting the platform your application should use

Before you start developing a custom application, you must know which platform is best

suited for meeting the needs of the customer. The platform choice depends on what tasks

should be performed using the application, whether these tasks must be done at the robot cell

and whether there is a PC at hand where the job needs to be done.

If the application should be used at the robot cell and there is no PC available, there evidently

is no choice. It has to be a FlexPendant application. On the other hand, if the tasks can be done

from a PC this is often a convenient platform, provided that the PC SDK offers the required

functionality.

Continues on next page

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

373HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Local vs remote client

One difference between the two platforms is that a FlexPendant application is a local client,

whereas a PC application is a remote client.

Remote clients do not have all the privileges of a local client. Both PC and FP applications

can reset the program pointer and start RAPID execution, for example, but for a PC SDK

application to do this there are certain restrictions. Mastership of the Rapid domain must be

requested explicitly by the application programmer and the IRC5 controller has to be in

automatic operating mode.

An advantage of a remote client, on the other hand, is the possibility to monitor and access

several robot controllers from one location. As for large applications the PC platform is also

less limited than the FlexPendant as regards memory resources and process power.

NOTE!

A minimum response time for a real controller should be expected to be in the order of 10-

100 milliseconds, meaning that hard real time demands cannot be met on any platform. See

Communication between PC and controller on page 46 and Communication between

FlexPendant and controller on page 51 for further information.

Software architecture

The FlexPendant is an integral part of IRC5, yet a complete computer in itself. It has been

developed with Microsoft's latest software technology for embedded systems, Windows CE

and .NET Compact Framework, which is a subset of the full .NET Framework that the PC

uses.

Simple illustrations of the software architecture of the two SDKs are shown below. As you

can see the two run-time platforms, PC and FlexPendant, have a lot in common.

PC platform

3.1_1

Figure 1 - PC platform. Two PC SDK applications developed on top of the PC SDK. The PC
SDK CAPI is the public API offering controller functionality. A PC SDK application can
control many robot controllers on the network. All communication with these is done via the
internal RobApi.

Continued

Continues on next page

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

3HAC028083-001 Revision: D38

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

FlexPendant platform

3.1_2

Figure 2 - FlexPendant (SxTPU-2) platform. Two FlexPendant applications, one using VB
and the other C#, developed on top of the FlexPendant SDK. The FlexPendant SDK CAPI is
the public API offering controller functionality. All communication with the robot controller
is done via the internal RobApi. The FlexPendant SDK provides ABB made UI controls
suitable for the FlexPendant.

CAPI

Both SDKs offer controller functionality through a public application interface called CAPI.

The interface can be seen as a specification of the controller services available.

Part of the controller services provided by the PC and FlexPendant SDK are the same. This

means that part of the specification is also common (identical method signatures). The

internal implementation of these controller services may differ, but for an external client, such

as a RAB application, these methods are platform independent and work for both PC and

FlexPendant applications.

As illustrated below, however, only a small part of the PC and FlexPendant SDK is common.

Therefore, you cannot port a PC application to the FlexPendant platform or vice versa.

3.1_3

Continued

Continues on next page

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

393HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Figure 3 - Common CAPI methods can be used for both platforms. The other CAPI methods
are platform dependent. As you can see the FlexPendant SDK is more extensive than the PC
SDK. This is mainly due to the fact that the FlexPendant SDK offers its own GUI controls.
In this figure these would be in the FlexPendant circle outside of the CAPI circle.

Continued

3 Run-time environment

3.2.1. Licence verification - applies only to versions earlier than RAB 5.10

3HAC028083-001 Revision: D40

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.2 Running PC Applications

3.2.1. Licence verification - applies only to versions earlier than RAB 5.10

Overview

A PC SDK application runs as a .NET executable, started either by double clicking the exe-

file or by browsing to the program using the Windows Start menu.

Deployed PC applications do license verification during execution, checking that all

application assemblies have been built on a PC with a valid PC SDK license key. If the key

is missing some functions in the PC SDK will raise an exception during execution.

NOTE!

The license verification was removed in the 5.10 release. So the licx file detailed in the next

section is no longer needed.

Licenses.licx

The license key should be placed in a “Licenses.licx” file, which should be added to your

project as an embedded resource. For your convenience, such a file is included in the RAB

installation at C:\Program Files\ABB Industrial IT\Robotics IT\Robot Application

Builder\PC SDK. The key for the PC SDK in VS 2005 is:

ABB.Robotics.Controllers.Licenses.PCSdk, ABB.Robotics.Controllers

TIP!

The License Compiler (Lc.exe) is a .Net Framework tool. It generates a .license file from a

.licx file. Search in MSDN (licx , lc.exe) if you want more detailed information.

3 Run-time environment

3.2.2. Mastership

413HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.2.2. Mastership

Controlling controller resources

Controller resources must be controlled by a single client at a time. Several people can be

logged on to the controller, but only one person at a time can run commands or change RAPID

data. This is for security reasons as well as for protecting data from being accidentally

overwritten.

When logged on to a controller you can have either read-only access or write access. Read

only is the default access right. To get write access the client needs to request mastership of

the controller resource it wants to manipulate.

NOTE!

 In addition to the access right system, there is the User Authorization System, which restricts

what each user is allowed to do with the robot. See User Authorization System on page 70 for

further information.

Manual and automatic mode

When the controller is in manual mode, the FlexPendant has priority to write access, and

mastership will not be given to a remote client unless an operator explicitly allows this via

the FlexPendant. At any time, the operator can press Revoke on the FlexPendant to get the

write access back.

In automatic mode, the client who first requests write access will get it. If a remote client has

taken mastership of a domain other remote clients will not be allowed write access, but will

get an exception if they try. For the operator there is no way to revoke mastership to the

FlexPendant, but to switch the operating mode of the controller to manual.

As for FlexPendant SDK applications, requesting and releasing mastership is handled

internally by the FlexPendant SDK, and the application programmer does not need to worry

about it.

As for a remote client, such as a PC SDK application, however, it has to be carefully

implemented by the application programmer.

PC SDK mastership domains

The PC SDK domains which require mastership are:

• Rapid

• Configuration

Continues on next page

3 Run-time environment

3.2.2. Mastership

3HAC028083-001 Revision: D42

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

For code examples see Start program execution on page 208 in the PC SDK section.

NOTE!

Operations that require mastership are more resource demanding. Mastership should

therefore be released as soon as an operation is completed.

Remote privilege in manual mode

Most of the time, it is not very convenient to have a PC SDK application perform operations

that require mastership when the controller is in manual mode. Starting program execution

for example is not even possible.

In manual mode when a remote client, e.g. RobotStudio or a PC SDK application, requests

mastership a dialog box will appear on the FlexPendant. It enables the operator to grant

mastership to the requesting client.

If mastership is granted, the remote application has the privilege to access robot controller

resources. Meanwhile, the FlexPendant is locked and cannot be used until the remote

application releases mastership or mastership is lost for any of the reasons mentioned in

Losing mastership on page 42.

Losing mastership

Remote clients have to be prepared that mastership may be lost without a warning for a

number of reasons. Among these are:

• change from automatic to manual mode

• controller restart

• lost communication

• in manual mode forced revocation of mastership by another client with higher priority

- for example the FlexPendant

If mastership is lost, it has to be taken back explicitly by the client. The controller does not

store the information.

NOTE!

The FlexPendant may also lose mastership without any warning. This may happen in

automatic mode, when a RobotStudio user or a PC SDK application asks for write access to

the controller, for example. The status bar of the FlexPendant will then indicate “Remote

Access in Auto”.

Continued

3 Run-time environment

3.2.3. PC application configuration

433HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.2.3. PC application configuration

Application configuration file

All .NET Winform applications are designed to read configuration from an App.config file in

the application directory. It is not mandatory to use such a file in a PC SDK application, but

it is sometimes a handy way to add application flexibility.

For your convenience an App.config file that you can use is included in the RAB installation.

The default values, which the PC SDK uses if there is no configuration file to read, are entered

in the file. To modify application behavior you thus need to change the values of the attributes

of this file.

NOTE!

Even if you use the App.config file to specify which controllers to work with you must still

use the netscan functionality to be able to establish a connection from your PC application.

See Discovery domain on page 210 for further information.

Add App.config to the project

Start by copying the App.config file at C:\Program Files\ABB Industrial IT\Robotics

IT\Robot Application Builder 5.xx\PC SDK to the directory of your .csproj file. Then add the

file to the project by right-clicking the project icon, pointing to Add and selecting Existing
Item.

NOTE!

The Copy Local property of the PC SDK references used by your application must be set to

true to make use of the App.config file. (In the Solution Explorer in Visual Studio, right-click

the reference and select Properties.)

Section tag

The <section> tag in the <configSection> part of the App.config should specify that

there is a capi section in the file. It should also specify which type is to be used as the

configuration container object as well as the assembly that this type belongs to:

<section name="capi"

type="ABB.Robotics.Controllers.ConfigurationHandler,

ABB.Robotics.Controllers"/>

Capi section

The PC SDK application specific configuration data should be added to the <capi> section.

<capi>

...

</capi>

Continues on next page

3 Run-time environment

3.2.3. PC application configuration

3HAC028083-001 Revision: D44

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The following tags are implemented in the PC SDK:

<defaultSystem>

If there is a controller (robot system) in the network that you connect to often, you may want

to use the <defaultSystem> tag. It has an id attribute containing a string embraced by

curly brackets. It is the system’s globally unique identifier (GUID), which can be find in the

system.guid file in the INTERNAL folder of the robot system.

<defaultSystem id="{469F56DF-938E-4B06-B036-AABBB3E61F83}" />

 Using this mechanism enables you to use the default constructor to create a Controller

object for the specified controller:

VB:

Dim aController As Controller = New Controller()

C#:

Controller aController = new Controller();

<remoteControllers>

It is possible to add controllers outside the local network when scanning for available

controllers. One way of doing that is to add the IP address of these controllers in the

<remoteControllers> tag:

<remoteControllers><controller id="192.168.0.9" />

<controller id="192.168.0.19" />

</remoteControllers>

<discovery.networkscanner>

You can configure how long (in ms) a scan operation will last, and increase the value if

netscanning fails. The default value is 200, but if you have a slow PC longer time might be

needed.

<discovery.networkscanner delay="400" />

<defaultUser>

The <defaultUser> tag holds information about user name, password and an optional

application name for the default user. It is used by the UserInfo class to log on to a

controller. If an application name is not supplied, the process name is used.

<defaultUser name="user name" password="password"

application="application"/>

<rmmp>

When mastership is requested in manual mode by a remote client such as RobotStudio or a

PC SDK application, a dialog is launched on the FlexPendant asking the operator to confirm

that mastership should be passed from the FlexPendant to a remote client. As long as there is

no confirmation on the FlexPendant the PC SDK application is not given mastership. The

time-out parameter is the time in seconds that the PC SDK application will wait for someone

to confirm remote access in the FlexPendant dialog. The cycle parameter is the time in ms

between poll calls from the PC SDK to check whether mastership has been granted.

<rmmp cycle="550" timeout="65" />

Continued

Continues on next page

3 Run-time environment

3.2.3. PC application configuration

453HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

<controllerCall>

You can add a time-out in ms and a multiplicand for slow calls to the controller. The time-out

parameter is the maximum time a call through the Controller API will be permitted. If no

answer is returned within the time specified, an exception is thrown. A slow call is a call that

takes longer than usual, usually operations which require a UAS grant:

<controllerCall timeout="27000" slow="2.1" />

<eventStrategy>

The default way to handle events from the controller is to use asynchronous delegates

(AsyncDelegate), applying the Invoke method to synchronize events and GUI.

By using an <eventStrategy> tag, you can choose to use a windows postback delegate

instead. To make this work you must also implement a subscription to the event from a

windows form, or else the event handler will not receive the event:

<eventStrategy name="WindowDelegate" />

NOTE!

Using this strategy for event handling may affect the performance of your application.

Continued

3 Run-time environment

3.2.4. Communication between PC and controller

3HAC028083-001 Revision: D46

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.2.4. Communication between PC and controller

COM technique

The PC SDK uses an internal Controller API based on COM technique to communicate with

the controller. This API uses sockets and the local TCP/IP stack (see Definitions on page 18)

towards both real and virtual controllers.

NOTE!

You should be aware that the .NET garbage collector does not collect COM objects, but these

need to be disposed of explicitly by the application programmer. See Memory management

in PC applications on page 213 for further information.

Resource identification

All controller resources, both real and virtual, are described using object based hierarchy.

Each resource is uniquely identified, including information about which controller owns the

resource by use of the unique system id or IP address of the controller.

The controller is the top object of the hierarchy:

"/<Controller>/<Domain>/<SubDomain1>/<SubDomain2>/etc"

TIP!

Error messages including such a path indicate where to look for the problem.

Hard real-time demands

You should be aware that the PC CAPI cannot meet hard real-time demands. This is for

several reasons:

• Part of the API executes on a non-real-time operating system.

• Communication is performed with TCP/IP over a network

• The controller sometimes has tasks to perform that have a higher right of priority.

NOTE!

A minimum response time for real controllers should be expected to be in the order of 10-100

milliseconds.

3 Run-time environment

3.3.1. Components, assemblies and dlls

473HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.3 Running FlexPendant Applications

3.3.1. Components, assemblies and dlls

Building blocks

The .NET Framework is a library of components and supporting classes and structures,

designed to make component development easy and robust. Components are packaged in

assemblies, also called dlls.

Assemblies are the building blocks of .NET applications. An assembly is a reusable

collection of types and resources, which are built to work together and form a logical unit of

functionality. The simplest assembly is a single executable.

One or several assemblies

A FlexPendant project compiles to a dll, which cannot run as an independent application, but

needs to be started by the Teach Pendant Application Framework (TAF), the application

manager of the FlexPendant. (See Understanding FlexPendant application life cycle on page

52 for further information about how this works.)

In a normal case, a custom application for the FlexPendant is developed as a single

component, but it is also possible to separate functionality into several components. This way

the application will consist of several dlls. The reason for doing so might be one of the

following:

• The amount of code is substantial. A modular design with small and well tested

building blocks put together is one way of handling complexity.

• Different developers are working on the same custom application. For reasons of

efficiency, they can split the functionality between them and work on one component

each.

NOTE!

It is possible to use different programming languages for different components.

3 Run-time environment

3.3.2. Deployment of FlexPendant application to a robot system

3HAC028083-001 Revision: D48

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.3.2. Deployment of FlexPendant application to a robot system

Proxy assembly

When you compile a FlexPendant SDK application an additional assembly named *gtpu.dll

is automatically created. This is done by a tool, the ABB Compliance Tool, which verifies that

the application complies to the FlexPendant requirements. This proxy dll is necessary to run

the application on the FlexPendant.

To test the application on a real FlexPendant both assemblies must be downloaded to the

SYSTEM or HOME directory of the robot controller. After this the FlexPendant should be

restarted. At startup it loads the application assemblies from the controller.

TIP!

An advantage of deploying the dlls to the HOME directory is that they will be included in a

system backup.

Download to real controller

To download your application assemblies to the controller you can use the Online function

File Transfer of RobotStudio.

Another way of downloading the application to the robot controller is using the ABB

Compliance Tool.

Step Action

1 Verify that the following requirements are met before starting the procedure:

• A network connection between the PC and the controller has to be
configured, either using the controller LAN port or the controller service
port. For further information see How to set up your PC to robot communi-
cation on page 27.

• The RobotWare option FlexPendant Interface is required to run the
application on a real system. Without the option you will not see the
application in the ABB menu.

2 Open Windows Explorer.

3 Start abbct.exe at C:\Program Files\ABB Industrial IT\Robotics IT\Robot
Application Builder 5.xx\FlexPendant SDK.

4.3.2_1

4 Click Browse and locate your Visual Studio project and the application assembly
in the \bin\debug (or \bin\release) sub-folder.

Continues on next page

3 Run-time environment

3.3.2. Deployment of FlexPendant application to a robot system

493HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Using the command window

The ABB Compliance Tool can be used via the command window instead of the graphical

interface. To do so you write:abbct.exe /deploy="192.168.8.192"

<PATH>\TpsViewHelloWorld.dll <PATH>\TpsViewHelloWorld.gtpu.dll.

It is also possible to perform build and deployment in one step. To do this the deploy argument

should come last:

abbct.exe <PATH>\TpsViewHelloWorld.dll /deploy="192.168.8.192"

Both the application and proxy assembly are deployed to the controller after the build.

FTP deployment

You can also use an FTP client to transfer files from your PC to the robot controller.

To use FTP you need:

• FTP client program

• Configured connection to the controller

• RobotWare option FTP Client

• Name and password

NOTE!

For deployment to a customer when the application is ready see Deployment of a FlexPendant

SDK application on page 311.

Restart the FlexPendant
If you want to restart the FlexPendant device without restarting the controller, choose one of
these alternatives:

5 Check the Deploy box, enter the IP Address of the robot controller and press
Execute. Deployment is done to the current system of the controller.

Note!
If the application consists of several assemblies you need to repeat the procedure
for all of these.

6 Restart the FlexPendant. See Restart the FlexPendant on page 49 for information
about different ways to do this.

Step Action

Step Action

1 Transfer resources (e.g. icons) and the application and proxy assemblies to the
HOME or SYSTEM directory of the current system of the controller.

2 Restart the FlexPendant. See the next section for information on how to do so.

Alternative Action

1 Write the command fpcmd "-restart" in the controller console window
on your PC.

2 Perform the following sequence while holding the FlexPendant joystick:

Move the joystick three times to the right, once to the left and once down.
Confirm your wish to reset the FlexPendant in the dialog that will appear.

Continued

Continues on next page

3 Run-time environment

3.3.2. Deployment of FlexPendant application to a robot system

3HAC028083-001 Revision: D50

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Deploy application to virtual IRC5
Follow these steps to deploy an application to the virtual FlexPendant:

TIP!

If you have problems running your application, try to put all files (dlls, gif files etc.) in the

vcbin directory of the robotware your system uses. This setup is as close to the real system

setup as you can get.

3 Unplug and plug the FlexPendant (power on/ power off).

Note! This activates emergency stop.

Alternative Action

Step Action

1 Copy application and proxy assemblies and images to the HOME directory of the
system you want to use on your PC.

Note! Close the virtual FlexPendant first if you are replacing assemblies.

2 Restart the virtual FlexPendant.

Continued

3 Run-time environment

3.3.3. Communication between FlexPendant and controller

513HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.3.3. Communication between FlexPendant and controller

COM technique

The FlexPendant SDK uses an internal Controller API based on COM technique to

communicate with the controller. This API uses sockets and TCP/IP (see About terms and

acronyms on page 18) towards both real and virtual controllers.

Calls from the FlexPendant SDK to the controller are synchronous, i.e. are done immediately

through the COM servers. This increases execution speed and causes less overhead, which is

important on a resource limited device.

Resource identification

All controller resources, both real and virtual, are described using object based hierarchy.

Each resource is uniquely identified, including information about which controller owns the

resource by use of the unique system id or IP address of the controller.

The controller is the top object of the hierarchy:

"/<Controller>/<Domain>/<SubDomain1>/<SubDomain2>/etc"

TIP!

Error messages including such a path indicate where to look for the problem.

Hard real-time demands

The FlexPendant SDK cannot meet hard real-time demands. This is for several reasons:

• Part of the API executes on a non-real-time operating system.

• The controller sometimes has tasks to perform that have a higher right of priority.

NOTE!

The FlexPendant SDK does not affect performance in a negative way. You should expect your

custom application to perform like any other application on the ABB menu.

3 Run-time environment

3.3.4. Understanding FlexPendant application life cycle

3HAC028083-001 Revision: D52

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.3.4. Understanding FlexPendant application life cycle

Overview

Understanding the FlexPendant application life cycle improves your ability to design and

debug the application.

TAF - Application host framework

The Teach Pendant Application Framework (TAF) is the application service provider that

runs on the FlexPendant. It targets .NET CF and is implemented in C#. All applications using

the FlexPendant SDK must run as TAF clients, as TAF contains services for hosting controls

and for managing applications.

TAF uses a customized configuration file to create the appearance and behavior of the hosted

application. It also defines a set of rules that have to be followed.

Starting a custom application

When the FlexPendant starts up TAF is already in the flash memory. Applications that will

execute in the TAF container are now loaded from the controller.

If the RAB application is to be started manually by the end-user the application icon and text

are placed in the ABB Menu. The other alternative is to have it started automatically by TAF

at FlexPendant startup. See FlexPendant TpsView attribute on page 54 to learn how this is

configured.

Application life cycle

TAF handles the life cycle of a custom application, starting by calling the constructor of its

TpsView class. After this, the Install method and then the Activate method in the same

class execute.

During its lifetime, the application switches between the active and the passive state. Each

time, either Activate or Deactivate is executed. In its active state the application is

visible in the client view, in the passive state another application may have been opened or

the user may have opened another application via the FlexPendant task bar.

When the application is closed via the close button, first the Deactivate method runs and

then Uninstall. After this the Dispose method of the TpsView class is called. Then the

application instance is disposed of by TAF. See ITpsViewSetup and ITpsViewActivation on

page 58 for further information about how you can implement these methods.

Continues on next page

3 Run-time environment

3.3.4. Understanding FlexPendant application life cycle

533HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Illustration

4.3.3_1

The figure illustrates the life cycle of a FlexPendant application.

Limited resources

As the FlexPendant is a device with very limited resources compared to a PC, you should

learn and use the mechanisms implemented to assist you in writing efficient code.

Both process power and memory resources are limited compared to the virtual environment

on the desktop. An application may run very well on the virtual FlexPendant, but encounter

serious problems in the real environment because of these limitations. See Technical overview

of the FlexPendant device on page 182 for further information.

NOTE!

You are strongly recommended to read Robust FlexPendant applications on page 181 in this

manual before starting coding. Always keep the limitations of the device in mind when you

develop custom FlexPendant applications.

Continued

3 Run-time environment

3.3.5. FlexPendant TpsView attribute

3HAC028083-001 Revision: D54

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.3.5. FlexPendant TpsView attribute

Overview

A custom FlexPendant application must implement the assembly attribute TpsView. It is

used to determine the visual appearance of the application in the ABB menu, for example.

The TpsView attribute is auto generated and located before the namespace definition in the

application view class, i.e. the class that displays the first view of a FlexPendant SDK

application.

In this section all parameters of the TpsView attribute will be detailed.

Project wizard settings

The TpsView attribute is auto generated according to your settings in the FlexPendant SDK
Project Wizard in Visual Studio:

6.2.2_1

In C# the settings of the figure will render this code:

[assembly: TpsView("MyApplicationName", "tpu-Operator32.gif",

"tpu-Operator16.gif", "TpsViewHelloWorld.dll",

"TpsViewHelloWorld.TpsViewHelloWorld",

StartPanelLocation.Left, TpsViewType.Static, StartupType =

TpsViewStartupTypes.Manual)]

Continues on next page

3 Run-time environment

3.3.5. FlexPendant TpsView attribute

553HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

You can edit your settings directly in the auto generated code if you want to.

Visual appearance

In run-time the most obvious result of this code is the way the custom application is presented

in the ABB menu. In this example the first TpsView parameter has been changed from

“MyApplicationName” to “Hello World”.

4.3.4_1

Application name

The first parameter of TpsView is the application name as it should appear in the ABB menu

and on the task bar. The example uses “HelloWorld” as the application name.

Application icon

The second parameter is the file to be used as the application icon in the ABB menu. Usually

a customized icon is used for the application.The example uses the default icon: “tpu-

Operator32.gif".

TaskBar icon

The third parameter is the file to be used as the application task bar icon. The example uses

the default icon "tpu-Operator16.gif".

Continued

Continues on next page

3 Run-time environment

3.3.5. FlexPendant TpsView attribute

3HAC028083-001 Revision: D56

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Application assembly

The fourth parameter is the assembly name. If you change the name of the application

assembly you also need to change this parameter to reflect that change. In the example, the

assembly name is "TpsViewHelloWorld.dll".

NOTE!

The assembly name must start with “TpsView” for TAF to identify it as an application to be

loaded. If you forget this an error will be generated by the ABB verification tool when you

try to build the project.

Class name

The fifth parameter specifies the fully qualified class name of the initial view of your

application, which you chose in the New Project dialog box. In the example, the fully

qualified class name is "TpsViewHelloWorld.TpsViewHelloWorld".

Application location

The sixth parameter determines the location of the application icon and text in the ABB menu.

In the example these are displayed in the left column: startPanelLocation.Left.

NOTE!

StartPanelLocation.None was introduced in 5.11.01. Applications that use it can

therefore NOT be run on RobotWare releases older than 5.11.01.

Application type

As you can tell from the two Hello World icons visible in the task bar, two instances of the

Hello World application have been started. To enable this the seventh parameter is changed

to : TpsViewType.Dynamic. Possible view type values are shown in the table:

Parameter value Result

StartPanelLocation.Left application visible to the left in the ABB menu.

StartPanelLocation.Right application visible to the right in the ABB menu.

StartPanelLocation.None application is not visible at all in the ABB menu.

Parameter value Result

TpsViewType.Dynamic The user can start multiple instances of the application.

TpsViewType.Static The user can only start one instance of the application.

TpsViewType.Invisible A background application with no GUI and no icon on the task
bar. Can be started automatically or manually. Only one
instance is possible.

Continued

Continues on next page

3 Run-time environment

3.3.5. FlexPendant TpsView attribute

573HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Unless there is special need for it, you should allow the user to start only one instance of the

application: TpsViewType.Static. The reason is that working with several instances takes

up valuable memory resources.

Startup type

The eighth parameter determines how the application is started. In the example the startup

type is TpsViewStartupTypes.Manual and the application is started from the ABB menu.

Using the manual startup type it is also possible to have the application started by RAPID or

at operating mode change to auto for example. See System features supporting the use of

customized screens on page 78for information about how to do this.

If TpsViewStartupTypes.Automatic is chosen, the application is started automatically by TAF

whenever the FlexPendant is restarted or a new user logs on.

Related information

For information about the Style setting of the Project Wizard, see Container style on page

97.

To find the FlexPendant SDK Project Wizard in Visual Studio, see Setting up a new project

on page 80.

Continued

3 Run-time environment

3.3.6. ITpsViewSetup and ITpsViewActivation

3HAC028083-001 Revision: D58

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.3.6. ITpsViewSetup and ITpsViewActivation

ITpsViewSetup

An application that TAF needs to initialize must have a default (empty) constructor and must

implement the interface ITpsViewSetup, which specifies the two methods Install and

Uninstall.

Install and Uninstall

Install is called when the application is created in TAF. The parameters are used by TAF

and should not be modified. It is recommended to add code for further initiations and

allocation of system resources in this method, e.g. load assemblies, open communication

channels, etc.

When the user closes the application Uninstall is called. This happens right before the

application is deleted. It is recommended to add code for disposal of system resources in this

method, e.g. unload assemblies, close sockets, etc.

ITpsViewActivation

All custom applications should implement the ITpsViewActivation interface, which

specifies the two methods Activate and Deactivate. These are used by TAF to notify

applications when they get focus and when they lose it.

Activate and Deactivate

Activate is run every time the application gets focus. This happens at initialization, after

the ITpsViewSetup.Install method has been run, and when the user presses the

application icon in the task bar.

Deactivate, accordingly, is run every time the application loses focus. This happens when

the user closes the application, before the ITpsViewSetup.Uninstall method has been

run, and when the user presses another application icon in the task bar.

NOTE!

It is recommended to activate and deactivate timers in these methods. This way timers will

not run when other applications are in focus, thus saving processor power. For the same

reason, any subscription to controller events should be disabled in Deactivate and enabled

again in Activate. Note that current values should be read before enabling the subscription.

Simple code examples
This table shows the basic things that the ITpsView methods are used for in a custom appli-
cation:

Method Usage

Install Create the Controller object:

VB:

AController = New Controller

C#:

aController = new Controller();

Continues on next page

3 Run-time environment

3.3.6. ITpsViewSetup and ITpsViewActivation

593HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Activate Add subscription to controller event:

VB:

AddHandler AController.OperatingModeChanged, AddressOf
UpdateUI

C#:

AController.OperatingModeChanged += new
OperatingModeChangedEventHandler(UpdateUI);

Deactivate Remove subscription to controller event:

VB:

RemoveHandler AController.OperatingModeChanged, AddressOf
UpdateUI

C#:

AController.OperatingModeChanged -= new
OperatingModeChangedEventHandler(UpdateUI);

Uninstall Remove the controller object:

VB:

If Not AController Is Nothing Then

 AController.Dispose()

 AController = Nothing

End If

C#:

if (aController != null)

{

 aController.Dispose();

 aController = null;

}

Method Usage

Continued

3 Run-time environment

3.4. Release upgrades and compatibility

3HAC028083-001 Revision: D60

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3.4. Release upgrades and compatibility

About this section

Why did RAB 5.08 enforce an upgrade to Visual Studio 2005?

Will a RAB application still work if the customer upgrades the robot system with the latest

RobotWare release?

What happens if you develop a RAB application using the 5.11 release and the customer

system uses RobotWare 5.10?

Such questions are dealt with in this section.

Platform upgrades

The Microsoft platform that the FlexPendant uses still goes through major improvements,

which ABB needs to take advantage of. This may concern performance or other issues.

In RAB 5.08 for example, Visual Studio 2003 was no longer supported. It may seem that this

was uncalled-for, but there are always reasons why such changes occur.

The Visual Design support for the FlexPendant SDK, had long been on the wish list. When

Microsoft provided the support necessary to meet this need, with CF 2.0, an upgrade of the

FlexPendant software platform was made. The development of the design support for

FlexPendant controls for RAB 5.08 made a transition to Visual Studio 2005 necessary.

NOTE!

 RAB 5.10 supports Visual Studio 2005. RAB 5.11 supports VS 2005 and VS 2008.

Matching RAB and RobotWare release

You should be aware that the RAB SDKs are developed and tested for a specific RobotWare

release. The general rule is therefore that you develop an application for a certain release.

Compatibility between revisions is however guaranteed (e.g. RW 5.11.01 will be compatible

with RAB 5.11).

 RobotWare upgrades

At some time during the lifetime of your application, a robot system that your application

targets may be upgraded with a later RobotWare version.

As for a FP SDK application this means that the runtime will change, i.e. the FP SDK

assemblies located in RobotWare will be different from the ones that were used when the

application was developed. Generally, the only way to be sure that the existing application

will work with a newer RobotWare version is to compile the source code with the FP SDK

version that matches the intended RobotWare version. Normally compilation succeeds

without any code changes, as FP SDK 5.09 - 5.11 are fully compatible.

The PC SDK it is normally compatible with a newer RobotWare release. The PC that hosts

the PC SDK application at the customer, however, still needs an upgrade of the Robot

Communication Runtime, so that it matches the new robotware release. See ABB Industrial

Robot Communication Runtime.msi on page 310If you decide to upgrade the PC SDK

application, you must also remember to upgrade the runtime environment of the customer’s

PC. See Deployment of a PC SDK application on page 309 for details.

Continues on next page

3 Run-time environment

3.4. Release upgrades and compatibility

613HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

You find all the details about compatibility between different RAB versions in the Release

Notes.

TIP!

When compiling your project notice any warnings of obsolete methods, as these will probably

be removed in the next RAB release.

Prepared for change

To sum up, it is important to keep source code safe and available for maintenance.

TIP!

Ildasm is a Microsoft tool, which comes with the installation of Visual Studio, that you may

find useful. It enables you to open the manifest of a specified assembly and quickly find out

about dependencies for example.

Find out more about it at http://msdn2.microsoft.com/en-us/library/aa309387(VS.71).aspx

Continued

3 Run-time environment

3.4. Release upgrades and compatibility

3HAC028083-001 Revision: D62

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4 Developing RAB applications

3.4. Release upgrades and compatibility

633HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4 Developing RAB applications

4 Developing RAB applications

4.1. Introduction

3HAC028083-001 Revision: D64

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4.1. Introduction

About this chapter

This chapter deals with analysis, design and implementation of RAB applications.

It also discusses some specific programming issues that are important for both PC and

FlexPendant SDK users:

• thread conflicts and how to avoid them

• controller events and event handling

• errors and exception handling

• the User Authorization System

The chapter does not include hands-on information on how to set up your first project or

detailed information on how to use the PC and FlexPendant SDK class libraries, as these

topics are covered in dedicated chapters.

Basic approach

In most aspects, using the PC or FP SDK for application development presents no major

difference compared to ordinary .NET development. The .NET class libraries are used for

everything that is not robot specific. In addition, you use the public Controller API of the

SDKs.

NOTE!

When using the .Net class libraries for FlexPendant development, see Version Information to

be sure that the class or method is supported on .NET Compact Framework 2.0, which runs

on the FlexPendant.

Take this good advice if you are going to program your first RAB application

Step Action

1. Before you start
Learn the basics about RAB programming by reading all relevant sections of this
manual. Feel reassured that this is a timesaving activity and do not rush into coding.

If you are going to develop an application for the FlexPendant, a device with limited
resources compared to a PC, studying the chapter Robust FlexPendant applications
on page 181 is crucial.

2. During development
Frequently test application functionality.

Do not wait too long before you test a FlexPendant application on a real FlexPendant
device.

3. After development
If you develop a FlexPendant application, set up a long term test before use in
production. If not, you risk that the FlexPendant slowly runs completely out of
memory and crashes due to your application.

Verify application behavior, performance and memory consumption. Use the
services offered by the ABB.Robotics.Diagnostics namespace, e.g. memory
tracking. See FlexPendant - Debugging and troubleshooting on page 279 for further
information.

4 Developing RAB applications

4.2. Analysis and design

653HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4.2. Analysis and design

About this section

The purpose of Robot Application Builder is to provide operator interfaces that fulfill specific

customer needs. This section focusses on the development phases preceding the actual

coding: analysis and design.

Object oriented software development

.NET is entirely object-oriented. Platform services are divided into different namespaces such

as System.Collections, System.Data, System.IO, System.Security and so on.

Each namespace contains a set of related classes that allow access to platform services.RAB,

too, is completely object oriented. Its class libraries are organized in different namespaces

such as ABB.Robotics.Controllers.RapidDomain,

ABB.Robotics.Controllers.MotionDomain etc.

Some experience in object orientation is necessary to start developing custom applications. It

is presumed that you feel comfortable with concepts such as objects, classes, methods,

inheritance, encapsulation etc.

Object oriented Analysis and Design

Object Oriented Analysis and Design, OOAD, is a popular topic in computer science

literature, where the importance of doing a thorough analysis and design before starting

coding is commonly accepted. A well designed OO application has a true representation in

the real world. Classes have well defined areas of responsibility and collaborate in an efficient

way to achieve what is required.

Analysis based on communication and use cases

The main idea of Robot Application Builder is, as has already been pointed out, that custom

operator interfaces can be developed close to end-users, taking their specific needs in

consideration. It therefore goes without saying that analysis is crucial.

The result of the object-oriented analysis is a description of what we want to build, often

expressed as a conceptual model. Any other documentation that is needed to describe what

we want to build, for example pictures of the User Interface, is also part of analysis.

The most important aspect for RAB development is communication with end-users.

Activities which support a shared view of what should be developed are strongly

recommended. Such activities may include:

• creating and discussing use cases together

• coding or drawing prototypes and get end-user feedback

Continues on next page

4 Developing RAB applications

4.2. Analysis and design

3HAC028083-001 Revision: D66

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

In short, involving end-users from the early stages and keeping them involved throughout the

development project is the best strategy.

NOTE!

Customer satisfaction is what has driven the development of Robot Application Builder. Do

make sure that you have really understood what the end-users of your application need.

Design is about managing complexity

The result of the object-oriented design details how the system can be built, using objects.

Abstraction is used to break complex problems into manageable chunks. It makes it possible

to comprehend the problem as a whole or to study parts of it at lower levels of abstraction.

It takes years to become a skilled object oriented designer. Design theory must be transformed

into practical experience and iterated over and over again.

The goal is to produce high quality code, which is cost-efficient and easy to maintain. This is

achieved, for example, when adding new functionality will involve minimal changes to

existing code and most changes will be handled as new methods and new classes.

Do you need to do design?

There is a huge difference in complexity when creating software such as .NET framework,

for example, and a custom operator view for IRC5. Obviously, the more complex a system

the more careful design is needed. Accordingly, the larger and more complex a custom

application needs to be, the more likely you are to spend time on design.

This table presents some considerations before deciding how well you need to design your

application before starting coding:

As complex or as easy as you wish

A simple custom application can be created in a day or two using RAB. A large custom

application with a number of different views, offering advanced robot system functionality,

however, may take months to develop and will require considerable programming skill.The

recommendation is to start developing a simple application, which you execute on the target

platform, before moving on to advanced RAB programming.

Consideration Advice

How much code is it going
to be?

If it is going to be a very simple application with just one view
and a few buttons there is no need even to split the code
between different classes and files.

If there will be a substantial amount of code and there might be
further extensions later on, spending time on design becomes
more relevant.

Will different developers
work on different classes/
components? Will you
maintain the code yourself,
or may it be done by
others?

If yes, spending time om design becomes more relevant.

Is the real time aspect of
the application important?

If yes, coding efficiently is important. This will much more easily
be achieved if you spend some time on design.

Note! You are also recommended to read through the chapter
Robust FlexPendant applications on page 181 before starting
coding.

Continued

4 Developing RAB applications

4.3. Controller events and threads

673HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4.3. Controller events and threads

Overview

A controller event is a message from the controller that something has happened. Events can

be caught and acted upon by RAB applications.

 Controller events use their own threads. This means that user interface threads and controller

event threads can get into conflict. This section gives information on how to prevent this.

Controller events

RAB applications can subscribe to a number of controller events. These are all described in

the reference documentation for the SDKs.

The table shows some events that exist both in the PC and FlexPendant SDK.

The event... occurs when...

StateChanged the controller state has changed.

OperatingModeChanged the controller operating mode has changed.

ExecutionStatusChanged the controller execution status has changed.

Changed the value or the state of the I/O signal has changed.

MessageWritten the EventLog has a new message

ValueChanged the value of a RAPID data has changed.

Continues on next page

4 Developing RAB applications

4.3. Controller events and threads

3HAC028083-001 Revision: D68

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

There is no guarantee you will get an initial event when setting up/activating a controller

event. You need to read the initial state from the controller.

GUI and controller event threads in conflict

You should be aware that controller events use their own threads both on the FlexPendant and

PC platform. If a GUI thread and a controller event thread get into conflict, deadlocks or

overwritten data may occur. This may happen when a controller event is succeeded by an

update of the user interface, which is indeed a very common scenario.

You then need to take action in your code to control that the user interface update is executed

by the GUI thread and not by the controller event thread. This is done by enforcing a thread

switch using the Invoke or BeginInvoke method. See Invoke method on page 68 for

information on how this is done along with code examples.

On the other hand, if the controller event should NOT cause any update of the user interface,

you should not take any special action. Using Invoke / BeginInvoke is performance

demanding and should not be used more than necessary.

NOTE!

Thread conflicts often cause hangings. The FlexPendant touch screen or the PC application

UI then stops responding and the application has to be restarted.

Examine what exception has been thrown when you encounter such a situation. The

exceptions System.NotSupportedException (FlexPendant platform) and

System.InvalidOperationException (PC platform) indicate thread conflicts. See the

next section for information on how to use Invoke to solve the problem.

Invoke method

All PC application windows and FlexPendant views must inherit Control / TpsControl,

which implement Invoke and BeginInvoke. These methods execute the specified delegate/

event handler on the thread that owns the control's underlying window handle, thus enforcing

a switch from a worker thread to the GUI thread. This is precisely what is needed when a

controller event needs to be communicated to the end user of the system.

Invoke should be called inside the event handler taking care of the controller event. Notice

that you have to create a new object array for the sender and argument objects:

VB:

Me.Invoke(New EventHandler(AddressOf UpdateUI), New Object()

{sender, e})

C#:

this.Invoke(new EventHandler(UpdateUI), new Object[] {sender, e});

Continued

Continues on next page

4 Developing RAB applications

4.3. Controller events and threads

693HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Also notice that if you use EventHandler in the Invoke method and not the specific

delegate class, e.g.DataValueChangedEventHandler, you need to typecast the argument

in the delegate which updates the user interface. How this is done is shown by the example

below:

VB:

Private Sub UpdateUI(ByVal sender As Object, ByVal e As

System.EventArgs)

Dim Args As ExecutionStatusChangedEventArgs

Args = DirectCast(e, ExecutionStatusChangedEventArgs)

Me.Label1.Text = e.NewStatus.ToString()

End Sub

C#:

private void UpdateUI(object sender, System.EventArgs e)

{

ExecutionStatusChangedEventArgs args;

args = (ExecutionStatusChangedEventArgs) e;

this.label1.Text = e.NewStatus.ToString();

}

NOTE!

The difference between Invoke and BeginInvoke is that the former makes a synchronous

call and will hang until the GUI operation is completed, whereas BeginInvoke executes the

specified event handler asynchronously. Which method you want to use depends on the logics

of your program. The recommendation is to choose BeginInvoke whenever possible.

NOTE!

If your code tries to access a GUI control from a background thread the .NET common

language runtime will throw a System.NotSupportedException (FlexPendant platform)

or a System.InvalidOperationException (PC platform).

TIP!

If you are using the FlexPendant SDK there is further information about threads in Thread

affinity on page 196 and Invoke on page 196.

Continued

4 Developing RAB applications

4.4. User Authorization System

3HAC028083-001 Revision: D70

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4.4. User Authorization System

Overview

In the robot controller there is a system controlling user access: the User Authorization

System (UAS). If this feature is used each user needs a user name and a password to log on to

a robot controller via the FlexPendant or RobotStudio. If the controller connection for any

reason is lost, the user has to log on again.

The controller holds information on which operations different users are allowed to perform.

The UAS configuration is done in Robot Studio.

TIP!

To learn more about UAS use the help function in Robot Studio.

Accessing UAS from custom applications

Before sensitive controller operations are performed, a FlexPendant SDK application should

check that the user currently logged on has the corresponding UAS rights.

Accessing UAS is done by using the property AuthorizationSystem on the controller

object:

VB:

Dim UAS As UserAuthorizationSystem =

Me.AController.AuthorizationSystem

C#:

UserAuthorizationSystem uas =

this.aController.AuthorizationSystem;

Grants and Groups

UAS rights are called Grants. The specific user belongs to one of several defined Groups,

where each group has a number of specified grants.

To ensure that the user has the necessary grant to perform an operation, you use the

CheckDemandGrant method on the AuthorizationSystem object. The grant to check is

passed as an argument:

VB:

If UAS.CheckDemandGrant(Grant.ModifyRapidProgram) Then

ATask.LoadModuleFromFile(ALocalFile, RapidLoadMode.Replace)

End If

C#:

if (uas.CheckDemandGrant(Grant.ModifyRapidProgram)) {

aTask.LoadModuleFromFile(localFile, RapidLoadMode.Replace);

}

Continues on next page

4 Developing RAB applications

4.4. User Authorization System

713HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The RAB application cannot override the UAS configuration. This means that the system will

in the end prevent the user from performing an action that is not allowed.

MessageBox feedback

If a UAS grant is missing the user should get information about it. This can be done in a

message as shown in this example:

msg = "You are not allowed to perform this operation, talk to your

system administrator if you need access."

title = "User Authorization System"

For the PC platform (VB and C#):

MessageBox.Show(msg,title,MessageBoxIcon.Exclamation,MessageBoxB

uttons.OK)

For the FlexPendant platform:

VB:

GTPUMessageBox.Show(Me, Nothing, msg, title,

System.Windows.Forms.MessageBoxIcon.Asterisk,

System.Windows.Forms.MessageBoxButtons.OK)

C#:

GTPUMessageBox.Show(this, null, msg, title,

System.Windows.Forms.MessageBoxIcon.Asterisk,

System.Windows.Forms.MessageBoxButtons.OK);

GetCurrentGrants and DemandGrant

Another possibility is to retrieve all grants for the current user calling GetCurrentGrants,

then iterate over the grants collection and search the necessary grants.

Yet another solution is to call DemandGrant with one of the static Grant members as in

argument.

If the user does not have the specified grant the FlexPendant SDK throws a

UasRejectException and the PC SDK throws a GrantDemandRejectedException.

TIP!

Learn more about UAS and Grant members in the SDK Reference Help.

Continued

4 Developing RAB applications

4.5. Exception handling

3HAC028083-001 Revision: D72

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4.5. Exception handling

Overview

The .NET programming languages provide built-in support for exception handling, which

allows the program to detect and recover from errors during execution.

In managed code, execution cannot continue in the same thread after an unhandled exception.

The thread terminates, and if it is the program thread, the program itself terminates. To avoid

this, accurate exception handling should be used.

Try-catch-finally

Exceptions are handled in try - catch (-finally) blocks, which execute outside the

normal flow of control.

The try block wraps one or several statements to be executed. If an exception occurs within

this block, execution jumps to the catch block, which handles the exception.

The finally block is executed when the Try block is exited, no matter if an exception has

occurred and been handled. It is used to clean up system or controller resources.

If you do not know what exceptions to expect or how to handle them, you can catch them and

do nothing. This, however, may result in difficult error tracing, as exceptions include

information on what caused the problem. Therefore, try at least to display the exception

message, either by using a message box or the types Debug or Trace. See Debug output on

page 279 and Trace and Debug on page 281 for further information.

Typecasting

When typecasting Signal or RapidData values, for example, there is a potential risk of

typecast exceptions. To avoid this you can check the object using the is operator for both

value and reference types:

VB:

If TypeOf ARapidData.Value Is Num Then

Dim ANum As Num = DirectCast(ARapidData.Value, Num)

.....

C#:

if (aRapidData.Value is Num)

{

Num aNum = (Num) aRapidData.Value;

....

}

In C# it is also possible to use the as operator for reference types. A null value is returned if

the type is not the expected one:

C#:

DigitalSignal di = this.aController.IOSystem.GetSignal(“UserSig”)

as DigitalSignal;

if (di == null)

{

MessageBox.Show(this, null, “Wrong type”);

}

Continues on next page

4 Developing RAB applications

4.5. Exception handling

733HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Exception handling for the PC platform

Exceptions thrown from the controller are handled by the PC SDK ExceptionManager,

which converts the internal HRESULT to a .NET exception with a reasonable exception

description, before it is thrown to the custom application layer. The application handling of

these exceptions should apply to general .NET rules.

Exceptions are expensive in a performance perspective and should be avoided if there are

other alternatives. If possible use a try-finally block to clean up system and unmanaged

resource allocations.

Exception handling for the FlexPendant platform

The FlexPendant SDK provides several exception classes, which are used when errors occur.

If the operation is rejected by the controller safety access restriction mechanism, for example,

a RejectException is thrown.

If an unhandled exception occurs the application crashes and TAF displays a gray message

on the FlexPendant. After confirmation the FlexPendant will restart. To avoid this you should

make sure that any potential error situations are dealt with properly by your code.

5.5_1

The message that you get when an unhandled error situation occurs may look like this. Do
NOT contact ABB, but fix the error handling of your application.

Continued

Continues on next page

4 Developing RAB applications

4.5. Exception handling

3HAC028083-001 Revision: D74

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Learn how the exception classes of the FlexPendant SDK work by using the FlexPendant

SDK Reference Documentation. Also see SDK exception classes on page 194 to get more

detailed information about exception handling for the FlexPendant platform.

.NET Best Practices

.The .NET Framework Developer's Guide presents the following best practices for exception

handling:

• Know when to set up a try/catch block. For example, it may be a better idea to

programmatically check for a condition that is likely to occur without using exception

handling. For errors which occur routinely this is recommended, as exceptions take

longer to handle.

• Use exception handling to catch unexpected errors. If the event is truly exceptional

and is an error (such as an unexpected end-of-file), exception handling is the better

choice as less code is executed in the normal case.Always order exceptions in catch

blocks from the most specific to the least specific. This technique handles the specific

exception before it is passed to a more general catch block.

Continued

4 Developing RAB applications

4.6. How to use the online help

753HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4.6. How to use the online help

Overview

The online help comes with the installation of Robot Application Builder and is accessible

from Windows Start menu.

The recommendation is to read this user’s guide carefully as you develop your first RAB

application. FP SDK Reference and PC SDK Reference are important complements to this

manual, as these make up the complete reference to the class libraries of RAB. See

Documentation and help on page 16 for details.

NOTE!

The SDK Reference is NOT integrated in Visual Studio. You must open it from the Start
menu.

TIP!

 See Documentation and help on page 16 for the web address to RobotStudio Community,

where RAB developers discuss software problems and solutions online.

4 Developing RAB applications

4.6. How to use the online help

3HAC028083-001 Revision: D76

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5 Using the FlexPendant SDK

5.1.1. About this chapter

773HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5 Using the FlexPendant SDK

5.1 Introduction

5.1.1. About this chapter

Overview

This chapter gives detailed information on how to use the FlexPendant SDK.

These topics are covered:

• How to take advantage of some system features that support the use of customized

screens.

• How to utilize the integrated Visual Studio wizard to set up a FlexPendant project.

• How to add the FlexPendant SDK GUI controls to the Visual Studio Toolbox.

• How to build the user interface using the integrated design support.

• How to program FlexPendant SDK GUI controls.

• How to launch other applications from your application.

• How to implement controller functionality using CAPI.

The design support in Visual Studio enables you to visually lay out the application, reducing

the need to write code. This speeds up development and gives you a more precise control of

the appearance of your FP screens.

Using the FlexPendant SDK it is possible to launch several of the standard FlexPendant

applications from your application, which is often a very handy alternative to handling

complicated procedures on your own, such as reading and writing RAPID data for example.

The Controller API (CAPI) is at the core of the FlexPendant SDK. It is used to access the

robot controller, which the FlexPendant is attached to. First there is information about how

this public API is organized. Then each domain of CAPI is dealt with separately. There are

code samples in C# and VB throughout the chapter.

5 Using the FlexPendant SDK

5.1.2. System features supporting the use of customized screens

3HAC028083-001 Revision: D78

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.1.2. System features supporting the use of customized screens

Flexible user interfaces

The FlexPendant can be adapted to end-users' specific needs in many different ways. It can

be operated in 14 different languages, including Asian character-based languages such as

Japanese and Chinese. Left-handed operators can adapt the device from its default setting by

simply rotating the display through 180 degrees. Four of the eight hard keys are

programmable, i.e. their function can be assigned by the end-user.

Customized FlexPendant screens, tailored to end-users’ needs is yet another way of rendering

the flexible solutions required by many customers. To support the use of customized screens

there are a couple of features that you may want to tell the end-users of your application

about.

Configure the FlexPendant

Using the FlexPendant configuration facilities (Control Panel - FlexPendant) it is possible to

configure the FlexPendant to allow RAPID execution in manual mode from an FP SDK view.

You can also make the FlexPendant automatically display an SDK view at operating mode

change.

Additional Test View

Set the FlexPendant configuration property Additional Test View if you want to be able to start

RAPID execution in manual mode with a custom application as the active view.

6.1.0_1

Continues on next page

5 Using the FlexPendant SDK

5.1.2. System features supporting the use of customized screens

793HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

View On Operating Mode Change

Set the FlexPendant configuration property View On Operating Mode Change if you want the

custom application to become active when the controller operating mode is switched to auto,

manual or manual full speed.

6.1.0_2

Use RAPID instruction to launch RAB application

The RAPID instruction UIShow (User Interface Show) is used to communicate with the user

of the robot system via a FlexPendant application. Both RAB applications and standard

applications can be launched using this instruction.

Example:

The RAPID code below launches the custom application TpsViewMyApp.

CONST string Name :="TpsViewMyApp.gtpu.dll";CONST string Type

:="ABB.Robotics.SDK.Views.TpsViewMyApp";UIShow Name, Type;

For this to work the robot system must have the RobotWare option FlexPendant Interface.

The assemblies TpsViewMyApp.dll and TpsViewMyApp.gtpu.dll must be located in the

HOME directory of the active robot system. (When the assemblies have been downloaded to

the controller the FlexPendant must be restarted in order to load them.)

NOTE!

See the RAPID reference manual for further information about the UIShow instruction.

Continued

5 Using the FlexPendant SDK

5.2.1. Using the project template in Visual Studio

3HAC028083-001 Revision: D80

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.2 Setting up a new project

5.2.1. Using the project template in Visual Studio

Overview

It is very simple to set up a new FlexPendant project using the integrated project template that

comes with the installation of Robot Application Builder. It will automatically add the most

common SDK references to the project and auto-generate some source code for the main

application window, in the selected programming language, either C# or Visual Basic.

NOTE!

To add another view to the FlexPendant project, you do not need to start a new project. See

Adding a view to a custom application on page 99 for information about how to do it.

Setup procedure

Follow these steps to create a FlexPendant project:

Step Action

1. On the File menu in Visual Studio, point to New and then click Project.

2. In VS 2005, in the New Project dialog select Visual C# / Smart Device /
FlexPendant or Other Languages/Visual Basic/Smart Device/FlexPendant. In VS
2008, select Visual C# / FlexPendant or Other Languages/Visual Basic/FlexPen-
dant).

6.1.1_1

NOTE!
If you have several RAB installations on your PC, there will be several templates to
choose from. Make sure you select the template that match the RobotWare version
that your application should target.

Continues on next page

5 Using the FlexPendant SDK

5.2.1. Using the project template in Visual Studio

813HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Add any missing references

The SDK references needed by the FlexPendant project are added automatically when the

Project wizard is completed. However, there is a possibility that Visual Studio cannot provide

the path to these dlls. If this is the case you should add the references path manually. Follow

these steps:

3. Enter the name of the application in the Name field and where you want it to be
stored in the Location field. Click OK.

NOTE!
The name has to start by “TpsView” . If you forget it an error will be generated by
the ABB verification tool when the project is built.

4. The FlexPendant SDK Project Wizard is now launched. For information about how
to configure the application using this wizard see FlexPendant TpsView attribute on
page 54 and Container style on page 97. When you are ready click OK.

5. You need to set up the design support for the FlexPendant GUI controls before
starting programming. How this is done is detailed in Setting up design support for
FlexPendant controls on page 83.

NOTE!
If the SDK references seem to be missing in your FlexPendant project, see the
following section for instructions about how to solve the problem.

Step Action

Step Action

1. Look at the Solution Explorer of Visual Studio. If you have a C# project expand the
References node. Warning triangles mean that the path to the referenced dlls is
missing.

6.1.1_2

For a VB project the Solution Explorer looks the same, except that there is no
References node.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.2.1. Using the project template in Visual Studio

3HAC028083-001 Revision: D82

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2. C#: Select the project icon, right-click and select Properties. Click the Reference
Paths tab and add the path to the SDK assemblies.

VB: Select the project icon, right-click and select Properties. Click the References
tab. If the path to the SDK references is missing add it by browsing to the directory
where they are located.

NOTE!
The default path is C:\Program Files\ABB Industrial IT\Robotics IT\Robot Application
Builder 5.xx\FlexPendant SDK \bin.

3. Save the project. You will notice that any warning triangles in the Solution Explorer
References node will disappear.

Step Action

Continued

5 Using the FlexPendant SDK

5.2.2. Setting up design support for FlexPendant controls

833HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.2.2. Setting up design support for FlexPendant controls

Overview

This section describes how to make the FlexPendant GUI controls accessible in Visual

Studio.

Procedure

Follow these steps to add the FlexPendant controls to the Visual Studio Toolbox:

NOTE!

The way you use the Visual Studio Designer to implement FlexPendant controls is very

similar to implementing ordinary .NET controls. In this manual useful information which

may not be obvious for all users is provided. But oftentimes, it is the general Visual Studio

Help that will answer any questions you may have about control properties and the like.

Step Action

1. On the View menu, select Toolbox.

2. Right click in the Toolbox area and select Add Tab.

3. Name the new toolbox tab, e.g. FlexPendant Controls.

4. Right click in the area of the new tab and select Choose Items.

5. In the Choose Toolbox Items dialog, browse to the directory where the
FlexPendant SDK assemblies are located and import the following assemblies:

• ABB.Robotics.Tps.Windows.Forms.dll

• ABB.Robotics.GTPU.Windows.Forms.dll

• ABB.Robotics.DataBinding.dll

The default location is C:\Program Files\ABB Industrial IT\Robotics IT\Robot
Application Builder\FlexPendant SDK 5.xx\bin.

6. In the Solution Explorer right-click view.cs (view.vb if you have a VB project) and
select View Designer if you are not already in design mode.

As you see, the FlexPendant specific controls are now accessible in the Toolbox.
See Introduction to visual design support on page 84 for information about how to
use them.

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

3HAC028083-001 Revision: D84

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3 Building the user interface

5.3.1. Introduction to visual design support

What is visual design support?

Design Support for Compact Framework User Controls was a new feature of Visual Studio

2005. It enabled design support for FlexPendant SDK controls to be included in RAB 5.08.

From RAB 5.08 onwards you visually design the FlexPendant application user interface in

the Visual Studio Designer. FlexPendant controls are dragged from the toolbox to the

designer area, moved and resized by clicking and dragging. By applying different settings in

the Properties window of a control, you refine its appearance and behavior.

To be able to use the visual design support you must add the FlexPendant controls to the

Visual Studio toolbox. How to do this is detailed in Setting up design support for FlexPendant

controls on page 83.

NOTE!

Design support for FlexPendant controls has long been on RAB users’ wish list. It is indeed

a time-saving feature, as most of the code supporting the graphical user interface is now auto

generated.

Why special controls for the FlexPendant?

You may wonder why the standard Microsoft Windows controls have not been considered

good enough to be used for the FlexPendant touch screen.

The answer is that some Windows controls may very well be used. Other Windows controls

are however not so well suited for the FlexPendant touch screen. To navigate using your

finger controls in particular need to be large enough. In some other cases the Windows

controls simply do not look very good on the touch screen.

NOTE!

In the FP SDK Reference, click the Contents tab and the

ABB.Robotics.Tps.Windows.Forms node to get an overview and a short description of all

ABB controls you may use to create the user interface of a FlexPendant application.

TIP!

How to program these ABB controls is very similar to the equivalent Windows controls. If

you need code examples the best source of information is usually MSDN. You may try http:/

/msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/

frlrfsystemwindowsformslistviewclasstopic.asp, for example, to find out how to program a

ListView.

Illustration

The figure below shows the Visual Studio Toolbox with all of the FlexPendant controls to the

left. In the Designer area to the right, a FlexPendant application is being developed. Part of

the container control, along with a number of ABB and standard Windows controls can be

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

853HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

seen.

6.3.1_1

The following features are worth noting:

• A Windows PictureBox control is used as the container of a photo.

• The FlexPendant button has a property called BackgroundImage, used to display an

image. The ABB image library located in the Resources folder, which comes with the

installation of Robot Application Builder, has numerous icons, which can be used by

custom applications. You can of course also use photos and icons of your own.

• Some of the ABB controls, such as the SignalBindingSource, have no graphical

representation in design-time. As you see in the figure, they are placed in the

components pane under the main form. Code is of course generated, just like for the

controls that you see on the form.

• Usually a mix of Windows and ABB controls are used for a FlexPendant SDK

application. For example, as there is no ABB RadioButton or CheckBox the

equivalent Windows controls are used. In the figure, the standard Windows CheckBox

is used.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

3HAC028083-001 Revision: D86

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

CAUTION!

Do not forget about the limited amount of memory available for custom applications when

adding images or photos! See Technical overview of the FlexPendant device on page 182.

CAUTION!

Auto generated code for controls is located in the method InitializeComponent. You

should not tamper with the code inside this method. Any modifications or additions to auto

generated code is usually best located in the constructor, after the call to

InitializeComponent.

Hands on - Hello world

Are you ready to program and test your first FlexPendant application? If you have not created

a FlexPendant project and added the FlexPendant controls to the Visual Studio Toolbox you

need to do that first. See Using the project template in Visual Studio on page 80 and Setting

up design support for FlexPendant controls on page 83.

Follow these steps to create and test a simple custom application:

Step Action

1. Drag a FlexPendant button from the Toolbox to the Designer.

2. Double-click the button in the Designer, this opens the code editor.

3. As you see an event handler for the click event has been created. Add the code to
launch the Hello World message in it:

private void button1_Click(object sender, EventArgs e)

{

GTPUMessageBox.Show(this.Parent

, null

, "Hello world!"

, "Application Message"

, System.Windows.Forms.MessageBoxIcon.Asterisk

, System.Windows.Forms.MessageBoxButtons.OK);

}

An alternative way of adding an event handler is shown in the next step.

NOTE!
The above code sample has no exception handling. A FlexPendant application to be
used in industry must have exception handling in all event handlers. The FlexPendant
has only ONE GUI thread, which all applications running on the FlexPendant share.
If your application breaks the only GUI thread, all of the applications will die and the
FlexPendant must be restarted manually. See Exception handling on page 72 to find
out more about this important issue.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

873HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4. Bring up the Properties window for the button by right clicking it in the Designer and
selecting Properties. Click the events button (yellow flashing lightening) to see the
events available for the ABB button. As shown by the figure, you have already
connected an event handler to the click event.

6.3.1_1B

NOTE!
It is the default event of the control that you get when you double-click it in the
Designer. To add an event handler for another button event, bring up the Properties
window and double-click the event you want to generate a handler for, e.g. a
FontChanged event handler. You will enter the code editor, the cursor inside the
generated event handler.

5. On the Build menu, click Build Solution and check that you did not get any
compilation errors.

6. To test the application you need to deploy it to a robot system. If there is no robot
system available, you must create a robot system by using the System Builder of
RobotStudio.

7. Copy the assembly (*.dll) and the proxy assembly (*.gtpu.dll) from the bin\Debug (or
bin\Release) directory of your Visual Studio project to the HOME directory created by
RobotStudio when your robot system was created.

Example showing default paths for copy/paste:

C:\Data\Visual Studio 2005\Projects\TpsViewMyApp\TpsViewMyApp\bin\Debug\

C:\Systems\sys1_508\HOME

Note! If you have already started the virtual FlexPendant you need to close it before
pasting the dlls.

8. Start the virtual FlexPendant.

9. On the ABB menu, find your application and open it.

Step Action

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

3HAC028083-001 Revision: D88

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

TIP!

When using the Virtual FlexPendant for test and debug you can automate the copy/paste

procedure described in step seven above. This is how you do it:

1. Right click the project icon in the Solution Explorer and select Properties.

2. For a C# project, select the Build Events tab. (For a VB project click the Compile tab

and then the Build Events button.)

3. Press the Edit Post-build button and add two commands which will copy the

produced dlls to the directory of the robot system to run. Example:

10. Click the button. The Hello World message will be displayed.

6.3.1_2

NOTE!
See Hands on - step 2 on page 89 below if you wish to know how to implement the
additional features shown above: application title, button background image,
command bar with a menu item and an event handler to launch a standard view.

Step Action

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

893HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

copy "$(TargetDir)$(TargetName).dll" "C:\Systems\sys1"

copy "$(TargetDir)$(TargetName).gtpu.dll" "C:\Systems\sys1"

Note! Do not remove the default post build command lines, which create the assembly proxy

(*gtpu.dll).

Hands on - step 2

This section details how to program the remaining features of the Hello World application

shown in step nine above: application title, button background image, command bar with a

menu item. You will also learn how to implement an event handler for the Launch View

command.

When you create a FlexPendant project you choose Empty or Form in the FlexPendant
SDK Project Wizard. See Empty or Form? on page 97 to understand the difference between

them. In our example Form is selected as the container control.

Step Action

1. If you selected Empty for your project you can change it to Form by exchanging
TpsControl with TpsForm directly in the source code, like this:

C#:

public class TpsViewIRC5App14 : TpsForm, ITpsViewSetup,
ITpsViewActivation

VB:

Public Class TpsViewIRC5App14 Inherits TpsForm '(was
TpsControl before) Implements ITpsViewSetup,
ITpsViewActivation

Notice that the Designer now shows the title bar on top of the container control.

2. Right-click somewhere in the middle of the container control and select Properties.

3. Enter “This is my Hello World application” at the Text property. See the tip of Empty
or Form? on page 97 if the Text property is not available.

4. Still using the TpsForm Properties window, expand the MainMenu property node.

5. Click the MenuItems property and the browse button which appears once the
property is selected.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

3HAC028083-001 Revision: D90

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6. In the MenuItem Collection Editor, which is now launched, click the Add button.
Then enter “Launch View” at the Text property. Click OK.

6.3.1_4

NOTE!
The added menuItem has its own MenuItems property. You use it if the “Launch
View” command is to present a menu instead of working as a button on the command
bar. How this can be done is further detailed in How to add menu items on page 101.

Step Action

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

913HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7. Add an event handler with code that will launch the standard Jogging view when the
Launch View button is pressed.

Adding event handlers is done differently in Visual Studio depending on which
programming language you are using.

For C#:

In the constructor, after the call to InitializeComponent, add a subscription to
the click event of the “Launch View” command. Write:

menuItem1.Click +=

then TAB twice. As you will notice, Visual Studio intellisense auto generates an event
handler, and you only need to write the code for launching the Jogging view:

this._launchService.LaunchView(FpStandardView.Jogging,null,fa
lse,out this._cookieJog)

For VB:

Add an event handler using the drop down boxes above the Visual Studio Code
Viewer. Find and select MenuItem1 in the left drop down box and the Click event in
the right drop down box. The event handler is now auto generated for you, and the
only thing you need to do is to write the code for launching the Jogging view (see VB
code in Launching standard views on page 129).

NOTE!
There is no possibility to attach an event handler in the properties window, like you
do for a Button for example.

8. Declare the _launchService and the _cookieJog objects:

private ABB.Robotics.Tps.Taf.ITpsViewLaunchServices
_launchService;private object _cookieJog;

9. Retrieve the _launchService object in the Install method of your class:

6.3.1_5

See ITpsViewSetup Install on page 128 for VB code example.

10. In the designer, open the Properties window of the button.

11. Enter “Press Me” at the Text property.

12. Select the BackgroundImage property and browse to the Resources folder of the
RAB installation and import “IRB140.gif”.

(Default path: C:\Program Files\ABB Industrial IT\Robotics IT\Robot Application
Builder\FlexPendant SDK 5.08\Resources)

13. Build, deploy and start the application, that is repeat step five to eight in Hands on -
Hello world on page 86.

Step Action

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

3HAC028083-001 Revision: D92

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

TIP!

See Using launch service on page 128 and Using standard dialogs to modify data on page

131 if you want to know more about the possibilities to use already existing views for your

application

Visual design and user experience

There is another definition of the term Visual design, which is not in the scope of this manual.

It has to do with how the design of the software user interface affects user experience. This is

nonetheless an important topic for a FlexPendant application developer. Knowing what

makes a user interface intuitive and easy to use is essential, as this is exactly what is expected

from a custom operator interface.

TIP!

A FlexPendant style guide comes with the installation of RAB. It will help you to present

application functionality in an intuitive way, teaching best practices of visual design and user

experience from the FlexPendant perspective. It is a preliminary draft, but still very useful.

You may also want to study the Microsoft standard for visual design at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/ch14a.asp

14. Press the Launch VIew command.

The Jogging view should open up and get focus.

Step Action

Continued

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

933HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.2. GUI controls and memory management

Overview

All of the FlexPendant SDK controls belong to the ABB.Robotics.Tps.Windows.Forms

namespace. This namespace thus includes well over 40 classes and subclasses used to

develop the user interface of a FlexPendant application.

ABB.Robotics.Tps.Windows.Forms.TpsControl is the base type of all FlexPendant

SDK controls. TpsControl in turn extends System.Windows.Forms.UserControl

TpsControl may be used as a container control of a FlexPendant view. It also has the default

implementation of Dispose, which is called in order to free allocated memory for a control

which should no longer be used.

You may wonder why this is necessary, as the .NET framework has a garbage collector, which

should release the developer of the duty to free allocated memory. The answer is the garbage

collector does not always reclaim memory which is no longer used. Therefore, if you program

an application meant to execute around the clock on a device with limited memory, you are

still responsible for freeing memory which is no longer used. Neglecting to do so will result

in permanent memory leaks.

How to avoid memory leaks

Look at this figure showing a number of controls (both ABB and Microsoft) and learn the

basics about memory management for GUI controls. It is not so complicated, the most

important thing is not to forget that cleaning up is your responsibility!

6.3.2_1

Continues on next page

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

3HAC028083-001 Revision: D94

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Learn and apply these the general rules for memory management of GUI controls.

• Controls with a graphical representation, e.g the ABB Numpad, TabControl,

GroupBox, TpsLabel, ListView and the Microsoft PicureBox and DataGrid in

the figure, are automatically added to the controls collection in

InitializeComponent. It may look like this:

this.Controls.Add(this.numPad1);

• If the figure above represents the first view of your application, controls with graphical

representation will be disposed of by the base class of your view class when your

application is shut down and the Dispose method is called by TAF. This happens

when the following statement in your Dispose method is executed:

base.Dispose(disposing);

• If, however, it represents a secondary view of your application (which is actually the

case here, as you can tell from the close button on the command bar), you must call its

Dispose method from the first view when it is closed. Its base class will then remove

all controls that are part of its controls collection, like in the previous case.

• GUI controls that have no graphical representation, but are located in the Components

pane under the form, e.g. GTPUSaveFileDialog, RapidDataBindingSource,

AlphaPad etcetera, are NOT added to the controls collection by default. These are the

ones that you need to be especially careful to remove, as no garbage collector will ever

gather them. If you forget to explicitly call Dispose on such controls you will have

caused a permanent memory leak. Carefully study the code example in the next

section.

NOTE!

Microsoft and ABB controls behave in the same way. The Microsoft ImageList for

example, which is commonly used in FlexPendant applications, has no graphical

representation and must thus be explicitly removed by the application programmer.

Coding the Dispose method

The code example below shows how the Dispose method of the view shown in the figure

above can be coded. All controls located in the components pane in the Designer must be

explicitly removed by the programmer. Controls with a graphical representation will be

removed when Dispose of the base class is executed.

protected override void Dispose(bool disposing)

{

if (!IsDisposed)

{

try

{

if (disposing)

{

//Removes SaveFile dialog

if(this.gtpuSaveFileDialog1 != null)

{

this.gtpuSaveFileDialog1.Dispose();

this.gtpuSaveFileDialog1 = null;

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

953HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

}

//Removes RapidDataBindingSource

if(this.rapidDataBindingSource1 != null)

{

this.rapidDataBindingSource1.Dispose();

this.rapidDataBindingSource1 = null

}

//Removes Alphapad

if(this.alphaPad1 != null)

{

this.alphaPad1.Dispose();

this.alphaPad1 = null

}

//Removes FolderBrowserDialog

if(this.gtpuFolderBrowserDialog1 != null)

{

this.gtpuFolderBrowserDialog1.Dispose();

this.gtpuFolderBrowserDialog1 = null

}

//Removes ImageList

if(this.imageList1 != null)

{

this.imageList1.Dispose();

this.imageList1 = null

}

}

}

finally

{

 //Removes all controls added to the controls collection

 base.Dispose(disposing);

}

 }

 }

Finally, as this is a secondary view, we should call its Dispose method from the first view

when it is closed down.

//This code is executed by the first view when the secondary view

is closed

void form2_Closed(object sender, EventArgs e)

{

if(form2 != null)

{

form2.Dispose();

form2 = null;

}

}

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

3HAC028083-001 Revision: D96

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

CAUTION!

If you forget to call Dispose on controls that are not part of the control collection of the class

there will be memory leaks. This may cause the FlexPendant to run completely out of

memory and crash. Usually, this will not happen when you try out the functionality of your

application, but when it is executed and used continuously during production. To verify that

a GUI control is really disposed of, you may set up a subscription to its Disposed event for

example, and verify that it is triggered when you close down the view.

CAUTION!

All objects accessing robot controller services, i.e. unmanaged resources, must also be

removed by the application programmer. See Memory management on page 184 for further

information.

Freeing allocated memory for a GUI control

You are recommended to remove a GUI control in theDispose method of the class that

created it. If the control belongs to the first view of your application, it will be disposed of

when TAF calls Dispose at application shut down. If it belongs to a secondary view, you are

responsible for disposing of the secondary view and its controls.

C#:

if (this.controlX != null)

{

 controlX.Dispose();

 controlX = null;

 }

base.Dispose(disposing);

VB:

If disposing Then

If Not controlX Is Nothing Then

controlX.Dispose()

controlX = Nothing

End If

End If

MyBase.Dispose(disposing)

NOTE!

When the last statement in the code example above is executed the base class will call

Dispose on all controls added to the controls collection in InitializeComponent. This

means that you do not need to call Dispose on such controls.

Continued

5 Using the FlexPendant SDK

5.3.3. Container style

973HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.3. Container style

Overview

The container control of a FlexPendant application is 640x390 pixels, which is the exact size

of the FlexPendant screen dedicated for a custom view. This section details the two different

styles that can be used for a FlexPendant view: Empty and Form.

You select which one to use in the Style area of the FlexPendant SDK Project Wizard. To

the left in the wizard, a preview helps you see the difference between the two styles.

6.2.2_1

Here Form is selected. The preview illustration shows a TpsForm. It has a CommandBar at
the bottom and a TpsCtrlTitleBar at the top.

NOTE!

When adding a new view to an existing FlexPendant project, you choose which control to use

in the Add New Item dialog box. See Adding a view to a custom application on page 99 for

information on how to add a new view to an existing project.

Empty or Form?

Your choice in the wizard determines the type that your view class will inherit. If you change

your mind about this, it is easy to make the change directly in the auto generated code.

Empty

This is a plain TpsControl. It has neither a CommandBar, nor a TpsCtrlTitleBar.

The code definition of the class will look like this:

VB:

Public Class TpsViewMyApp Inherits TpsControl Implements

ITpsViewSetup, ITpsViewActivation

Continues on next page

5 Using the FlexPendant SDK

5.3.3. Container style

3HAC028083-001 Revision: D98

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Form

This is a TpsForm, which is a specialized TpsControl.

The code definition of the class will look like this:

VB:

Public Class TpsViewMyApp Inherits TpsForm Implements

ITpsViewSetup, ITpsViewActivation

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.3. Container style

993HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Often Empty is chosen as the first view of an FP SDK application. For any secondary view,

which is to be opened from the first one, Form is the recommended container control.

NOTE!

When selecting Form you might wonder why the command bar is not visible in the designer.

The answer is that it remains invisible until a MenuItem has been added to it. This is done in

the Properties window of the TpsForm, by applying the property MainMenu.

TIP!

If you select the TitlePanel or the CommandBar of a TpsForm you will see that the

Properties window is disabled. If you want to change the text of the title panel, or add menu

items to the command bar, for example, you must select TpsForm by clicking somewhere in

the middle and then modify its Text or MainMenu property.

How to build the command bar

The command bar is either ready-made, as for TpsForm, or used as a separate control

available from the toolbox. If the command bar is ready-made, the design of it is done by

modifying the MainMenu property of TpsForm. If used as a separate control, you design it

by modifying its own properties. Apart from this, there is no difference in how you control

the design.

An important thing to remember is that you have to manually add the code controlling what

will happen when the user presses a menu item, as there are no event properties available in

its Properties window.

See Command bar on page 101 for further information on how to implement the control and

its event handlers.

CAUTION!

The command bar of the first view of a custom application should not have a Close button.

The reason is that all custom application must be closed down by TAF, which happens when

the user presses the close [x] button in the upper right corner of the FlexPendant display.

(SeeDefinitions on page 18 for a definition of TAF or Understanding FlexPendant

application life cycle on page 52 for further information on TAF.)

Adding a view to a custom application

To add another view to the FlexPendant project, you do not need to start a new project. This

is how to proceed:

Step Action

1 Right-click the project node in the Solution Explorer, point to Add and select New
Item.

2 Select one of the FlexPendant container controls available in the dialog box.
Normally it will be a Form.

Note! If you select Empty the code you write to open it from the first view is a bit
different than if you are using Form as a secondary view.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.3. Container style

3HAC028083-001 Revision: D100

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

This way all of your views make up a single dll, which is convenient. Most of the time there

is no point in dividing the application into several dlls.

Launching the view

The code for launching the secondary view is simple. It may look like this:

//declare the secondary view as a private member

private View2 _view2;

//create the view and add subscription to its closed event, then launch

view

private void button1_Click(object sender, EventArgs e)

{

this._view2 = new View2();

this._view2.Closed += new EventHandler(view2_Closed);

this._view2.ShowMe(this);

}

//dispose of the view when it has been closed

void view2_Closed(object sender, EventArgs e)

{

this._view2.Closed -= new EventHandler(view2_Closed);

this._view2.Dispose();

this._view2 = null;

}

NOTE!

Make sure that there is a natural way for the user to get back to the preceding view. The most

intuitive way of doing this is to press a Close button or an OK or Cancel button on the

command bar. If the secondary view is a TpsForm, this event handler closes it:

void menuItem1_Click(object sender, EventArgs e){ this.CloseMe();}

NOTE!

If you are using Empty as a secondary container control the code you write to launch it is:

this._view2.Show();

It must be added to the first view’s control collection before it can be shown, just like an

ordinary .NET control.

Continued

5 Using the FlexPendant SDK

5.3.4. Command bar

1013HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.4. Command bar

Overview

For the end-user the command bar is a central FlexPendant control and an important means

of interacting with the system. As described in How to build the command bar on page 99 it

can be ready-made or added to the container control from the VS Toolbox.

How to add menu items

If you use the Form container a command bar is built-in, but not visible until you add a

MenuItem collection to the MainMenu property of TpsForm. How to do this is shown in step

5 - 6 of Hands on - step 2 on page 89.

If you use Empty as container the command bar needs to be added from the Toolbox. In this

case too, the commands are added as a collection of menu items.

6.3.4_1

The command bar in this figure has a collection of three menu items: Launch View, Close

View and Close. Moreover, the Launch View menu item has its own collection of menu items:

Rapid Data, Jogging and Backup Restore.

In the figure, as shown by the task bar, the Backup Restore view has been opened. It has been

done by clicking the Backup Restore menu item. The user has then returned to the Hello
World application by using the task bar. If Close View is now pressed, the Backup Restore

view will close down. The next section shows how event handlers for this command bar can

be implemented.

Continues on next page

5 Using the FlexPendant SDK

5.3.4. Command bar

3HAC028083-001 Revision: D102

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

How to add menu item event handling

Subscriptions to menu item events and event handling cannot be added using the design

support, but have to be implemented by hand in the source file. The code example below

shows how the command bar in the figure above can be implemented.

6.3.4_2

NOTE!

To launch a standard view the ITpsViewLaunchServices object, which can be saved by

the TpsView class in its Install method, is needed. See Using launch service on page 128.

Continued

5 Using the FlexPendant SDK

5.3.5. FlexPendant fonts

1033HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.5. FlexPendant fonts

Overview

On the FlexPendant, TpsFont is used instead of standard Windows fonts. By using TpsFont

you save limited device memory, as static references instead of new font instances will be

used.

TpsFont

Tahoma is the default font of the FlexPendant. It is also the font usually used internally by

TpsFont. A number of different font sizes are pre-allocated and can be reused. You are

recommended to use TpsFont instead of creating new font instances for both ABB and .NET

UI controls.

NOTE!

To be able to use Chinese or another language with non-western characters, you must use the

FlexPendant font, TpsFont, for any UI controls. It internally checks what language is

currently active on the FlexPendant and uses the correct font for that language.

NOTE!

If you use other fonts than available on the FlexPendant, i.e. Tahoma and Courier New, the

application will use Tahoma instead of the intended one.

5 Using the FlexPendant SDK

5.3.6. The use of icons

3HAC028083-001 Revision: D104

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.6. The use of icons

Overview

It is easy to display icons, images and photos on the FlexPendant touch screen. Utilizing this

possibility is recommended, as many people find it easier to read pictures than text. Intuitive

pictures can also be widely understood, which is a real advantage in a multinational setting.

NOTE!

The operating system of the first generation FlexPendant device (SX TPU 1) does not support

images of more than 256 colors.

CAUTION!

Be aware of the limited memory resources of the FlexPendant device. Do not use larger

images than necessary. Also see How large can a custom application be? on page 182

FlexPendant controls with images

Several FlexPendant controls support images, which are imported as bmp, jpg, gif or ico files

when an Image, Icon or BackgroundImage property is set. These are some controls to be

used with pictures:

• MenuItem

• Button

• TpsCtrlTitlePanel

• TabPage

• ListViewItem

• TpsForm

• FPRapidData, FpToolCalibration, FpWorkObjectCalibration

• GTPUSaveFileDialog

PictureBox and ImageList

There are also some Windows controls that can be used to display images.

Windows.Forms.PictureBox is one such control. It can display graphics from a bitmap

(.bmp), icon (.ico), JPEG or GIF file. You set the Image property to the preferred image either

at design time or at run time.

Windows.Forms.ImageList can manage a collection of Image objects. The ImageList is

typically used by another control, such as the ListView or the TabControl. You add

bitmaps or icons to the ImageList, and the other control can choose an image from the

ImageList index. How to use images for a TabControl is detailed in How to add tab

images on page 106.

Continues on next page

5 Using the FlexPendant SDK

5.3.6. The use of icons

1053HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The TpsIcon class

The TpsIcon class offers static references to a number of icons used in the standard

FlexPendant applications. You may want to use some of these icons if they suit the application

need. TpsIcon belongs to the namespace ABB.Robotics.Tps.Drawing.

TIP!

In the FP SDK Reference, click the Search tab and search for TpsIcon Members to get a short

description of the ABB icons that are available as static properties.

Continued

5 Using the FlexPendant SDK

5.3.7. TabControl

3HAC028083-001 Revision: D106

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.7. TabControl

Overview

The ABB.Robotics.Tps.TabControl is used and implemented much in the same way as

a regular System.Windows.Forms.TabControl. The possibility to use tab icons,

however, is an additional feature of the ABB TabControl.

Illustration

The figure below shows a TabControl and its Properties window. To add or remove tab

pages you click the little arrow in the top right corner of the control or click Add new
TabPage at the bottom of the Properties window.

6.2.4_1

NOTE!

The ABB TabControl has no TabPages property. Depending on where in the TabControl

you click, you select either the entire TabControl or one of the TabPages. To view the

Properties window for the T_ROB1 TabPage in the figure, you would have to click the

T_ROB1 tab and then the T_ROB1 page below the tab.

How to add tab images

This is how you use the ImageList property to add icons to the tabs of the TabControl:

Step Action

1 Drag a System.Windows.Forms.ImageList to the Designer area. As you will
notice it has no visual representation, but is placed on the components pane below
the container control.

2 Display the Properties window of the ImageList.

3 Click the property Images and then the browse button, which will appear.

Continues on next page

5 Using the FlexPendant SDK

5.3.7. TabControl

1073HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

How to add an event handler using the Properties window

It is easy to attach an event handler to a control by using the Properties window. This

procedure shows how to make something happen when the user clicks a tab to select another

tab page:

4 Click Add and import an image. Repeat until you have added the icons your
TabControl needs.

6.2.4_2

5 Now display the Properties window of the TabControl and select your ImageList
as the ImageList property.

6 Select one of the tab pages and set the property ImageIndex, which defines which of
the images in the ImageList is to be used for the tab. Repeat this procedure for all
tab pages.

Step Action

Step Action

1 In the Designer, select the TabControl and display the Properties window.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.7. TabControl

3HAC028083-001 Revision: D108

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The subscription to the event has been done under the hood, and you do not need to bother

about it. If you use C# you will notice that some code adding the subscription has been

inserted in the InitializeComponent method:

this.tabControl1.SelectedIndexChanged += new

System.EventHandler(this.tabControl1_SelectedIndexChanged);

Disposing TabControl

You do not need to explicitly call Dispose on the TabControl object. The reason is that

InitializeComponent adds the tab pages to the controls collection of the TabControl,

and the TabControl itself to the control collection of the container class.

this.Controls.Add(this.tabControl1);

The TabControl is thus removed when the Dispose method of your container class calls

Dispose on its base class like this: base.Dispose(disposing);

2 Display the events available for the control by clicking the Events button.

6.3.4_3

3 Select the SelectedIndexChanged event and double click. A method name is now
auto generated for the SelectedIndexChanged event. The code view takes focus,
the cursor placed inside the generated event handler.

4 Add code to make something happen. For now this code will do:

this.Text = "TabControl notifies change of tab pages";

This will change the title text of the TpsForm when a tab is clicked.

5 Test the functionality by building, deploying and starting the application. See step 5-
8 in Hands on - Hello world on page 86.

Step Action

Continued

5 Using the FlexPendant SDK

5.3.8. Button, TextBox and ComboBox

1093HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.8. Button, TextBox and ComboBox

Overview

The FlexPendant button, text box and combo box controls are not very different from the

equivalent Windows controls.

Using Button

A common size of a FlexPendant Button is 120 * 45 pixels; it can be a lot smaller than its

default size. As opposed to a Windows button it can display an image. As pointed out in

Illustration on page 106 you use the property BackgroundImage and browse for the image

to be displayed.

Using TextBox

The TextBox control is multiline by default and uses the typical FlexPendant scroll bars as

shown in the figure below.

6.2.7_1

Using ComboBox

The ComboBox is very similar to the System.Windows.Forms.ComboBox, but is visually

improved to suit the FlexPendant touch screen. It can be statically populated using the Items

property as illustrated by the figure. If you wish to populate it dynamically, you need to write

code for it.

6.2.7_2

SelectedIndexChanged is the most commonly used among the events. It occurs when the

user selects another item from the list.

5 Using the FlexPendant SDK

5.3.9. AlphaPad

3HAC028083-001 Revision: D110

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.9. AlphaPad

Overview

The AlphaPad control is a virtual keyboard, which enables the user to enter strings. It covers

the whole FlexPendant display. The figure shows its appearance in run time.

6.2.10_1

The AlphaPad has no graphical representation in design-time. When dragged from the

Toolbox to the Designer it is placed in the components pane, as shown by the figure in the

next section. Code is of course generated for it, just like for controls that are visually laid out

on the form in design-time.

Continues on next page

5 Using the FlexPendant SDK

5.3.9. AlphaPad

1113HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Launching the AlphaPad

You need to write some code to launch the virtual keyboard. This is how you do it:

C#:

this.alphaPad1.ShowMe(this);

VB:

Me.AlphaPad1.ShowMe(Me)

NOTE!

The code for launching the AlphaPad should be executed by an appropriate event handler.

Adding event handlers

The Properties window can be used to program AlphaPad event handlers. You double click

the event you want to respond to. This takes you to the code editor, the cursor placed inside

the auto generated event handler, where you can write code to save user input to a member

variable for example:

if (alphaPad1.SelectedText != string.Empty)

{

_userInput = alphaPad1.SelectedText;

}

6.2.10_2

Validating the result at the Closing event

The Closing event is generated when the OK or Cancel button of the AlphaPad is pressed.

You can use this event to validate the string entered by the user. You can set the Cancel
property of the event argument to true if you want the AlphaPad to remain open until a valid

input value has been entered:

VB:

Private Sub NamePad_Closing(sender As Object, e As

System.ComponentModel.CancelEventArgs) Handles

NamePad.Closing

If NamePad.SelectedText.CompareTo("No Name") = 0 &&

NamePad.DialogResult =

System.Windows.Forms.DialogResult.OK Then

e.Cancel = True

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.9. AlphaPad

3HAC028083-001 Revision: D112

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

End If

End Sub

C#:

private void namePad_Closing(object sender,

System.ComponentModel.CancelEventArgs e)

{

if ((this.namePad.SelectedText.CompareTo("No Name") == 0) &&

(this.namePad.DialogResult ==

System.Windows.Forms.DialogResult.OK))

{

e.Cancel = true;

}

}

Using the result at the Closed event

 The Closed event has to be caught by an event handler, as the object cannot be disposed of

until it has been closed. The result may be retrieved in this event handler or in the Closing

event handler. First check that OK and not Cancel was pressed, then retrieve user input.

Finally the AlphaPad should be disposed of.VB:

Private Sub NamePad_Closed(sender As Object, e As EventArgs)

Handles NamePad.Closed

If NamePad.DialogResult = Windows.Forms.DialogResult.OK Then

Me.answer = NamePad.SelectedText

End IfNamePad.Dispose()

End Sub

C#:

private void namePad_Closed(object sender, EventArgs e)

{

if (this.namePad.DialogResult ==

System.Windows.Forms.DialogResult.OK)

{

this.answer = this.namePad.SelectedText;

}

this.alphaPad1.Dispose();

}

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.9. AlphaPad

1133HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Removing the AlphaPad control

The AlphaPad is NOT added to the control collection, and will therefore NOT be disposed

of by the base class of its container.

You are responsible for explicitly calling its Dispose method when it is no longer used. In

the example above, this is done at the Closed event. This implies that a new AlphaPad

instance is created the next time its launch event is triggered.

Another way of dealing with this is to let the instance created by the Designer live until its

container view is closed. This alternative means destroying it in the Dispose method of the

container class:

this.alphaPad1.Dispose();

CAUTION!

If you forget to call Dispose on an AlphaPad control you will have a memory leak. For

further information see GUI controls and memory management on page 93.

Continued

5 Using the FlexPendant SDK

5.3.10. ListView

3HAC028083-001 Revision: D114

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.10. ListView

Overview

The ABB.Robotics.Tps.Windows.Forms.ListView is very similar to a standard .Net

ListView. The main difference is that its appearance is somewhat adapted to the use of a

touch screen, as can be seen in the figure.

You can use the ListView control in a variety of ways. Usually you use it to display a list of

items with item text and, optionally, an icon to identify the type of item. By using the

CheckBoxes property it is also possible to have a check box appear next to each item in the

control, allowing users to check the items they want to perform an action on.

Illustration

The figure shows the Designer. You see two different ABB ListView lists, a standard .Net

ImageList in the components pane under the lists and the Properties window for the

Calibration, HotEdit list.

6.3.10_1

Using properties to control appearance

The first list has CheckBoxes set to true. To have columns displayed View must be set to

Details. The columns are created by selecting Columns and adding any number of columns

in the ColumnHeader Collection Editor. Scrollable has been set to true to enable the user

to scroll the list to see all items. To have the current number of list items displayed

Continues on next page

5 Using the FlexPendant SDK

5.3.10. ListView

1153HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

ShowNumberOfItems has been set to true. By using Sorting the list items can be

alphabetically sorted, in this case in Descending order. The list is statically populated, using

the Items property.

The View property of the other list is set to LargeIcon instead of Details. To display icons a

standard .Net ImageList is used. You first launch the Properties window for the ImageList
and add the images you want to use. At the LargeImageList property of the ListView you

select the image list, and for each Item you select the ImageIndex to use, as is shown in the

ListViewItem Collection Editor.

Using the Properties window you can also add event handling. The most commonly used

event is SelectedIndexChanged, which is triggered when a new list item is selected.

The Properties window can be used to statically populate the list. Usually, however, lists are

populated dynamically. In Getting signals using SignalFilter on page 167 there is a code

example, which shows how I/O signals are dynamically displayed in an ABB ListView.

ABB specific properties

These properties are specific for the ABB ListView:

Property Usage

MultiSelect Specifies whether multiple items in the control can be
selected. The default is false.

Scrollable Specifies whether a scroll bar is added to the control when
there is not enough room to display all items. The default is
true.

Note! The typical FlexPendant scroll bars are used by the first
list in the figure above.

SelectionEnabledOver-
Scrollbuttons

Specifies whether a touch inside the scroll region should
select an item or scroll the list. The default is false.

ShowNumberOfItems Specifies whether the current number of items in the list is
displayed. The default is true. Scroll bars should be added to
the control to allow the user to see all the items. If the list is not
scrollable the default value is false.

ShowSelection Specifies whether selection is shown or not. The default is
false.

Continued

5 Using the FlexPendant SDK

5.3.11. CompactAlphaPad and NumPad

3HAC028083-001 Revision: D116

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.11. CompactAlphaPad and NumPad

Using CompactAlphaPad

The CompactAlphaPad control is used to enable user input. The input can be in the form of

capital letters or numbers depending on the property ActiveCharPanel, which can be set

to Characters or Numeric. It has a fixed size, big enough for the use of a finger to press its

keys. There are properties available to define whether the numerical panel should support

numerical operands, special characters, space and comma. All these properties are set to true

in the figure:

6.3.11_1

In order for your application to use the user input, you must connect to a text box, which

displays the text or figures entered. This connection has to be coded manually, for example

in the constructor, after the call to InitializeComponent, e.g.:

this.compactAlphaPad1.Target = this.textBox1;

Using NumPad

The NumPad is very similar to the CompactAlphaPad. You have to create a Target to be able

to use the input, e.g.:

this.numPad1.Target = this.textBox2;

6.3.11_2

5 Using the FlexPendant SDK

5.3.12. GTPUMessageBox

1173HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.12. GTPUMessageBox

Overview

GTPUMessageBox is the message box control to be used by FlexPendant applications. You

should not use the standard.NET MessageBox.

Design issues

The GTPUMessageBox.Show arguments include an owner argument, which is the control

that displays the MessageBox, and a callback, which is a MessageBoxEventHandler

called when the MessageBox is closed.

Except this, it is used in the same way as the regular Windows MessageBox. It is used

together with the regular Windows MessageBoxButtons and MessageBoxIcon.

Simple code example

The figure and code below show how to display a simple message on the FlexPendant using

the GTPUMessageBox.

6.2.6_1

string message = "You did not enter a server name. Cancel this

operation?";

string caption = "No Server Name Specified";

GTPUMessageBox.Show(this, null, message, caption,

System.Windows.Forms.MessageBoxIcon.Question,

System.Windows.Forms.MessageBoxButtons.YesNo);

Continues on next page

5 Using the FlexPendant SDK

5.3.12. GTPUMessageBox

3HAC028083-001 Revision: D118

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Sometimes it can be a bit tricky to get the first argument right. The owner might be this,

this.Parent or even this.Parent.Parent.

Using a callback

The logics in your program determines if there is any need for a callback. In the previous

example the callback argument was null.The message box will just close down after the user

has answered the question, no matter if the answer is Yes or No.

If we think about the message, it seems likely however, that something should happen if the

user presses No. Let us change the implementation and use a callback for this purpose:

GTPUMessageBox.Show(this, new

MessageBoxEventHandler(OnServerMessageClosed), message,

caption, System.Windows.Forms.MessageBoxIcon.Question,

System.Windows.Forms.MessageBoxButtons.YesNo);

//implement callback

private void OnServerMessageClosed(object sender,

ABB.Robotics.Tps.Windows.Forms.MessageBoxEventArgs e)

{

if(e.DialogResult == System.Windows.Forms.DialogResult.No)

{

//Use default server...

}

}

If we really do not want to take action depending on how the user responds, it makes more

sense to use OK instead of Yes and No as message box buttons, e.g:

GTPUMessageBox.Show(this, null, "You are not allowed to perform this

operation, talk to your system administrator if you need access",

"User Authorization System", MessageBoxIcon.Hand,

MessageBoxButtons.OK);

NOTE!

The last example uses a better message box title then the previous ones. The title preferably

should tell the user from which part of the system the message originates.

Continued

5 Using the FlexPendant SDK

5.3.13. GTPUFileDialog

1193HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.13. GTPUFileDialog

Overview

The FlexPendant SDK provides a number of file dialogs used by the end-user to interact with

the file system of the robot controller. These controls all inherit the abstract class

GTPUFileDialog and belong to the namespace ABB.Robotics.Tps.Windows.Forms.

File dialog types

There are three different types of file dialog controls:

NOTE!

The Open/Save/Browse file dialogs represent a convenient way for the user to specify folder

and filename for a file operation. You should know, however, that the dialogs themselves do

not perform any file operation, they only provide the controller file system path to be used by

your application.

CAUTION!

When added to the VS Designer from the Toolbox, these controls will be placed in the

components pane. They must be explicitly removed by a call to their Dispose method, e.g.

in the Dispose method of the class that created them.

Illustration

Below is an illustration of the GTPUSaveFileDialog. The other file dialogs have almost the

same appearance and the way they work is very similar. Using the icons of the command bar

you create new folders and browse the controller file system. Together with the list and the

Use... when you want to...

GTPUOpenFileDialog Enable the user to specify a file to be retrieved from the
controller file system.

GTPUSaveFileDialog Enable the user to specify a file to be saved to the
controller file system.

GTPUFolderBrowserDialog Enable the user to specify a folder on the controller file
system.

Continues on next page

5 Using the FlexPendant SDK

5.3.13. GTPUFileDialog

3HAC028083-001 Revision: D120

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

textbox, you specify a remote path. The FileName property should be read to retrieve this

path. It returns the complete path to the controller file system, even though only the file name

is visible in the File name textbox

6.3.13_1

Note! The button after the File name textbox opens the virtual keyboard, enabling the user

to change the name of the file to be saved. The Filter property of the control is set to

TEXT(*.txt)|*.txt. The first part of the setting is displayed in the filter textbox.

This is the Properties window of this dialog:

6.3.13_2

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.13. GTPUFileDialog

1213HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Implementation details

The Properties window gives a clear description of a selected property, as can be seen in the

figure above. Here only a few important properties will be detailed:

NOTE!

For your program to be able to use the controller path selected by the end user, you need to

read the FileName property at the Closing/Closed event of the file dialog.

Example

This piece of code sets InitialDirectory and FileName, then sets up a subscription to

the Closed event and finally displays the GTPUSaveFileDialog

saveFileDialog.InitialDirectory = initialDir;

saveFileDialog.FileName = programName;

saveFileDialog.Closed += new

EventHandler(SaveProgram_FileDialog_EventHandler);

saveFileDialog.ShowMe(_parent);

The code of the SaveProgram_FileDialog_EventHandler method retrieves the

specified path of the remote file system, including the file name, by reading the FileName

property:

string remotePath = saveFileDialog.Filename;

NOTE!

The file has not yet been saved to the robot controller. To do that you should call

FileSystem.PutFile using the retrieved path as the remoteFile argument. Likewise, to

load a specified remote file to the FlexPendant file system you should use the retrieved path

in the call to FileSystem.GetFile.

Property Details

Filter Carefully observe the string format when you set this
property, e.g.: Program Files (*.pgf)|*.pgf

The first part is displayed in the combo box and the second
part is used by the SDK to retrieve the correct files to be
displayed in the list. You can also specify several filters,
which the user can choose from.

Program Files (*.pgf)|*.pgf|All Files (*.*)|*.*;

FileName Cannot be accessed in design-time by using the
Properties window, but should be manually coded when
the file dialog is launched if it is a save file dialog.

When the dialog is closed, you should read this property.
It holds the remote path and file name of the file to be
opened, or the remote path and file name of the file to be
saved.

Note! Remember that remote refers to the controller file
system and local to the FlexPendant file system.

InitialDirectory Cannot be accessed in design-time by using the
Properties window. Specifies the initial directory to be
displayed by the file dialog box.

Continued

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and IO signals

3HAC028083-001 Revision: D122

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.3.14. DataBinding of RAPID data and IO signals

What is databinding?

Databinding is the process of binding a property of a GUI control to a data source, so that the

property automatically reflects the value of the data source. In .NET CF 2.0 this functionality

was simplified thanks to the new BindingSource class. This class encapsulates the

complexity related to setting up and managing databinding.

FlexPendant SDK classes to be used as binding sources

In the FlexPendant SDK there are two classes that inherit .NET BindingSource:

RapidDataBindingSource and SignalBindingSource.These classes enable binding to

RAPID data and IO signals respectively. They belong to the ABB.Robotics.DataBinding

namespace and the assembly you need to reference is ABB.Robotics.DataBinding.dll.

RapidDataBindingSource

By using RapidDataBindingSource an automatic update of the bound GUI control takes

place when the value of the specified RAPID data source in the controller has changed, or

when the control is repainted.

SignalBindingSource

By using SignalBindingSource an automatic update of the bound GUI control takes

place when the value of the specified IO signal in the controller has changed, or when the

control is repainted.

NOTE!

It is only possible to use persistent RAPID data (PERS) as data source.

NOTE!

If you want to let users modify RAPID data, launching the standard FlexPendant application

Program Data from your application is probably the best alternative. See Using standard

dialogs to modify data on page 131 for information about how to do it.

GUI example

Many different controls can be used with binding sources, e.g. TpsLabel, TextBox,

ListView etc. The figure below shows two System.Windows.Forms.DataGrid controls

that each bind to several objects defined in a RapidDataBindingSource and a

Continues on next page

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and IO signals

1233HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

SignalBindingSource . The labels in each GroupBox are bound to the same sources. As

you see the grid displays all objects defined in the BindingSource control, whereas each

label displays the currently selected grid row.

When a signal or a data value changes this GUI is automatically updated with the new value.

You do not have to write any code make this happen, as setting up subscriptions and updating

the user interface is done by the underlying implementation.

6.3.14_1

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and IO signals

3HAC028083-001 Revision: D124

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

CAUTION!

To avoid any memory leaks an explicit call to the Dispose method of BindingSource

controls must be made. However, the wrapper-objects SignalObject and

RapidDataObject created for you are disposed of under the hood, so you do not need to

worry about it.

How to use the VS designer for data binding

This section explains how to create the FlexPendant view shown in the previous section. First

a RapidDataBindingSource control with bindings to specified RAPID data is

created.Then the DataBindings property of a TpsLabel is used to bind the label to the

binding source. Finally a standard .NET DataGrid is bound to the same binding source.

Step Action

1. Start by dragging a RapidDataBindingSource from the Toolbox to the Designer. It
will be placed in the Components pane under the form. Open the Properties window
and select the RapidDataList property to add the RAPID data you are interested in.
For each new RapidDataObject member you must specify module name, task name
and name of the persistent RAPID data to bind.

6.3.14_2

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and IO signals

1253HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2. The next step is to open the Properties window for the label that is to display the value
of the RAPID data. Expand the DataBindings node and select Advanced.

6.3.14_3

Step Action

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and IO signals

3HAC028083-001 Revision: D126

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3. In the Advanced Binding dialog box that appears, choose the already created
RapidDataBindingSource in the Binding combo box, at the same time specifying
which one of the RapidDataObject properties you want to bind to, in this case Value.
(The other properties available are variable name, task name and module name, as
can be seen in the figure in step 1.)

You also select your preferred Data Source Update Mode, usually OnProperty-
Changed. The yellow marking in the list to the left shows that the binding has been
done to the Text property of the label. When a control has been bound to a data
source you will see the same yellow marking in its Properties window, at the bound
property. See figure of step 2.

6.3.14_4

NOTE!
If a label has been bound to a data source with several member objects, the first one
in the list is the one by default displayed by the label. If the selected index of the list
changes (if the user selects a row in the grid for example) the label is updated auto-
matically to show the value of the selected index. See the figure in GUI example on
page 122.

Step Action

Continued

Continues on next page

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and IO signals

1273HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

SuspendBinding/ResumeBinding

SuspendBinding() and ResumeBinding() have extended functionality compared to the

methods of the inherited BindingSource class. Removing/adding subscriptions have been

added, as subscribing to signals and RAPID data can be resource consuming. These methods

can be used in the Deactivate/Activate methods, which are executed each time the user

switches back and forth between different applications using the FlexPendant task bar. See

Application Framework usage - ITpsViewActivation on page 190 for further information.

If you suspend the binding you no longer get any updates if the data source is changed.

However, the binding still exists, so if DataSourceUpdateMode is set to OnValidation the

value will be updated when you repaint the control, as the value from the controller will be

read before it is repainted.

4. Now launch the Properties window of the DataGrid control. Set ColumnHeader-
Visible to true and select your data source at the DataSource property.

6.3.14_5

NOTE!
The DataGrid control displays only one row in design-time (See the figure of step 1).
In run-time, however, the entire collection of RapidDataObject members is displayed
(see the figure in GUI example on page 122).

Step Action

Method Description

SuspendBinding Suspends the binding and value change
event.

ResumeBinding Resumes the binding and value change
event.

Continued

5 Using the FlexPendant SDK

5.4.1. Using launch service

3HAC028083-001 Revision: D128

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.4 Launching other views

5.4.1. Using launch service

Overview

The FlexPendant SDK provides a launch service, which enables a RAB application to start a

standard ABB application, such as the program editor or the jogging view.

It is also possible to start another custom application by specifying proxy assembly name and

the application view class.

For information about how to add and launch another view of your own application, see

Adding a view to a custom application on page 99.

NOTE!

To launch a view in order to edit a specified rapid data instance, another mechanism is

available. See Using standard dialogs to modify data on page 131 for details.

ITpsViewSetup Install

It is only classes that inherit the ITpsViewSetup interface that can launch other applications.

TheInstall method, which is called when your custom application is launched, has a sender

argument. Your application needs to save this object to be able to use the

ITpsViewLaunchServices interface. It is used by the launch service to call LaunchView

and CloseView.

VB:

//declaration

Private iTpsSite As ITpsViewLaunchServices

.....

//Install method of the TpsView class

Function Install(ByVal sender As System.Object, ByVal data As

System.Object) As Boolean Implements ITpsViewSetup.Install

If TypeOf sender Is ITpsViewLaunchServices Then

 // Save the sender object for later use

Me.iTpsSite = DirectCast(sender, ITpsViewLaunchServices)

Return True

End If

Return False

End Function

Continues on next page

5 Using the FlexPendant SDK

5.4.1. Using launch service

1293HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

//declaration

private ITpsViewLaunchServices iTpsSite;

......

//Install method of the TpsView class

bool ITpsViewSetup.Install(object sender,object data)

{

if (sender is ITpsViewLaunchServices) {

// Save the sender object for later use

this.iTpsSite = sender as ITpsViewLaunchServices;

return true;

}

return false;

}

Launching standard views

Using the FpStandardView enumerator, the following standard views can be started using

the launch services:

• Program editor

• Program data

• Jogging

• Logoff

• Backup/Restore

TIP!

Launching the Program data view is the best way to let end-users create new RAPID data.

NOTE!

To launch the program editor an initialization object of RapidEditorInitData type can be

used as argument. It specifies the task, module and row that the Program editor should display

when it opens. For the other standard views no InitData can be used.

LaunchView / CloseView example

In the example below, the program editor is launched at a specified routine. First initData

is created. Then the reference to the sender object, retrieved by the Install method in the

previous example, is used to call LaunchView.

The cookie out argument is later used to specify the view to be closed by the CloseView

method.

VB:

Dim initData As RapidEditorInitData = New RapidEditorInitData

(ATask, AModule, ARoutine.TextRange.Begin.Row)

If Not (Me.iTpsSite.LaunchView(FpStandardView.RapidEditor,

initData, True, Me.cookieRapidEd) = True) Then

GTPUMessageBox.Show(Me, Nothing, "Could not start RapidEditor

application")

Return

Continued

Continues on next page

5 Using the FlexPendant SDK

5.4.1. Using launch service

3HAC028083-001 Revision: D130

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

End If

......

Me.iTpsSite.CloseView(Me.cookieRapidEd)

C#:

RapidEditorInitData initData = new RapidEditorInitData(task,

module,routine.TextRange.Begin.Row;

if(this.iTpsSite.LaunchView(FpStandardView.RapidEditor,initData,

true,out this.cookieRapidEd)!= true) {

GTPUMessageBox.Show(this, null,"Could not start RapidEditor

application");

return;

}

.....

this.iTpsSite.CloseView(this.cookieRapidEd);

What happens if the specified view is already open when the call is made? The third argument

specifies application behavior in this case. If true, another instance of the view is launched.

If false, the already opened view gets focus. Notice, however, that creating a new instance

is not possible for all standard views. The Jogging view, for example, is not allowed multiple

instances.

Launching custom applications

The launch service can also be used to launch another RAB application. The name of the

proxy assembly along with the fully qualified class name should be used as arguments.

VB:

If Not (Me.iTpsSite.LaunchView("TpsViewCustomApp.gtpu.dll",

"ABB.Robotics.SDK.Views.TpsViewCustomApp", Nothing, True,

Me.cookieUser) = True) Then

GTPUMessageBox.Show(Me, Nothing, "Could not start User

application")

Return

End If

C#:

if (this.iTpsSite.LaunchView("TpsViewCustomApp.gtpu.dll",

"ABB.Robotics.SDK.Views.TpsViewCustomApp", null, true, out

this.cookieUser)!= true) {

GTPUMessageBox.Show(this, null,"Could not start User

application");

return;

}

NOTE!

It is the namespace of the proxy assembly, ABB.Robotics.SDK.Views,which should be used

to specify the TpsView class.

NOTE!

By using the argument cookieUser your application can close the launched custom

application in the same way as in the Launching standard views on page 129 example above.

Continued

5 Using the FlexPendant SDK

5.4.2. Using standard dialogs to modify data

1313HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.4.2. Using standard dialogs to modify data

Overview

The FpRapidData, FpToolCalibration and FpWorkObjectCalibration dialogs take

a RapidData reference as argument. When the dialog is opened it allows the user to directly

operate on the referenced RapidData object, for example modifying a RAPID data variable

or calibrate a work object. These dialogs are the ones used by the standard ABB applications.

They are ready-made and cannot be modified, except for the title.

Creating the dialog

As with all secondary dialogs, the reference to the dialog should be declared as a class

variable. This is to make sure that the reference is available for Dispose. The RapidData

reference can be declared locally if it is disposed immediately after use, or else as a class

variable. When the dialog has been created the title can be set using the Text property. A

Closed event handler should be added to dispose the dialog. All three dialogs are created in

the same way:

VB:

Private ARapidData As RapidData

Friend WithEvents FpRD As FpRapidData

.....

Me.ARapidData = Me.AController.Rapid.GetRapidData(ATaskName,

AModuleName, AVariableName)

Me.FpRD = New FpRapidData(Me.ARapidData)

Me.FpRD.Text = Me.ARapidData.Name

AddHandler Me.FpRD.Closed, AddressOf Me.FpRD_Closed

Me.FpRD.ShowMe(Me)

C#:

private FpRapidData fpRD;

private RapidData aRapidData;

......

this.aRapidData = this.aController.Rapid.GetRapidData(taskName,

moduleName, variableName);

this.fpRD = new FpRapidData(this.aRapidData);

this.fpRD.Text = this.aRapidData.Name;

this.fpRD.Closed += new EventHandler(fpRD_Closed);

this.fpRD.ShowMe(this);

Continues on next page

5 Using the FlexPendant SDK

5.4.2. Using standard dialogs to modify data

3HAC028083-001 Revision: D132

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Verify that the RapidData is of correct RapidDataType for the dialog before using it, i.e.

tooldata for the FpToolCalibration dialog and wobjdata for the FpWorkObjectCalibration

dialog. See Type checking on page 132 below.

NOTE!

The FpRapidData dialog is created with a RapidData as in argument. If the RapidData is an

array, an index argument is used to specify which element should be displayed (the first

element is 1).

Type checking

When calling the FpToolCalibration or FpWorkObjectCalibration constructor the

RapidData value should be type checked before use:

VB:

If TypeOf Me.ARapidData.Value Is ToolData Then

Me.FpTC = New FpToolCalibration(Me.ARapidData)

.....

End If

C#:

if (this.aRapidData.Value is ToolData)

{

this.fpTC = new FpToolCalibration(this.aRapidData);

....

}

Continued

5 Using the FlexPendant SDK

5.5.1. ABB.Robotics.Controllers

1333HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5 Using the Controller API

5.5.1. ABB.Robotics.Controllers

Controller API

To access the functions of the robot controller you utilize the class libraries of the FP SDK

called Controller Application Programming Interface or CAPI. The assembly you need to

reference to use controller functionality is ABB.Robotics.Controllers.dll.

CAPI domains

The top CAPI object is the ABB.Robotics.Controllers.Controller, which has to be

created before any access to the robot controller.

The class libraries are organized in different domains (namespaces), as shown by the contents

tab of the FP SDK Reference below. The name of a domain tells you something about the kind

of services you can expect from it.

6.4.1_1

Continues on next page

5 Using the FlexPendant SDK

5.5.1. ABB.Robotics.Controllers

3HAC028083-001 Revision: D134

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

CAPI and controller domains

This is a simplified illustration of how some ABB.Robotics.Controllers domains

communicate with their respective domains in the robot controller:

6.4.1_2

NOTE!

In the normal case, a single Controller object is created and used throughout the

application, its lifetime corresponding to that of the application.

What controller functionality is provided?

Plenty of robot controller functionality is offered by the classes and methods of the

FlexPendant SDK.

This table presents short descriptions of the kind of services that the different CAPI domains
provide:

CAPI domain Services

Controllers Information about the controller, such as IP address, current user,
Mac address, operating mode, controller state etc. Notification when
operating mode, state or mastership has changed. Backup and
restore. Check if the user has the required UAS grant etc.

ConfigurationDomain Read or write the value of a configuration parameter to the configu-
ration database of the controller.

EventLogDomain Notification when a new event log message has been written to the
controller. Title, message, category, sequence number and time
stamp of the message.

FileSystemDomain Create, rename or remove files and directories in the controller file
system. Retrieve a file from the controller and store it on the
FlexPendant and vice versa.

IOSystemDomain Read and modify I/O signals. Notify when a signal value has
changed.

MotionDomain Get/set the coordinate system and motion mode for jogging of the
active mechanical unit. Information whether the mechanical unit is
calibrated or not. Provide name, task, number of axes, active tool
and work object etc. of the mechanical unit. Notify when data of the
mechanical unit has changed. Send a start jogging or a stop jogging
request to the robot controller.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.1. ABB.Robotics.Controllers

1353HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Releasing memory

Using CAPI you will create objects that reference unmanaged resources. (See Definitions on

page 18.) It is necessary to explicitly deallocate the memory of such objects by calling their

Dispose method when they are no longer needed (at application shut down at the latest).

Otherwise your application will leak memory, which is a scarce resource on the FlexPendant

platform.

NOTE!

You may prevent memory leaks and other pitfalls, by studying the chapter Robust

FlexPendant applications on page 181.

FP SDK Reference

Although this manual covers a great deal of the FP SDK functionality, it is by no means

complete. The FP SDK Reference, which you open from Windows Start button, is the

complete reference to the functionality offered by the class libraries.

 It also gives valuable code samples and remarks about methods requiring different UAS

grants etc., which is not included in this manual.

RapidDomain Notification when execution status has changed. Start and stop
RAPID execution. Load Rapid programs. Create, read and write
RAPID data. Notification when RAPID data or RAPID program has
changed. Notification when program pointer has changed. Search
RAPID symbols etc.

SystemInfoDomain Information about the active system of the robot controller, e.g.
RobotWare version, system name, release and system paths,
existing system options and installed additional options.

CAPI domain Services

Continued

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

3HAC028083-001 Revision: D136

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.2. Accessing the controller

Overview

Making use of controller functionality requires special attention. Disposal of CAPI objects

when closing a view or the entire application is vital to save memory. Another pitfall that must

be avoided is updating the user interface on a worker thread.

Controller instance

Before accessing the controller functionality you need to instantiate the Controller object.

The best place to do this is normally in the Install method, which is called by TAF after

the constructor of your view class has executed.

The Controller declaration should be done on class scope level:

VB:

Private AController As Controller

C#:

private Controller aController;

The recommendation is to instantiate the Controller object in the Install method:

VB:

AController = New Controller

C#:

aController = new Controller();

Continues on next page

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

1373HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Using the Controller object you can access IO signals, RAPID data variables, event log

messages etc. Most of these objects will be created explicitly and should be disposed of

explicitly.

NOTE!

Avoid placing any code that may result in an exception before the method

InitializeComponent. Then at least you have a user interface, where you can display a

MessageBox with information about what went wrong.

NOTE!

It is recommended that if several classes need to access the controller, they all reference the

same Controller object.

Subscribing to controller events

The Controller object provides several public events, which enable you to listen to

operating mode changes, controller state changes, mastership changes etc.

VB:

AddHandler AController.OperatingModeChanged, AddressOf UpdateOP

AddHandler AController.StateChanged, AddressOf UpdateState

AddHandler AController.MastershipChanged, AddressOf UpdateMast

AddHandler AController.BackupFinished, AddressOf UpdateBack

C#:

AController.OperatingModeChanged += new

OperatingModeChangedEventHandler(UpdateOP);

AController.MastershipChanged += new

MastershipChangedEventHandler(UpdateMast);

Controller.BackupFinished += new

BackupFinishedEventHandler(UpdateBack);

Controller.StateChanged += new

StateChangedEventHandler(UpdateState);

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

3HAC028083-001 Revision: D138

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Controller events use their own threads. Study Controller events and threads on page 67 to

find out how to avoid threading conflicts.

CAUTION!

Do not rely on receiving an initial event when setting up/activating a controller event. There

is no guarantee an event will be triggered, so you had better read the initial state from the

controller.

Create a backup

Using the Controller object you can call the Backup method. The argument is a string

describing the directory path on the controller where the backup should be stored. As the

backup process is performed asynchronously you can add an event handler to receive a

BackupCompleted event when the backup is completed.

VB:

Dim BackupDir As String = "(BACKUP)$"+BackupDirName

AddHandler Me.AController.BackupCompleted, AddressOf

AController_BackupCompleted)

Me.AController.Backup(BackupDir)

C#:

string backupDir = "(BACKUP)$"+backupDirName;

this.aController.BackupCompleted += new

BackupEventHandler(controller_BackupCompleted);

this.aController.Backup(backupDir);

NOTE!

There is also a Restore method available. The FP SDK reference is the complete

FlexPendant SDK programming guide and is more detailed than this manual. For the Backup

and Restore methods, for example, there are parameter descriptions, remarks, code

examples etc.

Dispose

The disposal of the Controller object should be done in the Uninstall or Dispose

method of the application view class.

Make a check first that disposal has not already been done. Do not forget to remove any

subscriptions to controller events before the Dispose() call:

VB:

If Not AController Is Nothing Then

RemoveHandler AController.OperatingModeChanged, AddressOf

OpMChange

AController.Dispose()

AController = Nothing

End If

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

1393HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

if (aController != null)

{

aController.OperatingModeChanged -= new

OperatingModeChangedEventHandler(OpMChange);

aController.Dispose();

aController = null;

}

CAUTION!

VB programmers should be aware that it is a bit tricky to use WithEvents together with the

Dispose pattern on the .NET platform. When you use WithEvents the .NET framework

automatically removes any subscriptions when the object is set to Nothing. If you look at

the code sample above, which does NOT use WithEvents, you will understand why such

behavior causes problems. When the controller reference is set to Nothing and the .NET

framework tries to remove its subscription, the internal controller object has already been

removed by the Dispose call in the preceding statement, and a NullReferenceException

is thrown. This is not specific to the FlexPendant SDK, but a Microsoft issue. To avoid it you

are advised to use AddHandler and RemoveHandler like in the example.

Continued

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

3HAC028083-001 Revision: D140

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3. Rapid domain

5.5.3.1. Working with RAPID data

Overview

The RapidDomain namespace enables access to RAPID data in the robot system. There are

numerous FP SDK classes representing the different RAPID data types. There is also a

UserDefined class used to reference RECORD structures in RAPID.

The ValueChanged event enables notification from the controller when persistent RAPID

data has changed.

TIP!

A convenient and user-friendly way to enable the end-user of your application to read and

write to specific RAPID data is using the standard FlexPendant Program Data view. See

Using standard dialogs to modify data on page 131 for details about how this can be done.

TIP!

Using databinding for RAPID data is a quick way of implementing access to RAPID data.

See how this works in DataBinding of RAPID data and IO signals on page 122.

Providing the path to the RAPID data

To read or write to RAPID data you must first create a RapidData object. The path to the

declaration of the data in the controller is passed as argument. If you don’t know the path you

need to search for the RAPID data by using the SearchRapidSymbol functionality. See

SearchRapidSymbol method on page 157.

Direct access

Direct access requires less memory and is faster, and is therefore recommended if you do not

need to use the task and module objects afterwards.

The example below shows how to create a RapidData object that refers to the RAPID data

instance “reg1” in the USER module.

VB:

 Dim Rd As RapidData = Me.AController.Rapid.GetRapidData(

"T_ROB1", "USER", "reg1")

C#:

RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "USER",

"reg1");

Hierarchical access

If you need the task and module objects hierarchical access can be more efficient.

GetRapidData exists in the Rapid, Task and Module class.

VB:

Rd = AController.Rapid.GetTask("T_ROB1").GetModule("USER").

GetRapidData("reg1")

C#:

rd = aController.Rapid.GetTask("T_ROB1").GetModule("USER").

GetRapidData("reg1");

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

1413HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Accessing data declared in a shared module

If your application is to be used with a multi-move system (a system with one controller and

several motion tasks/robots), it may happen that the RAPID instance you need to access is

declared in a -Shared RAPID module. Such a module can be used by all tasks, T_ROB1,

T_ROB2 etc.

This example shows how to create a RapidData object that refers to the instance “reg100”,

which is declared in a shared module.

VB:

 Dim Rd As RapidData = Me.AController.Rapid.GetRapidData("reg100")

C#:

RapidData rd = aController.Rapid.GetRapidData("reg100");

Another possibility is using the Task object to access the RAPID instance, like this:

Task tRob1 = aController.Rapid.GetTask("T_ROB1");

RapidData rData = tRob1.GetRapidData("reg100");

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

3HAC028083-001 Revision: D142

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

If GetRapidData is called from Rapid the RAPID data will be found even if the -Shared

module is configured to be hidden.

NOTE!

If the RAPID data does not exist, the return value is Nothing/null and an

ArgumentNullException is thrown. A null check should be performed before trying to use

the object.

Creating an object representing the RAPID data value

The RapidData object stores the path to the RAPID data. But this is not enough if you want

to access its value (at least not if you want to modify it). To do that you need to create another

object, which represents the value of the RAPID data.

In the RapidDomain namespace there are types representing the different RAPID data types.

To create the object needed to represent the RAPID data value you use the RapidData

property Value and cast it to the corresponding type, e.g. Num, Bool or Tooldata.

This is how this is done if you want to access the value of a RAPID data of the RAPID data

type bool:

VB:

’declare a variable of data type RapidDomain.Bool

Dim rapidBool As RapidDomain.Bool

Dim rd As RapidData = Me.AController.Rapid.GetRapidData("T_ROB1",

"MainModule", "flag")

’test that data type is correct before cast

If TypeOf rd.Value Is RapidDomain.Bool Then

rapidBool = DirectCast(rd.Value, RapidDomain.Bool)

’check if the value of the RAPID data is true

If (rapidBool.Value) Then

’ Do something...

End If

EndIf

C#:

//declare a variable of data type RapidDomain.Bool

RapidDomain.Bool rapidBool;

RapidDomain.RapidData rd =

aController.Rapid.GetRapidData("T_ROB1", "MainModule",

"flag");

//test that data type is correct before cast

if (rd.Value is ABB.Robotics.Controllers.RapidDomain.Bool)

{

rapidBool =

(ABB.Robotics.Controllers.RapidDomain.Bool)rd.Value;

//assign the value of the RAPID data to a local variable

bool boolValue = rapidBool.Value;

}

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

1433HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

If you just want to read this variable you can use this technique instead of creating a

RapidDomain.Bool object:

VB:

Dim b As Boolean = Convert.ToBoolean(rd.Value.ToString)

C#:

bool b = Convert.ToBoolean(rd.Value.ToString());

The ToolData type (representing the RAPID data type tooldata) can be created like this:

VB:

Dim ATool As ToolData

If Rd.Value Is ToolData Then

ATool = DirectCast(Rd.Value, ToolData)

End If

C#:

ToolData aTool;

if (rd.Value is ToolData)

{

aTool = (ToolData) rd.Value;

}

IRapidData.ToString method

All RapidDomain structures representing RAPID data types implement the IRapidData

interface. It has a ToString method, which returns the value of the RAPID data in the form

of a string. This is a simple example:

string boolValue = rapidBool.ToString();

The string is formatted according to the same principle as described in

IRapidData.FillFromString method on page 144 below.

Here is an example of a more complex data type. The ToolData Tframe property is of the

Pose type. Its Trans value is displayed in a label in the format [x, y, z].

VB:

Me.Label1.Text = ATool.Tframe.Trans.ToString()

C#:

this.label1.Text = aTool.Tframe.Trans.ToString();

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

3HAC028083-001 Revision: D144

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

IRapidData.FillFromString method

The IRapidData interface also has a FillFromString method, which fills the object with

a valid RAPID string representation. The method can always be used when you need to

modify RAPID data. Using the method with the RapidDomain.Bool variable used earlier

in the chapter will look like this:

rapidBool.FillFromString("True")

Using it for a RapidDomain.Num variable is similar:

rapidNum.FillFromString("10")

String format

The format is constructed recursively. An example is the easiest way of illustrating this.

Example:

The RapidDomain.Pose structure corresponds to the RAPID data type pose, which

describes how a coordinate system is displaced and rotated around another coordinate system.

public struct Pose : IRapidData

{ public Pos trans; public Orient rot;

}

This is an example in RAPID:

VAR pose frame1;

...

frame1.trans := [50, 0, 40];

frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a displacement

in position where X=50 mm, Y=0 mm and Z=40 mm. There is no rotation.

As you see, the RapidDomain.Pose structure consists of two other structures, trans and rot.

The trans structure consists of three floats and the and rot structure consists of four doubles.

The FillFromString format for a Pose object is “[[1.0, 0.0, 0.0, 0.0][10.0, 20.0, 30.0]]”.

This piece of code shows how to write a new value to a RAPID pose variable:

VB:

If TypeOf rd.Value Is Pose Then

Dim rapidPose As Pose = DirectCast(rd.Value, Pose)

rapidPose.FillFromString("[[1.0, 0.0, 0.0, 0.0][10, 20, 30]]")

rd.Value = rapidPose

End If

C#:

if (rd.Value is Pose)

{

Pose rapidPose = (Pose) rd.Value;

rapidPose.FillFromString("[[1.0, 0.5, 0.0, 0.0][10, 15, 10]]");

rd.Value = rapidPose;

}

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

1453HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Using the same principle arbitrarily long RAPID data types can be represented.

NOTE!

The string format must be carefully observed. If the string argument has the wrong format, a

RapidDataFormatException is thrown.

Writing to RAPID data

Writing to RAPID data is only possible using the type cast RapidData value, to which the

new value is assigned. To transfer the new value to the RAPID data in the controller you must

finally assign the .NET object to the Value property of the RapidData object. This example

uses the rapidBool object created in Creating an object representing the RAPID data value

on page 142.

VB:

’Assign new value to .Net variable

rapidBool.Value = False

’Write the new value to the data in the controller

rd.Value = rapidBool

C#:

//Assign new value to .Net variable

rapidBool.Value = false;

//Write to new value to the data in the controller

rd.Value = rapidBool;

This was an easy example, as the value to change was a simple bool. Often, however, RAPID

uses complex structures. By using the FillFromString method you can assign a new

value to any RapidData and write it to the controller.

The string must be formatted according to the principle described in the previous section. The

following example shows how to write a new value to the pos structure (x, y, z) of a RAPID

tooldata:

VB:

Dim APos As Pos = New Pos

APos.FillFromString("[2,3,3]")

Me.ATool.Tframe.Trans = APos

Me.Rd.Value = Me.ATool

C#:

Pos aPos = new Pos();

aPos.FillFromString("[2,3,3]");

this.aTool.Tframe.Trans = aPos;

this.rd.Value = this.aTool;

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

3HAC028083-001 Revision: D146

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The new value is not written to the controller until the last statement is executed.

Letting the user know that RAPID data has changed

In order to be notified that RAPID data has changed you need to add a subscription to the

ValueChanged event of the RapidData instance. Note, however, that this only works for

persistent RAPID data.

Add subscription

This is how you add a subscription to the ValueChanged event:

VB:

Addhandler Rd.ValueChanged, AddressOf Rd_ValueChanged

C#:

this.rd.ValueChanged += rd_ValueChanged;

Handle event

Implement the event handler. Remember that controller events use their own threads, and

avoid Winforms threading problems by the use of Control.Invoke, which forces the

execution from the background thread to the GUI thread.

VB:

Private Sub Rd_ValueChanged(ByVal sender As Object, ByVal e As

DataValueChangedEventArgs)

Me.Invoke(New EventHandler (AddressOf UpdateGUI), sender, e)

End Sub

C#

private void rd_ValueChanged(object sender,

DataValueChangedEventArgs e)

{

this.Invoke(new EventHandler (UpdateGUI), sender, e);

}

See Controller events and threads on page 67 to learn more about potential threading

conflicts in RAB applications.

Read new value from controlller

Update the user interface with the new value. As the value is not part of the event argument,

you must use the RapidData Value property to retrieve the new value:

VB:

Private Sub UpdateGUI(ByVal sender As Object, ByVal e As

System.EventArgs)

Dim Tool1 As ToolData = DirectCast(Me.Rd.Value, ToolData)

Me.Label1.Text = Tool1.Tframe.Trans.ToString()

End Sub

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

1473HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#

private void UpdateGUI(object sender, System.EventArgs e)

{

ToolData tool1= (ToolData)this.rd.Value;

this.label1.Text = tool1.Tframe.Trans.ToString();

}

NOTE!

Subscriptions work only for RAPID data declared as PERS.

RapidData disposal

Always dispose of RapidData objects when they are no longer needed. If you want to reuse

a RapidData object, you should make sure that you dispose of the current object first.

VB:

If Not Rd Is Nothing Then

Rd.Dispose()

Rd = Nothing

End If

C#:

if (rd != null)

{

rd.Dispose();

rd = null;

}

Continued

5 Using the FlexPendant SDK

5.5.3.2. Handling RAPID arrays

3HAC028083-001 Revision: D148

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3.2. Handling RAPID arrays

Overview

In RAPID you can have up to three dimensional arrays. These are accessible by using a

RapidData object like any other RAPID data.

There are mainly two ways of accessing each individual element of an array: by indexers or

by an enumerator.

TIP!

A convenient and user-friendly way of reading and writing array elements is using the

standard Program Data view of the FlexPendant. You provide the element you want to have

displayed as argument, and the user can view or manipulate the item the way it is usually done

on the FlexPendant. See Using standard dialogs to modify data on page 131.

ArrayData object

If the RapidData references a RAPID array is Value property returns an object of

ArrayData type. Before making a cast, check the type using the is operator or by using the

IsArray property on the RapidData object.

VB:

Dim RD As RapidData = AController.Rapid.GetRapidData("T_ROB1",

"User", "string_array")

If RD.IsArray Then

Dim AD As ArrayData = DirectCast(RD.Value,ArrayData)

.....

End If

C#:

RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "User",

"string_array");

if (rd.IsArray)

{

ArrayData ad = (ArrayData)rd.Value;

.....

}

Array dimensions

The dimension of the array is returned by the Rank property. If you need to check the length

of the individual arrays you can use the GetLength method on the ArrayData object

passing the dimension index as argument.

VB:

Dim ARank As Integer = AD.Rank

Dim Len As Integer = AD.GetLength(ARank)

C#:

int aRank = ad.Rank;

int len = ad.GetLength(aRank);

Continues on next page

5 Using the FlexPendant SDK

5.5.3.2. Handling RAPID arrays

1493HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Array item access by using indexers

By the use of indexers you can access each array element, even in three dimensional arrays.

A combination of the GetLength method and For loops makes it possible to access any

item:

VB:

Dim ASum As Double = 0R

Dim ANum As Num

If AD.Rank = 1 Then

For I As Integer = 1 To AD.Length

ANum = DirectCast(ad.[I], Num)

ASum += DirectCast(ANum, Double)

Next

ElseIf AD.Rank = 2 Then

For I As Integer = 1 To AD.GetLength(1)

For J As Integer = 1 To AD.GetLength(2)

ANum = DirectCast(ad[I, J], Num)

ASum += DirectCast(ANum, Double)

Next

Next

Else

For I As Integer = 1 To AD.GetLength(1)

For J As Integer = 1 To AD.GetLength(2)

For K As Integer = 1 To AD.GetLength(3)

ANum = DirectCast(ad[I, J, K], Num)

ASum += DirectCast(ANum, Double)

Next

Next

Next

End If

C#:

double sum = 0d;

Num aNum;

if (ad.Rank == 1) {

for (int i = 1; i <= ad.Length; i++)

{

aNum = (Num)ad.[i];

aSum += (double)ANum;

}

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.2. Handling RAPID arrays

3HAC028083-001 Revision: D150

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

}

elseif (ad.Rank == 2)

{

for(int i = 1; i< ad.GetLength(1); i++)

{

for (int j = 1; j <= ad.Length; j++)

{

aNum = (Num)ad.[i,j];

aSum += (double)ANum;

}

}

}

else {

for(int i = 1; i< ad.GetLength(1); i++)

{

for(int j = 1; j< ad.GetLength(2); j++)

{

for (int k = 1; k <= ad.GetLength(3); k++)

{

aNum = (Num)ad.[i, j, k];

aSum += (double)ANum;

}

}

}

}

Array item access using enumerator

You can also use the enumerator operation (foreach) like it is used by collections in .NET.

Notice that it can be used for both one dimension and multi-dimensional arrays to access each

individual element. The previous example is a lot simpler this way:

VB:

Dim ASum As Double = 0R

Dim ANum As Num

For Each ANum As Num In AD

ASum += DirectCast(ANum, Double)

Next

C#:

double sum = 0d;

Num aNum;

foreach(Num aNum in ad)

{

aSum += (double)ANum;

}

Continued

5 Using the FlexPendant SDK

5.5.3.3. ReadItem and WriteItem methods

1513HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3.3. ReadItem and WriteItem methods

Overview

An alternative way of accessing RAPID data stored in an array are the ReadItem and

WriteItem methods.

ReadItem method

Using the ReadItem method you can directly access a RAPID data item in an array, e.g. an

array with RobTargets or Nums. The index to the item is explicitly specified in the ReadItem

call. The first item is in position 1, i.e. the array is 1-based as in RAPID.

This example retrieves the second Num value in the first array of the RAPID data variable

referenced by rd.

VB:

Dim ANum As Num

aNum = DirectCast(rd.ReadItem(1, 2), Num)

C#:

Num aNum = (Num)rd.ReadItem(1, 2);

WriteItem method

In the same manner it is possible to use the WriteItem method to write to an individual

RAPID data item in an array. This example shows how to write the result of an individual

robot operation into an array representing a total robot program with several operations:

VB:

Dim ANum As Num = New Num(OPERATION_OK)

rd.WriteItem(ANum, 1, 2)

C#:

Num aNum = new Num(OPERATION_OK);

rd.WriteItem(aNum, 1, 2);

NOTE!

If the index is out of bounds an IndexOutOfRangeException will be thrown.

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

3HAC028083-001 Revision: D152

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3.4. UserDefined data

Overview

You often work with RECORD structures in RAPID code. To handle these unique data types

a UserDefined class has been implemented. This class has properties and methods to handle

individual components of a RECORD.

In some cases implementing your own .NET structure can improve application design and

code maintenance.

Creating UserDefined object

The UserDefined constructor takes a RapidDataType object as argument. To retrieve a

RapidDataType object the path to the declaration of the RAPID data type is passed as

argument.

This example creates a UserDefined object referencing the RAPID RECORD processdata:

VB:

Dim rdt As RapidDataType

rdt = Me.controller.Rapid.GetRapidDataType("T_ROB1", "MyModule",

"processdata")

Dim processdata As UserDefined = New UserDefined(rdt)

C#

RapidDataType rdt;

rdt = this.controller.Rapid.GetRapidDataType("T_ROB1",

"MyModule", "processdata");

UserDefined processdata = new UserDefined(rdt);

NOTE!

If the module where the RECORD is defined is configured as -Shared you only provide the

name of the data type as argument, like this:

rdt = this.controller.Rapid.GetRapidDataType("processdata");

Reading UserDefined data

You can use a UserDefined object to read any kind of RECORD variable from the

controller. The individual components of the RECORD are accessible using the Components

property and an index. Each Component can be read as a string.

VB:

Dim processdata As UserDefined = DirectCast(rd.Value, UserDefined)

Dim No1 As String = processdata.Components(0).ToString()

Dim No2 AS String = processdata.Components(1),ToString()

C#:

UserDefined processdata = (UserDefined) rd.Value;

string no1 = processdata.Components[0].ToString();

string no2 = processdata.Components[1].ToString();

Continues on next page

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

1533HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Each individual string can then be used in a FillFromString method to convert the

component into a specific data type, e.g. RobTarget or ToolData. See

IRapidData.FillFromString method on page 144 for details.

Writing to UserDefined data

If you want to modify UserDefined data and write it to the RECORD in the controller you

must first read the UserDefined object and the apply new values using the

FillFromString method. Then you perform a write operation using the

RapidData.Value property.

VB:

processdata.Components(0).FillFromString("[0,0,0]")

processdata.Components(1).FillFromString("10")

rd.Value = ud

C#:

processdata.Components[0].FillFromString("[0,0,0]");

processdata.Components[1].FillFromString("10");

rd.Value = ud;

See IRapidData.FillFromString method on page 144 and Writing to RAPID data on page 223

for further information and code samples.

Implement your own struct representing a RECORD

This example shows how you can create your own .NET data type representing a RECORD

in the controller instead of using the UsefDefined type.

Creating ProcessData type

VB:

Dim rdt As RapidDataType = Me.ARapid.GetRapidDataType("T_ROB1",

"MyModule", "processdata")

Dim p As ProcessData = New ProcessData(rdt)

p.FillFromString(rd.Value.ToString())

C#

RapidDataType rdt = this.aRapid.GetRapidDataType("T_ROB1",

"MyModule", "processdata");

ProcessData p = new ProcessData(rdt);

p.FillFromString(rd.Value.ToString());

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

3HAC028083-001 Revision: D154

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Implementing ProcessData struct

This example shows how the new data type ProcessData may be implemented. As you see,

this is done by using a .NET struct and letting ProcessData wrap the UserDefined object.

The struct implementation should include a FillFromString and ToString method, i.e.

inherit the IRapidData interface. Any properties and methods may also be implemented.

VB:

Public Structure ProcessData

Implements IRapidData

Private data As UserDefined

Public Sub New(ByVal rdt As RapidDataType)

data = New UserDefined(rdt)

End Sub

Private Property IntData() As UserDefined

Get

Return data

End Get

Set(ByVal Value As UserDefined)

data = Value

End Set

End Property

.....

End Structure

C#:

public struct ProcessData: IRapidData

{

private UserDefined data;

public ProcessData(RapidDataType rdt)

{

data = new UserDefined(rdt);

}

private UserDefined IntData

{

get { return data; }

set { data = value; }

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

1553HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

}

public int StepOne

{

get

{

int res =

Convert.ToInt32(IntData.Components[0].ToString())

;

return res;

}

set

{

IntData.Components[0] = new Num(value);

}

}

}

Implementing IRapidData methods

This piece of code shows how the two IRapidData methods ToString and

FillFromString can be implemented.

VB:

Public Sub FillFromString(ByVal newValue As String) Implements

ABB.Robotics.Controllers.RapidDomain.IRapidData.FillFromStr

ing

IntData.FillFromString(newValue)

End Sub

Public Overrides Function ToString() As String Implements

ABB.Robotics.Controllers.RapidDomain.IRapidData.ToString

Return IntData.ToString()

End Function

C#:

public void FillFromString(string newValue)

{

IntData.FillFromString(newValue);

}

public override string ToString()

{

return IntData.ToString();

}

NOTE! The ToString method has to use the Overrides keyword in Visual Basic and the

override keyword in C#.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

3HAC028083-001 Revision: D156

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Property implementation

Each item in the RECORD structure should have a corresponding property in the extended

.NET data type. The get and set methods have to implement the conversion from/to controller

data type to .NET data type.

VB:

Public Property Step() As Integer

Get

Dim res As Integer =

Convert.ToInt32(IntData.Components(0).ToString())

Return res

End Get

Set(ByVal Value As Integer)

Dim tmp As Num = New Num

tmp.FillFromNum(Value)

IntData.Components(0) = tmp

End Set

End Property

C#:

public int Step

{

get

{

int res =

Convert.ToInt32(IntData.Components[0].ToString());

return res;

}

set

{

Num tmp = new Num();

tmp.FillFromNum(value);

IntData.Components[0] = tmp;

}

}

Continued

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

1573HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3.5. RAPID symbol search

Overview

Most RAPID elements (variables, modules, tasks, records etc.) are members of a symbol

table, in which their names are stored as part of a program tree structure.

It is possible to search this table and get a collection of RapidSymbol objects, each one

including the RAPID object name, location and type.

SearchRapidSymbol method

The search must be configured carefully, due to the large amount of RAPID symbols in a

system. To define a query you need to consider from where in the program tree the search

should be performed, which symbols are of interest and what information you need for the

symbols of interest.To enable search from different levels the SearchRapidSymbol method

is a member of several different SDK classes, e.g. Task, Module and Routine . This

example shows a search performed with Task as the starting point:

VB:

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "num", string.Empty)

C#:

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "num", string.Empty);

The SearchRapidSymbol method has three arguments. The first argument, of data type

RapidSymbolSearchProperties, is detailed in the next section. The second and third

arguments are detailed in the following sections.

Search properties

The RapidSymbolSearchProperties type is rather complex and requires some

knowledge about RAPID concepts.

It is used to specify search method, type of RAPID symbol to search for, whether the search

should be recursive, whether the symbols are local and/or global and whether or not the

search result should include only symbols currently used by a program. If a property is not

valid for a particular symbol, it will just be discarded and will not exclude the symbol from

the search result.

The table describes the different properties of RapidSymbolSearchProperties.

Property Description

SearchMethod Specifies the direction of the search, which can be Block
(down) or Scope (up). Example: If the starting point of the
search is a routine, a block-search will return the symbols
declared within the routine, whereas a scope-search will return
the symbols accessible from the routine.

Continues on next page

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

3HAC028083-001 Revision: D158

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Default instance

RapidSymbolSearchProperties has a static method, which returns a default instance.

VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault()

C#:

RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

The default instance has the following values:.

Using this instance you can specify the search properties of the search you want to perform.

Example:

VB:

SProp.SearchMethod = SymbolSearchMethod.Scope

SProp.SymbolType = SymbolTypes.Constant Or SymbolTypes.Persistent

SProp.Recursive = False

C#:

sProp.SearchMethod = SymbolSearchMethod.Scope;

sProp.SymbolType = SymbolTypes.Constant | SymbolTypes.Persistent

sProp.Recursive = false;

SymbolType Specifies which RAPID type(s) you want to search for. The
SymbolTypes enumeration includes Constant, Variable,
Persistent, Function, Procedure, Trap, Module,
Task, Routine, RapidData. etc. (Routine includes
Function, Procedure and Trap. RapidData includes
Constant, Variable and Persistent.)

Recursive For both block and scope search it is possible to choose if the
search should stop at the next scope or block level or
recursively continue until the root (or leaf) of the symbol table
tree is reached.

GlobalRapidSymbol Specifies whether global symbols should be included.

LocalRapidSymbol Specifies whether local symbols should be included.

IsInUse Specifies whether only symbols in use by the loaded RAPID
program should be searched.

Property Description

Property Description

SearchMethod SymbolSearchMethod.Block

SymbolType SymbolTypes.NoSymbol

Recursive True

GlobalRapidSymbol True

LocalRapidSymbol True

IsInUse True

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

1593HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The default instance has the property SymbolType set to NoSymbol, which means you need

to specify it in order to perform a meaningful search.

NOTE!

The SymbolType property allows you to combine several types in the search. See the

example above.

Data type argument

The second argument of the SearchRapidSymbol method is the RAPID data type written

as a string. The data type should be written with small letters, e.g. “num”, “string” or

“robtarget”. It can also be specified as string.Empty.

NOTE!

To search for a UserDefined data type the complete path to the module that holds the

RECORD definition must be passed, like this:

result = tRob1.SearchRapidSymbol(sProp,"RAPID/T_ROB1/MyModule/

MyDataType", string.Empty);

However, if MyModule is configured as -Shared the system sees its data types as installed,

and the task or module should not be included in the path

result = tRob1.SearchRapidSymbol(sProp,"MyDataType", string.Empty);

Symbol name argument

The third argument is the name of the RAPID symbol. It can be specified as string.Empty

if the name of the symbol to retrieve is not known, or if the purpose is to search ALL “num”

instances in the system for example.

Instead of the name of the RAPID symbol a regular expression can be used. The search

mechanism will then match the pattern of the regular expression with the symbols in the

symbol table. The regular expression string is not case sensitive

A regular expression is a powerful mechanism. It may consist of ordinary characters and meta

characters. A meta character is an operator used to represent one or several ordinary

characters, and the purpose is to extend the search.

Within a regular expression, all alphanumeric characters match themselves, i.e. the pattern

“abc” will only match a symbol named “abc”. To match all symbol names containing the

character sequence “abc”, it is necessary to add some meta characters. The regular expression

for this is “.*abc.*”.

The available meta character set is shown below:

Expression Meaning

. Any single character

^ Any symbol starting with

[s] Any single character in the non-empty set s, where s is a
sequence of characters. Ranges may be specified as c-c.

[^s] Any single character not in the set s.

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

3HAC028083-001 Revision: D160

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Example 1

"^c.*"

Returns all symbols starting with c or C.

Example 2

"^reg[1-3]"

Returns reg1, Reg1, REG1, reg2, Reg2, REG2, reg3, Reg3 and REG3.

Example 3

"^c.*|^reg[1,2]"

Returns all symbols starting with c or C as well as reg1, Reg1, REG1, reg2, Reg2 and REG2.

SearchRapidSymbol example

This example searches for VAR, PERS or CONST num data in a task and its modules. The

search is limited to globally declared symbols. By default the search method is Block, so it

does not have to be set.

VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault()

SProp.SymbolTypes = SymbolTypes.RapidData

SProp.LocalRapidSymbol = False

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "num", string.Empty)

C#:

RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

sProp.SymbolType = SymbolTypes.RapidData;

sProp.LocalRapidSymbol = false;

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "num", string.Empty);

r* Zero or more occurrences of the regular expression r.

r+ One or more occurrences of the regular expression r.

r? Zero or one occurrence of the regular expression r.

(r) The regular expression r. Used for separate that regular
expression from another.

r | r’ The regular expressions r or r’.

.* Any character sequence (zero, one or several characters).

Expression Meaning

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

1613HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Search for UserDefined RAPID data - example

In this example a user defined RECORD data type (“mydata”) is declared in a module

(“myModule”). Assuming that the end-user can declare and use data of this data type in any

program module, the search method must be Block (default). A search for all “mydata”

instances may look like this:

VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault()

SProp.SymbolType = SymbolTypes.RapidData

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "RAPID/T_ROB1/myModule/

mydata", string.Empty)

C#:

RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

sProp.SymbolType = SymbolTypes.RapidData;

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "RAPID/T_ROB1/myModule/

mydata", string.Empty);

NOTE!

If myModule is configured as -Shared and all myData instances are declared in myModule the

search method must be set to Scope and the SearchRapidSymbol call should look like this:

rsCol = aTask.SearchRapidSymbol(sProp, "mydata", string.Empty);

Continued

5 Using the FlexPendant SDK

5.5.3.6. RAPID execution

3HAC028083-001 Revision: D162

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3.6. RAPID execution

Start and Stop RAPID programs

You can start and stop RAPID execution using Rapid.Start and Stop methods. A

StartResult from the Start method returns the result of the call. Start arguments can be

used. RegainMode defines how the mechanical unit should handle path status at start.

ExecutionMode specifies if the program should run continuously, step backward or go to

the next Move instruction etc.

The Stop method can include a StopMode argument, specifying when the program should

stop (after current cycle, after completed instruction or immediately).

VB:

AController.Rapid.Start(RegainMode.Regain,

ExecutionMode.Continous)

.....

AController.Rapid.Stop(StopMode.Instruction)

C#:

aController.Rapid.Start(RegainMode.Regain,

ExecutionMode.Continous);

.....

aController.Rapid.Stop(StopMode.Instruction);

NOTE!

It is also possible to start a service routine or an ordinary routine without any parameters as

if it were a service routine. See Task.CallRoutine and Task.CancelRoutine in the FP

SDK Reference Help for detailed information along with code samples.

RAPID execution change event

It is possible to subscribe to events that occur when a RAPID program starts to execute and

when it stops. This is done on the Rapid property of the Controller object, like this:

VB:

AddHandler AController.Rapid.ExecutionStatusChanged, AddressOf

UpdateUI

C#

aController.Rapid.ExecutionStatusChanged += new

ExecutionStatusChangedEventHandler(UpdateUI);

See Letting the user know that RAPID data has changed on page 224 for information and

code example on how write the event handlers needed to update the GUI due to a controller

event.

ResetProgramPointer method

The ResetProgramPointer method resets the program pointers of all tasks and sets them

to the main entry point of the respective task.

VB:

AController.Rapid.ResetProgramPointer()

Continues on next page

5 Using the FlexPendant SDK

5.5.3.6. RAPID execution

1633HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

aController.Rapid.ResetProgramPointer();

NOTE!

It is also possible to set the program pointer to a specified routine, row or position. See

Task.SetProgramPointer in the FP SDK Reference for information along with code

samples.

Continued

5 Using the FlexPendant SDK

5.5.3.7. Modifying modules and programs

3HAC028083-001 Revision: D164

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.3.7. Modifying modules and programs

Overview

Using the Task object it is possible to load and save programs and individual modules. You

can also unload programs, get the position of the motion pointer (MP) and the program

pointer (PP) as well as modify a robot position.

Load modules and programs

To load a module or program file you need the path to the file in the file system of the

controller. When the file is loaded into memory the RapidLoadMode enumeration argument,

Add or Replace, specifies whether or not it should replace old modules or programs.

If the file extension is not a valid module (mod or sys) or program (pgf) extension an

ArgumentException is thrown.

VB:

Try

ATask.LoadProgramFromFile(APrgFileName, RapidLoadMode.Replace)

ATask.LoadModuleFromFile(AModFileName, RapidLoadMode.Add)

Catch ex As ArgumentException

Return

End Try

C#:

try

{

aTask.LoadProgramFromFile(aPrgFileName, RapidLoadMode.Replace);

aTask.LoadModuleFromFile(aModFileName, RapidLoadMode.Add);

}

catch (ArgumentException ex)

{

return;

}

Save and unload RAPID program

You can save a program using the SaveProgramToFile method and unload it using the

DeleteProgram method. These methods save and unload all modules in the task.

VB:

Dim TaskCol As Task() = AController.Rapid.GetTasks()

Dim AnObject As Object

For Each AnObject in TaskCol

ATask = DirectCast(AnObject, Task)

ATask.ProgramName = ATask.Name

ATask.SaveProgramToFile(SaveDir)

ATask.DeleteProgram()

Next

Continues on next page

5 Using the FlexPendant SDK

5.5.3.7. Modifying modules and programs

1653HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

Task[] taskCol = aController.Rapid.GetTasks();

foreach (Task aTask in taskCol)

{

aTask.PrograamName = aTask.Name;

aTask.SaveProgramToFile(saveDir);

aTask.DeleteProgram();

}

Save module

You can save a module by using the Module.SaveToFile method. As argument you use a

path to the controller file system.

VB:

AModule.SaveToFile(AFilePath)

C#

aModule.SaveToFile(aFilePath);

ProgramPointer and MotionPointer

The Task.ProgramPointer property returns the current location of the program pointer

(module, routine and row number), i.e. where the program is currently executing. The same

functionality is available for motion pointer by using the MotionPointer property.

VB:

Dim APP As ProgramPointer = ATask.ProgramPointer

If Not APP = ProgramPointer.Empty Then

Dim AStartRow As Integer = APP.Start.Row

.....

C#:

ProgramPointer pp = aTask.ProgramPointer;

if (pp != ProgramPointer.Empty)

{

int aStartRow = pp.Start.Row;

.....

}

ModifyPosition method

Using the ModifyPosition method of the Task object you can modify the position of a

RobTarget instance in the currently loaded program. As arguments you supply a module

Name as well as a TextRange object. The first RobTarget within the text range specified by

the TextRange object will be changed using the current TCP of the active mechanical unit.

VB:

Me.ATask.ModifyPosition(AModule, ATextRange)

C#:

this.ATask.ModifyPosition(aModule, aTextRange)

TIP!

Learn more about Task methods and properties in the FP SDK Reference.

Continued

5 Using the FlexPendant SDK

5.5.4. IO system domain

3HAC028083-001 Revision: D166

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.4. IO system domain

Overview

A robot system uses input and output signals to control processes. Signals can be of digital,

analog or group signal type. Such IO signals are accessible using the SDK.

Signal changes in the robot system are often significant, and there are many scenarios where

end-users of the system need notification of signal changes.

Accessing signals

Accessing signals is done through the Controller object and its property IOSystem, which

represents the IO signal space in the robot controller.

To access a signal you need the system name of the signal. The object that is returned from

the IOSystem.GetSignal method is of type Signal.

VB:

Dim Signal1 As Signal = AController.IOSystem.GetSignal("signal

name")

C#:

Signal signal1 = aController.IOSystem.GetSignal("signal name");

The returned Signal object has to be typecast to digital, analog or group signal. This

example shows a how a signal of type DigitalSignal is created:

VB:

Dim DISig As DigitalSignal = DirectCast(Signal1, DigitalSignal)

C#:

DigitalSignal diSig = (DigitalSignal) signal1;

This example shows a how an AnalogSignal is created:

VB:

Dim AISig As AnalogSignal = DirectCast(Signal1, AnalogSignal)

C#:

AnalogSignal aiSig = (AnalogSignal) signal1;

This example shows a how a GroupSignal is created:

VB:

Dim GISig As GroupSignal = DirectCast(Signal1, GroupSignal)

C#:

GroupSignal giSig = (GroupSignal) signal1;

Continues on next page

5 Using the FlexPendant SDK

5.5.4. IO system domain

1673HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Remember to call the Dispose method of the signal when it should no longer be used.

Getting signals using SignalFilter

Instead of just getting one signal at a time you can use a filter and get a signal collection. Some

of the SignalFilter flags are mutually exclusive, e.g. SignalFilter.Analog and

SignalFilter.Digital. Others are inclusive, e.g. SignalFilter.Digital and

SignalFilter.Input. You can combine the filter flags using the “|” character in C# and

the Or operator in VB:

VB:

Dim ASigFilter As SignalFilter = SignalFilter.Digital Or

SignalFilter.Input

Dim Signals As SignalCollection =

AController.IOSystem.GetSignals(ASigFilter)

C#:

SignalFilter aSigFilter = SignalFilter.Digital |

SignalFilter.Input;

SignalCollection signals =

aController.IOSystem.GetSignals(aSigFilter);

This piece of code iterates the signal collection and adds all signals to a ListView control.

The list has three columns displaying signal name, type and value:

VB:

For Each ASignal As Signal In Signals

Item = New ListViewItem(ASignal.Name)

Item.SubItems.Add(ASignal.Type.ToString())

Item.SubItems.Add(ASignal.Value.ToString())

Me.ListView1.Items.Add(Item)

Next

C#:

foreach(Signal signal in signals)

{

item = new ListViewItem(signal.Name);

item.SubItems.Add(signal.Type.ToString());

item.SubItems.Add(signal.Value.ToString());

this.listView1.Items.Add(item);

}

If the signal objects are no longer needed they should be disposed of:

VB:

For Each ASignal As Signal In Signals

ASignal.Dispose()

Next

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.4. IO system domain

3HAC028083-001 Revision: D168

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

foreach(Signal signal in signals)

{

signal.Dispose();

}

Reading IO signal values

These examples show how to read a digital and an analog signal.

Digital signal

This piece of code reads the digital signal DO1 and checks a checkbox if the signal value is

1 (ON):

VB:

Dim Sig As Signal = AController.IOSystem.GetSignal("DO1")

Dim DigitalSig As DigitalSignal = DirectCast(Sig, DigitalSignal)

Dim val As Integer = DigitalSig.Get

If val = 1 Then

Me.CheckBox1.Checked = True

EndIf

C#:

Signal sig = aController.IOSystem.GetSignal("DO1");

DigitalSignal digitalSig = (DigitalSignal)sig;

int val = digitalSig.Get();

if (val == 1)

{

this.checkBox1.Checked = true;

}

Analog signal

This piece of code reads the value of the analog signal AO1 and displays it in a textbox:

VB:

Dim Sig As Signal = AController.IOSystem.GetSignal("AO1")

Dim AnalogSig As AnalogSignal = DirectCast(Sig, AnalogSignal)

Dim AnalogSigVal As Single = AnalogSig.Value

Me.TextBox1.Text = AnalogSigVal.ToString()

C#:

Signal sig = aController.IOSystem.GetSignal("AO1");

AnalogSignal analogSig = (AnalogSignal)sig;

float analogSigVal = analogSig.Value;

this.textBox1.Text = analogSigVal.ToString();

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.4. IO system domain

1693HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Writing IO signal values

In this example, new values for the IO signals that were retrieved in the previous example are

written to the controller.

NOTE!

In manual mode a signal value can be modified only if the Access Level of the signal is ALL.

If not, the controller has to be in auto mode.

Digital signal

This piece of code changes the value of a digital signal in the controller when the user checks/

unchecks a checkbox:

VB:

Private Sub CheckBox1_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles CheckBox1.Click

If Me.CheckBox1.Checked Then

DigitalSig.Set()

Else

DigitalSig.Reset()

End If

End Sub

C#:

private void checkBox1_Click(object sender, EventArgs e)

{

if (this.checkBox1.Checked)

{

digitalSig.Set();

}

else

{

digitalSig.Reset();

}

}

NOTE! You can also set the value using the Value property.

Analog signal

This piece of code writes the value entered in a text box to the analog signal AO1. The value

is converted from string to a float before it is written to the controller:

VB:

Dim AnalogSigVal As Single = Convert.ToSingle(Me.TextBox1.Text)

AnalogSig.Value = AnalogSigVal

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.4. IO system domain

3HAC028083-001 Revision: D170

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

float analogSigVal = Convert.ToSingle(this.textBox1.Text);

analogSig.Value = analogSigVal;

Listening to signal changes

Once a Signal object is available it is possible to add a subscription to its Changed event,

which is triggered at a signal change such as changed value, changed simulated status or

changed signal quality.

Visual Basic

Friend WithEvents AISig As AnalogSignal

...

AddHandler AISig.Changed, AddressOf AISig_Changed

...

Private Sub AISig_Changed(sender As Object, e As

SignalChangeEventArgs) Handles AISig.Changed

End Sub

C#

this.aiSig.Changed +=new SignalChangeHandler(aiSig_Changed);

NOTE! The event handler skeleton is auto generated using the Tab key twice after “+=” in

the above statement:

private void aiSig_Changed(object sender, SignalChangeEventArgs e)

{ }

Start and stop subscriptions

It is recommended that you activate and deactivate subscriptions to the Changed event if

these are not necessary throughout the lifetime of the application:

VB:

AddHandler AISig.Changed, AddressOf AISig_Changed

RemoveHandler AISig.Changed, AddressOf AISig_Changed

C#:

this.aiSig.Changed += new SignalChangeHandler(aiSig_Changed);

this.aiSig.Changed -= new SignalChangeHandler(aiSig_Changed);

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.4. IO system domain

1713HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Avoiding threading conflicts

It is important to keep in mind that all controller events use their own threads, which are

different from the application GUI thread. This can cause problems if you want to display

signal changes in the application GUI.

If an update of the user interface is not necessary, you do not need to take any special action,

but can execute the event handler on the event thread. If, however, you need to show to the

user that the signal has changed you should use the Invoke method. It forces execution to the

window control thread and thus provides a solution to potential threading conflicts.

VB:

Me.Invoke(New ABB.Robotics.Controllers.IOSystemDomain.

SignalChangedEventHandler(AddressOf UpdateUI), New Object()

{sender, e})

C#:

this.Invoke(new ABB.Robotics.Controllers.IOSystemDomain.

SignalChangedEventHandler(this.UpdateUI), new Object[]

{sender, e});

 See Controller events and threads on page 67 for further information.

Finding out the new value

The SignalChangedEventArgs object has a NewSignalState property, which has

information about signal value, signal quality and whether the signal is simulated or not:

VB:

Private Sub UpdateUI(ByVal Sender As Object, ByVal e As

SignalChangedEventArgs)

Dim State As SignalState = e.NewSignalState

Dim val As Single

Val = State.Value

Me.TextBox1.Text = Val.ToString()

....

End Sub

C#:

private void UpdateUI(object sender, SignalChangedEventArgs e)

{

SignalState state = e.NewSignalState;

....

float val = state.Value

this.textBox1.Text = val.ToString()

}

NOTE!

Do not count on receiving an initial event when setting up the subscription. To get initial

information about the value of a signal you should read it using the Value property.

NOTE!

Make sure the subscription is removed before you dispose of the signal.

Continued

5 Using the FlexPendant SDK

5.5.5. Event log domain

3HAC028083-001 Revision: D172

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.5. Event log domain

Overview

Event log messages may contain information about controller status, RAPID execution, the

running processes of the controller etc.

Using the SDK it is possible to either read messages in the queue or to use an event handler

that will receive a copy of each new log message. An event log message contains queue type,

event type, event time, event title and message.

Access the controller event log

You access the event log domain through the Controller property EventLog.

VB:

Private Log As EventLog = AController.EventLog

C#:

private EventLog log = aController.EventLog;

Access event log categories

All event log messages are organized into categories. To search for an individual message you

have to know what category it belongs to. The enumeration type, CategoryType, defines all

available categories. You can get a category either by using the method GetCategory or by

using the Categories property, which is an array of all available categories.

VB:

Dim Cat As EventLogCategory

Cat = Log.GetCategory(CategoryType.Program)

or

Cat = Log.Categories(4)

C#:

EventLogCategory cat;

cat = log.GetCategory(CategoryType.Program);

or

cat = log.GetCategory[4];

NOTE!

The EventLogCategory should be disposed of when it is no longer used.

Access event log messages

To access a message you use the Messages property of the Category object. A collection

of messages is returned. The collection implements the ICollection and IEnumerable

interfaces , which means you can use the common operations for collections. Access is done

either using an index or by iterating using foreach.

VB:

Dim Msg As EventLogMessage = Cat.Messages(1)

Continues on next page

5 Using the FlexPendant SDK

5.5.5. Event log domain

1733HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

or

Dim Msg As EventLogMessage

For Each Msg In Cat.Messages

Me.TextBox1.Text = Msg.Title

.....

Next Item

C#:

EventLogMessage msg = cat.Messages[1];

or

foreach(EventLogMessage msg in cat.Messages)

{

this.textBox1.Text = msg.Title;

.....

}

MessageWritten event

It is possible to add an event handler that is notified when a new messages is written to the

controller event log. This is done by subscribing to the EventLog event MessageWritten.

The event argument is of type MessageWrittenEventArgs and has a Message property,

which holds the latest event log message.

VB:

Private Sub Log_MessageWritten(sender As Object, e As

MessageWrittenEventArgs) Handles Log.MessageWritten

Dim Msg As EventLogMessage = e.Message

End Sub

C#:

private void log_MessageWritten(object sender,

MessageWrittenEventArgs e)

{

EventLogMessage msg = e.Message;

}

NOTE!

If the application user interface needs to be updated as a result of the event, you must delegate

this job to the GUI thread using the Invoke method. See Invoke method on page 68 for

further information and code samples.

Continued

5 Using the FlexPendant SDK

5.5.6. Motion domain

3HAC028083-001 Revision: D174

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.6. Motion domain

Overview

The MotionDomain namespace lets you access the mechanical units of the robot system.

Using a MotionSystem object you can send jogging commands to an mechanical unit and

get or set the incremental jogging mode. Using a MechanicalUnit object you can get a lot

of information about the mechanical units of the robot system.

You can also subscribe to changes of the mechanical unit, e.g. changed tool, work object,

coordinated system, motion mode or incremental step size.

MotionSystem object

You access the motion system by using a the Controller property MotionSystem.

VB:

Private AMotionSystem As MotionSystem

AMotionSystem = AController.MotionSystem

C#

private MotionSystem aMotionSystem;

aMotionSystem = aController.MotionSystem;

Accessing Mechanical units

The mechanical units can be of different types, e.g. a robot with a TCP, a multiple axes

manipulator or a single axis unit. Mechanical units are available through the MotionSystem

object. If only the active mechanical unit is of interest you may use the method

GetActiveMechanicalUnit.

VB:

Dim AMechCol As MechanicalUnitCollection =

AController.MotionSystem.GetMechanicalUnits()

Dim AMechUnit As MechanicalUnit =

AController.MotionSystem.GetActiveMechanicalUnit();

C#:

MechanicalUnitCollection aMechCol =

aController.MotionSystem.GetMechanicalUnits();

MechanicalUnit aMechUnit =

aController.MotionSystem.GetActiveMechanicalUnit();

Jogging

It is possible to jog the active mechanical unit using the SetJoggingCmd method and the

calls JoggingStart and JoggingStop. Depending on the selected MotionMode and

IncrementalMode different joints and speeds are configured.

VB:

AController.MotionSystem.JoggingStop()

AMechUnit.MotionMode = MotionModeType.Linear

AController.MotionSystem.IncrementalMode =

IncrementalModeType.Small

AController.MotionSystem.SetJoggingCmd(-50, 50, 0)

AController.MotionSystem.JoggingStart()

Continues on next page

5 Using the FlexPendant SDK

5.5.6. Motion domain

1753HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

aController.MotionSystem.JoggingStop();

aMechUnit.MotionMode = MotionModeType.Linear;

aController.MotionSystem.IncrementalMode =

IncrementalModeType.Small;

aController.MotionSystem.SetJoggingCmd(-50, 50, 0);

aController.MotionSystem.JoggingStart();

Mechanical unit properties and methods

There are numerous properties available for the mechanical unit, e.g. Name,Model,

NumberOfAxes,SerialNumber,CoordinateSystem, MotionMode, IsCalibrated,

Tool and WorkObject etc. It is also possible to get the current position of a mechanical unit

as a RobTarget or JointTarget.

VB:

Dim ARobTarget As RobTarget =

AController.MotionSystem.GetActiveMechanicalUnit.GetPositio

n(CoordinateSystemType.World)

Dim AJointTarget As JointTarget =

AController.MotionSystem.ActiveMechanicalUnit.GetPosition()

C#:

RobTarget aRobTarget =

aController.MotionSystem.GetActiveMechanicalUnit.GetPositio

n(CoordinateSystemType.World);

JointTarget aJointTarget =

aController.MotionSystem.ActiveMechanicalUnit.GetPosition()

;

DataChanged event

By subscribing to the DataChanged event of the MechanicalUnit object, you will be

notified when a change of tool, work object, coordinated system, motion mode or incremental

step size occurs.

VB:

AddHandler AMechUnit.DataChanged, AddressOf AMech_DataChanged

......

Private Sub AMech_DataChanged(sender As Object, e As

MechanicalUnitDataEventArgs)

Select e.Reason

Case MechanicalUnitDataChangeReason.Tool

ChangeOfTool(DirectCast(sender, MechanicalUnit))

Case MechanicalUnitDataChangeReason.WorkObject

......

End Select

End Sub

Continued

Continues on next page

5 Using the FlexPendant SDK

5.5.6. Motion domain

3HAC028083-001 Revision: D176

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

aMechUnit.DataChanged += new

MechanicalUnitDataEventHandler(aMech_DataChanged);

.....

private void aMech_DataChanged(object sender,

MechanicalUnitDataEventArgs e) {

switch (e.Reason) {

case MechanicalUnitDataChangeReason.Tool:

ChangeOfTool((MechanicalUnit)sender)

case MechanicalUnitDataChangeReason.WorkObject:

......

}

}

TIP!

Read more about the classes, methods and properties available in the MotionDomain in the

FP SDK Reference help.

Continued

5 Using the FlexPendant SDK

5.5.7. File system domain

1773HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.7. File system domain

Overview

Using the FlexPendant SDK FileSystemDomain you can create, save, load, rename and

delete files on the controller. You can also create and delete directories.

Accessing files and directories

You access the file system domain through the Controller object property FileSystem.

VB:

Private AFileSystem As FileSystem = AController.FileSystem

C#:

FileSystem aFileSystem = aController.FileSystem;

Controller and FlexPendant file system

You can find and set the remote directory on the controller and the local directory on the

FlexPendant device by using the RemoteDirectory and LocalDirectory properties.

VB:

Dim RemoteDir As String = AController.FileSystem.RemoteDirectory

Dim LocalDir As String = AController.FileSystem.LocalDirectory

C#:

string remoteDir = aController.FileSystem.RemoteDirectory;

string localDir = aController.FileSystem.LocalDirectory;

Loading controller files

You can load a file from the controller to the FlexPendant using the GetFile method. An

exception is thrown if the operation fails. The arguments are complete paths including

filenames.

VB:

AController.FileSystem.FileSystem.GetFile(RemoteFilePath,

LocalFilePath)

C#:

aController.FileSystem.GetFile(remoteFilePath, localFilePath);

Saving files

You can save a file to the controller file system by using the PutFile method. An exception

is thrown if the operation fails. The arguments are complete paths including filenames.

VB:

AController.FileSystem.PutFile(LocalFilePath, RemoteFilePath)

C#:

aController.FileSystem.PutFile(localFilePath, remoteFilePath);

Continues on next page

5 Using the FlexPendant SDK

5.5.7. File system domain

3HAC028083-001 Revision: D178

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Getting multiple files and directories

The FileSystem class has a method called GetFilesAndDirectories. It can be used to

retrieve an array of ControllerFileSystemInfo objects with information about

individual files and directories. The ControllerFileSystemInfo object can then be cast

to either a ControllerFileInfo object or a ControllerDirectoryInfo object.

This example uses search pattern to limit the search.

VB:

Dim AnArray As ControllerFileSystemInfo()

Dim info As ControllerFileSystemInfo

AnArray = AController.FileSystem.GetFilesAndDirectories("search

pattern")

Dim I As Integer

For I = 0 To array.Length -1

info = AnArray(I)

......

Next

C#:

ControllerFileSystemInfo[] anArray;

ControllerFileSystemInfo info;

anArray = aController.FileSystem.GetFilesAndDirectories("search

pattern");

for (int i=0;i<anArray.Length;i++) {

info = anArray[i];

......

}

Using search patterns

As seen in the example above, you can use search patterns to locate files and directories using

the GetFilesAndDirectories method. The matching process uses the Wildcard pattern

matching of Visual Studio. This is a brief summary:

TIP!

Read more about the classes, methods and properties available in the FileSystemDomain

in the FP SDK Reference help.

Character in pattern Matches in string

? Any single character

* Zero or more characters

Any single digit (0–9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

Continued

5 Using the FlexPendant SDK

5.5.8. System info domain

1793HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5.5.8. System info domain

Overview

The SystemInfoDomain provides information about the active robot system. This is mainly

done through the static methods and properties of the SystemInfo class:

5.8.1_1

SystemInfo class

The functionality of the SystemInfoDomain is accessed by calling the static methods of the

SystemInfo class.This is how to retrieve the path in the controller file system to the release

(ROBOTWARE) directory of the active system.

Example:

string rWDir =

ABB.Robotics.Controllers.SystemInfoDomain.SystemInfo.Releas

ePath

Likewise, the path to the active system directory can be retrieved:

string sysDir =

ABB.Robotics.Controllers.SystemInfoDomain.SystemInfo.System

Path

Continues on next page

5 Using the FlexPendant SDK

5.5.8. System info domain

3HAC028083-001 Revision: D180

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

System options

Using the SystemInfo.SystemOptions property you can retrieve the system options of

the currently active robot system. The result is an array of SystemOption objects. If you list

the Name property of these objects you will get the same result as shown in the SystemBuilder

of RobotStudio, e.g:

5.5.8_2

You can retrieve sub options of a system option by using the SystemOption.SubOptions

property.

Additional options

Using the SystemInfo.AdditionalOptions property you can find out which additional

options are installed in the robot system. The result is an array of AdditionalOption

objects. The AdditionalOption.Path property returns the path to the installation

directory of the additional option.

The following AdditionalOption properties are available:

• KeyString

• Name

• Path

• Type

• VersionInfo

NOTE!

You can find out more about the SystemInfoDomain in the FP SDK Reference, which also

provides you with code examples.

Continued

6 Robust FlexPendant applications

5.5.8. System info domain

1813HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6 Robust FlexPendant applications

6 Robust FlexPendant applications

6.1. Introduction

3HAC028083-001 Revision: D182

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6.1. Introduction

Overview

Developing an application for a device with limited resources, such as memory and process

power, can be quite demanding. Moreover, to have an application executing around the clock

will reveal weaknesses in design and implementation that may cause slow performance or

FlexPendant hangings.

At worst, your application will drain the FlexPendant of all memory during production, and

cause an out-of-memory crash. It can even slow down the performance of the robot controller

due to excessive use of controller resources.

This chapter describes how to design and implement reliable and well performing

applications for the FlexPendant. It presents some good practices to utilize, as well as some

pitfalls that should be avoided.

Technical overview of the FlexPendant device

The FlexPendant device consists of both hardware and software and is a complete computer

in itself, with its own memory, file system, operating system and processor.

It is an integral part of IRC5, connected to the controller by an integrated cable and connector.

Using the hot plug button option, however, you can disconnect the FlexPendant in automatic

mode and continue running without it.

There are ways to restart the FlexPendant without having to restart the controller (See Restart

the FlexPendant on page 49). At a FlexPendant restart the assemblies and resources of

FlexPendant SDK applications are downloaded to the FlexPendant file system from the robot

controller.

FlexPendant applications run on Windows CE, a scalable embedded operating system, and

the .NET Compact Framework, which is Microsoft’s lightweight version of the .NET

Framework, intended for small devices.

This is the size of the FlexPendant touch screen:

The FlexPendant uses these kinds of memory:

How large can a custom application be?

You may wonder about the maximum size of your custom application. There is no exact

answer to that question, as there are many variables to take into account. For a rough

estimation the table below can be used. As you see, the operating system uses about 8 MB

FlexPendant screen Size

Total display 640 * 480 pixels

FP SDK Application display 640 * 390 pixels

Memory type Function

Flash - 16 MB Stores the FlexPendant standard software, the Windows
CE operating system in compressed format and the
registry.

RAM - 64 MB At boot time the compressed image is copied to RAM. All
execution of code uses RAM.

E2PROM Stores touch screen calibration values, joystick calibration
values etc. Only used internally.

Continues on next page

6 Robust FlexPendant applications

6.1. Introduction

1833HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

and the ABB base software about 25 MB. This means that half of the available RAM memory

is already used once the FlexPendant has started up. The standard applications of the ABB

menu and the FlexPendant SDK applications will all share the memory that is left. As a rule

of thumb, about 20 MB should be available for custom applications.

This is some advice to help you make sure your application does not exceed the memory

limitation:

1. Do not allow more than ONE instance by setting the TpsViewType parameter of the

TpsView attribute to Static. See Application type on page 56 for detailed

information.

2. Avoid excessive use of images. Do not use bigger images than necessary. Check the

size of the images your application will use.

3. Use fpcmd “-memShow” to check the amount of memory in use when your

application is active. Open a couple of Program Editors and start RAPID execution.

See Discover memory leaks on page 186 for further information.

4. Avoid static data and methods.

5. Release memory for objects that are not used by calling their Dispose method.

FlexPendant memory resources

RAM 64 MB

Operating system 8 MB

ABB base software 25 MB

Custom applications ~20 MB

Continued

6 Robust FlexPendant applications

6.2. Memory management

3HAC028083-001 Revision: D184

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6.2. Memory management

Garbage collection and Dispose

An important feature of the .NET runtime environment is the garbage collector, which

reclaims not referenced memory from the managed heap. Generally, this means that the

programmer should not have to free memory which has been allocated by the use of new. A

drawback, when memory is limited, is that the execution of the garbage collector is non-

deterministic. There is no way of knowing exactly when garbage collection will be

performed.

The IDisposable interface, however, represents a way to obtain deterministic deallocation

of resources. You should therefore call Dispose() on all disposable object when they are

no longer needed, as this will free up valuable resources as soon as possible.

Moreover, objects used to access robot controller resources, must be released by the custom

application by an explicit call to their Dispose method. SignalBindingSource and

RapidDataBindingSouce objects, as well as all other objects located in the components

pane of the VS Designer must also be explicitly disposed of, or else your application will have

a permanent memory leak.

NOTE!

The creator of an object implementing the IDisposable interface is responsible for its

lifetime and for calling Dispose.

TIP!

You may wonder why the .NET garbage collector cannot ensure that all objects no longer

referenced are finally destroyed? The FlexPendant development team have tried hard to

remove any remaining objects of an SDK application at application shut down, for example

implemented finalizers for the TpsControl, RapidDataBindingSouce and

SignalBindingSource classes. Due to Microsoft’s implementation, however, the .NET

Continues on next page

6 Robust FlexPendant applications

6.2. Memory management

1853HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

runtime nonetheless refuses to destroy these objects unless their Dispose method is called.

This behavior is under debate. If you are curious to find out more about this, these community

articles may be of interest.

Dispose, Finalization, and Resource Management (Joe Duffy):

http://www.bluebytesoftware.com/blog/PermaLink.aspx?guid=88e62cdf-5919-4ac7-bc33-

20c06ae539ae

Garbage Collection: Automatic Memory Management in the Microsoft .NET
Framework (MSDN-magazine): ms-help://ms.msdnqtr.v80.en/ms.msdn.v80/dnmag00/

html/GCI.htm

Finalization - cbrumme's WebLog: http://blogs.msdn.com/cbrumme/archive/2004/02/20/

77460.aspx

Application Framework usage - ITpsViewSetup

The application framework TAF, which hosts the controls that make up a FlexPendant

application, offers some mechanisms that should be used by client applications. See

Understanding FlexPendant application life cycle on page 52 to learn more about TAF.

Your application view class should implement ITpsViewSetup and

ITpsViewActivation. See ITpsViewSetup and ITpsViewActivation on page 58 for general

information on these interfaces and Application Framework usage - ITpsViewActivation on

page 190 to learn how to use ITpsViewActivation to improve performance.

The ITpsViewSetup interface has two methods: Install and Uninstall. Install is

called when the view is being created, right after the constructor has been executed.

Uninstall is called when the client view is closed down. After Uninstall has been called,

TAF will also call the Dispose method of the view class. These methods thus offer the last

opportunity for you to clean up and release memory and system resources held by the custom

application.

NOTE!

The user should close down the application by using the close button, [x], in the upper right

corner of the display, in the same way as the Program Data or other standard applications are

closed. Never implement a close button on the first view. When the application is closed the

correct way, first Deactivate, then Uninstall and finally Dispose will be called by TAF.

How to program the Dispose method - example

When starting a new FlexPendant project in Visual Studio a skeleton for the Dispose method

is auto generated. You should use it to add code for cleaning up as shown by the figure below:

Continued

Continues on next page

6 Robust FlexPendant applications

6.2. Memory management

3HAC028083-001 Revision: D186

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.2_1

NOTE!

Error handling should be added to the Dispose method (left out in the figure).

NOTE!

Ensure you have unsubscribed to any events from the robot controller before you call the

Dispose method of a CAPI object. If it has been done in the Deactivate method, which is

what is usually recommended, you should not do it again in the Dispose method. Also

ensure you do not try to access an object after it has been disposed.

Discover memory leaks

When your application interacts with the robot controller, unmanaged objects are created

under the hood. If you forget to call Dispose on such objects there will be memory leaks.

You are recommended to test the memory consumption of your application. Use a controller

console window on your PC and the command fpcmd_enable_console_output 3 to

enable printouts. Then use the "-memShow" command with a period argument that produces

a printout every 500 second for example, like this:

-> period 500, fpcmd, “-memShow”

Result:

task spawned: id = 0xba7f3b8, name = t2value = 195556280 = 0xba7f3b8-> [fp]: Available

memory: 20881408 (tot 40394752), disk: 737148 (tot 1728512) load: 54(261955)[fp]:

Test all functions of your application with several other FlexPendant views visible in the task

bar and possibly one or several RAPID tasks executing. Observe how your implementation

affects memory. The load component shows current memory load on the FlexPendant

Continued

Continues on next page

6 Robust FlexPendant applications

6.2. Memory management

1873HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

expressed in percentage and the figures in the parenthesis are number of ms after start-up.

Close your application and make sure the same amount of memory is available as before

opening it.

The procedure below shows yet another way of checking that your application cleans up

correctly:

NOTE!

You must use the real FlexPendant device when verifying memory consumption and looking

for memory leaks in your code.

Step Action

1 Log out from the FlexPendant by pressing Log Off on the ABB menu.

2 In the controller console window write fpcmd_enable_console_output.

3 Write fpcmd "-a".

4 For each cpp class check Number of instances. It shall be 0, except for
AdaptController (1) and AdaptEventImpl (1).

5 If the previous step shows that there are unmanaged objects left, you need to
search your code for missing Dispose calls.

Continued

6 Robust FlexPendant applications

6.3. Performance

3HAC028083-001 Revision: D188

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6.3. Performance

About performance

A FlexPendant application cannot meet hard real time demands. There should however be no

difference in performance between a FlexPendant SDK application and the standard

applications of the device. If your application is slow, the advice in this section will be useful.

TIP!

Do not get overwhelmed by the number of restrictions presented in this section. Most of the

time you will not notice any difference if you decide to neglect a few of them. Yet - it is good

to know what can be done whenever performance does become an issue.

Less code means faster code

A general piece of advice (maybe too obvious a recommendation) is that less code normally

means faster code. Remember that methods that are executed frequently, such as OnPaint,

event handlers etc. must be efficient. Everything that can be computed once and stored for

future use should be computed only once.

Fewer controller accesses means faster code

The best thing you can do to improve performance is probably to ensure that you do not

access controller functionality more often than necessary. To achieve this you need to

understand CAPI, the SDK class libraries used to access robot controller functionality.

It is very easy to use a property of a class and not realize that an access to the controller is

actually made. A general recommendation is to try to use subscriptions to controller

information (events) where applicable, and let your application store updated values instead

of performing numerous reading operations toward the same controller resource.

TIP!

You can easily get an estimate of the number of controller accesses your application performs

in different user scenarios by using a robot controller console. The console command

robdisp_watch 2 monitors and prints controller accesses made by the FlexPendant to the

console. Press a button of your application for example, and study how the FlexPendant and

the controller communicate in response to this action. Enter the command robdisp_watch

Continues on next page

6 Robust FlexPendant applications

6.3. Performance

1893HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

0 to turn this service off. (The monitor service slows down the response time of your

application, due to printing to the console. So don’t get worried if your application seems

unusually slow!)

NOTE!

Keep in mind that an excessive number of controller accesses will slow down the

performance of your application. At worst, it may even affect the performance of the robot

controller.

NOTE!

Excessive use of subscriptions may also be a problem. If your application has to handle a

continuous load of Rapid data and I/O signal events, and your event handlers need to

manipulate the data before presenting it, GUI interaction may become slow. As a rule of

thumb, do not estimate more than 20 events/sec. and keep the event handlers thin.

Fewer objects means faster code

Fewer objects means better performance. If you know that an object will be used again, create

it once and keep a reference. Also, try not to create objects that may not be used.

Reusing existing objects instead of creating new ones is especially important when executing

the same code repeatedly, e.g. in tight loops.

This example shows how this should be done:

object _o = new object();

for (int i = 0; i < 100000; i++)

{ ... }

TIP!

Do not create several Controller objects, but reuse it by sending it as a parameter when

creating a new view, or share it between classes as a public property.

Transferring files

Transferring files between the device and the robot controller takes time and also occupies

storage memory on the device. Write efficient and fault-tolerant code if it must be done.

Continued

Continues on next page

6 Robust FlexPendant applications

6.3. Performance

3HAC028083-001 Revision: D190

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Application Framework usage - ITpsViewActivation

The ITpsViewActivation interface is used by TAF to hide and display your application. It

has two methods: Activate and Deactivate. The former is called by TAF at the creation

of the client view, right after the ITpsViewSetup.Install method has been executed. The

latter is called at shut down of the client view, right before the ITpsViewSetup.Uninstall

method is executed.

The interface is also used when the user selects another application on the task bar. TAF then

calls ITpsViewActivation.Deactivate (but not ITpsViewSetup.Uninstall).

Likewise, when the application regains focus via the task bar icon, TAF calls

ITpsViewActivation.Activate (but notITpsViewSetup.Install).

It is recommended to enable and disable any subscriptions to controller events in the

ITpsViewActivation methods, as valuable resources should not be held when the

application is not used. Note that current values should be read before enabling the

subscription.

For the same reason, any timers can be activated and deactivated in these methods. That way

timers will not run when other applications are in focus, thus saving processor power.

Excessive string manipulation is costly

The string class is an immutable type, i.e. once a string is created its value cannot be changed.

This means that string methods that seem to modify the string in fact create new strings.

Look at a this string concatenation example:

string name = "192.168.126.1";

string str = "/" + name + "/" + "RAPID";

Four strings will be appended to one resulting string. No less than four additional strings will

be created and allocated when the right hand side of the assignment is executed. A better idea

is to use the StringBuilder class or string.Format (which uses the StringBuilder

internally):

string str = string.Format("/{0}/RAPID", name);

As a rule, if you are going to do only one string operation on a particular string, you can use

the appropriate string method. It is when you start doing numerous string operations that you

need to use StringBuilder or string.Format.

Continued

Continues on next page

6 Robust FlexPendant applications

6.3. Performance

1913HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Avoid Control.Refresh

Control.Refresh() must only be used when an immediate update of the GUI is absolutely

required. Refresh makes a direct call to the OnPaint method of the Control, and is therefore

much more costly than Control.Invalidate().

Several calls to Invalidate will not mean several calls to OnPaint. When the GUI thread

processes the Invalidate message all queued up messages of the same control are handled

at the same time, thus saving process power.

NOTE!

In the 2.0 version of .NET CF there are new methods to be used for GUI controls inheriting

System.Windows.Forms.Control:

• SuspendLayout()

• ResumeLayout()

• BeginUpdate()

• EndUpdate()

These methods are used to control GUI updates while modifying a GUI element. The control

will not be drawn when SuspendLayout has been called, for example, but is blocked until

ResumeLayout is called.

Avoid boxing and unboxing

A common reason for slow code is unintentional boxing and unboxing. To avoid this, you

need to be aware of the difference between reference and value types. Reference types (the

keyword class is used) are always allocated on the heap, while value types are allocated on

the stack; unless embedded into a reference type.

Boxing is the operation where a value type, is converted to a reference type. It is done

automatically when a reference to a value type is required. Then a new object will be created,

allocated on the heap with a copy of the original data.

Here are some examples of not so obvious boxing/unboxing:

• Using the foreach statement on an array that contains value types will cause the

values to be boxed and unboxed.

• Accessing values of a Hashtable with a value type key, will cause the key value to be

boxed when the table is accessed.

• Using an ArrayList with value types; this should be avoided - use typed arrays instead.

Typed arrays are also better because of type safety, as type checking can be performed

at compile time.

• The following methods should be overridden in order to avoid unnecessary boxing/

unboxing: Equals(), GetHashCode().

Continued

Continues on next page

6 Robust FlexPendant applications

6.3. Performance

3HAC028083-001 Revision: D192

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Foreach

Using a for loop is often faster than using the foreach statement, especially if a large

number of iterations are made. The reason is that the JIT compiler (see About terms and

acronyms on page 18) is prohibited to optimize the code execution when foreach is used.

However, foreach makes the code more readable and is therefore a better option when

performance is not crucial.

Reflection is performance demanding

Reflection is a mechanism used to read the meta data of an assembly. The typeof operator,

for example, uses reflection to determine the type of an object. Another example is

object.ToString(), which also uses reflection.

As reflection is very performance demanding you are recommended to override or to avoid

the ToString() method for reference types.

Efficiently parsing Xlm

XmlTextReader and XmlDocument can both be used to parse xml data. The

XmlTextReader is the preferred option in most cases; it is more light weight (less memory

footprint) and a lot faster to instantiate. The limitation of the XmlTextReader is that forward

only reading is possible.

The xml structure may also have an impact on performance. If xml data is organized in non-

flat way, search operations will be faster, as a large portion of the information can be skipped.

This is achieved by using categories and sub categories.

Continued

6 Robust FlexPendant applications

6.4. Reliability

1933HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6.4. Reliability

Overview

This section presents information on how to make the application robust. The most important

mechanism related to robustness and reliability is error handling. Avoiding thread conflicts

and memory leaks are however also important means of improving reliability.

Error handling in .NET applications

As already pointed out in this manual, Microsoft recommends that exceptions are used to

discover and report anomalities in .NET applications. If you are not sure about when to use

exceptions or how to do the implementation you should read Exception handling on page 72

to understand the general idea before moving on to the FlexPendant specific information of

this section.

Continues on next page

6 Robust FlexPendant applications

6.4. Reliability

3HAC028083-001 Revision: D194

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

SDK exception classes

The ABB.Robotics namespace provides quite a few exception classes, used by the

FlexPendant SDK and SDK applications. In addition, the SDK also uses System exceptions

and may throw a System.ArgumentException object for example.

Whenever an exception is thrown, your application must catch it and take proper action. You

catch an exception by using the try-catch(-finally) statements. See Exception

handling on page 72 for further information about how to implement these statements.

As you see in the figure below GeneralException derives from BaseException, which

in turn derives from System.ApplicationException of the .NET Framework class

library.

ApplicationException is thrown by user programs, such as the FlexPendant SDK, not by

the Common Language Runtime (CLR, see Definitions on page 18). It therefore represents a

way to differentiate between exceptions defined by applications versus exceptions defined by

the system.

7.4_1

As you see there are derived types under GeneralException. These types are listed and
briefly described below:

Continued

Continues on next page

6 Robust FlexPendant applications

6.4. Reliability

1953HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.4_2

Continued

Continues on next page

6 Robust FlexPendant applications

6.4. Reliability

3HAC028083-001 Revision: D196

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

TIP!

Learn more about the FlexPendant SDK exception classes by using the FlexPendant SDK

Reference Documentation Help.

Thread affinity

You should be aware that execution of code modifying the user interface, has to be done on

the thread that created the GUI control, the so called GUI thread.

An application initially starts with a single thread. Normally all user interface controls are

created by this thread. Windows CE user interface objects are characterized by thread affinity,

which means that they are closely coupled with the thread that created them.

Interacting with the message queue of an interface control from a thread other then the

creating thread may cause data corruption or other errors. This restriction applies to the thread

pool as well as to explicitly created threads.

When executing on a secondary thread, a so called worker thread, an update of the user

interface must therefore be done very carefully, enforcing a switch to the GUI thread. This is

in fact a very common scenario, as controller events use their own threads and should often

be communicated to the end user by a GUI update.

NOTE!

Thread affinity is especially relevant as for robot controller events, as these by default execute

on a background thread. See GUI and controller event threads in conflict on page 68 and

Invoke method on page 68 for further information along with code samples. The following

section also deals with the same issue.

Invoke

In order to execute a method on the GUI thread Control.Invoke can be used. It should

however be done carefully, as it makes a synchronous call to the specified event handler,

which blocks execution until the GUI thread has finished executing the method. All

concurrent calls to Invoke will be queued and executed in their queue order by the GUI

thread. This could easily make the GUI less responsive.

There is now an asynchronous version of Invoke, which should be used instead whenever

possible. TpsControl.BeginInvoke is a non blocking method, which lets the worker

thread continue execution instead of waiting for the GUI thread to have processed the method

Remember that Invoke as well as BeginInvoke should only be used on code that modifies

the user interface. You should keep the execution on the background thread as long as

possible.

NOTE!

If your code tries to access a GUI control from a background thread the .NET common

language runtime will throw a System.NotSupportedException.

Memory leaks

As FlexPendant applications are supposed to run without interruption, no memory leaks can

be permitted. It is your responsibility to properly clean up and call Dispose. Take your time

studying How to avoid memory leaks on page 93, Memory management on page 184 and

Continued

Continues on next page

6 Robust FlexPendant applications

6.4. Reliability

1973HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Technical overview of the FlexPendant device on page 182.

Utilizing multi-threading

Threading enables your program to perform concurrent processing so you can do more than

one operation at a time. For example, you can use threading to monitor input from the user,

and perform background tasks simultaneously. The System.Threading namespace

provides classes and interfaces which enable you to easily perform tasks such as creating and

starting new threads, synchronizing multiple threads, suspending threads and aborting

threads.

The classes Thread and ThreadPool can be used to execute methods on a worker thread.

Use ThreadPool for temporary usage of a background thread when a task is meant to

terminate fairly soon. Use Thread only for background work that will persist, e.g. a thread

that fetches data from the controller continuously.

There are two timers available in .NET CF that can be used to execute methods periodically

at specified intervals. There is however, an important difference between these. The

System.Threading.Timer executes the method on a background thread, while the

System.Windows.Forms.Timer executes the method on the UI thread.

NOTE!

Use System.Threading.Timer if you want to poll data from the controller in order to

reduce the load on the GUI thread.

Lock statement

The lock statement is used in multi-threaded applications to make sure access to a part of the

code is made by one thread exclusively. If a second thread attempts to lock code which has

already been locked by another thread, it must wait until the lock is released.

Remember to limit the code segment that you want to control, i.e. only lock what is absolutely

necessary to make the code thread safe:

Object thisLock = new Object();

lock (thisLock)

{

 // Critical code section

}

Deadlocks must be avoided. They can occur if more than one lock is used. If more than one

lock object must be held, they must always be locked and released in the same order,

wherever they are used.

Continued

Continues on next page

6 Robust FlexPendant applications

6.4. Reliability

3HAC028083-001 Revision: D198

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

If a deadlock occurs, the FlexPendant system will hang. If this happens you should attach the

device to the Visual Studio debugger and study the call stack of the threads in the Threads

window.

CAUTION!

Using the lock statement in combination with a call to Invoke is a potential cause to

deadlock situations, since Invoke is a blocking call. In short, be careful if you use locks!

Multicast delegates

If a multicast delegate is executed, the execution of the delegates is terminated if an exception

is thrown by one of the delegates. It means that the remaining delegates in the list will not be

executed if an exception is thrown. This situation can cause erratic behavior, which may be

tricky to trace and debug.

Therefore, if you have numerous delegates which are to execute as the result of the same

event, you may want to implement the GetInvocationList method. It retrieves a list with

a copy of the delegates. This list can be iterated and each delegate called directly:

7.4_3

Continued

7 Using the PC SDK

6.4. Reliability

1993HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7 Using the PC SDK

7 Using the PC SDK

7.1. Controller API

3HAC028083-001 Revision: D200

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.1. Controller API

PC SDK domains

The PC SDK class libraries are organized in the following domains:

• Controllers

• ConfigurationDomain

• Discovery

• EventLogDomain

• FileSystemDomain

• Hosting

• IOSystemDomain

• Messaging

• MotionDomain

• RapidDomain

• UserAuthorizationManagement

CAPI illustration

The classes used to access robot controller functionality together make up the Controller API

(CAPI). Part of the CAPI object model is illustrated below:

8.2.2_1

Continues on next page

7 Using the PC SDK

7.1. Controller API

2013HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

PC SDK Reference

This User’s Guide covers some of the PC SDK functionality, but is by no means a complete

guide to the PC SDK.

The PC SDK Reference is the complete reference of the PC SDK class libraries. It should be

your companion while programming.

 It can be launched from Windows Start menu by pointing at Programs - ABB Industrial IT

- Robotics IT - Robot Application Builder 5.xx and selecting PC SDK Reference.

Continued

7 Using the PC SDK

7.2. Create a simple PC SDK application

3HAC028083-001 Revision: D202

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.2. Create a simple PC SDK application

Overview

To get started programming let us create a simple application that will display all virtual and

real controllers on the network. It should then be possible to log on to a controller and start

RAPID execution.

CAUTION!

Remote access to controllers must be handled carefully. Make sure you do not unintentionally

disturb a system in production.

Set up the project

Follow these steps to set up a PC SDK project.

Step Action

1. On the File menu in Visual Studio, point to New and then click Project. Select a
Windows Application project.

2. Add the references to the PC SDK assemblies, ABB.Robotics.dll and ABB.Robot-
ics.Controllers.dll, to the project. The assemblies are located in the installation
directory, by default at C:\Program Files\ABB Industrial IT\Robotics IT\Robot
Application Builder 5.xx\PC SDK.

3. Open Form1.cs and add the needed namespace statements at the top of the source
code page:

VB:

Imports ABB.Robotics

Imports ABB.Robotics.Controllers

Imports ABB.Robotics.Controllers.Discovery

Imports ABB.Robotics.Controllers.RapidDomain

C#:

using ABB.Robotics;

using ABB.Robotics.Controllers;

using ABB.Robotics.Controllers.Discovery;

using ABB.Robotics.Controllers.RapidDomain;

4. In the Solution Explorer right-click Form1.cs and select View Designer. Create
the Graphical User Interface according to the instruction in the next section.

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

2033HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Create the user interface

This picture shows the running PC SDK application that we will create. As you see both

virtual and real controllers on the network are included in a network scan.

7.1_1

Follow these steps to create the user interface of the application:

Implement network scanning

To find all controllers on the network we start by declaring these member variables in the

class Form1

VB:

Private scanner As NetworkScanner = Nothing

Private controller As Controller = Nothing

Private tasks As Task() = Nothing

Private networkWatcher As NetworkWatcher = Nothing

Step Action

1. Change the Text property of the form to “Network scanning window”.

2. Change its Size to 850; 480.

3. Add a ListView control to the form. Set the following properties to get a similar
look as in the figure above:

FullRowSelect - True

GridLines - True

View - Details

4. Add the columns for IPAdress, ID, Availability, Virtual, System name, RW Version
and Controller name and adjust the width of the columns.

5. Add a Panel with a Button under the listview. Set the Text of the button.

Continued

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

3HAC028083-001 Revision: D204

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

private NetworkScanner scanner = null;

private Controller controller = null;

private Task[] tasks = null;

private NetworkWatcher networkwatcher = null;

As the application is supposed to scan the network as soon as it is started, we can put the code

for it in the Form1_Load event handler, like this:

VB:

Me.scanner = New NetworkScanner

Me.scanner.Scan()

Dim controllers As ControllerInfoCollection =

Me.scanner.Controllers

Dim controllerInfo As ControllerInfo = Nothing

Dim item As ListViewItem

For Each controllerInfo In controllers

item = New ListViewItem(controllerInfo.IPAddress.ToString())

item.SubItems.Add(controllerInfo.Id)

item.SubItems.Add(controllerInfo.Availability.ToString())

item.SubItems.Add(controllerInfo.IsVirtual.ToString())

item.SubItems.Add(controllerInfo.SystemName)

item.SubItems.Add(controllerInfo.Version.ToString())

item.SubItems.Add(controllerInfo.ControllerName)

Me.listView1.Items.Add(item)

item.Tag = controllerInfo

Next

C#:

this.scanner = new NetworkScanner();

this.scanner.Scan();

ControllerInfoCollection controllers = scanner.Controllers;

ListViewItem item = null;

foreach (ControllerInfo controllerInfo in controllers)

{

 item = new ListViewItem(controllerInfo.IPAddress.ToString());

 item.SubItems.Add(controllerInfo.Id);

 item.SubItems.Add(controllerInfo.Availability.ToString());

 item.SubItems.Add(controllerInfo.IsVirtual.ToString());

 item.SubItems.Add(controllerInfo.SystemName);

 item.SubItems.Add(controllerInfo.Version.ToString());

 item.SubItems.Add(controllerInfo.ControllerName);

 this.listView1.Items.Add(item);

 item.Tag = controllerInfo;

 }

Continued

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

2053HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Add a network watcher

By implementing a NetworkWatcher the application can supervise the network and detect

when controllers are lost or added. This example shows how to program network supervision,

and how to add a detected controller to the listview.

After having added a NetworkWatcher object to the FormLoad event handler, we add a

subscription to its Found event.

VB:

Me.networkWatcher = New NetworkWatcher(Me.scanner.Controllers)

AddHandler Me.networkWatcher.Found, AddressOf Me.HandleFoundEvent

AddHandler Me.networkWatcher.Lost, AddressOf Me.HandleLostEvent

Me.networkWatcher.EnableRaisingEvents = True

C#:

this.networkwatcher = new NetworkWatcher(scanner.Controllers);

this.networkwatcher.Found += new EventHandler

<NetworkWatcherEventArgs>(HandleFoundEvent);

this.networkwatcher.Lost += new EventHandler

<NetworkWatcherEventArgs>(HandleLostEvent);

this.networkwatcher.EnableRaisingEvents = true;

NOTE!

In C# the event handler skeleton is auto generated using the Tab key twice after “+=” in the

above statements. If you prefer, you can use a simplified syntax when using generic event

handlers:

networkwatcher.Found += HandleFoundEvent;

Handle event

As the events will be received on a background thread and should result in an update of the

user interface the Invoke method must be called in the event handler. See Invoke method on

page 68 about how to force execution from background to GUI thread.

VB:

Private Sub HandleFoundEvent(ByVal sender As Object, ByVal e As

NetworkWatcherEventArgs)

Me.Invoke(New NetworkWatcherEventHandler(AddressOf

AddControllerToListView), New Object() {sender, e})

End Sub

C#:

void HandleFoundEvent(object sender, NetworkWatcherEventArgs e)

{

this.Invoke(new

EventHandler<NetworkWatcherEventArgs>(AddControllerToList

View), new Object[] { sender, e });

}

Continued

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

3HAC028083-001 Revision: D206

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

This event handler updates the user interface:

VB:

Private Sub AddControllerToListView(ByVal sender

As Object, ByVal e As NetworkWatcherEventArgs)

Dim controllerInfo As ControllerInfo = e.Controller

Dim item As ListViewItem = New ListViewItem(

controllerInfo.IPAddress.ToString())

item.SubItems.Add(controllerInfo.Id)

item.SubItems.Add(controllerInfo.Availability.ToString())

item.SubItems.Add(controllerInfo.IsVirtual.ToString())

item.SubItems.Add(controllerInfo.SystemName)

item.SubItems.Add(controllerInfo.Version.ToString())

item.SubItems.Add(controllerInfo.ControllerName)

Me.listView1.Items.Add(item)

item.Tag = controllerInfo

End Sub

C#:

private void AddControllerToListView(object sender,

NetworkWatcherEventArgs e)

{

ControllerInfo controllerInfo = e.Controller;

ListViewItem item = new

ListViewItem(controllerInfo.IPAddress.ToString());

item.SubItems.Add(controllerInfo.Id);

item.SubItems.Add(controllerInfo.Availability.ToString());

item.SubItems.Add(controllerInfo.IsVirtual.ToString());

item.SubItems.Add(controllerInfo.SystemName);

item.SubItems.Add(controllerInfo.Version.ToString());

item.SubItems.Add(controllerInfo.ControllerName);

this.listView1.Items.Add(item);

item.Tag = controllerInfo;

}

Establish connection to controller

When the user double-clicks a controller in the list a connection to that controller should be

established and the user should be logged on. Follow these steps to implement this

functionality:

Step Action

1. Generate the DoubleClick event of the ListView.

2. In the event handler create a Controller object that represents the selected
robot controller.

3. Log on to the selected controller. See the code sample of Implement event
handler on page 207.

Continued

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

2073HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Implement event handler

This example shows the code of the ListView.DoubleClick event handler:

VB:

Dim item As ListViewItem = Me.listView1.SelectedItems(0)

If Not item.Tag Is Nothing Then

Dim controllerInfo As ControllerInfo

controllerInfo = DirectCast(item.Tag, ControllerInfo)

If controllerInfo.Availability = Availability.Available Then

If Not Me.controller Is Nothing Then

Me.controller.Logoff()

Me.controller.Dispose()

Me.controller = Nothing

End If

Me.controller = ControllerFactory.CreateFrom(controllerInfo)

Me.controller.Logon(UserInfo.DefaultUser)

End If

Else

MessageBox.Show("Selected controller not available.")

End If

C#:

ListViewItem item = this.listView1.SelectedItems[0];

if (item.Tag != null)

{

ControllerInfo controllerInfo = (ControllerInfo) item.Tag;

if (controllerInfo.Availability == Availability.Available)

{

if (this.controller != null)

{

this.controller.Logoff();

this.controller.Dispose();

this.controller = null;

}

this.controller =

ControllerFactory.CreateFrom(controllerInfo);

this.controller.Logon(UserInfo.DefaultUser);

}

else

{

MessageBox.Show("Selected controller not available.");

}

}

Continued

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

3HAC028083-001 Revision: D208

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The check to see whether the Controller object already exists is important, as you should

explicitly log off and dispose of any existing controller object before creating a new one. The

reason is that a logon session allocates resources that should not be kept longer than

necessary.

Start program execution

The Click event handler of the Start RAPID Program button should start program

execution of the first RAPID task.

Starting RAPID execution in manual mode can only be done from the FlexPendant, so we

need to check that the controller is in automatic mode before trying. We then need to request

mastership of Rapid and call the Start method. If mastership is already held, by ourselves

or another client, an InvalidOperationException will be thrown. For further

information see Mastership on page 41.

It is necessary to release mastership whether or not the start operation succeeds. This can be

done by calling Release() or Dispose() in a finally clause, as shown in the VB example,

or by applying the using mechanism, as shown in the C# example.

VB:

Private m As Mastership = Nothing

...

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click

Dim m As ABB.Robotics.Controllers.Mastership = Nothing

Try

If controller.OperatingMode = ControllerOperatingMode.Auto

Then

tasks = controller.Rapid.GetTasks()

m = Mastership.Request(controller.Rapid)

'Perform operation

tasks(0).Start()

Else

MessageBox.Show("Automatic mode is required to start

execution from a remote client.")

End IfCatch ex As InvalidOperationException

MessageBox.Show("Mastership is held by another client.")

Catch ex As System.Exception

MessageBox.Show("Unexpected error occurred: " + ex.Message)

Finally

If Not m Is Nothing Then

If (m.IsMaster()) Then

m.Release()

End If

End If

End Try

End Sub

Continued

Continues on next page

7 Using the PC SDK

7.2. Create a simple PC SDK application

2093HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

private void Button1_Click(object sender, EventArgs e)

{

try

{

if (_controller.OperatingMode ==

ControllerOperatingMode.Auto)

{

tasks = controller.Rapid.GetTasks();

using (Mastership m =

Mastership.Request(controller.Rapid))

{

 //Perform operation

tasks[0].Start();

}

}

else

{

MessageBox.Show("Automatic mode is required to start

execution from a remote client.");

}

}

catch (System.InvalidOperationException ex)

{

MessageBox.Show("Mastership is held by another client.");

}

catch (System.Exception ex)

{

MessageBox.Show("Unexpected error occurred: " + ex.Message);

}

}

Continued

7 Using the PC SDK

7.3. Discovery domain

3HAC028083-001 Revision: D210

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.3. Discovery domain

Overview

To create a connection to the controller from a PC SDK application it has to make use of the

Netscan functionality of the Discovery namespace. A NetworkScanner object must be

created and a Scan call must be performed.

For the PC SDK to be able to establish a connection either RobotStudio or Robot

Communications Runtime must be installed on the PC hosting the PC SDK application.

Robot Communications Runtime can be installed from C:\Program Files\ABB Industrial

IT\Robotics IT\Robot Application Builder

5.xx\redistributable\RobotCommunicationRuntime if RobotStudio is not installed.

To find out what controllers are available on the network you use the NetworkScanner

methods Scan, Find, GetControllers and GetRemoteControllers.

NetworkScanner

The NetworkScanner class can be declared and instantiated at class level. No scanning is

done until the Scan method is called. When the GetControllers method is called a

collection of ControllerInfo objects is returned. Each such object holds information about

a particular controller connected to the local network. Both virtual and real controllers are

detected this way.

VB:

Private AScanner As NetworkScanner = New NetworkScanner

...’ Somewhere in the code

AScanner.Scan()

Dim ACollection As ControllerInfo() = AScanner.GetControllers()

C#:

private NetworkScanner aScanner = new NetworkScanner();

... // Somewhere in the code

aScanner.Scan();

ControllerInfo[] aCollection = aScanner.GetControllers();

See Implement network scanning on page 203 for a complete code sample.

If only real controllers are of interest, you can first scan the network and then request only

real controllers using the NetworkScannerSearchCriterias enumeration in the

GetControllers method.

VB:

Dim ACollection As ControllerInfo() =

AScanner.GetControllers(NetworkScannerSearchCriterias.Real)

C#:

ControllerInfo[] aCollection =

aScanner.GetControllers(NetworkScannerSearchCriterias.Real)

;

Continues on next page

7 Using the PC SDK

7.3. Discovery domain

2113HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

If you know which controller system you want to connect to you can call the Find method,

which finds a specified controller on the network. It takes the system ID as a System.Guid

data type as argument. The system’s globally unique identifier (GUID) can be find in the

system.guid file in the INTERNAL folder of the robot system file system.

ControllerInfo object

When a network scan is performed a collection of ControllerInfo objects is returned. The

ControllerInfo object has information about availability. Remember that the ControllerInfo

object is not updated when controller status changes. If you again need to find out if a

controller is available, you need to perform a new network scan or use an existing

Controller object and check the status directly.

Add controllers from outside local network

A network scan is done only on the local network. To detect controllers outside the local

network you need to supply the IP address of the controller using the static

AddRemoteController method or configuring it in the App.config file. See PC application

configuration on page 43 for further information.

If you supply the controller IP address you either use a string argument or a

System.Net.IPAddress object.

VB:

Dim AnIPAddress As System.Net.IPAddress

Try

AnIPAddress = System.Net.IPAddress.Parse(Me.TextBox1.Text)

NetworkScanner.AddRemoteController(AnIPAddress)

Catch ex As FormatException

Me.TextBox1.Text = "Wrong IP address format"

End Try

C#:

System.Net.IPAddress ipAddress;

try

{

ipAddress = System.Net.IPAddress.Parse(Me.textBox1.Text);

NetworkScanner.AddRemoteController(ipAddress);

}

catch (FormatException ex)

{

Me.textBox1.Text = "Wrong IP address format";

}

NetworkWatcher

By using a NetworkWatcher object you can supervise network changes and find out when

a new controller is found or when a controller is lost. See Add a network watcher on page 205

for a complete code example.

Continued

7 Using the PC SDK

7.4. Accessing the controller

3HAC028083-001 Revision: D212

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.4. Accessing the controller

Controller object

By using a Controller object you can get access to the different domains of the robot

controller, e.g. IO signals, RAPID, file system and elog messages.

To create a Controller object you normally make a call to the ControllerFactory:

VB:

Private AController As Controller

AController = ControllerFactory.CreateFrom(info As

ControllerInfo)

C#:

private Controller aController;

aController = ControllerFactory.CreateFrom(ControllerInfo info);

Continues on next page

7 Using the PC SDK

7.4. Accessing the controller

2133HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The argument is a ControllerInfo object, which may have been retrieved during a

network scan, see NetworkScanner on page 210. It is also possible to add an optional

argument if the IP address of the controller or the system ID (guid) should be used.

If the PC application is supposed to work with a single controller it can be specified in an

app.config file. The default constructor can then be used to create the controller object, e.g.

aController = new Controller(). See <defaultSystem> on page 44for details.

If several classes in your application need to access the controller, it is recommended that they

all reference the same Controller object. This is done either by passing the Controller

object as an argument to the constructor or by using a Controller property.

NOTE!

You should be aware that the .NET objects created for operations toward the robot controller

will access native resources (C++ and COM code). The .NET garbage collector does not

collect such objects, but these must be disposed of explicitly by the application programmer.

See Memory management in PC applications on page 213 for further information.

Memory management in PC applications

An important feature of the .NET runtime environment is the garbage collector, which

reclaims not referenced memory from the managed heap. Generally, this means that the

programmer does not have to free memory that has been allocated by the use of new. There

is no way of knowing exactly when garbage collection will be performed however.

For a PC application indeterministic deallocation of resources is usually not a problem (as

opposed to a FlexPendant application, which runs on a small device with limited memory).

The IDisposable interface, however, can be used in a PC application to obtain

deterministic deallocation of resources. Using this interface you can make an explicit call to

the Dispose method of any disposable object.

If your application is running in a Single Threaded Apartment (STA) the Dispose call will

dispose of managed objects, but native resources (created internally by the PC SDK) will

remain. To release these native objects, the method ReleaseUnmanagedResources should

be called periodically, for example when the user presses a certain button or each time data

has been written to the controller. The method call is not costly.

For an application running in a Multi Threaded Apartment (MTA) the Dispose call will

remove both managed and native objects.

NOTE!

The method Controller.ReleaseUnmanagedResources should be called once in a

while to avoid memory leaks in PC SDK applications running in STA.

Dispose

It is the creator of a disposable object that is responsible for its lifetime and for calling

Dispose. A check should be done that the object still exists and any subscriptions to

controller events should be removed before the Dispose call. This is how you dispose of a

Controller object:

Continued

Continues on next page

7 Using the PC SDK

7.4. Accessing the controller

3HAC028083-001 Revision: D214

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

VB:

If Not AController Is Nothing Then

RemoveHandler AController.OperatingModeChanged, AddressOf

UpdateOpMode

AController.Dispose()

AController = Nothing

End If

C#:

if (aController != null)

{

AController.OperatingModeChanged -= new UpdateOpMode;

aController.Dispose();

aController = null;

}

Logon and logoff

Before accessing a robot controller the PC SDK application has to log on to the controller.

The UserInfo parameter of the Logon method has a DefaultUser property that can be

used. By default all robot systems have such a user configured.

VB:

AController.Logon(UserInfo.DefaultUser)

C#:

aController.Logon(UserInfo.DefaultUser);

If it is necessary for your application to handle users with different rights, these users can be

configured by using the UserAuthorizationManagement namespace or by using the UAS

administration tool in RobotStudio. This is how you create a new UserInfo object for login

purposes.

VB:

Dim AUserInfo As UserInfo = New UserInfo("name", "password")

C#:

UserInfo aUserInfo = new UserInfo("name", "password");

Continued

Continues on next page

7 Using the PC SDK

7.4. Accessing the controller

2153HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

It is necessary to log off from the controller at application shut down at the latest.

VB: AController.LogOff()

C#: aController.LogOff();

Mastership

In order to get write access to some of the controller domains the application has to request

mastership. The Rapid domain, i.e. tasks, programs, modules, routines and variables that

exist in the robot system, is one such domain. The Configuration domain is another.

See Mastership on page 41 for detailed information on this topic.

It is important to release mastership after a modification operation. One way of doing this is

applying the using statement, which results in an automatic disposal of the Mastership

object at the end of the block. Another possibility is releasing mastership in a Finally block,

which is executed after the Try and Catch blocks. See how it can be coded in the examples

of Start program execution on page 208.

Controller events

The Controller object provides several public events, which enable you to listen to

operating mode changes, controller state changes, mastership changes etc.

VB:

AddHandler AController.OperatingModeChanged, AddressOf

UpdateOpMode

AddHandler AController.StateChanged, AddressOf UpdateState

AddHandler AController.ConnectionChanged, AddressOf UpdateConn

C#:

AController.OperatingModeChanged += new UpdateOpMode;

AController.StateChanged += new UpdateState;

AController.ConnectionChanged += new UpdateConn;

Continued

Continues on next page

7 Using the PC SDK

7.4. Accessing the controller

3HAC028083-001 Revision: D216

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Controller events use their own threads. Carefully study Controller events and threads on

page 67 to avoid threading conflicts.

NOTE!

PC SDK 5.09 and onwards uses the generic event handling introduced by .NET Framework

2.0.

CAUTION!

Do not rely on receiving an initial event when setting up/activating a controller event. There

is no guarantee an event will be triggered, so you had better read the initial state from the

controller.

Backup and Restore

Using the Controller object you can call the Backup method. The argument is a string

describing the directory path on the controller where the backup should be stored. You can

also restore a previously backed up system. This requires mastership of Rapid and

Configuration and can only be done in Auto mode.

Backup sample

As the backup process is performed asynchronously you can add an event handler to receive

a BackupCompleted event when the backup is completed. The backup directory should be

created in the system backup directory, or else an exception will be thrown.

VB:

Dim BackupDir As String = "(BACKUP)$"+BackupDirName

AddHandler Me.AController.BackupCompleted, AddressOf

AController_BackupCompleted)

Me.AController.Backup(BackupDir)

C#:

string backupDir = "(BACKUP)$"+backupDirName;

this.aController.BackupCompleted += new

BackupEventHandler(controller_BackupCompleted);

this.aController.Backup(backupDir);

Restore sample

The Restore method is synchronous, i.e. execution will not continue until the restore

operation is completed.

VB:

Dim RestoreDir As String = "(BACKUP)$"+dirName

Dim M As Mastership

Try

MC = Mastership.Request(Me.AController.Configuration)

MR = Mastership.Request(Me.AController.Rapid)

Me.AController.Restore(RestoreDir, RestoreIncludes.All,

RestoreIgnores.All)

Finally

MC.Release()

MR.Release()

Continued

Continues on next page

7 Using the PC SDK

7.4. Accessing the controller

2173HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

End Try

C#:

string restoreDir = "(BACKUP)$"+dirName;

using (Mastership mc =

Mastership.Request(this.aController.Configuration), mr =

Mastership.Request(this.aController.Rapid))

{

this.aController.Restore(restoreDir, RestoreIncludes.All,

RestoreIgnores.All);

}

VirtualPanel

You can programmatically change the operating mode of the virtual IRC5 using the

VirtualPanel class and its ChangeMode method. This blocks the application thread until

the user manually accepts the mode change to Auto using the Virtual FlexPendant. An

alternative to blocking the application thread eternally is to add a time-out and use a try-

catch block to catch the TimeoutException.

VB:

Dim vp As VirtualPanel = VirtualPanel.Attach(AController)

Try

vp.ChangeMode(ControllerOperatingMode.Auto, 5000)

Catch ex As TimeoutException

Me.TextBox1.Text = "Timeout occurred at change to auto"

End Try

vp.Dispose()

C#:

VirtualPanel vp = VirtualPanel.Attach(aController);

try

{

vp.ChangeMode(ControllerOperatingMode.Auto, 5000);

}

catch (TimeoutException ex)

{

this.textBox1.Text = "Timeout occurred at change to auto";

}

vp.Dispose();

There are also the asynchronous method calls BeginChangeOperatingMode and

EndChangeOperatingMode. It is important to use the second method in the callback since

it returns the waiting thread to the thread-pool.

VB:

Dim vp As VirtualPanel = VirtualPanel.Attach(AController)

vp.BeginChangeOperatingMode(ControllerOperatingMode.Auto, New

AsyncCallback(AddressOf ChangeMode), vp)

Continued

Continues on next page

7 Using the PC SDK

7.4. Accessing the controller

3HAC028083-001 Revision: D218

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

VirtualPanel vp = VirtualPanel.Attach(aController);

vp.BeginChangeOperatingMode(ControllerOperatingMode.Auto, new

AsyncCallback(ChangedMode), vp);

The callback method must have the following signature and call the

EndChangeOperatingMode as well as dispose the VirtualPanel.

VB:

Private Sub ChangeMode(ByVal iar As IAsyncResult)

Dim vp As VirtualPanel = DirectCast(iar.AsyncState,

VirtualPanel)

vp.EndChangeOperatingMode(iar)

vp.Dispose()

.....

C#:

private void ChangedMode(IAsyncResult iar)

{

VirtualPanel vp = (VirtualPanel) iar.AsyncState;

vp.EndChangeOperatingMode(iar);

vp.Dispose();

....

Learn more

This User’s Guide only covers some of the PC SDK functionality. To get the full potential of

the PC SDK you should make use of the PC SDK Reference located in the PC SDK

installation directory. See PC SDK Reference on page 201.

You can also learn a lot by becoming an active member of the RobotStudio Community. Its

Robot Application Builder User Forum should be your number one choice when you find

yourself stuck with a coding issue you cannot solve on your own. See RobotStudio

Community on page 17 for further information.

Continued

7 Using the PC SDK

7.5.1. Working with RAPID data

2193HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5 Rapid domain

7.5.1. Working with RAPID data

Overview

The RapidDomain namespace enables access to RAPID data in the robot system. There are

numerous PC SDK classes representing the different RAPID data types. There is also a

UserDefined class used to reference RECORD structures in RAPID.

The ValueChanged event enables notification from the controller when persistent RAPID

data has changed.

To speed up event notification from the controller there is new functionality in PC SDK 5.10,

which allows you to set up subscription priorities. This possibility applies to I/O signals and

persistent RAPID data. This mechanism is further described in Implementing high priority

data subscriptions on page 226.

NOTE!

To read RAPID data you need to log on to the controller. To modify RAPID data you must

also request mastership of the Rapid domain.

Providing the path to the RAPID data

To read or write to RAPID data you must first create a RapidData object. The path to the

declaration of the data in the controller is passed as argument. If you don’t know the path you

need to search for the RAPID data by using the SearchRapidSymbol functionality. See

RAPID symbol search on page 157 for further information.

Direct access

Direct access requires less memory and is faster, and is therefore recommended if you do not

need to use the task and module objects afterwards.

The example below shows how to create a RapidData object that refers to the instance

“reg1” in the USER module.

VB:

 Dim Rd As RapidData = Me.AController.Rapid.GetRapidData(

"T_ROB1", "USER", "reg1")

C#:

RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "USER",

"reg1");

Hierarchical access

If you need the task and module objects hierarchical access can be more efficient.

GetRapidData exists in the Rapid, Task and Module class.

VB:

Rd = AController.Rapid.GetTask("T_ROB1").GetModule("USER").

GetRapidData("reg1")

C#:

rd = aController.Rapid.GetTask("T_ROB1").GetModule("USER").

GetRapidData("reg1");

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

3HAC028083-001 Revision: D220

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Accessing data declared in a shared module

If your application is to be used with a multi-move system (one controller and several motion

tasks/robots), it may happen that the RAPID instance you need to access is declared in a -

Shared RAPID module. Such a module can be used by all tasks, T_ROB1, T_ROB2 etc.

This example shows how to create a RapidData object that refers to the instance “reg100”,

which is declared in a shared module.

C#:

Task tRob1 = aController.Rapid.GetTask("T_ROB1");

if (tRob1 != null)

{

RapidData rData = tRob1.GetRapidData("reg100");

}

NOTE!

If the data is declared in a -Shared -Hidden module it cannot be accessed by the PC SDK.

Creating an object representing the RAPID data value

The RapidData object stores the path to the RAPID data. But this is not enough if you want

to access its value (at least not if you want to modify it). To do that you need to create another

object, which represents the value of the RAPID data.

In the RapidDomain namespace there are types representing the different RAPID data types.

To create the object needed to represent the RAPID data value you use the RapidData

property Value and cast it to the corresponding type, e.g. Num, Bool or Tooldata.

This is how this is done if you want to access the value of a RAPID data of the RAPID data

type bool:

VB:

’declare a variable of data type RapidDomain.Bool

Dim rapidBool As RapidDomain.Bool

Dim rd As RapidData = Me.AController.Rapid.GetRapidData("T_ROB1",

"MainModule", "flag")

’test that data type is correct before cast

If TypeOf rd.Value Is RapidDomain.Bool Then

rapidBool = DirectCast(rd.Value, RapidDomain.Bool)

’check if the value of the RAPID data is true

If (rapidBool.Value) Then

’ Do something...

End If

EndIf

Continued

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

2213HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

//declare a variable of data type RapidDomain.Bool

RapidDomain.Bool rapidBool;

RapidDomain.RapidData rd =

aController.Rapid.GetRapidData("T_ROB1", "MainModule",

"flag");

//test that data type is correct before cast

if (rd.Value is ABB.Robotics.Controllers.RapidDomain.Bool)

{

rapidBool =

(ABB.Robotics.Controllers.RapidDomain.Bool)rd.Value;

//assign the value of the RAPID data to a local variable

bool boolValue = rapidBool.Value;

}

If you just want to read this variable you can use this technique instead of creating a

RapidDomain.Bool object:

VB:

Dim b As Boolean = Convert.ToBoolean(rd.Value.ToString)

C#:

bool b = Convert.ToBoolean(rd.Value.ToString());

The .NET type ToolData (representing the RAPID data type tooldata) can be created like

this:

VB:

Dim ATool As ToolData

If Rd.Value Is ToolData Then

ATool = DirectCast(Rd.Value, ToolData)

End If

C#:

ToolData aTool;

if (rd.Value is ToolData)

{

aTool = (ToolData) rd.Value;

}

IRapidData.ToString method

All RapidDomain structures representing RAPID data types implement the IRapidData

interface. It has a ToString method, which returns the value of the RAPID data in the form

of a string. This is a simple example:

string boolValue = rapidBool.ToString();

Continued

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

3HAC028083-001 Revision: D222

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The string is formatted according to the principle described in IRapidData.FillFromString

method on page 222.

Below is an example of a more complex data type. The ToolData Tframe property is of type

Pose. Its Trans value is displayed in a label in the format [x, y, z].

VB:

Me.Label1.Text = ATool.Tframe.Trans.ToString()

C#:

this.label1.Text = aTool.Tframe.Trans.ToString();

IRapidData.FillFromString method

The IRapidData interface also has a FillFromString method, which fills the object with

a valid RAPID string representation. The method can always be used when you need to

modify RAPID data. Using the method with the RapidDomain.Bool variable used earlier

in the chapter will look like this:

rapidBool.FillFromString("True")

Using it for a RapidDomain.Num variable is similar:

rapidNum.FillFromString("10")

String format

The format is constructed recursively. An example is the easiest way of illustrating this.

Example:

The RapidDomain.Pose structure represents the RAPID data type pose, which describes

how a coordinate system is displaced and rotated around another coordinate system.

public struct Pose : IRapidData

{

public Pos trans;

public Orient rot;

}

This is an example in RAPID:

VAR pose frame1;

...

frame1.trans := [50, 0, 40];

frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a displacement

in position where X=50 mm, Y=0 mm and Z=40 mm. There is no rotation.

The RapidDomain.Pose structure consists of two struct variables called trans and rot of the

data types Pos and Orient. Pos has three floats and Orient consists of four doubles. The

FillFromString format for a Pose object is “[[1.0, 0.0, 0.0, 0.0][10.0, 20.0, 30.0]]”.

The example shows how to write a new value to a RAPID pose variable:

VB:

If TypeOf rd.Value Is Pose Then

Dim rapidPose As Pose = DirectCast(rd.Value, Pose)

rapidPose.FillFromString("[[1.0, 0.0, 0.0, 0.0][10, 20, 30]]")

rd.Value = rapidPose

Continued

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

2233HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

End If

C#:

if (rd.Value is Pose)

{

Pose rapidPose = (Pose) rd.Value;

rapidPose.FillFromString("[[1.0, 0.5, 0.0, 0.0][10, 15, 10]]");

rd.Value = rapidPose;

}

NOTE!

The string format must be carefully observed. If the string argument has the wrong format, a

RapidDataFormatException is thrown.

Writing to RAPID data

Writing to RAPID data is only possible using the type cast RapidData value, to which the

new value is assigned. To write the new value to the RAPID data in the controller you must

then assign the .Net object to the Value property of the RapidData object. This example

uses the rapidBool object created in Creating an object representing the RAPID data value

on page 220.

VB:

’Assign new value to .Net variable

rapidBool.Value = False

’Request mastership of Rapid before writing to the controller

Me.master = Mastership.Request(Me.AController.Rapid)

’Write the new value to the data in the controller

rd.Value = rapidBool

’Release mastership as soon as possible

Me.master.Dispose

C#:

//Assign new value to .Net variable

rapidBool.Value = false;

//Request mastership of Rapid before writing to the controller

this.master = Mastership.Request(this.controller.Rapid);

rd.Value = rapidBool;

//Release mastership as soon as possible

this.master.Dispose();

Continued

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

3HAC028083-001 Revision: D224

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

See Mastership on page 41 for detailed information about on how the controller handles write

access and Start program execution on page 208 for another code example of implementing

mastership in a PC SDK application.

This was an easy example, as the value to change was a simple bool. Often, however, RAPID

uses complex structures. By using the FillFromString method you can assign a new

Value to any RapidData and write it to the controller.

The string must be formatted according to the principle described in the previous section. The

following example shows how to write a new value to the pos structure (x, y, z) of a RAPID

tooldata:

VB:

Dim APos As Pos = New Pos

APos.FillFromString("[2,3,3]")

Me.ATool.Tframe.Trans = APos

Me.Rd.Value = Me.ATool

C#:

Pos aPos = new Pos();

aPos.FillFromString("[2,3,3]");

this.aTool.Tframe.Trans = aPos;

this.rd.Value = this.aTool;

NOTE!

The new value is not written to the controller until the last statement is executed.

Letting the user know that RAPID data has changed

In order to be notified that RAPID data has changed you need to add a subscription to the

ValueChanged event of the RapidData instance. Note, however, that this only works for

persistent RAPID data.

Add subscription

This is how you add a subscription to the ValueChanged event:

VB:

Addhandler Rd.ValueChanged, AddressOf Rd_ValueChanged

C#:

this.rd.ValueChanged += rd_ValueChanged;

Continued

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

2253HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Handle event

The implementation of the event handler may look like this. Remember that controller events

use their own threads, and avoid Winforms threading problems by the use of

Control.Invoke, which forces the execution from the background thread to the GUI

thread.

VB:

Private Sub Rd_ValueChanged(ByVal sender As Object, ByVal e As

DataValueChangedEventArgs)

Me.Invoke(New EventHandler (AddressOf UpdateGUI), sender, e)

End Sub

C#

private void rd_ValueChanged(object sender,

DataValueChangedEventArgs e)

{

this.Invoke(new EventHandler (UpdateGUI), sender, e);

}

See Controller events and threads on page 67 to learn more about potential threading

conflicts in RAB applications.

Read new value from controlller

Update the user interface with the new value. As the value is not part of the event argument,

you must use the RapidData Value property to retrieve the new value:

VB:

Private Sub UpdateGUI(ByVal sender As Object, ByVal e As

System.EventArgs)

Dim Tool1 As ToolData = DirectCast(Me.Rd.Value, ToolData)

Me.Label1.Text = Tool1.Tframe.Trans.ToString()

End Sub

C#

private void UpdateGUI(object sender, System.EventArgs e)

{

ToolData tool1= (ToolData)this.rd.Value;

this.label1.Text = tool1.Tframe.Trans.ToString();

}

Continued

Continues on next page

7 Using the PC SDK

7.5.1. Working with RAPID data

3HAC028083-001 Revision: D226

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Subscriptions work only for RAPID data declared as PERS.

Implementing high priority data subscriptions

To speed up event notification from the controller it is possible to set up subscription priorities

for persistent RAPID data. To do this you use the Subscribe method and the enumeration

EventPriority as argument. The example shows an ordinary signal subscription and a

subscription with high priority:

VB:

Addhandler Rd.ValueChanged, AddressOf Rd_ValueChanged

Rd.Subscribe(AddressOf Rd_Changed, EventPriority.High)

C#:

rd.ValueChanged += rd_ValueChanged;

rd.Subscribe(rd_Changed, EventPriority.High);

To deactivate subscriptions with high priority you call the Unsubscribe method like this:

VB:

Rd.Unsubscribe(AddressOf Rd_ValueChanged)

C#:

rd.Unsubscribe(rd_Changed);

NOTE!

High priority subscriptions can be used for I/O signals and RAPID data declared PERS. The

controller can handle 64 high priority subscriptions.

RapidData disposal

You are recommended to dispose of RapidData objects when they are no longer needed. See

Memory management in PC applications on page 213 for further information.

VB:

If Not Rd Is Nothing Then

Rd.Dispose()

Rd = Nothing

End If

C#:

if (rd != null)

{

rd.Dispose();

rd = null;

}

Continued

7 Using the PC SDK

7.5.2. Handling arrays

2273HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.2. Handling arrays

Overview

In RAPID you can have up to three dimensional arrays. These are accessible by using a

RapidData object like for any other RAPID data.

There are mainly two ways of accessing each individual element of an array: by indexers or

by an enumerator.

ArrayData object

If the RapidData references a RAPID array is Value property returns an object of

ArrayData type. Before making a cast, check the type using the is operator or by using the

IsArray property on the RapidData object.

VB:

Dim RD As RapidData = AController.Rapid.GetRapidData("T_ROB1",

"User", "string_array")

If RD.IsArray Then

Dim AD As ArrayData = DirectCast(RD.Value,ArrayData)

.....

End If

C#:

RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "User",

"string_array");

if (rd.IsArray)

{

ArrayData ad = (ArrayData)rd.Value;

.....

}

Array dimensions

The dimension of the array is returned by the Rank property. If you need to check the length

of the individual arrays you can use the GetLength method on the ArrayData object

passing the dimension index as argument.

VB:

Dim ARank As Integer = AD.Rank

Dim Len As Integer = AD.GetLength(ARank)

C#:

int aRank = ad.Rank;

int len = ad.GetLength(aRank);

Continues on next page

7 Using the PC SDK

7.5.2. Handling arrays

3HAC028083-001 Revision: D228

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Array item access by using indexers

By the use of indexers you can access each array element, even in three dimensional arrays.

A combination of the GetLength method and For loops makes it possible to access any

item:

VB:

Dim ASum As Double = 0R

Dim ANum As Num

If AD.Rank = 1 Then

For I As Integer = 1 To AD.Length

ANum = DirectCast(ad.[I], Num)

ASum += DirectCast(ANum, Double)

Next

ElseIf AD.Rank = 2 Then

For I As Integer = 1 To AD.GetLength(1)

For J As Integer = 1 To AD.GetLength(2)

ANum = DirectCast(ad[I, J], Num)

ASum += DirectCast(ANum, Double)

Next

Next

Else

For I As Integer = 1 To AD.GetLength(1)

For J As Integer = 1 To AD.GetLength(2)

For K As Integer = 1 To AD.GetLength(3)

ANum = DirectCast(ad[I, J, K], Num)

ASum += DirectCast(ANum, Double)

Next

Next

Next

End If

C#:

double sum = 0d;

Num aNum;

if (ad.Rank == 1) {

for (int i = 1; i <= ad.Length; i++) {

aNum = (Num)ad.[i];

aSum += (double)ANum;

}

}

elseif (ad.Rank == 2) {

for(int i = 1; i< ad.GetLength(1); i++) {

for (int j = 1; j <= ad.Length; j++) {

aNum = (Num)ad.[i,j];

aSum += (double)ANum;

}

}

Continued

Continues on next page

7 Using the PC SDK

7.5.2. Handling arrays

2293HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

}

else {

for(int i = 1; i< ad.GetLength(1); i++) {

for(int j = 1; j< ad.GetLength(2); j++) {

for (int k = 1; k <= ad.GetLength(3); k++) {

aNum = (Num)ad.[i, j, k];

aSum += (double)ANum;

}

}

}

}

Array item access using enumerator

You can also use the enumerator operation (foreach) like it is used by collections in .NET.

Notice that it can be used for both one dimension and multi-dimensional arrays to access each

individual element. The previous example is a lot simpler this way:

VB:

Dim ASum As Double = 0R

Dim ANum As Num

For Each ANum As Num In AD

ASum += DirectCast(ANum, Double)

Next

C#:

double sum = 0d;

Num aNum;

foreach(Num aNum in ad)

{

aSum += (double)ANum;

}

Continued

7 Using the PC SDK

7.5.3. ReadItem and WriteItem methods

3HAC028083-001 Revision: D230

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.3. ReadItem and WriteItem methods

Overview

An alternative way of accessing RAPID data stored in an array are the ReadItem and

WriteItem methods.

ReadItem method

Using the ReadItem method you can directly access a RapidData item in an array, e.g. an

array with RobTargets or Nums. The index to the item is explicitly specified in the ReadItem

call. The first item is in position 1, i.e. the array is 1-based as in RAPID.

VB:

Dim ANum As Num

aNum = DirectCast(rd.ReadItem(1, 2), Num)

C#:

Num aNum = (Num)rd.ReadItem(1, 2);

This example retrieves the second Num value in the first array of the RAPID data variable

referenced by rd.

WriteItem method

In the same manner it is possible to use the WriteItem method to write to an individual

RAPID data item in an array. This example shows how to write the result of an individual

robot operation into an array representing a total robot program with several operations:

VB:

Dim ANum As Num = New Num(OPERATION_OK)

rd.WriteItem(ANum, 1, 2)

C#:

Num aNum = new Num(OPERATION_OK);

rd.WriteItem(aNum, 1, 2);

NOTE!

If the index is out of bounds an IndexOutOfRangeException will be thrown.

7 Using the PC SDK

7.5.4. UserDefined data

2313HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.4. UserDefined data

Overview

RECORD structures are common in RAPID code. To handle these unique data types a

UserDefined class is available. This class has properties and methods to handle individual

components of a RECORD.

In some cases implementing your own structure can improve application design and code

maintenance.

Creating UserDefined object

The UserDefined constructor takes a RapidDataType object as argument. To retrieve a

RapidDataType object you need to provide a RapidSymbol or the path to the declaration

of the RAPID data type.

This example creates a UserDefined object representing the RAPID RECORD

processdata:

VB:

Dim rdt As RapidDataType

rdt = Me.controller.Rapid.GetRapidDataType("T_ROB1", "MyModule",

"processdata")

Dim processdata As UserDefined = New UserDefined(rdt)

C#

RapidDataType rdt;

rdt = this.controller.Rapid.GetRapidDataType("T_ROB1",

"MyModule", "processdata");

UserDefined processdata = new UserDefined(rdt);

Reading UserDefined data

UserDefined can be used to read any kind of RECORD variable from the controller. The

individual components of the RECORD are accessible using the Components property and

an index. Each Component can be read as a string.

VB:

Dim processdata As UserDefined = DirectCast(rd.Value, UserDefined)

Dim No1 As String = processdata.Components(0).ToString()

Dim No2 AS String = processdata.Components(1),ToString()

C#:

UserDefined processdata = (UserDefined) rd.Value;

string no1 = processdata.Components[0].ToString();

string no2 = processdata.Components[1].ToString();

Each individual string can then be used in a FillFromString method to convert the

component into a specific data type, e.g. RobTarget or ToolData. See

IRapidData.FillFromString method on page 222 for details.

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

3HAC028083-001 Revision: D232

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Writing to UserDefined data

If you want to modify UserDefined data and write it to the controller you must first read the

UserDefined object and the apply new values using the FillFromString method. Then

you need to perform a write operation using the RapidData.Value property.

VB:

processdata.Components(0).FillFromString("[0,0,0]")

processdata.Components(1).FillFromString("10")

rd.Value = ud

C#:

processdata.Components[0].FillFromString("[0,0,0]");

processdata.Components[1].FillFromString("10");

rd.Value = ud;

See IRapidData.FillFromString method on page 222 and Writing to RAPID data on page 223

for further information and code samples.

Recursively reading the structure of any RECORD data type

If you need to know the structure of a RECORD data type (built-in or user-defined) you must

first retrieve the record components of the record. Then you need to iterate the record

components and check if any of them are also records. This procedure must be repeated until

all record components are atomic types.This code example shows how to get information

about the robtarget data type. The robtarget URL is “RAPID/robtarget” or just “robtarget”.

private void SearchRobtarget()

{

RapidSymbol[] rsCol = tRob1.SearchRapidSymbol(sProp, "RAPID/

robtarget", "p10");

RapidDataType theDataType;

if (rsCol.Length > 0)

{

Console.WriteLine("RapidSymbol name = " + rsCol[0].Name);

theDataType = RapidDataType.GetDataType(rsCol[0]);

Console.WriteLine("DataType = " + theDataType.Name);

if (theDataType.IsRecord)

{

RapidSymbol[] syms = theDataType.GetComponents();

SearchSymbolStructure(syms);

}

}

}

Continued

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

2333HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

private void SearchSymbolStructure(RapidSymbol[] rsCol)

{

RapidDataType theDataType;

foreach (RapidSymbol rs in rsCol)

{

Console.WriteLine("RapidSymbol name = " + rs.Name);

theDataType = RapidDataType.GetDataType(rs);

Console.WriteLine("DataType = " + theDataType.Name);

if (theDataType.IsRecord)

{

RapidSymbol[] syms = theDataType.GetComponents();

SearchSymbolStructure(syms);

}

}

}

Continued

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

3HAC028083-001 Revision: D234

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The code example above produces the following printout:

RapidSymbol name = p10

DataType = robtarget

RapidSymbol name = trans

DataType = pos

RapidSymbol name = x

DataType = num

RapidSymbol name = y

DataType = num

RapidSymbol name = z

DataType = num

RapidSymbol name = rot

DataType = orient

RapidSymbol name = q1

DataType = num

RapidSymbol name = q2

DataType = num

RapidSymbol name = q3

DataType = num

RapidSymbol name = q4

DataType = num

RapidSymbol name = robconf

DataType = confdata

RapidSymbol name = cf1

DataType = num

RapidSymbol name = cf4

DataType = num

RapidSymbol name = cf6

DataType = num

RapidSymbol name = cfx

DataType = num

RapidSymbol name = extax

DataType = extjoint

RapidSymbol name = eax_a

Continued

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

2353HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

DataType = num

RapidSymbol name = eax_b

DataType = num

RapidSymbol name = eax_c

DataType = num

RapidSymbol name = eax_d

DataType = num

RapidSymbol name = eax_e

DataType = num

RapidSymbol name = eax_f

DataType = num

Implement your own struct representing a RECORD

This example shows how you can create your own .NET data type representing a RECORD

in the controller instead of using the UsefDefined type.

Creating ProcessData type

VB:

Dim rdt As RapidDataType = Me.ARapid.GetRapidDataType("T_ROB1",

"MyModule", "processdata")

Dim pc As ProcessData = New ProcessData(rdt)

pc.FillFromString(rd.Value.ToString())

C#

RapidDataType rdt = this.aRapid.GetRapidDataType("T_ROB1",

"MyModule", "processdata");

ProcessData pc = new ProcessData(rdt);

pc.FillFromString(rd.Value.ToString());

Implementing ProcessData struct

This example shows how the new data type ProcessData may be implemented. As you see,

this is done by using a .NET struct and letting ProcessData wrap the UserDefined object.

The struct implementation should include a FillFromString and ToString method, i.e.

inherit the IRapidData interface. Any properties and methods may also be implemented.

VB:

Public Structure ProcessData

Implements IRapidData

Private data As UserDefined

Public Sub New(ByVal rdt As RapidDataType)

data = New UserDefined(rdt)

End Sub

Private Property IntData() As UserDefined

Get

Return data

Continued

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

3HAC028083-001 Revision: D236

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

End Get

Set(ByVal Value As UserDefined)

data = Value

End Set

End Property

.....

End Structure

C#:

public struct ProcessData: IRapidData

{

private UserDefined data;

public ProcessData(RapidDataType rdt)

{

data = new UserDefined(rdt);

}

private UserDefined IntData

{

get { return data; }

set { data = value; }

}

public int StepOne

{

get

{

int res =

Convert.ToInt32(IntData.Components[0].ToString())

;

return res;

}

set

{

IntData.Components[0] = new Num(value);

}

}

}

Implementing IRapidData methods

This piece of code shows how the two IRapidData methods ToString and

FillFromString can be implemented.

VB:

Public Sub FillFromString(ByVal newValue As String) Implements

ABB.Robotics.Controllers.RapidDomain.IRapidData.FillFromStr

ing

IntData.FillFromString(newValue)

Continued

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

2373HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

End Sub

Public Overrides Function ToString() As String Implements

ABB.Robotics.Controllers.RapidDomain.IRapidData.ToString

Return IntData.ToString()

End Function

C#:

public void FillFromString(string newValue)

{

IntData.FillFromString(newValue);

}

public override string ToString()

{

return IntData.ToString();

}

NOTE! The ToString method has to use the Overrides keyword in Visual Basic and the

override keyword in C#.

Property implementation

Each item in the RECORD structure should have a corresponding property in the extended

.NET data type. The get and set methods have to implement the conversion from/to controller

data type to .NET data type.

VB:

Public Property Step() As Integer

Get

Dim res As Integer =

Convert.ToInt32(IntData.Components(0).ToString())

Return res

End Get

Set(ByVal Value As Integer)

Dim tmp As Num = New Num

tmp.FillFromNum(Value)

IntData.Components(0) = tmp

End Set

End Property

C#:

public int Step

{

get

{

int res =

Convert.ToInt32(IntData.Components[0].ToString());

return res;

Continued

Continues on next page

7 Using the PC SDK

7.5.4. UserDefined data

3HAC028083-001 Revision: D238

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

}

set

{

Num tmp = new Num();

tmp.FillFromNum(value);

IntData.Components[0] = tmp;

}

}

Continued

7 Using the PC SDK

7.5.5. RAPID symbol search

2393HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.5. RAPID symbol search

Overview

Most RAPID elements (variables, modules, tasks, records etc.) are members of a symbol

table, in which their names are stored as part of a program tree structure.

It is possible to search this table and get a collection of RapidSymbol objects, each one

including the RAPID object name, location and type.

Search method

The search must be configured carefully, due to the large amount of RAPID symbols in a

system. To define a query you need to consider from where in the program tree the search

should be performed, which symbols are of interest and what information you need for the

symbols of interest.To enable search from different levels the SearchRapidSymbol method

is a member of several different SDK classes, e.g. Task, Module and Routine. This example

shows a search performed with Task as the starting point:

VB:

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "num", string.Empty)

C#:

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "num", string.Empty);

The SearchRapidSymbol method has three arguments. The first argument, of data type

RapidSymbolSearchProperties, is detailed in the next section. The second and third

arguments are detailed in the following sections.

Search properties

The RapidSymbolSearchProperties type is rather complex and requires some

knowledge about RAPID concepts.

It is used to specify search method, type of RAPID symbol to search for, whether the search

should be recursive, whether the symbols are local and/or global and whether or not the

search result should include only symbols currently used by a program. If a property is not

valid for a particular symbol, it will be discarded and will not exclude the symbol from the

search result.

The table describes the different properties of RapidSymbolSearchProperties.

Property Description

SearchMethod Specifies the direction of the search, which can be Block
(down) or Scope (up). Example: If the starting point of the
search is a routine, a block-search will return the symbols
declared within the routine, whereas a scope-search will return
the symbols accessible from the routine.

Continues on next page

7 Using the PC SDK

7.5.5. RAPID symbol search

3HAC028083-001 Revision: D240

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Default instance

RapidSymbolSearchProperties has several static methods that return a default

instance.

VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault()

C#:

RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

The default instance has the following values:.

Using this instance you can specify the search properties of the search you want to perform.

Example:

VB:

SProp.SearchMethod = SymbolSearchMethod.Scope

SProp.Types = SymbolTypes.Constant Or SymbolTypes.Persistent

SProp.Recursive = False

Types Specifies which RAPID type(s) you want to search for. The
SymbolTypes enumeration includes Constant, Variable,
Persistent, Function, Procedure, Trap, Module,
Task, Routine, RapidData. etc. (Routine includes
Function, Procedure and Trap. RapidData includes
Constant, Variable and Persistent.)

Recursive For both block and scope search it is possible to choose if the
search should stop at the next scope or block level or
recursively continue until the root (or leaf) of the symbol table
tree is reached.

GlobalSymbols Specifies whether global symbols should be included.

LocalSymbols Specifies whether local symbols should be included.

InUse Specifies whether only symbols in use by the loaded RAPID
program should be searched.

Property Description

Property Description

SearchMethod SymbolSearchMethod.Block

Types SymbolTypes.NoSymbol

Recursive True

GlobalSymbols True

LocalSymbols True

InUse True

Continued

Continues on next page

7 Using the PC SDK

7.5.5. RAPID symbol search

2413HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

sProp.SearchMethod = SymbolSearchMethod.Scope;

sProp.Types = SymbolTypes.Constant | SymbolTypes.Persistent

sProp.Recursive = false;

Continued

Continues on next page

7 Using the PC SDK

7.5.5. RAPID symbol search

3HAC028083-001 Revision: D242

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

The default instance has the property Types set to NoSymbol. It must be specified in order

for a meaningful search to be performed!

NOTE!

The Types property allows you to combine several types in a search. See the example above.

NOTE!

See PC SDK Reference for the static methods CreateDefaultForData and

CreateDefaultForRoutine.

Data type argument

The second argument of the SearchRapidSymbol method is the RAPID data type written

as a string. The data type should be written with small letters, e.g. “num”, “string” or

“robtarget”. It can also be specified as string.Empty.

NOTE!

To search for a UserDefined data type the complete path to the module that holds the

RECORD definition must be passed, like this:

result = tRob1.SearchRapidSymbol(sProp,"RAPID/T_ROB1/MyModule/

MyDataType", string.Empty);

However, if MyModule is configured as -Shared the system sees its data types as installed,

and the task or module should not be included in the path

result = tRob1.SearchRapidSymbol(sProp,"MyDataType", string.Empty);

Symbol name argument

The third argument is the name of the RAPID symbol. It can be specified as string.Empty

if the name of the symbol to retrieve is not known, or if the purpose is to search ALL “num”

data in the system for example.

Instead of the name of the RAPID symbol a regular expression can be used. The search

mechanism will then match the pattern of the regular expression with the symbols in the

symbol table. The regular expression string is not case sensitive

A regular expression is a powerful mechanism. It may consist of ordinary characters and meta

characters. A meta character is an operator used to represent one or several ordinary

characters, and the purpose is to extend the search.

Within a regular expression, all alphanumeric characters match themselves, i.e. the pattern

“abc” will only match a symbol named “abc”. To match all symbol names containing the

character sequence “abc”, it is necessary to add some meta characters. The regular expression

for this is “.*abc.*”.

The available meta character set is shown below:

Expression Meaning

. Any single character

Continued

Continues on next page

7 Using the PC SDK

7.5.5. RAPID symbol search

2433HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Example 1

"^c.*"

Returns all symbols starting with c or C.

Example 2

"^reg[1-3]"

Returns reg1, Reg1, REG1, reg2, Reg2, REG2, reg3, Reg3 and REG3.

Example 3

"^c.*|^reg[1,2]"

Returns all symbols starting with c or C as well as reg1, Reg1, REG1, reg2, Reg2 and REG2.

SearchRapidSymbol example

This example searches for VAR, PERS or CONST num data in a task and its modules. The

search is limited to globally declared symbols. By default the search method is Block, so it

does not have to be set.

VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault()

SProp.Types = SymbolTypes.RapidData

SProp.LocalSymbols = False

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "num", string.Empty)

C#:

RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

sProp.Types = SymbolTypes.RapidData;

sProp.LocalSymbols = false;

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "num", string.Empty);

^ Any symbol starting with

[s] Any single character in the non-empty set s, where s is a
sequence of characters. Ranges may be specified as c-c.

[^s] Any single character not in the set s.

r* Zero or more occurrences of the regular expression r.

r+ One or more occurrences of the regular expression r.

r? Zero or one occurrence of the regular expression r.

(r) The regular expression r. Used for separate that regular
expression from another.

r | r’ The regular expressions r or r’.

.* Any character sequence (zero, one or several characters).

Expression Meaning

Continued

Continues on next page

7 Using the PC SDK

7.5.5. RAPID symbol search

3HAC028083-001 Revision: D244

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Search for UserDefined RAPID data - example

In this example a user defined RECORD data type (“mydata”) is declared in a module

(“myModule”). Assuming that the end-user can declare and use data of this data type in any

program module, the search method must be Block (default). A search for all “mydata”

instances may look like this:

VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault()

SProp.Types = SymbolTypes.RapidData

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "RAPID/T_ROB1/myModule/

mydata", string.Empty)

C#:

RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

sProp.Types = SymbolTypes.RapidData;

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "RAPID/T_ROB1/myModule/

mydata", string.Empty);

NOTE!

If myModule is configured as -Shared and all myData instances are declared in myModule the

search method must be set to Scope and the SearchRapidSymbol call should look like this:

rsCol = aTask.SearchRapidSymbol(sProp, "mydata", string.Empty);

Continued

7 Using the PC SDK

7.5.6. Working with RAPID modules and programs

2453HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.6. Working with RAPID modules and programs

Overview

Using the Task object it is possible to load and save individual modules and programs. You

can also unload programs, as well as reset the program pointer and start program execution.

NOTE!

All these operations require mastership of the RAPID domain. See Mastership on page 215

for details.

Load modules and programs

To load a module or program file you need the path to the file on the controller. When the file

is loaded into memory the RapidLoadMode enumeration argument, Add or

Replace,specifies whether or not it should replace old modules or programs.

If the file extension is not a valid module (mod or sys) or program (pgf) extension an

ArgumentException is thrown.

VB:

Try

ATask.LoadProgramFromFile(APrgFileName, RapidLoadMode.Replace)

ATask.LoadModuleFromFile(AModFileName, RapidLoadMode.Add)

Catch ex As ArgumentException

Return

End Try

C#:

try

{

aTask.LoadProgramFromFile(aPrgFileName, RapidLoadMode.Replace);

aTask.LoadModuleFromFile(aModFileName, RapidLoadMode.Add);

}

catch (ArgumentException ex)

{

return;

}

Continues on next page

7 Using the PC SDK

7.5.6. Working with RAPID modules and programs

3HAC028083-001 Revision: D246

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

All program files must reside in the file system of the controller and not locally on the PC. In

order to load a program from the PC you must first download it to the controller by using the

FileSystem.PutFile method. See Saving files on page 265 for details.

NOTE!

If the User Authorization System of the controller is used by the PC SDK application, it is

required that the logged on user has the UAS grant UAS_RAPID_LOADPROGRAM to load

and unload RAPID programs. See the PC SDK Reference for further information about which

grants are necessary for a specific PC SDK method.

Save programs and modules

You can save programs using the Task.SaveProgramToFile method and a single module

by using the Module.SaveToFile method.

To unload a program after it has been saved to file you call DeleteProgram().

VB:

Dim TaskCol As Task() = AController.Rapid.GetTasks()

Dim AnObject As Object

For Each AnObject in TaskCol

ATask = DirectCast(AnObject, Task)

ATask.ProgramName = ATask.Name

ATask.SaveProgramToFile(SaveDir)

ATask.DeleteProgram()

Next

C#:

Task[] taskCol = aController.Rapid.GetTasks();

foreach (Task aTask in taskCol)

{

aTask.ProgramName = aTask.Name;

aTask.SaveProgramToFile(saveDir);

aTask.DeleteProgram();

}

In this example a module is saved to file:

VB:

AModule.SaveToFile(AFilePath)

C#

aModule.SaveToFile(aFilePath);

ResetProgramPointer method

Using ResetProgramPointer you can set the program pointer to the main entry point of

the task.

VB:

ATask.ResetProgramPointer()

Continued

Continues on next page

7 Using the PC SDK

7.5.6. Working with RAPID modules and programs

2473HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

aTask.ResetProgramPointer();

Start program

Starting program execution in the robot controller can only be done in automatic operating

mode. There are several overloaded Start methods to use, the simplest way to start RAPID

execution of a controller task is:

VB:

ATask.Start()

C#:

aTask.Start();

NOTE!

If your application uses the User Authorization System of the controller (see User

Authorization System on page 70) you should also check that the current user has the grant

UAS_RAPID_EXECUTE before calling the Start method.

Execution change event

It is possible to subscribe to events that occur when a RAPID program starts and stops. It is

done like this:

VB:

AddHandler AController.Rapid.ExecutionStatusChanged, AddressOf

UpdateUI

C#

aController.Rapid.ExecutionStatusChanged += UpdateUI;

See Avoiding threading conflicts on page 259and Letting the user know that RAPID data has

changed on page 224 for information about how to write the event handler that is needed to

update the GUI due to a controller event.

Continued

7 Using the PC SDK

7.5.7. Enable operator response to RAPID UI-instructions from a PC

3HAC028083-001 Revision: D248

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.7. Enable operator response to RAPID UI-instructions from a PC

Remote operator dialog

RAB 5.12 supports operator dialogs to be launched on a PC instead of the FlexPendant when

RAPID UI- and TP-instructions are executed. In this chapter this new feature is referred to as

Remote operator dialog. It enables an operator to give the feedback required by the RAPID

program from a PC instead of using the FlexPendant.

NOTE!

Remote operator dialog can only be used with RobotWare 5.12 and later.

Supported RAPID instructions

The following RAPID instructions are supported:

• UIAlphaEntry

• UIListView

• UIMessageBox

• UIMsgBox

• UINumEntry

• UINumTune

• TPErase

• TPReadFK

• TPReadNum

• TPWrite

UIInstructionType

The PC SDK UIInstructionType enumeration defines the different RAPID instructions

listed above. For a description of each instruction type, see PC SDK Reference. Below is an

example of such a description.

Example UIInstructionType.UIAlphaEntry :

Member Description

UIAlphaEntry The UIAlphaEntry (User Interaction Alpha Entry) is used to let
an operator communicate with the robot system via RAPID, by
enabling him to enter a string from the FlexPendant or from a
PC SDK application. After the operator has entered the text, it is
transferred back to the RAPID program by calling UIAlphaEn-
tryEventArgs.SendAnswer.

Continues on next page

7 Using the PC SDK

7.5.7. Enable operator response to RAPID UI-instructions from a PC

2493HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

TIP!

For complete information about the usage in RAPID refer to RAPID Technical reference

manual (easily accessed from within RobotStudio for example).

Increased flexibility

Making use of the Remote operator dialog feature, the end-user of the robot system can

choose whether to use the FlexPendant or the PC SDK application to answer a RAPID UI- or

TP-instruction.

The FlexPendant will always show the operator dialog the usual way. If the operator responds

from the PC the message on the FlexPendant will disappear.

NOTE!

Likewise, the dialog of the PC SDK application should disappear if the operator chooses to

respond from the FlexPendant. This is handled by the PC SDK programmer.

Basic approach
The basic procedure for implementing Remote operator dialog in a PC SDK application is
shown below. The same approach is used internally by the FlexPendant when it launches its
operator view.

Step Action

1 Set up a subscription to UIInstructionEvent.

2 In the event handler check the UIInstructionEventType from the event
arguments. If Post or Send create an operator dialog by using the information
provided by the event arguments.

3 To transfer the response of the end-user to the RAPID program call the
SendAnswer method of the specialized UIInstructionEventArgs object.

4 Remove any existing operator dialog if you get a UIInstructionEvent of
UIInstructionEventType.Abort.

Continued

Continues on next page

7 Using the PC SDK

7.5.7. Enable operator response to RAPID UI-instructions from a PC

3HAC028083-001 Revision: D250

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Remember that controller events are always received on a background thread and that you

need to enforce execution to the GUI thread by the use of Invoke before launching the

operator dialog. See Controller events and threads on page 67 for details.

UIInstructionEvent

To be notified when a UI-instruction event has occurred in the controller, you need to set up

a subscription to UIInstructionEvent. To do that you use the UIInstruction property

of the Rapid class, like this:

Controller c = new Controller();

c.Rapid.UIInstruction.UIInstructionEvent += OnUIInstructionEvent;

TIP!

For a code example including an event handler see UIInstructionEvent in the PC SDK

Reference.

UIInstruction event arguments

To create the dialog in accordance with the arguments of the RAPID instruction and to

transfer the response of the operator back to the executing RAPID program, you use the

information of the event arguments.

UIInstructionEventArgs

The UIInstructionEventArgs object holds information about which RAPID task and

which UI- or TP-instruction triggered the event. The picture below shows all

UIInstructionEventArgs members.

Continued

Continues on next page

7 Using the PC SDK

7.5.7. Enable operator response to RAPID UI-instructions from a PC

2513HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.5.7_1

UIInstructionEventArgs is a base class of several specialized classes, one for each UI-

and TP- instruction. The specialized class holds the additional information needed to create

the operator dialog, so type casting the UIInstructionEventArgs object to the correct

specialized type is necessary. To do that you first check the InstructionType property,

which you can see in the picture above.

Continued

Continues on next page

7 Using the PC SDK

7.5.7. Enable operator response to RAPID UI-instructions from a PC

3HAC028083-001 Revision: D252

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

UIListViewEventArgs

As an example of a specialized type, the members of the UIListViewEventArgs class are

shown below. The Buttons and ListItems properties are of course crucial for creating the

operator dialog.

7.5.7_2

UIInstructionEventType

An important property in the picture above is UIInstructionEventType. It is inherited

from the base class and comes with all UI- and TP- instruction events.

The table shows the members of the UIInstructionEventType enumeration.

Member Description

Undefined Undefined. Should not occur.

Post Post event type, e.g. TPWrite, TPErase. When the event is of this type RAPID
expects no response from the operator.

Continued

Continues on next page

7 Using the PC SDK

7.5.7. Enable operator response to RAPID UI-instructions from a PC

2533HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

If the robot system has several RAPID tasks it is of course necessary to keep track of which

operator dialog belongs to which task etc.

A RAPID task can only handle ONE pending Send, and it is not guaranteed that an Abort

event will always follow a Send event. Therefore, if you receive a new Send event from the

same task without a preceding Abortevent, you should remove the existing dialog and

display the new one.

SendAnswer method

To transfer the response of the end-user back to the RAPID program you call the

SendAnswer method. See the picture of the UIListViewEventArgs class above.

SendAnswer is called with different arguments depending on the RAPID instruction.

For example, if it is a UIAlphaEntry instruction you just send the string that the operator

has entered as argument. But if it is a UIListView instruction the SendAnswer method will

look like this:

public void SendAnswer(int listItemIdx, UIButtonResult btnRes);

NOTE!

There is no mastership handling involved in using Remote operator dialog.

Send Send event type, e.g. TPReadNum, UIListView. When the event is of this type
the running RAPID program expects feedback from the operator before
execution continuous.

Abort When the controller gets a response from a client (the FlexPendant or a PC
SDK application) it sends an event of Abort type. This tells all subscribing
clients that the UI-Instruction has been aborted, closed or confirmed by the
operator. When you get an event of this type you should remove any open
operator dialog.

Member Description

Continued

7 Using the PC SDK

7.6. IO system domain

3HAC028083-001 Revision: D254

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.6. IO system domain

Overview

A robot system uses input and output signals to control processes. Signals can be of digital,

analog or group signal type. Such IO signals are accessible using the SDK.

Signal changes in the robot system are often significant, and there are many scenarios where

end-users of the system need notification of signal changes.

To speed up event notification from the controller there is new functionality in PC SDK 5.10,

which allows you to set up subscription priorities. This possibility applies to I/O signals and

persistent RAPID data. This mechanism is further described in Implementing high priority

event subscription on page 258.

Accessing signals

Accessing signals is done through the Controller object and its property IOSystem, which

represents the IO signal space in the robot controller.

To access a signal you need the system name of the signal. The object that is returned from

the IOSystem.GetSignal method is of type Signal.

VB:

Dim Signal1 As Signal = AController.IOSystem.GetSignal("signal

name")

C#:

Signal signal1 = aController.IOSystem.GetSignal("signal name");

The returned Signal object has to be typecast to digital, analog or group signal. This

example shows a how a signal of type DigitalSignal is created:

VB:

Dim DISig As DigitalSignal = DirectCast(Signal1, DigitalSignal)

C#:

DigitalSignal diSig = (DigitalSignal) signal1;

This example shows a how an AnalogSignal is created:

VB:

Dim AISig As AnalogSignal = DirectCast(Signal1, AnalogSignal)

C#:

AnalogSignal aiSig = (AnalogSignal) signal1;

This example shows a how a GroupSignal is created:

VB:

Dim GISig As GroupSignal = DirectCast(Signal1, GroupSignal)

C#:

GroupSignal giSig = (GroupSignal) signal1;

Continues on next page

7 Using the PC SDK

7.6. IO system domain

2553HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Remember to call the Dispose method of the signal when it should no longer be used.

Getting signals using SignalFilter

Instead of just getting one signal at a time you can get a signal collection using a signal filter.

Some of the SignalFilter flags are mutually exclusive, e.g. SignalFilter.Analog and

SignalFilter.Digital. Others are inclusive, e.g. SignalFilter.Digital and

SignalFilter.Input. You can combine the filter flags using the “|” character in C# and

the Or operator in VB:

VB:

Dim ASigFilter As SignalFilter = SignalFilter.Digital Or

SignalFilter.Input

Dim Signals As SignalCollection =

AController.IOSystem.GetSignals(ASigFilter)

C#:

SignalFilter aSigFilter = SignalFilter.Digital |

SignalFilter.Input;

SignalCollection signals =

aController.IOSystem.GetSignals(aSigFilter);

This piece of code iterates the signal collection and adds all signals to a ListView control.

The list has three columns displaying signal name, type and value:

VB:

For Each ASignal As Signal In Signals

Item = New ListViewItem(ASignal.Name)

Item.SubItems.Add(ASignal.Type.ToString())

Item.SubItems.Add(ASignal.Value.ToString())

Me.ListView1.Items.Add(Item)

Next

C#:

foreach(Signal signal in signals)

{

item = new ListViewItem(signal.Name);

item.SubItems.Add(signal.Type.ToString());

item.SubItems.Add(signal.Value.ToString());

this.listView1.Items.Add(item);

}

If the signal objects are no longer needed they should be disposed of:

VB:

For Each ASignal As Signal In Signals

ASignal.Dispose()

Next

Continued

Continues on next page

7 Using the PC SDK

7.6. IO system domain

3HAC028083-001 Revision: D256

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

foreach(Signal signal in signals)

{

signal.Dispose();

}

Reading IO signal values

These examples show how to read a digital and an analog signal.

Digital signal

This piece of code reads the digital signal DO1 and checks a checkbox if the signal value is

1 (ON):

VB:

Dim Sig As Signal = AController.IOSystem.GetSignal("DO1")

Dim DigitalSig As DigitalSignal = DirectCast(Sig, DigitalSignal)

Dim val As Integer = DigitalSig.Get

If val = 1 Then

Me.CheckBox1.Checked = True

EndIf

C#:

Signal sig = aController.IOSystem.GetSignal("DO1");

DigitalSignal digitalSig = (DigitalSignal)sig;

int val = digitalSig.Get();

if (val == 1)

{

this.checkBox1.Checked = true;

}

Analog signal

This piece of code reads the value of the analog signal AO1 and displays it in a textbox:

VB:

Dim Sig As Signal = AController.IOSystem.GetSignal("AO1")

Dim AnalogSig As AnalogSignal = DirectCast(Sig, AnalogSignal)

Dim AnalogSigVal As Single = AnalogSig.Value

Me.TextBox1.Text = AnalogSigVal.ToString()

C#:

Signal sig = aController.IOSystem.GetSignal("AO1");

AnalogSignal analogSig = (AnalogSignal)sig;

float analogSigVal = analogSig.Value;

this.textBox1.Text = analogSigVal.ToString();

Continued

Continues on next page

7 Using the PC SDK

7.6. IO system domain

2573HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Writing IO signal values

This section shows how the value of a digital or an analog IO signal can be modified by a

RAB application.

NOTE!

In manual mode a signal value can be modified only if the Access Level of the signal is ALL.

If not, the controller has to be in auto mode.

Digital signal

This piece of code changes the value of a digital signal in the controller when the user checks/

unchecks a checkbox:

VB:

Private Sub CheckBox1_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles CheckBox1.Click

If Me.CheckBox1.Checked Then

DigitalSig.Set()

Else

DigitalSig.Reset()

End If

End Sub

C#:

private void checkBox1_Click(object sender, EventArgs e)

{

if (this.checkBox1.Checked)

{

digitalSig.Set();

}

else

{

digitalSig.Reset();

}

}

NOTE! You can also set the value using the Value property.

Analog signal

This piece of code writes the value entered in a text box to the analog signal AO1. The value

is converted from string to a float before it is written to the controller:

VB:

Dim AnalogSigVal As Single = Convert.ToSingle(Me.TextBox1.Text)

AnalogSig.Value = AnalogSigVal

Continued

Continues on next page

7 Using the PC SDK

7.6. IO system domain

3HAC028083-001 Revision: D258

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

float analogSigVal = Convert.ToSingle(this.textBox1.Text);

analogSig.Value = analogSigVal;

Listening to signal changes

Once a Signal object is available it is possible to add a subscription to its Changed event,

which is triggered at a signal change such as changed value, changed simulated status or

changed signal quality.

Visual Basic

Friend WithEvents Sig As AnalogSignal

...

AddHandler Sig.Changed, AddressOf AISig_Changed

...

Private Sub Sig_Changed(sender As Object, e As

SignalChangedEventArgs) Handles Sig.Changed

End Sub

C#

this.sig.Changed += sig_Changed;

...

private void sig_Changed(object sender, SignalChangedEventArgs e)

{ }

Start and stop subscriptions

It is recommended that you activate and deactivate subscriptions to the Changed event if

these are not necessary throughout the lifetime of the application:

VB:

AddHandler Sig.Changed, AddressOf Sig_Changed

RemoveHandler Sig.Changed, AddressOf Sig_Changed

C#:

this.sig.Changed += sig_Changed;

this.sig.Changed -= sig_Changed;

Implementing high priority event subscription

To speed up event notification from the controller it is possible to set up subscription priorities

for I/O signals. To do this you use the Subscribe method and the enumeration

EventPriority as argument. The example shows an ordinary signal subscription and a

subscription with high priority:

VB:

AddHandler Sig.Changed, AddressOf Sig_Changed

Sig.Subscribe(AddressOf Sig_Changed, EventPriority.High)

Continued

Continues on next page

7 Using the PC SDK

7.6. IO system domain

2593HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

signal.Changed += sig_Changed;

signal.Subscribe(sig_Changed, EventPriority.High);

To deactivate subscriptions with high priority you call the Unsubscribe method like this:

VB:

sig.Unsubscribe(AddressOf sig_Changed)

C#:

signal.Unsubscribe(sig_Changed);

Limitations for high priority events

High priority subscriptions can be used for I/O signals and RAPID data declared PERS. The

controller can handle 64 high priority subscriptions.

Avoiding threading conflicts

It is important to keep in mind that all controller events use their own threads, which are

different from the application GUI thread. This can cause problems if you want to display

signal changes in the application GUI. See Controller events and threads on page 67 for

further information.

If an update of the user interface is not necessary, you do not need to take any special action,

but can execute the event handler on the event thread. If, however, you need to show to the

user that the signal has changed you should use the Invoke method. It forces execution to the

window control thread and thus provides a solution to potential threading conflicts.

VB:

Me.Invoke(New EventHandler(AddressOf UpdateUI), New Object()

{sender, e})

C#:

this.Invoke(new EventHandler<SignalChangedEventArgs>(UpdateUI),

new Object[] { sender, e });

Reading the new value

The SignalChangedEventArgs object has a NewSignalState property, which has

information about signal value, signal quality and whether the signal is simulated or not:

VB:

Private Sub UpdateUI(ByVal Sender As Object, ByVal e As

SignalChangedEventArgs)

Dim State As SignalState = e.NewSignalState

Dim val As Single

Val = State.Value

Me.TextBox1.Text = Val.ToString()

....

End Sub

Continued

Continues on next page

7 Using the PC SDK

7.6. IO system domain

3HAC028083-001 Revision: D260

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

private void UpdateUI(object sender, SignalChangeEventArgs e)

{

SignalState state = e.NewSignalState;

....

float val = state.Value

this.textBox1.Text = val.ToString()

}

NOTE!

There is no guarantee you will receive an initial event when setting up the subscription. To

get initial information about the value of a signal you should read it using the Value property.

NOTE!

Make sure the subscription is removed before you dispose of the signal. See Memory

management in PC applications on page 213 for further information.

Continued

7 Using the PC SDK

7.7. Event log domain

2613HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.7. Event log domain

Overview

Event log messages may contain information about controller status, RAPID execution, the

running processes of the controller etc.

Using the SDK it is possible to either read messages in the queue or to use an event handler

that will receive a copy of each new log message. An event log message contains queue type,

event type, event time, event title and message.

Accessing the controller event log

You access the event log domain through the Controller property EventLog.

VB:

Private Log As EventLog = AController.EventLog

C#:

private EventLog log = aController.EventLog;

Accessing event log categories

All event log messages are organized into categories. To search for an individual message you

have to know what category it belongs to. The enumeration type, CategoryType, defines all

available categories. You can get a category either by using the method GetCategory or by

using the Categories property, which is an array of all available categories.

VB:

Dim Cat As EventLogCategory

Cat = Log.GetCategory(CategoryType.Program)

or

Cat = Log.Categories(4)

C#:

EventLogCategory cat;

cat = log.GetCategory(CategoryType.Program);

or

cat = log.GetCategory[4];

NOTE!

The EventLogCategory should be disposed of when it is no longer used.

Accessing event log messages

To access a message you use the Messages property of the Category object. A collection

of messages is returned. The collection implements the ICollection and IEnumerable

interfaces , which means you can use the common operations for collections. Access is done

either using an index or by iterating using foreach.

VB:

Dim Msg As EventLogMessage = Cat.Messages(1)

Continues on next page

7 Using the PC SDK

7.7. Event log domain

3HAC028083-001 Revision: D262

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

or

Dim Msg As EventLogMessage

For Each Msg In Cat.Messages

Me.TextBox1.Text = Msg.Title

.....

Next Item

C#:

EventLogMessage msg = cat.Messages[1];

or

foreach(EventLogMessage msg in cat.Messages)

{

this.textBox1.Text = msg.Title;

.....

}

MessageWritten event

It is possible to add an event handler that is notified when a new messages is written to the

controller event log. This is done by subscribing to the EventLog event MessageWritten.

The event argument is of type MessageWrittenEventArgs and has a Message property,

which holds the latest event log message.

VB:

Private Sub Log_MessageWritten(sender As Object, e As

MessageWrittenEventArgs) Handles Log.MessageWritten

Dim Msg As EventLogMessage = e.Message

End Sub

C#:

private void log_MessageWritten(object sender,

MessageWrittenEventArgs e)

{

EventLogMessage msg = e.Message;

}

NOTE!

If the application user interface needs to be updated as a result of the event, you must delegate

this job to the GUI thread using the Invoke method. See Invoke method on page 68 for

further information and code samples.

TIP!

Find out more about the EventLogDomain in the PC SDK Reference help.

Continued

7 Using the PC SDK

7.8. Motion domain

2633HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.8. Motion domain

Overview

The MotionDomain namespace lets you access the mechanical units of the robot system.

Motion system

You access the motion system by using the Controller property MotionSystem.

VB:

Private AMotionSystem As MotionSystem

AMotionSystem = AController.MotionSystem

C#

private MotionSystem aMotionSystem;

aMotionSystem = aController.MotionSystem;

By using the MotionSystem object you can, for example, use its SpeedRatio property to

find out about the current speed of the robot.

Accessing Mechanical units

The mechanical units can be of different types, e.g. a robot with a TCP, a multiple axes

manipulator or a single axis unit. All these are available through the MotionSystem property

MechanicalUnits. If only the currently active mechanical unit is of interest you had better

use the ActiveMechanicalUnit property.

VB:

Dim AMechCol As MechanicalUnitCollection =

AController.MotionSystem.MechanicalUnits

Dim AMechUnit As MechanicalUnit =

AController.MotionSystem.ActiveMechanicalUnit;

C#:

MechanicalUnitCollection aMechCol =

aController.MotionSystem.MechanicalUnits;

MechanicalUnit aMechUnit =

aController.MotionSystem.ActiveMechanicalUnit;

Mechanical unit properties and methods

There are numerous properties available for the mechanical unit, e.g. Name,Model,

NumberOfAxes,SerialNumber,CoordinateSystem, MotionMode, IsCalibrated,

Tool and WorkObject etc. It is also possible to get the current position of a mechanical unit

as a RobTarget or JointTarget.

VB:

Dim ARobTarget As RobTarget =

AController.MotionSystem.GetActiveMechanicalUnit.GetPositio

n(CoordinateSystemType.World)

Dim AJointTarget As JointTarget =

AController.MotionSystem.ActiveMechanicalUnit.GetPosition()

Continues on next page

7 Using the PC SDK

7.8. Motion domain

3HAC028083-001 Revision: D264

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

RobTarget aRobTarget =

aController.MotionSystem.GetActiveMechanicalUnit.GetPositio

n(CoordinateSystemType.World);

JointTarget aJointTarget =

aController.MotionSystem.ActiveMechanicalUnit.GetPosition()

;

TIP!

Find out more about the MotionDomain in the PC SDK Reference help.

Continued

7 Using the PC SDK

7.9. File system domain

2653HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.9. File system domain

Overview

Using the SDK it is possible to create, save, load, rename and delete files in the controller file

system. It is also possible to create and delete directories.

Accessing files and directories

You access the file system domain through the Controller property FileSystem.

VB:

Private AFileSystem As FileSystem = AController.FileSystem

C#:

FileSystem aFileSystem = aController.FileSystem;

Controller and PC directory

You can get and set the directory on the controller and on the local PC system using the

RemoteDirectory and LocalDirectory properties.

VB:

Dim RemoteDir As String = AController.FileSystem.RemoteDirectory

Dim LocalDir As String = AController.FileSystem.LocalDirectory

C#:

string remoteDir = aController.FileSystem.RemoteDirectory;

string localDir = aController.FileSystem.LocalDirectory;

Environment variables

When specifying file system paths you can use environment variables to denote the HOME,

system, backup and temp directories of the currently used system. When an application uses

“(BACKUP)$” it is internally interpreted as the path to the backup directory of the current

system. The other environment variables are: HOME, TEMP and SYSTEM.

Loading files

You can load a file from the controller to the PC using the GetFile method. The method

generates an exception if the operation did not work. The arguments are complete paths

including filenames.

VB:

AController.FileSystem.FileSystem.GetFile(RemoteFilePath,

LocalFilePath)

C#:

aController.FileSystem.GetFile(remoteFilePath, localFilePath);

Saving files

You can save a file on the controller file system by using the PutFile method. The method

generates an exception if the operation did not work. The arguments are complete paths

including filenames.

VB:

AController.FileSystem.PutFile(LocalFilePath, RemoteFilePath)

Continues on next page

7 Using the PC SDK

7.9. File system domain

3HAC028083-001 Revision: D266

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

C#:

aController.FileSystem.PutFile(localFilePath, remoteFilePath);

CopyFile and CopyDirectory

The PutFile / GetFile methods generate a copy of a file and transfer it to or from the

controller file system. Using the CopyFile and CopyDirectory you can create a copy

directly on the controller:

VB:

AController.FileSystem.CopyFile(FromFilePath, ToFilePath)

AController.FileSystem.CopyDirectory(FromDirPath, ToDirPath)

C#:

aController.FileSystem.CopyFile(fromFilePath, toFilePath);

aController.FileSystem.CopyDirectory(fromDirPath, toDirPath);

Getting multiple files and directories

The FileSystem class has a method called GetFilesAndDirectories. It can be used to

retrieve an array of ControllerFileSystemInfo objects with information about

individual files and directories. The ControllerFileSystemInfo object can then be cast

to either a ControllerFileInfo object or a ControllerDirectoryInfo object.

This example uses search pattern to limit the search.

VB:

Dim AnArray As ControllerFileSystemInfo()

Dim info As ControllerFileSystemInfo

AnArray = AController.FileSystem.GetFilesAndDirectories("search

pattern")

Dim I As Integer

For I = 0 To array.Length -1

info = AnArray(I)

......

Next

C#:

ControllerFileSystemInfo[] anArray;

ControllerFileSystemInfo info;

anArray = aController.FileSystem.GetFilesAndDirectories("search

pattern");

for (int i=0;i<anArray.Length;i++) {

info = anArray[i];

......

}

Continued

Continues on next page

7 Using the PC SDK

7.9. File system domain

2673HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Using search patterns

As seen in the example above, you can use search patterns to locate files and directories using

the GetFilesAndDirectories method. The matching process follows the Wildcard

pattern matching in Visual Studio. This is a brief summary:

TIP!

Find out more about the FileSystemDomain in the PC SDK Reference help.

Character in pattern Matches in string

? Any single character

* Zero or more characters

Any single digit (0–9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

Continued

7 Using the PC SDK

7.10. Messaging domain

3HAC028083-001 Revision: D268

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.10. Messaging domain

Overview

The Messaging domain of the PC SDK can be used to send and receive data between a PC

SDK application and a RAPID task.

The corresponding RAPID functionality, RAPID Message Queue, includes RAPID data types

and RAPID instructions and functions for sending and receiving data. It enables

communication between RAPID tasks or between a RAPID task and a RAB application.

This chapter provides information about how to implement messaging in a PC SDK

application. To make it work it is necessary to do part of the implementation in RAPID. In

order to show how this can be done a simple but complete code example in C# and RAPID is

provided at the end of the chapter.

NOTE!

See Application manual - Robot communication and I/O Control for detailed information

about how to implement messaging in RAPID.

RobotWare option

The functionality in RAPID that is needed to utilize messaging - RAPID Message Queue - is

included in the RobotWare options PC Interface, FlexPendant Interface and Multitasking. As

PC Interface is required on a robot controller to be used with a PC SDK client, this means no

extra option is needed to start using RAPID Message Queue with a PC SDK application.

Messaging illustration

The illustration shows possible senders and receivers in the robot system. The arrows

represent ways to communicate by posting a message to a queue.

en0700000430

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

2693HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

In principle, messages might as well be sent between a PC SDK client and a RAB application

running on the FlexPendant.

NOTE!

The messaging functionality of the FlexPendant SDK has not yet been made public, but in

RAB 5.11 a mechanism has been implemented, which allows advanced users access to it. You

should contact support if you need information about how to use it.

Benefits

Together with RAPID Message Queue the functionality of the Messaging domain represent

a new, flexible way for a RAB application to interact with a RAPID task.

Messaging is usually done when a RAPID task is executing, but it is also possible to send a

message to a RAPID task when it has been stopped. The RAPID interrupt will then occur

once the RAPID task has been started.

An simple example of usage would be to set a flag from a RAB application in order to control

the program flow in the RAPID program.

NOTE!

Sending messages can be done in both manual and auto mode. As opposed to using

RapidData to modify a RAPID variable no mastership is required.

The Messaging namespace

The Microsoft Windows operating system provides mechanisms for facilitating

communications and data sharing between applications. Collectively, activities enabled by

these mechanisms are called Interprocess communications (IPC).

These are the classes and enumerations available in the Messaging namespace:

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

3HAC028083-001 Revision: D270

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

7.9_1

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

2713HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

The Ipc class is used to handle message queues with methods like GetQueue,

CreateQueue, DeleteQueue etc. When you have an IpcQueue object you can use its Send

method to send an IpcMessage to a RAPID task or its Receive method to receive a message

from a RAPID task.

When sending a message you use an existing queue in the controller as the IpcQueue object.

The naming principle of queues in the controller is using the name of the corresponding task

prefixed with “RMQ_”, e.g “RMQ_T_ROB1”. To be able to receive a message from RAPID

you must first create your own message queue and use that object with the Receive method.

NOTE!

When the execution context in a RAPID task is lost, e.g. when the program pointer is moved

to main, the corresponding queue is emptied.

Basic approach

To utilize messaging in a PC SDK application you need to do the implementation both in

RAPID and in the PC application.

This is the general approach for sending data from a PC application and receiving it in a

RAPID task:

1. In the PC application connect to the queue of the RAPID task.

2. Create the message.

3. Send the message.

4. In the RAPID program set up a trap routine that reads the message. Connect an

interrupt so that the trap routine is called each time a new message appears.

For a complete code example using this scenario see Code example on page 274.

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

3HAC028083-001 Revision: D272

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

What can be sent in a message?

In RAPID there is a rmqmessage data type. In the PC SDK the corresponding type is

IpcMessage. An IpcMessage object stores the actual data in the message, but also

information about message size, who the sender is etc.

The data in a message is a pretty-printed string with data type name (and array dimensions)

followed by the actual data value. The data type can be any RAPID data type. Arrays and user

defined records are allowed.

Message data - examples:

“robtarget;[[930,0,1455],[1,0,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]”

“string;“Hello world!””

“num;23”

“bool;FALSE”

“bool{2, 2};[[TRUE,TRUE],[FALSE,FALSE]]”

“msgrec;[100,200]” (user defined data type)

The method IpcMessage.SetData is used to fill the IpcMessage with the appropriate

data. Likewise, the GetData method retrieves the data from an IpcMessage object.

NOTE!

The IpcMessage.Data is set and retrieved as a byte array, SetData(byte[] data)

and byte[] GetData(). This means you must convert the message data string to a byte

array before calling the SetData method. It may look like this in C#:

Byte[] data = new UTF8Encoding().GetBytes("string;\"Hello world\"");

See Code example on page 274 for a few other examples.

NOTE!

The RAPID program can specify what RAPID data type it expects to receive by connecting

it to a TRAP routine. A message containing data of a data type that no interrupt is connected

to will be discarded with only an event log warning.

RAPID Message Queue system parameters

This is a brief description of each system parameter of RAPID Message Queue. For further

information, see the respective parameter in Technical reference manual - System parameters.

These parameters belong to the Task type in the Controller topic:.

Parameter Description

RmqType The following values are possible:

• None - Disables the RAPID Message Queue functionality in this
RAPID task. This is the default value.

• Internal - Enables the RAPID Message Queue for local usage on
the controller.

• Remote - Enables the RAPID Message Queue for local usage
and for PC and FlexPendant applications.

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

2733HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

To read the values of these system parameter from the PC SDK you use the IpcQueue

properties RemoteAccessible, MessageSizeLimit and Capacity.

Remote RmqType

The system parameter RmqType must be set to Remote to enable messaging between RAPID

and RAB:

7.9_2

RmqMode • Interrupt mode - A message can be received either by
connecting a trap routine to a specified message type or by using
the send-wait functionality. Any messages that are not the
answer to an active send-wait instruction or have the type
connected to a trap routine will be discarded. This is the default
mode.

• Synchronous mode - All messages will be queued and can only
be received through the new read-wait instruction
RMQReadWait. No messages will be discarded unless the
queue is full. The send-wait instruction is not available in this
mode. New mode from 5.12.

RmqMaxMsgSize The maximum data size, in bytes, for a message. The default value is
350. The value cannot be changed in RobotStudio or on the FlexPen-
dant.

RmqMaxNoOfMsg Maximum number of messages in queue. The default value is 5. The
value cannot be changed in RobotStudio or on the FlexPendant.

Parameter Description

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

3HAC028083-001 Revision: D274

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Code example

This simple messaging example can be tested with a virtual or a real controller. The system

parameter RmqType must be set to Remote as shown in RAPID Message Queue system

parameters on page 272.

The following code sample creates a message and sends it to a RAPID task, which reads it

and sets a RAPID variable accordingly. Then an “Acknowledged” message is sent back to the

PC SDK queue. Finally, the PC SDK application launches the received message in a Message

Box.

PC SDK - C#

A message is created and sent to the RAPID queue “RMQ_T_ROB1”. An answer message is

then received from RAPID and launched in a Message Box.

C#:

//declarations

private Controller c;

private IpcQueue tRob1Queue;

private IpcQueue myQueue;

private IpcMessage sendMessage;

private IpcMessage recMessage;

...

//initiation code, eg in constructor

c = new Controller(); //default ctrl used here (App.config)

//get T_ROB1 queue to be able to send msgs to RAPID task

tRob1Queue = c.Ipc.GetQueue("RMQ_T_ROB1");

//create my own RAB queue to be able to receive msgs

if (!c.Ipc.Exists("RAB_Q"))

{

myQueue = c.Ipc.CreateQueue("RAB_Q", 5, Ipc.IPC_MAXMSGSIZE);

myQueue = c.Ipc.GetQueue("RAB_Q");

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

2753HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

}

//Create IpcMessage objects for sending and receiving

sendMessage = new IpcMessage();

recMessage = new IpcMessage();

...

//in an event handler, eg. button_Click

SendMessage(true);

CheckReturnMsg();

...

public void SendMessage(bool boolMsg)

{

Byte[] data = null;

//Create message data

if (boolMsg)

{

data = new UTF8Encoding().GetBytes("bool;TRUE");

}

else

{

data = new UTF8Encoding().GetBytes("bool;FALSE");

}

//Place data and sender information in message

sendMessage.SetData(data);

sendMessage.Sender = myQueue.QueueId;

//Send message to the RAPID queue

tRob1Queue.Send(sendMessage);

}

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

3HAC028083-001 Revision: D276

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

private void CheckReturnMsg()

{

IpcReturnType ret = IpcReturnType.Timeout;

string answer = string.Empty;

int timeout = 5000;

//Check for msg in the RAB queue

ret = myQueue.Receive(timeout, recMessage);

if (ret == IpcReturnType.OK)

{

//convert msg data to string

answer = new UTF8Encoding().GetString(recMessage.Data);

MessageBox.Show(answer);

//MessageBox should show: string;"Acknowledged"

}

else

{

MessageBox.Show("Timeout!");

}

}

RAPID

A trap is created for a message of data type bool. In the trap the value of the message data is

assigned to the flag variable. Then an “Acknowledged” message is sent back to the PC SDK

client. In main the WHILE loop is executed until a message with a TRUE value is received.

MODULE RAB_COMMUNICATION

VAR bool flag := FALSE;

VAR intnum connectnum;

PROC main()

CONNECT connectnum WITH RABMsgs;

IRMQMessage flag, connectnum;

WHILE flag = FALSE DO

!do something, eg. normal processing...

WaitTime 3;

ENDWHILE

!PC SDK message received - do something...

TPWrite "Message from PC SDK, will now...";

IDelete connectnum;

EXIT;

Continued

Continues on next page

7 Using the PC SDK

7.10. Messaging domain

2773HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

ENDPROC

TRAP RABMsgs

VAR rmqmessage msg;

VAR rmqheader header;

VAR rmqslot rabclient;

VAR num userdef;

VAR string ack := "Acknowledged";

RMQGetMessage msg;

RMQGetMsgHeader msg \Header:=

header\SenderId:=rabclient\UserDef:=userdef;

!check data type and assign value to flag variable

IF header.datatype = "bool" THEN

RMQGetMsgData msg, flag;

!return receipt to sender

RMQSendMessage rabclient, ack;

ELSE

TPWrite "Unknown data received in RABMsgs...";

ENDIF

ENDTRAP

ENDMODULE

NOTE!

Error handling should be implemented in C#, as well as in RAPID.

NOTE!

From RW 5.12 there is a new RAPID instruction, RMQEmptyQueue that can be used to empty

the queue in a task.

Continued

7 Using the PC SDK

7.10. Messaging domain

3HAC028083-001 Revision: D278

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8 Debugging and troubleshooting

8.1.1. Debug output

2793HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8 Debugging and troubleshooting

8.1 FlexPendant - Debugging and troubleshooting

8.1.1. Debug output

Overview

It is possible to get debug output from the FlexPendant by using the network. This is useful

for several reasons. It will reveal any exceptions thrown during execution, for example,

providing you with error messages and call stacks. Moreover, it can help you check memory

consumption and memory leaks in your application.

The FP message is packed into a network message and sent out on the network as a broadcast

message on port 9998. Such a message can be picked up in different ways:

• Connect a hub on the local FlexPendant network and connect a PC to it. Use nc.exe to

pick up the messages (nc - lup 9998).

• The messages sent are also stored in a ring-buffer of size 100kB. To read the buffer to

file and store it on the controller, you can use the FlexPendant Command Server. Use

fpcmd “-d”.

• It is also possible to start a task on the controller that listens to port 9998 and displays

all messages in the console buffer. Use command fp_enable_console_output.

TIP!

For a list of exceptions that the IRC5 Controller may throw, see Exception error codes on

page 292.

Enable debug output

To enable debug output write fpcmd_enable_console_output in the controller console

window.

These are the console commands used to enable and disable printouts:

The command below can be used to retrieve detailed status of the robot controller, which may

be useful, although it may not be specifically related to your application.

Console command Result

fpcmd_enable_console_output 1

fpcmd_enable_console_output 2

fpcmd_enable_console_output 3

Starts producing printouts from RobotWare to the
robot controller console.

Starts producing printouts from SDK application.

Combines the two above: RW + SDK printouts.

fpcmd_disable_console_output Stops printout to the robot controller console.

Console command Result

fpcmd “-d” Produces a log file with extensive information on
system status to the robot controller file system(hd0a/
temp). Use an ftp client or the File Manager in
RobotStudio to transfer the file to your PC.

Continues on next page

8 Debugging and troubleshooting

8.1.1. Debug output

3HAC028083-001 Revision: D280

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

FlexPendant Command Server

By using the command line on the controller you can send commands to the FlexPendant. The

FlexPendant has a command server that interprets the commands and performs the requested

operation. The syntax for command line commands is fpcmd “<command>”. The only

command you need to remember is fpcmd "-h", which is the Help command. It produces a

printout of available FlexPendant commands in the controller console:

-> fpcmd “-h”value = 8 = 0x8-> [fp]: FlexPendantCmd: Help fpcmd “-h”: Help fpcmd

“-a”: Adapter show routine fpcmd “-m”: Measure time in adapters fpcmd “-i”: Display

FlexPendant Information fpcmd “-f”: Bring GTPU Services to front fpcmd “-x”: Hide

startup progress bar fpcmd “-s”: Start application fpcmd “-d”: Copy Debug file to

controller fpcmd “-as”: Print screen fpcmd “-rd”: RobAPI debug fpcmd “-restart”:

Continued

Continues on next page

8 Debugging and troubleshooting

8.1.1. Debug output

2813HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Restart Device fpcmd “-memShow”: Available memory fpcmd “-module”: Module

information of a process fpcmd “-filePut”: Upload a file to the FlexPendant fpcmd

“-filleted”: Download a file to the FlexPendant fpcmd “-diarist”: List a directory

NOTE!

All commands support -? (e.g. fpcmd “-memShow -?”), which gives further information

about the specific command.

TIP!

It is possible to monitor memory consumption in the robot controller console window:

1. Write fpcmd_enable_console_output 3.

2. Write fpcmd "-memShow".

See Discover memory leaks on page 186 for further information.

Trace and Debug

The ABB.Robotics.Diagnostics namespace provides trace and debug services. Its

Trace and Debug classes are specifically designed for the FlexPendant environment.

The properties and methods in the Trace class are used to instrument release builds, which

allows you to monitor the health of your application running in a real-life setting. Tracing can

help you to isolate problems and fix them without disturbing a running system.

If you use methods in the Debug class to print debugging information and check your logic

with assertions, you can make your code more robust without impacting the performance and

code size of your shipping product. In Visual Studio, creating a debug build enables Debug.

Trace and Debug give printout information during execution. Messages are displayed on the

FlexPendant screen or in the robot controller console. The functionality is similar to that

provided by the .NetTrace and Debug classes.

The Assert method checks for a condition and displays an assert message on the

FlexPendant, including detailed information and a stack trace, if the condition is false. The

message is also displayed in the controller console window if you enter the command

fpcmd_enable_console_output first.

NOTE!

Add the ABB.Robotics.Diagnostics namespace to the using section at the top of your

source code file.

Continued

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

3HAC028083-001 Revision: D282

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8.1.2. Debugging the virtual FlexPendant

Overview

When debugging your application it is often convenient to use the virtual environment, but it

is almost as easy to attach the Visual Studio debugger to the real FlexPendant device. For

information about how that is done see Debugging the FlexPendant device on page 286.

This section describes how to start the VS debugger, attach a running Virtual FlexPendant to

it, set up break points and step through the source code of a FlexPendant application.

Continues on next page

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

2833HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Debugging procedure

There are several ways of attaching a Visual Studio debugger to a running Virtual

FlexPendant application. In this section one method is described in detail.

There is no way to start your FlexPendant application from inside the Visual Studio

environment. You must start by deploying the application to the Virtual FlexPendant in

RobotStudio. How to do this is described in Hands on - Hello world on page 86. Then you

start the Virtual FlexPendant and attach the Visual Studio debugger to it.

NOTE!

In order to use break points the project build configuration must be Debug. You set it in the

the Build tab of the Project Properties. The output directory, where you find the assembly

(*.dll), the proxy assembly (*gtpu.dll) and the program database (*.pdb) is the bin/Debug

directory, a sub-directory of your VS project.

Attach to Process
When you have a running application on the Virtual FlexPendant follow these steps:

Step Action

1 In Visual Studio on the Debug menu, select Attach to Process. It brings up this
dialog:

9.1.3_1

2 Select the Virtual FlexPendant.exe process and press the Attach button.

3 Set a break point in your source code.

4 On the Virtual FlexPendant, press a button of your application or something else that
will make program execution hit the breakpoint.

Continued

Continues on next page

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

3HAC028083-001 Revision: D284

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5 On the Debug menu, point at Windows and select the debugging information to be
displayed while debugging. See example below:

9.1.3_2

6 On the Debug menu, select the appropriate Step command when stepping through
your code.

7 On the Debug menu, click Detach All or Stop Debugging when you want to stop
debugging.

Step Action

Continued

Continues on next page

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

2853HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Windows Task Manager

You can also attach a running application through the Windows Task Manager.

Launching debugger programatically

Yet another way of attaching a debugger is to launch it programatically, by writing code in

your application.

Step

1 Start Windows Task Manager and select the Processes tab.

9.1.3_3

2 Select the Virtual FlexPendant.exe process and right-click to get the context menu.
In that menu select Debug. You will get a warning message, but select Yes.

3 A Just -In -Time Debugging dialog will appear. Select your application project as
the debugger to use.

Step Action

Insert the following line where you want the debugger to start:

System.Diagnostics.Debugger.Launch()

Start the application in the Virtual FlexPendant and perform the action which is to
launch the debugger. A Just- In-Time Debugging dialog will appear.

Select your VS project as the debugger. Click OK and start the debug session.

Continued

8 Debugging and troubleshooting

8.1.3. Debugging the FlexPendant device

3HAC028083-001 Revision: D286

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8.1.3. Debugging the FlexPendant device

Overview

This section provides information on how to do debug an application executing on the real

FlexPendant device.

In general, using the Visual Studio debugger to debug the device works very well and is

strongly recommended, but depending on the OS, Visual Studio version and FlexPendant

version you are using the requirements for setting up and attaching the Visual Studio

debugger will differ somewhat.

Further information and updates concerning this topic will from this release be published on

the RAB User Forum (and not in the User's Guide). See RAB User Forum on page 288.

Prerequisites

The following requirements have to be met:

• VS 2005 with SP1 is required to debug the FlexPendant without any adaptations.

• Service Pack 1 or 2 for .NET Compact Framework 2.0 (.NET CF 2.0 SP2) is required

for setting up and using the Visual Studio debugger on the FlexPendant device. It can

be downloaded from http://www.microsoft.com/downloads.

• To debug with VS 2008 (as well as VS 2005 without SP1) you must follow a

procedure that will be presented on the RAB User Forum. The procedure will be

different for each RobotWare release.

• If your PC is running under Windows Vista “Windows Mobile Device Center” needs

to be installed in order to connect to the device.

Setting up the network

This illustration shows how to connect the FlexPendant, the Robot Controller and your PC in

order to debug your application using the Visual Studio debugger.

9.1.4_3

The FlexPendant has a static IP address 192.168.126.10. Your PC IP address must be one on

the 126 subnet, i.e. 192.168.126.x (not 1 or 255).

Note that this setup is completely independent of the LAN and Service ports. You are

plugging the TPU cable from the RC into the switch, a cable from the switch to the RC, and

a cable from your PC to the switch.

A connection over the LAN port is optional, but useful, as you may need to use RSO or FTP

at the same time. To use both connections, your PC requires two NICs.

Continues on next page

8 Debugging and troubleshooting

8.1.3. Debugging the FlexPendant device

2873HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Debugging procedure
Follow these steps to set up and attach the Visual Studio 2005 SP1debugger to the
FlexPendant device:

Step Action

1 On the Tools menu in Visual Studio 2005 click Options.

2 In the Options dialog expand the Device Tools node and select Devices. Select
Windows CE 5.0 Device as shown below.

9.1.4_6

Note! If your FlexPendant version is SxTpu1 the option Windows CE 5.0 Device is
not available. Instead you should select Pocket PC 2003 Device.

3 When the right device has been selected click Properties and then Configure.

4 Apply the settings shown in the picture.

9.1.4_7

Continued

Continues on next page

8 Debugging and troubleshooting

8.1.3. Debugging the FlexPendant device

3HAC028083-001 Revision: D288

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

If your PC is NOT using XP with VS 2005 SP1 you need to find information on how to attach

the VS debugger for your specific environment on the RAB User Forum.

RAB User Forum

The User Forum of ABB’s RobotStudio Community has a section dedicated to Robot

Application Builder. Here beginners as well as experts discuss code and solutions online. This

is also where you find RAB releases for free download and any information that the

development or support team want to share with you. See RobotStudio Community on page

17.

5 On the Debug/Tools menu in Visual Studio click Attach To Process. In the dialog
select Smart Device for Transport and click the Browse button to specify platform
and device. Then click Connect.

9.1.4_8

6 In the Available Processes list select taf.exe. Click Attach.

7 Set a break point in your source code.

8 On the FlexPendant, press a button of your application or something else that will
make program execution hit the breakpoint.

Step Action

Continued

8 Debugging and troubleshooting

8.1.4. Troubleshooting FlexPendant applications

2893HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8.1.4. Troubleshooting FlexPendant applications

Overview

If you encounter problems when running your application there are a few things you should

do before contacting your service organization. The following steps represent a rough

guideline:

TIP!

 If you still have not found a solution to your problem, take a look at the User Forum of

RobotStudio Community, which includes a forum dedicated to discussion and chat on Robot

Application Builder topics. See RobotStudio Community on page 17

FlexPendant application does not start

If you are unable to start your application the table below suggests possible scenarios.

Action

1 Is it possible to start your application? If not see FlexPendant application does not start
on page 289.

2 Have you checked the RAB Release Notes? Many questions will find an answer in the
Release Notes of the specific release. These are available on the RW DVD and at the
Software Download Site.

3 Have you tried to pinpoint the problem by debugging the FlexPendant? If not see
Debugging the FlexPendant device on page 286 for information about how to do it.

4 Have you tried to get debug printouts? See Debug output on page 279 for further infor-
mation.

5 Is the problem FlexPendant hangings? Make sure you use Invoke when modifying the
user interface due to a robot controller event. See GUI and controller event threads in
conflict on page 68 and Invoke method on page 68.

When a hanging occurs attach the Visual Studio debugger to the FlexPendant. On the
Debug menu, point at Windows and select Threads. Examine the threads to discover
any deadlocks.

Problem Possible solution

The proxy assembly (*.gtpu.dll) is not
built.

Correct any parameter error in the TpsView
attribute. See FlexPendant TpsView attribute on
page 54.

Continues on next page

8 Debugging and troubleshooting

8.1.4. Troubleshooting FlexPendant applications

3HAC028083-001 Revision: D290

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Important support information

If you cannot solve the problem on your own, make sure that before taking contact with a

support organization this information is available:

• Written description of the problem.

• Application source code.

• System error logs.

• A backup of the system.

• Description of work-around if such exists.

The ABB Compliance Tool complains it
cannot find the C# compiler.

It happens that the installation of Visual Studio
does not set the path to the C# compiler properly.
The C# compiler is necessary for running the ABB
Compliance Tool.

Confirm that the C# compiler is available by
starting a command window and run “CSC.EXE”.
If the result is similar to this the path is properly
set:

C:\>csc.exe

Microsoft (R) Visual C# .NET Compiler version
7.10.3052.4

for Microsoft (R) .NET Framework version
1.1.4322Copyright (C) Microsoft Corporation
2001-2002. All rights reserved.

fatal error CS2008: No inputs specified

If not, find CSC.EXE and copy its path to the
Properties dialog of your Visual Studio project.
Also add the path to the system PATH
environment variables.For Windows 2000 Pro and
Windows XP find the dialog for this at:Control
Panel -> System -> Advanced ->Environment
Variables -> System variables-> Add new. Add the
path to the directory where the C# compiler is
kept. Notice that a semicolon separates the path
items.Verify in the command window afterwards
that the CSC.EXE runs.

The application does not appear in the
ABB menu.

Make sure the robot system has the FlexPendant
Interface option.

Null reference exception or “Can’t find
object” when tapping the application icon
in the ABB menu.

Make sure all arguments in the TpsView attribute
are appropriate. See FlexPendant TpsView
attribute on page 54.

The bitmap constructor fails when the
real FlexPendant tries to load your
images, in the virtual environment this
does not happen.

Change your images if they use more than 256
colors. The operating system of the first
generation FlexPendant device (SxTPU1) only
supports 256 colors.

The Virtual FlexPendant process remains
alive.

If you forget to dispose an object that has a COM
reference, such as the Controller object or a
Signal, the Virtual FlexPendant process might
stay alive. Go through the application and make
sure that you dispose of all objects that have a
Dispose method.

Problem Possible solution

Continued

Continues on next page

8 Debugging and troubleshooting

8.1.4. Troubleshooting FlexPendant applications

2913HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

TIP!

Even better than the complete application is a small repro program, which exposes your

problem.

Continued

8 Debugging and troubleshooting

8.2.1. Debugging

3HAC028083-001 Revision: D292

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8.2 PC - Debugging and troubleshooting

8.2.1. Debugging

Introduction

Using the Visual Studio debugger for a PC SDK application presents no difference compared

to standard .NET development. Debugging can be done using the virtual IRC5 in

RobotStudio or a real controller.

Exception error codes

Some exceptions that may appear during development have error codes associated with them.

The error codes may help you correct the problem.

Code Description

0x80040401 The requested poll level could not be met, poll level low is used.

0x80040402 The requested poll level could not be met, poll level medium is
used.

0xC0040401 No connection with controller.

0xC0040402 Error connecting to controller.

0xC0040403 No response from controller.

0xC0040404 Message queue full. (Should only happen if asynchronous calls
are made.)

0xC0040405 Waiting for a resource.

0xC0040406 The message sent is too large to handle.

0xC0040408 A string does not contain characters exclusively from a
supported encoding, e.g. ISO-8859-1 (ISO-Latin1).

0xC0040409 The resource can not be released since it is in use.

0xC0040410 The client is already logged on as a controller user.

0xC0040411 The controller was not present in NetScan.

0xC0040412 The NetScanID is no longer in use. Controller removed from list.

0xC0040413 The client id is not associated with a controller user. Returned
only by methods that need to check this before sending request
to controller. Otherwise, see 0xC004840F.

0xC0040414 The RW version is later than the installed RobAPI. A newer
RobAPI needs to be installed. Returned by RobHelperFactory.

0xC0040415 The major and minor part of the RW version is known, but the
revision is later and not fully compatible. A newer RobAPI needs
to be installed. Code returned by RobHelperFactory.

0xC0040416 The RW version is no longer supported. Code returned by Rob-
HelperFactory.

0xC0040417 The helper type is not supported by the RW. Helper might be
obsolete or for later RW versions, or the helper may not be
supported by a BootLevel controller. Code returned by Rob-
HelperFactory.

0xC0040418 System id and network id mismatch, they do not identify the
same controller.

0xC0040601 Call was made by other client than the one that made the
Connect() call.

Continues on next page

8 Debugging and troubleshooting

8.2.1. Debugging

2933HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

0xC0040602 File not found on the local file system. Can be that file, directory
or device does not exist.

0xC0040603 File not found on the remote file system. Can be that file,
directory or device does not exist.

0xC0040604 Error when accessing/creating file on the local file system.

0xC0040605 Error when accessing/creating file on the remote file system.

0xC0040606 The path or filename is too long or otherwise bad for the
VxWorks file system.

0xC0040607 The file transfer was interrupted. When transferring to remote
system, the cause may be that the remote device is full.

0xC0040608 The local device is full.

0xC0040609 Client already has a connection and can not make a new
connection until the present one is disconnected.

0xC0040701 One or more files in the release directory is corrupt and cannot
be used when launching a VC.

0xC0040702 One or more files in the system directory is corrupt and cannot
be used when launching a VC.

0xC0040703 A VC for this system has already been started; only one VC per
system is allowed.

0xC0040704 Could not warm start VC since it must be cold started first.

0xC0040705 The requested operation failed since VC ownership is not held
or could not be obtained.

0xC0048401 Out of memory.

0xC0048402 Not yet implemented.

0xC0048403 The service is not supported in this version of the controller.

0xC0048404 Operation not allowed on active system.

0xC0048405 The data requested does not exist.

0xC0048406 The directory does not contain all required data to complete the
operation.

0xC0048407 Operation rejected by the controller safety access restriction
mechanism.

0xC0048408 The resource is not held by caller.

0xC0048409 An argument specified by the client is not valid for this type of
operation.

0xC004840A Mismatch in controller id between backup and current system.

0xC004840B Mismatch in key id, i.e. options, languages etc. between backup
and current system.

0xC004840C Mismatch in robot type between backup and current system.

0xC004840D Client not allowed to log on as local user.

0xC004840F The client is not logged on as a controller user.

0xC0048410 The requested resource is already held by caller

0xC0048411 The max number of the requested resources has been reached.

0xC0048412 No request active for the given user.

0xC0048413 Operation/request timed out on controller.

0xC0048414 No local user is logged on.

0xC0048415 The operation was not allowed for the given user.

Code Description

Continued

Continues on next page

8 Debugging and troubleshooting

8.2.1. Debugging

3HAC028083-001 Revision: D294

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

0xC0048416 The URL used to initialize the helper does not resolve to a valid
object.

0xC0048417 The amount of data is too large to fulfill the request.

0xC0048418 Controller is busy. Try again later.

0xC0048419 The request was denied.

0xC004841A Requested resource is held by someone else.

0xC004841B Requested feature is disabled.

0xC004841C The operation is not allowed in current operation mode. For
example, a remote user may not be allowed to perform the
operation in manual mode.

0xC004841D The user does not have required mastership for the operation.

0xC004841E Operation not allowed while backup in progress.

0xC004841F Operation not allowed when tasks are in synchronized state.

0xC0048420 Operation not allowed when task is not active in task selection
panel.

0xC0048421 Mismatch in controller id between backup and current system.

0xC0048422 Mismatch in controller id between backup and current.

0xC0048423 Invalid client id.

0xC0049000 RAPID symbol was not found.

0xC0049001 The given source position is illegal for the operation.

0xC0049002 The given file was not recognized as a program file, e.g. the
XML semantics may be incorrect.

0xC0049003 Ambiguous module name.

0xC0049004 The RAPID program name is not set.

0xC0049005 Module is read protected.

0xC0049006 Module is write protected.

0xC0049007 Operation is illegal in current execution state.

0xC0049008 Operation is illegal in current task state.

0xC0049009 The robot is not on path and is unable to restart. Regain to or
clear path.

0xC004900A Operation is illegal at current execution level.

0xC004900B Operation can not be performed without destroying the current
execution context.

0xC004900C The RAPID heap memory is full.

0xC004900D Operation not allowed due to syntax error(s).

0xC004900E Operation not allowed due to semantic error(s).

0xC004900F Given routine is not a legal entry point. Possible reasons are:
routine is a function, or routine has parameters.

0xC0049010 Illegal to move PCP to given place.

0xC0049011 Max number of rob targets exceeded.

0xC0049012 Object is not mod possible. Possible reasons are: object is a
variable, object is a parameter, object is an array.

0xC0049013 Operation not allowed with displacement active.

0xC0049014 The robot is not on path and is unable to restart. Regain to path.
Clear is not allowed.

Code Description

Continued

Continues on next page

8 Debugging and troubleshooting

8.2.1. Debugging

2953HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

0xC0049015 Previously planned path remains. Choose to either consume the
path, which means the initial movement might be in an
unexpected direction, or to clear the path and move directly to
next target.

0xC004A000 General file handling error.

0xC004A001 The device is full.

0xC004A002 Wrong disk. Change disk and try again.

0xC004A003 The device is not ready.

0xC004A004 Invalid path.

0xC004A005 Not a valid device.

0xC004A006 Unable to create directory.

0xC004A007 The directory does not exist.

0xC004A008 The directory already exists.

0xC004A009 The directory contains data.

0xC004A00B Unable to create file.

0xC004A00C File not found or could not be opened for reading.

0xC004A200 Disable of unit not allowed at trustlevel 0.

Code Description

Continued

8 Debugging and troubleshooting

8.2.2. Troubleshooting

3HAC028083-001 Revision: D296

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

8.2.2. Troubleshooting

Overview

If you encounter problems with your PC SDK application follow these steps before

contacting ABB support.

TIP!

At www.abb.com/roboticssoftware there is a link to the RobotStudio Community.

Checklist

• Cannot connect to controllers? Make sure the system on the controller has the

RobotWare option PC Interface. This applies to both virtual and real controllers.

• Is the problem GUI hangings? Make sure you use Invoke when modifying the user

interface due to a robot controller event. See GUI and controller event threads in

conflict on page 68 and Invoke method on page 68 for further information.

• Is the problem related to netscan? If NetworkScanner.Scan does not find the robot

controller during netscan you should try to increase the time allowed for scanning.

Increase the networks canner delay time in an app.config file as explained in

Application configuration file on page 43 or add the time directly in the code like this:

NetworkScanner aScanner = new NetworkScanner(); aScanner.Scan();

System.Threading.Thread.Sleep(4000);aScanner.Scan();

• Do you get “Invalid Client ID” when trying to do a read operation toward the robot

controller? If so, the reason is probably that you have forgotten to log on to the

controller. To be able to write to RAPID data or to the configuration database, for

example, you also need to require mastership. For further information see Logon and

logoff on page 214 and Mastership on page 41.

• If you are working with a previous version of RAB (earlier than 5.10) you might run

into problems related to licence verification? If you get the run-time error “A valid

license cannot be granted for the type ABB.Robotics.Controllers.Licenses.PCSdk.

Contact the manufacturer of the component for more information“ when accessing the

NetworkScanner and the Controller classes you need to add a licx file to the

project. See Licenses.licx on page 40 for further information.

Action

1 See if your problem is in the checklist of the next section.

2 Many questions will find an answer in the Release Notes of the specific RAB release.
The document is available on the RW DVD and on the Software Download Site.

3 Pinpoint the problem by debugging your code so that a precise problem description can
be provided.

4 See the User Forum of ABB’s RobotStudio Community, which includes a forum
dedicated to discussion and chat on Robot Application Builder topics.

Continues on next page

8 Debugging and troubleshooting

8.2.2. Troubleshooting

2973HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

Important support information

If you cannot solve the problem on your own, make sure this information is available when

taking contact with ABB’s support organization:

• Written description of the problem.

• Application source code.

• System error logs.

• A backup of the system.

• Description of work-around if such exists.

TIP!

Even better than the complete application is a small repro program, which exposes your

problem.

Continued

8 Debugging and troubleshooting

8.2.2. Troubleshooting

3HAC028083-001 Revision: D298

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

9 Localizing a FlexPendant application

8.2.2. Troubleshooting

2993HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

9 Localizing a FlexPendant application

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3HAC028083-001 Revision: D300

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

9.1. Adding support for several languages

Introduction

This chapter provides the information needed to localize a customized application. The

FlexPendant has built-in support for localization, and the mechanisms used by the standard

FlexPendant applications can also be used by RAB applications.

This enables customized applications to be presented in the active language of the

FlexPendant, i.e. the language selected in the standard view Control Panel - Language.

For this to work the texts displayed in the customized application must be translated and the

application localized as described in this chapter.

Get started

Develop the application using English as the default language. The recommendation is to

design, implement and test the application before adding support for other languages. To

localize a FlexPendant application carefully complete each procedure of this chapter.

NOTE!

A method is needed to handle localization when new application functionality is added.

1 Create project for text resources

This procedure sets up a separate project for the user interface texts.

Step Action

1. Create a new project in the solution. Choose a Smart Device - Windows CE 5.0 -
Empty Project and name the project <YourAppName>Texts.

NOTE!
Both projects should belong to the same solution. The application will now compile to
three assemblies: <YourAppName>.dll , <YourAppName>.gtpu.dll and <YourApp-
Name>Texts.dll.

2. In the Texts project add a reference to System (.Net).

3. Set the Output type to Class Library (this is done in the Project Properties).

4. The namespace used for the Texts project must be the same as used for the main
project. As the namespace is not visible in the resource file you must change it in the
Project Properties like this:

10.1_5

5. Add a Resources file to the project by right clicking the project in Solution Explorer
and selecting Add New Item. Set the name of the file to “strings.resx". This file will
contain the texts of the default language (normally English).

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3013HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6. Open the resource file and add name and value for the texts of the default language.
Use capital letters in the name column.

6.5.1_1

7. In the Texts project create a folder with the culture short form as name, e.g. de for
German and sv for Swedish.

10.1_6

NOTE!
Russian (ru) has been added in RW/RAB 5.11.

CAUTION!
The standard short forms listed above must be used.

NOTE!
To be able to use Chinese or another language with non-western characters, you must
use the FlexPendant font, TpsFont, for any UI controls. It internally checks what
language is currently active on the FlexPendant and uses the correct font for that
language.

Step Action

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3HAC028083-001 Revision: D302

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2 Prepare main project for localization

Follow these steps to add localization to your main project:

8. Copy the “strings.resx” file to the folder(s) created in the previous step.

9. The name of the file used for the foreign resources should be strings.<culture>.resx,
e.g. “strings.sv.resx" as in the picture below. Right click the file and rename it.

10.1_4

10. Open the resource file and translate the texts in the value column. The name is the
identity of the text and should remain the same.

NOTE!
Obviously, texts might get longer or shorter when translated. You may therefore need
to increase the sizes of some GUI controls when you have tested the application.

Step Action

Step Action

1. Add a reference to ABB.Robotics.Taf.Base in the main project.

2. In the TpsView attribute of the view class insert the name of the Texts dll like this:

[assembly: TpsView("ABB_MENU_TITLE_TXT","tpu-
Operator32.gif","tpu-Operator16.gif",
"TpsViewIRC5App.dll",
"TpsViewIRC5App.TpsViewIRC5App",
StartPanelLocation.Left,
TpsViewType.Static,"TpsViewLocalizedAppTexts.dll",
TpsViewStartupTypes.Manual)]

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3033HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3. Declare a TpsResourceManager object at the top of the class as a private member
variable and initialize it in the constructor.

Add a call to an InitializeTexts method.

//declaration

private ABB.Robotics.Tps.Resources.TpsResourceManager
_tpsRM;

//constructor method

_tpsRM = new
ABB.Robotics.Tps.Resources.TpsResourceManager("TpsVi
ewLocalizedApp.strings",
ABB.Robotics.Taf.Base.TafAssembly.Load("TpsViewLocal
izedAppTexts.dll"));

InitializeComponent();

InitializeTexts();

NOTE!
The first constructor argument should be the name of your application with .strings
as an added suffix. The second argument is the name of the assembly containing the
resources.

4. Implement InitializeTexts(). Use the TpsResourceManager object and call
GetString() using the identity (name) of the text you want as argument. Depending
on the active language of the FlexPendant this call will retrieve the corresponding
language resource.

Example:

InitializeTexts()

{

this.Label1.Text = _tpsRM.GetString("TXT_INSTR_LABEL");

}

Leave the contents of the InitializeComponent method as it is, e.g.
Label1.Text = "Signals" etc.

5. The TpsResourceManager object has not yet been created when the application
icon and title are to appear in the ABB menu, and therefore another technique must
be used to have them correctly displayed. Add a resource name for the application
title and a value in the resource file of each language.

In the TpsView attribute the first argument is the application title. Replace it with the
resource name. It may look like this:

[assembly: TpsView("ABB_MENU_TITLE_TXT", ...,...
TpsViewIRC5AppTexts.dll")]

The corresponding resource value will now be used. In case no resource is found the
name will be used as is.

Step Action

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3HAC028083-001 Revision: D304

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3 Build satellite assembly

Follow these steps to create a satellite assembly of the localized resx file:

Step Action

1. The localized resource file should not be built with the ordinary build process, i.e. the
property Build Action should be set to “None". Right click on the strings.<cul-
ture>.resx file and select properties:

6.5.1_4

2. You should now use the Visual Studio 2005 tool resgen.exe to compile the resx file
to a binary resource. After this the Visual Studio 2005 assembly linker tool al.exe
should make a satellite assembly of the binary resource.

Read the following steps very carefully to make sure the satellite assembly is built
correctly.

NOTE!
Localization with Visual Studio 2008 has not yet been tested.

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3053HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

3. Create a post-build event in the Texts project in order to automate the building
process.

Example: TpsViewLocalizedApp with resources in Swedish:

mkdir ..\..\language

mkdir ..\..\language\sv

mkdir ..\..\language\sv\tps

cd ..\..\sv\

del *.resources

del *.dll

if exist strings.sv.resx (

resgen strings.sv.resx TpsViewLocalizedApp.strings.sv
.resources

al /t:lib /embed:TpsViewLocalizedApp.strings.sv.resources
/culture:en /
out:TpsViewLocalizedAppTexts.resources.dll

copy TpsViewLocalizedAppTexts.resources.dll
..\language\sv\tps\TpsViewLocalizedAppTexts.resource
s.dll)

10.1_9

The resgen command is written like this:

resgen strings.<culture>.resx
<Namespace>.strings.<culture>.resources

where <culture> should be replaced with the correct language short form and
<Namespace> should be replaced with the application namespace.

The al command takes the resulting dll located in the same directory as the resx file
and makes a satellite assembly of it:

al /t:lib /embed:<Namespace>.strings.<culture>.resources /
culture:en /out:<AssemblyName>.resources.dll

NOTE!
The name of the satellite assembly will be the same for all localized languages.

The third argument of the al command, culture:en, should be “en” . The reason is
that the FlexPendant operating system has English as the underlying language.

Step Action

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3HAC028083-001 Revision: D306

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

4 Test a localized application

In order to test a localized application, the resources must be correctly organized in the file

system of the controller. This should be done in the same way either the test is done on a

virtual or a real FlexPendant. Follow these steps to test the application on a real FlexPendant:

4. It is necessary to ensure that the post-build step is executed with the correct versions
of resgen.exe and al.exe. The easiest way to do this is to use a VS 2005 Command
prompt to build the project (or solution) or to start Visual Studio from that prompt.

First click Windows Start menu to launch the Command Prompt (at Programs >
Microsoft Visual Studio 2005 > Visual Studio Tools).Then use the command devenv
in order to start VS 2005.

Now open your solution and build it. The post-build command is now guaranteed to
execute with the correct settings.

6.5.1_5

NOTE!
As default, Visual Studio will run post-build commands using the PC’s user settings
(paths etc.). If you had VS 2003 installed earlier the post-build command is therefore
very likely to use the wrong versions of resgen.exe and al.exe. The procedure
described above guarantees that the VS 2005 versions are used.

(These can be found at: C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin/
resgen.exe C:\WINNT\Microsoft.NET\Framework\v2.0.50727/al.exe)

Step Action

Step Action

1. Transfer, using an FTP client or the File Manager of RobotStudio, your application
assemblies to the HOME directory of the active system. (TpsViewLocalizedApp-
Texts.dll, TpsViewLocalizedApp.gtpu.dll, TpsViewLocalizedApp.dll in the picture
below).

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3073HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

2. Copy the language folder that was created by the post-build event to the HOME
directory.

10.1_3

NOTE!
It is also possible to have both the assemblies and the language folder located under
the SYSTEM folder one level up. The advantage of using HOME is that the files are
included in a backup.

3. Verify that the language folder has folders for each language and that each tps folder
have a .resources dll. If this is not the case, you need to go back to the post-build event
of your Texts project and check what has gone wrong.

10.1_3b

NOTE!
The name of the satellite assembly is the same for all languages, TpsViewLocal-
izedAppTexts.resources.dll in the example above.

4. Switch to another language (Control Panel - Languages) and restart the FlexPendant.

5. Verify that the name of your application in the ABB menu is correct.

Step Action

Continued

Continues on next page

9 Localizing a FlexPendant application

9.1. Adding support for several languages

3HAC028083-001 Revision: D308

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

6. Open the application and verify that the GUI texts are correctly displayed. Especially
verify that text boxes, labels, listview columns etc. are wide enough to display the
translated texts.

Step Action

Continued

10 Packaging RAB applications

10.1.1. Overview

3093HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

10 Packaging RAB applications

10.1 Deployment of a PC SDK application

10.1.1. Overview

Introduction

When your application is ready it has to be deployed to the customer’s PC. This chapter gives

information about the facilities for deployment included in the RAB installation.

NOTE!

Neither RAB nor a RAB licence need to be installed on the PC that will host your application.

Furthermore, from RAB 5.10 you do NOT need to add the licence key to your project as

described in Licenses.licx on page 40, as deployed PC applications no longer perform license

verification when executing.

Facilities for deployment

In the redistributable folder at C:\Program Files\ABB Industrial IT\Robotics IT\Robot

Application Builder\ there are some files to be used for deployment of a PC SDK application:

• ABBControllerAPI.msm

• ABB Industrial Robot Communication Runtime.msi

These two packages include all dependencies a PC SDK application has apart from .NET 2.0.

Continues on next page

10 Packaging RAB applications

10.1.1. Overview

3HAC028083-001 Revision: D310

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

ABBControllerAPI.msm

A PC SDK application cannot execute without the PC SDK assemblies it references. For your

convenience, the ABBControllerAPI merge module contains the PC SDK assemblies. Add it

to your install program to have them installed in the Global Assembly Cache (GAC).

The GAC is automatically installed with the .NET runtime. It enables a PC to share

assemblies across numerous applications. If the customer’s PC has Robot Studio Online of

the same release as the PS SDK used to create the application the PC SDK dlls your

application needs should be in the GAC already.

NOTE!

If you want to create an msi file (or a setup.exe) of the msm file, you can include the

ABBControllerAPI.msm file in a Visual Studio SetUp Project.

NOTE!

Before, ABBControllerAPI.msm worked only with InstallShield. This problem has now been

resolved.

ABB Industrial Robot Communication Runtime.msi

For a PC SDK application to be able to connect to a controller either RobotStudio or Robot

Communications Runtime is required. If RobotStudio is not installed on the PC that will host

your application, Robot Communications Runtime needs to be included in your installation.

ABB Industrial Robot Communication Runtime.msi can be used for redistribution as a

separate installation.

Continued

10 Packaging RAB applications

10.2.1. Overview

3113HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

10.2 Deployment of a FlexPendant SDK application

10.2.1. Overview

Introduction

For the end customer to be able to use your application, it has to be deployed to the customer’s

robot controller. This is done when the customer robot system is created, by using the System

Builder in RobotStudio. The custom application can then either be added as an additional

option by using a license key, or added to the Home directory of the controller file system by

using one of the dialogs of the System Builder wizard.

For an application with multi-language support there are a few more things to deal with.

NOTE!

Using an FTP client to upload the application from a PC to a robot controller can be done for

testing purposes. It can also be done if the custom application needs to be added to an existing

system, which is already running in production. See Deployment using FTP on page 318 for

information about how this is done.

Making a product

These are the steps to make a product of a custom FlexPendant application:

1. Approval of the FP SDK product requirement specification.

2. Design and development of a FP SDK GUI prototype.

3. Approval of the FP SDK GUI prototype.

4. Design and development of a FP SDK functional prototype.

5. Approval of the FP SDK functional prototype.

6. Design and development of a FP SDK product.

7. Approval of the FP SDK product.

8. Design and development of a deployable FP SDK product.

Deployment of a FlexPendant SDK product

Before deploying a custom application you need to consider these issues:

• Should the product be licensed, i.e. be sold as an option?

• Is there a need to localize the product, i.e. create support for native languages?

Depending on how the above questions are answered there are four alternatives (detailed

separately in the following sections of this manual):

1. License and localization

2. License but no localization

3. No license but localization

4. No license and no localization

NOTE!

If the product is to be licensed it should be deployed as an additional option. If not,

RobotStudio should be used to deploy the application to the Home directory of the system.

10 Packaging RAB applications

10.2.2. Deployment of an application without a license

3HAC028083-001 Revision: D312

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

10.2.2. Deployment of an application without a license

Overview

If you do not make an additional option of your application, the end user does not need a

license to use it.

When the customer system is created, by using the System Builder of RobotStudio, your

application should be added to the Home directory of the system.

This section gives information about how this is done. The easiest alternative, which offers

no support for additional languages, is explained first.

No license and no localization

This is how you deploy an application without license nor multi-language support.

Step Action

1. Use System Builder in RobotStudio.

2. Add the application assemblies(.dll) and other resources (‘.jpg, *.gif,*.bmp) to the
Home directory:

10.1_2

3. Download the system to the robot controller.

Continues on next page

10 Packaging RAB applications

10.2.2. Deployment of an application without a license

3133HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

Having the application deployed to the Home directory means it will be included in a system

backup.

No license but localization

This is how you deploy an application with no license but with multi-language support.

Step Action

1. Implement multi-language support. See Localizing a FlexPendant application on
page 299 for information on how to do it.

2. Use System Builder in RobotStudio.

3. Add the application assemblies(.dlls) and other resources (‘.jpg, *.gif,*.bmp) to the
Home directory:

10.1_2

Note! TpsViewIRC5AppTexts.dll is missing in the figure.

4. Generate the robot system.

Continued

Continues on next page

10 Packaging RAB applications

10.2.2. Deployment of an application without a license

3HAC028083-001 Revision: D314

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

5. In the generated RobotWare system, add a language directory with all supported
languages in the Home directory. Then for each supported language, add a culture
specific and a tps directory.

10.1_3

NOTE!
Standard names (de, zh etc.) must be used for the different languages. See 1 Create
project for text resources on page 300 for the complete list.

6. Transfer each resource binary to the tps sub-directory of the respective culture
directory, e.g.:

TpsViewIRC5App.strings.de.resources.dll to language/de/tps directory etc.

7. Download the system to the robot controller.

See Localizing a FlexPendant application on page 299 for information on how to add
support for native languages to your custom application.

Step Action

Continued

10 Packaging RAB applications

10.2.3. Deployment of a licensed application

3153HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

10.2.3. Deployment of a licensed application

Overview

When the customer system is created by System Builder of RobotStudio, a FlexPendant

application can be added to the system as an additional option.

This section describes how to make the additional option, which is necessary for deployment

of a licensed custom application. It also describes how the customer installs the option.

CAUTION!

An additional option must be distributed in accordance with RobotWare version and revision.

Pay attention if you are using functionality, which has been included in a revision!

NOTE!

An additional option must be deployed with the structure of RobotStudio.

Procedure for making an additional option

This is how you make an additional option of a FlexPendant SDK application.

Step Action

1. Implement multi-language support if considered necessary. See Localizing a
FlexPendant application on page 299 for information on how to do it.

2. Order a license and a CD Key Maker from your local ABB office, who will in turn
contact ABB SEROP product support in Sweden.

3. Create the following structure:

10.1_12

The language folder is needed if there is to be support for other languages.

NOTE!
Always use capital letters for the option name.

Continues on next page

10 Packaging RAB applications

10.2.3. Deployment of a licensed application

3HAC028083-001 Revision: D316

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

NOTE!

If the option is only a FlexPendant SDK application the described procedure is enough. But

if the option should also include RAPID and configuration, you need to read about how to

make an additional option in another manual, which is for ABB internal use. See Related

information at the end of this section.

Installing the option at the customer

This is the how the customer installs a licensed application:

1. Install the additional option from a CD.

2. Create the robot system by using System Builder.

3. In the Add Parameters/Add Additional Options dialog browse to the key file, e.g.

MYOPTION508.kxt which came with the installation of the additional option.

4. Create the version.xml file. It may look like this:

10.1_13

5. Create the install.cmd file. It may look like this:

10.1_14

6. Create relkey.txt file. It may look like this:

10.1_15

7. With the license, which is entered in the CD key Maker, generate a key file including
the serial number of the Robot controller, e.g. MYOPTION508.kxt

(This is the file the user will enter in System Builder when the robot system is created.)

8. Package the product on CD the way your organization recommends.

Step Action

Continued

Continues on next page

10 Packaging RAB applications

10.2.3. Deployment of a licensed application

3173HAC028083-001 Revision: D

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

10.1_16

Related information

Application manual - Additional Options, 3HAC023668-001

The manual is intended for ABB use only. Contact After Sales in Västerås, Sweden.

Continued

10 Packaging RAB applications

10.2.4. Deployment using FTP

3HAC028083-001 Revision: D318

©
 C

op
yr

ig
ht

 2
00

7
-

20
09

 A
B

B
. A

ll
ri

gh
ts

 r
es

er
ve

d.

10.2.4. Deployment using FTP

Overview

The general rule is that deployment using an FTP client should only be done during the

development phase.

If deployment to a customer is done this way each controller has to be individually updated

with assembly files as well as graphical and language resources. The organization of files in

the robot controller file system is the responsibility of the application developer or the system

integrator.

Procedure

Follow these steps to deploy your application using for example the File Manager of

RobotStudio or an FTP client such as Ftp Voyager:

Step Action

1 On the controller navigate to the system you want to update with the FlexPendant
application.

2 Transfer the assembly, the proxy assembly and graphical resources used by the
application to the system directory Home.

3 For multi-language support, in the Language directory create sub-directories for
each language using the short name of the culture.

4 Create a “tps” sub-directory in each of these directories.

5 Copy each language resource to the tps folder of the corresponding culture.

6 Restart the FlexPendant. The custom application should now be accessible from the
ABB menu.

See Restart the FlexPendant on page 49 for information about how to restart the
FlexPendant but not the controller.

3H
A

C
02

80
83

-0
01

, R
ev

is
io

n
C

, e
n

ABB AB
Robotics Products
S-721 68 VÄSTERÅS
SWEDEN
Telephone: +46 (0) 21 344000
Telefax: +46 (0) 21 132592

	Application manual - Robot Application Builder
	Table of contents
	About this manual
	Usage
	Who should read this manual?
	Prerequisites
	Organization of chapters
	References
	Revisions
	General
	Product manuals
	Technical reference manuals
	Application manuals
	Operating manuals
	Safety of personnel
	Safety of regulations
	1 Introduction
	1.1. About Robot Application Builder
	Flexible user interfaces
	Ease-of-use on the factory floor
	.NET and Visual Studio
	Robustness and performance

	1.2. Documentation and help
	Introduction
	User’s Guide
	SDK Reference Help
	FP StyleGuide
	RobotStudio Community
	RAB Product Specification
	MSDN

	1.3. Terminology
	About terms and acronyms
	Definitions

	2 Installation and development environment
	2.1. Installation overview
	About this section
	Supported platforms
	Requirements for installing and using Robot Application Builder
	About the Robot Application Builder installation
	RAB 5.11and later
	RAB 5.10

	What is installed?
	Working with several versions
	FlexPendant applications
	PC applications

	Installation procedure

	2.2. How to obtain and install a license key for RAB 5.09 or earlier
	Overview
	Install licence key

	2.3. How to set up your PC to robot communication
	Overview
	Why is a connection needed?
	Ethernet network connection
	Service port connection with automatic IP address
	Service port connection with fixed IP address
	Related information

	2.4. Development environment
	Overview
	Microsoft .NET and Microsoft Visual Studio
	Visual design support and data binding
	Choosing a programming language
	Integration with Visual Studio

	2.5. Two development models - virtual and real
	About this section
	Virtual robot technology
	Requirements for virtual environment
	Requirements for real environment
	Virtual test and debug
	Real tests necessary
	Porting the application from virtual to real IRC5
	Deployment to customer

	2.6. Conversion of VS 2005 projects to Visual Studio 2008
	Overview

	3 Run-time environment
	3.1. Two platforms - PC and FlexPendant
	About this chapter
	Selecting the platform your application should use
	Local vs remote client
	Software architecture
	PC platform
	FlexPendant platform

	CAPI

	3.2 Running PC Applications
	3.2.1. Licence verification - applies only to versions earlier than RAB 5.10
	Overview
	Licenses.licx

	3.2.2. Mastership
	Controlling controller resources
	Manual and automatic mode
	PC SDK mastership domains
	Remote privilege in manual mode
	Losing mastership

	3.2.3. PC application configuration
	Application configuration file
	Add App.config to the project
	Section tag
	Capi section
	<defaultSystem>
	<remoteControllers>
	<discovery.networkscanner>
	<defaultUser>
	<rmmp>
	<controllerCall>
	<eventStrategy>

	3.2.4. Communication between PC and controller
	COM technique
	Resource identification
	Hard real-time demands

	3.3 Running FlexPendant Applications
	3.3.1. Components, assemblies and dlls
	Building blocks
	One or several assemblies

	3.3.2. Deployment of FlexPendant application to a robot system
	Proxy assembly
	Download to real controller
	Using the command window
	FTP deployment
	Restart the FlexPendant
	Deploy application to virtual IRC5

	3.3.3. Communication between FlexPendant and controller
	COM technique
	Resource identification
	Hard real-time demands

	3.3.4. Understanding FlexPendant application life cycle
	Overview
	TAF - Application host framework
	Starting a custom application
	Application life cycle
	Illustration
	Limited resources

	3.3.5. FlexPendant TpsView attribute
	Overview
	Project wizard settings
	Visual appearance
	Application name
	Application icon
	TaskBar icon
	Application assembly
	Class name
	Application location
	Application type
	Startup type
	Related information

	3.3.6. ITpsViewSetup and ITpsViewActivation
	ITpsViewSetup
	Install and Uninstall
	ITpsViewActivation
	Activate and Deactivate
	Simple code examples

	3.4. Release upgrades and compatibility
	About this section
	Platform upgrades
	Matching RAB and RobotWare release
	RobotWare upgrades
	Prepared for change

	4 Developing RAB applications
	4.1. Introduction
	About this chapter
	Basic approach

	4.2. Analysis and design
	About this section
	Object oriented software development
	Object oriented Analysis and Design
	Analysis based on communication and use cases
	Design is about managing complexity
	Do you need to do design?
	As complex or as easy as you wish

	4.3. Controller events and threads
	Overview
	Controller events
	GUI and controller event threads in conflict
	Invoke method

	4.4. User Authorization System
	Overview
	Accessing UAS from custom applications
	Grants and Groups
	MessageBox feedback
	GetCurrentGrants and DemandGrant

	4.5. Exception handling
	Overview
	Try-catch-finally
	Typecasting
	Exception handling for the PC platform
	Exception handling for the FlexPendant platform
	.NET Best Practices

	4.6. How to use the online help
	Overview

	5 Using the FlexPendant SDK
	5.1 Introduction
	5.1.1. About this chapter
	Overview

	5.1.2. System features supporting the use of customized screens
	Flexible user interfaces
	Configure the FlexPendant
	Additional Test View
	View On Operating Mode Change

	Use RAPID instruction to launch RAB application

	5.2 Setting up a new project
	5.2.1. Using the project template in Visual Studio
	Overview
	Setup procedure
	Add any missing references

	5.2.2. Setting up design support for FlexPendant controls
	Overview
	Procedure

	5.3 Building the user interface
	5.3.1. Introduction to visual design support
	What is visual design support?
	Why special controls for the FlexPendant?
	Illustration
	Hands on - Hello world
	Hands on - step 2
	Visual design and user experience

	5.3.2. GUI controls and memory management
	Overview
	How to avoid memory leaks
	Coding the Dispose method
	Freeing allocated memory for a GUI control

	5.3.3. Container style
	Overview
	Empty or Form?
	Empty
	Form

	How to build the command bar
	Adding a view to a custom application
	Launching the view

	5.3.4. Command bar
	Overview
	How to add menu items
	How to add menu item event handling

	5.3.5. FlexPendant fonts
	Overview
	TpsFont

	5.3.6. The use of icons
	Overview
	FlexPendant controls with images
	PictureBox and ImageList
	The TpsIcon class

	5.3.7. TabControl
	Overview
	Illustration
	How to add tab images
	How to add an event handler using the Properties window
	Disposing TabControl

	5.3.8. Button, TextBox and ComboBox
	Overview
	Using Button
	Using TextBox
	Using ComboBox

	5.3.9. AlphaPad
	Overview
	Launching the AlphaPad
	Adding event handlers
	Validating the result at the Closing event
	Using the result at the Closed event
	Removing the AlphaPad control

	5.3.10. ListView
	Overview
	Illustration
	Using properties to control appearance
	ABB specific properties

	5.3.11. CompactAlphaPad and NumPad
	Using CompactAlphaPad
	Using NumPad

	5.3.12. GTPUMessageBox
	Overview
	Design issues
	Simple code example
	Using a callback

	5.3.13. GTPUFileDialog
	Overview
	File dialog types
	Illustration
	Implementation details
	Example

	5.3.14. DataBinding of RAPID data and IO signals
	What is databinding?
	FlexPendant SDK classes to be used as binding sources
	RapidDataBindingSource
	SignalBindingSource

	GUI example
	How to use the VS designer for data binding
	SuspendBinding/ResumeBinding

	5.4 Launching other views
	5.4.1. Using launch service
	Overview
	ITpsViewSetup Install
	Launching standard views
	LaunchView / CloseView example

	Launching custom applications

	5.4.2. Using standard dialogs to modify data
	Overview
	Creating the dialog
	Type checking

	5.5 Using the Controller API
	5.5.1. ABB.Robotics.Controllers
	Controller API
	CAPI domains
	CAPI and controller domains
	What controller functionality is provided?
	Releasing memory
	FP SDK Reference

	5.5.2. Accessing the controller
	Overview
	Controller instance
	Subscribing to controller events
	Create a backup
	Dispose

	5.5.3. Rapid domain
	5.5.3.1. Working with RAPID data
	Overview
	Providing the path to the RAPID data
	Direct access
	Hierarchical access
	Accessing data declared in a shared module

	Creating an object representing the RAPID data value
	IRapidData.ToString method
	IRapidData.FillFromString method
	String format

	Writing to RAPID data
	Letting the user know that RAPID data has changed
	Add subscription
	Handle event
	Read new value from controlller

	RapidData disposal

	5.5.3.2. Handling RAPID arrays
	Overview
	ArrayData object
	Array dimensions
	Array item access by using indexers
	Array item access using enumerator

	5.5.3.3. ReadItem and WriteItem methods
	Overview
	ReadItem method
	WriteItem method

	5.5.3.4. UserDefined data
	Overview
	Creating UserDefined object
	Reading UserDefined data
	Writing to UserDefined data
	Implement your own struct representing a RECORD
	Creating ProcessData type
	Implementing ProcessData struct
	Implementing IRapidData methods
	Property implementation

	5.5.3.5. RAPID symbol search
	Overview
	SearchRapidSymbol method
	Search properties
	Default instance
	Data type argument
	Symbol name argument
	Example 1
	Example 2
	Example 3

	SearchRapidSymbol example
	Search for UserDefined RAPID data - example

	5.5.3.6. RAPID execution
	Start and Stop RAPID programs
	RAPID execution change event
	ResetProgramPointer method

	5.5.3.7. Modifying modules and programs
	Overview
	Load modules and programs
	Save and unload RAPID program
	Save module
	ProgramPointer and MotionPointer
	ModifyPosition method

	5.5.4. IO system domain
	Overview
	Accessing signals
	Getting signals using SignalFilter
	Reading IO signal values
	Digital signal
	Analog signal

	Writing IO signal values
	Digital signal
	Analog signal

	Listening to signal changes
	Visual Basic
	C#
	Start and stop subscriptions
	Avoiding threading conflicts
	Finding out the new value

	5.5.5. Event log domain
	Overview
	Access the controller event log
	Access event log categories
	Access event log messages
	MessageWritten event

	5.5.6. Motion domain
	Overview
	MotionSystem object
	Accessing Mechanical units
	Jogging
	Mechanical unit properties and methods
	DataChanged event

	5.5.7. File system domain
	Overview
	Accessing files and directories
	Controller and FlexPendant file system
	Loading controller files
	Saving files
	Getting multiple files and directories
	Using search patterns

	5.5.8. System info domain
	Overview
	SystemInfo class
	System options
	Additional options

	6 Robust FlexPendant applications
	6.1. Introduction
	Overview
	Technical overview of the FlexPendant device
	How large can a custom application be?

	6.2. Memory management
	Garbage collection and Dispose
	Application Framework usage - ITpsViewSetup
	How to program the Dispose method - example
	Discover memory leaks

	6.3. Performance
	About performance
	Less code means faster code
	Fewer controller accesses means faster code
	Fewer objects means faster code
	Transferring files
	Application Framework usage - ITpsViewActivation
	Excessive string manipulation is costly
	Avoid Control.Refresh
	Avoid boxing and unboxing
	Foreach
	Reflection is performance demanding
	Efficiently parsing Xlm

	6.4. Reliability
	Overview
	Error handling in .NET applications
	SDK exception classes
	Thread affinity
	Invoke
	Memory leaks
	Utilizing multi-threading
	Lock statement
	Multicast delegates

	7 Using the PC SDK
	7.1. Controller API
	PC SDK domains
	CAPI illustration
	PC SDK Reference

	7.2. Create a simple PC SDK application
	Overview
	Set up the project
	Create the user interface
	Implement network scanning
	Add a network watcher
	Handle event
	Establish connection to controller
	Implement event handler
	Start program execution

	7.3. Discovery domain
	Overview
	NetworkScanner
	ControllerInfo object
	Add controllers from outside local network
	NetworkWatcher

	7.4. Accessing the controller
	Controller object
	Memory management in PC applications
	Dispose
	Logon and logoff
	Mastership
	Controller events
	Backup and Restore
	Backup sample
	Restore sample

	VirtualPanel
	Learn more

	7.5 Rapid domain
	7.5.1. Working with RAPID data
	Overview
	Providing the path to the RAPID data
	Direct access
	Hierarchical access
	Accessing data declared in a shared module

	Creating an object representing the RAPID data value
	IRapidData.ToString method
	IRapidData.FillFromString method
	String format

	Writing to RAPID data
	Letting the user know that RAPID data has changed
	Add subscription
	Handle event
	Read new value from controlller

	Implementing high priority data subscriptions
	RapidData disposal

	7.5.2. Handling arrays
	Overview
	ArrayData object
	Array dimensions
	Array item access by using indexers
	Array item access using enumerator

	7.5.3. ReadItem and WriteItem methods
	Overview
	ReadItem method
	WriteItem method

	7.5.4. UserDefined data
	Overview
	Creating UserDefined object
	Reading UserDefined data
	Writing to UserDefined data
	Recursively reading the structure of any RECORD data type
	Implement your own struct representing a RECORD
	Creating ProcessData type
	Implementing ProcessData struct
	Implementing IRapidData methods
	Property implementation

	7.5.5. RAPID symbol search
	Overview
	Search method
	Search properties
	Default instance
	Data type argument
	Symbol name argument
	Example 1
	Example 2
	Example 3

	SearchRapidSymbol example
	Search for UserDefined RAPID data - example

	7.5.6. Working with RAPID modules and programs
	Overview
	Load modules and programs
	Save programs and modules
	ResetProgramPointer method
	Start program
	Execution change event

	7.5.7. Enable operator response to RAPID UI-instructions from a PC
	Remote operator dialog
	Supported RAPID instructions
	UIInstructionType

	Increased flexibility
	Basic approach
	UIInstructionEvent
	UIInstruction event arguments
	UIInstructionEventArgs
	UIListViewEventArgs

	UIInstructionEventType
	SendAnswer method

	7.6. IO system domain
	Overview
	Accessing signals
	Getting signals using SignalFilter
	Reading IO signal values
	Digital signal
	Analog signal

	Writing IO signal values
	Digital signal
	Analog signal

	Listening to signal changes
	Visual Basic
	C#
	Start and stop subscriptions
	Implementing high priority event subscription
	Limitations for high priority events
	Avoiding threading conflicts
	Reading the new value

	7.7. Event log domain
	Overview
	Accessing the controller event log
	Accessing event log categories
	Accessing event log messages
	MessageWritten event

	7.8. Motion domain
	Overview
	Motion system
	Accessing Mechanical units
	Mechanical unit properties and methods

	7.9. File system domain
	Overview
	Accessing files and directories
	Controller and PC directory
	Environment variables
	Loading files
	Saving files
	CopyFile and CopyDirectory
	Getting multiple files and directories
	Using search patterns

	7.10. Messaging domain
	Overview
	RobotWare option
	Messaging illustration
	Benefits
	The Messaging namespace
	Basic approach
	What can be sent in a message?
	RAPID Message Queue system parameters
	Remote RmqType
	Code example
	PC SDK - C#
	RAPID

	8 Debugging and troubleshooting
	8.1 FlexPendant - Debugging and troubleshooting
	8.1.1. Debug output
	Overview
	Enable debug output
	FlexPendant Command Server
	Trace and Debug

	8.1.2. Debugging the virtual FlexPendant
	Overview
	Debugging procedure
	Attach to Process
	Windows Task Manager
	Launching debugger programatically

	8.1.3. Debugging the FlexPendant device
	Overview
	Prerequisites
	Setting up the network
	Debugging procedure
	RAB User Forum

	8.1.4. Troubleshooting FlexPendant applications
	Overview
	FlexPendant application does not start
	Important support information

	8.2 PC - Debugging and troubleshooting
	8.2.1. Debugging
	Introduction
	Exception error codes

	8.2.2. Troubleshooting
	Overview
	Checklist
	Important support information

	9 Localizing a FlexPendant application
	9.1. Adding support for several languages
	Introduction
	Get started
	1 Create project for text resources
	2 Prepare main project for localization
	3 Build satellite assembly
	4 Test a localized application

	10 Packaging RAB applications
	10.1 Deployment of a PC SDK application
	10.1.1. Overview
	Introduction
	Facilities for deployment
	ABBControllerAPI.msm
	ABB Industrial Robot Communication Runtime.msi

	10.2 Deployment of a FlexPendant SDK application
	10.2.1. Overview
	Introduction
	Making a product
	Deployment of a FlexPendant SDK product

	10.2.2. Deployment of an application without a license
	Overview
	No license and no localization
	No license but localization

	10.2.3. Deployment of a licensed application
	Overview
	Procedure for making an additional option
	Installing the option at the customer
	Related information

	10.2.4. Deployment using FTP
	Overview
	Procedure

