Application manual

Robot Application Builder

Industrial Software Products
RobotWare 5.0

AL 1D D
MRPpD

© Copyright 2007 - 2009 ABB. All rights reserved.

Application manual
Robot Application Builder

RobotWare 5.0

Document ID: 3HAC028083-001
Revision: D

The information in this manual is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to persons
or property, fithess for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written
permission, and contents thereof must not be imparted to a third party nor be used for
any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

© Copyright 2007 - 2009 ABB All rights reserved.

ABB AB
Robotics Products
SE-721 68 Vasteras
Sweden

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

Table of Contents

L0 = 7
Product documentation, M2004ottt e 10

S = 12

1 Introduction 13
1.1 About Robot Application Builder. 14

1.2 Documentation and heElp.ot e 16

LB T aMINOIOgY . . v vt ettt et e e e e e 18

2 Installation and development environment 21
2.1 1Installation OVEIVIEW . . . oottt e e e e e e 22

2.2 How to obtain and install alicensekey for RAB5.09orearlier, 26

2.3 How to set up your PC to robot communication it 27

2.4 DevelOpmENnt ENVIFONMIENE oottt e e e 29

2.5 Two development models- virtual andreal i 31

2.6 Conversion of VS 2005 projectsto Visual Studio2008. 33

3 Run-time environment 35
3.1 Two platforms- PCand FlexPendant. e 36
3.2Running PC Applications o 40
3.2.1 Licence verification - appliesonly toversions earlier thanRAB5.10 40

I |V = 1 = = 0T o 41

3. 23 PCapplication configurationt 43

3.2.4 Communication between PCand controller. i 46

3.3 Running FlexPendant Applications. i 47
3.3.1 Components, assembliesand dlls. 47

3.3.2 Deployment of FlexPendant applicationtoarobotsystemo, 48

3.3.3 Communication between FlexPendant and controller 51

3.3.4 Understanding FlexPendant application lifecycle. i i, 52
3.3.5FlexPendant TpsView attribute 54

3.3.6 ITpsViewSetup and ITPSVIEWACHIVALION i e et 58

3.4 Release upgrades and compatibility 60

4 Developing RAB applications 63
A2 INtrOdUCLION . . .ot e e e e 64

42 ANalySISanNd deSigNo 65

4.3 Controller eventsand threads.o 67

4.4 User AUthOriZation SyStem. o e 70

A5 Exception handling.ot 72
46Howtousetheonlinehelp. o e 75

5 Using the FlexPendant SDK 77
B L INtrodUCHION . . o 77
B, L AbOUt thiS Chapter. . . . o e 77

5.1.2 System features supporting the use of customizedscreens, 78

5.2 Setting Up @ NeW ProjeCT. . . oottt 80
5.2.1 Using the project templatein Visual Studio. i 80

5.2.2 Setting up design support for FlexPendant controls. i i 83

5.3 Building the user interface. 84
5.3.1 Introduction to visual design SUPPOIto vttt 84

5.3.2 GUI controlsand memory management. u it e 93

B33 C0Ntainer Style e 97

5.3.4 ComMmMand Daro 101

3HAC028083-001 Revision: D

Table of Contents

535 HexPendant foNntSo ot 103
5.3 B TheUSE Of ICONS. . .\ttt e e e 104

B 3.7 TabCONIOl . . ot e 106
5.3.8 Button, TextBox and COmMBOBOX.ottt e 109
B3O AIPhaPad 110
B3 0 LISV BN, oot 114
5.3.11 CompactAlphaPad and NumPad e e 116
5.3.12 GTPUMESSAZEBOX. . .« « vttt ettt e e e e e e e e e e 117

5.3 A3 GTPURIEDIAOY . . . oottt e 119
5.3.14 DataBinding of RAPID dataand 1O Signalst 122

5.4 Launching Other VIeWS o e 128
541 UsSINg launCh ServiCe . ..o e 128
5.4.2 Using standard dialogsto modify data. 131

5.5 Using the Controller AP e 133
5.5.1 ABB.R0OBOtiCS.Controllers.o e 133
5.5.2 Accessing thecontroller. 136
5.5, 3 RaApPId dOmMain e 140
5531 WorkingWithRAPID data.ot e e 140

553 2Handling RAPID @TayS . . .« .ttt ettt e e e e e e 148

5.5.3.3 Readltem and Writeltemmethods i 151

5534 UserDefineddata ot 152
5535RAPID symbol search. o 157

5536 RAPID BXECULION . . oottt ettt et e e e 162

5.5.3.7 Modifying modules and programs oot e 164

55410 SystemM dOMEIN . . oottt ettt e e e 166

B B S EVENt 0g dOmMaiNo 172
556 MOtION OMaAIN. . . o\ttt e e e e e 174
557 Hlesystem domain 177
5.5.8 System infO domaiN e 179

6 Robust FlexPendant applications 181
B.LINrOAUCLION . . .ottt e e e 182
6.2 MEMOrY MaNAgEMENL. .« . . ot ittt et e e e et e e e 184
B.3 PEI OIMANCE . . . o oottt 188
B.4 REliADIItY . . .o 193
7 Using the PC SDK 199
7. CoNtroller APl L 200
7.2 Createasimple PC SDK application.o e et e e e 202
7.3 DiSCOVENY QOMAIN . . oottt ettt e e e e e e 210
T4 Accessingthe controller. e 212
7.5 RapId dOmMain ... o e 219
751 WorkingWith RAPID data.ot e e 219
75 2HandliNG @TaYS . . o« ottt e 227
7.5.3 Readitemand Writeltemmethods o 230
754 UsarDefined data. oot e 231
755RAPID symbol search o 239
7.5.6 Working with RAPID modulesand programs.o it 245
7.5.7 Enable operator response to RAPID Ul-ingtructionsfromaPC......................... 248

TH IO SYSEEM AOMAEIN. . . . oottt e e e e e e 254
T EVENt 1Og dOMaiN . . .o e e 261
T8 MOtION OMAIN. . . .ot ettt e e e e 263
TORIeSyStEM OMaIN.ottt e e e 265
710 MeSSaging dOMEIN . . . o . v ettt et e e e e e e e 268

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

Table of Contents

8 Debugging and troubleshooting 279
8.1 FlexPendant - Debugging and troubleshooting i 279
8.1.1 DEDUG OULPUL . . .ottt e e e e e e 279

8.1.2 Debugging thevirtual FlexPendant 282

8.1.3 Debugging the FlexPendant devicet 286

8.1.4 Troubleshooting FlexPendant applicationst 289

8.2 PC - Debugging and troubleshooting 292
8.2, L DEDUGGING - o vttt e 292
8.22Troubleshooting 296

9 Localizing a FlexPendant application 299
9.1 Adding support for several 1angUagESo et 300

10 Packaging RAB applications 309
10.1 Deployment of a PC SDK application e 309
JO.L A OVEIVIBIV o e ottt et e e e e et e e e e e e e e e e e e 309

10.2 Deployment of a FlexPendant SDK application. 311
JO.2. 1 OVEIVIBIV o e ottt et e e et et e e e e e e e e e e e e 311

10.2.2 Deployment of an application without alicenseo i, 312

10.2.3 Deployment of alicensed applicationo e 315

10.2.4 Deployment Using FTP. o 318

3HAC028083-001 Revision: D 5

© Copyright 2007 - 2009 ABB. All rights reserved.

Overview

About this manual

Overview

Robot Application Builder (RAB) isasoftware tool, which enables programmersto develop
customized operator interfaces for the IRC5 robot controller.

The purpose of this manual isto help software developers get started with RAB application
development.

Usage

Robot Application Builder targets two different platforms. To develop a FlexPendant
application you use the FlexPendant SDK. To develop a PC application, on the other hand,
you usethe PC SDK. Thismanual covers application development using both of these SDKs.

Who should read this manual?

This manual ismainly intended for software devel opers, who use RAB to create robot
applications adapted to end-user needs, but is also useful for anyone who needs an overview
of Robot Application Builder.

Prerequisites

The reader should
e befamiliar with IRC5, the FlexPendant and Robot Studio.
* beused to Microsoft Visual Studio and Windows programming.

* befamiliar with oneof the.NET programming languages C# or Visual Basic.NET. For
PC applications Visual J# and Visual C++ should aso work.

» beused to object oriented programming.

Organization of chapters

Most chaptersin this manual deal with topics that apply to both platforms (PC and
FlexPendant). Chapter 5, 6 and 9, however, cover the FlexPendant SDK specifically, whereas
chapter 7 deals only with the PC SDK. Code samplesare written in C# and Visual Basic. The
manual is organized as follows:

Chapter Contents

1. Introduction. Terminology. Safety.
2. Installation and setup. Development environment . Virtual robot technology.
3. Two run-time platforms: PC and FlexPendant. Selecting the platform. Software

architecture. Run-time environment for PC/FlexPendant applications. How
clients access controller resources and communicate with the robot controller.
Application configuration. Life cycle of a FlexPendant application. Upgrades
and compatibility.

4. Developing RAB applications. Analysis and design. Important programming
issues: controller events and threads, UAS, exception handling. Online help.

B Using the FlexPendant SDK. Visual design support. GUI controls. Launching
standard views. Data binding. How to add controller functionality using the
Controller API. Programming issues and code samples in VB and C#.

6. How to develop well performing and robust FlexPendant applications. Memory
management, performance and reliability. Exception handling.

Continues on next page

3HAC028083-001 Revision: D 7

Overview

Continued
Chapter Contents
7. Using the PC SDK. How to add controller functionality using the Controller
API. Programming issues and code samples in VB and C#.
8. Testing, debugging and troubleshooting RAB applications. Using printouts,
error codes in exceptions etc. Checklist for contacting a service organization.
9. How to add support for several languages to a custom FlexPendant applica-
tion.
10. How to deploy RAB applications. How to create an additional option and how
to make a product of a FlexPendant application.
References
Reference Document Id
Operating Manual -IRC5 with FlexPendant 3HAC 16590-1
Operating Manual - RobotStudio 3HAC032104-001
Technical reference manual - RAPID Instructions, Functions and Data 3HAC16581-1
types
Revisions
Revision Description
- First edition
From RAB 5.08 onwards this manual replaces:
Robot Application Builder - PC SDK User's Guide (3HAC 024913-001) and
Robot Application Builder - FlexPendant SDK User's Guide (S3HAC 024914-
001)
A Improvements and updates for RAB 5.09.
B Additions and further improvements for RAB 5.10:
Installation chapter: no license required, working with several PC SDK
versions. (2.1- 2.2)
PC application configuration, how to use App.config. (3.2.3)
TpsFont internally retrieves appropriate font for the active language, e.g.
Chinese (5.3.5).
The operating system of the first generation FlexPendant device (SX TPU 1)
does not support images of more than 256 colors. (5.3.6, 8.1.4)
New FP SDK domain SystemIinfoDomain (5.5.8).
Maximum size of an FP SDK application (6.1).
No initial events guaranteed (4.3, 5.5.2, 5.5.4, 7.3, 7.6).
Create a simple PC SDK application (7.2).
FP and PC SDK Controller API, working with RAPID data. (5.5.3.1 and 7.5.1).
High priority event subscriptions in PC SDK (7.5.1).
New PC SDK domain Messaging (7.10).
Troubleshooting PC SDK applications (8.2.2).
Localizing a FlexPendant application (9).
C Improvements and updates for RAB 5.11.

New installation described in Installation overview (2.1)(

Continues on next page

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

Revision
D

Overview

Continued

Description

Additions and improvements for RAB 5.12:

RobotStudio Community (1.2)

Some details about installing RAB on Windows Vista (2.1)
Description of improved Project Wizard (3.3.5 and 5.3.3)
Removed obsolete section about TpsFont . FontName (5.3.5)
How to access user defined data (5.5.3.4 and 7.5.4)
SearchRapidSymbol (5.5.3.5 and 7.5.5)

How to access data declared in Shared module (5.5.3.4, 5.5.3.5 and 7.5.4,
7.5.5)

Enable operator response to RAPID Ul-instructions from a PC (7.5.7)
Messaging - new system parameter RmgMode (7.10).

3HAC028083-001 Revision: D

Product documentation, M2004

Product documentation, M2004

General

The robot documentation may be divided into anumber of categories. Thislisting isbased on
the type of information contained within the documents, regardless of whether the products
arestandard or optional. Thismeansthat any given delivery of robot productswill not contain
all documents listed, only the ones pertaining to the equipment delivered.However, all
documentslisted may be ordered from ABB. The documentslisted are valid for M2004 robot
systems.

However, al documentslisted may be ordered from ABB. The documentslisted arevalid for
M2004 robot systems.

Product manuals

All hardware, robots and controllers, are delivered with a Product manual, which is divided
into two parts:

Product manual, procedures
o Sofety information

» Ingtallation and commissioning (descriptions of mechanical installation, electrical
connections)

» Maintenance (descriptions of all required preventive maintenance procedures
including intervals)

» Repair (descriptions of all recommended repair procedures including spare parts)
» Additional procedures, if any (calibration, decommissioning)

Product manual, reference information
e Safety information

» Reference information (article numbers for documentation referred to in Product
manual, procedures, lists of tools, safety standards)

e Partlist
¢ Foldouts or exploded views
e Circuit diagrams

The product manual published as a PDF consists of only one file where the two parts are
presented together, as one Product manual.

Technical reference manuals

The following manuals describe the robot software in general and contain relevant reference
information:

Product manual, procedures
* RAPID overview: An overview of the RAPID programming language.

* RAPID Instructions, Functions and Data types: Description and syntax for all
RAPID instructions, functions and data types.

» System parameters; Description of system parameters and configuration workflow

Continues on next page

10

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

Product documentation, M2004

Continued

Application manuals

Specific applications (e.g. software or hardware options) are described in Application
manuals. An application manual can describe one or several applications.

An application manual generally containsinformation about:
» The purpose of the application (what it does and when it is useful)

* Whatisincluded (e.g. cables, /O boards, RAPID instructions, system parameters, CD
with PC software)

* How to usethe application
» Examples of how to use the application

Operating manuals
This group of manualsis aimed at those having first hand operational contact with the robot,
i.e. production cell operators, programmers and trouble shooters. It includes:

e Getting started - IRC5 and RobotStudio
* |RC5with FlexPendant

* RobotStudio

» Troubleshooting

3HAC028083-001 Revision: D 11

Safety

Safety

Safety of personnel
A robot is heavy and extremely powerful regardless of its speed. A pause or long stop in
movement can be followed by afast hazardous movement. Even if a pattern of movement is
predicted, a change in operation can be triggered by an external signal resulting in an
unexpected movement.Therefore, it isimportant that all safety regulations arefollowed when
entering safeguarded space.

Safety of regulations
Before beginning work with the robot, make sure you are familiar with the saf ety regulations
described in Operating manual - IRC5 with FlexPendant.

12 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

1 Introduction

1 Introduction

Safety

3HAC028083-001 Revision: D

13

1 Introduction

1.1. About Robot Application Builder

1.1. About Robot Application Builder

Flexible user interfaces

Robots are usually delivered with a general operator interface. However, different processes
require different operator handling and customers need flexible solutions, where the user
interface is adapted to user specific needs.

Raobot Application Builder (RAB) allows system integrators, third parties or end-usersto add
their own customized operator interfaces for the IRC5 controller. Such custom applications
can either be added to the standard views of the FlexPendant or realized as independent PC
applications, which communicate with the robot controller over a network.

To accommodate this, RAB includes the following two components:
¢ FlexPendant SDK
e PCSDK

NOTE!

RAB applications are not platform independent. You must choose to devel op the application
for either the FlexPendant or the PC platform.

Ease-of-use on the factory floor

A well-designed user interface presents relevant information and functionality at the right
time. In thisrespect, customized user interfaces are clearly very desirable to the end-user. As
tailored solutions are easier to operate, they also optimize user’s investment in automation.

RAB isthetool enabling customized user interfacesfor IRCS. It isimportant to keep in mind,
however, that RAB itself does not guarantee increased customer value. To achievethis, RAB
applications should be devel oped with care and with aheavy emphasis placed on ease-of -use.
Understanding end-users’ needsisin fact crucial to realizing the benefits of customized
interfaces.

Continues on next page

14

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

1 Introduction

1.1. About Robot Application Builder

Continued

.NET and Visual Studio

Robot Application Builder uses Microsoft .NET and Microsoft Visua Studio. It isthus
assumed that the user knows how to program Windows platforms using Visual Studio.
Among programmers .NET distinguishesitself by the programming model provided by the
Microsoft .NET Framework. The programming model is very similar for the two run-time
platforms supported by Robot Application Builder.

Onefeature is the programming language independence, leaving the choice to the devel oper
to useany language provided by theintegrated devel opment environment Visual Studio. Most
prefer C# or Visua Basic, which both offer safe and efficient development. For FlexPendant
applications only these two languages are available. For PC applications any of the NET
languages should work, but ABB support is only offered for Visua Basic and C#.

For a Windows programmer familiar with Visual Studio and .NET, devel oping a customized
operator view israther straight-forward. RAB isfully integrated with Visual Studio, which
means that a .NET programmer will recognize wizards for project setup and tools for visual
design support and debug etc.

Considerable efforts have been made to allow RAB programmers to start working without
having to overcome a steep learning curve. To further speed up the devel opment process, the
virtual IRC5 of RobotStudio can be used to test and debug RAB applications.

NOTE!

Some knowledge in Windows programming, object orientation and a .NET programming
language is necessary to be able to use Robot Application Builder.

Robustness and performance

Do not underestimate the concern and effort required to achieve the quality and performance
needed in industry.

Developing an application for the FlexPendant, a device with limited process and memory
resources, can be quite demanding. Issues such as performance and memory management
need to be addressed.

Asfor PC SDK applications as well, there are issues related to performance and reliability
that you need to know about before getting started.

In short, even if you are an experienced Windows programmer, you are strongly
recommended to read this manual to learn about specific RAB issues when moving to RAB
development.

NOTE!

Take the time to study this manual along with the release notes, and avoiding rushing into
coding.

3HAC028083-001 Revision: D 15

1 Introduction

1.2. Documentation and help

1.2. Documentation and help

Introduction

Robot Application Builder includes an extensive on-line help modul e, which comeswith the
installation of the product. After having installed RAB, by clicking Windows Sart menu,
then pointing at Programs > ABB Industrial IT > Robotics I T > Robot Application Builder
5.xx you will find:

¢ User's Guide - Application manual - Robot Application Builder

» FP SDK Reference

» PC SDK Reference

* FP StyleGuide

User’s Guide
Thisuser’s guide, Application manual - Robot Application Builder, isthe recommended way
to get started if you are new to RAB development. It explains how RAB works. It has code
examplesin C# and VB and provides hands-on exercises.
The user’s guide is provided in two formats, Html Help and PDF. Html is the recommended
format for the PC screen and PDF is the best choice if you want printouts.

NOTE!
ﬂ User’'s Guide.PDF can befound intheinstallation directory, at \Program Files\ABB Industrial
IT\Robotics IT\Robot Application Builder 5.xx\.

SDK Reference Help
The SDK Reference Help files should be used while programming.
Notice that the FlexPendant SDK and the PC SDK have separate help files:
e FP SDK Reference
¢ PC SDK Reference
These make up the complete reference to the RAB class libraries. Method signatures are
provided in C# and Visual Basic.

Please note that they are not integrated with the Visual Studio Help function. Pressing F1
when pointing at code, for example, will open the Visual Sudio Programmer’s Reference or
the .NET Framework Class Library for the specific language and topic. Many timesthisis
what you want, but if your problem is RAB-related you need to open the appropriate SDK
Reference Help to find a solution.

NOTE!
H You are recommended to keep the hel p files open while programming, asyou will frequently
need them for RAB-related issues.

FP StyleGuide
Good usahility is achieved when the program itself communicates possible actions and how
to perform them. To encourage careful design of the visual appearance the FP SyleGuideis
also part of the RAB installation. It is ABB Robotics' best practices for visual design of the
FlexPendant user interface.
Continues on next page
16 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

1 Introduction

1.2. Documentation and help

Continued

RobotStudio Community
In 2008 ABB Robotics launched a new site, RobotSudio Community, for its PC Software
users. The Developer Section of RobotStudio Community has information and some videos
about programming with the FlexPendant and PC SDKs. At Content Sharing thereisa
complete FlexPendant SDK application available for download. It is recommended for
average users and for beginners.

ABB encourage open conversations and believe everyone has something to contribute. The
User Forum of RobotSudio Community has a section dedicated to Robot Application
Builder. Here beginnersaswell as expertsdiscuss code and solutionsonline. If you arefacing
acoding problem the User Forum should be your first choice, asthere is agood chance that
someone will give you the help you need to proceed.

RobotSudio Community also provides the means to share code and videos. Your contribution
will be appreciated. Working together is many times the key to success.

RobotSudio Community is also where you find RAB releases for free download.

TIP!
Q Try it out at www.abb.com/robotics > RobotStudio Community.

RAB Product Specification
The product specification for Robot Application Builder (3HAC025595-001) is available
from RobotSudio Community and from ABB Library. It is updated for each new release.

MSDN

MSDN (Microsoft Devel oper Network) at www.msdn.com is a one of many sources of
information for general programming issues related to .NET and Visual Studio.

3HAC028083-001 Revision: D 17

1 Introduction

1.3. Terminology

1.3. Terminology

About terms and acronyms
Sometermsused in thismanual are product specific and crucial for understanding. Moreover,
acronyms, words formed from initial letters, are sometimes used instead of long terms. To
avoid confusion, important terminology is clarified below.

Definitions
Term Definition
IRC5 ABB'’s new generation robot controller.
Virtual IRC5 Virtual robot technology makes it possible to run a virtual IRC5

controller, virtual mechanical units and a virtual FlexPendant on
the desktop. Included as freeware in ABB’s RobotStudio from
RAB 5.11.

FlexPendant ABB'’s new generation hand held device, used with the IRC5
robot controller. It is developed with Microsoft's latest
technology for embedded systems, Windows CE and .NET
Compact Framework.

Device The FlexPendant is a “smart device” in the .NET vocabulary, i.e.
a complete computer in itself with its own processor, operating
system etc.

Robot Application Builder ABB software tool, which enables the development of custom
operator interfaces for IRC5. Often referred to as RAB.

RAB programmer A programmer who uses RAB to develop custom applications.
RAB application A custom application developed with Robot Application Builder.
Controller Application The public class libraries of Robot Application Builder, which
Programming Interface offer robot controller functionality. Also referred to as CAPI.
Network socket A communication end-point unique to a machine communicat-

ing on an Internet Protocol-based network.

Microsoft Visual Studio The integrated development environment that developers work
inside when using the .NET Framework.

Microsoft .NET Framework An integral Windows component supporting the building and
running of applications.

.NET Compact Framework Version of Microsoft's .NET framework providing the run-time

(.NET CF) environment for applications running on embedded devices,
such as the FlexPendant. It includes a class library, which is
almost a subset of the rich .NET framework for the desktop.

Common Language The core runtime engine in the .NET Framework for execution

Runtime of managed code. Provides services such as cross-language
integration, code access security, object lifetime management,
and debugging and profiling support.

C# and Visual Basic.NET .NET programming languages.

Windows CE The embedded operating system running on the FlexPendant-
device.
managed code Code that is executed and managed by the Microsoft .NET

Framework’s common language runtime. All code produced by
Visual Studio executes as managed code.

Continues on next page
18 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

1 Introduction

Term

unmanaged code

JIT compiler

Acronym

CAPI
CLR
GUI
MSDN

VS
RAB
SDK
VB
TAF

TCP/IP

1.3. Terminology

Continued

Definition

Code that is executed directly by the operating system, outside
the .NET Framework. Unmanaged code must provide its own
memory management, type checking, and security support,
unlike managed code, which receives these services from the
common language runtime. All code executing in the robot
controller, as well as part of the code executing in the
FlexPendant is unmanaged.

When compiling managed code, the compiler translates the
source code into Microsoft Intermediate Language (MSIL),
which is a CPU-independent set of instructions. Before code
can be executed, MSIL must be converted to CPU-specific
code, usually by a just-in-time (JIT) compiler.

Definition

Controller Application Programming Interface
Common Language Runtime

Graphical User Interface

Microsoft Developer Network, source of information for .NET
developers at:

http://msdn2.microsoft.com/en-au/netframework/default.aspx
Visual Studio

Robot Application Builder

Software Development Kit

Visual Basic

Teach Pendant Application Framework, all applications using
the FlexPendant SDK must run as TAF clients. See TAF -
Application host framework on page 52 for detailed information.

Transmission Control Protocol (TCP) and Internet Protocol (IP)

3HAC028083-001 Revision: D

19

1 Introduction

1.3. Terminology

20

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

1.3. Terminology

2 Installation and development environment

3HAC028083-001 Revision: D 21

2 Installation and development environment

2.1. Installation overview

2.1. Installation overview

About this section

This section describes how to install Robot Application Builder. When the installation is
complete, you can program, compile and test PC and FlexPendant applications for the IRC5
controller.

Supported platforms

The following software requirements have to be met:
¢ Operating system: Microsoft Windows XP + SP2 or Windows Vista+ SP1
¢ Microsoft Visual Studio: VS 2005 (Standard Edition or better isrequired to use the FP
SDK) or VS 2008 (Professional Edition or better isrequired to use the FP SDK). To
use the PC SDK Standard or Express edition will do.
The following hardware requirement have to be met:
¢ 50 MB free disc-space on the installation disc
Both FlexPendant generations are supported:
e SXTPU-1, which executeswith .NET CF 2.0 and WinCE 4.2.
e SXTPU-2, which executes with .NET CF 2.0 and WinCE 5.0.

NOTE!

When installing RAB on Windows Vista OS you may get a Visual Studio error message
saying “ The operation could not be completed. The requested operation requires elevation”.
This error is due to failure of the installation of the FP SDK templates and project wizard,
which is prevented when Vista's User Account Control (UAC) feature is enabled. To solve
the problem you need to uninstall RAB, disable UAC, reinstall RAB, then re-enable UAC (if
desired). It is now possible to use the Project Wizard and create a FlexPendant project.

NOTE!
Robot Application Builder is developed and tested for the English version of Visua Studio.

If you are running Visual Studio in another language you are therefore recommended to
switch to the English version.

Requirements for installing and using Robot Application Builder

Toinstall and use Robot A pplication Builder, thefollowing requirementshaveto bemet. Also
make sure that you have administrator permissions on the computer that you are using.

Before... you must...

installing Robot Application Builder install RobotStudio and Microsoft Visual Studio 2005
or 2008.

Note! If you are running under windows Vista you
need to disable Vista's User Account Control (UAC)
feature.

debugging using a virtual IRC5 learn how to run the virtual IRC5 in RobotStudio.

Continues on next page

22

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

2.1. Installation overview

Continued
Before... you must...
debugging using the real install the .NET Compact Framework 2.0 Service Pack
FlexPendant device 1 or 2, which can be downloaded from http://

www.microsoft.com/downloads. The User Forum has
information on how to attach the Visual Studio
debugger to the device. See also Debugging the
FlexPendant device on page 286.

executing the application targeting a check that the robot system has the controller option
real IRC5 system PC Interface (for PC applications) or FlexPendant
Interface (for FlexPendant applications).
set up a connection between your PC and the robot
controller. See How to set up your PC to robot commu-
nication on page 27 for details about how this is done.

NOTE!
The Visual Studio installation installs .NET and Compact Framework 2.0.

About the Robot Application Builder installation

The RAB installation includes both PC and FlexPendant SDK. It isdistributed asfreeware on
the RobotWare DVD. It can aso be downloaded for free along with robotware and
RobotStudio from http://www.abb.com/robotics > Robot StudioCommunity >To Download
page >Developer Tools > Robot Application Builder.

For RAB 5.11, the installation was simplified. Before, any existing PC SDK was upgraded

when alater RAB wasinstalled. Thisisno longer the case; both SDK:swill now beinstalled
side-by-sidewith any existing installation. This section describestheinstallation of RAB 5.11
and later.

RAB 5.11and later

RAB 5.11 and later installs PC SDK and FP SDK side by side with any previously installed
versions. This makesit easier to work with several versions of the PC SDK on asingle
computer.

The figure below shows what it 1ooks like when clicking the Window's Start button of a PC
that has both RAB 5.10 and RAB 5.11 installed.

. I7) Astoria Software, Inc

4BB Lacal Applications
e [77) HTML Help Workshop

ABE Standard Applications b () XMLt

»
»

»

() ATnotes »

@ L2 () Windows Embedded CE 6.0 v
-~ . :
»

- stial I T
Y 5 TeraTem P

ams
| % Documents »
Bz Seltings b
) Search »

€)) Help and Support

=7 Run

I) Licensing
KilProcess ¥ [77) RobotStudio Dniine:
() VC TestApplication
[7) RobotStudio 2008

[l i FPSDK Reference
» [FPShls Guide

[PCSDK Refersnce
[User's Guids

[7) Robot Application Builder

d Log Off SEINERO

d Undock Computer
18] shutDown
0

Ii—- Windows XP Professional

Continues on next page

3HACO028083-001

Revision: D 23

2 Installation and development environment

2.1. Installation overview

Continued

RAB 5.10

RAB 5.10 upgraded any previously installed PC SDK to 5.10 and installed FlexPendant SDK
5.08, 5.09 and 5.10 side-by-side. The reason for the side-by-side installation of several FP
SDK versions was to make it easier for FP SDK users to work on FP SDK applications
targeting different RobotWare versions. Today, as the use of RAB isfree of charge you can
just download any version you need, and work with several versions on your PC if you need
to. Earlier RAB releases can be downloaded from http://www.abb.com/robotics >
RobotSudioCommunity >Developer Tools > Robot Application Builder Overview.

What is installed?

Theinstallation generates the following features on your PC:
e SDK assemblies and resources
e ThisUser’s Guide (Application manual - Robot Application Builder)
¢ FlexPendant Style Guide
» PC SDK Reference
e FP SDK Reference

Working with several versions

A RAB application normally targets a specific RobotWare release. Assuming that you are

developing aFP SDK application for anew customer, who will use RW 5.12 and at the same
time you are maintaining an existing FP SDK application for a customer whose robot system
uses RW 5.09. You will then need to work with two different RAB releases on your PC. See
Release upgrades and compatibility on page 60 for details about rel eases and compatibility.

FlexPendant applications

PC applications

If you install RAB 5.10 and RAB 5.12 you will have FP SDK 5.08, 5.09, 5.10 and 5.12 on
your PC. You choose which FP SDK version to use when you set up your application project
in Visual Studio. See Using the project template in Visual Sudio on page 80 for detailed
information.

You should make sure that the FP SDK GUI controls the Visual Studio Designer usesis of
the same version. If you have worked with another FP SDK version before, you will need to
removethe GUI controlsthat you have added to the Visual Studio Toolbox and then add them
again, pointing to the correct version in the browser. See Setting up design support for
FlexPendant controls on page 83 for details.

From RAB 5.10 no licenseis required to develop, build or run RAB applications.To be able
to usethe 5.08 or 5.09 FP SDK versions of the 5.10 release, however, you will need to install
alicensekey. RAB license keysare no longer availableviathe order form or SoFa, but ABB’s
software support organization can supply alicense key at no charge if necessary.

If youinstall RAB 5.10 and RAB 5.12, PC SDK 5.10 and 5.12 will exist on your PC. You
choose which PC SDK version to use when adding PC SDK references to your application
project in Visual Studio (browse to the installation directory that matches the version when
adding the PC SDK references to the project). You should also set the Reference Property
Soecific Version to true to ensure that the correct version of the PC SDK dllsin the Global
Assembly Cache (GAC) isused in run-time.

Continues on next page

24

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

2.1. Installation overview

Continued

Installation procedure
Theinstallation procedureis very ssimple. An installation wizard will guide you through it.

NOTE!

H Click Window’s Start button and locate the Robot Application Builder folder when the
installation isready (Start >Programs>ABB Industrial IT > Robotics T >Robot Application
Builder 5.XX). Thisiswhere you find the user documentation: User’s guide, FP Style Guide
and the PC and FP SDK References.

You are a'so strongly advised to study the Release Notes that you will find on the RW DVD
and on the web, as these hold the most up-to-date information, including new features and
any known limitations of the release.

3HAC028083-001 Revision: D 25

2 Installation and development environment

2.2. How to obtain and install a license key for RAB 5.09 or earlier

2.2. How to obtain and install a license key for RAB 5.09 or earlier

Overview

In RAB 5.10 the license check was removed from the software, which allows anyone to use
Robot Application Builder for free. Thismeansyou do no longer need to bother about getting
alicense, or including alicx filein your PC application.

NOTE!
For RAB version 5.09 and earlier, licensing is the second part of the installation procedure.

In case you need to develop a RAB application for RW 5.09 or earlier you need to turn to
support to get afree license key.

Install licence key

Follow these steps when you have received the e-mail with the license key file:

Step Action

1 Detach the license key file from the e-mail and save it to a folder on your PC.
2 Double-click the license key file. This opens the License Install Wizard.

3 Follow the instructions in the wizard.

NOTE!

To execute RAB applicationstowards areal robot controller you must connect your PC to the
robot controller, either viaa network or directly to the service port on the controller. For
detailed information, see How to set up your PC to robot communication on page 27.

26

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

2.3. How to set up your PC to robot communication

2.3. How to set up your PC to robot communication

Overview

Why is a connection

This section describes how to connect your PC to the robot controller.

You can either connect the PC to the controller via an Ethernet network or directly to the
controller service port. When using the controller service port, you can either obtain an IP
address for the PC automatically, or you can specify afixed | P address.

When the PC and the controller are connected correctly, the controller is automatically
detected by RobotStudio.

NOTE!

A PC SDK application requires RobotStudio or ABB Robot Communications Runtime to
connect to a controller in run-time. The latter isincluded in the RAB installation. If
RobotStudio isnot (and will not be) installed on your PC, you must run the Setup.exe located
at C:\Program Files\ABB Industrial 1T\Robotics I T\Robot Application Builder

5.xx\redli stri butabl e\RobotCommuni cationRuntime.

needed?

Connecting the PC to the controller is necessary for al online tasks performed in
RobotStudio: downloading arobot system or files to the controller, editing configuration
files, programming and so on.

It is necessary for executing a RAB PC application targeting areal robot controller.

The connection is also used for downloading a FlexPendant application to the controller file
system and test it on the real FlexPendant device.

It al'so enables you to communicate with the controller by means of a console window on the
PC and get valuable information about controller status, FlexPendant memory consumption
and the like.

Ethernet network connection

If the controller is connected to an Ethernet network, you can connect the PC to that network
aswell. The settingsto use on the PC depends on the network configuration. To find out how
to set up your PC, contact the network administrator.

Continues on next page

3HAC028083-001 Revision: D 27

2 Installation and development environment

2.3. How to set up your PC to robot communication

Continued

Service port connection with automatic IP address
Analternativeto network connectionisusing the controller service port. It hasaDHCP server
that automatically givesyour PC an IP addressiif it is configured for this. See Windows Help
on Configure TCP/IP settings for detail ed information about configuring the PC to obtain an
IP address automatically.

NOTE!

ﬂ Obtaining an IP address automatically might fail if the PC already has an IP address from
another controller or Ethernet device. To make sure that you get acorrect | P addressif the PC
has already been connected to an Ethernet device, do one of the following:

» Restart the PC before connecting to the controller.

* Run the command “ipconfig /renew” from the command prompt after connecting the
PC to the controller

Service port connection with fixed IP address
Instead of obtaining an IP address automatically, you can specify afixed |P address on the PC
you connect to the controller.

Use the following settings for connecting with afixed | P address:

Property Value
IP address 192.168.125.2
Subnet mask 255.255.255.0
Default Gateway 192.168.125.1
Related information
For information about See
How to set up PC network connections Windows Help - Configure TCP/IP settings.
How to connect the PC to the Controller Connect a PC to the Service Port in the
service port RobotStudio help.

28 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

2.4. Development environment

2.4. Development environment

Overview

This section presents an overview of the development environment used to create RAB
applicationsfor PC or the FlexPendant. In either case, you program and debug the application
using Microsoft Visual Studio 2005 or 2008.

Microsoft .NET and Microsoft Visual Studio

Microsoft Visual Studio issupported by the .NET Framework. A core component of the . NET
Framework isthe common language runtime (CLR). It manages code execution, threads and
memory, while also enforcing type safety.

Another major component is the Base Class Library, which is acomprehensive, object-
oriented collection of reusable types. To become askilled .NET programmer it is essential to
learn the functionality offered by the Base Class Library.

Itisnot in the scope of this manual to teach how to use Visual Studio. For this purpose Msdn
(Microsoft Developer Network) at http://msdn.microsoft.com is a useful source of
information.

NOTE!

From RAB 5.11 Visual Studio 2008 is also supported. See Conversion of VS 2005 projectsto
Visual Sudio 2008 on page 33 for information about upgrading an existing RAB project to
Visual Studio 2008.

Visual design support and data binding

Themost significant improvement of Robot Application Builder with Visual Studio 2005 was
the visual design support for FlexPendant applications. Thanks to enhanced abilities of the
.NET Compact Framework 2.0. for building user interfaces, FlexPendant specific controlsare
available in the Visual Studio toolbox since RAB 5.08.

Another very useful feature of .NET CF 2.0 is data binding, which allows you to connect a
RapidDataBindingSource OF aSignalBindingSource toaGUI control without having
to write asingle line of code. (Except the bispose call when the binding sources are no
longer needed.)

Continues on next page

3HAC028083-001 Revision: D 29

2 Installation and development environment

2.4. Development environment

Continued

Choosing a programming language

Together with Visua Basic, C# isthe most widely used.NET language.

C# is an object-oriented language derived from C, with some features from C++, Java and
Visua Basic. It was designed for .NET and offers the power and richness of C++ along with
the productivity of Visua Basic. Both PC and FlexPendant SDK are implemented using C#.

Asfor FlexPendant SDK applications only C# and Visual Basic are supported. Asfor PC
SDK applications, on the other hand, any of the .NET languages can be used. ABB support,
however, is offered only in C# and Visual Basic. Likewise, in this manual there are code
samplesin C# and Visua Basic, but nonein J# or Visual C++.

At run-time it does not matter which language you have used, as compiled .NET codeis
language independent. The source code compiles from a high-level language into
Intermediate Language (IL), which is then executed, at runtime, by the Common Language
Runtime. This makes it possible to use different programming languages, even within the
same application. See Definitions on page 18 for further explanation of .NET terms.

NOTE!
It is presumed that you are already a.NET programmer. If not, you need to start by learning

the programming language to be used. There are numerous books teaching C# and Visual
Basic.

Integration with Visual Studio

When Robot Application Builder isinstalled on your computer, it isintegrated with Visua
Studio. You will notice when starting anew project, for example, that the project type/Smart
Device/FlexPendant is available in the New Project window. When using the wizard to
create a FlexPendant project, common SDK references are added to the project and some
code is auto generated.

The visual design support for the FlexPendant will be accessible from the Toolbox in VS and
work the same way as the design support for an ordinary Windows application. Asfor aPC
application you use the standard design support. Asyou will see, using RAB isquiteintuitive
for a developer used to Visua Studio programming.

NOTE!

The help module is not integrated with the Visual Studio Help function. Pressing F1 when
pointing at code, for example, will open the Visual Sudio Programmer’s Reference or the
.NET Framework Class Library for the specific language and topic. If your problem is RAB-
related thiswill not help you.

TIP!

Depending on what kind of application you are working at, locate the FP SDK or PC SDK
Reference. You will find it by clicking Windows Sart button, then pointing at Programs >
ABB Industrial IT > Robotics IT > Robot Application Builder 5.xx. Keep the reference file
open while programming, as you will be needing it all the time.

30

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

2.5. Two development models - virtual and real

2.5. Two development models - virtual and real

About this section

When trying out a custom application, you can either use avirtual robot controller or areal
robot system. This section provides information on how to use both devel opment models.

Virtual robot technology
Thevirtual IRC5 of ABB’s RobotStudio allowsthe IRC5 controller software to execute on a
PC, and supports RAB application developers with a purely virtual environment to be used
for development, test and debug.
When you start the virtual IRC5 in RobotStudio, avirtual robot cabinet along with avirtual
FlexPendant will appear on the PC screen.

Asareal robot controller isnormally not readily at hand for application development, virtual
technology is very valuable.

Requirements for virtual environment

The following software components must be installed to develop, test and debug using the
virtual environment:

» ABB RobotStudio (including the virtual IRC5 and RobotStudio Online)
» ABB Robot Application Builder
* Microsoft Visual Studio 2005 or 2008

Controller option PC Interface or FlexPendant Interface may not be needed in the virtual
environment.

Requirements for real environment

The following software components must be installed to devel op, test and debug using ared
robot controller:

» ABB RobotStudio (RobotStudio Online is needed to create the robot system)
« ABB Robot Application Builder

» Microsoft Visua Studio 2005 or 2008

» Controller option PC Interface or FlexPendant Interface

* Network connection between PC and robot controller

For information about how to set up the network, see How to set up your PC to robot
communication on page 27.

Virtual test and debug
Using thevirtual environment aFlexPendant application executes on the Virtual FlexPendant
asan assembly (dll). You start the application from the ABB menu of the Virtual FlexPendant
just like you start it on the real FlexPendant.
A PC application, on the other hand, will run as an independent executable (exe). Using the
virtual environment it targets the virtual IRC5 instead of areal robot controller.
Debugging is easy using the virtual IRC5 and Visua Studio. You attach the application
process to Visual Studio, set abreak point in the code and step through it as it executes. See
Debugging the virtual FlexPendant on page 282 for further information.

Continues on next page

3HAC028083-001 Revision: D 31

2 Installation and

development environment

2.5. Two development

Continued

models - virtual and real

Real tests necessary

Thevirtual environment is avery convenient choice, especially for testing and debugging.
You should be aware, however, that the virtual FlexPendant is more forgiving than the real
device. Using only the virtual FlexPendant, it isvery easy to neglect the restraints on memory
consumption imposed by the real device. Images, for example, can easily consume al the
FlexPendant memory available for custom applications!

Thismeansthat potential problems may be hard to detect until you test the application using
areal robot system. It isalmost as easy to debug code running on thereal FlexPendant device.
See Debugging the FlexPendant device on page 286 for detailed information.

You should also be aware that your application shares CPU, memory and application host
with all other FlexPendant applications. This means that acustom application can impact the
overall performance of the FlexPendant.

NOTE!

Before shipping a FlexPendant application, it hasto be tested properly, using areal system.
Relying only on the virtual environment is far too risky. Also study the chapter Robust
FlexPendant applications on page 181 carefully.

Porting the application from virtual to real IRC5

Asfor aPC SDK application, you will hardly notice any difference when using it with areal
IRC5 controller. The only real difference isthat the communication between the application
and the controller will now be done over a network, which may have an impact on
performance.

A FlexPendant application, on the other hand, may run perfectly on the Virtual FlexPendant,
but not work at al on the real device. There may be alag in response time due to TCP/IP
communication, but the main problem is limited resources on the device, both memory and
processor power.

The FlexPendant SDK does not slow down performance. Therefore your application is
supposed to perform like any standard application of the FlexPendant. See Performance on
page 188 for some advice on how to speed up a slow FlexPendant application.

Deployment to custo

mer
During development, deployment to the controller is done manually. When the devel opment
phase is over and the application needs to be deployed to the customer, this should be done
differently.

For information about how this should be done, see Packaging RAB applications on page
309.

32

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

2 Installation and development environment

2.6. Conversion of VS 2005 projects to Visual Studio 2008

2.6. Conversion of VS 2005 projects to Visual Studio 2008

Overview
Converting an existing RAB Visual Studio 2005 project to Visual Studio 2008 is simple.
When you open aV'S 2005 project in VS 2008, the Visua Studio Conversion Wizard will
automatically appear. The procedure which converts the project to VS 2008 is easy to follow.
It consists of afew dialogs providing information about what will happen.

NOTE!

H If the RAB project isan FP SDK projects, you need to manually edit the post-build event that
builds the *gtpu.dil. Find Build Eventsin the Project Properties and adapt the path to
vevarsall.bat to the new development environment.

3HAC028083-001 Revision: D 33

2 Installation and development environment

2.6. Conversion of VS 2005 projects to Visual Studio 2008

34

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3 Run-time environment

2.6. Conversion of VS 2005 projects to Visual Studio 2008

3HAC028083-001 Revision: D

35

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

3.1. Two platforms - PC and FlexPendant

About this chapter

There are two different platforms that a custom application may use: PC and FlexPendant.
Accordingly, RAB consists of two platform dependent SDK s the PC SDK and the
FlexPendant SDK.

This chapter provides an overview of the run-time environment of custom applications,
including illustrations of the software architecture of the FlexPendant and PC SDK
respectively.

How communication is carried out between the client and the robot controllersis explained,
aswell as how clients access controller resources.

Application configuration is detailed as well as deployment of a FlexPendant application to
arobot controller. Thelife cycle of a FlexPendant application is also explained.

Most of the contents of this chapter is separated in PC and FlexPendant specific sections, as
their respective run-time environments considerably differ.

Selecting the platform your application should use

Before you start devel oping a custom application, you must know which platform is best
suited for meeting the needs of the customer. The platform choice depends on what tasks
should be performed using the application, whether these tasks must be done at the robot cell
and whether there isa PC at hand where the job needs to be done.

If the application should be used at the robot cell and thereisno PC available, there evidently
isno choice. It hasto be aFlexPendant application. On the other hand, if the tasks can be done
from a PC thisis often a convenient platform, provided that the PC SDK offers the required
functionality.

Continues on next page

36

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

Continued

Local vs remote client

One difference between the two platformsis that a FlexPendant application isalocal client,
whereas a PC application isaremote client.

Remote clients do not have all the privileges of alocal client. Both PC and FP applications
can reset the program pointer and start RAPID execution, for example, but for a PC SDK
application to do this there are certain restrictions. Mastership of the Rapid domain must be
requested explicitly by the application programmer and the IRC5 controller hasto bein
automatic operating mode.

An advantage of aremote client, on the other hand, is the possibility to monitor and access
several robot controllers from one location. Asfor large applications the PC platform isaso
less limited than the FlexPendant as regards memory resources and process power.

NOTE!

A minimum response time for areal controller should be expected to be in the order of 10-
100 milliseconds, meaning that hard real time demands cannot be met on any platform. See
Communication between PC and controller on page 46 and Communication between
FlexPendant and controller on page 51 for further information.

Software architecture

PC platform

The FlexPendant is an integral part of IRC5, yet a complete computer in itself. It has been
developed with Microsoft's latest software technology for embedded systems, Windows CE
and .NET Compact Framework, which is a subset of the full .NET Framework that the PC
USes.

Simpleillustrations of the software architecture of the two SDKs are shown below. Asyou
can see the two run-time platforms, PC and FlexPendant, have alot in common.

Windows

Virtual controller

| RABapp2C# |
RAB app1 VB
v Controller A

RAB PC SDK, C#
CAPI

Adaptors, C++ -

z
m
—
N
o

h 4

Controller B

A

COM-based internal API
towards robot controller

TCPNP

311
g:g;ure 1 - PC platform, Two PC SDK applications developed on top of the PC SDK. The PC
K CAPI isthe public API offering controller functionality. A PC SDK application ¢can

control many robot controllers on thé network. All communication with these is done viathe
internal ROBApi.

Continues on next page

3HAC028083-001 Revision: D 37

3 Run-time environment

3.1. Two platforms - PC and FlexPendant

Continued

FlexPendant platform

NET Compact | RABap2 |
RAB app1 C# :_ ____________ N E
Framework 2.0 VB F3=== "L
— £
RAB FlexPendant SDK, C# s £
User interface controls & CAPI B
Device class libraries, C#

Adaptors, C++

Windows CE 5.0 COM-based intemal API
towards robot controller, C++

|..Network boundary
TCP/NP

Controller

312

Figure 2 - FlexPendant (SxTPU-2) platform. Two FlexPendant aplplications, oneusing VB
and the other C#, developed on top of the FlexPendant SDK. The HexPendant SDK CAPI is
the public AP offering control|er functional ity. All communication with the robot controller
is done via the internal RobApi. The FlexPendant SDK provides ABB made Ul controls
suitable for the FlexPendant.

CAPI

Both SDK s offer controller functionality through a public application interface called CAPI.
Theinterface can be seen as a specification of the controller services available.

Part of the controller services provided by the PC and FlexPendant SDK are the same. This
means that part of the specification is also common (identical method signatures). The
internal implementation of these controller servicesmay differ, but for an externa client, such
as a RAB application, these methods are platform independent and work for both PC and
FlexPendant applications.

Asillustrated below, however, only asmall part of the PC and FlexPendant SDK is common.
Therefore, you cannot port a PC application to the FlexPendant platform or vice versa.

CAp;
FlexPe

313

Continues on next page
38 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.1. Two platforms - PC and FlexPendant
Continued

Figure 3 - Common CAPI methods can be used for both platforms. The other CAPI methods
are platform dependent. As you can see the FlexPendant SDK is more extensive than the PC
SDK. Thisis mainly due tothe fact that the FlexPendant SDK offersits own GUI controls.
In this figure these would be in the FlexPendant circle outside of the CAPI circle.

3HAC028083-001 Revision: D 39

3 Run-time environment

3.2.1. Licence verification - applies only to versions earlier than RAB 5.10

3.2 Running PC Applications

3.2.1. Licence verification - applies only to versions earlier than RAB 5.10

Overview

A PC SDK application runs as a.NET executable, started either by double clicking the exe-
file or by browsing to the program using the Windows Start menu.

Deployed PC applications do license verification during execution, checking that all
application assemblies have been built on a PC with avalid PC SDK license key. If the key
is missing some functions in the PC SDK will raise an exception during execution.

NOTE!

The license verification was removed in the 5.10 release. So the licx file detailed in the next
section is no longer needed.

Licenses.licx

The license key should be placed in a“Licenses.licx” file, which should be added to your
project as an embedded resource. For your convenience, such afileisincluded in the RAB
installation at C:\Program Files\ABB Industrial IT\Robotics I T\Robot Application
Builder\PC SDK. The key for the PC SDK in VS 2005 is:

ABB.Robotics.Controllers.Licenses.PCSdk, ABB.Robotics.Controllers
TIP!

The License Compiler (Lc.exe) isa.Net Framework tool. It generates a.license file from a
Jicx file. Search in MSDN (licx , Ic.exe) if you want more detailed information.

40

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.2.2. Mastership

3.2.2. Mastership

Controlling controller resources
Controller resources must be controlled by asingle client at atime. Several people can be
logged on to the controller, but only one person at atime can run commands or change RAPID
data. Thisisfor security reasons aswell as for protecting data from being accidentally
overwritten.

When logged on to a controller you can have either read-only access or write access. Read
only isthe default access right. To get write access the client needs to request mastership of
the controller resource it wants to manipulate.

NOTE!

ﬂ In addition to the accessright system, thereisthe User Authorization System, which restricts
what each user isallowed to do with the robot. See User Authorization Systemon page 70 for
further information.

Manual and automatic mode
When the controller isin manual mode, the FlexPendant has priority to write access, and
mastership will not be given to aremote client unless an operator explicitly alowsthisvia
the FlexPendant. At any time, the operator can press Revoke on the FlexPendant to get the
write access back.

In automatic mode, the client who first requests write accesswill get it. If aremote client has
taken mastership of a domain other remote clients will not be allowed write access, but will
get an exception if they try. For the operator there is no way to revoke mastership to the
FlexPendant, but to switch the operating mode of the controller to manual.

Asfor FlexPendant SDK applications, requesting and releasing mastership is handled
internally by the FlexPendant SDK, and the application programmer does not need to worry
about it.

Asfor aremote client, such asa PC SDK application, however, it has to be carefully
implemented by the application programmer.

PC SDK mastership domains
The PC SDK domains which require mastership are:

* Rapid
» Configuration

Continues on next page

3HAC028083-001 Revision: D 41

3 Run-time environment

3.2.2. Mastership

Continued

For code examples see Sart program execution on page 208 in the PC SDK section.

NOTE!

Operations that require mastership are more resource demanding. Mastership should
therefore be released as soon as an operation is completed.

Remote privilege in manual mode

Most of thetime, it is not very convenient to have aPC SDK application perform operations
that require mastership when the controller isin manual mode. Starting program execution
for example is not even possible.

In manual mode when aremote client, e.g. RobotStudio or a PC SDK application, requests
mastership adialog box will appear on the FlexPendant. It enables the operator to grant
mastership to the requesting client.

If mastership is granted, the remote application has the privilege to access robot controller
resources. Meanwhile, the FlexPendant islocked and cannot be used until the remote
application releases mastership or mastership islost for any of the reasons mentioned in
Losing mastership on page 42.

Losing mastership

Remote clients have to be prepared that mastership may be lost without awarning for a
number of reasons. Among these are:

¢ change from automatic to manual mode
e controller restart
e |lost communication

¢ inmanua mode forced revocation of mastership by another client with higher priority
- for example the FlexPendant

If mastership islogt, it has to be taken back explicitly by the client. The controller does not
store the information.

NOTE!

The FlexPendant may also lose mastership without any warning. This may happen in
automatic mode, when a RobotStudio user or a PC SDK application asks for write access to
the controller, for example. The status bar of the FlexPendant will then indicate “ Remote
Access in Auto” .

42

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.2.3. PC application configuration

3.2.3. PC application configuration

Application configuration file

All .NET Winform applications are designed to read configuration from an App.config filein
the application directory. It is not mandatory to use such afilein a PC SDK application, but
it is sometimes a handy way to add application flexibility.

For your convenience an App.config file that you can useisincluded in the RAB installation.
Thedefault values, whichthe PC SDK usesif thereisno configuration filetoread, areentered
inthefile. To modify application behavior you thus need to change the val ues of the attributes
of thisfile.

NOTE!

Even if you use the App.config file to specify which controllers to work with you must still
use the netscan functionality to be able to establish a connection from your PC application.
See Discovery domain on page 210 for further information.

Add App.config to the project

Start by copying the App.config file at C:\Program Files\ABB Industrial IT\Robotics
IT\Robot Application Builder 5.xx\PC SDK to the directory of your .csproj file. Then add the
file to the project by right-clicking the project icon, pointing to Add and selecting Existing
Item.

NOTE!

The Copy Local property of the PC SDK references used by your application must be set to
true to make use of the App.config file. (In the Solution Explorer in Visual Studio, right-click
the reference and select Properties.)

Section tag

The <sections taginthe <configSections> part of the App.config should specify that
thereisacapi section in thefile. It should aso specify which typeisto be used asthe
configuration container object as well as the assembly that this type belongs to:

<section name="capi"
type="ABB.Robotics.Controllers.ConfigurationHandler,
ABB.Robotics.Controllers"/>

Capi section

The PC SDK application specific configuration data should be added to the <capi > section.

<capi>

</capi>

Continues on next page

3HAC028083-001 Revision: D 43

3 Run-time environment

3.2.3. PC application configuration

Continued

The following tags are implemented in the PC SDK:

<defaultSystem>

If thereisacontroller (robot system) in the network that you connect to often, you may want
to usethe <defaultSystems tag. It hasan id attribute containing a string embraced by
curly brackets. It isthe system’s globally unique identifier (GUID), which can be find in the
system.guid filein the INTERNAL folder of the robot system.

<defaultSystem id="{469F56DF-938E-4B06-B036-AABBB3E61F83}" />
Using this mechanism enables you to use the default constructor to create a controller
object for the specified controller:

VB:

Dim aController As Controller = New Controller ()

C#:

Controller aController = new Controller();

<remoteControllers>
Itis possible to add controllers outside the local network when scanning for available
controllers. One way of doing that isto add the IP address of these controllersin the

<remoteControllers> tag:

<remoteControllers><controller id="192.168.0.9" />
<controller i1id="192.168.0.19" />

</remoteControllerss>

<discovery.networkscanner>
You can configure how long (in ms) a scan operation will last, and increase the value if
netscanning fails. The default value is 200, but if you have a slow PC longer time might be
needed.

<discovery.networkscanner delay="400" />

<defaultUser>
The <defaultUsers tag holds information about user name, password and an optional
application name for the default user. It is used by the userinfo classto log onto a
controller. If an application name is not supplied, the process nameis used.

<defaultUser name="user name" password="password"
application="application"/>

<rmmp>
When mastership is requested in manual mode by aremote client such as RobotStudio or a
PC SDK application, adialog islaunched on the FlexPendant asking the operator to confirm
that mastership should be passed from the FlexPendant to aremote client. Aslong asthereis
no confirmation on the FlexPendant the PC SDK application is not given mastership. The
time-out parameter is the time in seconds that the PC SDK application will wait for someone
to confirm remote access in the FlexPendant dialog. The cycle parameter isthetimein ms
between poll calls from the PC SDK to check whether mastership has been granted.

<rmmp cycle="550" timeout="65" />

Continues on next page
44 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.2.3. PC application configuration
Continued

<controllerCall>
You can add atime-out in msand amultiplicand for slow callsto the controller. The time-out
parameter is the maximum time a call through the Controller APl will be permitted. If no
answer isreturned within the time specified, an exception isthrown. A slow call isacall that
takes longer than usual, usually operations which require a UAS grant:

<controllerCall timeout="27000" slow="2.1" />
<eventStrategy>

The default way to handle events from the controller is to use asynchronous del egates
(asyncbelegate), applying the Invoke method to synchronize events and GUI.

By using an <eventStrategy> tag, you can choose to use a windows postback delegate
instead. To make thiswork you must also implement a subscription to the event from a
windows form, or else the event handler will not receive the event:

<eventStrategy name="WindowDelegate" />

NOTE!
H Using this strategy for event handling may affect the performance of your application.

3HAC028083-001 Revision: D 45

3 Run-time environment

3.2.4. Communication between PC and controller

3.2.4. Communication between PC and controller

COM technique

The PC SDK uses an internal Controller API based on COM technique to communicate with
the controller. This API uses sockets and the local TCP/IP stack (see Definitions on page 18)
towards both real and virtual controllers.

NOTE!

You should be aware that the .NET garbage collector does not collect COM objects, but these
need to be disposed of explicitly by the application programmer. See Memory management
in PC applications on page 213 for further information.

Resource identification

v

All controller resources, both real and virtual, are described using object based hierarchy.
Each resource is uniquely identified, including information about which controller owns the
resource by use of the unique system id or 1P address of the controller.

The controller is the top object of the hierarchy:

"/<Controller>/<Domain>/<SubDomainl>/<SubDomain2>/etc"

TIP!

Error messages including such a path indicate where to ook for the problem.

Hard real-time demands

You should be aware that the PC CAPI cannot meet hard real-time demands. Thisisfor
several reasons:

¢ Part of the API executes on a non-real-time operating system.
e Communication is performed with TCP/IP over a network

¢ The controller sometimes has tasks to perform that have a higher right of priority.

NOTE!

A minimum responsetimefor real controllers should be expected to bein the order of 10-100
milliseconds.

46

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.3.1. Components, assemblies and dlls

3.3 Running FlexPendant Applications

3.3.1. Components, assemblies and dlls

Building blocks

The .NET Framework isalibrary of components and supporting classes and structures,
designed to make component development easy and robust. Components are packaged in
assemblies, also called dlls.

Assemblies are the building blocks of .NET applications. An assembly isareusable
collection of types and resources, which are built to work together and form alogical unit of
functionality. The simplest assembly is a single executable.

One or several assemblies

A FlexPendant project compilesto adll, which cannot run as an independent application, but
needs to be started by the Teach Pendant Application Framework (TAF), the application
manager of the FlexPendant. (See Under standing FlexPendant application life cycle on page
52 for further information about how this works.)

In anormal case, acustom application for the FlexPendant is developed asa single
component, but it isalso possibleto separate functionality into several components. Thisway
the application will consist of several dlls. The reason for doing so might be one of the
following:

» Theamount of codeis substantial. A modular design with small and well tested
building blocks put together is one way of handling complexity.

» Different developers are working on the same custom application. For reasons of
efficiency, they can split the functionality between them and work on one component
each.

NOTE!

It is possible to use different programming languages for different components.

3HAC028083-001 Revision: D a7

3 Run-time environment

3.3.2. Deployment of FlexPendant application to a robot system

3.3.2. Deployment of FlexPendant application to a robot system

Proxy assembly

v

When you compile a FlexPendant SDK application an additional assembly named * gtpu.dll
isautomatically created. Thisisdone by atool, the ABB Compliance Tool, which verifiesthat
the application compliesto the FlexPendant requirements. This proxy dil is necessary to run
the application on the FlexPendant.

To test the application on areal FlexPendant both assemblies must be downloaded to the
SYSTEM or HOME directory of the robot controller. After this the FlexPendant should be
restarted. At startup it loads the application assemblies from the controller.

TIP!

An advantage of deploying the dllsto the HOME directory is that they will beincludedin a
system backup.

Download to real controller

To download your application assemblies to the controller you can use the Online function
File Transfer of RobotStudio.

Another way of downloading the application to the robot controller is using the ABB
Compliance Toal.

Step Action

1 Verify that the following requirements are met before starting the procedure:

* A network connection between the PC and the controller has to be
configured, either using the controller LAN port or the controller service
port. For further information see How to set up your PC to robot communi-
cation on page 27.

» The RobotWare option FlexPendant Interface is required to run the
application on a real system. Without the option you will not see the
application in the ABB menu.

Open Windows Explorer.

3 Start abbct.exe at C:\Program Files\ABB Industrial IT\Robotics IT\Robot
Application Builder 5.xx\FlexPendant SDK.

EABB GTPU Compliance Tool - 2005 [=]
ssembly isviewHeloworld'bin'D ebughT psiiewHeloworld. Browse... |
¥ Deploy
P Address 192 168.8.192 Ex T2 168 1267711

Execute Cloze

432 1

4 Click Browse and locate your Visual Studio project and the application assembly

in the \bin\debug (or \bin\release) sub-folder.

Continues on next page

48

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.3.2. Deployment of FlexPendant application to a robot system

Continued

Step Action

5 Check the Deploy box, enter the IP Address of the robot controller and press
Execute. Deployment is done to the current system of the controller.

Note!
If the application consists of several assemblies you need to repeat the procedure
for all of these.

6 Restart the FlexPendant. See Restart the FlexPendant on page 49 for information
about different ways to do this.

Using the command window
The ABB Compliance Tool can be used via the command window instead of the graphical
interface. To do so you write:abbct.exe /deploy="192.168.8.192"
<PATH>\TpsViewHel loWorld.dll <PATH>\TpsViewHelloworld.gtpu.dil.
Itisalso possibleto perform build and deployment in one step. To do thisthe depl oy argument
should come last:

abbct.exe <PATH>\TpsViewHelloWorld.dll /deploy="192.168.8.192"

Both the application and proxy assembly are deployed to the controller after the build.

FTP deployment
You can also use an FTP client to transfer files from your PC to the robot controller.
To use FTP you need:
* FTPclient program
» Configured connection to the controller
» RobotWare option FTP Client

* Name and password

Step Action

1 Transfer resources (e.g. icons) and the application and proxy assemblies to the
HOME or SYSTEM directory of the current system of the controller.
2 Restart the FlexPendant. See the next section for information on how to do so.
NOTE!
H For deployment to acustomer when the application isready see Deployment of a FlexPendant

DK application on page 311.

Restart the FlexPendant

If you want to restart the FlexPendant device without restarting the controller, choose one of
these alternatives:

Alternative Action

1 Write the command fpcmd "-restart" in the controller console window
on your PC.
2 Perform the following sequence while holding the FlexPendant joystick:

Move the joystick three times to the right, once to the left and once down.
Confirm your wish to reset the FlexPendant in the dialog that will appear.

Continues on next page

3HAC028083-001 Revision: D 49

3 Run-time environment

3.3.2. Deployment of FlexPendant application to a robot system

Continued

Alternative Action

3 Unplug and plug the FlexPendant (power on/ power off).
Note! This activates emergency stop.

Deploy application to virtual IRC5
Follow these steps to deploy an application to the virtual FlexPendant:

Step Action

1 Copy application and proxy assemblies and images to the HOME directory of the
system you want to use on your PC.

Note! Close the virtual FlexPendant first if you are replacing assemblies.
2 Restart the virtual FlexPendant.

TIP!

Q If you have problems running your application, try to put all files (dlls, gif filesetc.) inthe
vchin directory of the robotware your system uses. This setup is as close to the real system
setup as you can get.

50 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.3.3. Communication between FlexPendant and controller

3.3.3. Communication between FlexPendant and controller

COM technique
The FlexPendant SDK uses an internal Controller APl based on COM technique to
communicate with the controller. This API uses sockets and TCP/IP (see About terms and
acronyms on page 18) towards both real and virtual controllers.

Callsfrom the FlexPendant SDK to the controller are synchronous, i.e. are doneimmediately
through the COM servers. Thisincreases execution speed and causes less overhead, which is
important on a resource limited device.

Resource identification

All controller resources, both real and virtual, are described using object based hierarchy.
Each resource is uniquely identified, including information about which controller ownsthe
resource by use of the unique system id or |1P address of the controller.

The controller is the top object of the hierarchy:

"/<Controllers>/<Domain>/<SubDomainl>/<SubDomain2>/etc"

TIP!
Q Error messages including such a path indicate where to look for the problem.

Hard real-time demands
The FlexPendant SDK cannot meet hard real-time demands. Thisis for several reasons:
» Part of the API executes on a non-real-time operating system.

» The controller sometimes has tasks to perform that have a higher right of priority.

NOTE!
ﬂ The FlexPendant SDK does not affect performancein anegativeway. You should expect your
custom application to perform like any other application on the ABB menu.

3HAC028083-001 Revision: D 51

3 Run-time environment

3.3.4. Understanding FlexPendant application life cycle

3.3.4. Understanding FlexPendant application life cycle

Overview

Understanding the FlexPendant application life cycle improves your ability to design and
debug the application.

TAF - Application host framework

The Teach Pendant Application Framework (TAF) isthe application service provider that
runs on the FlexPendant. It targets .NET CF and isimplemented in C#. All applicationsusing
the FlexPendant SDK must run as TAF clients, as TAF contains services for hosting controls
and for managing applications.

TAF uses a customized configuration file to create the appearance and behavior of the hosted
application. It also defines a set of rulesthat have to be followed.

Starting a custom application

When the FlexPendant starts up TAF is aready in the flash memory. Applications that will
execute in the TAF container are now loaded from the controller.

If the RAB application isto be started manually by the end-user the application icon and text
are placed in the ABB Menu. The other alternative isto have it started automatically by TAF
at FlexPendant startup. See FlexPendant TpsView attribute on page 54 to learn how thisis
configured.

Application life cycle

TAF handles the life cycle of a custom application, starting by calling the constructor of its
TpsView class. After this, the Instal1 method and then the Act ivate method in the same
class execute.

During its lifetime, the application switches between the active and the passive state. Each
time, either Activate Or Deactivate isexecuted. In its active state the application is
visiblein the client view, in the passive state another application may have been opened or
the user may have opened another application viathe FlexPendant task bar.

When the application is closed via the close button, first the beact ivate method runs and
then uninstall. After thisthe Dispose method of the TpsView classis called. Then the
application instance is disposed of by TAF. See | TpsViewSetup and | TpsViewActivation on
page 58 for further information about how you can implement these methods.

Continues on next page

52

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.3.4. Understanding FlexPendant application life cycle

Continued

Illustration

Limited resources

TAF Runtime Environment

Create application

\“‘ Install ‘—x\\

(Activate 1>

» Deactwat;e
< Uninstall 4
Dispose application

4331

The figureillustrates the life cycle of a FlexPendant application.

Asthe FlexPendant is a device with very limited resources compared to a PC, you should
learn and use the mechanisms implemented to assist you in writing efficient code.

Both process power and memory resources are limited compared to the virtual environment
on the desktop. An application may run very well on the virtual FlexPendant, but encounter
serious problemsinthereal environment because of theselimitations. See Technical overview
of the FlexPendant device on page 182 for further information.

NOTE!

You are strongly recommended to read Robust FlexPendant applications on page 181 in this
manual before starting coding. Always keep the limitations of the device in mind when you
develop custom FlexPendant applications.

3HAC028083-001 Revision: D 53

3 Run-time environment

3.3.5. FlexPendant TpsView attribute

3.3.5. FlexPendant TpsView attribute

Overview
A custom FlexPendant application must implement the assembly attribute Tpsview. It is
used to determine the visual appearance of the application in the ABB menu, for example.
The Tpsview attribute is auto generated and located before the namespace definition in the
application view class, i.e. the class that displaysthe first view of a FlexPendant SDK
application.

In this section all parameters of the Tpsview attribute will be detailed.

Project wizard settings
The Tpsview attributeisauto generated according to your settingsin the FlexPendant SDK
Project Wizard in Visua Studio:

B8 FlexPendant SDK Project Wizard ==

Mame IMyAppIicationName i~ Type
% Stalic © Dynamic Irwisible

SDK Wersion |5-1 2840
Tazkbar image

S [T — Itpu-Dperator1B.gif
I.*“‘=.Ilmnu;.u!:kmi-l.-ww‘: Stopped [Speed 100%) B] _I
yApplicationbame
— Style
& Empty & Fom
—ABE Menu
& Left £ PRight Hone

[RCS FlexPendant Application preview

ABB menu image

Itpu-Dperator32.gif |

| M L —Startup
s | & Marnual © Automatic
ok I Cancel
6.2.2_1
In C# the settings of the figure will render this code:
[assembly: TpsView("MyApplicationName", "tpu-Operator32.gif",
"tpu-Operatorlé.gif", "TpsViewHelloWorld.dll",

"TpsViewHelloWorld.TpsViewHelloWorld",
StartPanellocation.Left, TpsViewType.Static, StartupType =
TpsViewStartupTypes.Manual)]

Continues on next page
54 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

NOTE!

You can edit your settings directly in the auto generated code if you want to.

3.3.5. FlexPendant TpsView attribute

Continued

Visual appearance

In run-timethe most obvious result of this codeistheway the custom application is presented
in the ABB menu. In this example the first Tpsview parameter has been changed from
“MyApplicationName” to “Hello World".

rRirmw

AR

Guard Stop

Sys_508_0163(SE¥YST-W-0002130) Stopped (Speed 100%)

=

a Inputs and Outputs

r_f% Jogging

@ Backup and Restore

Calibration
ﬁ Control Panel

% Y Event Log

Production Window

% Program Editor

/tﬂ Program Data

_] Log Off
_ S
[‘-‘ﬁ Hello World][‘-‘ﬁ Hello World

4341

Application name

Application icon

Thefirst parameter of TpsView isthe application name asit should appear in the ABB menu
and on the task bar. The example uses “Helloworld” asthe application name.

The second parameter isthefile to be used as the application icon in the ABB menu. Usually
acustomized icon is used for the application.The example uses the default icon: “tpu-
Operator32.gif".

TaskBar icon

The third parameter is the file to be used as the application task bar icon. The example uses
the default icon "tpu-Operatorie.gif".

Continues on next page

3HAC028083-001 Revision: D 55

3 Run-time environment

3.3.5. FlexPendant TpsView attribute

Continued

Application assembly

The fourth parameter is the assembly name. If you change the name of the application
assembly you also need to change this parameter to reflect that change. In the example, the
assembly nameis "TpsviewHelloWorld.d1l1l".

NOTE!
The assembly name must start with “ TpsView” for TAF to identify it as an application to be

loaded. If you forget this an error will be generated by the ABB verification tool when you
try to build the project.

Class name

The fifth parameter specifiesthe fully qualified class name of theinitial view of your
application, which you chosein the New Project dialog box. In the example, the fully
qualified class nameis "TpsviewHelloWorld.TpsViewHelloWorld".

Application location

Thesixth parameter determinesthelocation of the application icon and text in the ABB menu.
In the example these are displayed in the left column: startPanellocation.Left.

Parameter value Result

StartPanellLocation.Left application visible to the left in the ABB menu.
StartPanelLocation.Right application visible to the right in the ABB menu.
StartPanelLocation.None application is not visible at all in the ABB menu.

NOTE!

StartPanelLocation.None Wasintroduced in 5.11.01. Applications that use it can
therefore NOT be run on RobotWare releases older than 5.11.01.

Application type

Asyou can tell from the two Hello World icons visible in the task bar, two instances of the
Hello World application have been started. To enable this the seventh parameter is changed
to: TpsViewType.Dynamic. Possible view type values are shown in the table:

Parameter value Result

TpsViewType.Dynamic The user can start multiple instances of the application.
TpsViewType.Static The user can only start one instance of the application.
TpsViewType.lnvisible A background application with no GUI and no icon on the task

bar. Can be started automatically or manually. Only one
instance is possible.

Continues on next page

56

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.3.5. FlexPendant TpsView attribute
Continued

NOTE!

Unlessthereis specia need for it, you should allow the user to start only one instance of the
application: TpsviewType . Static. Thereasonisthat working with several instancestakes
up valuable memory resources.

Startup type

The eighth parameter determines how the application is started. In the example the startup
typeisTpsviewStartupTypes .Manual andthe application isstarted from the ABB menu.
Using the manual startup type it is also possible to have the application started by RAPID or
at operating mode change to auto for example. See System features supporting the use of
customized screens on page 78for information about how to do this.

If TpsViewStartupTypes.Automaticischosen, the applicationisstarted automatically by TAF
whenever the FlexPendant is restarted or a new user logs on.

Related information

For information about the Style setting of the Project Wizard, see Container style on page
97.

Tofind the FlexPendant SDK Project Wizard in Visual Studio, see Setting up a new project
on page 80.

3HAC028083-001 Revision: D 57

3 Run-time environment

3.3.6. ITpsViewSetup and ITpsViewActivation

3.3.6. ITpsViewSetup and ITpsViewActivation

ITpsViewSetup

An application that TAF needsto initialize must have adefault (empty) constructor and must
implement the interface 1 TpsVviewSetup, Which specifies the two methods 1nstall and

Uninstall.

Install and Uninstall

Install iscaled when the application is created in TAF. The parameters are used by TAF
and should not be modified. It is recommended to add code for further initiations and
allocation of system resources in this method, e.g. load assemblies, open communication
channels, etc.

When the user closes the application uninstall iscaled. This happensright before the
application isdeleted. It is recommended to add code for disposal of system resourcesin this
method, e.g. unload assemblies, close sockets, etc.

ITpsViewActivation

All custom applications should implement the ITpsviewActivation interface, which
specifies the two methods activate and Deactivate. These are used by TAF to notify
applications when they get focus and when they loseiit.

Activate and Deactivate

Activate iSrun every time the application gets focus. This happens at initialization, after
the ITpsViewSetup.Install method has been run, and when the user presses the
application icon in the task bar.

Deactivate, accordingly, isrun every time the application loses focus. This happens when
the user closes the application, beforethe ITpsviewSetup.Uninstall method has been
run, and when the user presses another application icon in the task bar.

NOTE!

It is recommended to activate and deactivate timers in these methods. This way timers will
not run when other applications are in focus, thus saving processor power. For the same
reason, any subscription to controller events should be disabled in beactivate and enabled
againinactivate. Notethat current values should be read before enabling the subscription.

Simple code examples

Thistable shows the basic things that the 1Tpsview methods are used for in a custom appli-
cation:

Method Usage

Install Create the Controller object:
VB:
AController = New Controller
C#:

aController = new Controller () ;

Continues on next page

58

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

Method

Activate

Deactivate

Uninstall

3.3.6. ITpsViewSetup and ITpsViewActivation

Continued

Usage

Add subscription to controller event:
VB:

AddHandler AController.OperatingModeChanged, AddressOf
UpdateUI

C#:

AController.OperatingModeChanged += new
OperatingModeChangedEventHandler (UpdateUI) ;
Remove subscription to controller event:

VB:

RemoveHandler AController.OperatingModeChanged, AddressOf
UpdateUl

C#:
AController.OperatingModeChanged -= new
OperatingModeChangedEventHandler (UpdateUI) ;
Remove the controller object:

VB:

If Not AController Is Nothing Then
AController.Dispose ()

AController = Nothing

End If

C#:

if (aController != null)
{

aController.Dispose () ;
aController = null;

}

3HAC028083-001 Revision: D

59

3 Run-time environment

3.4. Release upgrades and compatibility

3.4. Release upgrades and compatibility

About this section

Why did RAB 5.08 enforce an upgrade to Visua Studio 2005?

Will aRAB application still work if the customer upgrades the robot system with the latest
RobotWare rel ease?

What happens if you develop a RAB application using the 5.11 rel ease and the customer
system uses RobotWare 5.10?

Such questions are dealt with in this section.

Platform upgrades

The Microsoft platform that the FlexPendant uses still goes through major improvements,
which ABB needs to take advantage of. This may concern performance or other issues.

In RAB 5.08 for example, Visua Studio 2003 was no longer supported. It may seem that this
was uncalled-for, but there are always reasons why such changes occur.

The Visual Design support for the FlexPendant SDK, had long been on the wish list. When
Microsoft provided the support necessary to meet this need, with CF 2.0, an upgrade of the
FlexPendant software platform was made. The development of the design support for
FlexPendant controls for RAB 5.08 made a transition to Visua Studio 2005 necessary.

NOTE!
RAB 5.10 supports Visua Studio 2005. RAB 5.11 supports VS 2005 and V'S 2008.

Matching RAB and RobotWare release

You should be aware that the RAB SDK's are devel oped and tested for a specific RobotWare
release. The general ruleistherefore that you develop an application for a certain release.

Compatibility between revisionsis however guaranteed (e.g. RW 5.11.01 will be compatible
with RAB 5.11).

RobotWare upgrades

At some time during the lifetime of your application, arobot system that your application
targets may be upgraded with alater RobotWare version.

Asfor aFP SDK application this means that the runtime will change, i.e. the FP SDK
assemblies located in RobotWare will be different from the ones that were used when the
application was developed. Generally, the only way to be sure that the existing application
will work with a newer RobotWare version isto compile the source code with the FP SDK
version that matches the intended RobotWare version. Normally compilation succeeds
without any code changes, as FP SDK 5.09 - 5.11 are fully compatible.

The PC SDK it is normally compatible with a newer RobotWare release. The PC that hosts
the PC SDK application at the customer, however, still needs an upgrade of the Robot
Communication Runtime, so that it matches the new robotware release. See ABB Industrial
Robot Communication Runtime.msi on page 310If you decide to upgrade the PC SDK
application, you must also remember to upgrade the runtime environment of the customer’s
PC. See Deployment of a PC SDK application on page 309 for details.

Continues on next page

60

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

3 Run-time environment

3.4. Release upgrades and compatibility

Continued
NOTE!
ﬂ You find all the details about compatibility between different RAB versionsin the Release
Notes.
TIP!
Q When compiling your project notice any warnings of obsolete methods, asthesewill probably

be removed in the next RAB release.

Prepared for change
To sum up, it isimportant to keep source code safe and available for maintenance.

TIP!

Q Ildasm is a Microsoft tool, which comes with the installation of Visual Studio, that you may
find useful. It enables you to open the manifest of a specified assembly and quickly find out
about dependencies for example.

Find out more about it at http://msdn2.microsoft.com/en-us/library/aa309387(V S.71).aspx

3HAC028083-001 Revision: D 61

3 Run-time environment

3.4. Release upgrades and compatibility

62

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4 Developing RAB applications

3.4. Release upgrades and compatibility

3HAC028083-001 Revision: D

63

4 Developing RAB applications

4.1. Introduction

4.1. Introduction

About this chapter

This chapter deals with analysis, design and implementation of RAB applications.

It also discusses some specific programming issues that are important for both PC and
FlexPendant SDK users:

« thread conflicts and how to avoid them
« controller events and event handling

e errorsand exception handling

» the User Authorization System

The chapter does not include hands-on information on how to set up your first project or
detailed information on how to use the PC and FlexPendant SDK class libraries, as these
topics are covered in dedicated chapters.

Basic approach

In most aspects, using the PC or FP SDK for application development presents no major
difference compared to ordinary .NET development. The .NET class libraries are used for
everything that is not robot specific. In addition, you use the public Controller API of the
SDKs.

NOTE!

When using the .Net classlibrariesfor FlexPendant development, see Version Information to
be sure that the class or method is supported on .NET Compact Framework 2.0, which runs
on the FlexPendant.

Take this good advice if you are going to program your first RAB application

Step Action

1. Before you start

Learn the basics about RAB programming by reading all relevant sections of this
manual. Feel reassured that this is a timesaving activity and do not rush into coding.

If you are going to develop an application for the FlexPendant, a device with limited
resources compared to a PC, studying the chapter Robust FlexPendant applications
on page 181 is crucial.

2. During development
Frequently test application functionality.
Do not wait too long before you test a FlexPendant application on a real FlexPendant
device.

3. After development

If you develop a FlexPendant application, set up a long term test before use in
production. If not, you risk that the FlexPendant slowly runs completely out of
memory and crashes due to your application.

Verify application behavior, performance and memory consumption. Use the
services offered by the ABB.Robotics.Diagnostics namespace, e.g. memory
tracking. See FlexPendant - Debugging and troubleshooting on page 279 for further
information.

64

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4.2. Analysis and design

4.2. Analysis and design

About this section
The purpose of Robot Application Builder isto provide operator interfacesthat fulfill specific
customer needs. This section focusses on the development phases preceding the actual
coding: analysis and design.

Object oriented software development
.NET isentirely object-oriented. Platform servicesaredivided into different namespaces such
as System.Collections, System.Data,System.IO, System.Security andsoon.
Each namespace contains a set of related classesthat allow accessto platform services.RAB,
too, is completely object oriented. Its class libraries are organized in different namespaces
such asABB.Robotics.Controllers.RapidDomain,

ABB.Robotics.Controllers.MotionDomain €fC.
Some experiencein object orientation is necessary to start devel oping custom applications. It

is presumed that you feel comfortable with concepts such as objects, classes, methods,
inheritance, encapsulation etc.

Object oriented Analysis and Design
Object Oriented Analysis and Design, OOAD, is a popular topic in computer science
literature, where the importance of doing athorough analysis and design before starting
coding is commonly accepted. A well designed OO application has a true representation in
thereal world. Classeshave well defined areas of responsibility and collaboratein an efficient
way to achieve what is required.

Analysis based on communication and use cases
The main idea of Robot Application Builder is, as has already been pointed out, that custom
operator interfaces can be developed close to end-users, taking their specific needsin
consideration. It therefore goes without saying that analysisis crucial.
The result of the object-oriented analysis is a description of what we want to build, often
expressed as a conceptual model. Any other documentation that is needed to describe what
we want to build, for example pictures of the User Interface, is aso part of analysis.
The most important aspect for RAB development is communication with end-users.
Activities which support a shared view of what should be developed are strongly
recommended. Such activities may include:

» creating and discussing use cases together

» coding or drawing prototypes and get end-user feedback

Continues on next page
3HAC028083-001 Revision: D 65

4 Developing RAB applications

4.2. Analysis and design

Continued

In short, involving end-users from the early stages and keeping them involved throughout the
development project isthe best strategy.

NOTE!

Customer satisfaction iswhat has driven the devel opment of Robot Application Builder. Do
make sure that you have really understood what the end-users of your application need.

Design is about managing complexity

The result of the object-oriented design details how the system can be built, using objects.
Abstraction is used to break complex problemsinto manageable chunks. It makesit possible
to comprehend the problem as awhole or to study parts of it at lower levels of abstraction.

It takesyearsto become askilled object oriented designer. Design theory must be transformed
into practical experience and iterated over and over again.

The goal isto produce high quality code, which is cost-efficient and easy to maintain. Thisis
achieved, for example, when adding new functionality will involve minimal changes to
existing code and most changes will be handled as new methods and new classes.

Do you need to do design?

Thereis a huge difference in complexity when creating software such as .NET framework,
for example, and a custom operator view for IRC5. Obviously, the more complex a system
the more careful design is needed. Accordingly, the larger and more complex a custom
application needs to be, the more likely you are to spend time on design.

This table presents some considerations before deciding how well you need to design your
application before starting coding:

Consideration Advice

How much code is it going If it is going to be a very simple application with just one view
to be? and a few buttons there is no need even to split the code
between different classes and files.

If there will be a substantial amount of code and there might be
further extensions later on, spending time on design becomes
more relevant.

Will different developers If yes, spending time om design becomes more relevant.
work on different classes/

components? Will you

maintain the code yourself,

or may it be done by

others?

Is the real time aspect of If yes, coding efficiently is important. This will much more easily
the application important? be achieved if you spend some time on design.
Note! You are also recommended to read through the chapter
Robust FlexPendant applications on page 181 before starting
coding.

As complex or as easy as you wish

A simple custom application can be created in aday or two using RAB. A large custom
application with a number of different views, offering advanced robot system functionality,
however, may take months to develop and will require considerable programming skill. The
recommendation isto start developing a simple application, which you execute on the target
platform, before moving on to advanced RAB programming.

66

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4.3. Controller events and threads

4.3. Controller events and threads

Overview
A controller event is a message from the controller that something has happened. Events can
be caught and acted upon by RAB applications.

Controller eventsuse their own threads. Thismeansthat user interface threads and controller
event threads can get into conflict. This section gives information on how to prevent this.

Controller events
RAB applications can subscribe to a number of controller events. These are al described in
the reference documentation for the SDKs.

The table shows some events that exist both in the PC and FlexPendant SDK.

The event... occurs when...

StateChanged the controller state has changed.
OperatingModeChanged the controller operating mode has changed.
ExecutionStatusChanged the controller execution status has changed.
Changed the value or the state of the 1/O signal has changed.
MessageWritten the EventLog has a new message

ValueChanged the value of a RAPID data has changed.

Continues on next page

3HAC028083-001 Revision: D 67

4 Developing RAB applications

4.3. Controller events and threads

Continued

NOTE!

There is no guarantee you will get an initial event when setting up/activating a controller
event. You need to read the initial state from the controller.

GUI and controller event threads in conflict

You should be awarethat controller events use their own threads both on the FlexPendant and
PC platform. If a GUI thread and a controller event thread get into conflict, deadlocks or
overwritten data may occur. This may happen when a controller event is succeeded by an
update of the user interface, which isindeed a very common scenario.

You then need to take action in your code to control that the user interface update is executed
by the GUI thread and not by the controller event thread. Thisis done by enforcing athread
switch using the Invoke Or BeginInvoke method. SeelInvoke method on page 68 for
information on how this is done along with code examples.

On the other hand, if the controller event should NOT cause any update of the user interface,
you should not take any special action. Using Invoke / BeginInvoke isperformance
demanding and should not be used more than necessary.

NOTE!

Thread conflicts often cause hangings. The FlexPendant touch screen or the PC application
Ul then stops responding and the application has to be restarted.

Examine what exception has been thrown when you encounter such a situation. The
exceptions system.NotSupportedException (FlexPendant platform) and
System.InvalidOperationException (PC platform) indicate thread conflicts. Seethe
next section for information on how to use Invoke to solve the problem.

Invoke method

All PC application windows and FlexPendant views must inherit control / TpsControl,
which implement Invoke and BeginInvoke. These methods execute the specified delegate/
event handler on the thread that ownsthe control's underlying window handle, thus enforcing
aswitch from aworker thread to the GUI thread. Thisis precisely what is needed when a
controller event needs to be communicated to the end user of the system.

Invoke should be called inside the event handler taking care of the controller event. Notice
that you have to create a new object array for the sender and argument objects:

VB:

Me.Invoke (New EventHandler (AddressOf UpdateUI), New Object ()
{sender, e})

Ct#:

this.Invoke (new EventHandler (UpdateUI), new Object[] {sender, e});

Continues on next page

68

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4.3. Controller events and threads

Continued

Also notice that if you use EventHandler inthe Invoke method and not the specific
delegate class, e.g.patavalueChangedEventHandler, YOu need to typecast the argument
in the delegate which updates the user interface. How thisis done is shown by the example
below:
VB:
Private Sub UpdateUI (ByVal sender As Object, ByVal e As
System.EventArgs)
Dim Args As ExecutionStatusChangedEventArgs
Args = DirectCast (e, ExecutionStatusChangedEventArgs)
Me.Labell.Text = e.NewStatus.ToString()
End Sub
C#:

private void UpdateUI (object sender, System.EventArgs e)

{

ExecutionStatusChangedEventArgs args;
args = (ExecutionStatusChangedEventArgs) e;

this.labell.Text = e.NewStatus.ToString() ;

NOTE!

ﬂ The difference between I1nvoke and BeginInvoke isthat the former makes a synchronous
call and will hang until the GUI operation is completed, whereasBeginInvoke executesthe
specified event handler asynchronously. Which method you want to use depends on thelogics
of your program. The recommendation is to choose BeginInvoke whenever possible.

NOTE!

ﬂ If your code triesto access a GUI control from a background thread the .NET common
language runtime will throw aSystem. Not SupportedException (FlexPendant platform)
or asystem.InvalidOperationException (PC platform).

TIP!

Q If you are using the FlexPendant SDK thereis further information about threads in Thread
affinity on page 196 and Invoke on page 196.

3HAC028083-001 Revision: D 69

4 Developing RAB applications

4.4. User Authorization System

4.4. User Authorization System

Overview

v

In the robot controller there is a system controlling user access. the User Authorization
System (UAS). If thisfeature is used each user needs a user name and a password to log on to
arobot controller viathe FlexPendant or RobotStudio. If the controller connection for any
reason is lost, the user has to log on again.

The controller holdsinformation on which operations different users are allowed to perform.
The UAS configuration is donein Robot Studio.

TIP!

To learn more about UAS use the help function in Robot Studio.

Accessing UAS from custom applications

Grants and Groups

Before sensitive controller operations are performed, a FlexPendant SDK application should
check that the user currently logged on has the corresponding UAS rights.

Accessing UAS is done by using the property AuthorizationSystem on the controller
object:

VB:

Dim UAS As UserAuthorizationSystem =
Me.AController.AuthorizationSystem

C#:

UserAuthorizationSystem uas =
this.aController.AuthorizationSystem;

UASrights are called Grants. The specific user belongs to one of several defined Groups,
where each group has anumber of specified grants.
To ensure that the user has the necessary grant to perform an operation, you use the
CheckDemandGrant method on the AuthorizationSystem object. The grant to check is
passed as an argument:
VB:

If UAS.CheckDemandGrant (Grant .ModifyRapidProgram) Then

ATask.LoadModuleFromFile (ALocalFile, RapidLoadMode.Replace)

End If

C#:

if (uas.CheckDemandGrant (Grant.ModifyRapidProgram)) {
aTask.LoadModuleFromFile (localFile, RapidLoadMode.Replace) ;

Continues on next page

70

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4.4, User Authorization System

Continued

NOTE!
H The RAB application cannot overridethe UAS configuration. Thismeansthat the system will
in the end prevent the user from performing an action that is not allowed.

MessageBox feedback

If aUAS grant is missing the user should get information about it. This can be donein a
message as shown in this example:

msg = "You are not allowed to perform this operation, talk to your
system administrator if you need access."

title = "User Authorization System"

For the PC platform (VB and C#):

MessageBox.Show (msg, title, MessageBoxIcon.Exclamation, MessageBoxB
uttons.OK)

For the FlexPendant platform:
VB:

GTPUMessageBox.Show (Me, Nothing, msg, title,
System.Windows.Forms.MessageBoxIcon.Asterisk,
System.Windows . Forms.MessageBoxButtons.OK)

Ct:

GTPUMessageBox.Show (this, null, msg, title,
System.Windows.Forms.MessageBoxIcon.Asterisk,
System.Windows.Forms.MessageBoxButtons.OK) ;

GetCurrentGrants and DemandGrant

Another possibility isto retrieve al grantsfor the current user calling GetCurrentGrants,
then iterate over the grants collection and search the necessary grants.

Yet another solution isto call DemandGrant with one of the static Grant membersasin
argument.

If the user does not have the specified grant the FlexPendant SDK throws a
UasRejectException and the PC SDK throws aGrantDemandRejectedException.

TIP!
Q Learn more about UAS and Grant membersin the SDK Reference Help.

3HAC028083-001 Revision: D 71

4 Developing RAB applications

4.5. Exception handling

4.5. Exception handling

Overview

The .NET programming languages provide built-in support for exception handling, which
alows the program to detect and recover from errors during execution.

In managed code, execution cannot continuein the samethread after an unhandled exception.
Thethread terminates, and if it isthe program thread, the program itself terminates. To avoid
this, accurate exception handling should be used.

Try-catch-finally

Exceptionsare handled in try - catch (-finally) blocks, which execute outside the
normal flow of control.

The try block wraps one or several statementsto be executed. If an exception occurs within
this block, execution jumps to the catch block, which handles the exception.

The £inally block is executed when the Try block is exited, no matter if an exception has
occurred and been handled. It is used to clean up system or controller resources.

If you do not know what exceptionsto expect or how to handle them, you can catch them and
do nothing. This, however, may result in difficult error tracing, as exceptions include
information on what caused the problem. Therefore, try at least to display the exception
message, either by using a message box or thetypesbebug or Trace. See Debug output on
page 279 and Trace and Debug on page 281 for further information.

Typecasting

When typecasting signal or RapidData values, for example, thereisa potentia risk of
typecast exceptions. To avoid this you can check the object using the is operator for both
value and reference types:

VB:

If TypeOf ARapidData.Value Is Num Then
Dim ANum As Num = DirectCast (ARapidData.Value, Num)

Ct#:

if (aRapidData.Value is Num)

{

Num aNum = (Num) aRapidData.Value;

}
In C#itisalso possible to use the as operator for reference types. A null valueisreturned if
the type is not the expected one:
C#:
DigitalSignal di = this.aController.IOSystem.GetSignal (“UserSig”)
as DigitalSignal;
if (di == null)

{

MessageBox.Show(this, null, “Wrong type”);

Continues on next page

72

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4.5. Exception handling

Continued

Exception handling for the PC platform
Exceptions thrown from the controller are handled by the PC SDK ExceptionManager,
which converts the internal HRESULT to a.NET exception with a reasonable exception
description, beforeit is thrown to the custom application layer. The application handling of
these exceptions should apply to general .NET rules.

Exceptions are expensive in a performance perspective and should be avoided if there are
other alternatives. If possibleuseatry-£finally block to clean up system and unmanaged
resource allocations.

Exception handling for the FlexPendant platform
The FlexPendant SDK provides several exception classes, which are used when errors occur.
If the operation isrejected by the controller safety access restriction mechanism, for example,
aRejectException isthrown.
If an unhandled exception occurs the application crashes and TAF displays a gray message
on the FlexPendant. After confirmation the FlexPendant will restart. To avoid thisyou should
make sure that any potential error situations are dealt with properly by your code.

0 Please repart the following information

to yvour ABE contact persor;
Exception: Message; test exception

Systern.Exception; test exception

at
TpsviewIRCS8pp7 . TpsYiewIRCSApp 7 buttond_Clicki)
at System. Windows. Forms. Contral, Onclick)

at System. Windows. Forms, Control, WhProci)

at System. Windows. Forms. ContainenControl, WnProc ()
at System. Windows.Forms. Contral, _InternalnProc()
at Microsoft, AGL. Forms. EYL . EnterMainLoopi)

at Systerm. Windows. Forms. &pplication. Run)

at
ABB.Robotics, WinCore, TRAppFwk . MainFrame, Start ()
at ABB.Robotics, winCore, TPAppFwk. Tafapp. Starti)
at ABB.Robotics. winCore, TPAppFwk, Tafapp. Main ()

55_1

The message that I¥ou et when an unhandled error situation gccurs may look like this. Do
NOT contact ABB, but fix the error handling of your application.

Continues on next page
3HAC028083-001 Revision: D 73

4 Developing RAB applications

4.5. Exception handling

Continued

NOTE!

H Learn how the exception classes of the FlexPendant SDK work by using the FlexPendant
DK Reference Documentation. Also see SDK exception classes on page 194 to get more
detailed information about exception handling for the FlexPendant platform.

.NET Best Practices
.The .NET Framework Devel oper's Guide presents the following best practices for exception
handling:

« Know when to set up atry/catch block. For example, it may be a better ideato
programmatically check for acondition that islikely to occur without using exception
handling. For errors which occur routinely this is recommended, as exceptions take
longer to handle.

¢ Use exception handling to catch unexpected errors. If the event is truly exceptional
and is an error (such as an unexpected end-of-file), exception handling is the better
choice asless code is executed in the normal case.Always order exceptionsin catch
blocks from the most specific to the least specific. Thistechnique handlesthe specific
exception beforeit is passed to a more general catch block.

74 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

4 Developing RAB applications

4.6. How to use the online help

4.6. How to use the online help

Overview

The online help comes with the installation of Robot Application Builder and is accessible
from Windows Start menu.

The recommendation is to read this user’s guide carefully as you develop your first RAB
application. FP SDK Reference and PC SDK Reference are important complements to this
manual, as these make up the complete reference to the class libraries of RAB. See
Documentation and help on page 16 for details.

NOTE!

The SDK Reference is NOT integrated in Visua Studio. You must open it from the Start
menu.

TIP!

See Documentation and help on page 16 for the web addressto RobotSudio Community,
where RAB devel opers discuss software problems and solutions online.

3HAC028083-001 Revision: D 75

4 Developing RAB applications

4.6. How to use the online help

76

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.1.1. About this chapter

5 Using the FlexPendant SDK

5.1 Introduction

5.1.1. About this chapter

Overview

This chapter gives detailed information on how to use the FlexPendant SDK.

These topics are covered:

How to take advantage of some system features that support the use of customized
screens.

How to utilize the integrated Visual Studio wizard to set up a FlexPendant project.
How to add the FlexPendant SDK GUI controls to the Visual Studio Toolbox.
How to build the user interface using the integrated design support.

How to program FlexPendant SDK GUI controls.

How to launch other applications from your application.

How to implement controller functionality using CAPI.

The design support in Visua Studio enablesyou to visually lay out the application, reducing
the need to write code. This speeds up development and gives you a more precise control of
the appearance of your FP screens.

Using the FlexPendant SDK it is possible to launch several of the standard FlexPendant
applications from your application, which is often a very handy alternative to handling
complicated procedures on your own, such as reading and writing RAPID data for example.

The Controller APl (CAPI) is at the core of the FlexPendant SDK. It is used to access the
robot controller, which the FlexPendant is attached to. First there isinformation about how
this public API is organized. Then each domain of CAPI is dealt with separately. There are
code samplesin C# and VB throughout the chapter.

3HAC028083-001 Revision: D

1

5 Using the FlexPendant SDK

5.1.2. System features supporting the use of customized screens

5.1.2. System features supporting the use of customized screens

Flexible user interfaces

The FlexPendant can be adapted to end-users' specific needs in many different ways. It can
be operated in 14 different languages, including Asian character-based |anguages such as
Japanese and Chinese. L eft-handed operators can adapt the device from its default setting by
simply rotating the display through 180 degrees. Four of the eight hard keys are
programmable, i.e. their function can be assigned by the end-user.

Customized FlexPendant screens, tail ored to end-users’ needsisyet another way of rendering
the flexible solutions required by many customers. To support the use of customized screens
there are a couple of features that you may want to tell the end-users of your application

about.

Configure the FlexPendant
Using the FlexPendant configuration facilities (Control Panel - FlexPendant) it ispossibleto
configurethe FlexPendant to allow RAPID execution in manua mode from an FP SDK view.
You can also make the FlexPendant automatically display an SDK view at operating mode

Additional Test View

change.

Set the FlexPendant configuration property Additional Test View if you want to be ableto start
RAPID execution in manual mode with a custom application as the active view.

Ak Ik ED (i Manual Guard Stop
FLipep INBR_508_0177_FPInterface.) Stopped (Speed 100%)

IE]][><]H

#4 control Panel - System - Additional Test View
Define additional views to be allowed when starting a RAPID program in
manual mode.
Check the additional test views you want to use. Then press OK.
Available Test Views 1tolofl
[sample App
All None oK Cancel
Contral | I
|[g}$ Panel ‘ 5@3 ‘
6.1.0_1

Continues on next page

78

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.1.2. System features supporting the use of customized screens

Continued

View On Operating Mode Change

Set the FlexPendant configuration property View On Operating Mode Changeif you want the
custom application to become active when the controller operating mode is switched to auto,
manual or manual full speed.

Ak Ik ED (i Manual Guard Stop Im x
FLipep INBR_508_0177_FPInterface.) Stopped (Speed 100%)

#4 control Panel - System - Yiew on Operating Mode Change

Here you define the view automatically shown at operating mode change.

Select operating mode and browse for the view you prefer. Then press OK.

Operating mode:

|Switching to Auto ﬂ

Selected view:

Sample App Clear View
| | |
OK Cancel
|[{}$ Contqol ‘ | % ||
Panel

6.1.0_2

Use RAPID instruction to launch RAB application

The RAPID instruction urshow (User Interface Show) is used to communicate with the user
of the robot system via a FlexPendant application. Both RAB applications and standard
applications can be launched using this instruction.

Example:
The RAPID code below launches the custom application TpsViewMyApp.

CONST string Name :="TpsViewMyApp.gtpu.dll";CONST string Type
:="ABB.Robotics.SDK.Views.TpsViewMyApp";UIShow Name, Type;

For this to work the robot system must have the RobotWare option FlexPendant Interface.
The assemblies TpsViewMyApp.dll and TpsViewMyApp.gtpu.dll must be located in the
HOME directory of the active robot system. (When the assemblies have been downl oaded to
the controller the FlexPendant must be restarted in order to load them.)

NOTE!

See the RAPID reference manual for further information about the UIshow instruction.

3HAC028083-001 Revision: D 79

5 Using the FlexPendant SDK

5.2.1. Using the project template in Visual Studio

5.2 Setting up a new project

5.2.1. Using the project template in Visual Studio

Overview

Itisvery simpleto set up anew FlexPendant project using theintegrated project template that
comes with the installation of Robot Application Builder. It will automatically add the most
common SDK references to the project and auto-generate some source code for the main
application window, in the selected programming language, either C# or Visual Basic.

NOTE!

To add another view to the FlexPendant project, you do not need to start a new project. See

Adding a view to a custom application on page 99 for information about how to do it.

Setup procedure
Follow these steps to create a FlexPendant project:

Step Action

1. On the File menu in Visual Studio, point to New and then click Project.

2. In VS 2005, in the New Project dialog select Visual C# / Smart Device /
FlexPendant or Other Languages/Visual Basic/Smart Device/FlexPendant. In VS
2008, select Visual C# / FlexPendant or Other Languages/Visual Basic/FlexPen-

dant).
Mew Project 3
Project types: Templates: 2k |5
[=1- Yisual C 1l Visual Studio installed
- Windows] .
. Office 4| ABB Application 5.11 4| ABB Application 5.12

=1~ Smart Device

- Pocket PC 2003

Smartphone 2003

- Windows CE 5.0
- FlesPendant

- Database

- Starter Kits

- RobatStudio

- Test

[#- Other Languages

[=1- Other Project Types

[Setup and Deployment

... Natahase ﬂ

My Templates

L Search Online Templates...

ABE IRCE Flexpendant &pplication

Mame: |Tps\u"iewIF'r0|\:\u"izl

Location:

IE:\Documents and Settingsseinbrof\Desktop\RAE 512

Solution Mame: ITps\u"iewIProM"iz

j Browse. .. |

V' Create directary for solution

™ Add to Source Contral

6.1.1 1

NOTE!

o]

Cancel |

If you have several RAB installations on your PC, there will be several templates to
choose from. Make sure you select the template that match the RobotWare version

that your application should target.

Continues on next page

80

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

Step

5.2.1. Using the project template in Visual Studio

Continued

Action

. Enter the name of the application in the Name field and where you want it to be

stored in the Location field. Click OK.

NOTE!

The name has to start by “TpsView” . If you forget it an error will be generated by
the ABB verification tool when the project is built.

. The FlexPendant SDK Project Wizard is now launched. For information about how

to configure the application using this wizard see FlexPendant TpsView attribute on
page 54 and Container style on page 97. When you are ready click OK.

. You need to set up the design support for the FlexPendant GUI controls before

starting programming. How this is done is detailed in Setting up design support for
FlexPendant controls on page 83.

NOTE!

If the SDK references seem to be missing in your FlexPendant project, see the
following section for instructions about how to solve the problem.

Add any missing references

The SDK references needed by the FlexPendant project are added automatically when the
Project wizard iscompleted. However, thereisapossibility that Visual Studio cannot provide
the path to these dlls. If thisis the case you should add the references path manually. Follow
these steps:

Step Action

1. Look at the Solution Explorer of Visual Studio. If you have a C# project expand the

References node. Warning triangles mean that the path to the referenced dlls is
missing.

Solution Explorer - Test

2| & E 4

(o Salution 'Test' [1 praject]
Bl
= | References
----- -2 ABB.Robatics
----- <3 ABB.Robotics. Contrallers
----- 'Ei ABE Fobotics. D ataBinding. dil
----- 'El ABB.Robaotics. GTPU
----- 'El ABE Robatice. GTPU MWindows. Formz
----- 'Ei ABB Robatics. Tps. Resources
----- 'El ABB.Robotics. Tps. T af
----- 'Ei ABE Fobotics. Tps. windows. Forms
----- <3 M5CorLib
----- A System
..... <3 System.Drawing
----- <3 SystemWindows. Forms
-----] Assemblylnfo.cs
-----] view.cs

6.1.1 2

For a VB project the Solution Explorer looks the same, except that there is no
References node.

Continues on next page

3HAC028083-001 Revision: D

81

5 Using the FlexPendant SDK

5.2.1. Using the project template in Visual Studio

Continued
Step Action
2. C#: Select the project icon, right-click and select Properties. Click the Reference
Paths tab and add the path to the SDK assemblies.
VB: Select the project icon, right-click and select Properties. Click the References
tab. If the path to the SDK references is missing add it by browsing to the directory
where they are located.
NOTE!
The default path is C:\Program Files\ABB Industrial IT\Robotics IT\Robot Application
Builder 5.xx\FlexPendant SDK \bin.
3. Save the project. You will notice that any warning triangles in the Solution Explorer
References node will disappear.
82 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.2.2. Setting up design support for FlexPendant controls

5.2.2. Setting up design support for FlexPendant controls

Overview
This section describes how to make the FlexPendant GUI controls accessible in Visual
Studio.
Procedure
Follow these steps to add the FlexPendant controls to the Visua Studio Toolbox:
Step Action
1. On the View menu, select Toolbox.
2. Right click in the Toolbox area and select Add Tab.
3. Name the new toolbox tab, e.g. FlexPendant Controls.
4. Right click in the area of the new tab and select Choose Items.
5. Inthe Choose Toolbox Items dialog, browse to the directory where the
FlexPendant SDK assemblies are located and import the following assemblies:
» ABB.Robotics.Tps.Windows.Forms.dll
* ABB.Robotics.GTPU.Windows.Forms.dll
* ABB.Robotics.DataBinding.dll
The default location is C:\Program Files\ABB Industrial IT\Robotics IT\Robot
Application Builder\FlexPendant SDK 5.xx\bin.
6. In the Solution Explorer right-click view.cs (view.vb if you have a VB project) and
select View Designer if you are not already in design mode.
As you see, the FlexPendant specific controls are now accessible in the Toolbox.
See Introduction to visual design support on page 84 for information about how to
use them.
NOTE!
ﬂ The way you use the Visual Studio Designer to implement FlexPendant controlsis very

similar to implementing ordinary .NET controls. In this manual useful information which
may not be obviousfor all usersis provided. But oftentimes, it is the genera Visua Studio
Help that will answer any questions you may have about control properties and the like.

3HAC028083-001 Revision: D

83

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

5.3 Building the user interface

5.3.1. Introduction to visual design support

What is visual design support?

Design Support for Compact Framework User Controls was a new feature of Visual Studio
2005. It enabled design support for FlexPendant SDK controls to be included in RAB 5.08.

From RAB 5.08 onwards you visually design the FlexPendant application user interfacein
the Visual Studio Designer. FlexPendant controls are dragged from the toolbox to the
designer area, moved and resized by clicking and dragging. By applying different settingsin
the Properties window of a control, you refine its appearance and behavior.

To be able to use the visual design support you must add the FlexPendant controls to the
Visual Studio toolbox. How to do thisisdetailed in Setting up design support for FlexPendant
controls on page 83.

NOTE!

Design support for FlexPendant controls has long been on RAB users wish list. It isindeed
atime-saving feature, as most of the code supporting the graphical user interface is now auto
generated.

Why special controls for the FlexPendant?

You may wonder why the standard Microsoft Windows controls have not been considered
good enough to be used for the FlexPendant touch screen.

The answer is that some Windows controls may very well be used. Other Windows controls
are however not so well suited for the FlexPendant touch screen. To navigate using your
finger controlsin particular need to be large enough. In some other cases the Windows
controls simply do not look very good on the touch screen.

NOTE!

In the FP SDK Reference, click the Contents tab and the
ABB.Robotics. T ps.Windows.Forms node to get an overview and a short description of all
ABB controls you may use to create the user interface of a FlexPendant application.

TIP!

How to program these ABB controlsis very similar to the equivalent Windows controls. If
you need code exampl es the best source of information is usually MSDN. You may try http:/
/msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frirfsystemwindowsformslistviewclasstopic.asp, for example, to find out how to program a

ListView.

Illustration

Thefigure below showsthe Visua Studio Toolbox with all of the FlexPendant controlsto the
left. In the Designer areato the right, a FlexPendant application is being developed. Part of
the container control, along with a number of ABB and standard Windows controls can be

Continues on next page

84

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

seen.

1 LOMmMOn VeYICE LOMNrois

i+ Device Containers

5.3.1. Introduction to visual design support

Continued

Ii'?‘ﬂv‘l_.l' first App

'+ Device Menus & Toolbars

Task

Program 1toZaf 4

"="FlexPendant Controls
e Poirter

£ SignalBindingSource

27 RapidD ataBindingSource
m MHumPad
=4 CompactdlphaPad
7] GTPUDpenFilaDialag
7] GTPUSaveFilDialog
j GTPUFolderBrowserDialog
=4 AlphaPad
Button
237 Listview
abl TextBox

TabCaontrol
- GroupBox
| CommandBar

=% ComboBox

A Tpslabel

6.3.1_1

E T_ROB1
D T_ROB2

— Process signals
[DO Active

[T DO Error
[T DO Speeding

FP Button

.
View

'l'-"_j zighalBindingSourcel

The following features are worth noting:

* A Windows PictureBox control is used as the container of a photo.

The FlexPendant button has a property called Backgroundl mage, used to display an
image. The ABB image library located in the Resources folder, which comes with the
installation of Robot Application Builder, has numerous icons, which can be used by
custom applications. You can of course also use photos and icons of your own.

Some of the ABB contrals, such as the SignalBindingSour ce, have no graphical
representation in design-time. Asyou seein the figure, they are placed in the
components pane under the main form. Code is of course generated, just like for the
controls that you see on the form.

Usually amix of Windows and ABB controls are used for a FlexPendant SDK
application. For example, asthereisno ABB RadioButton or CheckBox the
equivalent Windows controlsare used. Inthefigure, the standard Windows Check Box
isused.

Continues on next page

3HAC028083-001 Revision: D

85

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

Continued

@
@

CAUTION!

Do not forget about the limited amount of memory available for custom applications when
adding images or photos! See Technical overview of the FlexPendant device on page 182.

CAUTION!

Auto generated code for controlsislocated in themethod InitializeComponent. You
should not tamper with the code inside this method. Any modifications or additions to auto
generated code is usually best located in the constructor, after the call to

InitializeComponent.

Hands on - Hello world

Areyou ready to program and test your first FlexPendant application? If you have not created
a FlexPendant project and added the FlexPendant controls to the Visual Studio Toolbox you
need to do that first. See Using the project template in Visual Sudio on page 80 and Setting
up design support for FlexPendant controls on page 83.

Follow these stepsto create and test a simple custom application:

Step Action

1. Drag a FlexPendant button from the Toolbox to the Designer.
2. Double-click the button in the Designer, this opens the code editor.
3. As you see an event handler for the click event has been created. Add the code to
launch the Hello World message in it:
private void buttonl Click (object sender, EventArgs e)
{
GTPUMessageBox.Show (this.Parent
, null
, "Hello world!"
, "Application Message"
, System.Windows.Forms.MessageBoxIcon.Asterisk
, System.Windows.Forms.MessageBoxButtons.OK) ;

}

An alternative way of adding an event handler is shown in the next step.

NOTE!

The above code sample has no exception handling. A FlexPendant application to be
used in industry must have exception handling in all event handlers. The FlexPendant
has only ONE GUI thread, which all applications running on the FlexPendant share.
If your application breaks the only GUI thread, all of the applications will die and the
FlexPendant must be restarted manually. See Exception handling on page 72 to find
out more about this important issue.

Continues on next page

86

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

Step

4.

8.
9.

5.3.1. Introduction to visual design support

Continued

Action

Bring up the Properties window for the button by right clicking it in the Designer and
selecting Properties. Click the events button (yellow flashing lightening) to see the
events available for the ABB button. As shown by the figure, you have already
connected an event handler to the click event.

Properties E3
button1 ABE Robotics. Tpz. windows. Forms. Button -

2z [2Y = [

(D ataBindings] -
I :.ton1_Click
DoubleClick,
EnabledChanged
FontChanged button1_FontChanged
GotFocus —
HelpR equested
K.enDown
K.eyPressz
Kellp
|_rztFrc

Click

Occure when the control is clicked.

6.3.1_1B

NOTE!

It is the default event of the control that you get when you double-click it in the
Designer. To add an event handler for another button event, bring up the Properties
window and double-click the event you want to generate a handler for, e.g. a
FontChanged event handler. You will enter the code editor, the cursor inside the
generated event handler.

On the Build menu, click Build Solution and check that you did not get any
compilation errors.

To test the application you need to deploy it to a robot system. If there is no robot
system available, you must create a robot system by using the System Builder of
RobotStudio.

Copy the assembly (*.dll) and the proxy assembly (*.gtpu.dll) from the bin\Debug (or
bin\Release) directory of your Visual Studio project to the HOME directory created by
RobotStudio when your robot system was created.

Example showing default paths for copy/paste:
C:\Data\Visual Studio 2005\Projects\TpsViewMyApp\TpsViewMyApp\bin\Debug\
C:\Systems\sysl 508\HOME

Note! If you have already started the virtual FlexPendant you need to close it before
pasting the dlls.

Start the virtual FlexPendant.
On the ABB menu, find your application and open it.

Continues on next page

3HAC028083-001 Revision: D

87

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

Continued

Step Action

10. Click the button. The Hello World message will be displayed.

TIP!

4 sys_508_0168

Ak Ik ER (i Manual Guard Stop m x
sys_508_0168(SE¥YST-W-0002130) Stopped (Speed 100%
| FAIDID ¢ 5 Stonped (oeed 100%) J

This is my Hello World application

Press Me E

Launch View

E3

[‘-‘ﬁ Hello World

6.3.1._2

NOTE!

See Hands on - step 2 on page 89 below if you wish to know how to implement the
additional features shown above: application title, button background image,
command bar with a menu item and an event handler to launch a standard view.

When using the Virtual FlexPendant for test and debug you can automate the copy/paste
procedure described in step seven above. Thisis how you do it:

1
2.

Right click the project icon in the Solution Explorer and select Properties.

For aC# project, select the Build Eventstab. (For aV B project click the Compiletab
and then the Build Events button.)

Press the Edit Post-build button and add two commands which will copy the
produced dlls to the directory of the robot system to run. Example:

Continues on next page

88

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

Continued

copy "$(TargetDir) $ (TargetName) .dll" "C:\Systems\sysl"

copy "$ (TargetDir)$ (TargetName) .gtpu.dll" "C:\Systems\sysl"

Note! Do not remove the default post build command lines, which create the assembly proxy
(*gtpu.dil).

Hands on - step 2

This section details how to program the remaining features of the Hello World application
shown in step nine above: application title, button background image, command bar with a
menu item. You will also learn how to implement an event handler for the Launch View
command.

When you create a FlexPendant project you choose Empty or Form in the FlexPendant
SDK Project Wizard. See Empty or Form? on page 97 to understand the difference between
them. In our example Form is selected as the container control.

Step Action

1. If you selected Empty for your project you can change it to Form by exchanging
TpsControl with TpsForm directly in the source code, like this:

C#:

public class TpsViewIRCS5Appl4d : TpsForm, ITpsViewSetup,
ITpsViewActivation

VB:
Public Class TpsViewIRCS5Appl4 Inherits TpsForm ' (was
TpsControl before) Implements ITpsViewSetup,

ITpsViewActivation

Notice that the Designer now shows the title bar on top of the container control.
2. Right-click somewhere in the middle of the container control and select Properties.

3. Enter “This is my Hello World application” at the Text property. See the tip of Empty
or Form? on page 97 if the Text property is not available.

4. Still using the TpsForm Properties window, expand the MainMenu property node.

5. Click the Menultems property and the browse button which appears once the
property is selected.

Continues on next page

3HAC028083-001 Revision: D 89

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

Continued

Step Action

6. In the Menultem Collection Editor, which is now launched, click the Add button.
Then enter “Launch View” at the Text property. Click OK.

Forméppearance
FarmF actor
lcon
Language
Localizable
Location
— Locked
Bl Mainkd
Press e armieru
Menultems
) Size
Teut
Menultem Collection Editor 2=
Members: menultem] properties:
N
-~ + | [Mame] menultem
Launch Yiew Checked False
DockToRight Falze
Enabled True
Generatetember True
Image [] (none)
ImageSelected [[none)
=3 2lphaPad] 271 signalBir Menulterms [Collection]
Modifiers Frivate
Launch View
Toggle True
I wian 128
T W w'fj 5 Add Remove
6.3.1 4
NOTE!

The added menultem has its own Menultems property. You use it if the “Launch
View” command is to present a menu instead of working as a button on the command
bar. How this can be done is further detailed in How to add menu items on page 101.

Continues on next page
90 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

Step

7.

10.
11.
12.

13.

5.3.1. Introduction to visual design support

Continued

Action

Add an event handler with code that will launch the standard Jogging view when the
Launch View button is pressed.

Adding event handlers is done differently in Visual Studio depending on which
programming language you are using.

For C#:

In the constructor, after the call to InitializeComponent, add a subscription to
the click event of the “Launch View” command. Write:

menulteml.Click +=

then TAB twice. As you will notice, Visual Studio intellisense auto generates an event
handler, and you only need to write the code for launching the Jogging view:

this. launchService.LaunchView (FpStandardView.Jogging,null, fa
lse,out this. cookieJog)

For VB:

Add an event handler using the drop down boxes above the Visual Studio Code
Viewer. Find and select Menultem1 in the left drop down box and the Click event in
the right drop down box. The event handler is now auto generated for you, and the
only thing you need to do is to write the code for launching the Jogging view (see VB
code in Launching standard views on page 129).

NOTE!

There is no possibility to attach an event handler in the properties window, like you
do for a Button for example.

Declare the _launchService and the _cookieJog objects:

private ABB.Robotics.Tps.Taf.ITpsViewLaunchServices
_launchService;private object cookieJog;

Retrieve the launchService object in the Install method of your class:

A7 csummarys
/¢ This method iz called by TAF when the control iz installed in the framework.
A4 </ summmary>
hool ITpsViewletup.Install{obhject sender, object data)
{
if (sender is ITpsViewLaunchiervices)
{
£ Zawe the sender cbject for later use
this._ launchiervice = sender as ITpsViewlaunchisrvices;
return true;
i
return false;

6.3.}1_5

See ITpsViewSetup Install on page 128 for VB code example.
In the designer, open the Properties window of the button.
Enter “Press Me” at the Text property.

Select the Backgroundimage property and browse to the Resources folder of the
RAB installation and import “IRB140.gif".

(Default path: C:\Program Files\ABB Industrial IT\Robotics IT\Robot Application
Builder\FlexPendant SDK 5.08\Resources)

Build, deploy and start the application, that is repeat step five to eight in Hands on -
Hello world on page 86.

Continues on next page

3HAC028083-001 Revision: D

91

5 Using the FlexPendant SDK

5.3.1. Introduction to visual design support

Continued

¥

Step Action

14. Press the Launch Vlew command.
The Jogging view should open up and get focus.

TIP!

See Using launch service on page 128 and Using standard dialogs to modify data on page
131 if you want to know more about the possihilities to use already existing views for your
application

Visual design and user experience

Thereisanother definition of theterm Visual design, whichisnot in the scope of thismanual.
It hasto do with how the design of the software user interface affects user experience. Thisis
nonetheless an important topic for a FlexPendant application devel oper. Knowing what
makes auser interfaceintuitive and easy to useisessential, asthisisexactly what is expected
from a custom operator interface.

TIP!

A FlexPendant style guide comes with the installation of RAB. It will help you to present
application functionality in an intuitive way, teaching best practices of visual design and user
experience from the FlexPendant perspective. It isa preliminary draft, but still very useful.

You may a so want to study the Microsoft standard for visual design at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwue/html/chl4a.asp

92

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

5.3.2. GUI controls and memory management

Overview

All of the FlexPendant SDK controls belong to the ABB . Robotics . Tps.Windows . Forms
namespace. This namespace thus includes well over 40 classes and subclasses used to
develop the user interface of a FlexPendant application.

ABB.Robotics.Tps.Windows.Forms.TpsControl iSthe base type of al FlexPendant
SDK controls. TpsControl inturn extends System.Windows . Forms . UserControl

TpsControl may beused asacontainer control of aFlexPendant view. It al so hasthe default
implementation of bispose, whichiscalled in order to free allocated memory for a control
which should no longer be used.

You may wonder why thisisnecessary, asthe .NET framework hasagarbage collector, which
should release the devel oper of the duty to free allocated memory. The answer is the garbage
collector does not alwaysreclaim memory which isnolonger used. Therefore, if you program
an application meant to execute around the clock on a device with limited memory, you are
till responsible for freeing memory which is no longer used. Neglecting to do so will result
in permanent memory leaks.

How to avoid memory leaks

Look at this figure showing a number of controls (both ABB and Microsoft) and learn the
basi cs about memory management for GUI controls. It is not so complicated, the most
important thing is not to forget that cleaning up is your responsibility!

%itle
7 8 9 -« Text Text
4 5 6 —» — GroupBox
= ' tpslabell
O
L2 s |
o |+
|Value |VariabIeName Moduleiame | TazkMName
% signall
& signal2
2 signal3
Close
E gtpus aveFileDialogl 'l'-"_j rapidD ataBindingS ourcel =4 glphaPadi j gtpuF olderBrowserDialogl = imageList]

6.3.2_1

Continues on next page

3HAC028083-001 Revision: D 93

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

Continued

Learn and apply these the general rules for memory management of GUI controls.

Controls with a graphical representation, e.g the ABB Numpad, TabControl,
GroupBox, TpsLabel, ListView and the Microsoft PicureBox and bataGridin
the figure, are automatically added to the controls collection in
InitializeComponent. It may look like this:

this.Controls.Add (this.numPadl) ;

If thefigure aboverepresentsthefirst view of your application, controlswith graphical
representation will be disposed of by the base class of your view class when your
application is shut down and the i spose method is called by TAF. This happens
when the following statement in your Dispose method is executed:

base.Dispose (disposing) ;

If, however, it represents a secondary view of your application (which is actually the
case here, asyou can tell from the close button on the command bar), you must call its
Dispose Mmethod from thefirst view when itisclosed. Itsbase class will then remove
al controls that are part of its controls collection, like in the previous case.

GUI controlsthat have no graphical representation, but arelocated in the Components
pane under the form, e.g. GTPUSaveFileDialog, RapidDataBindingSource,
AlphaPad etcetera, are NOT added to the control s collection by default. These arethe
onesthat you need to be especially careful to remove, as no garbage collector will ever
gather them. If you forget to explicitly call pispose on such controls you will have
caused a permanent memory leak. Carefully study the code example in the next
section.

NOTE!

Microsoft and ABB controls behave in the same way. The Microsoft ImageList for
example, which is commonly used in FlexPendant applications, has no graphical
representation and must thus be explicitly removed by the application programmer.

Coding the Dispose method

The code example below shows how the bispose method of the view shown in the figure
above can be coded. All controls located in the components pane in the Designer must be
explicitly removed by the programmer. Controls with a graphical representation will be
removed when Dispose Of the base class is executed.

protected override void Dispose (bool disposing)

if (!IsDisposed)

{

try

{
if (disposing)
{
//Removes SaveFile dialog
if (this.gtpuSaveFileDialogl != null)

{

this.gtpuSaveFileDialogl.Dispose() ;
this.gtpuSaveFileDialogl = null;

Continues on next page

94

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

Continued

//Removes RapidDataBindingSource
if (this.rapidDataBindingSourcel != null)
{
this.rapidDataBindingSourcel.Dispose() ;

this.rapidDataBindingSourcel = null

//Removes Alphapad

if (this.alphaPadl != null)

{
this.alphaPadl.Dispose () ;
this.alphaPadl = null

//Removes FolderBrowserDialog

if (this.gtpuFolderBrowserDialogl != null)

this.gtpuFolderBrowserDialogl.Dispose () ;
this.gtpuFolderBrowserDialogl = null

//Removes ImagelList

if (this.imagelListl != null)

this.imageListl.Dispose() ;

this.imageListl = null

}

finally
{
//Removes all controls added to the controls collection

base.Dispose (disposing) ;

Finaly, asthisis asecondary view, we should call its Dispose method from the first view
when it is closed down.
//This code is executed by the first view when the secondary view
is closed
void form2 Closed(object sender, EventArgs e)
{
if (form2 != null)
{
form2.Dispose () ;

form2 = null;

Continues on next page

3HAC028083-001 Revision: D 95

5 Using the FlexPendant SDK

5.3.2. GUI controls and memory management

Continued

CAUTION!

@ If youforget to call Dispose on controlsthat are not part of the control collection of the class
there will be memory leaks. This may cause the FlexPendant to run completely out of
memory and crash. Usually, this will not happen when you try out the functionality of your
application, but when it is executed and used continuously during production. To verify that
aGUI control isreally disposed of, you may set up a subscription to its Disposed event for
example, and verify that it is triggered when you close down the view.

CAUTION!

@ All objects accessing robot controller services, i.e. unmanaged resources, must also be
removed by the application programmer. See Memory management on page 184 for further
information.

Freeing allocated memory for a GUI control
You are recommended to remove a GUI control in thepispose method of the class that
created it. If the control belongsto the first view of your application, it will be disposed of
when TAF callspispose at application shut down. If it belongsto a secondary view, you are
responsible for disposing of the secondary view and its controls.

C#:
if (this.controlX != null)
{
controlX.Dispose () ;
controlX = null;

}

base.Dispose (disposing) ;

VB:
If disposing Then
If Not controlX Is Nothing Then
controlX.Dispose ()
controlX = Nothing
End If
End If
MyBase .Dispose (disposing)

NOTE!

H When the last statement in the code example above is executed the base class will call
Dispose on all controls added to the controls collectionin InitializeComponent. This
means that you do not need to call pispose on such controls.

96 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.3. Container style

5.3.3. Container style

Overview

The container control of a FlexPendant application is 640x390 pixels, which isthe exact size
of the FlexPendant screen dedicated for a custom view. This section details the two different
styles that can be used for a FlexPendant view: Empty and Form.

You select which one to use in the Style area of the FlexPendant SDK Project Wizard. To
the left in the wizard, a preview helps you see the difference between the two styles.

B2 FlexPendant SDK Project Wizard ==
Name IM_I,JAppIicationN ame ~ Type
i Static " Dynamic Inwvisible
SDK Version |5-1 2840
Taskbar image
S [Pt R om Itpu-D perator] 6.gif
AR s e FIX) -
sayApplicationMame
= — Siyle
" Empty & Foim
— &BE Menu
IRCS FlexPendant Application preview & Lef " Right " Nane
ABB menu image
Itpu-D perator32. gif _I
| Mt Aalivmn — Staltup
|-~,, ‘.mm_] & tanual . Automatic
ok I Cancel

6.22 1

Here Form is selected. The preview illustration shows a TpsForm. It has a CommandBar at
the bottom and a TpsCtr1TitleBar at the top.

NOTE!

When adding anew view to an existing FlexPendant project, you choose which control to use
inthe Add New Item dialog box. See Adding a view to a custom application on page 99 for
information on how to add a new view to an existing project.

Empty or Form?

Empty

Your choiceinthe wizard determines the type that your view classwill inherit. If you change
your mind about this, it is easy to make the change directly in the auto generated code.

Thisisaplain TpsControl. It hasneither a CommandBar, Nor a TpsCtrlTitleBar.
The code definition of the classwill look like this:
VB:

Public Class TpsViewMyApp Inherits TpsControl Implements

ITpsViewSetup, ITpsViewActivation

Continues on next page

3HAC028083-001 Revision: D 97

5 Using the FlexPendant SDK

5.3.3. Container style

Continued
Form

ThisisaTpsForm, which isa specialized TpsControl.

The code definition of the classwill look like this:

VB:

Public Class TpsViewMyApp Inherits TpsForm Implements

ITpsViewSetup, ITpsViewActivation

Continues on next page

98 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.3. Container style
Continued

NOTE!

Often Empty is chosen as the first view of an FP SDK application. For any secondary view,
which isto be opened from the first one, Form is the recommended container control.

NOTE!
When selecting Form you might wonder why the command bar isnot visible in the designer.

The answer isthat it remainsinvisible until aMmenuItem hasbeen added toit. Thisisdonein
the Properties window of the TpsForm, by applying the property MainM enu.

TIP!

Q If you selectthe TitlePanel Or the CommandBar Of a TpsForm you will seethat the
Properties window isdisabled. If you want to change the text of thetitle panel, or add menu
items to the command bar, for example, you must select TpsForm by clicking somewherein
the middle and then modify its Text or MainM enu property.

How to build the command bar
The command bar is either ready-made, asfor TpsForm, or used as a separate control
available from the toolbox. If the command bar is ready-made, the design of it is done by
modifying the MainM enu property of TpsForm. If used as a separate control, you design it
by modifying its own properties. Apart from this, there is no difference in how you control
the design.

An important thing to remember is that you have to manually add the code controlling what
will happen when the user presses a menu item, asthere are no event properties available in
its Properties window.

See Command bar on page 101 for further information on how to implement the control and
its event handlers.

CAUTION!

@ The command bar of the first view of a custom application should not have a Close button.
Thereason isthat all custom application must be closed down by TAF, which happens when
the user presses the close [x] button in the upper right corner of the FlexPendant display.
(SeeDefinitions on page 18 for a definition of TAF or Understanding FlexPendant
application life cycle on page 52 for further information on TAF.)

Adding a view to a custom application
To add another view to the FlexPendant project, you do not need to start a new project. This
is how to proceed:

Step Action
1 Right-click the project node in the Solution Explorer, point to Add and select New
Item.

2 Select one of the FlexPendant container controls available in the dialog box.
Normally it will be a Form.

Note! If you select Empty the code you write to open it from the first view is a bit
different than if you are using Form as a secondary view.

Continues on next page
3HAC028083-001 Revision: D 99

5 Using the FlexPendant SDK

5.3.3. Container style

Continued

Launching the view

Thisway all of your views make up asingle dll, which is convenient. Most of the time there
isno point in dividing the application into several dlls.

The code for launching the secondary view is simple. It may look like this:
//declare the secondary view as a private member

private View2 view2;

//create the view and add subscription to its closed event, then launch
view
private void buttonl Click(object sender, EventArgs e)

{

this. view2 = new View2();
this. view2.Closed += new EventHandler (view2 Closed) ;

this. view2.ShowMe (this) ;
}
//dispose of the view when it has been closed
void view2 Closed(object sender, EventArgs e)

{

this. view2.Closed -= new EventHandler (view2_ Closed) ;
this. view2.Dispose() ;

this. view2 = null;

NOTE!

Make sure that thereisanatural way for the user to get back to the preceding view. The most
intuitive way of doing thisisto press a Close button or an OK or Cancel button on the
command bar. If the secondary view isa TpsForm, this event handler closesit:

void menuIteml Click(object sender, EventArgs e){ this.CloseMe();}

NOTE!
If you are using Empty as a secondary container control the code you writeto launch it is:
this. view2.Show() ;

It must be added to the first view’s control collection before it can be shown, just like an
ordinary .NET control.

100

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.4. Command bar

5.3.4. Command bar

Overview
For the end-user the command bar is a central FlexPendant control and an important means
of interacting with the system. As described in How to build the command bar on page 99 it
can be ready-made or added to the container control from the VS Toolbox.

How to add menu items
If you use the Form container acommand bar is built-in, but not visible until you add a
Menultem collection to the M ainM enu property of TpsForm. How to do thisisshownin step
5- 6 of Hands on - step 2 on page 89.

If you use Empty as container the command bar needsto be added from the Toolbox. In this
case too, the commands are added as a collection of menu items.

AL 1D 0D (i Manual Full Speed Guard Stop [
FLipEp sys_508_0168(SEVST-W-0002130) Stopped (Speed 3%) x

This is my second view!

T_ROB1 T_ROB2 T_ROB3

Hello againl!

Rapid Data
Jogging
Backup & Restore

v
Launch View Close VYiew Close
. -. Backup
[‘-‘ﬁ Hello World [E- e] | E@B I
6.3.4_1

The command bar in this figure has a collection of three menu items: Launch View, Close
View and Close. Moreover, the Launch View menu item hasits own collection of menuitems:
Rapid Data, Jogging and Backup Restore.

Inthefigure, as shown by the task bar, the Backup Restore view has been opened. It has been
done by clicking the Backup Restore menu item. The user has then returned to the Hello
World application by using the task bar. If Close View is now pressed, the Backup Restore
view will close down. The next section shows how event handlers for this command bar can
be implemented.

Continues on next page

3HAC028083-001 Revision: D 101

5 Using the FlexPendant SDK
5.3.4. Command bar

Continued

How to add menu item event handling
Subscriptions to menu item events and event handling cannot be added using the design
support, but have to be implemented by hand in the source file. The code example below
shows how the command bar in the figure above can be implemented.

private ABE.Robotics.Tps.Taf.ITpsVievlaunchiervices _launch3ervice;
private chject _coockie;

/fConstructor, takes ITpsViewlaunchServices object &as in parameter
public ViewZ (ABE.Robotics.Tps.Taf. ITpsViewlaunchiervices 15)
{
_launchiervice = 13;
InitializeComponent () ;
this.menultem3.Click += new EventHandler (menultem3_Click):
this.menultemd.Click += new EventHandler (menultemd Click):
this.menultems.Click += new EventHandler (menultemS_Click):
this.menultemé.Click += new EventHandler (menultemé Click):
this.menultem?.Click += new EventHandler (menultem? Click):

i
f/Event handlers for all menu item comsands
wvoid menultemsd Clickiobject sender, Eventlirgs e)
{ //opens RapidData view, mway open several instances as specified by 3:rd argument

thi=. launchiervice.LaunchView(FpitandardiViev.Rapidbata, null, true, out this. cookie):
i
wvoid menultemd Clickiobject sender, Eventlirgs e)
{ Jfopens Jogging view

thiz. launchiervice.LaunchView(FpitandardiViev.Jogging, null, false, out this. cookie):
i
wvoid menultemS Clickiobject sender, Eventlirgs e)
{ //opens BackUp & Restore view

thi=. launchiervice.LaunchView(FpitandardView.BackUpRestore, null, false, out this. cookie
i
wvoid menultemé Clickiobject sender, Eventlirgs e)
{

if (_cookie != null) ff1f this app. has opened a standard view, this code closes it
{
thi=s. launchiervice.CloseView(this. cookie];
this._cookie = null;

i
wvoid menultem? Clickiobject sender, Eventlirgs e)

{
this.CloseMe(); //ocloses secondary view

6.3.4.2

NOTE!

To launch a standard view the ITpsViewLaunchServices object, which can be saved by
theTpsview classinits Install method, is heeded. See Using launch service on page 128.

102 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.5. FlexPendant fonts

5.3.5. FlexPendant fonts

Overview
On the FlexPendant, TpsFont isused instead of standard Windows fonts. By using TpsFont
you save limited device memory, as static references instead of new font instances will be
used.

TpsFont
Tahoma isthe default font of the FlexPendant. It is also the font usually used internally by
TpsFont. A number of different font sizes are pre-allocated and can be reused. You are
recommended to use TpsFont instead of creating new font instances for both ABB and .NET
Ul controls.

NOTE!

ﬂ To be able to use Chinese or another language with non-western characters, you must use the
FlexPendant font, TpsFont, for any Ul controls. It internally checks what language is
currently active on the FlexPendant and uses the correct font for that language.

NOTE!
E If you use other fonts than avail able on the FlexPendant, i.e. Tahoma and Courier New, the
application will use Tahomainstead of the intended one.

3HAC028083-001 Revision: D 103

5 Using the FlexPendant SDK

5.3.6. The use of icons

5.3.6. The use of icons

Overview
Itiseasy to display icons, images and photos on the FlexPendant touch screen. Utilizing this
possibility isrecommended, as many peoplefind it easier to read pictures than text. Intuitive
pictures can also be widely understood, which is areal advantage in a multinational setting.

images of more than 256 colors.
CAUTION!

Be aware of the limited memory resources of the FlexPendant device. Do not use larger
images than necessary. Also see How large can a custom application be? on page 182

NOTE!
ﬂ The operating system of thefirst generation FlexPendant device (SX TPU 1) does not support

FlexPendant controls with images

Several FlexPendant controls support images, which areimported asbmp, jpg, gif or ico files
when an Image, | con or Backgroundl mage property is set. These are some controls to be
used with pictures:

* Menultem

* Button

* TpsCtrlTitlePanel

e TabPage

* ListViewItem

* TpsForm

* FPRapidData, FpToolCalibration, FpWorkObjectCalibration

* GTPUSaveFileDialog

PictureBox and ImageList
There are a so some Windows control s that can be used to display images.
Windows . Forms . PictureBox iSone such control. It can display graphics from a bitmap
(.bmp), icon (.ico), JPEG or GlIFfile. You set the | mage property to the preferred image either
at designtime or at run time.

Windows . Forms . ImageList can manage a collection of Image objects. The ImageListis
typically used by another control, such asthe Listview or the TabControl. You add
bitmaps or iconsto the ImageList, and the other control can choose an image from the
ImageList index. How to use imagesfor aTabControl isdetailed in How to add tab
images on page 106.

Continues on next page
104 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.6. The use of icons

Continued

The Tpslcon class
The TpsIcon class offers static references to a number of icons used in the standard
FlexPendant applications. You may want to use some of theseiconsif they suit the application
need. TpsIcon belongsto the namespace ABB.Robotics . Tps . Drawing.

TIP!

Q Inthe FP SDK Reference, click the Sear ch tab and search for Tpslcon Membersto get a short
description of the ABB icons that are available as static properties.

3HAC028083-001 Revision: D 105

5 Using the FlexPendant SDK
5.3.7. TabControl

5.3.7. TabControl

Overview
The ABB.Robotics.Tps.TabControl isused and implemented muchinthesameway as
aregular system.Windows . Forms . TabControl. The possibility to use tab icons,
however, is an additional feature of the ABB TabControl.
Illustration
The figure below shows a Tabcontrol and its Properties window. To add or remove tab
pages you click the little arrow in the top right corner of the control or click Add new
TabPage at the bottom of the Properties window.
E:gjs is my second view! E!
T_ROB 1 T_ROB2 T_ROBB Add new TabPage
Femove TabPage
tabControll ABE.Robotics. TpsWindows. Forms. T abControl -
[DataBindings)
[Mame] tabControll
Enabled True
Fontt ame Font12b
Generatebdember True
ImageList [none)
Location 0; 22
Locked Falze
Muodifiers Private
Size 640; 322
igible True
O u)
Close
6.2.4_1
NOTE!
H The ABB Tabcontrol has no TabPages property. Depending on where in the TabControl

you click, you select either the entire TabControl or one of the Tabrages. To view the
Propertieswindow for the T_ROB1 Tabrage in the figure, you would have to click the
T_ROB1 tab and then the T_ROB1 page below the tab.

How to add tab images
Thisishow you use the ImageL ist property to add icons to the tabs of the TabContro1l:

Step Action

1 Drag a System.Windows.Forms.ImageList to the Designer area. As you will
notice it has no visual representation, but is placed on the components pane below
the container control.

Display the Properties window of the ImageList.

3 Click the property Images and then the browse button, which will appear.

Continues on next page
106 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

Step
4

Action

5.3.7. TabControl

Continued

Click Add and import an image. Repeat until you have added the icons your

TabControl needs.

Object Browssr |~ Start Pag- e T fieuni

25 E|EES

J Solution 'TpsWiew RCSBApD

B 59 TpsiewlRCSApp1
[[«gi Refersnces

-] Assemblylrfo.cs

| view.cs

e 9] viewnresx

- [E] view2.cs

[Toolbo K

[F DomainlpDown
<> HSorolBar

) |nputPanel

A Label

A LinkLabel

= ListBox

237 Listview

W MessageQueus
7 MonthCalendar

1% NumericUpDown
ﬁ OperFieDialog
{1 Parel

& PictureBos

@) ProgressBar
LI = T - T

6.2.4_2

IEhis is my second viev

T o - CAT eV i Wt ST PNt NP | PRI | Y oy et

ImageCollection Collection Editor

T_ROB1

Add

Remove

Spstem.Drawing. Bitmap properties:

FileM ame C:Program
HorizontalF ezolut) 36
PhysicalDimensio| 32; 32

FiwelF ormat FormnatEbppl
FiawFomnat Gif
Size 3232

“WerticalR esolutior] 96

S

r
Launch View

C

Ed|
imageList] Spstem.\Windows. Forms.ImageList -
=

Generatebdember True ;[
Images [Callection]

ImageSize 16; 16
Modifisrs Private - ‘

Now display the Properties window of the TabControl and select your ImageList
as the ImageList property.

Select one of the tab pages and set the property Imagelndex, which defines which of
the images in the TmageList is to be used for the tab. Repeat this procedure for all

tab pages.

How to add an event handler using the Properties window
It is easy to attach an event handler to a control by using the Properties window. This
procedure shows how to make something happen when the user clicks atab to select another

tab page:
Step Action
1

In the Designer, select the TabControl and display the Properties window.

Continues on next page

3HAC028083-001 Revision: D

107

5 Using the FlexPendant SDK

5.3.7. TabControl

Continued

Step Action

2 Display the events available for the control by clicking the Events button.
Properties E
tabControll ABE Fobotics. Tps wWindows Forms. T abControl -

| v

DoubleClick
EnabledChanged
FontChanged
GotFocus
HelpRequested
F.eyDiown
KeyPress

Keylp
LostFocus
MouzeDown
MouseMove
Mouzelp

Paitit
ParentChanged
Resize
SelectedindexChanged | tabControll_SelectedindexChanged

Yalidated
' alidating &
6.3.4_3
3 Select the SelectedindexChanged event and double click. A method name is now

auto generated for the SelectedindexChanged event. The code view takes focus,
the cursor placed inside the generated event handler.

4 Add code to make something happen. For now this code will do:
this.Text = "TabControl notifies change of tab pages";
This will change the title text of the TpsForm when a tab is clicked.

5 Test the functionality by building, deploying and starting the application. See step 5-
8 in Hands on - Hello world on page 86.

NOTE!

The subscription to the event has been done under the hood, and you do not need to bother
about it. If you use C# you will notice that some code adding the subscription has been
inserted inthe InitializeComponent method:

this.tabControll.SelectedIndexChanged += new
System.EventHandler (this.tabControll SelectedIndexChanged) ;

Disposing TabControl

You do not need to explicitly call bispose onthe TabControl object. Thereason is that

InitializeComponent adds the tab pagesto the controls collection of the TabControl,
andthe TabControl itself tothe control collection of the container class.

this.Controls.Add (this.tabControll) ;

The TabControl isthusremoved when the pi spose method of your container class calls
Dispose onitsbase classlike this: base.Dispose (disposing) ;

108

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.8. Button, TextBox and ComboBox

5.3.8. Button, TextBox and ComboBox

Overview

The FlexPendant button, text box and combo box controls are not very different from the
equivalent Windows controls.

Using Button
A common size of a FlexPendant But ton is 120 * 45 pixels; it can be alot smaller than its
default size. As opposed to a Windows button it can display an image. As pointed out in
[llustration on page 106 you use the property Backgroundl mage and browse for the image
to be displayed.

Using TextBox

The TextBox control is multiline by default and uses the typical FlexPendant scroll bars as
shown in the figure below.

The FlexPendant SDK
textbox is multiline by
default and uses TpsFont
and watermarks as means

6.2.7_1

Using ComboBox
The comboBox isvery similar to the System.Windows . Forms . ComboBox, but is visually
improved to suit the FlexPendant touch screen. It can be statically populated using the Items
property asillustrated by the figure. If you wish to populate it dynamically, you need to write
codefor it.

comboBox1 ABE Robotics. TpsWindows. Forms. ComboBox

: F
Fanth ame Font12b -
FareColor Bl ContolText
Generatet ember True
Items [Collection]

-
String Collection Editor K E3

Enter the strings in the collection [one per line]:

do_sigl -
do_sig2 _I
L |do_sigd
. do_sigd

z0_#igh

6.2.7_2
SelectedIndexChanged iSthe most commonly used among the events. It occurs when the
user selects another item from the list.

3HAC028083-001 Revision: D 109

5 Using the FlexPendant SDK

5.3.9. AlphaPad

5.3.9. AlphaPad

Overview
Thealphaprad control isavirtual keyboard, which enablesthe user to enter strings. It covers
the whole FlexPendant display. The figure shows its appearance in run time.
4 Sys_508_0163
Ak 1D ED (% Manual Guard Stop m
| FRIPEP || K‘Q I Sys_508_0163(SEYST-W-0002130) Stopped (Speed 100%) | x]
Input Panel
IMyProgram
123|456l 7|8lle]|lo]-|l=|<A
TAB q |lw]l e r t v || u o ||l p []
CAP a 5 d f g h] k | ; ' +
Shift z X C W b n m , /
ctrl [|Int] | R
OK Cancel
[LETn?ﬂBoldLIe, | E@B I
6.2.10_1
The alphaPad has no graphical representation in design-time. When dragged from the
Toolbox to the Designer it is placed in the components pane, as shown by the figurein the
next section. Codeis of course generated for it, just like for controlsthat are visually laid out
on the form in design-time.
Continues on next page
110 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.9. AlphaPad

Continued

Launching the AlphaPad
You need to write some code to launch the virtual keyboard. Thisis how you do it:
C#.
this.alphaPadl.ShowMe (this) ;
VB:

Me.AlphaPadl.ShowMe (Me)

NOTE!
E The code for launching the a1phapad should be executed by an appropriate event handler.

Adding event handlers
The Propertieswindow can be used to program AlphaPad event handlers. You double click
the event you want to respond to. This takes you to the code editor, the cursor placed inside
the auto generated event handler, where you can write code to save user input to a member
variable for example:

if (alphaPadl.SelectedText != string.Empty)

{

_userInput = alphaPadl.SelectedText;

alphaPadl ABB Robotics Tpz wWindows. Forms.AlphaPad

= E

Click.

o Clogzed

\ . Clozging alphaPad1_Closing =
View DoubleClick

EnabledChanged
FontChanged

= aphaPadl | 27| Closing

6.2.10_2

Validating the result at the Closing event
The closing event isgenerated when the OK or Cancel button of the alphapad ispressed.
You can use this event to validate the string entered by the user. You can set the Cancel
property of the event argument to true if you want the AlphaPad to remain open until avalid
input value has been entered:

VB:

Private Sub NamePad Closing(sender As Object, e As
System.ComponentModel . CancelEventArgs) Handles
NamePad.Closing

If NamePad.SelectedText.CompareTo ("No Name") = 0 &&
NamePad.DialogResult =
System.Windows.Forms.DialogResult.OK Then

e.Cancel = True
Continues on next page

3HAC028083-001 Revision: D 111

5 Using the FlexPendant SDK

5.3.9. AlphaPad
Continued

End If
End Sub
C#:
private void namePad Closing(object sender,
System.ComponentModel .CancelEventArgs e)

if ((this.namePad.SelectedText.CompareTo("No Name") == 0) &&
(this.namePad.DialogResult ==
System.Windows.Forms.DialogResult.OK))

e.Cancel = true;

Using the result at the Closed event
The Closed event has to be caught by an event handler, as the object cannot be disposed of
until it has been closed. The result may be retrieved in this event handler or in the Closing
event handler. First check that OK and not Cancel was pressed, then retrieve user input.
Finally the AlphaPad should be disposed of .VB:
Private Sub NamePad Closed(sender As Object, e As EventArgs)
Handles NamePad.Closed
If NamePad.DialogResult = Windows.Forms.DialogResult.OK Then
Me.answer = NamePad.SelectedText
End IfNamePad.Dispose ()
End Sub
C#:
private void namePad Closed(object sender, EventArgs e)

{

if (this.namePad.DialogResult ==
System.Windows.Forms.DialogResult.OK)

this.answer = this.namePad.SelectedText;

}

this.alphaPadl.Dispose() ;

Continues on next page
112 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.9. AlphaPad

Continued

Removing the AlphaPad control
The alphaprad isNOT added to the control collection, and will therefore NOT be disposed
of by the base class of its container.
You are responsible for explicitly calling its pi spose method when it is no longer used. In
the example above, thisis done at the closed event. Thisimpliesthat anew alphapad
instance is created the next timeits launch event istriggered.
Another way of dealing with thisis to let the instance created by the Designer live until its
container view is closed. This alternative means destroying it in the bispose method of the
container class:

this.alphaPadl.Dispose() ;

CAUTION!
@ If you forget to call pispose onan AlphaPad control you will have a memory leak. For
further information see GUI controls and memory management on page 93.

3HAC028083-001 Revision: D 113

5 Using the FlexPendant SDK

5.3.10. ListView

5.3.10. ListView

Overview

The ABB.Robotics.Tps.Windows.Forms.ListView iSvery similar to astandard .Net
ListVview. The main differenceisthat its appearance is somewhat adapted to the use of a
touch screen, as can be seen in the figure.

You can usetheListview control in avariety of ways. Usualy you useit to display alist of
items with item text and, optionally, an icon to identify the type of item. By using the
CheckBoxes property it is also possible to have a check box appear next to each item in the
control, allowing users to check the items they want to perform an action on.

Illustration

The figure shows the Designer. You see two different ABB ListView lists, astandard .Net
ImageList inthe components pane under the lists and the Properties window for the
Calibration, HotEdit list.

Iﬁitle Colurnnz [Collection]
Enabled True
Fanth ame Font12b
Name ‘ Type Value 1to3af4 FareColor Bl Black
. Generatetember True
D SignalC bo 0 IterHeigth |
. Items [Collection]
D SlgnaIB Lo 0 LargelmageList imageList]
. Location 3221
@ SlgnaIA DO 1 Locked False
Modifiers Frivate
U5 elect False
Lizt¥iewltem Collection Editor 2|
<f,7_ Calibration listfiewltems properties:
A
HotEdit + E
"l E Appearance
Checked False
Enabled True
Imagelndex b
Teut Calibration
E Data
Subltems [Collection]
E Design
[Mame] list¥iewltem5
Generatetember True
=i imageList] Modifiers Frivate
Add Remove
6.3.10_1

Using properties to control appearance
Thefirst list has CheckBoxes set to true. To have columns displayed View must be set to
Details. The columns are created by selecting Columns and adding any number of columns
in the ColumnHeader Collection Editor. Scrollable has been set to true to enable the user
to scroll thelist to see al items. To have the current number of list items displayed

Continues on next page

114

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.10. ListView

Continued

ShowNumber Ofltems has been set to true. By using Sorting the list items can be
alphabetically sorted, in this casein Descending order. Thelist is statically popul ated, using
the Items property.

The View property of the other list is set to L ar gel con instead of Details. To display iconsa
standard .Net ImageL ist isused. You first launch the Propertieswindow for the ImageL ist
and add the images you want to use. At the L argel mageL ist property of the Listview you
select theimage list, and for each Item you select the | magel ndex to use, asis shown in the
ListViewltem Collection Editor.

Using the Properties window you can also add event handling. The most commonly used
event is Selectedl ndexChanged, which is triggered when anew list item is selected.

The Propertieswindow can be used to statically populate thelist. Usually, however, listsare
populated dynamically. In Getting signals using Signal Filter on page 167 there is a code
example, which shows how |/O signals are dynamically displayed inan ABB ListView.

ABB specific properties
These properties are specific for the ABB ListView:

Property Usage

MultiSelect Specifies whether multiple items in the control can be
selected. The default is false.

Scrollable Specifies whether a scroll bar is added to the control when
there is not enough room to display all items. The default is
true.

Note! The typical FlexPendant scroll bars are used by the first
list in the figure above.

SelectionEnabledOver- Specifies whether a touch inside the scroll region should
Scrollbuttons select an item or scroll the list. The default is false.

ShowNumberOfltems Specifies whether the current number of items in the list is
displayed. The default is true. Scroll bars should be added to
the control to allow the user to see all the items. If the list is not
scrollable the default value is false.

ShowSelection Specifies whether selection is shown or not. The default is
false.

3HAC028083-001 Revision: D 115

5 Using the FlexPendant SDK

5.3.11. CompactAlphaPad and NumPad

5.3.11. CompactAlphaPad and NumPad

Using CompactAlphaPad

The compactalphaPad control isused to enable user input. Theinput can be in the form of
capital letters or numbers depending on the property ActiveCharpPanel, which can be set
to Characters Of Numeric. It hasafixed size, big enough for the use of afinger to pressits
keys. There are properties available to define whether the numerical panel should support
numerical operands, special characters, space and comma. All these properties are set to true
in thefigure:

ARG Manual
FSiPRp sys_508_0168(SEVST-W-000213

£ ritle
30.5
7 8 9 / (
4 5 6 * ;)| _
1 2 3 - [| ?
0]+,]!

6.3.11_1

In order for your application to use the user input, you must connect to atext box, which
displays the text or figures entered. This connection has to be coded manually, for example
in the constructor, after the call to InitializeComponent, €.9.:

this.compactAlphaPadl.Target = this.textBoxl;

Using NumPad

TheNumpad isvery similar to the CompactAlphaPad. You haveto cresteaTarget to beable
to usetheinput, e.g.:

this.numPadl.Target = this.textBox2;

7 & 9| -

1|2 | 3 [<X]

6.3.11_2

116

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.12. GTPUMessageBox

5.3.12. GTPUMessageBox

Overview

GTPUMessageBox IS the message box control to be used by FlexPendant applications. You
should not use the standard . NET MessageBox.

Design issues
The cTPUMessageBox . Show arguments include an owner argument, which is the control
that displays the MessageBox, and a callback, which isaMessageBoxEventHandler
called when the MessageBox is closed.
Except this, it is used in the same way as the regular Windows MessageBox. It isused
together with the regular Windows MessageBoxButtons and MessageBoxIcon.

Simple code example

The figure and code below show how to display a simple message on the FlexPendant using
the GTPUMessageBox.

No Server Name Specified

B You did not enter a server name. Cancel
this operation?

Yes No
6.2.6_1
string message = "You did not enter a server name. Cancel this
operation?";
string caption = "No Server Name Specified";

GTPUMessageBox.Show(this, null, message, caption,
System.Windows.Forms.MessageBoxIcon.Question,
System.Windows.Forms.MessageBoxButtons.YesNo) ;

Continues on next page

3HAC028083-001 Revision: D 117

5 Using the FlexPendant SDK

5.3.12. GTPUMessageBox

Continued

Using a callback

NOTE!

Sometimesit can be abit tricky to get the first argument right. The owner might be this,
this.Parent Or even this.Parent.Parent.

The logicsin your program determines if there is any need for a callback. In the previous
examplethe callback argument wasnu11.The message box will just close down after the user
has answered the question, no matter if the answer is Yes or No.

If we think about the message, it seems likely however, that something should happen if the
user presses No. Let us change the implementation and use a callback for this purpose:
GTPUMessageBox.Show (this, new
MessageBoxEventHandler (OnServerMessageClosed), message,

caption, System.Windows.Forms.MessageBoxIcon.Question,
System.Windows.Forms.MessageBoxButtons.YesNo) ;

//implement callback

private void OnServerMessageClosed (object sender,
ABB.Robotics.Tps.Windows.Forms.MessageBoxEventArgs e)

if (e.DialogResult == System.Windows.Forms.DialogResult.No)

{

//Use default server...

}
If wereally do not want to take action depending on how the user responds, it makes more
sense to use OK instead of Yes and No as message box buttons, e.g:

GTPUMessageBox.Show (this, null, "You are not allowed to perform this
operation, talk to your system administrator if you need access",
"User Authorization System", MessageBoxIcon.Hand,

MessageBoxButtons.OK) ;

NOTE!

The last example uses a better message box title then the previous ones. The title preferably
should tell the user from which part of the system the message originates.

118

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.13. GTPUFileDialog

5.3.13. GTPUFileDialog

Overview

The FlexPendant SDK provides anumber of file dialogs used by the end-user to interact with
the file system of the robot controller. These controls al inherit the abstract class
GTPUFileDialog and belong to the namespace ABB.Robotics.Tps.Windows.Forms.

File dialog types

®

There are three different types of file dialog controls:

Use... when you want to...
GTPUOpenFileDialog Enable the user to specify a file to be retrieved from the
controller file system.

GTPUSaveFileDialog Enable the user to specify a file to be saved to the
controller file system.

GTPUFolderBrowserDialog Enable the user to specify a folder on the controller file
system.

NOTE!

The Open/Save/Browse file dial ogs represent a convenient way for the user to specify folder
and filename for afile operation. You should know, however, that the dialogs themselves do
not perform any file operation, they only providethe controller file system path to be used by
your application.

CAUTION!

When added to the VS Designer from the Toolbox, these controls will be placed in the
components pane. They must be explicitly removed by acall to their pispose method, e.g.
in the ispose method of the class that created them.

Illustration

Below isanillustration of theaTPUsaveFileDialog. Theother file dialogs have amost the
same appearance and the way they work isvery similar. Using the icons of the command bar
you create new folders and browse the controller file system. Together with the list and the

Continues on next page

3HAC028083-001 Revision: D 119

5 Using the FlexPendant SDK

5.3.13. GTPUFileDialog

Continued

textbox, you specify aremote path. The FileName property should be read to retrieve this
path. It returns the complete path to the controller file system, even though only thefile name
isvisiblein the File name textbox

Filter
syps_S00_016GR
AL 1k 1R Manual Guard Stop m X
Rarmn sys_508_0168(SEVST-W-0002130) |Stopped (Speed 100%)
‘4 save As - C:/Systems/sys_508_0168
I TEXT(*txt) -]
| Type L bo 6 of &
BACKUP Folder
HOME Folder
0 INTERNAL Folder
o] SYSPAR Folder
] Texts Folder
0O MyTexts.txt txt file
File name: MyLocal Texts.txt .]
| * T.‘ ; OK Cancel
Caption f
[,*3 w:f[:m or g‘. .

FileName
6.3.13_1

Note! The button after the File name textbox opens the virtual keyboard, enabling the user
to change the name of the file to be saved. The Filter property of the control is set to
TEXT(*.txt)|* .txt. The first part of the setting is displayed in the filter textbox.

Thisisthe Properties window of this dialog:

gtpuSaveFileDialogl ABBE.Robotics. Tps \Windows.Farms. GTPUSaveFileDialog =

=== # | S

[DrataBindingz)

| »

[Mame] gtpu$5 aveFileDialogl
AddE stension True
B ackColor [] white
DefaultExt kxt
TEXT(*tat)l* tut
ForeColor Bl ControlT ext
Generatet ember True
lcon BE System.Drawing. Bitmap
Modifiers Frivate b
QvwenwritePrompt True
Title Save As A
Filter

The file filters to dizplay in the dialog box. Example: =ML Fxml) | = sml”

6.3.13_2

Continues on next page
120 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.3.13. GTPUFileDialog

Continued

Implementation details

The Propertieswindow gives aclear description of aselected property, ascan be seenin the
figure above. Here only afew important properties will be detailed:

Property Details

Filter Carefully observe the string format when you set this
property, e.g.: Program Files (*.pgf)|*.pgf
The first part is displayed in the combo box and the second
part is used by the SDK to retrieve the correct files to be
displayed in the list. You can also specify several filters,
which the user can choose from.

Program Files (*.pgf)|*.pgf|All Files (*.*)|*.%;
FileName Cannot be accessed in design-time by using the

Properties window, but should be manually coded when
the file dialog is launched if it is a save file dialog.

When the dialog is closed, you should read this property.
It holds the remote path and file name of the file to be
opened, or the remote path and file name of the file to be
saved.

Note! Remember that remote refers to the controller file
system and local to the FlexPendant file system.

InitialDirectory Cannot be accessed in design-time by using the
Properties window. Specifies the initial directory to be
displayed by the file dialog box.

NOTE!

For your program to be able to use the controller path selected by the end user, you need to
read the FileName property at the closing/Closed event of thefile dialog.

Example

This piece of code sets InitialDirectory and FileName, then sets up a subscription to
the closed event and finally displaysthe GTpUSaveFileDialog

saveFileDialog.InitialDirectory = initialDir;
saveFileDialog.FileName = programName;

saveFileDialog.Closed += new
EventHandler (SaveProgram FileDialog EventHandler) ;

saveFileDialog.ShowMe (_parent) ;

The code of the saveProgram FileDialog EventHandler method retrievesthe
specified path of the remote file system, including the file name, by reading the Fi1leName
property:

string remotePath = saveFileDialog.Filename;

NOTE!

The file has not yet been saved to the robot controller. To do that you should call
FileSystem.PutFile usingthe retrieved path asthe remoteFile argument. Likewise, to
load a specified remote file to the FlexPendant file system you should use the retrieved path
inthecal to FileSystem.GetFile.

3HAC028083-001 Revision: D 121

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and 10 signals

5.3.14. DataBinding of RAPID data and 10 signals

What is databinding?

Databinding isthe process of binding aproperty of aGUI control to adata source, so that the
property automatically reflectsthe value of the datasource. In .NET CF 2.0 thisfunctionality
was simplified thanks to the new BindingSource class. This class encapsulates the
complexity related to setting up and managing databinding.

FlexPendant SDK classes to be used as binding sources

In the FlexPendant SDK there are two classes that inherit .NET BindingSource:
RapidDataBindingSource and SignalBindingSource . Theseclassesenablebindingto
RAPID dataand | O signalsrespectively. They belong to the ABB . Robotics.DataBinding
namespace and the assembly you need to reference is ABB.Raobotics.DataBinding.dll.

RapidDataBindingSource

SignalBindingSource

GUI example

By using RapidDataBindingSource an automatic update of the bound GUI control takes
place when the value of the specified RAPID data source in the controller has changed, or
when the control is repainted.

By using signalBindingSource anautomatic update of the bound GUI control takes
place when the value of the specified 10 signal in the controller has changed, or when the
control is repainted.

NOTE!
Itisonly possible to use persistent RAPID data (PERS) as data source.

NOTE!

If you want to let users modify RAPID data, launching the standard FlexPendant application
Program Data from your application is probably the best alternative. See Using standard
dialogs to modify data on page 131 for information about how to do it.

Many different controls can be used with binding sources, e.g. TpsLabel, TextBox,
ListView etc. Thefigure below showstwo System.Windows . Forms . DataGrid controls
that each bind to several objects defined in arRapidbataBindingSource and a

Continues on next page

122

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.14. DataBinding of RAPID data and 10 signals

Continued

SignalBindingSource . Thelabelsin each GroupBox are bound to the same sources. As
you see the grid displays all objects defined in the BindingSource control, whereas each
label displaysthe currently selected grid row.

When asignal or adata value changesthis GUI is automatically updated with the new value.
You do not have to write any code make this happen, as setting up subscriptions and updating
the user interface is done by the underlying implementation.

:}: Virtual FlexPendant

ADnD|G Manual Guard Stop [x
Siplp sys_508_0168(SEYST-W-0002130) Stopped (Speed 100%)

FP SDK BindingSource

— My RAPID data

Current value: 3
Value | Variable/Module Taskr=

122 myNum | user T RO
1 Numz user T_Rol

Variable name: Num3

Module name: user

Taszk name: T Robl

1]

Signal type: Digital...
Type Name |Value

Digitalo MyDO1 1 Sgnalname: MyDO2

D 0 MyDQ2 _ Current value:

DigitalO MyDO3 0

gﬁ Caption far
yaur

6.3.14_1

K

Continues on next page
3HAC028083-001 Revision: D 123

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and 10 signals

Continued

®

CAUTION!

To avoid any memory leaks an explicit call to the Dispose method of BindingSource
controls must be made. However, the wrapper-objects signalobject and
RapidDataObiject created for you are disposed of under the hood, so you do not need to

worry about it.

How to use the VS designer for data binding
This section explains how to create the FlexPendant view shown in the previous section. First
aRapidbataBindingSource control with bindings to specified RAPID datais

created.Then the DataBindings

property of aTpsLabel isused to bind the label to the

binding source. Finally astandard .NET pataGrid isbound to the same binding source.

Step Action

1. Start by dragging a RapidDataBindingSource from the Toolbox to the Designer. It
will be placed in the Components pane under the form. Open the Properties window
and select the RapidDatalist property to add the RAPID data you are interested in.
For each new RapidDataObject member you must specify module name, task name
and name of the persistent RAPID data to bind.

— My RAPID data

Walue | “ariablehlame | Madulehlame | TaskMame

*

— My 10 signals
Type | Mame
*

Ej,i rapidD ataBindingSourcel

6.3.14 2

Current value: Yalue

Varable name: MName

Properhies

rapidD ataBinding5 ourcel ABE Robotics. DataBinding. A apidD ataBindingSource |+

e~

[Mame) rapidD ataBinding5 ourcel
AllowMew True

Generatekember True

todifiers Frivate

R apidDatalist [Collection)

RapidD ataObject Collection Editor

Members: FiapidD ata0bject properties:

1| RapidD atalbject

2| RrapidD ataDbject _| E Data

3| RapidD ataObject Modulet ame user
TaskMame T_RDB1
WariableM ame myMum

Continues on next page

124

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

Step
2.

5.3.14. DataBinding of RAPID data and 10 signals
Continued

Action

The next step is to open the Properties window for the label that is to display the value
of the RAPID data. Expand the DataBindings node and select Advanced.

tpzLabeld ABE Robotics. Tps Windows. Farms. TpsLabel -
.
EH [DataBindings)
[&dvanced) ;I
Tag [rone)
Teut rapidD ataBindingS ource - Walue
(M ame) tpsLabel4
B ackColor 1 White
Enabled True
Fonth ame Font12b
ForeColor Bl CorbolTest
Generatekember True
Location 465; 74
Locked Falze
M odifiers Private
Size 100; 24
Text 1 Value
Textalignment ToplLeft
izible True
6.3.14 3

Continues on next page

3HAC028083-001 Revision: D

125

5 Using the FlexPendant SDK

5.3.14. DataBinding of RAPID data and 10 signals

Continued
Step Action
3. Inthe Advanced Binding dialog box that appears, choose the already created
RapidDataBindingSource in the Binding combo box, at the same time specifying
which one of the RapidDataObject properties you want to bind to, in this case Value.
(The other properties available are variable name, task name and module name, as
can be seen in the figure in step 1.)
You also select your preferred Data Source Update Mode, usually OnProperty-
Changed. The yellow marking in the list to the left shows that the binding has been
done to the Text property of the label. When a control has been bound to a data
source you will see the same yellow marking in its Properties window, at the bound
property. See figure of step 2.
Formatting and Advanced Binding o _
Bind the properties of a control to a source, and format the result.
Property: Binding: [Data Source Update Mode:
E| | Common rapidD ataBindingS ourcel - Walue El IDnF‘ropertthanged j
: Tag i Format
BacklCalor Use no farmatting ta dizplay the walue from the source without adarmment.
- Enabled
g FontMame Format type: Sample
- gy ForeColor T ——— |7-1234.5
-y GenerateMember Ildmnu
g Lacation Currency Hull value: I
- @y Locked [ate Time
- & Madifiers Scientific
i Custom
gy Mame
- g Size
-~ Teust
1 - g Tewtalighment
I g Wisile
’TI Cancel
6.3.14_4
NOTE!
If a label has been bound to a data source with several member objects, the first one
in the list is the one by default displayed by the label. If the selected index of the list
changes (if the user selects a row in the grid for example) the label is updated auto-
matically to show the value of the selected index. See the figure in GUI example on
page 122.
Continues on next page
126 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.3.14. DataBinding of RAPID data and 10 signals

Continued

Step Action

4. Now launch the Properties window of the DataGrid control. Set ColumnHeader-
Visible to true and select your data source at the DataSource property.

dataGnd1 SpztemWindows. Forme.DataGnd -
b 4
H [DataBindings) |
[Advanced)
Tag [hone)
[Mame] dataGndl
Anchor Top, Left
B ackColor [window
B ackgroundColor [128;128;:128
ColumnH eadersVisible True bl
Contextkd enu [hone]
[ataSource rapidD ataBinding5ourcel
Dock Mohe
Enabled True
Faont Arial; Spt
FareCalar Bl indowTes
GenerateM ember True hd
6.3.14_5
NOTE!

The DataGrid control displays only one row in design-time (See the figure of step 1).
In run-time, however, the entire collection of RapidDataObject members is displayed
(see the figure in GUI example on page 122).

SuspendBinding/ResumeBinding
SuspendBinding () and ResumeBinding () have extended functionality compared to the
methods of the inherited BindingSource class. Removing/adding subscriptions have been
added, as subscribing to signals and RAPID data can be resource consuming. These methods
can beused inthebeactivate/Activate methods, which are executed each time the user
switches back and forth between different applications using the FlexPendant task bar. See
Application Framework usage - | TpsViewActivation on page 190 for further information.

If you suspend the binding you no longer get any updates if the data source is changed.
However, the binding still exists, so if DataSour ceUpdateM odeis set to OnValidation the
value will be updated when you repaint the control, as the value from the controller will be
read beforeit is repainted.

Method Description

SuspendBinding Suspends the binding and value change
event.

ResumeBinding Resumes the binding and value change
event.

3HAC028083-001 Revision: D 127

5 Using the FlexPendant SDK

5.4.1. Using launch service

5.4 Launching other views

5.4.1. Using launch service

Overview

The FlexPendant SDK provides alaunch service, which enablesa RAB application to start a
standard ABB application, such as the program editor or the jogging view.

Itisalso possibleto start another custom application by specifying proxy assembly name and
the application view class.

For information about how to add and launch another view of your own application, see
Adding a view to a custom application on page 99.

NOTE!

To launch aview in order to edit a specified rapid data instance, another mechanism is
available. See Using standard dial ogs to modify data on page 131 for details.

ITpsViewSetup Install

Itisonly classesthat inherit the ITpsviewsetup interfacethat can launch other applications.
Thernstall method, whichiscalled when your custom application islaunched, has asender
argument. Your application needs to save this object to be able to use the
ITpsViewLaunchServices interface. Itisused by the launch serviceto call Launchview
and CloseView.

VB:

//declaration

Private iTpsSite As ITpsViewLaunchServices
//Install method of the TpsView class

Function Install (ByVal sender As System.Object, ByVal data As
System.Object) As Boolean Implements ITpsViewSetup.Install

If TypeOf sender Is ITpsViewLaunchServices Then
// Save the sender object for later use
Me.iTpsSite = DirectCast (sender, ITpsViewLaunchServices)
Return True
End If
Return False

End Function

Continues on next page

128

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.4.1. Using launch service

Continued

C#:

//declaration

private ITpsViewLaunchServices iTpsSite;

//Install method of the TpsView class

bool ITpsViewSetup.Install (object sender,object data)

if (sender is ITpsViewLaunchServices) {

// Save the sender object for later use
this.iTpsSite = sender as ITpsViewLaunchServices;
return true;

}

return false;

Launching standard views
Using the Fpstandardview enumerator, the following standard views can be started using
the launch services:

» Program editor
* Program data

* Jogging
» Logoff
» Backup/Restore
TIP!
Q Launching the Program data view is the best way to let end-users create new RAPID data
NOTE!
H To launch the program editor aninitialization object of RapidEditorInitData typecanbe

used asargument. It specifiesthetask, moduleand row that the Program editor should display
when it opens. For the other standard views no InitData can be used.

LaunchView / CloseView example

In the example bel ow, the program editor islaunched at a specified routine. First initData
is created. Then the reference to the sender object, retrieved by the 1nstal1 method in the
previous example, isused to cal Launchview.

The cookie out argument is later used to specify the view to be closed by the closeview
method.

VB:

Dim initData As RapidEditorInitData = New RapidEditorInitData
(ATask, AModule, ARoutine.TextRange.Begin.Row)
If Not (Me.iTpsSite.LaunchView (FpStandardView.RapidEditor,
initData, True, Me.cookieRapidEd) = True) Then
GTPUMessageBox.Show (Me, Nothing, "Could not start RapidEditor
application")
Return
Continues on next page

3HAC028083-001 Revision: D 129

5 Using the FlexPendant SDK

5.4.1. Using launch service

Continued

Me.iTpsSite.CloseView (Me.cookieRapidEd)
C#:
RapidEditorInitData initData = new RapidEditorInitData (task,
module, routine.TextRange.Begin.Row;

if (this.iTpsSite.LaunchView (FpStandardvView.RapidEditor, initData,
true,out this.cookieRapidEd) != true)
GTPUMessageBox.Show (this, null, "Could not start RapidEditor
application") ;

return;

this.iTpsSite.CloseView (this.cookieRapidEd) ;

What happensif the specified view isaready open when the call ismade? The third argument
specifies application behavior in this case. If true, another instance of the view islaunched.
If false, theaready opened view getsfocus. Notice, however, that creating a new instance
isnot possiblefor all standard views. The Jogging view, for example, is not allowed multiple
instances.

Launching custom applications
The launch service can also be used to launch another RAB application. The name of the
proxy assembly along with the fully qualified class name should be used as arguments.

VB:

If Not (Me.iTpsSite.LaunchView ("TpsViewCustomApp.gtpu.dll",
"ABB.Robotics.SDK.Views.TpsViewCustomApp", Nothing, True,
Me.cookieUser) = True) Then

GTPUMessageBox.Show (Me, Nothing, "Could not start User
application")
Return
End If
C#:

if (this.iTpsSite.LaunchView ("TpsViewCustomApp.gtpu.dll",
"ABB.Robotics.SDK.Views.TpsViewCustomApp", null, true, out
this.cookieUser) != true) ({

GTPUMessageBox.Show (this, null, "Could not start User
application") ;
return;
}
NOTE!

It isthe namespace of the proxy assembly, ABB.Robotics.SDK.Views,which should be used
to specify the Tpsview class.

NOTE!

By using the argument cookieUser your application can close the launched custom
application in the same way asin the Launching standard views on page 129 example above.

130 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.4.2. Using standard dialogs to modify data

5.4.2. Using standard dialogs to modify data

Overview

Creating the dialog

The FprRapidbata, FpToolCalibration and FpWworkObjectCalibration dialogstake
arapidbata reference as argument. When the dialog is opened it allowsthe user to directly
operate on the referenced RapidData object, for example modifying a RAPID data variable
or calibrate awork object. These dialogs are the ones used by the standard ABB applications.
They are ready-made and cannot be modified, except for thetitle.

Aswith all secondary dialogs, the reference to the dialog should be declared as a class
variable. Thisisto make sure that the reference is available for Dispose. The Rapidbata
reference can be declared locally if it is disposed immediately after use, or else as aclass
variable. When the dialog has been created the title can be set using the Text property. A
Closed event handler should be added to dispose the dialog. All three dialogs are created in
the same way:

VB:

Private ARapidData As RapidData
Friend WithEvents FpRD As FpRapidData

Me .ARapidData = Me.AController.Rapid.GetRapidData (ATaskName,
AModuleName, AVariableName)

Me.FpRD = New FpRapidData (Me.ARapidData)
Me.FpRD.Text = Me.ARapidData.Name
AddHandler Me.FpRD.Closed, AddressOf Me.FpRD Closed
Me .FpRD.ShowMe (Me)

C#:

private FpRapidData fpRD;
private RapidData aRapidData;

this.aRapidData = this.aController.Rapid.GetRapidData (taskName,
moduleName, variableName) ;

this.fpRD = new FpRapidData (this.aRapidData) ;
this.fpRD.Text = this.aRapidData.Name;
this.fpRD.Closed += new EventHandler(fpRD_Closed) ;
this.fpRD.ShowMe (this) ;

Continues on next page

3HAC028083-001 Revision: D 131

5 Using the FlexPendant SDK

5.4.2. Using standard dialogs to modify data

Continued

NOTE!

Verify that the Rapidpata isof correct RapidbataType for the dialog before using it, i.e.
tooldata for the FpTool Calibration dialog and wobjdata for the FpWorkObjectCalibration
dialog. See Type checking on page 132 below.

NOTE!

The FpRapidData dialog is created with a RapidData as in argument. If the RapidDatais an
array, an index argument is used to specify which element should be displayed (the first
elementis1).

Type checking

When calling the FpToolcCalibration Or FpWorkObjectCalibration constructor the
RapidData value should be type checked before use:

VB:

If TypeOf Me.ARapidData.Value Is ToolData Then
Me.FpTC = New FpToolCalibration (Me.ARapidData)

if (this.aRapidData.Value is ToolData)

this.fpTC = new FpToolCalibration(this.aRapidData) ;

132

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.1. ABB.Robotics.Controllers

5.5 Using the Controller API

5.5.1. ABB.Robotics.Controllers

Controller API
To access the functions of the robot controller you utilize the class libraries of the FP SDK
called Controller Application Programming Interface or CAPI. The assembly you need to
reference to use controller functionality is ABB.Robotics.Controllers.dll.

CAPI domains
The top CAPI object isthe ABB.Robotics.Controllers.Controller, Which hasto be
created before any access to the robot controller.
Theclasslibrariesare organized in different domains (namespaces), as shown by the contents

tab of the FP SDK Reference bel ow. The name of adomain tellsyou something about the kind
of servicesyou can expect from it.

E? ABB Robotics IRC5 FlexPendant SDK M=
oE & (%) A

Hide Locate Back Stop Refresh Home

=0

Frint Optionz

Cantents l [ndex] Eearch]

+ @ ABB.Robotics Mameszpace
+ @
+ @ ABB . Robotics. Controllers. ConfigurationD omain Mamespace
+ @ ABB Robotics. Controllers. E ventLogDomain Mameszpace

+ @ ABB . Robotics. Controllers. FileS ystermDomain M amespace

+ @ ABB Robotics. Controllers. |0 SystemD omain Mamespace

+ @ ABE Robotics. Controllers. MaotionD omain Namespace

+ @ ABB Robotics. Controllers. B apidD omain Mamespace

+ @ ABB . Robotics. Controllers. SystemlnfoDomain Mamespace

+ @ ABB Robotics.DataBinding Mamespace

+ @ ABB Robotics. Diagnostics Mamespace

+ @ ABB Robotics. Tps.Drawing Mamespace

+ @ ABB Robotics. Tps. Globalization Mamespace

+ @ ABB Robotics. Tps.Resources Mamespace

+ @ ABB Robotics. Tps. T af Mamespace

+ @ ABB Robotics. TpeWindows. Forms Mamespace

ABE.Fobotics. Contrallers Mamespace

6.4.1_1

Continues on next page

3HAC028083-001 Revision: D 133

5 Using the FlexPendant SDK

5.5.1. ABB.Robotics.Controllers

Continued

CAPI and controller domains
Thisisasimplified illustration of how some ABB.Robotics.Controllers domains
communicate with their respective domains in the robot controller:

—_—ee R :
i Tontroller™, —{ EventL 0_23' '
P Sebjenr f
i (iI:::Sys:tem_\; '
1 T i i i
' H
H

& Ty
\ Ramd

3 T ‘I TCP/IP
[ot Ko P R |— ----- = i = =y
- (Bapid) . CEVERGGE)
H R S r.a"_ oo T T 1
i Controller (I0System | :
1 — ¥
6.4.1 2
NOTE!

In the normal case, asingle controller object is created and used throughout the
application, its lifetime corresponding to that of the application.

What controller functionality is provided?
Plenty of robot controller functionality is offered by the classes and methods of the

FlexPendant SDK.

Thistable presents short descriptions of the kind of servicesthat the different CAPI domains

provide:
CAPI domain

Controllers

ConfigurationDomain

EventLogDomain

FileSystemDomain

IOSystemDomain

MotionDomain

Services

Information about the controller, such as IP address, current user,
Mac address, operating mode, controller state etc. Notification when
operating mode, state or mastership has changed. Backup and
restore. Check if the user has the required UAS grant etc.

Read or write the value of a configuration parameter to the configu-
ration database of the controller.

Notification when a new event log message has been written to the
controller. Title, message, category, sequence number and time
stamp of the message.

Create, rename or remove files and directories in the controller file
system. Retrieve a file from the controller and store it on the
FlexPendant and vice versa.

Read and modify 1/O signals. Notify when a signal value has
changed.

Get/set the coordinate system and motion mode for jogging of the
active mechanical unit. Information whether the mechanical unit is
calibrated or not. Provide name, task, number of axes, active tool
and work object etc. of the mechanical unit. Notify when data of the
mechanical unit has changed. Send a start jogging or a stop jogging
request to the robot controller.

Continues on next page

134

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.1. ABB.Robotics.Controllers

Continued

CAPI domain Services

RapidDomain Notification when execution status has changed. Start and stop
RAPID execution. Load Rapid programs. Create, read and write
RAPID data. Notification when RAPID data or RAPID program has
changed. Notification when program pointer has changed. Search
RAPID symbols etc.

SystemInfoDomain Information about the active system of the robot controller, e.g.
RobotWare version, system name, release and system paths,
existing system options and installed additional options.

Releasing memory

Using CAPI you will create objectsthat reference unmanaged resources. (See Definitions on
page 18.) It is necessary to explicitly deallocate the memory of such objects by calling their
Dispose method when they are no longer needed (at application shut down at the latest).
Otherwise your application will leak memory, which is a scarce resource on the FlexPendant
platform.

NOTE!

You may prevent memory leaks and other pitfalls, by studying the chapter Robust
FlexPendant applications on page 181.

FP SDK Reference

Although this manual coversagreat deal of the FP SDK functionality, it is by no means
complete. The FP SDK Reference, which you open from Windows Start button, isthe
complete reference to the functionality offered by the classlibraries.

It also gives valuable code samples and remarks about methods requiring different UAS
grants etc., which is not included in this manual.

3HAC028083-001 Revision: D 135

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

5.5.2. Accessing the controller

Overview

Making use of controller functionality requires special attention. Disposal of CAPI objects
when closing aview or theentire application isvital to save memory. Another pitfall that must
be avoided is updating the user interface on aworker thread.

Controller instance

Before accessing the controller functionality you need to instantiate the cont rol1er object.
The best place to do thisisnormally in the Install method, which is called by TAF after
the constructor of your view class has executed.

The controller declaration should be done on class scope level:
VB:

Private AController As Controller
C#:

private Controller aController;

The recommendation isto instantiate the controller object in the 1nstal1l method:
VB:

AController = New Controller
C#:

aController = new Controller();

Continues on next page

136

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

Continued

Using the controller object you can access 10 signals, RAPID data variables, event log
messages etc. Most of these objects will be created explicitly and should be disposed of
explicitly.

NOTE!

E Avoid placing any code that may result in an exception before the method
InitializeComponent. Then at least you have a user interface, where you can display a
MessageBox With information about what went wrong.

NOTE!
ﬂ It isrecommended that if several classes need to access the controller, they all reference the
same Controller object.

Subscribing to controller events

The controller object provides severa public events, which enable you to listen to
operating mode changes, controller state changes, mastership changes etc.

VB:

AddHandler AController.OperatingModeChanged, AddressOf UpdateOP
AddHandler AController.StateChanged, AddressOf UpdateState
AddHandler AController.MastershipChanged, AddressOf UpdateMast
AddHandler AController.BackupFinished, AddressOf UpdateBack

C#:
AController.OperatingModeChanged += new
OperatingModeChangedEventHandler (UpdateOP) ;

AController.MastershipChanged += new
MastershipChangedEventHandler (UpdateMast) ;

Controller.BackupFinished += new
BackupFinishedEventHandler (UpdateBack) ;

Controller.StateChanged += new
StateChangedEventHandler (UpdateState) ;

Continues on next page
3HAC028083-001 Revision: D 137

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

Continued

i
®

NOTE!

Controller events use their own threads. Study Controller events and threads on page 67 to
find out how to avoid threading conflicts.

CAUTION!

Do not rely on receiving an initial event when setting up/activating a controller event. There
is no guarantee an event will be triggered, so you had better read the initia state from the
controller.

Create a backup

Using the controller object you can call the Backup method. The argument isastring
describing the directory path on the controller where the backup should be stored. Asthe
backup process is performed asynchronously you can add an event handler to receive a
BackupCompleted event when the backup is completed.

VB:

Dim BackupDir As String = " (BACKUP) $"+BackupDirName

AddHandler Me.AController.BackupCompleted, AddressOf
AController BackupCompleted)

Me.AController.Backup (BackupDir)
C#:
string backupDir = " (BACKUP) $"+backupDirName;

this.aController.BackupCompleted += new
BackupEventHandler (controller BackupCompleted) ;

this.aController.Backup (backupDir) ;

NOTE!

Thereisalso arestore method available. The FP SDK reference is the complete
FlexPendant SDK programming guide and is more detail ed than this manual. For the Backup
and Restore methods, for example, there are parameter descriptions, remarks, code
examples etc.

Dispose
The disposal of the controller object should be doneinthe Uninstall or Dispose
method of the application view class.
Make a check first that disposal has not already been done. Do not forget to remove any
subscriptions to controller events before the bispose () call:
VB:
If Not AController Is Nothing Then
RemoveHandler AController.OperatingModeChanged, AddressOf
OpMChange
AController.Dispose ()
AController = Nothing
End If
Continues on next page
138 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.2. Accessing the controller

Continued
C#:
if (aController != null)
{
aController.OperatingModeChanged -= new
OperatingModeChangedEventHandler (OpMChange) ;
aController.Dispose() ;
aController = null;
}
CAUTION!

VB programmers should be aware that it isabit tricky to use wi thEvents together with the
Dispose pattern on the .NET platform. When you use withEvents the .NET framework
automatically removes any subscriptions when the object is set to Nothing. If you look at
the code sample above, which does NOT use withEvents, you will understand why such
behavior causes problems. When the controller reference is set to Nothing and the .NET
framework triesto remove its subscription, the internal controller object has already been
removed by theDpispose call inthepreceding statement, and aNul1ReferenceException
isthrown. Thisis not specific to the FlexPendant SDK, but aMicrosoft issue. To avoid it you
are advised to use AddHandler and RemoveHandler likein the example.

3HAC028083-001 Revision: D 139

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

5.5.3. Rapid domain

5.5.3.1. Working with RAPID data

Overview

v

The RapidDomain Namespace enables access to RAPID datain the robot system. There are
numerous FP SDK classes representing the different RAPID datatypes. Thereisaso a
UserDefined class used to reference RECORD structuresin RAPID.

The valueChanged event enables notification from the controller when persistent RAPID
data has changed.

TIP!

A convenient and user-friendly way to enable the end-user of your application to read and
write to specific RAPID datais using the standard FlexPendant Program Data view. See
Using standard dial ogs to modify data on page 131 for details about how this can be done.

TIP!

Using databinding for RAPID datais aquick way of implementing access to RAPID data.
See how thisworks in DataBinding of RAPID data and 10 signals on page 122.

Providing the path to the RAPID data

Direct access

Hierarchical access

To read or write to RAPID data you must first create arapidbata object. The path to the
declaration of the datain the controller is passed as argument. If you don’t know the path you
need to search for the RAPID data by using the searchrRapidsymbol functionality. See
SearchRapidSymbol method on page 157.

Direct access requires less memory and is faster, and is therefore recommended if you do not
need to use the task and module objects afterwards.

The example below shows how to create arapidbata object that refersto the RAPID data
instance “regl” in the USER module.

VB:
Dim Rd As RapidData = Me.AController.Rapid.GetRapidData (
n T_ROBlII , IIUSERII , l|reglll)
C#:
RapidData rd = aController.Rapid.GetRapidData("T ROB1", "USER",
n regl”) ;

If you need the task and module objects hierarchical access can be more efficient.
GetRapidData existsin the Rapid, Task and Module class.
VB:

Rd = AController.Rapid.GetTask ("T ROB1") .GetModule ("USER") .
GetRapidData ("regl")
C#
rd = aController.Rapid.GetTask ("T _ROB1") .GetModule ("USER") .
GetRapidData ("regl") ;

Continues on next page

140

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.1. Working with RAPID data

Continued

Accessing data declared in a shared module
If your application isto be used with amulti-move system (a system with one controller and
several motion tasks/robots), it may happen that the RAPID instance you need to accessis
declared in a-Shared RAPID module. Such amodule can be used by al tasks, T_ROB1,
T_ROB2 etc.

This example shows how to create arapidData object that refersto theinstance “reg100”,
which is declared in a shared module.

VB:

Dim Rd As RapidData = Me.AController.Rapid.GetRapidData ("reglO0")
CH:

RapidData rd = aController.Rapid.GetRapidData ("reglOO0") ;

Another possibility is using the Task object to access the RAPID instance, like this:

Task tRobl = aController.Rapid.GetTask ("T ROB1") ;
RapidData rData = tRobl.GetRapidData ("reglOO0") ;

Continues on next page
3HAC028083-001 Revision: D 141

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

Continued

NOTE!

If GetRapidbata iscaled from rRapid the RAPID datawill befound even if the -Shared
moduleis configured to be hidden.

NOTE!
If the RAPID data does not exist, the return valueisNothing/null and an

ArgumentNullException isthrown. A null check should be performed beforetrying to use
the object.

Creating an object representing the RAPID data value

The rRapidbata Object storesthe path to the RAPID data. But thisis not enough if you want
to accessitsvalue (at least not if you want to modify it). To do that you need to create another
object, which represents the value of the RAPID data.

Intherapidbomain hamespace there are types representing the different RAPID datatypes.
To create the object needed to represent the RAPID data value you use the Rapidbata
property value and cast it to the corresponding type, €.9. Num, Bool Of Tooldata.

Thisishow thisisdoneif you want to access the value of aRAPID data of the RAPID data
typebool:

VB:
‘declare a variable of data type RapidDomain.Bool
Dim rapidBool As RapidDomain.Bool
Dim rd As RapidData = Me.AController.Rapid.GetRapidData("T_ROB1",
"MainModule", "flag")
‘test that data type is correct before cast
If TypeOf rd.Value Is RapidDomain.Bool Then
rapidBool = DirectCast (rd.Value, RapidDomain.Bool)
"check if the value of the RAPID data is true
If (rapidBool.Value) Then
' Do something...
End If
EndIf
C#:

//declare a variable of data type RapidDomain.Bool

RapidDomain.Bool rapidBool;

RapidDomain.RapidData rd =
aController.Rapid.GetRapidData ("T ROB1", "MainModule",
"flag") ;

//test that data type is correct before cast

if (rd.vValue is ABB.Robotics.Controllers.RapidDomain.Bool)

{

rapidBool =
(ABB.Robotics.Controllers.RapidDomain.Bool)rd.Value;
//assign the value of the RAPID data to a local variable

bool boolValue = rapidBool.Value;

Continues on next page

142

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.1. Working with RAPID data

Continued

If you just want to read this variable you can use this technique instead of creating a
RapidDomain.Bool object:

VB:
Dim b As Boolean = Convert.ToBoolean (rd.Value.ToString)
C#:

bool b = Convert.ToBoolean (rd.Value.ToString()) ;

The ToolData type (representing the RAPID datatype tooldata) can be created like this:
VB:

Dim ATool As ToolData
If Rd.Value Is ToolData Then
ATool = DirectCast (Rd.Value, ToolData)
End If
C#:

ToolData aTool;
if (rd.Value is ToolData)

{

aTool = (ToolData) rd.Value;

IRapidData.ToString method
All RapidDomain structures representing RAPID data types implement the TrRapidData
interface. It has a Tost ring method, which returns the value of the RAPID datain the form
of astring. Thisisasimple example:

string boolValue = rapidBool.ToString() ;

The string is formatted according to the same principle as described in
IRapidData.FillFromSring method on page 144 below.

Here is an example of amore complex datatype. The ToolData Tframe property is of the
Pose type. ItsTrans value isdisplayed in alabel in the format [x, v, Z].

VB:

Me.Labell.Text = ATool.Tframe.Trans.ToString()
C#:

this.labell.Text = aTool.Tframe.Trans.ToString() ;

Continues on next page
3HAC028083-001 Revision: D 143

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

Continued

IRapidData.FillFromString method

String format

The IRapidpata interface also hasaFillFromString method, which fillsthe object with
avalid RAPID string representation. The method can always be used when you need to
modify RAPID data. Using the method with the RapidDomain.Bool variable used earlier
in the chapter will look like this:

rapidBool.FillFromString ("True")

Using it for aRapidbomain.Num variableis similar:

rapidNum.FillFromString ("10")

The format is constructed recursively. An example is the easiest way of illustrating this.
Example:

The RapidDomain. Pose structure corresponds to the RAPID datatype pose, which
describes how acoordinate system i s displaced and rotated around another coordinate system.
public struct Pose : IRapidData

{ public Pos trans; public Orient rot;

}

Thisisan examplein RAPID:

VAR pose framel;

framel.trans := [50, 0, 40];

framel.rot := [1, 0, 0, 0];
The framel coordinate transformation is assigned a value that corresponds to a displacement
in position where X=50 mm, Y =0 mm and Z=40 mm. Thereis no rotation.
Asyou see, theRapidDomain . Pose structure consists of two other structures, transand rot.
Thetrans structure consists of three floats and the and rot structure consists of four doubles.
TheFillFromString format for a pose object is“[[1.0, 0.0, 0.0, 0.0][10.0, 20.0, 30.0]]".
This piece of code shows how to write anew valueto a RAPID pose variable:
VB:

If TypeOf rd.Value Is Pose Then
Dim rapidPose As Pose = DirectCast (rd.Value, Pose)
rapidPose.FillFromString (" [[1.0, 0.0, 0.0, 0.0][10, 20, 30]1M)
rd.Value = rapidPose
End If
CH#:

if (rd.Value is Pose)

{

Pose rapidPose = (Pose) rd.Value;
rapidPose.FillFromString("[[1.0, 0.5, 0.0, 0.0][10, 15, 1011");
rd.Value = rapidPose;

Continues on next page

144

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.1. Working with RAPID data

Continued
NOTE!
ﬂ Using the same principle arbitrarily long RAPID data types can be represented.
NOTE!
H The string format must be carefully observed. If the string argument has the wrong format, a

RapidDataFormatException iSthrown.

Writing to RAPID data
Writing to RAPID datais only possible using the type cast Rapidbpata value, to which the
new valueisassigned. To transfer the new value to the RAPID datain the controller you must
finally assign the .NET object to the value property of the RapidData object. This example
uses the rapidBool object created in Creating an object representing the RAPID data value
on page 142.

VB:

"Assign new value to .Net variable
rapidBool.Value = False
'Write the new value to the data in the controller

rd.Value = rapidBool

//Assign new value to .Net variable
rapidBool.Value = false;
//Write to new value to the data in the controller

rd.Value = rapidBool;

Thiswas an easy example, asthevalueto changewasasimpleboo1. Often, however, RAPID
uses complex structures. By using the FillFromString method you can assigh anew
valueto any RapidbData and write it to the controller.

The string must be formatted according to the principle described in the previous section. The
following exampl e shows how to write a new value to the pos structure (X, y, z) of aRAPID
tooldata:

VB:

Dim APos As Pos = New Pos

APos.FillFromString("[2,3,3]1")

Me.ATool.Tframe.Trans = APos

Me.Rd.Value = Me.ATool

CH:

Pos aPos = new Pos();
aPos.FillFromString (" [2,3,3]");
this.aTool.Tframe.Trans = aPos;

this.rd.Value = this.aTool;

Continues on next page
3HAC028083-001 Revision: D 145

5 Using the FlexPendant SDK

5.5.3.1. Working with RAPID data

Continued

NOTE!

The new value is not written to the controller until the last statement is executed.

Letting the user know that RAPID data has changed

Add subscription

Handle event

In order to be notified that RAPID data has changed you need to add a subscription to the
ValueChanged event of the Rapidbata instance. Note, however, that this only works for
persistent RAPID data.

Thisishow you add a subscription to the valueChanged event:
VB:

Addhandler Rd.ValueChanged, AddressOf Rd_ValueChanged
C#:

this.rd.valueChanged += rd ValueChanged;

Implement the event handler. Remember that controller events use their own threads, and
avoid Winforms threading problems by the use of control . Invoke, which forces the
execution from the background thread to the GUI thread.

VB:
Private Sub Rd ValueChanged (ByVal sender As Object, ByVal e As
DataValueChangedEventArgs)
Me.Invoke (New EventHandler (AddressOf UpdateGUI), sender, e)
End Sub
C#

private void rd ValueChanged (object sender,
DataValueChangedEventArgs e)

this.Invoke (new EventHandler (UpdateGUI), sender, e);

See Controller events and threads on page 67 to learn more about potential threading
conflictsin RAB applications.

Read new value from controlller

Update the user interface with the new value. Asthe valueis not part of the event argument,
you must use the RapidData Value property to retrieve the new value:
VB:
Private Sub UpdateGUI (ByVal sender As Object, ByVal e As
System.EventArgs)
Dim Tooll As ToolData = DirectCast (Me.Rd.Value, ToolData)
Me.Labell.Text = Tooll.Tframe.Trans.ToString()
End Sub

Continues on next page

146

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.1. Working with RAPID data

Continued

C#

private void UpdateGUI (object sender, System.EventArgs e)

{

ToolData tooll= (ToolData)this.rd.Value;
this.labell.Text = tooll.Tframe.Trans.ToString() ;

NOTE!
ﬂ Subscriptions work only for RAPID data declared as PERS.

RapidData disposal
Always dispose of Rapidbata objectswhen they are no longer needed. If you want to reuse
aRapidbData object, you should make sure that you dispose of the current object first.
VB:

If Not Rd Is Nothing Then
Rd.Dispose ()
Rd = Nothing
End If
C#:

if (rd != null)
{
rd.Dispose() ;
rd = null;

3HAC028083-001 Revision: D 147

5 Using the FlexPendant SDK

5.5.3.2. Handling RAPID arrays

5.5.3.2. Handling RAPID arrays

Overview

In RAPID you can have up to three dimensional arrays. These are accessible by using a
RapidbData object like any other RAPID data.

There are mainly two ways of accessing each individual element of an array: by indexers or
by an enumerator.

TIP!

A convenient and user-friendly way of reading and writing array elementsisusing the
standard Program Data view of the FlexPendant. You provide the element you want to have
displayed asargument, and the user can view or manipul ate theitem theway itisusually done
on the FlexPendant. See Using standard dialogs to modify data on page 131.

ArrayData object

If therapidData referencesaRAPID array is value property returns an object of
ArrayData type. Before making acast, check the type using the is operator or by using the
IsArray property onthe RapidbData object.
VB:

Dim RD As RapidData = AController.Rapid.GetRapidData("T_ROB1",

"User", "string array")
If RD.IsArray Then
Dim AD As ArrayData = DirectCast(RD.Value,ArrayData)

RapidData rd = aController.Rapid.GetRapidData ("T ROB1l", "User",
"string array");

if (rd.IsArray)

{

ArrayData ad = (ArrayData)rd.Value;

Array dimensions

The dimension of the array isreturned by the Rank property. If you need to check the length
of theindividual arraysyou can use the Get Length method on the ArrayData object
passing the dimension index as argument.
VB:

Dim ARank As Integer = AD.Rank

Dim Len As Integer = AD.GetLength (ARank)
C#:

int aRank = ad.Rank;

int len = ad.GetLength (aRank) ;

Continues on next page

148

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.2. Handling RAPID arrays

Continued

Array item access by using indexers
By the use of indexers you can access each array element, even in three dimensional arrays.
A combination of the Get Length method and For loops makes it possible to access any
item:
VB:
Dim ASum As Double = OR
Dim ANum As Num
If AD.Rank = 1 Then
For I As Integer = 1 To AD.Length
ANum = DirectCast (ad.[I], Num)
ASum += DirectCast (ANum, Double)
Next
ElseIf AD.Rank = 2 Then
For I As Integer = 1 To AD.GetLength(1)
For J As Integer = 1 To AD.GetLength(2)
ANum = DirectCast (ad[I, J], Num)
ASum += DirectCast (ANum, Double)
Next
Next
Else
For I As Integer = 1 To AD.GetLength (1)
For J As Integer = 1 To AD.GetLength(2)
For K As Integer = 1 To AD.GetLength(3)
ANum = DirectCast (ad[I, J, K], Num)
ASum += DirectCast (ANum, Double)
Next
Next
Next
End If

double sum = 0d;

Num aNum;

if (ad.Rank == 1) {
for (int 1 = 1; i

{

<= ad.Length; i++)

aNum = (Num)ad. [i];

asum += (double) ANum;

Continues on next page
3HAC028083-001 Revision: D 149

5 Using the FlexPendant SDK

5.5.3.2. Handling RAPID arrays

Continued

}

elseif (ad.Rank == 2)
{
for(int i = 1; i< ad.GetLength(1l); i++)
{
for (int j = 1; j <= ad.Length; j++)
{
aNum = (Num)ad. [i,7];

asum += (double)ANum;

}

else {
for(int 1 = 1; i< ad.GetLength(1l); i++)
{
for(int j = 1; j< ad.GetLength(2); j++)
{
for (int k = 1; k <= ad.GetLength(3);
{
aNum = (Num)ad.[i, J, k];

asum += (double)ANum;

k++)

Array item access using enumerator

You can also use the enumerator operation (foreach) likeit isused by collectionsin .NET.
Noticethat it can be used for both one dimension and multi-dimensional arraysto accesseach
individual element. The previous exampleisalot simpler thisway:

VB:

Dim ASum As Double = OR
Dim ANum As Num
For Each ANum As Num In AD
ASum += DirectCast (ANum, Double)
Next
C#.

double sum = 0d;
Num aNum;
foreach (Num aNum in ad)

{

asum += (double) ANum;

150 3HAC028083-001

Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.3.3. Readltem and Writeltem methods

5.5.3.3. Readltem and Writeltem methods

Overview

An dternative way of accessing RAPID data stored in an array are the ReadItem and
WriteItem methods.

Readltem method

Using the ReadItem method you can directly access a RAPID dataitem in an array, e.g. an
array with RobTargets or Nums. Theindex to theitemisexplicitly specifiedinthereadItem
cal. Thefirstitem isin position 1, i.e. the array is 1-based asin RAPID.

This example retrieves the second Numvalue in the first array of the RAPID data variable
referenced by rd.

VB:

Dim ANum Ag Num
aNum = DirectCast (rd.ReadItem(1l, 2), Num)
Ct:

Num aNum = (Num)rd.ReadItem(1l, 2);

Writeltem method

In the same manner it is possible to use the writeItem method to write to an individua
RAPID dataitem in an array. This example shows how to write the result of an individual
robot operation into an array representing atotal robot program with several operations:
VB:

Dim ANum As Num = New Num (OPERATION OK)

rd.Writeltem (ANum, 1, 2)
C#.

Num aNum = new Num(OPERATION_OK) ;
rd.WriteItem(aNum, 1, 2);

NOTE!
H If theindex is out of bounds an IndexoutOfRangeException Will be thrown.

3HAC028083-001 Revision: D 151

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

5.5.3.4. UserDefined data

Overview
You often work with RECORD structuresin RAPID code. To handle these unique data types
aUserDef ined classhasbeen implemented. Thisclasshas properties and methodsto handle
individual components of a RECORD.

In some cases implementing your own .NET structure can improve application design and
code maintenance.

Creating UserDefined object
The UserDefined constructor takes aRrRapidbataType Object asargument. To retrieve a
RapidDataType oObject the path to the declaration of the RAPID datatypeis passed as
argument.

Thisexample crestesauserDef ined object referencing the RAPID RECORD processdata:

VB:
Dim rdt As RapidDataType
rdt = Me.controller.Rapid.GetRapidDataType ("T_ROB1", "MyModule",
"processdata")
Dim processdata As UserDefined = New UserDefined (rdt)
C#
RapidDataType rdt;
rdt = this.controller.Rapid.GetRapidDataType ("T_ROB1",
"MyModule", "processdata") ;
UserDefined processdata = new UserDefined(rdt) ;
NOTE!
H If the module where the RECORD is defined is configured as -Shared you only provide the

name of the data type as argument, like this:

rdt = this.controller.Rapid.GetRapidDataType ("processdata") ;

Reading UserDefined data
You can use aUserDefined oObject to read any kind of RECORD variable from the
controller. Theindividual componentsof the RECORD are accessible using the Components
property and an index. Each component can be read as a string.

VB:
Dim processdata As UserDefined = DirectCast (rd.Value, UserDefined)
Dim Nol As String = processdata.Components (0) .ToString ()
Dim No2 AS String = processdata.Components(1l),ToString/()

C#:

UserDefined processdata = (UserDefined) rd.Value;
string nol = processdata.Components[0] .ToString() ;

string no2 = processdata.Components[1l] .ToString() ;

Continues on next page
152 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.4. UserDefined data

Continued

Each individual string can then be used in a Fi11FromString method to convert the
component into a specific datatype, €.g. RobTarget Of ToolData. See
IRapidData.FillFromSring method on page 144 for details.

Writing to UserDefined data
If you want to modify UserDef ined dataand write it to the RECORD in the controller you
must first read the UserDe f ined object and the apply new values using the
FillFromString method. Then you perform awrite operation using the
RapidData.Value property.

VB:
processdata.Components (0) .FillFromString (" [0,0,0]")
processdata.Components (1) .FillFromString ("10")
rd.Value = ud

C#:

processdata.Components [0] .FillFromString (" [0,0,0]1");
processdata.Components [1] .FillFromString ("10") ;
rd.Value = ud;
See|RapidData.FillFromS3ring method on page 144 and Writing to RAPID data on page 223
for further information and code samples.

Implement your own struct representing a RECORD
This example shows how you can create your own .NET data type representing a RECORD
in the controller instead of using the UsefDefined type.

Creating ProcessData type
VB:
Dim rdt As RapidDataType = Me.ARapid.GetRapidDataType ("T_ROB1",
"MyModule", "processdata")
Dim p As ProcessData = New ProcessData (rdt)

p.FillFromString (rd.Value.ToString())

RapidDataType rdt = this.aRapid.GetRapidDataType ("T_ ROB1",
"MyModule", "processdata");

ProcessData p = new ProcessData (rdt) ;

p.FillFromString (rd.Value.ToString()) ;

Continues on next page
3HAC028083-001 Revision: D 153

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

Continued

Implementing ProcessData struct

Thisexample shows how the new datatype processbata may beimplemented. Asyou see,
thisisdone by using a.NET struct and |etting ProcessData wrap the Userbef ined object.

The struct implementation should include aFillFromString and ToString method, i.e.
inherit the TRapidpata interface. Any properties and methods may also be implemented.

VB:

Public Structure ProcessData
Implements IRapidData

Private data As UserDefined

Public Sub New(ByVal rdt As RapidDataType)

data = New UserDefined (rdt)
End Sub

Private Property IntData () As UserDefined

Get
Return data

End Get

Set (ByVal Value As UserDefined)
data = Value

End Set

End Property

End Structure

C#:

public struct ProcessData: IRapidData

{

private UserDefined data;

public ProcessData (RapidDataType rdt)

{

data = new UserDefined (rdt) ;

}

private UserDefined IntData

{

get { return data; }

set { data = value; }

Continues on next page

154

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.4. UserDefined data

Continued

public int StepOne

{

get

{

int res =
Convert.ToInt32 (IntData.Components [0] .ToString())

7

return res;
set

IntData.Components [0] = new Num(value) ;

}

Implementing IRapidData methods
This piece of code shows how the two IRapidbata methods Tostring and
FillFromString can beimplemented.
VB:

Public Sub FillFromString(ByVal newValue As String) Implements
ABB.Robotics.Controllers.RapidDomain.IRapidData.FillFromStr
ing

IntData.FillFromString (newValue)

End Sub

Public Overrides Function ToString() As String Implements
ABB.Robotics.Controllers.RapidDomain.IRapidData.ToString

Return IntData.ToString()

End Function

Ct:

public void FillFromString (string newValue)

{

IntData.FillFromString (newValue) ;

public override string ToString/()

{

return IntData.ToString() ;

NOTE! The Tostring method hasto usethe overrides keyword in Visual Basic and the
override keywordin C#.

Continues on next page

3HAC028083-001 Revision: D 155

5 Using the FlexPendant SDK

5.5.3.4. UserDefined data

Continued

Property implementation

Each item in the RECORD structure should have a corresponding property in the extended
.NET datatype. The get and set methods have to implement the conversion from/to controller
datatypeto .NET datatype.

VB:

Public Property Step() As Integer
Get

Dim res As Integer =
Convert.ToInt32 (IntData.Components (0) .ToString())

Return res

End Get

Set (ByVal Value As Integer)
Dim tmp As Num = New Num
tmp.FillFromNum (Value)
IntData.Components (0) = tmp

End Set

End Property

C#:
public int Step
{
get

{

int res =
Convert.ToInt32 (IntData.Components [0] .ToString()) ;

return res;
set
Num tmp = new Num() ;

tmp.FillFromNum(value) ;
IntData.Components [0] = tmp;

156

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

5.5.3.5. RAPID symbol search

Overview

Most RAPID elements (variables, modules, tasks, records etc.) are members of a symbol
table, in which their names are stored as part of a program tree structure.

It is possible to search this table and get a collection of Rapidsymbol objects, each one
including the RAPID object name, location and type.

SearchRapidSymbol

method

The search must be configured carefully, due to the large amount of RAPID symbolsin a
system. To define a query you need to consider from where in the program tree the search
should be performed, which symbols are of interest and what information you need for the
symbolsof interest. To enable search from different levelsthe searchrRapidsymbol method
isamember of several different SDK classes, e.g. Task, Module and Routine . This
exampl e shows a search performed with Task as the starting point:

VB:

Dim RSCol As RapidSymbol ()

RSCol = ATask.SearchRapidSymbol (SProp, "num", string.Empty)
C#:

RapidSymbol [] rsCol;

rsCol = aTask.SearchRapidSymbol (sProp, "num", string.Empty) ;

The searchrRapidsymbol method has three arguments. The first argument, of datatype
RapidSymbolSearchProperties, isdetailed in the next section. The second and third
arguments are detailed in the following sections.

Search properties

The RapidSymbolSearchProperties typeisrather complex and requires some
knowledge about RAPID concepts.

It is used to specify search method, type of RAPID symbol to search for, whether the search
should be recursive, whether the symbols are local and/or global and whether or not the
search result should include only symbols currently used by a program. If a property is not
valid for aparticular symboal, it will just be discarded and will not exclude the symbol from
the search result.

The table describes the different properties of RapidsymbolSearchProperties.
Property Description

SearchMethod Specifies the direction of the search, which can be Block
(down) or Scope (up). Example: If the starting point of the
search is a routine, a block-search will return the symbols
declared within the routine, whereas a scope-search will return
the symbols accessible from the routine.

Continues on next page

3HAC028083-001 Revision: D 157

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

Continued

Property Description

SymbolType Specifies which RAPID type(s) you want to search for. The
SymbolTypes enumeration includes Constant, Variable,
Persistent, Function, Procedure, Trap, Module,
Task, Routine, RapidData. etc. (Routine includes
Function, Procedure and Trap. RapidData includes
Constant, Variable and Persistent.)

Recursive For both block and scope search it is possible to choose if the
search should stop at the next scope or block level or
recursively continue until the root (or leaf) of the symbol table
tree is reached.

GlobalRapidSymbol Specifies whether global symbols should be included.
LocalRapidSymbol Specifies whether local symbols should be included.
IsinUse Specifies whether only symbols in use by the loaded RAPID

program should be searched.

Default instance

RapidSymbolSearchProperties hasastatic method, which returns a default instance.
VB:

Dim SProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault ()

C#:

RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault () ;

The default instance has the following values..

Property Description
SearchMethod SymbolSearchMethod.Block
SymbolType SymbolTypes.NoSymbol
Recursive True

GlobalRapidSymbol True

LocalRapidSymbol True

IsinUse True

Using this instance you can specify the search properties of the search you want to perform.
Example:

VB:

SProp.SearchMethod = SymbolSearchMethod.Scope
SProp.SymbolType = SymbolTypes.Constant Or SymbolTypes.Persistent
SProp.Recursive = False

Ct#:

sProp.SearchMethod = SymbolSearchMethod.Scope;
sProp.SymbolType = SymbolTypes.Constant | SymbolTypes.Persistent

sProp.Recursive = false;

Continues on next page

158

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.5. RAPID symbol search

Continued
NOTE!
ﬂ The default instance has the property symbolType Set t0o NoSymbol, which meansyou need
to specify it in order to perform a meaningful search.
NOTE!
H The symbolType property alows you to combine several typesin the search. See the

example above.

Data type argument
The second argument of the searchRapidsymbol method isthe RAPID datatype written

as astring. The data type should be written with small letters, e.g. “num”, “string” or
“robtarget”. It can also be specified as st ring. Empty.

NOTE!
H To search for auserDefined datatype the complete path to the module that holds the
RECORD definition must be passed, like this:

result = tRobl.SearchRapidSymbol (sProp, "RAPID/T ROB1l/MyModule/
MyDataType", string.Empty) ;

However, if MyModule isconfigured as-Shared the system seesits datatypes asinstalled,
and the task or module should not be included in the path

result = tRobl.SearchRapidSymbol (sProp, "MyDataType", string.Empty) ;

Symbol name argument
The third argument isthe name of the RAPID symbol. It can be specified asstring . Empty
if the name of the symbol to retrieveis not known, or if the purposeisto search ALL “num”
instances in the system for example.
Instead of the name of the RAPID symbol aregular expression can be used. The search
mechanism will then match the pattern of the regular expression with the symbolsin the
symbol table. The regular expression string is not case sensitive
A regular expression isapowerful mechanism. It may consist of ordinary charactersand meta
characters. A meta character is an operator used to represent one or several ordinary
characters, and the purpose isto extend the search.
Within aregular expression, all aphanumeric characters match themselves, i.e. the pattern
“abc” will only match a symbol named “abc”. To match all symbol names containing the
character sequence“abc”, it isnecessary to add some metacharacters. Theregular expression
for thisis*“.*abc.*”.

The available meta character set is shown below:

Expression Meaning

Any single character
S Any symbol starting with

[s] Any single character in the non-empty set s, where s is a
sequence of characters. Ranges may be specified as c-c.

[s] Any single character not in the set s.

Continues on next page
3HAC028083-001 Revision: D 159

5 Using the FlexPendant SDK

5.5.3.5. RAPID symbol search

Continued

Expression Meaning

r* Zero or more occurrences of the regular expression r.

r+ One or more occurrences of the regular expression r.

r? Zero or one occurrence of the regular expression r.

(r) The regular expression r. Used for separate that regular

expression from another.

r|ir The regular expressions r or r'.

i Any character sequence (zero, one or several characters).
Example 1

AG K

Returns al symbols starting with c or C.
Example 2

"Ar%[l'3]"

Returnsregl, Regl, REG1, reg2, Reg2, REG2, reg3, Reg3 and REG3.
Example 3

“Ac*reg[1,2]"

Returns all symbols starting with c or C aswell asregl, Regl, REGL1, reg2, Reg2 and REG2.

SearchRapidSymbol example

This example searches for VAR, PERS or CONST num datain atask and its modules. The
search islimited to globally declared symbols. By default the search method isBlock, S0 it

does not have to be set.

VB:

Ct#:

Dim SProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault ()

SProp.SymbolTypes = SymbolTypes.RapidData
SProp.LocalRapidSymbol = False

Dim RSCol As RapidSymbol ()

RSCol = ATask.SearchRapidSymbol (SProp, "num", string.Empty)

RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault () ;

sProp.SymbolType = SymbolTypes.RapidData;
sProp.LocalRapidSymbol = false;

RapidSymbol [] rsCol;

rsCol = aTask.SearchRapidSymbol (sProp, "num", string.Empty);

Continues on next page

160

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.5. RAPID symbol search

Continued

Search for UserDefined RAPID data - example
In this example a user defined RECORD data type (“mydata’) is declared in amodule
(“myModule’). Assuming that the end-user can declare and use data of this data typein any
program module, the search method must be Block (default). A search for al “mydata”
instances may look likethis;
VB:
Dim SProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault ()
SProp.SymbolType = SymbolTypes.RapidData
Dim RSCol As RapidSymbol ()

RSCol = ATask.SearchRapidSymbol (SProp, "RAPID/T ROB1l/myModule/
mydata", string.Empty)

RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault () ;

sProp.SymbolType = SymbolTypes.RapidData;
RapidSymbol [] rsCol;

rsCol = aTask.SearchRapidSymbol (sProp, "RAPID/T_ROB1/myModule/
mydata", string.Empty) ;

NOTE!
H If myModuleisconfigured as-Shared and al myData instances are declared in myModule the
search method must be set to Scope and the SearchrRapidsymbol call should look likethis:

rsCol = aTask.SearchRapidSymbol (sProp, "mydata", string.Empty) ;

3HAC028083-001 Revision: D 161

5 Using the FlexPendant SDK

5.5.3.6. RAPID execution

5.5.3.6. RAPID execution

Start and Stop RAPID programs
You can start and stop RAPID execution using Rapid.Start and Stop methods. A
StartResult fromthe start method returns the result of the call. Start arguments can be
used. RegainMode defines how the mechanical unit should handle path status at start.
ExecutionMode specifiesif the program should run continuously, step backward or go to
the next Move instruction etc.

The stop method can include a stopMode argument, specifying when the program should
stop (after current cycle, after completed instruction or immediately).

VB:
AController.Rapid.Start (RegainMode.Regain,
ExecutionMode.Continous)
AController.Rapid.Stop (StopMode.Instruction)
C#:
aController.Rapid.Start (RegainMode.Regain,
ExecutionMode.Continous) ;

aController.Rapid.Stop (StopMode. Instruction) ;

NOTE!

ﬂ It isalso possible to start a service routine or an ordinary routine without any parameters as
if it were aserviceroutine. See Task . CallRoutine and Task.CancelRoutine inthe FP
SDK Reference Help for detailed information aong with code samples.

RAPID execution change event
It is possible to subscribe to events that occur when a RAPID program starts to execute and
when it stops. Thisis done on the Rapid property of the controller object, likethis:
VB:
AddHandler AController.Rapid.ExecutionStatusChanged, AddressOf
UpdateUI
C#
aController.Rapid.ExecutionStatusChanged += new
ExecutionStatusChangedEventHandler (UpdateUI) ;
See Letting the user know that RAPID data has changed on page 224 for information and
code example on how write the event handlers needed to update the GUI due to a controller
event.

ResetProgramPointer method
TheResetProgramPointer method resets the program pointers of all tasks and sets them
to the main entry point of the respective task.

VB:

AController.Rapid.ResetProgramPointer ()

Continues on next page
162 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK
5.5.3.6. RAPID execution

Continued

C#:

aController.Rapid.ResetProgramPointer () ;

NOTE!

H It isalso possible to set the program pointer to a specified routine, row or position. See
Task.SetProgramPointer inthe FP SDK Reference for information aong with code
samples.

3HAC028083-001 Revision: D 163

5 Using the FlexPendant SDK

5.5.3.7. Modifying modules and programs

5.5.3.7. Modifying modules and programs

Overview
Using the Task object it is possible to |oad and save programs and individual modules. You
can also unload programs, get the position of the motion pointer (MP) and the program
pointer (PP) aswell as modify arobot position.

Load modules and programs
To load a module or program file you need the path to the file in the file system of the
controller. When thefileisloaded into memory the RapidLoadMode enumeration argument,
Add or Replace, specifies whether or not it should replace old modules or programs.

If the file extension is not a valid module (mod or sys) or program (pgf) extension an
ArgumentException isthrown.

VB:

Try
ATask.LoadProgramFromFile (APrgFileName, RapidLoadMode.Replace)
ATask.LoadModuleFromFile (AModFileName, RapidLoadMode.Add)

Catch ex As ArgumentException
Return

End Try

C#:

try

{
aTask.LoadProgramFromFile (aPrgFileName, RapidLoadMode.Replace) ;
aTask.LoadModuleFromFile (aModFileName, RapidLoadMode.Add) ;

}

catch (ArgumentException ex)

{

return;

Save and unload RAPID program
You can save a program using the saveProgramToFile method and unload it using the
DeleteProgram method. These methods save and unload all modulesin the task.

VB:

Dim TaskCol As Task() = AController.Rapid.GetTasks ()

Dim AnObject As Object

For Each AnObject in TaskCol
ATask = DirectCast (AnObject, Task)
ATask.ProgramName = ATask.Name
ATask.SaveProgramToFile (SaveDir)
ATask.DeleteProgram ()

Next

Continues on next page
164 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.3.7. Modifying modules and programs
Continued

C#:

Task[] taskCol = aController.Rapid.GetTasks() ;
foreach (Task aTask in taskCol)
{
aTask.PrograamName = aTask.Name;
aTask.SaveProgramToFile (saveDir) ;

aTask.DeleteProgram() ;

Save module

You can save amodule by using the Module . saveToFile method. Asargument you use a
path to the controller file system.

VB:

AModule.SaveToFile (AFilePath)
C#

aModule.SaveToFile (aFilePath) ;

ProgramPointer and MotionPointer
The Task.ProgramPointer property returns the current location of the program pointer
(module, routine and row number), i.e. where the program is currently executing. The same
functionality is available for motion pointer by using the Mot ionPointer property.

VB:

Dim APP As ProgramPointer = ATask.ProgramPointer
If Not APP = ProgramPointer.Empty Then
Dim AStartRow As Integer = APP.Start.Row

C#:

ProgramPointer pp = aTask.ProgramPointer;
if (pp != ProgramPointer.Empty)
int aStartRow = pp.Start.Row;

ModifyPosition method
Using the ModifyPosition method of the Task object you can modify the position of a
RobTarget instance in the currently loaded program. As arguments you supply amodule
Name aswell asaTextRange object. Thefirst RobTarget within thetext range specified by
the TextRange object will be changed using the current TCP of the active mechanical unit.

VB:

Me.ATask.ModifyPosition (AModule, ATextRange)
CH#:

this.ATask.ModifyPosition (aModule, aTextRange)
TIP!

Q Learn more about Task methods and propertiesin the FP SDK Reference.

3HAC028083-001 Revision: D 165

5 Using the FlexPendant SDK

5.5.4. 10 system domain

5.5.4. 10 system domain

Overview

A robot system uses input and output signalsto control processes. Signals can be of digital,
analog or group signal type. Such 10 signals are accessible using the SDK.

Signal changesin the robot system are often significant, and there are many scenarios where
end-users of the system need notification of signal changes.

Accessing signals

Accessing signalsisdonethroughthe control1ler object and itsproperty 10system, which
represents the 1O signal space in the robot controller.

To access asignal you need the system name of the signal. The object that is returned from
the 10System.GetSignal method isof type signal.

VB:
Dim Signall As Signal = AController.IOSystem.GetSignal ("signal
name")
C#:
Signal signall = aController.IOSystem.GetSignal ("signal name") ;

Thereturned signal object hasto be typecast to digital, analog or group signal. This
example shows ahow asignal of typepigitalSignal iscreated:

VB:

Dim DISig As DigitalSignal = DirectCast(Signall, DigitalSignal)
C#:

DigitalSignal diSig = (DigitalSignal) signall;

This example shows ahow an analogSignal iscreated:
VB:

Dim AISig As AnalogSignal = DirectCast (Signall, AnalogSignal)
C#:

AnalogSignal aiSig = (AnalogSignal) signall;

This example shows ahow aGroupSignal iscreated:
VB:

Dim GISig As GroupSignal = DirectCast (Signall, GroupSignal)
C#.

GroupSignal giSig = (GroupSignal) signall;

Continues on next page

166

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.4. 10 system domain

Continued

NOTE!
H Remember to call the Dispose method of the signal when it should no longer be used.

Getting signals using SignalFilter
Instead of just getting onesignal at atimeyou can useafilter and get asignal collection. Some
of the signalFilter flagsare mutually exclusive, eg. SignalFilter.Analog and
SignalFilter.Digital. Othersareinclusive e.g. SignalFilter.Digital and
SignalFilter.Input. You can combine the filter flagsusing the“|” character in C# and
the or operator in VB:

VB:
Dim ASigFilter As SignalFilter = SignalFilter.Digital Or
SignalFilter.Input
Dim Signals As SignalCollection =
AController.IOSystem.GetSignals (ASigFilter)
CH#:

SignalFilter aSigFilter = SignalFilter.Digital |
SignalFilter.Input;

SignalCollection signals =
aController.IOSystem.GetSignals (aSigFilter) ;

This piece of code iterates the signal collection and adds all signalsto arL.istview control.
Thelist has three columns displaying signal name, type and value:

VB:

For Each ASignal As Signal In Signals
Item = New ListViewItem(ASignal.Name)
Item.SubItems.Add (ASignal.Type.ToString())
Item.SubItems.Add (ASignal.Value.ToString())
Me.ListViewl.Items.Add (Item)

Next

C#:

foreach(Signal signal in signals)

{
item = new ListViewItem(signal.Name) ;
item.SubItems.Add(signal.Type.ToString()) ;
item.SubItems.Add(signal.Value.ToString()) ;
this.listViewl.Items.Add (item) ;

}

If the signal objects are no longer needed they should be disposed of:

VB:

For Each ASignal As Signal In Signals
ASignal .Dispose ()
Next

Continues on next page
3HAC028083-001 Revision: D 167

5 Using the FlexPendant SDK

5.5.4. 10 system domain

Continued

C#:
foreach(Signal signal in signals)

{

signal.Dispose() ;

Reading 10 signal values
These examples show how to read a digital and an analog signal.

Digital signal
This piece of code reads the digital signal DO1 and checks a checkbox if the signal value is
1 (ON):
VB:

Dim Sig As Signal = AController.IOSystem.GetSignal ("DO1")
Dim DigitalSig As DigitalSignal = DirectCast (Sig, DigitalSignal)
Dim val As Integer = DigitalSig.Get
If val = 1 Then
Me.CheckBoxl.Checked = True
EndIf

Signal sig = aController.IOSystem.GetSignal ("DO1") ;
DigitalSignal digitalSig = (DigitalSignal)sig;

int val = digitalSig.Get () ;

if (val == 1)

{

this.checkBoxl.Checked = true;

Analog signal
This piece of code reads the value of the analog signal AO1 and displaysit in atextbox:

VB:
Dim Sig As Signal = AController.IOSystem.GetSignal ("AOL1")
Dim AnalogSig As AnalogSignal = DirectCast (Sig, AnalogSignal)
Dim AnalogSigVal As Single = AnalogSig.Value
Me.TextBoxl.Text = AnalogSigVal.ToString()

C#:

Signal sig = aController.IOSystem.GetSignal ("AO1") ;
AnalogSignal analogSig = (AnalogSignal)sig;

float analogSigVal = analogSig.Value;
this.textBoxl.Text = analogSigVal.ToString() ;

Continues on next page
168 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.4. 10 system domain

Continued

Writing 10 signal values

In thisexample, new valuesfor the 10O signalsthat wereretrieved in the previous example are
written to the controller.

NOTE!

ﬂ In manual mode asignal value can be modified only if the Access Level of thesignal iSALL.
If not, the controller has to be in auto mode.

Digital signal
This piece of code changesthe value of adigital signal in the controller when the user checks/
unchecks a checkbox:
VB:

Private Sub CheckBoxl Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles CheckBoxl.Click

If Me.CheckBoxl.Checked Then
DigitalSig.Set ()
Else
DigitalSig.Reset ()
End If
End Sub

C#:
private void checkBoxl Click(object sender, EventArgs e)

{

if (this.checkBox1l.Checked)

{

digitalSig.Set () ;

}

else

{

digitalSig.Reset () ;

NOTE! You can also set the value using the value property.

Analog signal
This piece of code writes the value entered in atext box to the analog signal AOL. Thevalue
is converted from string to afloat before it iswritten to the controller:

VB:

Dim AnalogSigVal As Single = Convert.ToSingle (Me.TextBoxl.Text)
AnalogSig.Value = AnalogSigVal

Continues on next page

3HAC028083-001 Revision: D 169

5 Using the FlexPendant SDK

5.5.4. 10 system domain

Continued

CH.

float analogSigVal = Convert.ToSingle (this.textBoxl.Text) ;
analogSig.Value = analogSigval;

Listening to signal changes
Onceasignal object isavailableit is possible to add a subscription to its Changed event,
whichistriggered at asignal change such as changed value, changed simulated status or
changed signal quality.

Visual Basic
Friend WithEvents AISig As AnalogSignal
AddHandler AISig.Changed, AddressOf AISig Changed
Private Sub AISig Changed(sender As Object, e As
SignalChangeEventArgs) Handles AISig.Changed
End Sub
C#

this.aiSig.Changed +=new SignalChangeHandler (aiSig Changed) ;
NOTE! The event handler skeleton is auto generated using the Tab key twice after “+=" in
the above statement:

private void aiSig Changed(object sender, SignalChangeEventArgs e)

{}

Start and stop subscriptions
It is recommended that you activate and deactivate subscriptionsto the changed event if
these are not necessary throughout the lifetime of the application:

VB:

AddHandler AISig.Changed, AddressOf AISig Changed
RemoveHandler AISig.Changed, AddressOf AISig Changed

C#:

this.aiSig.Changed += new SignalChangeHandler (aiSig_Changed) ;
this.aiSig.Changed -= new SignalChangeHandler (aiSig Changed) ;

Continues on next page
170 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.4. 10 system domain

Continued

Avoiding threading conflicts
It isimportant to keep in mind that all controller events use their own threads, which are
different from the application GUI thread. This can cause problemsif you want to display
signal changes in the application GUI.

If an update of the user interface is not necessary, you do not need to take any specia action,
but can execute the event handler on the event thread. If, however, you need to show to the

user that the signal has changed you should use the 1nvoke method. It forces execution to the
window control thread and thus provides a solution to potential threading conflicts.

VB:
Me . Invoke (New ABB.Robotics.Controllers.IOSystemDomain.
SignalChangedEventHandler (AddressOf UpdateUI), New Object ()
{sender, e})
CH#:

this.Invoke (new ABB.Robotics.Controllers.IOSystemDomain.
SignalChangedEventHandler (this.UpdateUI), new Object[]
{sender, e});

See Controller events and threads on page 67 for further information.

Finding out the new value
The signalChangedEventArgs Object hasaNewSignalState property, which has
information about signal value, signal quality and whether the signal is simulated or not:

VB:
Private Sub UpdateUI (ByVal Sender As Object, ByVal e As
SignalChangedEventArgs)
Dim State As SignalState = e.NewSignalState
Dim val As Single
Val = State.Value
Me.TextBoxl.Text = Val.ToString()
End Sub
C#:

private void UpdateUI (object sender, SignalChangedEventArgs e)

{

SignalState state = e.NewSignalState;

float val = state.Value

this.textBoxl.Text = val.ToString()

NOTE!

Do not count on receiving an initial event when setting up the subscription. To get initial
information about the value of asignal you should read it using the value property.

I[E!I NOTE!

Make sure the subscription is removed before you dispose of the signal.

3HAC028083-001 Revision: D 171

5 Using the FlexPendant SDK

5.5.5. Event log domain

5.5.5. Event log domain

Overview

Event log messages may contain information about controller status, RAPID execution, the
running processes of the controller etc.

Using the SDK it is possible to either read messages in the queue or to use an event handler
that will receive a copy of each new log message. An event |og message contains queuetype,
event type, event time, event title and message.

Access the controller event log
You access the event log domain through the controller property EventLog.

VB:

Private Log As EventLog = AController.EventLog
C#:

private EventLog log = aController.EventLog;

Access event log categories
All event log messages are organized into categories. To search for an individual message you
have to know what category it belongsto. The enumeration type, CategoryType, definesall
available categories. You can get a category either by using the method Get category or by
using the categories property, which isan array of all available categories.
VB:

Dim Cat As EventLogCategory

Cat = Log.GetCategory (CategoryType.Program)
or

Cat = Log.Categories (4)
C#:

EventLogCategory cat;

cat = log.GetCategory (CategoryType.Program) ;
or

cat = log.GetCategory[4];

NOTE!
H The EventLogCategory should be disposed of when it isno longer used.

Access event log messages
To access amessage you use the Messages property of the category object. A collection
of messages is returned. The collection implementsthe 1Collection and IEnumerable
interfaces, which means you can use the common operations for collections. Accessisdone
either using an index or by iterating using foreach.
VB:

Dim Msg As EventLogMessage = Cat.Messages (1)

Continues on next page
172 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.5. Event log domain

Continued

or
Dim Msg As EventLogMessage

For Each Msg In Cat.Messages
Me.TextBoxl.Text = Msg.Title

Next Item

C#:
EventLogMessage msg = cat.Messages|[1];
or

foreach (EventLogMessage msg in cat.Messages)

{

this.textBoxl.Text = msg.Title;

MessageWritten event
It ispossible to add an event handler that is notified when a new messagesis written to the
controller event log. Thisis done by subscribing to the EventLog event MessageWritten.

The event argument is of type MessageWrittenEventArgs and has aMessage property,
which holds the latest event log message.
VB:

Private Sub Log MessageWritten(sender As Object, e As

MessageWrittenEventArgs) Handles Log.MessageWritten
Dim Msg As EventLogMessage = e.Message

End Sub

CH#:

private void log MessageWritten (object sender,
MessageWrittenEventArgs e)

EventLogMessage msg = e.Message;

NOTE!

ﬂ If the application user interface needsto be updated as aresult of the event, you must delegate
thisjob to the GUI thread using the 1nvoke method. See Invoke method on page 68 for
further information and code samples.

3HAC028083-001 Revision: D 173

5 Using the FlexPendant SDK

5.5.6. Motion domain

5.5.6. Motion domain

Overview
The Mot i onDoma in Namespace lets you access the mechanical units of the robot system.
Using aMot ionSystem object you can send jogging commands to an mechanical unit and
get or set the incremental jogging mode. Using aMechanicalUnit object you can get alot
of information about the mechanical units of the robot system.

You can also subscribe to changes of the mechanical unit, e.g. changed tool, work object,
coordinated system, motion mode or incremental step size.

MotionSystem object
You access the motion system by using athe controller property MotionSystem.

VB:

Private AMotionSystem As MotionSystem
AMotionSystem = AController.MotionSystem
C#

private MotionSystem aMotionSystem;

aMotionSystem = aController.MotionSystem;

Accessing Mechanical units
The mechanical units can be of different types, e.g. arobot with a TCP, amultiple axes
manipulator or asingle axis unit. Mechanical units are availablethrough the Mot ionSystem
object. If only the active mechanical unit is of interest you may use the method
GetActiveMechanicalUnit.
VB:
Dim AMechCol As MechanicalUnitCollection =
AController.MotionSystem.GetMechanicalUnits ()

Dim AMechUnit As MechanicalUnit =
AController.MotionSystem.GetActiveMechanicalUnit () ;

C#:
MechanicalUnitCollection aMechCol =
aController.MotionSystem.GetMechanicalUnits () ;

MechanicalUnit aMechUnit =
aController.MotionSystem.GetActiveMechanicalUnit () ;

Jogging
It is possible to jog the active mechanical unit using the setJoggingCmd method and the
cals goggingstart and JoggingStop. Depending on the selected Mot ionMode and
IncrementalMode different joints and speeds are configured.

VB:

AController.MotionSystem.JoggingStop ()
AMechUnit.MotionMode = MotionModeType.Linear

AController.MotionSystem.IncrementalMode =
IncrementalModeType.Small

AController.MotionSystem.SetJoggingCmd(-50, 50, 0)
AController.MotionSystem.JoggingStart ()
Continues on next page
174 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.6. Motion domain

Continued

C#:

aController.MotionSystem.JoggingStop () ;
aMechUnit .MotionMode = MotionModeType.Linear;

aController.MotionSystem.IncrementalMode =
IncrementalModeType.Small;

aController.MotionSystem.SetJoggingCmd (-50, 50, 0);
aController.MotionSystem.JoggingStart () ;

Mechanical unit properties and methods
There are numerous properties available for the mechanical unit, e.g. Name , Model,
NumberOfAxes, SerialNumber, CoordinateSystem, MotionMode, IsCalibrated
Tool and WorkObject €tC. Itisalso possibleto get the current position of amechanical unit
aSaRobTarget OF JointTarget

VB:

Dim ARobTarget As RobTarget =
AController.MotionSystem.GetActiveMechanicalUnit.GetPositio
n (CoordinateSystemType.World)

Dim AJointTarget As JointTarget =
AController.MotionSystem.ActiveMechanicalUnit.GetPosition/()

Ct:

RobTarget aRobTarget =
aController.MotionSystem.GetActiveMechanicalUnit.GetPositio
n (CoordinateSystemType.World) ;

JointTarget adointTarget =
aController.MotionSystem.ActiveMechanicalUnit.GetPosition ()

7

DataChanged event
By subscribing to the bataChanged event of theMechanicalUnit object, you will be
notified when achange of tool, work object, coordinated system, motion mode or incremental
step size occurs.

VB:

AddHandler AMechUnit.DataChanged, AddressOf AMech DataChanged

Private Sub AMech DataChanged(sender As Object, e As
MechanicalUnitDataEventArgs)

Select e.Reason
Case MechanicalUnitDataChangeReason.Tool
ChangeOfTool (DirectCast (sender, MechanicalUnit))
Case MechanicalUnitDataChangeReason.WorkObject
End Select
End Sub

Continues on next page

3HAC028083-001 Revision: D 175

5 Using the FlexPendant SDK

5.5.6. Motion domain
Continued

CH.

aMechUnit .DataChanged += new
MechanicalUnitDataEventHandler (aMech DataChanged) ;

private void aMech DataChanged(object sender,
MechanicalUnitDataEventArgs e) {

switch (e.Reason)
case MechanicalUnitDataChangeReason.Tool:
ChangeOfTool ((MechanicalUnit) sender)

case MechanicalUnitDataChangeReason.WorkObject:

TIP!

Q Read more about the classes, methods and properties available in the Mot i onDomain in the
FP SDK Reference help.

176 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.7. File system domain

5.5.7. File system domain

Overview

Using the FlexPendant SDK FileSystemDomain you can create, save, load, rename and
delete files on the controller. You can also create and delete directories.

Accessing files and directories
You access the file system domain through the controller object property FileSystem.
VB:

Private AFileSystem As FileSystem = AController.FileSystem
CH:

FileSystem aFileSystem = aController.FileSystem;

Controller and FlexPendant file system
You can find and set the remote directory on the controller and the local directory on the
FlexPendant device by using the RemoteDirectory and LocalDirectory properties.
VB:

Dim RemoteDir As String = AController.FileSystem.RemoteDirectory

Dim LocalDir As String = AController.FileSystem.LocalDirectory
C#:

string remoteDir = aController.FileSystem.RemoteDirectory;

string localDir = aController.FileSystem.LocalDirectory;

Loading controller files
You can load afile from the controller to the FlexPendant using the cetFile method. An
exception is thrown if the operation fails. The arguments are complete paths including
filenames.
VB:

AController.FileSystem.FileSystem.GetFile (RemoteFilePath,
LocalFilePath)

Ct:

aController.FileSystem.GetFile (remoteFilePath, localFilePath) ;

Saving files
You can save afileto the controller file system by using the put Fi1e method. An exception
isthrown if the operation fails. The arguments are complete paths including filenames.

VB:

AController.FileSystem.PutFile (LocalFilePath, RemoteFilePath)
CH#:

aController.FileSystem.PutFile(localFilePath, remoteFilePath) ;

Continues on next page

3HAC028083-001 Revision: D 177

5 Using the FlexPendant SDK

5.5.7. File system domain

Continued

Getting multiple files and directories
TheFileSystem class hasamethod called GetFilesAndDirectories. It can be used to
retrieve an array of ControllerFileSystemInfo objectswith information about
individual filesand directories. The controllerFileSystemInfo object can then be cast
to either acontrollerFileInfo Object or aControllerDirectoryInfo object.

This example uses search pattern to limit the search.
VB:

Dim AnArray As ControllerFileSystemInfo ()
Dim info As ControllerFileSystemInfo

AnArray = AController.FileSystem.GetFilesAndDirectories ("search
pattern")

Dim I As Integer
For I = 0 To array.Length -1
info = AnArray(I)

ControllerFileSystemInfo[] anArray;
ControllerFileSystemInfo info;

anArray = aController.FileSystem.GetFilesAndDirectories ("search
pattern") ;

for (int i=0;i<anArray.Length;i++) {
info = anArrayl[i];

Using search patterns
Asseenin the example above, you can use search patternsto locate files and directories using
theGetFilesAndDirectories method. The matching process uses the Wildcard pattern
matching of Visual Studio. Thisisabrief summary:

Character in pattern Matches in string

? Any single character
* Zero or more characters
Any single digit (0-9)
[charlist] Any single character in charlist
['charlist] Any single character not in charlist
TIP!
Q Read more about the classes, methods and properties availablein the FileSystembomain

in the FP SDK Reference help.

178 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

5 Using the FlexPendant SDK

5.5.8. System info domain

5.5.8. System info domain

Overview

The systemInfoDomain providesinformation about the activerobot system. Thisismainly
done through the static methods and properties of the SystemInfo class:

ABB Robotics IRCS FlexPendant SDK
SystemInfo Class
Namespaces > ABB.Robotics.Controllers.SystemInfoDomain > Systemlnfo Visual Basic g

This class represents the SystemInfo domain of a Robot controller,
= Syntax

C# Visual Basic

Public HotInheritable Class SystemInfo

- Members

All Members Constructors Methods Properties Fields Event
W Public W Instance v Declarad

W Protected v Static W Inherited

Icon Member Description

=S AdditionalOptions Returns the installed additional options of the active system.

If there are no additional options null is returned.

* S IsOptionPresent{String) Checks if an option is part of the current system of the
controller. The method searches System.xml in the SYSTEN
directory of the controller for a specified optionMame., It will
find both system options (e.g. "617-1 FlexPendant
Interface") and additional options (e.q.
"ROBOTWAREPLASTICS").

=S KeyString Returns the key string of the active system.

=S ReleasePath Returns the path in the controller file system to the release
(ROBOTWARE) directory of the active system.

=S RobotWare¥Yersion Returns the RobotWare version that the active system uses,

=S SerialNumber Returns the serial number of the active system.

=S SystemName Returns the name of the active system.

=S SystemOptions Returns the installed system options of the active system.

=S SystemPath Returns the path in the controller file system to the system

directory of the active system.

58.1_1

SystemlInfo class

Thefunctionality of the systemInfobomain isaccessed by calling the static methods of the
SystemInfo class.Thisishow to retrieve the path in the controller file system to the release
(ROBOTWARE) directory of the active system.

Example:

string rWDir =
ABB.Robotics.Controllers.SystemInfoDomain.SystemInfo.Releas
ePath

Likewise, the path to the active system directory can be retrieved:

string sysDir =
ABB.Robotics.Controllers.SystemInfoDomain.SystemInfo.System
Path

Continues on next page

3HAC028083-001 Revision: D 179

5 Using the FlexPendant SDK

5.5.8. System info domain

Continued

System options

Using the systemInfo.SystemOptions property you can retrieve the system options of
the currently active robot system. Theresult isan array of SystemOption objects. If you list
theName property of these objectsyou will get the sameresult as shown in the SystemBuilder
of RobotSudio, e.g:

Options:

R Contral module key
RobotWare O and Englizh
G44-8 Swedish

- G455 Chinese
G03-1 Absolute Accuracy
611-1 Path Recowvery
E16-1 PC Interface
£17-1 FlexPendant Interface
623-1 Muttitazking
875-1 DieCast

558 2

You can retrieve sub options of a system option by using the SystemOption. SubOptions
property.

Additional options

Using the systemInfo.AdditionalOptions property you can find out which additional
options are installed in the robot system. The result isan array of AdditionalOption
objects. TheadditionalOption.Path property returns the path to the installation
directory of the additional option.

Thefollowing additionalOption properties are available:

e KeyString
* Name

s Path

* Type

* Versioninfo

NOTE!

You can find out more about the systemInfobDomain inthe FP SDK Reference, which also
provides you with code examples.

180

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

5.5.8. System info domain

6 Robust FlexPendant applications

3HAC028083-001 Revision: D 181

6 Robust FlexPendant applications

6.1. Introduction

6.1. Introduction

Overview

Developing an application for a device with limited resources, such as memory and process
power, can be quite demanding. Moreover, to have an application executing around the clock
will reveal weaknessesin design and implementation that may cause slow performance or
FlexPendant hangings.

At worst, your application will drain the FlexPendant of all memory during production, and
cause an out-of-memory crash. It can even slow down the performance of the robot controller
due to excessive use of controller resources.

This chapter describes how to design and implement reliable and well performing
applications for the FlexPendant. It presents some good practices to utilize, as well as some
pitfalls that should be avoided.

Technical overview of the FlexPendant device

The FlexPendant device consists of both hardware and software and is a complete computer
in itself, with its own memory, file system, operating system and processor.

Itisanintegral part of IRC5, connected to the controller by an integrated cable and connector.
Using the hot plug button option, however, you can disconnect the FlexPendant in automatic
mode and continue running without it.

Therearewaysto restart the FlexPendant without having to restart the controller (See Restart
the FlexPendant on page 49). At a FlexPendant restart the assemblies and resources of
FlexPendant SDK applications are downloaded to the FlexPendant file system from the robot
controller.

FlexPendant applications run on Windows CE, a scalable embedded operating system, and
the .NET Compact Framework, which is Microsoft’s lightweight version of the .NET
Framework, intended for small devices.

Thisisthe size of the FlexPendant touch screen:

FlexPendant screen Size
Total display 640 * 480 pixels
FP SDK Application display 640 * 390 pixels

The FlexPendant uses these kinds of memory:

Memory type Function

Flash - 16 MB Stores the FlexPendant standard software, the Windows
CE operating system in compressed format and the
registry.

RAM - 64 MB At boot time the compressed image is copied to RAM. All

execution of code uses RAM.

E2PROM Stores touch screen calibration values, joystick calibration
values etc. Only used internally.

How large can a custom application be?

You may wonder about the maximum size of your custom application. There is no exact
answer to that question, as there are many variables to take into account. For arough
estimation the table below can be used. Asyou see, the operating system uses about 8 MB

Continues on next page

182

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.1. Introduction
Continued

and the ABB base software about 25 MB. Thismeansthat half of the available RAM memory
is already used once the FlexPendant has started up. The standard applications of the ABB
menu and the FlexPendant SDK applicationswill al share the memory that isleft. Asarule
of thumb, about 20 MB should be available for custom applications.

FlexPendant memory resources

RAM 64 MB
Operating system 8 MB
ABB base software 25 MB
Custom applications ~20 MB

Thisis some advice to help you make sure your application does not exceed the memory
limitation:
1. Do not alow more than ONE instance by setting the TpsviewType parameter of the
TpsView altributeto static. See Application type on page 56 for detailed
information.

2. Avoid excessive use of images. Do not use bigger images than necessary. Check the
size of the images your application will use.

3. Usefpemd “-memShow” to check the amount of memory in use when your
application is active. Open a couple of Program Editors and start RAPID execution.
See Discover memory leaks on page 186 for further information.

4. Avoid static dataand methods.
5. Release memory for objects that are not used by calling their bispose method.

3HAC028083-001 Revision: D 183

6 Robust FlexPendant applications

6.2. Memory management

6.2. Memory management

Garbage collection and Dispose

An important feature of the .NET runtime environment is the garbage collector, which
reclaims not referenced memory from the managed heap. Generally, this means that the
programmer should not have to free memory which has been allocated by the use of new. A
drawback, when memory is limited, is that the execution of the garbage collector is non-
deterministic. There is no way of knowing exactly when garbage collection will be
performed.

The 1Disposable interface, however, represents away to obtain deterministic deallocation
of resources. You should therefore call Dispose () on all disposable object when they are
no longer needed, as this will free up valuable resources as soon as possible.

Moreover, objects used to access robot controller resources, must be released by the custom
application by an explicit call to their bispose method. SignalBindingSource and
RapidDataBindingSouce objects, aswell asall other objects located in the components
paneof the VS Designer must also be explicitly disposed of, or elseyour application will have
a permanent memory leak.

NOTE!

The creator of an object implementing the 1pisposable interfaceisresponsible for its
lifetime and for calling bispose.

TIP!

You may wonder why the .NET garbage collector cannot ensure that all objects no longer
referenced are finally destroyed? The FlexPendant devel opment team have tried hard to
remove any remaining objects of an SDK application at application shut down, for example
implemented finalizers for the TpsControl, RapidbataBindingSouce and
SignalBindingSource classes. Dueto Microsoft’s implementation, however, the NET

Continues on next page

184

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.2. Memory management
Continued

runtime nonethel ess refuses to destroy these objects unless their bispose method is called.
Thisbehavior isunder debate. If you are curiousto find out more about this, these community
articles may be of interest.

Dispose, Finalization, and Resource M anagement (Joe Duffy):

http://www.bluebytesoftware.com/blog/Permal ink.aspx ?gui d=88e62cdf-5919-4ac7-bc33-
20c068e53%¢e

Garbage Collection: Automatic Memory Management in the Microsoft .NET
Framework (MSDN-magazine): ms-hel p://ms.msdngtr.v80.en/ms.msdn.v80/dnmag00/
html/GCI.htm

Finalization - cbrumme's WebL og: http://blogs.msdn.com/cbrumme/archive/2004/02/20/
77460.aspx

Application Framework usage - ITpsViewSetup

The application framework TAF, which hosts the controls that make up a FlexPendant
application, offers some mechanisms that should be used by client applications. See
Under standing FlexPendant application life cycle on page 52 to learn more about TAF.

Your application view class should implement 1TpsviewSetup and
ITpsViewActivation. SeelTpsViewSetup and I TpsViewActivation on page 58 for general
information on these interfaces and Application Framework usage - | TpsViewActivation on
page 190 to learn how to use ITpsViewActivation to improve performance.

The I1TpsviewSetup interface hastwo methods: Install and Uninstall. Installis
called when the view is being created, right after the constructor has been executed.

Uninstall iscaled whentheclient view isclosed down. After tninstall hasbeen called,
TAF will also call thepispose method of the view class. These methods thus offer the last
opportunity for you to clean up and release memory and system resources held by the custom
application.

NOTE!

The user should close down the application by using the close button, [x], in the upper right
corner of the display, in the same way asthe Program Data or other standard applications are
closed. Never implement a close button on the first view. When the application is closed the
correct way, first Deactivate, thenuninstall andfinally bispose will becalled by TAF.

How to program the Dispose method - example

When starting anew FlexPendant project in Visual Studio askeleton for thepi spose method
isauto generated. You should useit to add code for cleaning up as shown by the figure below:

Continues on next page

3HAC028083-001 Revision: D 185

6 Robust FlexPendant applications

6.2. Memory management

Continued

/4 Releases all resources used by this instance.
A4 = sunmar v
A4 <param name="disposing"s<hrtrue</hrreleases both wanaged and unmanaged resources (called by Dispos
Fid <bzfalse</brreleases only ummahaged resources (called by finalizer).</pars
protected override void Dispose (bool disposing
{
if (!this.Islisposed)
i
if (disposing == true)
{
J*TODO: Dispose of all CAPI ohjects.
* Remember to rewowve any subscriptions first.*/
if | _eontroller !'= null)
i
_controller.OperatinglodeChanged -= new ABB.Rohotics.Controllers.OperatingliodeChangedl
_eontroller.Dispose();
_eontroller = null;
i

S*TODO: Add code to dispose of all GOI cowponents that have not been added
*to the controls collections like this: this.Controls.Add(this.coxboBoxl) .
* [These will he disposed of by the base class.)?*/

if (this.alphaPadl !'= null)

i

this.alphaPadl.Dispose () ;!
thi=z.alphaPadl = null:

}

JFTODO: Add code to dispose of 3ystem.Drawing objects such as Bitwap, Fen, Brush ecc®/
i
i
/*hlways call Dispose of base class*/
base.Dispose (disposing) ;
i

721

NOTE!
Error handling should be added to the pi spose method (left out in the figure).

NOTE!

Ensure you have unsubscribed to any events from the robot controller before you call the
Dispose method of a CAPI object. If it hasbeen doneinthe beactivate method, whichis
what is usually recommended, you should not do it again in the bispose method. Also
ensure you do not try to access an object after it has been disposed.

Discover memory leaks

When your application interacts with the robot controller, unmanaged objects are created
under the hood. If you forget to call Dispose on such objects there will be memory leaks.
You are recommended to test the memory consumption of your application. Use a controller
console window on your PC and the command fpcmd_enable console output 3t0
enable printouts. Then use the " -memshow" command with a period argument that produces
a printout every 500 second for example, like this:

-> period 500, fpecmd, “-memShow”

Resullt:

task spawned: id = Oxba7f3b8, name = t2value = 195556280 = Oxba7f3b8-> [fp]: Available
memory: 20881408 (tot 40394752), disk: 737148 (tot 1728512) load: 54(261955)[fp]:

Test all functions of your application with several other FlexPendant viewsvisiblein the task

bar and possibly one or several RAPID tasks executing. Observe how your implementation
affects memory. The load component shows current memory load on the FlexPendant

Continues on next page

186

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.2. Memory management
Continued

expressed in percentage and the figures in the parenthesis are number of ms after start-up.
Close your application and make sure the same amount of memory is available as before
opening it.

The procedure below shows yet another way of checking that your application cleans up
correctly:

Step Action

1 Log out from the FlexPendant by pressing Log Off on the ABB menu.

2 In the controller console window write fpcmd_enable console output.
3 Write fpcmd "-a".

4 For each cpp class check Number of instances. It shall be 0, except for

AdaptController (1) and AdaptEvent Impl (1).

5 If the previous step shows that there are unmanaged objects left, you need to
search your code for missing Dispose calls.

NOTE!
H You must use the real FlexPendant device when verifying memory consumption and looking
for memory leaksin your code.

3HAC028083-001 Revision: D 187

6 Robust FlexPendant applications

6.3. Performance

6.3. Performance

About performance

v

A FlexPendant application cannot meet hard real time demands. There should however be no
difference in performance between a FlexPendant SDK application and the standard
applications of the device. If your application is slow, the advicein this section will be useful.

TIP!
Do not get overwhelmed by the number of restrictions presented in this section. Most of the

time you will not notice any differenceif you decideto neglect afew of them. Yet - it isgood
to know what can be done whenever performance does become an issue.

Less code means faster code

A genera piece of advice (maybe too obvious arecommendation) isthat less code normally
means faster code. Remember that methods that are executed frequently, such as onpaint,
event handlers etc. must be efficient. Everything that can be computed once and stored for
future use should be computed only once.

Fewer controller accesses means faster code

The best thing you can do to improve performanceis probably to ensure that you do not
access controller functionality more often than necessary. To achieve this you need to
understand CAPI, the SDK class libraries used to access robot controller functionality.

Itisvery easy to use a property of aclass and not realize that an access to the controller is
actually made. A general recommendation isto try to use subscriptionsto controller
information (events) where applicable, and let your application store updated values instead
of performing numerous reading operations toward the same controller resource.

TIP!

You can easily get an estimate of the number of controller accesses your application performs
in different user scenarios by using arobot controller console. The console command
robdisp watch 2 monitorsand printscontroller accesses made by the FlexPendant to the
console. Press abutton of your application for example, and study how the FlexPendant and
the controller communicate in response to this action. Enter the command robdisp watch

Continues on next page

188

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.3. Performance

Continued

0 to turn this service off. (The monitor service slows down the response time of your
application, due to printing to the console. So don't get worried if your application seems
unusually slow!)

NOTE!

Keep in mind that an excessive number of controller accesses will slow down the
performance of your application. At worst, it may even affect the performance of the robot
controller.

NOTE!

Excessive use of subscriptions may also be a problem. If your application has to handle a
continuous load of Rapid data and 1/0O signal events, and your event handlers need to
manipul ate the data before presenting it, GUI interaction may become slow. As arule of
thumb, do not estimate more than 20 events/sec. and keep the event handlers thin.

Fewer objects means faster code

¥

Fewer objects means better performance. If you know that an object will be used again, create
it once and keep areference. Also, try not to create objects that may not be used.

Reusing existing objectsinstead of creating new onesisespecially important when executing
the same code repeatedly, e.g. in tight loops.

This example shows how this should be done:

object o = new object();
for (int 1 = 0; 1 < 100000; i++)

.}

TIP!

Do not create several controller objects, but reuse it by sending it as a parameter when
creating anew view, or share it between classes as a public property.

Transferring files

Transferring files between the device and the robot controller takes time and also occupies
storage memory on the device. Write efficient and fault-tolerant code if it must be done.

Continues on next page

3HAC028083-001 Revision: D 189

6 Robust FlexPendant applications

6.3. Performance

Continued

Application Framework usage - ITpsViewActivation

The ITpsviewActivation interfaceisused by TAF to hideand display your application. It
has two methods: Activate and Deactivate. Theformeriscalled by TAF at the creation
of theclient view, right after the ITpsviewSetup. Install method has been executed. The
latter iscalled at shut down of theclient view, right beforethe ITpsviewSetup.Uninstall
method is executed.

Theinterfaceis also used when the user selects another application on the task bar. TAF then
cals ITpsViewActivation.Deactivate (but not ITpsviewSetup.Uninstall).
Likewise, when the application regains focus viathe task bar icon, TAF calls
ITpsViewActivation.Activate (but NOtITpsViewSetup.Install).

It is recommended to enable and disable any subscriptionsto controller eventsin the
ITpsViewActivation methods, as valuable resources should not be held when the
application is not used. Note that current values should be read before enabling the
subscription.

For the same reason, any timers can be activated and deactivated in these methods. That way
timers will not run when other applications are in focus, thus saving processor power.

Excessive string manipulation is costly

Thestring classisan immutabletype, i.e. once astring iscreated its val ue cannot be changed.
This means that string methods that seem to modify the string in fact create new strings.
Look at athis string concatenation example;

string name = "192.168.126.1";

string str = "/" + name + "/" + "RAPID";
Four stringswill be appended to one resulting string. No lessthan four additional stringswill
be created and allocated when the right hand side of the assignment is executed. A better idea
istousethe stringBuilder classor string.Format (which usesthe stringBuilder
internally):

string str = string.Format ("/{0}/RAPID", name) ;
Asarule, if you are going to do only one string operation on a particular string, you can use

the appropriate string method. It iswhen you start doing numerous string operations that you
need to use stringBuilder Of string.Format .

Continues on next page

190

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.3. Performance

Continued

Avoid Control.Refresh
Control .Refresh () must only be used when animmediate update of the GUI isabsol utely
required. Refresh makesadirect call totheonpaint method of the Control, and istherefore
much more costly than control.Invalidate ().
Several callsto tnvalidate will not mean several callsto onpaint. When the GUI thread
processesthe invalidate messageall queued up messages of the samecontrol arehandled
at the same time, thus saving process power.

NOTE!
H In the 2.0 version of .NET CF there are new methods to be used for GUI controls inheriting
System.Windows.Forms.Control:
* SuspendLayout ()
* ResumeLayout ()
* BeginUpdate ()
* EndUpdate ()
These methods are used to control GUI updates while modifying aGUI element. The control

will not be drawn when suspendLayout has been called, for example, but is blocked until
ResumeLayout iscalled.

Avoid boxing and unboxing
A common reason for slow codeis unintentional boxing and unboxing. To avoid this, you
need to be aware of the difference between reference and value types. Reference types (the
keyword classis used) are always allocated on the heap, while value types are allocated on
the stack; unless embedded into areference type.

Boxing is the operation where a value type, is converted to areference type. It is done
automatically when areferenceto avaluetypeisrequired. Then anew object will be created,
allocated on the heap with a copy of the original data.

Here are some examples of not so obvious boxing/unboxing:

» Using the foreach statement on an array that contains value types will cause the
values to be boxed and unboxed.

» Accessing values of a Hashtable with avalue type key, will cause the key valueto be
boxed when the table is accessed.

» UsinganArrayList with valuetypes; thisshould be avoided - usetyped arraysinstead.
Typed arrays are al so better because of type safety, as type checking can be performed
at compile time.

» Thefollowing methods should be overridden in order to avoid unnecessary boxing/
unboxing: Equals(), GetHashCode().

Continues on next page
3HAC028083-001 Revision: D 191

6 Robust FlexPendant applications

6.3. Performance

Continued

Foreach
Using a for loop is often faster than using the foreach statement, especialy if alarge
number of iterations are made. The reason is that the J T compiler (see About terms and
acronyms on page 18) is prohibited to optimize the code execution when foreach is used.

However, foreach makes the code more readable and is therefore a better option when
performanceis not crucial.

Reflection is performance demanding
Reflection isamechanism used to read the meta data of an assembly. The typeof operator,
for example, uses reflection to determine the type of an object. Another exampleis
object.ToString (), which also uses reflection.

Asreflection is very performance demanding you are recommended to override or to avoid
the Tostring () method for reference types.

Efficiently parsing XIm
XmlTextReader and XmlDocument can both be used to parse xml data. The
xmlTextReader iSthe preferred option in most cases; it is more light weight (less memory
footprint) and alot faster toinstantiate. Thelimitation of the xm1TextReader isthat forward
only reading is possible.
The xml structure may also have an impact on performance. If xml datais organized in non-
flat way, search operationswill befaster, asalarge portion of the information can be skipped.
Thisisachieved by using categories and sub categories.

192 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.4. Reliability

6.4. Reliability

Overview
This section presentsinformation on how to make the application robust. The most important
mechanism related to robustness and reliability is error handling. Avoiding thread conflicts
and memory leaks are however also important means of improving reliability.

Error handling in .NET applications
As already pointed out in this manual, Microsoft recommends that exceptions are used to
discover and report anomalitiesin .NET applications. If you are not sure about when to use
exceptions or how to do the implementation you should read Exception handling on page 72
to understand the general idea before moving on to the FlexPendant specific information of
this section.

Continues on next page

3HAC028083-001 Revision: D 193

6 Robust FlexPendant applications

6.4. Reliability

Continued

SDK exception classes

The ABB. Robot ics namespace provides quite afew exception classes, used by the
FlexPendant SDK and SDK applications. In addition, the SDK also uses system exceptions
and may throw a System.ArgumentException object for example.

Whenever an exception isthrown, your application must catch it and take proper action. You
catch an exception by using the try-catch (-finally) statements. See Exception
handling on page 72 for further information about how to implement these statements.

Asyou seein thefigure below GeneralException derives from BaseException, which
inturn derives from system.ApplicationException of the NET Framework class
library.

ApplicationException isthrown by user programs, such asthe FlexPendant SDK, not by
the Common Language Runtime (CLR, see Definitions on page 18). It therefore represents a
way to differentiate between exceptions defined by applications versus exceptions defined by
the system.

A8 Robotics IRCS FlexPendant SO
GeneralException Class

Common exceptions to be handled by caller,
For a list of all members of this type, see GeneralException Members,

System.Object
Systerm. Exception
System. ApplicationException
ABB.Robotics BaseException
ABB.Robotics.GeneralException

Derived types

public class GeneralException : EBaseException

Thread Safety
Public static (Shared in Yisual Basic) members of this type are safe for multithreaded
operations, Instance members are not guaranteed to be thread-safe,
Requirements
Mamespace: ABB.Robotics
Assembly: ABB . Robotics {in ABB.Robotics.dll)

See Also

GeneralException Members | ABB.Robotics Mamespace

741

Asyou see there are derived types under GeneralException. Thesetypesarelisted and
briéfly described below:

Continues on next page

194

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

ABE Robotics IRCE FlexPendant SO
ABB.Robotics Namespace

Marnespace hierarchy

Classes

Class

BaseException

FPBase
GeneralException
InternalException
MasterRejectException

ModeRejectException

ModPosException

RejectException

ResourceHeldException

SysfailRejectException

UasRejectException

742

6.4. Reliability

Continued

Description

ABB . Robotics exception base class,
FlexPendant object base

Comrnon exceptions to be handled by caller.
Internal error exception.

The user does not have required rmastership
for the operation,

The operation is not allowed in current
operation mode. For exarple, a remote user
may not be allowed to perform the operation
in manual mode,

The rodify postion operation failed. The
failing task name and reason are available.

Operation rejected by the controller safety
access restriction mechanism,

Requested resource is held by someone else.
The operation is not allowed in SysFail.

The user is denied access to the operation,

Continues on next page

3HAC028083-001 Revision: D

195

6 Robust FlexPendant applications

6.4. Reliability

Continued

v

Thread affinity

TIP!

L earn more about the FlexPendant SDK exception classes by using the FlexPendant SDK
Reference Documentation Help.

You should be aware that execution of code modifying the user interface, has to be done on
the thread that created the GUI control, the so called GUI thread.

An application initially starts with asingle thread. Normally all user interface controls are
created by thisthread. Windows CE user interface objects are characterized by thread affinity,
which means that they are closely coupled with the thread that created them.

Interacting with the message queue of an interface control from a thread other then the
creating thread may cause data corruption or other errors. Thisrestriction appliesto thethread
pool aswell asto explicitly created threads.

When executing on a secondary thread, a so called worker thread, an update of the user
interface must therefore be done very carefully, enforcing aswitch to the GUI thread. Thisis
in fact a very common scenario, as controller events use their own threads and should often
be communicated to the end user by a GUI update.

NOTE!

Thread affinity isespecially relevant asfor robot controller events, asthese by default execute
on a background thread. See GUI and controller event threads in conflict on page 68 and
Invoke method on page 68 for further information along with code samples. The following
section also deals with the same issue.

Invoke

Memory leaks

In order to execute a method on the GUI thread control . Invoke can be used. It should
however be done carefully, as it makes a synchronous call to the specified event handler,
which blocks execution until the GUI thread has finished executing the method. All
concurrent callsto Invoke will be queued and executed in their queue order by the GUI
thread. This could easily make the GUI less responsive.

There is now an asynchronous version of Tnvoke, which should be used instead whenever
possible. TpsControl .BeginInvoke isanon blocking method, which lets the worker
thread continue execution instead of waiting for the GUI thread to have processed the method
Remember that 1nvoke aswell as Beginlnvoke should only be used on code that modifies
the user interface. You should keep the execution on the background thread as long as
possible.

NOTE!

If your code tries to access a GUI control from a background thread the .NET common
language runtime will throw a system.NotSupportedException.

As FlexPendant applications are supposed to run without interruption, no memory leaks can
be permitted. It isyour responsibility to properly clean up and call Dispose. Takeyour time
studying How to avoid memory leaks on page 93, Memory management on page 184 and

Continues on next page

196

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

6 Robust FlexPendant applications

6.4. Reliability
Continued

Technical overview of the FlexPendant device on page 182.

Utilizing multi-threading

Threading enables your program to perform concurrent processing so you can do more than
one operation at atime. For example, you can use threading to monitor input from the user,
and perform background tasks simultaneously. The System. Threading hamespace
provides classes and interfaces which enable you to easily perform tasks such as creating and
starting new threads, synchronizing multiple threads, suspending threads and aborting
threads.

The classes Thread and ThreadPool can be used to execute methods on aworker thread.
Use ThreadPool for temporary usage of a background thread when atask is meant to
terminate fairly soon. Use Thread only for background work that will persist, e.g. athread
that fetches data from the controller continuously.

There are two timersavailablein .NET CF that can be used to execute methods periodically
at specified intervals. There is however, an important difference between these. The
System.Threading. Timer executesthe method on a background thread, while the
System.Windows.Forms.Timer executesthe method on the Ul thread.

NOTE!

Use sSystem.Threading.Timer if you want to poll datafrom the controller in order to
reduce the load on the GUI thread.

Lock statement

The 1ock statement isused in multi-threaded applications to make sure accessto apart of the
code is made by one thread exclusively. If a second thread attempts to lock code which has
aready been locked by another thread, it must wait until the lock is released.

Remember to limit the code segment that you want to control, i.e. only lock what is absol utely
necessary to make the code thread safe:

Object thisLock = new Object () ;
lock (thisLock)

{

// Critical code section

}

Deadlocks must be avoided. They can occur if more than one lock is used. If more than one
lock object must be held, they must always be locked and rel eased in the same order,
wherever they are used.

Continues on next page

3HAC028083-001 Revision: D 197

6 Robust FlexPendant applications

6.4. Reliability

Continued

i
®

NOTE!

If adeadlock occurs, the FlexPendant system will hang. If this happens you should attach the
deviceto the Visual Studio debugger and study the call stack of the threadsin the Threads
window.

CAUTION!

Using the 1ock statement in combination with acall to Invoke isapotential causeto
deadlock situations, since Invoke isablocking cal. In short, be careful if you use locks!

Multicast delegates

If amulticast del egateis executed, the execution of the delegatesisterminated if an exception
isthrown by one of the delegates. It means that the remaining delegatesin the list will not be
executed if an exception isthrown. This situation can cause erratic behavior, which may be
tricky to trace and debug.

Therefore, if you have numerous del egates which are to execute as the result of the same
event, you may want to implement the Get InvocationList method. It retrievesalist with
acopy of the delegates. Thislist can be iterated and each delegate called directly:

private wvoid OnChange ()
{
DIelegate[] evtHandlers = null;

lock (_lockobd)
{

if (_changeHandler != nullj
evtHandlers = changeHandler.GetInvocationList ()
i
if j(evtHandlers '= null)

{
for (int i = 0; i < evtHandlers.Length; i++)
{
Delegate d = evtHandlers([i]:
Ly
{
[[EventHandler)d) (this, new Eventlrgs()]):
i
catch (3ystem.Exception e)
{
ABE.Robotics.Diagnostics.Debug., Assert (false,
string.Format ("Exception in OnChange: {0}", e.To3tring())):
ABE.FRobotics.Diagnostics., Trace.Writeline
[string.Format ("Exception in OnChange: {0}", e.To3tring())):

198

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7 Using the PC SDK

6.4. Reliability

3HAC028083-001 Revision: D

199

7 Using the PC SDK

7.1. Controller API

7.1. Controller API

PC SDK domains

The PC SDK class libraries are organized in the following domains:

e Controllers

¢ ConfigurationDomain
¢ Discovery

¢ EventLogDomain

¢ FileSystemDomain

¢ Hosting
¢ |OSystemDomain
¢ Messaging

¢ MotionDomain
¢ RapidDomain
e UserAuthorizationManagement

CAPIl illustration

The classes used to access robot controller functionality together make up the Controller API

(CAPI). Part of the CAPI object model isillustrated below:

% 08y [—® Sisal(s) |

% Rapid |

I—l- Taskis) |

= hloh |:|:|Hr.-de1:||.l Madkliz)

—{ hoin|

BT

e

L I-'l:lts'.'_‘tmﬂ

s Coutroll erFilesy genlufo’ |

b Blechanical Uil | i v
s

Rapedats| sl

— ConlrollerFilelnfo |

—— Cotrolle Systenlifs |

8221

Continues on next page

200

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.1. Controller API

Continued

PC SDK Reference
This User’s Guide covers some of the PC SDK functionality, but is by no means a complete
guide to the PC SDK.
The PC SDK Reference isthe compl ete reference of the PC SDK classlibraries. It should be
your companion while programming.

It can be launched from Windows Start menu by pointing at Programs - ABB Industrial IT
- Robotics I T - Robot Application Builder 5.xx and selecting PC SDK Reference.

3HAC028083-001 Revision: D 201

7 Using the PC SDK

7.2. Create a simple PC SDK application

7.2. Create a simple PC SDK application

Overview

®

Set up the project

To get started programming let us create a simple application that will display all virtual and
real controllers on the network. It should then be possible to log on to a controller and start
RAPID execution.

CAUTION!

Remote accessto controllersmust be handled carefully. M ake sure you do not unintentional ly
disturb a system in production.

Follow these steps to set up a PC SDK project.

Step

1.

Action

On the File menu in Visual Studio, point to New and then click Project. Select a
Windows Application project.

Add the references to the PC SDK assemblies, ABB.Robotics.dll and ABB.Robot-
ics.Controllers.dll, to the project. The assemblies are located in the installation
directory, by default at C:\Program Files\ABB Industrial IT\Robotics IT\Robot
Application Builder 5.xx\PC SDK.

Open Form1.cs and add the needed namespace statements at the top of the source
code page:
VB:

Imports ABB.Robotics

Imports ABB.Robotics.Controllers

Imports ABB.Robotics.Controllers.Discovery

Imports ABB.Robotics.Controllers.RapidDomain

C#:
using ABB.Robotics;
using ABB.Robotics.Controllers;
using ABB.Robotics.Controllers.Discovery;
using ABB.Robotics.Controllers.RapidDomain;

In the Solution Explorer right-click Form1.cs and select View Designer. Create
the Graphical User Interface according to the instruction in the next section.

Continues on next page

202

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.2. Create a simple PC SDK application

Continued

Create the user interface

This picture shows the running PC SDK application that we will create. As you see both
virtual and real controllers on the network are included in a network scan.

=] Network scanning window €

IP Address D Availability Wirtual System name R Wersion Contraller name
10.46.76.173 Available Falze 510122 510.0.0 SEWST-w-0002132
10.46.77.121 Available Falze SystemB_03_0. 5.9.3.0 SEWST-L-0003202
127.0.01 L [Avalable Syss 100122 5 2
192.168.8.103 14-21858 Available Falze TOJOH_5_10_0M26 510.0.0 TOJOH Testrack
192.168.8.105 kjsw Available Falze Rw5_10_109 510.0.0 kjsw
192.168.8.106 RPC SmokeTest Available Falze SmokeTest_5.09.3020.03 5.9.30 B330.1:2 42
192.168.8.107 Testrack 37 Available False FTP_510.0125 51000 dahal testrack
192.168.8.109 I Available False eniph_510 51000 IlJonas YWigstein AL
192.168.8.11 Available False czz 510 51000
192.168.8.111 Leo1 Available Falze MU=_SAF 5.6.00 B330.1:11 SAF_ML
192.168.8.112 WRTZ2E Available Falze IRCE_SAF 510.0.0 B330.1:11 SAF_RC
1921688114 a1l Available False RemateT est 5.10.0.0 MMI Testcel
192.168.8.117 Annika Available False Spstem5_09 03 14 930 Annikas testrack
192.168.8.119 malar testrack Available False Spstem.10_0122 51000 Testrack malar

<
Start RAFID
Program
711

Follow these steps to create the user interface of the application:

Step Action

Change the Text property of the form to “Network scanning window”.
Change its Size to 850; 480.
Add a ListView control to the form. Set the following properties to get a similar
look as in the figure above:
FullRowSelect - True
GridLines - True
View - Details
4. Add the columns for IPAdress, ID, Availability, Virtual, System name, RW Version
and Controller name and adjust the width of the columns.

5. Add a Panel with a Button under the listview. Set the Text of the button.

Implement network scanning
To find all controllers on the network we start by declaring these member variablesin the
class Forml
VB:

Private scanner As NetworkScanner = Nothing
Private controller As Controller = Nothing
Private tasks As Task() = Nothing

Private networkWatcher As NetworkWatcher = Nothing

Continues on next page
3HAC028083-001 Revision: D 203

7 Using the PC SDK

7.2. Create a simple PC SDK application

Continued

private NetworkScanner scanner = null;
private Controller controller = null;
private Task[] tasks = null;

private NetworkWatcher networkwatcher = null;

Asthe application is supposed to scan the network as soon asit is started, we can put the code
foritinthe Form1 Load event handler, like this:

VB:

Me.scanner = New NetworkScanner
Me.scanner.Scan ()

Dim controllers As ControllerInfoCollection =

Me.scanner.Controllers

Dim controllerInfo As ControllerInfo = Nothing
Dim item As ListViewItem
For Each controllerInfo In controllers

item = New ListViewItem(controllerInfo.IPAddress.ToString())

item.SubItems.Add (controllerInfo.Id)

item.SubItems.Add (controllerInfo.Availability.ToString())
item.SubItems.Add (controllerInfo.IsVirtual.ToString())
item.SubItems.Add (controllerInfo.SystemName)

item.SubItems.Add (controllerInfo.Version.ToString())

(
(
(
(
(
(

item.SubItems.Add
Me.listViewl.Items.Add (item)

controllerInfo.ControllerName)

item.Tag = controllerInfo
Next

Ct#:

this.scanner = new NetworkScanner () ;
this.scanner.Scan() ;
ControllerInfoCollection controllers = gcanner.Controllers;
ListViewItem item = null;
foreach (ControllerInfo controllerInfo in controllers)
item = new ListViewItem(controllerInfo.IPAddress.ToString()) ;
item.SubItems.Add (controllerInfo.Id) ;
item.SubItems.Add (controllerInfo.Availability.ToString()) ;
item.SubItems.Add (controllerInfo.SystemName) ;

item.SubItems.Add

(
(
item.SubItems.Add (controllerInfo.IsVirtual.ToString()) ;
(
(controllerInfo.Version.ToString()) ;
(

item.SubItems.Add
this.listViewl.Items.Add (item) ;

controllerInfo.ControllerName) ;

item.Tag = controllerInfo;

Continues on next page

204

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.2. Create a simple PC SDK application

Continued

Add a network watcher

By implementing aNetworkWatcher the application can supervise the network and detect
when controllersarelost or added. Thisexampl e shows how to program network supervision,
and how to add a detected controller to the listview.

After having added a Networkwatcher object to the FormLoad event handler, we add a
subscription to its Found event.

VB:

Me.networkWatcher = New NetworkWatcher (Me.scanner.Controllers)
AddHandler Me.networkWatcher.Found, AddressOf Me.HandleFoundEvent
AddHandler Me.networkWatcher.Lost, AddressOf Me.HandleLostEvent

Me .networkWatcher.EnableRaisingEvents = True

C#:

this.networkwatcher = new NetworkWatcher (scanner.Controllers) ;

this.networkwatcher.Found += new EventHandler
<NetworkWatcherEventArgss> (HandleFoundEvent) ;

this.networkwatcher.Lost += new EventHandler
<NetworkWatcherEventArgss> (HandleLostEvent) ;

this.networkwatcher.EnableRaisingEvents = true;

NOTE!

In C# the event handler skeleton is auto generated using the Tab key twice after “+=" in the
above statements. If you prefer, you can use asimplified syntax when using generic event
handlers:

networkwatcher.Found += HandleFoundEvent;

Handle event

Asthe events will be received on a background thread and should result in an update of the
user interface the 1nvoke method must be called in the event handler. See Invoke method on
page 68 about how to force execution from background to GUI thread.

VB:

Private Sub HandleFoundEvent (ByVal sender As Object, ByVal e As
NetworkWatcherEventArgs)

Me.Invoke (New NetworkWatcherEventHandler (AddressOf
AddControllerToListView), New Object() {sender, e})

End Sub

Ct:

void HandleFoundEvent (object sender, NetworkWatcherEventArgs e)

{

this.Invoke (new
EventHandler<NetworkWatcherEventArgss> (AddControllerToList
View), new Object[] { sender, e });

Continues on next page

3HAC028083-001 Revision: D 205

7 Using the PC SDK

7.2. Create a simple PC SDK application

Continued

This event handler updates the user interface:

VB:

Private Sub AddControllerToListView (ByVal sender

As Object, ByVal e As NetworkWatcherEventArgs)

Dim controllerInfo As ControllerInfo = e.Controller
Dim item As ListViewItem = New ListViewItem(
controllerInfo.IPAddress.ToString())
item.SubItems.Add (controllerInfo.Id)
item.SubItems.Add (controllerInfo.Availability.ToString())
item.SubItems.Add (controllerInfo.IsVirtual.ToString())
item.SubItems.Add (controllerInfo.SystemName)

item.SubItems.Add (controllerInfo.Version.ToString())

(
(
(
(
(
(

item.SubItems.Add
Me.listViewl.Items.Add (item)

controllerInfo.ControllerName)

item.Tag = controllerInfo

End Sub

CH#.

private void AddControllerToListView(object sender,

NetworkWatcherEventArgs e)

ControllerInfo controllerInfo = e.Controller;
ListViewItem item = new
ListViewItem(controllerInfo.IPAddress.ToString()) ;
item.SubItems.Add (controllerInfo.Id) ;
item.SubItems.Add (controllerInfo.Availability.ToString()) ;
item.SubItems.Add (controllerInfo.IsVirtual.ToString()) ;
item.SubItems.Add (controllerInfo.SystemName) ;

item.SubItems.Add

(
(
(
(
(controllerInfo.Version.ToString()) ;
(

item.SubItems.Add (controllerInfo.ControllerName) ;

this.listViewl.Items.Add (item) ;

item.Tag = controllerInfo;

Establish connection to controller

When the user double-clicks a controller in the list a connection to that controller should be
established and the user should be logged on. Follow these steps to implement this
functionality:

Step

Action

1. Generate the DoubleClick event of the ListView.

In the event handler create a Controller object that represents the selected
robot controller.

Log on to the selected controller. See the code sample of Implement event
handler on page 207.

Continues on next page

206

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.2. Create a simple PC SDK application

Continued

Implement event handler
This example shows the code of the ListVview.Doubleclick event handler:

VB:
Dim item As ListViewItem = Me.listViewl.SelectedItems (0)
If Not item.Tag Is Nothing Then
Dim controllerInfo As ControllerInfo
controllerInfo = DirectCast (item.Tag, ControllerInfo)
If controllerInfo.Availability = Availability.Available Then
If Not Me.controller Is Nothing Then
Me.controller.Logoff ()
Me.controller.Dispose ()
Me.controller = Nothing
End If
Me.controller = ControllerFactory.CreateFrom(controllerInfo)
Me.controller.Logon (UserInfo.DefaultUser)
End If
Else

MessageBox.Show ("Selected controller not available.")

End If

CH:

ListViewItem item = this.listViewl.SelectedItems[0];

if (item.Tag != null)

{
ControllerInfo controllerInfo = (ControllerInfo) item.Tag;
if (controllerInfo.Availability == Availability.Available)
{

if (this.controller != null)

{

this.controller.Logoff () ;
this.controller.Dispose () ;
this.controller = null;

}

this.controller =
ControllerFactory.CreateFrom(controllerInfo) ;

this.controller.Logon (UserInfo.DefaultUser) ;

}

else

{

MessageBox.Show ("Selected controller not available.");

Continues on next page
3HAC028083-001 Revision: D 207

7 Using the PC SDK

7.2. Create a simple PC SDK application

Continued

NOTE!

The check to see whether the controller object aready existsisimportant, as you should
explicitly log off and dispose of any existing controller object before creating anew one. The
reason is that alogon session allocates resources that should not be kept longer than
necessary.

Start program execution

The c1ick event handler of the Start RAPID Program button should start program
execution of the first RAPID task.

Starting RAPID execution in manual mode can only be done from the FlexPendant, so we
need to check that the controller isin automatic mode before trying. We then need to request
mastership of Rapid and call the start method. If mastership isaready held, by ourselves
or another client, an InvalidOperationException will bethrown. For further
information see Mastership on page 41.

It is necessary to rel ease mastership whether or not the start operation succeeds. This can be
doneby calingrelease () Or Dispose () inafinally clause, asshownintheVB example,
or by applying the us ing mechanism, as shown in the C# example.

VB:

Private m As Mastership = Nothing

Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Buttonl.Click

Dim m As ABB.Robotics.Controllers.Mastership = Nothing
Try

If controller.OperatingMode = ControllerOperatingMode.Auto
Then

tasks = controller.Rapid.GetTasks ()
m = Mastership.Request (controller.Rapid)
'Perform operation
tasks (0) .Start ()
Else

MessageBox.Show ("Automatic mode is required to start
execution from a remote client.")

End IfCatch ex As InvalidOperationException
MessageBox.Show ("Mastership is held by another client.")
Catch ex As System.Exception
MessageBox.Show ("Unexpected error occurred: " + ex.Message)
Finally
If Not m Is Nothing Then
If (m.IsMaster()) Then
m.Release ()
End If
End If
End Try
End Sub

Continues on next page

208

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.2. Create a simple PC SDK application

Continued

Ct:

private void Buttonl Click(object sender, EventArgs e)

{

try

{

if (_controller.OperatingMode ==
ControllerOperatingMode.Auto)

tasks = controller.Rapid.GetTasks () ;

using (Mastership m =
Mastership.Request (controller.Rapid))

//Perform operation
tasks[0] .Start () ;

}

else

{

MessageBox.Show ("Automatic mode is required to start
execution from a remote client.");

}

catch (System.InvalidOperationException ex)

{

MessageBox.Show ("Mastership is held by another client.");

}

catch (System.Exception ex)

{

MessageBox.Show ("Unexpected error occurred: " + ex.Message);

3HAC028083-001 Revision: D 209

7 Using the PC SDK

7.3. Discovery domain

7.3. Discovery do

Overview

main

To create a connection to the controller from a PC SDK application it has to make use of the
Netscan functionality of the biscovery namespace. A NetworkScanner Object must be
created and a scan call must be performed.

For the PC SDK to be able to establish a connection either RobotStudio or Robot
Communications Runtime must be installed on the PC hosting the PC SDK application.
Robot Communications Runtime can be installed from C:\Program Files\ABB Industria
IT\Robotics IT\Robot Application Builder

5.xx\redistributabl e\ RobotCommuni cationRuntime if RobotStudio is not installed.

To find out what controllers are available on the network you use the NetworkScanner
methods Scan, Find, GetControllers and GetRemoteControllers.

NetworkScanner

The NetworkScanner class can be declared and instantiated at class level. No scanning is
done until the scan method is called. When the Get Controllers methodiscalled a
collectionof controllerInfo objectsisreturned. Each such object holdsinformation about
aparticular controller connected to the local network. Both virtual and real controllers are
detected this way.

VB:

Private AScanner As NetworkScanner = New NetworkScanner
.’ Somewhere in the code
AScanner.Scan ()
Dim ACollection As ControllerInfo() = AScanner.GetControllers()

Ct#:

private NetworkScanner aScanner = new NetworkScanner () ;
// Somewhere in the code
aScanner.Scan() ;

ControllerInfo[] aCollection = aScanner.GetControllers() ;

See Implement network scanning on page 203 for a complete code sample.

If only real controllers are of interest, you can first scan the network and then regquest only
real controllers using the NetworkScannerSearchCriterias enumeration in the
GetControllers method.

VB:

Dim ACollection As ControllerInfo() =
AScanner.GetControllers (NetworkScannerSearchCriterias.Real)

C#:

ControllerInfo[] aCollection =
aScanner.GetControllers (NetworkScannerSearchCriterias.Real)

I

Continues on next page

210

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.3. Discovery domain

Continued

If you know which controller system you want to connect to you can call the Find method,
which finds a specified controller on the network. It takes the system ID as a System.Guid
datatype as argument. The system’s globally unique identifier (GUID) can be find in the
system.guid file in the INTERNAL folder of the robot system file system.

Controllerinfo object

When anetwork scanis performed acollection of controllerInfo objectsisreturned. The
Controllerinfo object has information about availability. Remember that the Controllerinfo
object is not updated when controller status changes. If you again need to find out if a
controller is available, you need to perform a new network scan or use an existing
Controller object and check the status directly.

Add controllers from outside local network

A network scan is done only on the local network. To detect controllers outside the local
network you need to supply the | P address of the controller using the static
AddremoteController method or configuringitinthe App.config file. See PC application
configuration on page 43 for further information.

If you supply the controller | P address you either use a string argument or a
System.Net .IPAddress object.

VB:
Dim AnIPAddress As System.Net.IPAddress
Try
AnIPAddress = System.Net.IPAddress.Parse (Me.TextBoxl.Text)
NetworkScanner .AddRemoteController (AnIPAddress)
Catch ex As FormatException
Me.TextBoxl.Text = "Wrong IP address format"
End Try
C#:

System.Net .IPAddress ipAddress;
try
ipAddress = System.Net.IPAddress.Parse (Me.textBoxl.Text) ;

NetworkScanner .AddRemoteController (ipAddress) ;

}

catch (FormatException ex)

{

Me.textBoxl.Text = "Wrong IP address format";

NetworkWatcher

By using aNetworkWatcher object you can supervise network changes and find out when
anew controller isfound or when acontroller islost. See Add a network watcher on page 205
for a complete code example.

3HAC028083-001 Revision: D 211

7 Using the PC SDK

7.4. Accessing the controller

7.4. Accessing the controller

Controller object
By using acontroller object you can get access to the different domains of the robot
controller, e.g. 10 signals, RAPID, file system and elog messages.
To create aController object you normally make acall to the controllerFactory:
VB:

Private AController As Controller

AController = ControllerFactory.CreateFrom(info As
ControllerInfo)

C#:
private Controller aController;

aController = ControllerFactory.CreateFrom(ControllerInfo info);

Continues on next page
212 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.4. Accessing the controller

Continued

The argument isacontrollerInfo object, which may have been retrieved during a
network scan, see NetworkScanner on page 210. It is also possible to add an optional
argument if the IP address of the controller or the system ID (guid) should be used.

If the PC application is supposed to work with a single controller it can be specified in an
app.config file. The default constructor can then be used to create the controller object, e.g.
aController = new Controller (). See<defaultSystem> on page 44for details.

If several classesinyour application need to accessthe controller, it isrecommended that they
all reference the same controller object. Thisis done either by passing the controller
object as an argument to the constructor or by using a controller property.

NOTE!

You should be aware that the NET objects created for operations toward the robot controller
will access native resources (C++ and COM code). The .NET garbage collector does not
collect such objects, but these must be disposed of explicitly by the application programmer.
See Memory management in PC applications on page 213 for further information.

Memory management in PC applications

An important feature of the .NET runtime environment is the garbage collector, which
reclaims not referenced memory from the managed heap. Generally, this means that the
programmer does not have to free memory that has been allocated by the use of new. There
isno way of knowing exactly when garbage collection will be performed however.

For a PC application indeterministic deall ocation of resourcesis usually not a problem (as
opposed to a FlexPendant application, which runs on asmall device with limited memory).
The IDisposable interface, however, can be used in a PC application to obtain
deterministic deallocation of resources. Using this interface you can make an explicit call to
the Dispose method of any disposable object.

If your application is running in a Single Threaded Apartment (STA) the Dispose call will
dispose of managed objects, but native resources (created internally by the PC SDK) will
remain. To release these native objects, the method ReleaseUnmanagedresources should
be called periodically, for example when the user presses a certain button or each time data
has been written to the controller. The method call is not costly.

For an application running in a Multi Threaded Apartment (MTA) the Dispose call will
remove both managed and native objects.

NOTE!

The method controller.ReleaseUnmanagedResources should be caled oncein a
while to avoid memory leaksin PC SDK applications running in STA.

Dispose

It isthe creator of a disposable object that isresponsible for its lifetime and for calling
Dispose. A check should be done that the object still exists and any subscriptionsto
controller events should be removed before the Dispose call. Thisis how you dispose of a
Controller Object:

Continues on next page

3HAC028083-001 Revision: D 213

7 Using the PC SDK

7.4. Accessing the controller

Continued

VB:

If Not AController Is Nothing Then

RemoveHandler AController.OperatingModeChanged, AddressOf
UpdateOpMode

AController.Dispose ()
AController = Nothing
End If
C#:

if (aController != null)

AController.OperatingModeChanged -= new UpdateOpMode;
aController.Dispose () ;

aController = null;

Logon and logoff
Before accessing arobot controller the PC SDK application has to log on to the controller.
The UserInfo parameter of the Logon method has apefaultUser property that can be
used. By default all robot systems have such a user configured.

VB:

AController.Logon (UserInfo.DefaultUser)
C#

aController.Logon (UserInfo.DefaultUser) ;

If it is necessary for your application to handle users with different rights, these users can be
configured by usingtheUuserauthorizationManagement namespace or by usingthe UAS
administration tool in RobotStudio. Thisishow you create anew UserInfo object for login

purposes.
VB:

Dim AUserInfo As UserInfo = New UserInfo("name", "password")
C#:

UserInfo aUserInfo = new UserInfo("name", "password");

Continues on next page
214 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.4. Accessing the controller

Continued

NOTE!
It is necessary to log off from the controller at application shut down at the latest.
VB: AController.LogOff ()

C#: aController.LogOff () ;

Mastership

In order to get write access to some of the controller domains the application has to request
mastership. The Rapid domain, i.e. tasks, programs, modules, routines and variables that
exist in the robot system, is one such domain. The configuration domain isanother.

See Mastership on page 41 for detailed information on this topic.

It isimportant to release mastership after a modification operation. One way of doing thisis
applying the using statement, which resultsin an automatic disposal of the Mastership
object at the end of the block. Another possibility isreleasing mastershipinarinally block,
which is executed after the Try and catch blocks. See how it can be coded in the examples
of Sart program execution on page 208.

Controller events

The controller object provides several public events, which enable you to listen to
operating mode changes, controller state changes, mastership changes etc.
VB:
AddHandler AController.OperatingModeChanged, AddressOf
UpdateOpMode
AddHandler AController.StateChanged, AddressOf UpdateState
AddHandler AController.ConnectionChanged, AddressOf UpdateConn
C#:

AController.OperatingModeChanged += new UpdateOpMode;
AController.StateChanged += new UpdateState;

AController.ConnectionChanged += new UpdateConn;

Continues on next page

3HAC028083-001 Revision: D 215

7 Using the PC SDK

7.4. Accessing the controller

Continued

o @& &

NOTE!

Controller events use their own threads. Carefully study Controller events and threads on
page 67 to avoid threading conflicts.

NOTE!

PC SDK 5.09 and onwards uses the generic event handling introduced by .NET Framework
2.0.

CAUTION!

Do not rely on receiving an initial event when setting up/activating a controller event. There
is no guarantee an event will be triggered, so you had better read the initial state from the
controller.

Backup and Restore

Backup sample

Restore sample

Using the controller object you can call the Backup method. The argument isastring
describing the directory path on the controller where the backup should be stored. You can
also restore a previously backed up system. This requires mastership of Rapid and
Configuration and can only be donein Auto mode.

Asthe backup processis performed asynchronously you can add an event handler to receive
aBackupCompleted event when the backup is completed. The backup directory should be
created in the system backup directory, or else an exception will be thrown.

VB:

Dim BackupDir As String = " (BACKUP) $"+BackupDirName

AddHandler Me.AController.BackupCompleted, AddressOf
AController BackupCompleted)

Me.AController.Backup (BackupDir)
&

string backupDir = " (BACKUP) $"+backupDirName;

this.aController.BackupCompleted += new
BackupEventHandler (controller BackupCompleted) ;

this.aController.Backup (backupDir) ;

The Restore method is synchronous, i.e. execution will not continue until the restore
operation is completed.

VB:

Dim RestoreDir As String = " (BACKUP) $"+dirName

Dim M As Mastership

Try
MC = Mastership.Request (Me.AController.Configuration)
MR = Mastership.Request (Me.AController.Rapid)

Me.AController.Restore (RestoreDir, RestoreIncludes.All,
RestorelIgnores.All)

Finally
MC.Release()
MR.Release ()
Continues on next page

216

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.4. Accessing the controller
Continued

End Try
C#:
string restoreDir = " (BACKUP) $"+dirName;

using (Mastership mc =
Mastership.Request (this.aController.Configuration), mr =
Mastership.Request (this.aController.Rapid))

this.aController.Restore (restoreDir, RestoreIncludes.All,
RestorelIgnores.All) ;

VirtualPanel
You can programmatically change the operating mode of the virtual IRC5 using the
VirtualPanel classand its changeMode method. This blocks the application thread until
the user manually accepts the mode change to Auto using the Virtual FlexPendant. An
alternative to blocking the application thread eternally isto add atime-out and usea try-
catch block to catch the TimeoutException

VB:
Dim vp As VirtualPanel = VirtualPanel.Attach (AController)
Try
vp . ChangeMode (ControllerOperatingMode.Auto, 5000)
Catch ex As TimeoutException
Me.TextBoxl.Text = "Timeout occurred at change to auto"
End Try
vp.Dispose ()
C#:

VirtualPanel vp = VirtualPanel.Attach(aController) ;
try

{

vp .ChangeMode (ControllerOperatingMode.Auto, 5000) ;

}

catch (TimeoutException ex)

{

this.textBoxl.Text = "Timeout occurred at change to auto";

}

vp.Dispose () ;

There are aso the asynchronous method calls BeginChangeOperatingMode and
EndChangeOperatingMode. It isimportant to use the second method in the callback since
it returns the waiting thread to the thread-pool.
VB:

Dim vp As VirtualPanel = VirtualPanel.Attach (AController)

vp.BeginChangeOperatingMode (ControllerOperatingMode.Auto, New
AsyncCallback (AddressOf ChangeMode), vp)

Continues on next page

3HAC028083-001 Revision: D 217

7 Using the PC SDK

7.4. Accessing the controller

Continued

CH.

VirtualPanel vp = VirtualPanel.Attach(aController) ;

vp.BeginChangeOperatingMode (ControllerOperatingMode.Auto, new
AsyncCallback (ChangedMode) , vp) ;

The callback method must have the following signature and call the
EndChangeOperatingMode aswell asdisposethe virtualPanel.

VB:

Private Sub ChangeMode (ByVal iar As IAsyncResult)

Dim vp As VirtualPanel = DirectCast (iar.AsyncState,
VirtualPanel)

vp . EndChangeOperatingMode (iar)
vp.Dispose ()

private void ChangedMode (IAsyncResult iar)

{
VirtualPanel vp = (VirtualPanel) iar.AsyncState;
vp.EndChangeOperatingMode (iar) ;

vp.Dispose () ;

Learn more
ThisUser’s Guide only covers some of the PC SDK functionality. To get the full potential of
the PC SDK you should make use of the PC SDK Reference located in the PC SDK
installation directory. See PC SDK Reference on page 201.

You can also learn alot by becoming an active member of the RobotSudio Community. Its
Robot Application Builder User Forum should be your number one choice when you find
yourself stuck with a coding issue you cannot solve on your own. See RobotSudio
Community on page 17 for further information.

218 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5 Rapid domain

7.5.1. Working with RAPID data

7.5.1. Working with RAPID data

Overview

Therapidpomain namespace enablesaccessto RAPID datain therobot system. Thereare
numerous PC SDK classes representing the different RAPID datatypes. Thereisalso a
UserDefined class used to reference RECORD structuresin RAPID.

The valueChanged event enables notification from the controller when persistent RAPID
data has changed.

To speed up event notification from the controller thereis new functionality in PC SDK 5.10,
which allows you to set up subscription priorities. This possibility appliesto 1/0 signals and
persistent RAPID data. This mechanism is further described in Implementing high priority
data subscriptions on page 226.

NOTE!

To read RAPID data you need to log on to the controller. To modify RAPID datayou must
also request mastership of the Rapid domain.

Providing the path to the RAPID data

Direct access

Hierarchical access

To read or write to RAPID data you must first create a Rapidpata object. The path to the
declaration of the datain the controller is passed as argument. If you don’t know the path you
need to search for the RAPID data by using the SsearchRapidsymbol functionality. See
RAPID symbol search on page 157 for further information.

Direct access requires less memory and is faster, and is therefore recommended if you do not
need to use the task and modul e objects afterwards.

The example below shows how to create arapidbata object that refersto the instance
“regl” inthe USER module.

VB:
Dim Rd As RapidData = Me.AController.Rapid.GetRapidData (
n T_ROBlll , IIUSERII , n reglll)
C#:
RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "USER",
"regl") ;

If you need the task and module objects hierarchical access can be more efficient.
GetRapidData existsin the Rapid, Task and Module class.

VB:
Rd

AController.Rapid.GetTask ("T_ROB1") .GetModule ("USER") .
GetRapidData ("regl")

Ct:

rd = aController.Rapid.GetTask("T_ROB1") .GetModule ("USER") .
GetRapidData ("regl") ;

Continues on next page

3HAC028083-001 Revision: D 219

7 Using the PC SDK

7.5.1. Working with RAPID data

Continued

Accessing data declared in a shared module

If your application isto be used with amulti-move system (one controller and several motion
tasks/robots), it may happen that the RAPID instance you need to accessisdeclared in a-
Shared RAPID module. Such amodule can be used by all tasks, T_ROB1, T_ROB2 etc.

This example shows how to create arapidbata object that refersto the instance “reg100”,
which isdeclared in a shared module.

C#:
Task tRobl = aController.Rapid.GetTask ("T ROB1") ;
if (tRobl != null)
{
RapidData rData = tRobl.GetRapidData ("regl00");
}
NOTE!

If the datais declared in a-Shared -Hidden module it cannot be accessed by the PC SDK.

Creating an object representing the RAPID data value

The rRapidbata oObject storesthe path to the RAPID data. But thisis not enough if you want
to accessitsvalue (at least not if you want to modify it). To do that you need to create another
object, which represents the value of the RAPID data.

IntherRapidbomain hamespace there are types representing the different RAPID datatypes.
To create the object needed to represent the RAPID data value you use the Rapidbata
property value and cast it to the corresponding type, €.g. Num, Bool Of Tooldata.

Thisishow thisisdoneif you want to access the value of a RAPID data of the RAPID data
type bool:

VB:

"declare a variable of data type RapidDomain.Bool
Dim rapidBool As RapidDomain.Bool

Dim rd As RapidData = Me.AController.Rapid.GetRapidData("T ROB1",
"MainModule", "flag")

"test that data type is correct before cast
If TypeOf rd.Value Is RapidDomain.Bool Then
rapidBool = DirectCast (rd.Value, RapidDomain.Bool)
"check if the value of the RAPID data is true
If (rapidBool.Value) Then
' Do something...
End If
EndIf

Continues on next page

220

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.1. Working with RAPID data

Continued
C#:
//declare a variable of data type RapidDomain.Bool
RapidDomain.Bool rapidBool;
RapidDomain.RapidData rd =
aController.Rapid.GetRapidData ("T ROB1", "MainModule",

nflagn) ;
//test that data type is correct before cast
if (rd.vValue is ABB.Robotics.Controllers.RapidDomain.Bool)

{
rapidBool =
(ABB.Robotics.Controllers.RapidDomain.Bool)rd.Value;
//assign the value of the RAPID data to a local variable
bool boolValue = rapidBool.Value;
}
If you just want to read this variable you can use this technique instead of creating a
RapidDomain.Bool object:

VB:

Dim b As Boolean = Convert.ToBoolean (rd.Value.ToString)

Ct:

bool b = Convert.ToBoolean(rd.Value.ToString()) ;

The .NET type ToolData (representing the RAPID datatypetooldata) canbecreated like
this:
VB:

Dim ATool As ToolData
If Rd.Value Is ToolData Then
ATool = DirectCast (Rd.Value, ToolData)
End If
CH:

ToolData aTool;
if (rd.vValue is ToolData)

{

aTool = (ToolData) rd.Value;

IRapidData.ToString method

All RapidDomain structures representing RAPID data types implement the IRapidbata
interface. It has a Tost ring method, which returns the value of the RAPID datain the form
of astring. Thisisasimple example:

string boolValue = rapidBool.ToString() ;

Continues on next page

3HACO028083-001

Revision: D 221

7 Using the PC SDK

7.5.1. Working with RAPID data

Continued

The string is formatted according to the principle described in |RapidData.FillFromSring
method on page 222.

Below isan example of amore complex datatype. The ToolDbata Tframe property isof type
Pose. ItsTrans valueisdisplayed in alabel in the format [X, v, Z].

VB:

Me.Labell.Text = ATool.Tframe.Trans.ToString/()
C#:

this.labell.Text = aTool.Tframe.Trans.ToString() ;

IRapidData.FillFromString method

String format

The IRapidpata interface also hasarillFromString method, which fillsthe object with
avalid RAPID string representation. The method can always be used when you need to
modify RAPID data. Using the method with the RapidDomain.Bool variable used earlier
in the chapter will look like this:

rapidBool.FillFromString ("True")

Using it for aRapidDomain.Num variableis similar:

rapidNum.FillFromString ("10")

The format is constructed recursively. An exampleis the easiest way of illustrating this.
Example:

The RapidDomain. Pose structure represents the RAPID data type pose, which describes
how a coordinate system is displaced and rotated around another coordinate system.

public struct Pose : IRapidData

{

public Pos trans;
public Orient rot;

}
Thisisan examplein RAPID:

VAR pose framel;

framel.trans := [50, 0, 40];

framel.rot := [1, 0, 0, O0];
The framel coordinate transformation is assigned a val ue that corresponds to a displacement
in position where X=50 mm, Y =0 mm and Z=40 mm. Thereis no rotation.
TherapidDomain. Pose structure consists of two struct variables called trans and rot of the
datatypes pos and orient. Pos hasthree floats and orient consists of four doubles. The
FillFromString format for arose objectis“[[1.0, 0.0, 0.0, 0.0][10.0, 20.0, 30.0]]".
The example shows how to write anew value to a RAPID pose variable:
VB:

If TypeOf rd.Value Is Pose Then
Dim rapidPose As Pose = DirectCast (rd.Value, Pose)
rapidPose.FillFromString("[[1.0, 0.0, 0.0, 0.0][10, 20, 3011")
rd.Value = rapidPose

Continues on next page

222

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.1. Working with RAPID data

Continued
End If
C#:
if (rd.vValue is Pose)
Pose rapidPose = (Pose) rd.Value;
rapidPose.FillFromString("[[1.0, 0.5, 0.0, 0.0][10, 15, 10]1");
rd.Value = rapidPose;
}
NOTE!
ﬂ The string format must be carefully observed. If the string argument has the wrong format, a

RapidDataFormatException iSthrown.

Writing to RAPID data
Writing to RAPID datais only possible using the type cast RapidbData value, to which the
new value is assigned. To write the new value to the RAPID data in the controller you must
then assign the .Net object to the value property of the RapidData object. This example
uses the rapidBool object created in Creating an object representing the RAPID data value
on page 220.

VB:

"Assign new value to .Net variable

rapidBool.Value = False

'Request mastership of Rapid before writing to the controller
Me.master = Mastership.Request (Me.AController.Rapid)

'"Write the new value to the data in the controller

rd.Value = rapidBool

'Release mastership as soon as possible

Me .master.Dispose

C#:

//Assign new value to .Net variable

rapidBool.Value = false;

//Request mastership of Rapid before writing to the controller
this.master = Mastership.Request (this.controller.Rapid) ;
rd.Value = rapidBool;

//Release mastership as soon as possible

this.master.Dispose() ;

Continues on next page

3HAC028083-001 Revision: D 223

7 Using the PC SDK

7.5.1. Working with RAPID data

Continued

See Master ship on page 41 for detailed information about on how the controller handleswrite
access and Sart program execution on page 208 for another code example of implementing
mastership in a PC SDK application.

Thiswas an easy example, asthevalueto changewasasimplebool. Often, however, RAPID
uses complex structures. By using the Fi11FromString method you can assign a new
Value t0 any Rapidbata and writeit to the controller.

The string must be formatted according to the principle described in the previous section. The
following example shows how to write anew valueto the pos structure (x, y, z) of aRAPID
tooldata:

VB:

Dim APos As Pos = New Pos

APos.FillFromString (" [2,3,31")

Me.ATool.Tframe.Trans = APoOs

Me.Rd.Value = Me.ATool

C#:

Pos aPos = new Pos();
aPos.FillFromString (" [2,3,3]1");
this.aTool.Tframe.Trans = aPos;

this.rd.Value = this.aTool;

NOTE!
H The new value is not written to the controller until the last statement is executed.

Letting the user know that RAPID data has changed
In order to be notified that RAPID data has changed you need to add a subscription to the
ValueChanged event of the RapidbData instance. Note, however, that this only works for
persistent RAPID data.

Add subscription
Thisis how you add a subscription to the valueChanged event:
VB:
Addhandler Rd.ValueChanged, AddressOf Rd ValueChanged
C#:

this.rd.valueChanged += rd ValueChanged;

Continues on next page
224 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.1. Working with RAPID data

Continued

Handle event
Theimplementation of the event handler may ook like this. Remember that controller events
use their own threads, and avoid Winforms threading problems by the use of
Control . Invoke, Which forcesthe execution from the background thread to the GUI
thread.

VB:

Private Sub Rd ValueChanged (ByVal sender As Object, ByVal e As
DataValueChangedEventArgs)
Me.Invoke (New EventHandler (AddressOf UpdateGUI), sender, e)
End Sub
CH#

private void rd ValueChanged (object sender,
DataValueChangedEventArgs e)

this.Invoke (new EventHandler (UpdateGUI), sender, e);

See Controller events and threads on page 67 to learn more about potential threading
conflictsin RAB applications.

Read new value from controlller

Update the user interface with the new value. Asthe value is not part of the event argument,
you must use the Rapidbata value property to retrieve the new value:

VB:
Private Sub UpdateGUI (ByVal sender As Object, ByVal e As
System.EventArgs)
Dim Tooll As ToolData = DirectCast (Me.Rd.Value, ToolData)
Me.Labell.Text = Tooll.Tframe.Trans.ToString/()
End Sub
C#

private void UpdateGUI (object sender, System.EventArgs e)

{

ToolData tooll= (ToolData)this.rd.Value;
this.labell.Text = tooll.Tframe.Trans.ToString() ;

Continues on next page
3HAC028083-001 Revision: D 225

7 Using the PC SDK

7.5.1. Working with RAPID data

Continued

NOTE!
H Subscriptions work only for RAPID data declared as PERS.

Implementing high priority data subscriptions
To speed up event notification from the controller itis possibleto set up subscription priorities
for persistent RAPID data. To do thisyou use the subscribe method and the enumeration
EventPriority asargument. The example shows an ordinary signal subscription and a
subscription with high priority:
VB:
Addhandler Rd.ValueChanged, AddressOf Rd ValueChanged
Rd.Subscribe (AddressOf Rd Changed, EventPriority.High)

rd.ValueChanged += rd ValueChanged;
rd.Subscribe (rd Changed, EventPriority.High);

To deactivate subscriptions with high priority you call the unsubscribe method like this:
VB:

Rd.Unsubscribe (AddressOf Rd ValueChanged)
CH#.

rd.Unsubscribe (rd Changed) ;

NOTE!
H High priority subscriptions can be used for 1/0 signals and RAPID data declared PERS. The
controller can handle 64 high priority subscriptions.

RapidData disposal
You are recommended to dispose of RapidbData objectswhen they are no longer needed. See
Memory management in PC applications on page 213 for further information.
VB:

If Not Rd Is Nothing Then
Rd.Dispose ()
Rd = Nothing

End If

C#:

if (rd != null)

{
rd.Dispose () ;
rd = null;

226 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.2. Handling arrays

7.5.2. Handling arrays

Overview

In RAPID you can have up to three dimensional arrays. These are accessible by using a
RapidData object like for any other RAPID data.

There are mainly two ways of accessing each individual element of an array: by indexers or
by an enumerator.

ArrayData object

If therapidpata referencesa RAPID array is value property returns an object of
ArrayData type. Before making acast, check the type using the i s operator or by using the
IsArray property on the Rapidbata object.
VB:

Dim RD As RapidData = AController.Rapid.GetRapidData ("T_ROB1",

"User", "string array")
If RD.IsArray Then
Dim AD As ArrayData = DirectCast(RD.Value,ArrayData)

RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "User",
"string array");

if (rd.IsArray)

{
ArrayData ad = (ArrayData)rd.Value;

Array dimensions

The dimension of the array is returned by the Rank property. If you need to check the length
of theindividua arrays you can use the Get Length method on the Arraybata object
passing the dimension index as argument.
VB:

Dim ARank As Integer = AD.Rank

Dim Len As Integer = AD.GetLength (ARank)
C#.

int aRank = ad.Rank;

int len = ad.GetLength (aRank) ;

Continues on next page

3HAC028083-001 Revision: D 227

7 Using the PC SDK

7.5.2. Handling arrays

Continued

Array item access by using indexers
By the use of indexers you can access each array element, even in three dimensional arrays.
A combination of the GetLength method and For loops makes it possible to access any
item:
VB:
Dim ASum As Double = OR
Dim ANum As Num
If AD.Rank = 1 Then
For I As Integer = 1 To AD.Length
ANum = DirectCast(ad. [I], Num)
ASum += DirectCast (ANum, Double)
Next
ElseIf AD.Rank = 2 Then
For I As Integer = 1 To AD.GetLength(1)
For J As Integer = 1 To AD.GetLength(2)
ANum = DirectCast (ad[I, J], Num)
ASum += DirectCast (ANum, Double)
Next
Next
Else
For I As Integer = 1 To AD.GetLength(1)
For J As Integer = 1 To AD.GetLength(2)
For K As Integer = 1 To AD.GetLength(3)
ANum = DirectCast(ad[I, J, K], Num)
ASum += DirectCast (ANum, Double)
Next
Next
Next
End If

C#:
double sum = 0d;
Num aNum;
if (ad.Rank == 1) {
for (int i = 1; i <= ad.Length; i++) {
aNum = (Num)ad. [i];
asum += (double)ANum;
}
}
elseif (ad.Rank == 2) {

for(int i = 1; i< ad.GetLength(1l); i++) {
for (int j = 1; j <= ad.Length; j++) {
aNum = (Num)ad.[i,3];

asum += (double)ANum;

Continues on next page
228 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.2. Handling arrays

Continued

}

else {
for(int i = 1; i< ad.GetLength(l); i++) {
for(int j = 1; j< ad.GetLength(2); j++) {
for (int k = 1; k <= ad.GetLength(3); k++) {
aNum = (Num)ad.[i, j, kI;

aSum += (double)ANum;

Array item access using enumerator
You can also use the enumerator operation (foreach) likeit isused by collectionsin .NET.
Noticethat it can be used for both one dimension and multi-dimensional arraysto access each
individual element. The previous exampleisalot simpler thisway:

VB:

Dim ASum As Double = OR
Dim ANum As Num
For Each ANum As Num In AD
ASum += DirectCast (ANum, Double)
Next

double sum = 0d;
Num aNum;
foreach (Num aNum in ad)

{

asum += (double) ANum;

3HAC028083-001 Revision: D 229

7 Using the PC SDK

7.5.3. Readltem and Writeltem methods

7.5.3. Readltem and Writeltem methods

Overview

An dternative way of accessing RAPID data stored in an array arethe ReadItem and
WriteItem methods.

Readltem method

Writeltem method

Using the Read1tem method you can directly access arapidpata itemin an array, e.g. an
array with RobTargets or Nums. Theindex to theitemisexplicitly specifiedinthereadItem
cal. Thefirstitemisin position 1, i.e. the array is 1-based asin RAPID.
VB:

Dim ANum As Num

aNum = DirectCast (rd.ReadItem(1l, 2), Num)
C#:

Num aNum = (Num)rd.ReadItem(1l, 2);

This example retrieves the second Num value in the first array of the RAPID data variable
referenced by rd.

In the same manner it is possible to use the writeItem method to write to an individual
RAPID dataitem in an array. This example shows how to write the result of an individual
robot operation into an array representing atotal robot program with several operations:
VB:

Dim ANum As Num = New Num(OPERATION OK)

rd.WriteItem (ANum, 1, 2)
C#:

Num aNum = new Num(OPERATION OK) ;
rd.WriteItem(aNum, 1, 2);

NOTE!

If theindex is out of bounds an IndexoutO0fRangeException will be thrown.

230

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.4. UserDefined data

7.5.4. UserDefined data

Overview

RECORD structures are common in RAPID code. To handle these unique data types a
UserDefined classisavailable. This class has properties and methods to handle individual
components of a RECORD.

In some cases implementing your own structure can improve application design and code
maintenance.

Creating UserDefined object

The UserDefined constructor takes aRrRapidbDataType Object asargument. To retrieve a
RapidDataType object you need to provide arapidsymbol or the path to the declaration
of the RAPID datatype.

This example creates auserDefined object representing the RAPID RECORD
processdata:

VB:
Dim rdt As RapidDataType
rdt = Me.controller.Rapid.GetRapidDataType ("T_ROB1", "MyModule",
"processdata")

Dim processdata As UserDefined = New UserDefined(rdt)

C#

RapidDataType rdt;

rdt = this.controller.Rapid.GetRapidDataType ("T_ROB1",
"MyModule", "processdata");

UserDefined processdata = new UserDefined(rdt) ;

Reading UserDefined data

UserDefined can be used to read any kind of RECORD variable from the controller. The
individual components of the RECORD are accessible using the components property and
an index. Each component can be read as a string.

VB:

Dim processdata As UserDefined = DirectCast (rd.Value, UserDefined)
Dim Nol As String = processdata.Components (0) .ToString /()

Dim No2 AS String = processdata.Components (1) ,ToString /()
Ct:
UserDefined processdata = (UserDefined) rd.Value;

string nol = processdata.Components[0].ToString() ;

string no2 = processdata.Components[l].ToString() ;

Each individual string can then be used in a Fi11FromString method to convert the
component into a specific datatype, €.g. RobTarget OF ToolData. See
IRapidData.FillFromString method on page 222 for details.

Continues on next page

3HAC028083-001 Revision: D 231

7 Using the PC SDK

7.5.4. UserDefined data

Continued

Writing to UserDefined data

If you want to modify UserDef ined dataand writeit to the controller you must first read the
UserDefined object and the apply new values using the Fi11FromString method. Then
you need to perform awrite operation using the Rapidbata.value property.

VB:

processdata.Components (0) .FillFromString (" [0,0,0]™")

processdata.Components (1) .FillFromString ("10")

rd.Value = ud

C#:

processdata.Components [0] .FillFromString (" [0,0,0]");

processdata.Components [1] .FillFromString ("10") ;

rd.Value = ud;
See|RapidData.FillFromSring method on page 222 and Writing to RAPID data on page 223
for further information and code samples.

Recursively reading the structure of any RECORD data type

If you need to know the structure of a RECORD datatype (built-in or user-defined) you must
first retrieve the record components of the record. Then you need to iterate the record
components and check if any of them are also records. This procedure must be repeated until
all record components are atomic types.This code example shows how to get information
about the robtarget data type. The robtarget URL is“RAPID/rabtarget” or just “robtarget”.

private void SearchRobtarget ()

{

RapidSymbol[] rsCol = tRobl.SearchRapidSymbol (sProp, "RAPID/
robtarget", "pl0");

RapidDataType theDataType;
if (rsCol.Length > 0)
{
Console.WriteLine ("RapidSymbol name = " + rsCol[0] .Name) ;
theDataType = RapidDataType.GetDataType (rsCol[0]) ;
Console.WriteLine ("DataType = " + theDataType.Name) ;
if (theDataType.IsRecord)
{
RapidSymbol [] syms = theDataType.GetComponents() ;

SearchSymbolStructure (syms) ;

Continues on next page

232

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.4. UserDefined data
Continued

private void SearchSymbolStructure (RapidSymbol[] rsCol)
{
RapidDataType theDataType;
foreach (RapidSymbol rs in rsCol)
{
Console.WriteLine ("RapidSymbol name = " + rs.Name) ;
theDataType = RapidDataType.GetDataType (rs) ;
Console.WriteLine ("DataType = " + theDataType.Name) ;
if (theDataType.IsRecord)
{
RapidSymbol [] syms = theDataType.GetComponents() ;

SearchSymbolStructure (syms) ;

Continues on next page

3HAC028083-001 Revision: D 233

7 Using the PC SDK

7.5.4. UserDefined data

Continued

The code example above produces the following printout:

RapidSymbol name = p10
DataType = robtarget

RapidSymbol name = trans
DataType = pos
RapidSymbol name = x
DataType = num
RapidSymbol name =y
DataType = num
RapidSymbol name = z
DataType = num

RapidSymbol name = rot
DataType = orient
RapidSymbol name = gl
DataType = num
RapidSymbol name = g2
DataType = num
RapidSymbol name = g3
DataType = num
RapidSymbol name = g4
DataType = num

RapidSymbol name = robconf
DataType = confdata
RapidSymbol name = cfl
DataType = num
RapidSymbol name = cf4
DataType = num
RapidSymbol name = cf6
DataType = num
RapidSymbol name = cfx
DataType = num

RapidSymbol name = extax
DataType = extjoint

RapidSymbol name = eax_a

Continues on next page

234

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.4. UserDefined data

Continued

DataType = num
RapidSymbol name = eax_b
DataType = num
RapidSymbol name = eax_c
DataType = num
RapidSymbol name = eax_d
DataType = num
RapidSymbol name = eax_e
DataType = num
RapidSymbol name = eax_f
DataType = num

Implement your own struct representing a RECORD

This example shows how you can create your own .NET data type representing a RECORD
in the controller instead of using the UsefDefined type.

Creating ProcessData type
VB:
Dim rdt As RapidDataType = Me.ARapid.GetRapidDataType ("T ROB1",
"MyModule", "processdata")
Dim pc As ProcessData = New ProcessData (rdt)
pc.FillFromString (rd.Value.ToString())
CH#
RapidDataType rdt = this.aRapid.GetRapidDataType ("T ROB1",
"MyModule", "processdata");
ProcessData pc = new ProcessData (rdt) ;

pc.FillFromString (rd.Value.ToString()) ;

Implementing ProcessData struct

This example shows how the new datatype processbData may beimplemented. Asyou see,
thisisdoneby using a.NET struct and letting ProcessData Wrap the UserDef ined object.

The struct implementation should include aFil1FromString and ToString method, i.e.
inherit the TRapidpata interface. Any properties and methods may aso be implemented.

VB:

Public Structure ProcessData
Implements IRapidData

Private data As UserDefined

Public Sub New(ByVal rdt As RapidDataType)
data = New UserDefined (rdt)
End Sub

Private Property IntData() As UserDefined
Get

Return data

Continues on next page
3HAC028083-001 Revision: D 235

7 Using the PC SDK

7.5.4. UserDefined data
Continued

End Get

Set (ByVal Value As UserDefined)
data = Value

End Set

End Property

End Structure

C#:

public struct ProcessData: IRapidData

{

private UserDefined data;

public ProcessData (RapidDataType rdt)

{

data = new UserDefined (rdt) ;

}

private UserDefined IntData

{

get { return data; }

set { data = value; }

public int StepOne

{

get

{

int res =
Convert.ToInt32 (IntData.Components [0] .ToString())

1

return res;
set

IntData.Components [0] = new Num(value) ;

}

Implementing IRapidData methods
This piece of code shows how the two TRapidbata methods Tostring and
FillFromString can beimplemented.

VB:

Public Sub FillFromString(ByVal newValue As String) Implements
ABB.Robotics.Controllers.RapidDomain.IRapidData.FillFromStr
ing

IntData.FillFromString (newValue)

Continues on next page
236 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.4. UserDefined data

Continued

End Sub

Public Overrides Function ToString() As String Implements
ABB.Robotics.Controllers.RapidDomain.IRapidData.ToString

Return IntData.ToString/()

End Function

Ct:

public void FillFromString(string newValue)

{

IntData.FillFromString (newValue) ;

public override string ToString()

{

return IntData.ToString() ;

NOTE! The Tostring method hasto usethe overrides keyword in Visual Basic and the
override keywordin C#.

Property implementation
Each item in the RECORD structure should have a corresponding property in the extended
.NET datatype. The get and set methods have to implement the conversion from/to controller
datatypeto .NET datatype.

VB:

Public Property Step() As Integer
Get

Dim res As Integer =
Convert.ToInt32 (IntData.Components (0) .ToString())

Return res

End Get

Set (ByVal Value As Integer)
Dim tmp As Num = New Num
tmp.FillFromNum(Value)
IntData.Components (0) = tmp

End Set

End Property

C#:
public int Step

{

get

{

int res =
Convert.ToInt32 (IntData.Components [0] .ToString()) ;

return res;

Continues on next page

3HAC028083-001 Revision: D 237

7 Using the PC SDK

7.5.4. UserDefined data

Continued

set

Num tmp = new Num() ;
tmp.FillFromNum (value) ;
IntData.Components [0] = tmp;

238 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.5. RAPID symbol search

7.5.5. RAPID symbol search

Overview

Most RAPID elements (variables, modules, tasks, records etc.) are members of a symbol
table, in which their names are stored as part of a program tree structure.

It is possible to search this table and get a collection of Rapidsymbol objects, each one
including the RAPID object name, location and type.

Search method

The search must be configured carefully, due to the large amount of RAPID symbolsin a
system. To define a query you need to consider from where in the program tree the search
should be performed, which symbols are of interest and what information you need for the
symbolsof interest. To enable search from different levelsthe searchrRapidsymbol method
isamember of several different SDK classes, e.g. Task, Module and Routine. Thisexample
shows a search performed with Task as the starting point:

VB:

Dim RSCol As RapidSymbol ()

RSCol = ATask.SearchRapidSymbol (SProp, "num", string.Empty)
C#:

RapidSymbol [] rsCol;

rsCol = aTask.SearchRapidSymbol (sProp, "num", string.Empty) ;

The searchrRapidsymbol method has three arguments. The first argument, of datatype
RapidSymbolSearchProperties, isdetailed in the next section. The second and third
arguments are detailed in the following sections.

Search properties

The RapidSymbolSearchProperties typeisrather complex and requires some
knowledge about RAPID concepts.

It is used to specify search method, type of RAPID symbol to search for, whether the search
should be recursive, whether the symbols are local and/or global and whether or not the
search result should include only symbols currently used by a program. If a property is not
valid for aparticular symboal, it will be discarded and will not exclude the symbol from the
search result.

The table describes the different properties of RapidsymbolSearchProperties.
Property Description

SearchMethod Specifies the direction of the search, which can be Block
(down) or Scope (up). Example: If the starting point of the
search is a routine, a block-search will return the symbols
declared within the routine, whereas a scope-search will return
the symbols accessible from the routine.

Continues on next page

3HAC028083-001 Revision: D 239

7 Using the PC SDK

7.5.5. RAPID symbol search

Continued

Property Description

Types Specifies which RAPID type(s) you want to search for. The
SymbolTypes enumeration includes Constant, Variable,
Persistent, Function, Procedure, Trap, Module,
Task, Routine, RapidData. etc. (Routine includes
Function, Procedure and Trap. RapidData includes
Constant, Variable and Persistent.)

Recursive For both block and scope search it is possible to choose if the
search should stop at the next scope or block level or
recursively continue until the root (or leaf) of the symbol table
tree is reached.

GlobalSymbols Specifies whether global symbols should be included.
LocalSymbols Specifies whether local symbols should be included.
InUse Specifies whether only symbols in use by the loaded RAPID

program should be searched.

Default instance

RapidSymbolSearchProperties hasseveral static methods that return a default
instance.

VB:

Dim SProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault ()

Ct#:

RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault () ;

The default instance has the following values..

Property Description
SearchMethod SymbolSearchMethod.Block
Types SymbolTypes.NoSymbol
Recursive True

GlobalSymbols True

LocalSymbols True

InUse True

Using thisinstance you can specify the search properties of the search you want to perform.
Example:

VB:

SProp.SearchMethod = SymbolSearchMethod.Scope
SProp.Types = SymbolTypes.Constant Or SymbolTypes.Persistent

SProp.Recursive = False

Continues on next page

240

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.5. RAPID symbol search

Continued

C#:

sProp.SearchMethod = SymbolSearchMethod.Scope;
sProp.Types = SymbolTypes.Constant | SymbolTypes.Persistent

sProp.Recursive = false;

Continues on next page
3HAC028083-001 Revision: D 241

7 Using the PC SDK

7.5.5. RAPID symbol search

Continued

NOTE!

The default instance has the property Types Set to NoSymbol. |t must be specified in order
for ameaningful search to be performed!

NOTE!

The Types property allows you to combine several typesin asearch. See the example above.

NOTE!
See PC DK Reference for the static methods createbefaultForData and

CreateDefaultForRoutine.

Data type argument

The second argument of the searchRapidSymbol method isthe RAPID data type written

asastring. The data type should be written with small letters, e.g. “num”, “string” or
“robtarget”. It can also be specified asstring. Empty.

NOTE!

To search for auserDef ined datatype the complete path to the module that holds the
RECORD definition must be passed, like this:

result = tRobl.SearchRapidSymbol (sProp, "RAPID/T ROB1/MyModule/
MyDataType", string.Empty) ;

However, if MyModule isconfigured as-Shared the system seesitsdatatypesasinstalled,
and the task or module should not be included in the path

result = tRobl.SearchRapidSymbol (sProp, "MyDataType", string.Empty) ;

Symbol name argument

Thethird argument isthe name of the RAPID symbol. It can be specified asstring. Empty
if the name of the symbol to retrieve is not known, or if the purposeisto search ALL “num”
datain the system for example.

Instead of the name of the RAPID symbol aregular expression can be used. The search

mechanism will then match the pattern of the regular expression with the symbolsin the
symbol table. The regular expression string is not case sensitive

A regular expression isapowerful mechanism. It may consist of ordinary charactersand meta
characters. A meta character is an operator used to represent one or several ordinary
characters, and the purpose is to extend the search.

Within aregular expression, al alphanumeric characters match themselves, i.e. the pattern
“abc” will only match a symbol named “abc”. To match all symbol names containing the
character sequence“abc”, it isnecessary to add some meta characters. Theregular expression
for thisis“.*abc.*".

The available meta character set is shown below:

Expression Meaning

Any single character

Continues on next page

242

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.5. RAPID symbol search

Continued
Expression Meaning
A Any symbol starting with
[s] Any single character in the non-empty set s, where s is a
sequence of characters. Ranges may be specified as c-c.
[s] Any single character not in the set s.
r* Zero or more occurrences of the regular expression r.
r+ One or more occurrences of the regular expression r.
r? Zero or one occurrence of the regular expression r.
(r) The regular expression r. Used for separate that regular

expression from another.
The regular expressions r or r'.

i Any character sequence (zero, one or several characters).
Example 1

"ACK!

Returns all symbols starting with ¢ or C.
Example 2

“Areg[1-3]"

Returnsregl, Regl, REG1, reg2, Reg2, REG2, reg3, Reg3 and REG3.
Example 3

"Acx|Mreg[1,2]"
Returns all symbols starting with c or C aswell asregl, Regl, REG1, reg2, Reg2 and REG2.

SearchRapidSymbol example
This example searches for VAR, PERS or CONST num datain atask and its modules. The
search islimited to globally declared symbols. By default the search method isBlock, S0 it
does not have to be set.
VB:
Dim SProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault ()
SProp.Types = SymbolTypes.RapidData
SProp.LocalSymbols = False
Dim RSCol As RapidSymbol ()
RSCol = ATask.SearchRapidSymbol (SProp, "num", string.Empty)

CH#:
RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault () ;
sProp.Types = SymbolTypes.RapidData;
sProp.LocalSymbols = false;
RapidSymbol [] rsCol;
rsCol = aTask.SearchRapidSymbol (sProp, "num", string.Empty) ;

Continues on next page

3HAC028083-001 Revision: D 243

7 Using the PC SDK

7.5.5. RAPID symbol search

Continued

Search for UserDefined RAPID data - example

In this example a user defined RECORD data type (“mydata’) is declared in amodule
(“myModul€”). Assuming that the end-user can declare and use data of this datatypein any
program module, the search method must be Block (default). A search for all “mydata’
instances may look like this:
VB:

Dim SProp As RapidSymbolSearchProperties =

RapidSymbolSearchProperties.CreateDefault ()
SProp.Types = SymbolTypes.RapidData
Dim RSCol As RapidSymbol ()

RSCol = ATask.SearchRapidSymbol (SProp, "RAPID/T ROB1l/myModule/
mydata", string.Empty)

RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault () ;

sProp.Types = SymbolTypes.RapidData;
RapidSymbol [] rsCol;

rsCol = aTask.SearchRapidSymbol (sProp, "RAPID/T ROB1/myModule/
mydata", string.Empty) ;

NOTE!
H If myModuleis configured as-Shared and all myData instances are declared in myModule the
search method must be set to Scope and the SearchRapidsymbol cal should look like this:

rsCol = aTask.SearchRapidSymbol (sProp, "mydata", string.Empty) ;

244 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.6. Working with RAPID modules and programs

7.5.6. Working with RAPID modules and programs

Overview
Using the Task object it is possible to load and save individual modules and programs. You
can also unload programs, as well as reset the program pointer and start program execution.
NOTE!

ﬂ All these operations require mastership of the RAPID domain. See Mastership on page 215

for details.

Load modules and programs
To load amodule or program file you need the path to the file on the controller. When thefile
isloaded into memory the RapidLoadMode enumeration argument, Add or
Replace, specifies whether or not it should replace old modulesor programs.

If the file extension is not avalid module (mod or sys) or program (pgf) extension an
ArgumentException isthrown.

VB:

Try
ATask.LoadProgramFromFile (APrgFileName, RapidLoadMode.Replace)
ATask.LoadModuleFromFile (AModFileName, RapidLoadMode.Add)

Catch ex As ArgumentException
Return

End Try

C#.

try

{
aTask.LoadProgramFromFile (aPrgFileName, RapidLoadMode.Replace) ;
aTask.LoadModuleFromFile (aModFileName, RapidLoadMode.Add) ;

}

catch (ArgumentException ex)

{

return;

Continues on next page

3HAC028083-001 Revision: D 245

7 Using the PC SDK

7.5.6. Working with RAPID modules and programs

Continued

NOTE!

All program filesmust reside in thefile system of the controller and not locally onthe PC. In
order to load a program from the PC you must first download it to the controller by using the
FileSystem.PutFile method. See Saving files on page 265 for details.

NOTE!

If the User Authorization System of the controller is used by the PC SDK application, it is
required that the logged on user hasthe UAS grant UAS_RAPID_LOADPROGRAM toload
and unload RAPID programs. Seethe PC SDK Referencefor further information about which
grants are necessary for a specific PC SDK method.

Save programs and modules

You can save programs using the Task . SaveProgramToFile method and a single module
by using the Module . SaveToFile method.

To unload a program after it has been saved to file you call beleteProgram().
VB:

Dim TaskCol As Task() = AController.Rapid.GetTasks/()

Dim AnObject As Object

For Each AnObject in TaskCol
ATask = DirectCast (AnObject, Task)
ATask.ProgramName = ATask.Name
ATask.SaveProgramToFile (SaveDir)
ATask.DeleteProgram()

Next

C#:

Task[] taskCol = aController.Rapid.GetTasks() ;

foreach (Task aTask in taskCol)

{

aTask.ProgramName = aTask.Name;
aTask.SaveProgramToFile (saveDir) ;

aTask.DeleteProgram() ;

In this example amoduleis saved to file:
VB:

AModule.SaveToFile (AFilePath)
C#

aModule.SaveToFile (aFilePath) ;

ResetProgramPointer method

Using Reset ProgramPointer YOU can set the program pointer to the main entry point of
the task.

VB:

ATask.ResetProgramPointer ()

Continues on next page

246

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK
7.5.6. Working with RAPID modules and programs

Continued

C#:

aTask.ResetProgramPointer () ;

Start program
Starting program execution in the robot controller can only be done in automatic operating
mode. There are several overloaded start methodsto use, the simplest way to start RAPID
execution of a controller task is:
VB:
ATask.Start ()
C#.

aTask.Start () ;

NOTE!

ﬂ If your application uses the User Authorization System of the controller (see User
Authorization System on page 70) you should also check that the current user has the grant
UAS RAPID_EXECUTE before calling the start method.

Execution change event
It is possible to subscribe to events that occur when a RAPID program starts and stops. It is
done like this:
VB:

AddHandler AController.Rapid.ExecutionStatusChanged, AddressOf
UpdateUI

CH

aController.Rapid.ExecutionStatusChanged += UpdateUI;

See Avoiding threading conflicts on page 259and Letting the user know that RAPID data has
changed on page 224 for information about how to write the event handler that is needed to
update the GUI due to a controller event.

3HAC028083-001 Revision: D 247

7 Using the PC SDK

7.5.7. Enable operator response to RAPID Ul-instructions from a PC

7.5.7. Enable operator response to RAPID Ul-instructions from a PC

Remote operator dialog

RAB 5.12 supports operator dial ogs to be launched on a PC instead of the FlexPendant when
RAPID Ul- and TP-instructions are executed. In this chapter thisnew featureisreferred to as
Remote operator dialog. It enables an operator to give the feedback required by the RAPID
program from a PC instead of using the FlexPendant.

NOTE!
H Remote operator dialog can only be used with RobotWare 5.12 and | ater.

Supported RAPID instructions
The following RAPID instructions are supported:

UlinstructionType

UlAlphaEntry
UlListView
UlMessageBox
UIMsgBox
UINumEntry
UINumTune
TPErase
TPReadFK
TPReadNum
TPWrite

The PC SDK UIInstructionType enumeration definesthe different RAPID instructions
listed above. For adescription of each instruction type, see PC SDK Reference. Below isan
example of such a description.

Example Ul InstructionType.UIAlphaEntry :

Member Description

UlAlphaEntry The UlAlphaEntry (User Interaction Alpha Entry) is used to let

an operator communicate with the robot system via RAPID, by
enabling him to enter a string from the FlexPendant or from a
PC SDK application. After the operator has entered the text, it is
transferred back to the RAPID program by calling UlAlphaEn-
tryEventArgs.SendAnswer.

Continues on next page

248

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

v

Increased flexibility

7.5.7. Enable operator response to RAPID Ul-instructions from a PC
Continued

TIP!

For complete information about the usage in RAPID refer to RAPID Technical reference
manual (easily accessed from within RobotStudio for example).

Making use of the Remote operator dialog feature, the end-user of the robot system can
choose whether to use the FlexPendant or the PC SDK application to answer aRAPID Ul- or
TP-instruction.

The FlexPendant will always show the operator dialog the usual way. If the operator responds
from the PC the message on the FlexPendant will disappear.

NOTE!

Likewise, the dialog of the PC SDK application should disappear if the operator chooses to
respond from the FlexPendant. This is handled by the PC SDK programmer.

Basic approach

The basic procedure for implementing Remote operator dialog in a PC SDK applicationis
shown below. The same approach is used internally by the FlexPendant when it launchesits
operator view.

Step Action
1 Set up a subscription to UIInstructionEvent.
2 In the event handler check the UTInstructionEventType from the event

arguments. If Post or Send create an operator dialog by using the information
provided by the event arguments.

3 To transfer the response of the end-user to the RAPID program call the
SendAnswer method of the specialized UIInstructionEventArgs object.

4 Remove any existing operator dialog if you get a UIInstructionEvent of
UIInstructionEventType.Abort.

Continues on next page

3HAC028083-001 Revision: D 249

7 Using the PC SDK

7.5.7. Enable operator response to RAPID Ul-instructions from a PC

Continued

NOTE!

Remember that controller events are always received on a background thread and that you
need to enforce execution to the GUI thread by the use of 1nvoke before launching the
operator dialog. See Controller events and threads on page 67 for details.

UllnstructionEvent

v

To be notified when a Ul-instruction event has occurred in the controller, you need to set up
asubscription to UTInstructionEvent. To do that you usethe UIInstruction property
of therRapid class, like this:

Controller ¢ = new Controller();

c.Rapid.UIInstruction.UIInstructionEvent += OnUIInstructionEvent;

TIP!

For a code example including an event handler see UllInstructionEvent in the PC SDK
Reference.

Ulinstruction event arguments

To create the dialog in accordance with the arguments of the RAPID instruction and to
transfer the response of the operator back to the executing RAPID program, you use the
information of the event arguments.

UlinstructionEventArgs

TheUIInstructionEventArgs oObject holdsinformation about which RAPID task and
which Ul- or TP-instruction triggered the event. The picture below shows all
UIInstructionEventArgs Members.

Continues on next page

250

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.7. Enable operator response to RAPID Ul-instructions from a PC

Continued

E? ABB Robotics IRCS PC 5DK 1 =] S

ERE R A

Show Locate Back Forward Home Print Options

ABB Robotics IRCS PC 50K | [Tl SN TR RA[5

UIInstructionEventArgs Members
UllnstructionEventérgs Class | Public Properties

B Callapse all
The following tables list the members exposed by UIInstructionEventargs.

|v

= Class
UllnstructionEventirgs Class

=l Public Properties

MName Description

e EventMessage Any additional text specified by instruction

oy Executionlevel Task execution level

ﬁ‘ Instruction Mame of the instruction e.g. TPWrite,
UIMessageBox

oy InstructionEventType UI-Instructions are either sent with POST or
SEMD. An ABORT event is sent when a SEND
instruction is aborted,

ﬁ‘ InstructionType UI instruction type. -

oy StackUrl URL to task or task stack

g TaskMame RAPID task name

1] | o

7571

UIInstructionEventArgs iSabase classof several specialized classes, onefor each Ul-
and TP- instruction. The specialized class holds the additional information needed to create
the operator dialog, so type casting the UIInstructionEventArgs object to the correct
speciaized typeis necessary. To do that you first check the InstructionType property,
which you can see in the picture above.

Continues on next page

3HAC028083-001 Revision: D 251

7 Using the PC SDK

7.5.7. Enable operator response to RAPID Ul-instructions from a PC

Continued

UlListViewEventArgs

Asan example of a specialized type, the members of the UTListViewEventArgs classare
shown below. TheButtons and List Items propertiesare of course crucial for creating the
operator dialog.

ABB Robotics IRCS PC DK [ohe . T []5]

UIListViewEventArgs Members
UIListViewEventargs Class | Public Methods | Public Properties

El Collapse all
=l Class

UlListViewEventArgs Class

=l Public Methods

Name Description

1] SendAnswer Send selection to ListWiew,

=l Public Properties

Name Description
o BtnArray User defined buttons stored in an array.

Only one of parameter Buttons or BtnArray
can be used at the same time.

o Buttons Defines the buttons to be displayed.

o Defaultindex The default selection in the list, corresponds
to the index of the itern in the array
specified in the parameter Listlterns,

ﬁ“‘ EventMessage Any additional text specified by instruction

o Executionlevel Task execution level

o Header Header text to be written at the top of the
message box,

o Icon Defines the icon to be displayed.

o Instruction Marne of the instruction e.q. TPWrite,
UIMessageBox

o InstructionEventType UI-Instructions are either sent with POST ar
SEMD. An ABORT event is sent when a SEND
instruction is aborted.

o InstructionType UT instruction type.

o ListIterns An array with one or several list items to be
displayed.

o StackUrl URL to task or task stack

o TaskMarme RAPID task name

7572

UlinstructionEventType

An important property in the picture aboveisUIInstructionEventType. It isinherited
from the base class and comes with all Ul- and TP- instruction events.

The table shows the members of the UIInstructionEventType enumeration.
Member Description

Undefined Undefined. Should not occur.

Post Post event type, e.g. TPWrite, TPErase. When the event is of this type RAPID
expects no response from the operator.

Continues on next page

252

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.5.7. Enable operator response to RAPID Ul-instructions from a PC

Continued

Member Description

Send Send event type, e.g. TPReadNum, UlListView. When the event is of this type
the running RAPID program expects feedback from the operator before
execution continuous.

Abort When the controller gets a response from a client (the FlexPendant or a PC
SDK application) it sends an event of Abort type. This tells all subscribing
clients that the Ul-Instruction has been aborted, closed or confirmed by the
operator. When you get an event of this type you should remove any open
operator dialog.

NOTE!
H If the robot system has several RAPID tasksit is of course necessary to keep track of which
operator dialog belongs to which task etc.

A RAPID task can only handle ONE pending send, and it is not guaranteed that an Abort
event will awaysfollow asend event. Therefore, if you receive anew send event from the
same task without a preceding abortevent, you should remove the existing dialog and
display the new one.

SendAnswer method

To transfer the response of the end-user back to the RAPID program you call the
Sendanswer method. See the picture of the UTListViewEventArgs class above.
Sendanswer is called with different arguments depending on the RAPID instruction.

For example, if itisauIalphaEntry instruction you just send the string that the operator
has entered asargument. But if itisauTIListview instruction the sendanswer method will
look like this:

public void SendAnswer (int listItemIdx, UIButtonResult btnRes) ;

NOTE!
H There is no mastership handling involved in using Remote operator dialog.

3HAC028083-001 Revision: D 253

7 Using the PC SDK

7.6. 10 system domain

7.6. 10 system domain

Overview

A robot system uses input and output signalsto control processes. Signals can be of digital,
analog or group signal type. Such 10 signals are accessible using the SDK.

Signal changesin the robot system are often significant, and there are many scenarios where
end-users of the system need notification of signal changes.

To speed up event notification from the controller thereisnew functionality in PC SDK 5.10,
which allows you to set up subscription priorities. This possibility appliesto 1/0 signals and
persistent RAPID data. This mechanism is further described in Implementing high priority
event subscription on page 258.

Accessing sighals

Accessing signalsisdonethrough the cont rol1ler object and its property 10System, which
represents the 10 signal space in the robot controller.

To access asignal you need the system name of the signal. The object that is returned from
the 10System.GetSignal method isof type signal.

VB:
Dim Signall As Signal = AController.IOSystem.GetSignal ("signal
name")
C#:
Signal signall = aController.IOSystem.GetSignal ("signal name") ;

Thereturned signal object has to be typecast to digital, analog or group signal. This
example shows ahow asignal of typepigitalSignal iscreated:

VB:
Dim DISig As DigitalSignal = DirectCast(Signall, DigitalSignal)
C#:

DigitalSignal diSig = (DigitalSignal) signall;

This example shows ahow an analogSignal iscreated:
VB:

Dim AISig As AnalogSignal = DirectCast (Signall, AnalogSignal)
C#:

AnalogSignal aiSig = (AnalogSignal) signall;

This example shows ahow aGroupSignal iscreated:
VB:

Dim GISig As GroupSignal = DirectCast (Signall, GroupSignal)
C#:

GroupSignal giSig = (GroupSignal) signall;

Continues on next page

254

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.6. 10 system domain

Continued

NOTE!
H Remember to call the Dispose method of the signal when it should no longer be used.

Getting signals using SignalFilter
Instead of just getting one signal at atime you can get asignal collection using asignal filter.
Someof thesignalFilter flagsare mutually exclusive, e.g. SignalFilter.Analog and
SignalFilter.Digital. Othersareinclusive e.g. SignalFilter.Digital and
SignalFilter.Input. You can combine the filter flagsusing the“|” character in C# and
the or operator in VB:

VB:
Dim ASigFilter As SignalFilter = SignalFilter.Digital Or
SignalFilter.Input
Dim Signals As SignalCollection =
AController.IOSystem.GetSignals (ASigFilter)
CH#:

SignalFilter aSigFilter = SignalFilter.Digital |
SignalFilter.Input;

SignalCollection signals =
aController.IOSystem.GetSignals (aSigFilter) ;

This piece of code iterates the signal collection and adds all signalsto arL.istview control.
Thelist has three columns displaying signal name, type and value:

VB:

For Each ASignal As Signal In Signals
Item = New ListViewItem(ASignal.Name)
Item.SubItems.Add (ASignal.Type.ToString())
Item.SubItems.Add (ASignal.Value.ToString())
Me.ListViewl.Items.Add (Item)

Next

C#:

foreach(Signal signal in signals)

{
item = new ListViewItem(signal.Name) ;
item.SubItems.Add(signal.Type.ToString()) ;
item.SubItems.Add(signal.Value.ToString()) ;
this.listViewl.Items.Add (item) ;

}

If the signal objects are no longer needed they should be disposed of:

VB:

For Each ASignal As Signal In Signals
ASignal .Dispose ()
Next

Continues on next page
3HAC028083-001 Revision: D 255

7 Using the PC SDK

7.6. 10 system domain

Continued

C#:
foreach(Signal signal in signals)

{

signal.Dispose() ;

Reading 10 signal values
These examples show how to read a digital and an analog signal.

Digital signal
This piece of code reads the digital signal DO1 and checks a checkbox if the signal value is
1 (ON):
VB:

Dim Sig As Signal = AController.IOSystem.GetSignal ("DO1")
Dim DigitalSig As DigitalSignal = DirectCast (Sig, DigitalSignal)
Dim val As Integer = DigitalSig.Get
If val = 1 Then
Me.CheckBoxl.Checked = True
EndIf

Signal sig = aController.IOSystem.GetSignal ("DO1") ;
DigitalSignal digitalSig = (DigitalSignal)sig;

int val = digitalSig.Get () ;

if (val == 1)

{

this.checkBoxl.Checked = true;

Analog signal
This piece of code reads the value of the analog signal AO1 and displaysit in atextbox:

VB:
Dim Sig As Signal = AController.IOSystem.GetSignal ("AOL1")
Dim AnalogSig As AnalogSignal = DirectCast (Sig, AnalogSignal)
Dim AnalogSigVal As Single = AnalogSig.Value
Me.TextBoxl.Text = AnalogSigVal.ToString()

C#:

Signal sig = aController.IOSystem.GetSignal ("AO1") ;
AnalogSignal analogSig = (AnalogSignal)sig;

float analogSigVal = analogSig.Value;
this.textBoxl.Text = analogSigVal.ToString() ;

Continues on next page
256 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.6. 10 system domain

Continued

Writing 10 signal values

This section shows how the value of adigital or an analog 10 signal can be modified by a
RAB application.

NOTE!
ﬂ In manual mode asignal value can be modified only if the Access Level of thesignal iSALL.
If not, the controller has to be in auto mode.

Digital signal
This piece of code changesthe value of adigital signal in the controller when the user checks/
unchecks a checkbox:
VB:

Private Sub CheckBoxl Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles CheckBoxl.Click

If Me.CheckBoxl.Checked Then
DigitalSig.Set ()
Else
DigitalSig.Reset ()
End If
End Sub

C#:
private void checkBoxl Click(object sender, EventArgs e)

{

if (this.checkBox1l.Checked)

{

digitalSig.Set () ;

}

else

{

digitalSig.Reset () ;

NOTE! You can also set the value using the value property.

Analog signal
This piece of code writes the value entered in atext box to the analog signal AOL. Thevalue
is converted from string to afloat before it is written to the controller:

VB:

Dim AnalogSigVal As Single = Convert.ToSingle (Me.TextBoxl.Text)
AnalogSig.Value = AnalogSigVal

Continues on next page

3HAC028083-001 Revision: D 257

7 Using the PC SDK

7.6. 10 system domain

Continued

CH.

float analogSigVal = Convert.ToSingle (this.textBoxl.Text) ;
analogSig.Value = analogSigval;

Listening to signal changes
Onceasignal object isavailableit is possible to add a subscription to its Changed event,
whichistriggered at asignal change such as changed value, changed simulated status or
changed signal quality.

Visual Basic
Friend WithEvents Sig As AnalogSignal
AddHandler Sig.Changed, AddressOf AISig Changed
Private Sub Sig Changed(sender As Object, e As
SignalChangedEventArgs) Handles Sig.Changed
End Sub
C#

this.sig.Changed += sig_ Changed;

private void sig Changed(object sender, SignalChangedEventArgs e)

{}

Start and stop subscriptions
It is recommended that you activate and deactivate subscriptionsto the changed event if
these are not necessary throughout the lifetime of the application:
VB:

AddHandler Sig.Changed, AddressOf Sig Changed
RemoveHandler Sig.Changed, AddressOf Sig Changed

Ct#:

this.sig.Changed += sig_Changed;
this.sig.Changed -= sig Changed;

Implementing high priority event subscription

To speed up event notification from the controller it is possibleto set up subscription priorities
for 1/0 signals. To do thisyou use the subscribe method and the enumeration
EventPriority asargument. The example shows an ordinary signal subscription and a
subscription with high priority:
VB:

AddHandler Sig.Changed, AddressOf Sig Changed

Sig.Subscribe (AddressOf Sig Changed, EventPriority.High)

Continues on next page
258 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.6. 10 system domain

Continued

Ct:

signal.Changed += sig_ Changed;
signal.Subscribe (sig Changed, EventPriority.High) ;

To deactivate subscriptions with high priority you call the unsubscribe method like this:
VB:

sig.Unsubscribe (AddressOf sig Changed)
C#:

signal.Unsubscribe (sig Changed) ;

Limitations for high priority events
High priority subscriptions can be used for 1/0 signals and RAPID data declared PERS. The
controller can handle 64 high priority subscriptions.

Avoiding threading conflicts
It isimportant to keep in mind that all controller events use their own threads, which are
different from the application GUI thread. This can cause problemsif you want to display
signal changes in the application GUI. See Controller events and threads on page 67 for
further information.

If an update of the user interface is not necessary, you do not need to take any special action,
but can execute the event handler on the event thread. If, however, you need to show to the

user that the signal has changed you should use the Invoke method. It forces execution to the
window control thread and thus provides a solution to potential threading conflicts.

VB:

Me . Invoke (New EventHandler (AddressOf UpdateUI), New Object ()
{sender, e})
C#:
this.Invoke (new EventHandler<SignalChangedEventArgss> (UpdateUI),
new Object[] { sender, e });
Reading the new value
The signalChangedEventArgs oObject hasaNewSignalsState property, which has
information about signal value, signal quality and whether the signal is simulated or not:
VB:
Private Sub UpdateUI (ByVal Sender As Object, ByVal e As
SignalChangedEventArgs)
Dim State As SignalState = e.NewSignalState
Dim val As Single
Val = State.Value
Me.TextBoxl.Text = Val.ToString()

End Sub

Continues on next page

3HAC028083-001 Revision: D 259

7 Using the PC SDK

7.6. 10 system domain

Continued

CH.

private void UpdateUI (object sender, SignalChangeEventArgs e)

{

SignalState state = e.NewSignalState;

float val = state.Value

this.textBoxl.Text = val.ToString()

NOTE!

Thereis no guarantee you will receive an initial event when setting up the subscription. To
get initial information about the value of asignal you should read it using the value property.

NOTE!

Make sure the subscription is removed before you dispose of the signal. See Memory
management in PC applications on page 213 for further information.

260 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.7. Event log domain

7.7. Event log domain

Overview

Event log messages may contain information about controller status, RAPID execution, the
running processes of the controller etc.

Using the SDK it is possible to either read messages in the queue or to use an event handler
that will receive acopy of each new log message. An event log message contains queue type,
event type, event time, event title and message.

Accessing the controller event log

You access the event log domain through the controller property EventLog.
VB:

Private Log As EventLog = AController.EventLog
C#:

private EventLog log = aController.EventLog;

Accessing event log

categories

All event log messages are organized into categories. To search for anindividual messageyou
haveto know what category it belongsto. The enumeration type, CategoryType, definesall
available categories. You can get a category either by using the method Getcategory or by
using the categories property, which is an array of all available categories.

VB:

Dim Cat As EventLogCategory
Cat = Log.GetCategory (CategoryType.Program)

or
Cat = Log.Categories (4)
CH:
EventLogCategory cat;
cat = log.GetCategory (CategoryType.Program) ;
or
cat = log.GetCategory[4];
NOTE!

The EventLogCategory should be disposed of when it is no longer used.

Accessing event log

messages

To access a message you use the Messages property of the category object. A collection
of messages isreturned. The collection implementsthe 1Collection and IEnumerable
interfaces , which means you can use the common operations for collections. Accessis done
either using an index or by iterating using foreach.

VB:

Dim Msg As EventLogMessage = Cat.Messages (1)

Continues on next page

3HAC028083-001 Revision: D 261

7 Using the PC SDK

7.7. Event log domain

Continued

or

Dim Msg As EventLogMessage
For Each Msg In Cat.Messages
Me.TextBoxl.Text = Msg.Title

Next Item

C#:
EventLogMessage msg = cat.Messages[1];
or

foreach (EventLogMessage msg in cat.Messages)

{

this.textBoxl.Text = msg.Title;

MessageWritten event

Itis possible to add an event handler that is notified when a new messagesis written to the
controller event log. Thisis done by subscribing to the EventLog event MessageWritten.

The event argument is of type MessageWrittenEventArgs and has aMessage property,
which holds the latest event |og message.

VB:
Private Sub Log MessageWritten (sender As Object, e As
MessageWriEtenEventArgs) Handles Log.MessageWritten
Dim Msg As EventLogMessage = e.Message
End Sub
C#:
private void log MessageWritten(object sender,
MessageWriﬁEenEventArgs e)
{
EventLogMessage msg = e.Message;
}
NOTE!

If the application user interface needsto be updated as aresult of the event, you must delegate
thisjob to the GUI thread using the 1nvoke method. See Invoke method on page 68 for
further information and code samples.

TIP!
Find out more about the EventLogbomain in the PC SDK Reference help.

262

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.8. Motion domain

7.8. Motion domain

Overview
The Mot i onDomain namespace lets you access the mechanical units of the robot system.

Motion system
You access the motion system by using the Controller property MotionSystem.
VB:
Private AMotionSystem As MotionSystem

AMotionSystem = AController.MotionSystem

C#

private MotionSystem aMotionSystem;

aMotionSystem = aController.MotionSystem;

By using the Mot ionSystem object you can, for example, use its SpeedrRatio property to
find out about the current speed of the rabot.

Accessing Mechanical units
The mechanical units can be of different types, e.g. arobot with a TCP, amultiple axes
manipulator or asingle axis unit. All these are avail able through the MotionSystem property
MechanicalUnits. If only the currently active mechanical unit is of interest you had better
usethe ActiveMechanicalUnit property.

VB:

Dim AMechCol As MechanicalUnitCollection =
AController.MotionSystem.MechanicalUnits
Dim AMechUnit As MechanicalUnit =
AController.MotionSystem.ActiveMechanicalUnit;
C#:
MechanicalUnitCollection aMechCol =
aController.MotionSystem.MechanicalUnits;

MechanicalUnit aMechUnit =
aController.MotionSystem.ActiveMechanicalUnit;

Mechanical unit properties and methods
There are numerous properties available for the mechanical unit, e.g. Name, Mode1l,
NumberOfAxes, SerialNumber, CoordinateSystem, MotionMode, IsCalibrated
Tool and WorkObject €tc. Itisalso possibleto get the current position of amechanical unit
aSaRobTarget OF JointTarget

VB:

Dim ARobTarget As RobTarget =
AController.MotionSystem.GetActiveMechanicalUnit.GetPositio
n(CoordinateSystemType.World)

Dim AJointTarget As JointTarget =
AController.MotionSystem.ActiveMechanicalUnit.GetPosition/()

Continues on next page
3HAC028083-001 Revision: D 263

7 Using the PC SDK

7.8. Motion domain

Continued
C#:
RobTarget aRobTarget =
aController.MotionSystem.GetActiveMechanicalUnit.GetPositio
n (CoordinateSystemType.World) ;
JointTarget adJointTarget =
aController.MotionSystem.ActiveMechanicalUnit.GetPosition ()
TIP!
Q Find out more about the Mot i onDomain in the PC SDK Reference help.
264 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.9. File system domain

7.9. File system domain

Overview

Using the SDK it is possibleto create, save, |oad, rename and del ete filesin the controller file
system. It is also possible to create and delete directories.

Accessing files and directories

You access the file system domain through the Controller property FileSystem.
VB:

Private AFileSystem As FileSystem = AController.FileSystem
CH:

FileSystem aFileSystem = aController.FileSystem;

Controller and PC directory

You can get and set the directory on the controller and on the local PC system using the
RemoteDirectory and LocalDirectory properties.

VB:

Dim RemoteDir As String = AController.FileSystem.RemoteDirectory

Dim LocalDir As String = AController.FileSystem.LocalDirectory

string remoteDir = aController.FileSystem.RemoteDirectory;

string localDir = aController.FileSystem.LocalDirectory;

Environment variables

Loading files

When specifying file system paths you can use environment variables to denote the HOME,
system, backup and temp directories of the currently used system. When an application uses
“(BACKUP)$" it isinternaly interpreted as the path to the backup directory of the current
system. The other environment variables are: HOME, TEMP and SY STEM.

You can load afile from the controller to the PC using the cet File method. The method
generates an exception if the operation did not work. The arguments are complete paths
including filenames.
VB:
AController.FileSystem.FileSystem.GetFile (RemoteFilePath,
LocalFilePath)
C#.

aController.FileSystem.GetFile (remoteFilePath, localFilePath) ;

Saving files

You can save afile on the controller file system by using the put Fi1e method. The method
generates an exception if the operation did not work. The arguments are complete paths
including filenames.

VB:

AController.FileSystem.PutFile (LocalFilePath, RemoteFilePath)

Continues on next page

3HAC028083-001 Revision: D 265

7 Using the PC SDK

7.9. File system domain

Continued

CH.

aController.FileSystem.PutFile (localFilePath, remoteFilePath) ;

CopyFile and CopyDirectory
TherutFile / GetFile methods generate a copy of afile and transfer it to or from the
controller file system. Using the copyFile and CopyDirectory YOU Can create a copy
directly on the controller:
VB:

AController.FileSystem.CopyFile (FromFilePath, ToFilePath)

AController.FileSystem.CopyDirectory (FromDirPath, ToDirPath)
C#:

aController.FileSystem.CopyFile (fromFilePath, toFilePath) ;

aController.FileSystem.CopyDirectory (fromDirPath, toDirPath) ;

Getting multiple files and directories
The FileSystem class hasamethod called GetFilesAndDirectories. It can be used to
retrieve an array of ControllerFileSystemInfo objectswith information about
individual filesand directories. The controllerFileSystemInfo oObject can then be cast
to either acontrollerFileInfo Object or aControllerDirectoryInfo object.

This example uses search pattern to limit the search.

VB:
Dim AnArray As ControllerFileSystemInfo()
Dim info As ControllerFileSystemInfo
AnArray = AController.FileSystem.GetFilesAndDirectories ("search
pattern")
Dim I As Integer
For I = 0 To array.Length -1
info = AnArray(I)
Next
C#:

ControllerFileSystemInfo[] anArray;
ControllerFileSystemInfo info;

anArray = aController.FileSystem.GetFilesAndDirectories ("search
pattern") ;

for (int i=0;i<anArray.Length;i++)
info = anArrayl[il;

Continues on next page
266 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.9. File system domain

Continued

Using search patterns
Asseen in the example above, you can use search patternsto locate filesand directories using
the GetFilesAndDirectories method. The matching process follows the Wildcard
pattern matching in Visual Studio. Thisisabrief summary:

Character in pattern Matches in string

? Any single character
L Zero or more characters
Any single digit (0-9)
[charlist] Any single character in charlist
['charlist] Any single character not in charlist
TIP!
Q Find out more about the FileSystembomain inthe PC SDK Reference help.

3HAC028083-001 Revision: D 267

7 Using the PC SDK

7.10. Messaging domain

7.10. Messaging domain

Overview

RobotWare option

TheMessaging domain of the PC SDK can be used to send and receive data between a PC
SDK application and a RAPID task.

The corresponding RAPID functionality, RAPID Message Queue, includesRAPID datatypes
and RAPID instructions and functions for sending and receiving data. It enables
communication between RAPID tasks or between a RAPID task and a RAB application.

This chapter provides information about how to implement messaging in a PC SDK
application. To make it work it is necessary to do part of theimplementationin RAPID. In
order to show how this can be done asimple but complete code examplein C#and RAPID is
provided at the end of the chapter.

NOTE!

See Application manual - Robot communication and 1/0 Control for detailed information
about how to implement messaging in RAPID.

Thefunctionality in RAPID that is needed to utilize messaging - RAPID Message Queue- is
included in the RobotWare options PC I nterface, FlexPendant I nterface and Multitasking. As
PC Interfaceisrequired on arobot controller to be used with a PC SDK client, this means no
extraoption is needed to start using RAPID Message Queue with a PC SDK application.

Messaging illustration

Theillustration shows possible senders and receiversin the robot system. The arrows
represent ways to communicate by posting a message to a queue.

RAB client

r
Robot
| controller

—_—— — —_— —_— —_— —_— —_— — —

| FlexPendant

RAB client

Queue

RAPID Task

en0700000430

Continues on next page

268

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.10. Messaging domain

Continued

NOTE!
ﬂ In principle, messages might aswell be sent between aPC SDK client and aRAB application
running on the FlexPendant.
NOTE!
H The messaging functionality of the FlexPendant SDK has not yet been made public, but in

RAB 5.11 amechanism has been implemented, which allows advanced usersaccesstoit. You
should contact support if you need information about how to useit.

Benefits
Together with RAPID Message Queue the functionality of the Messaging domain represent
anew, flexible way for a RAB application to interact with a RAPID task.
Messaging is usually done when a RAPID task is executing, but it is also possibleto send a
message to a RAPID task when it has been stopped. The RAPID interrupt will then occur
once the RAPID task has been started.
An simple example of usage would beto set aflag from aRAB application in order to control
the program flow in the RAPID program.
NOTE!

ﬂ Sending messages can be done in both manual and auto mode. As opposed to using

Rapidpata to modify a RAPID variable no mastership is required.

The Messaging namespace
The Microsoft Windows operating system provides mechanisms for facilitating
communications and data sharing between applications. Collectively, activities enabled by
these mechanisms are called Interprocess communications (1PC).

These are the classes and enumerations available in the Messaging namespace:

Continues on next page
3HAC028083-001 Revision: D 269

7 Using the PC SDK

7.10. Messaging domain

Continued
ABB.Robotics.Controllers.Messaging Namespace
Classes | Enurnerations
E Collapse All
This is namespace ABB.Robotics Controllers.Messaging.
- Classes
Name Description
“ Ipc This class is the entry point to the IPC functionality
the robot controller,
i IpcMessage Represents an Ipc message,
“ IpcQueue This type represents an Ipc queue and can be used
send and receive data to and from the controller an
its clients,
=/ Enumerations
Name Description
= IpcMessageType Defines the type of an Ipc message,
5 IpcReturnType Defines commaon results of calls to Ipc methods,
791
Continues on next page
270 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.10. Messaging domain

Continued

The 1pc classis used to handle message queues with methods like GetQueue,
CreateQueue, DeleteQueue etc. When you havean IpcQueue Obj ect you can useitssend
method to send an IpcMessage toaRAPID task or itsrReceive method to receive amessage
from aRAPID task.

When sending amessage you use an existing queue in the controller asthe IpcQueue object.
The naming principle of queuesin the controller is using the name of the corresponding task
prefixed with“RMQ_", eg“RMQ_T_ROB1". To be ableto receive amessage from RAPID
you must first create your own message queue and use that object with the Receive method.

NOTE!
ﬂ When the execution context in aRAPID task islost, e.g. when the program pointer is moved
to main, the corresponding queue is emptied.

Basic approach

To utilize messaging in a PC SDK application you need to do the implementation both in
RAPID and in the PC application.

Thisisthe general approach for sending data from a PC application and receivingitina
RAPID task:

1. Inthe PC application connect to the queue of the RAPID task.
2. Create the message.

3. Send the message.
4

. Inthe RAPID program set up atrap routine that reads the message. Connect an
interrupt so that the trap routineis called each time a new message appears.

For a compl ete code example using this scenario see Code example on page 274.

Continues on next page

3HAC028083-001 Revision: D 271

7 Using the PC SDK

7.10. Messaging domain

Continued

What can be sent in a message?

In RAPID thereisarmgmessage data type.Inthe PC SDK the corresponding typeis
IpcMessage. AN IpcMessage object storesthe actual datain the message, but also
information about message size, who the sender is etc.

The datain a message is a pretty-printed string with data type name (and array dimensions)
followed by the actual datavalue. Thedatatype can beany RAPID datatype. Arraysand user
defined records are allowed.

Message data - examples:
“robtarget;[[930,0,1455],[1,0,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]"
“string;“Hello world!"”

“num;23”

“bool;FALSE”

“bool{ 2, 2};[[TRUE, TRUE],[FAL SE,FAL SE]]"

“msgrec;[100,200]” (user defined data type)

The method TpcMessage . SetData isused to fill the TpcMessage with the appropriate
data. Likewise, the cetData method retrieves the data from an I1pcMessage object.

NOTE!

The IpcMessage.Data isset and retrieved asabytearray, SetData (byte[] data)
andbyte[] GetData (). Thismeansyou must convert the message data string to a byte
array before calling the setData method. It may look like thisin C#:

Byte[] data = new UTF8Encoding() .GetBytes ("string;\"Hello world\"") ;
See Code example on page 274 for afew other examples.
NOTE!

The RAPID program can specify what RAPID datatype it expects to receive by connecting
it toaTRAP routine. A message containing data of a datatype that no interrupt is connected
to will be discarded with only an event log warning.

RAPID Message Queue system parameters

Thisisabrief description of each system parameter of RAPID Message Queue. For further
information, seethe respective parameter in Technical reference manual - System parameters.

These parameters belong to the Task type in the Controller topic:.
Parameter Description

RmqType The following values are possible:

* None - Disables the RAPID Message Queue functionality in this
RAPID task. This is the default value.

* Internal - Enables the RAPID Message Queue for local usage on
the controller.

* Remote - Enables the RAPID Message Queue for local usage
and for PC and FlexPendant applications.

Continues on next page

272

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.10. Messaging domain

Continued

Parameter Description

RmgMode * Interrupt mode - A message can be received either by
connecting a trap routine to a specified message type or by using
the send-wait functionality. Any messages that are not the
answer to an active send-wait instruction or have the type
connected to a trap routine will be discarded. This is the default
mode.

e Synchronous mode - All messages will be queued and can only
be received through the new read-wait instruction
RMQReadWait. No messages will be discarded unless the
gueue is full. The send-wait instruction is not available in this
mode. New mode from 5.12.
RmgMaxMsgSize = The maximum data size, in bytes, for a message. The default value is
350. The value cannot be changed in RobotStudio or on the FlexPen-
dant.

RmgMaxNoOfMsg Maximum number of messages in queue. The default value is 5. The
value cannot be changed in RobotStudio or on the FlexPendant.

NOTE!

To read the values of these system parameter from the PC SDK you use the TpcQueue
propertieSRemoteAccessible, MessageSizeLimit and Capacity.

Remote RmqType

The system parameter RmqType must be set to Remote to enable messaging between RAPID
and RAB:

ik 1 1D G Manual Guard Stop E]
"I. I. Sys5_12_92{Packaging Test..}) Stopped {Speed 100%) x

Control Panel - Configuration - Task - T_ROB1

Name: T_ROB1

Tap a parameter twice in order to modify it.

Parameter Name Value 4to9oft
Main entry main

Check unsolved references 1

MotionTask YES

Use Mechanical Unit Group

RM) Type Remote

RMQ Mode Interrupt

OK Cancel
g Capti I 1
= %
792

Continues on next page

3HAC028083-001 Revision: D 273

7 Using the PC SDK

7.10. Messaging domain

Continued

Code example

This simple messaging example can be tested with avirtual or areal controller. The system
parameter RmgType must be set to Remote as shown in RAPID Message Queue system
parameters on page 272.

The following code sample creates a message and sendsiit to a RAPID task, which reads it
and setsaRAPID variable accordingly. Then an “Acknowledged” messageis sent back to the
PC SDK queue. Finally, the PC SDK application launchesthe received messagein aMessage
Box.

PC SDK - C#
A messageiscreated and sent to the RAPID queue“RMQ_T_ROB1”. An answer messageis
then received from RAPID and launched in a Message Box.
C#:
//declarations
private Controller c;
private IpcQueue tRoblQueue;
private IpcQueue myQueue;
private IpcMessage sendMessage;
private IpcMessage recMessage;
//initiation code, eg in constructor
¢ = new Controller(); //default ctrl used here (App.config)
//get T _ROB1 queue to be able to send msgs to RAPID task
tRoblQueue = c.Ipc.GetQueue ("RMQ T ROB1");
//create my own RAB queue to be able to receive msgs
if (!c.Ipc.Exists("RAB Q"))
{
myQueue = c.Ipc.CreateQueue("RAB Q", 5, Ipc.IPC MAXMSGSIZE) ;
myQueue = c.Ipc.GetQueue ("RAB Q") ;
Continues on next page
274 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.10. Messaging domain

Continued

//Create IpcMessage objects for sending and receiving
sendMessage = new IpcMessage() ;

recMessage = new IpcMessage() ;

//in an event handler, eg. button Click
SendMessage (true) ;
CheckReturnMsg () ;

public void SendMessage (bool boolMsg)
{

Byte[] data = null;

//Create message data

if (boolMsg)

{

data

new UTF8Encoding() .GetBytes ("bool; TRUE") ;

}

else

{

data = new UTF8Encoding() .GetBytes ("bool; FALSE") ;

//Place data and sender information in message
sendMessage.SetData (data) ;

sendMessage.Sender = myQueue.Queueld;

//Send message to the RAPID gqueue
tRoblQueue. Send (sendMessage) ;

Continues on next page

3HAC028083-001 Revision: D 275

7 Using the PC SDK

7.10. Messaging domain

Continued

private void CheckReturnMsg ()

{

IpcReturnType ret = IpcReturnType.Timeout;

string answer = string.Empty;

int timeout = 5000;

//Check for msg in the RAB queue

ret = myQueue.Receive (timeout, recMessage) ;

if (ret == IpcReturnType.OK)

//convert msg data to string

answer = new UTF8Encoding () .GetString (recMessage.Data) ;

MessageBox.Show (answer) ;

//MessageBox should show: string;"Acknowledged"

}

else

{

MessageBox.Show ("Timeout!") ;

RAPID

A trap iscreated for amessage of datatypebool. Inthetrap the value of the message datais
assigned to the flag variable. Then an “ Acknowledged” message is sent back to the PC SDK
client. In main the WHILE loop is executed until a message with a TRUE value is received.

MODULE RAB_COMMUNICATION

VAR bool flag := FALSE;

VAR intnum connectnum;

PROC main ()
CONNECT connectnum WITH RABMsgs;
IRMQMessage flag, connectnum;

WHILE flag = FALSE DO

!do something, eg. normal processing...

WaitTime 3;

ENDWHILE

IPC SDK message received - do something...

TPWrite "Message from PC SDK, will now...

IDelete connectnum;

EXIT;

Continues on next page

276

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

7 Using the PC SDK

7.10. Messaging domain

Continued

ENDPROC

TRAP RABMsgs
VAR rmgmessage msg;
VAR rmgheader header;
VAR rmgslot rabclient;
VAR num userdef;

VAR string ack := "Acknowledged";

RMQGetMessage msg;

RMQGetMsgHeader msg \Header:=
header\SenderId:=rabclient\UserDef:=userdef;

Icheck data type and assign value to flag variable
IF header.datatype = "bool" THEN

RMQGetMsgDhata msg, flag;

lreturn receipt to sender

RMQSendMessage rabclient, ack;
ELSE

TPWrite "Unknown data received in RABMsgs...";
ENDIF

ENDTRAP
ENDMODULE

NOTE!
Error handling should be implemented in C#, aswell asin RAPID.

NOTE!

From RW 5.12 thereisanew RAPID instruction, RMQEmpt yQueue that can be used to empty
the queue in atask.

3HAC028083-001 Revision: D 277

7 Using the PC SDK

7.10. Messaging domain

278

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.1. Debug output

8 Debugging and troubleshooting

8.1 FlexPendant - Debugging and troubleshooting

8.1.1. Debug output

Overview
It is possible to get debug output from the FlexPendant by using the network. Thisis useful
for several reasons. It will reveal any exceptions thrown during execution, for example,
providing you with error messages and call stacks. Moreover, it can help you check memory
consumption and memory leaks in your application.
The FP message is packed into anetwork message and sent out on the network as a broadcast
message on port 9998. Such a message can be picked up in different ways:
» Connect ahub on theloca FlexPendant network and connect aPC to it. Use nc.exeto
pick up the messages (nc - lup 9998).
» Themessages sent are also stored in aring-buffer of size 100kB. To read the buffer to
file and store it on the controller, you can use the FlexPendant Command Server. Use
fpemd © -d” .
» Itisalsopossibleto start atask on the controller that listens to port 9998 and displays
all messages in the console buffer. Use command fp_enable_console output.
TIP!
Q For alist of exceptions that the IRC5 Controller may throw, see Exception error codes on
page 292.

Enable debug output
To enable debug output write fpcmd_enable console output inthe controller console
window.

These are the console commands used to enable and disable printouts:

Console command Result

fpcmd_enable_console_output 1 Starts producing printouts from RobotWare to the
robot controller console.

fpcmd_enable_console_output 2 Starts producing printouts from SDK application.

fpcmd_enable_console_output 3 Combines the two above: RW + SDK printouts.

fpcmd_disable_console_output Stops printout to the robot controller console.

The command bel ow can be used to retrieve detailed status of the robot controller, which may
be useful, although it may not be specifically related to your application.

Console command Result

fpemd “-d” Produces a log file with extensive information on
system status to the robot controller file system(hdOa/
temp). Use an ftp client or the File Manager in
RobotStudio to transfer the file to your PC.

Continues on next page

3HAC028083-001 Revision: D 279

8 Debugging and troubleshooting

8.1.1. Debug output

Continued

FlexPendant Command Server

By using the command lineon the controller you can send commandsto the FlexPendant. The
FlexPendant has acommand server that interprets the commands and performs the requested
operation. The syntax for command line commands s fpcmd “ <command>" . The only
command you need to remember is fpcmd " -h", which isthe Help command. It produces a
printout of available FlexPendant commands in the controller console:

->fpemd “-h"value = 8 = 0x8-> [fp]: FlexPendantCmd: Help fpcmd“-h": Help fpcmd
“-a’: Adapter show routine fpcmd“-m”: Measuretimeinadapters fpecmd “-i”: Display
FlexPendant Information ~ fpcmd “-f”: Bring GTPU Servicestofront ~ fpcmd “-x": Hide
startup progress bar fpemd “-s’: Start application fpecmd “-d”: Copy Debug fileto

controller fpcmd“-as’: Printscreen fpemd “-rd”: RobAPI debug ~ fpemd “-restart”:

Continues on next page

280

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.1. Debug output

Continued

Restart Device fpecmd “-memShow”: Available memory fpcmd “-modul€e’: Module
information of a process fpecmd “-filePut”: Upload afile to the FlexPendant fpcmd
“-filleted”: Download afile to the FlexPendant fpcmd “-diarist”: List adirectory

NOTE!

All commands support -? (e.g. fpcmd “ -memShow -?"), which gives further information
about the specific command.

TIP!

It is possible to monitor memory consumption in the robot controller console window:
1. Write fpcmd_enable console output 3.
2. Write fpcmd " -memShow".

See Discover memory |leaks on page 186 for further information.

Trace and Debug

The ABB.Robotics.Diagnostics namespace provides trace and debug services. Its
Trace and Debug classes are specifically designed for the FlexPendant environment.

The properties and methods in the Trace class are used to instrument release builds, which
allowsyou to monitor the health of your application running in areal-life setting. Tracing can
help you to isolate problems and fix them without disturbing a running system.

If you use methods in the Debug class to print debugging information and check your logic
with assertions, you can make your code more robust without impacting the performance and
code size of your shipping product. In Visual Studio, creating a debug build enables bebug.

Trace and Debug give printout information during execution. Messages are displayed on the
FlexPendant screen or in the robot controller console. The functionality is similar to that
provided by the .NetTrace and bebug classes.

The Assert method checks for a condition and displays an assert message on the
FlexPendant, including detailed information and a stack trace, if the condition isfalse. The
message is a so displayed in the controller console window if you enter the command

fpcmd_enable console output first.

NOTE!

AddtheaBB.Robotics.Diagnostics namespacetotheusing section at thetop of your
source codefile.

3HAC028083-001 Revision: D 281

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

8.1.2. Debugging the virtual FlexPendant

Overview

When debugging your application it is often convenient to use the virtual environment, but it
isamost as easy to attach the Visual Studio debugger to the real FlexPendant device. For
information about how that is done see Debugging the FlexPendant device on page 286.

This section describes how to start the VS debugger, attach arunning Virtual FlexPendant to
it, set up break points and step through the source code of a FlexPendant application.

Continues on next page

282

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

Continued

Debugging procedure

Attach to Process

There are several ways of attaching a Visual Studio debugger to a running Virtual
FlexPendant application. In this section one method is described in detail .

There is no way to start your FlexPendant application from inside the Visua Studio
environment. You must start by deploying the application to the Virtual FlexPendant in
RobotStudio. How to do thisis described in Hands on - Hello world on page 86. Then you
start the Virtual FlexPendant and attach the Visual Studio debugger to it.

NOTE!

In order to use break points the project build configuration must be Debug. You set it in the
the Build tab of the Project Properties. The output directory, where you find the assembly
(*.dll), the proxy assembly (*gtpu.dll) and the program database (*.pdb) is the bin/Debug
directory, a sub-directory of your V'S project.

When you have a running application on the Virtual FlexPendant follow these steps:

Step Action

1 In Visual Studio on the Debug menu, select Attach to Process. It brings up this
dialog:
Attach to Process K E3

Tranzport: I Diefault

=
Lualifier: ISEVST-W'-DDD2‘I i} j Browse. .. |

— Tranzport Information

The default transport lets you select processes on this computer or a remate computer running the Microsoft Yisual Studio Bemate
[ebugging Monitor [MSYSkOMN. EXE).

Attach bo: IAutomatic: Managed code Select... |

—Awailable Processe

Process | 1D | Title | Type | Uszer Mame | Session | ;I
undl32. exe 1884 «86 MME&LSEINBRO a
shstat.exe 1820 «86 MME&LSEINBRO a
SMSMon3Zexe 2300 «86 MME&LSEINBRO a
SOUNDMAN.EXE 1948 «86 MME&LSEINBRO a
thmaon. exe 2264 «86 MME&LSEINBRO a
tswctil. exe 1904 «86 MME&LSEINBRO a
uedit32 exe 2772 UlraE dit-32 - [R:\ngelahRABMya mallen_... =86 MMEANSEINBRO 1]
Updaterll.exe 2292] MME&LSEINBRO a
WL T) *irtual FlexPendant . i] i}
w = 1]
wiwindZ2 exe 2440 ‘wordFinder 2000 «86 MME&LSEINBRO a
WiNWORD.EXE 1480 Fakta for R&E. doc - Microsoft Word «86 MME&LSEINBRO a -

™ Show processes from all users Befresh |
Attach I Cancel |

9.1.3 1
Select the Virtual FlexPendant.exe process and press the Attach button.
Set a break point in your source code.

On the Virtual FlexPendant, press a button of your application or something else that
will make program execution hit the breakpoint.

Continues on next page

3HAC028083-001 Revision: D 283

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

Continued
Step Action
5 On the Debug menu, point at Windows and select the debugging information to be
displayed while debugging. See example below:
f—] private wvoid buttonl Click{ochject sender, Eventlirgs g)
{
try
{
if { digSigl '= null)
{
this.tpslabell.Text = _dig3igl.Name:
9
this.tpslabelz.Text = "Read Ctrl: On";
i
else
y ¢
this.tpslabelZ.Text = "Read Ctrl: Off";
}
i
. il
| Mame |Value | Tupe af=iot null™i;
& _digsig1 {ABE.Robatics. Controllers. I0Syster ABE.Robotics, Controllers, I0SystemDomain. D
50 _digSigl. Value 0.0 floak
@ this {TpsViewIRCSApR2S, TpsWiewIRCSA| TpsYiewIRCSADR2S, TpsYiewIRCSADRES
|
| Mame | Lang = | frace) ;
~ TpsWiewIRCSApp2S, di TpsViewIRCSAppZS, TpsWiewIRCSAppZS, button] _Clickinbject sender = {ABE Ry C# =3
| D | Mame | Location || Suspend AI
2788 <Ma Marne = TpsWiewIRCSApP2S, TpsiiewIRCSAPR2S, button 0
1455 MET SystemEvents o
3188 ThreadPool_eventlog i}
3476 ThreadPoolt a
g4 ThreadPoolz2 a
3060 ThreadPool3 a
3480 ThreadPoold]
3496 ThreadPools a
536 EventListener 0
3104 KevEvents 1]
A 3300 HaoldToRun] = J=
913 2
6 On the Debug menu, select the appropriate Step command when stepping through
your code.
7 On the Debug menu, click Detach All or Stop Debugging when you want to stop
debugging.
Continues on next page
284 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.2. Debugging the virtual FlexPendant

Continued
Windows Task Manager
You can also attach a running application through the Windows Task Manager.
Step
1 Start Windows Task Manager and select the Processes tab.
E Windows Task Manager .. - glﬁl
Ble Opbons Wiew Help
Appications Processes | performance |
Image Name | epm] cPu| cPuTime | =]
NES.exe 880 oo 0:00:00
PEQSYE EXE 400 i1} 0:00:00
mskask. exe 16 an 0:00:00
woonsol e Q44 Lili} 0=00:00
portsery . exe 953 oo 0:00:00
Winfgrnk. exe 1036 on 0:00:06
MSPMSPEY . 20 1043 on 0:00:00
swichost. exe 1060 oo D:00:00
cocredmgr . exe 1076 oo 0:00:00
Meshield exe 1200 oo 0:00:31
wigaiclk, gxe 1348 on 0:00:00
UEDIT32.E4E 1388 oo 0:00:00
deverne exe 1408 oo 0:00:09
fodispd. exe 1580 oo 0:00:00
bscrico.exe 1568 i1} 0:00:00
naimagi2, exe 1620 on 0:00:00
RobhetScanHost, 1636 oo 0:00:00
RobW exe 1680 i1} 0:00:06
pdesk.exe 1683 oo 00000
VWICESCOMIT, B 1716 oo 0:00:00
TASKMGR EXE 1900 0o 0:00:00
Wirkual FlaxPen 953
deverny.exe 2016 [il}] 0:00:11
RobComClriSere 2024 oo 0:00:00 |
ninotes. exe 2084 oo 0:00:01 -
1] | o
End Frocess |
9.1.3 3
2 Select the Virtual FlexPendant.exe process and right-click to get the context menu.
In that menu select Debug. You will get a warning message, but select Yes.
3 A Just -In -Time Debugging dialog will appear. Select your application project as

the debugger to use.

Launching debugger programatically
Yet another way of attaching a debugger isto launch it programatically, by writing codein
your application.

Step Action
Insert the following line where you want the debugger to start:
System.Diagnostics.Debugger.Launch ()

Start the application in the Virtual FlexPendant and perform the action which is to
launch the debugger. A Just- In-Time Debugging dialog will appear.

Select your VS project as the debugger. Click OK and start the debug session.

3HAC028083-001 Revision: D 285

8 Debugging and troubleshooting

8.1.3. Debugging the FlexPendant device

8.1.3. Debugging the FlexPendant device

Overview

This section provides information on how to do debug an application executing on the real
FlexPendant device.

In general, using the Visual Studio debugger to debug the device works very well and is
strongly recommended, but depending on the OS, Visual Studio version and FlexPendant
version you are using the requirements for setting up and attaching the Visua Studio
debugger will differ somewhat.

Further information and updates concerning this topic will from this release be published on
the RAB User Forum (and not in the User's Guide). See RAB User Forum on page 288.

Prerequisites

The following requirements have to be met:
* VS 2005 with SP1 is required to debug the FlexPendant without any adaptations.
» ServicePack 1 or 2 for NET Compact Framework 2.0 (NET CF 2.0 SP2) isrequired

for setting up and using the Visual Studio debugger on the FlexPendant device. It can
be downloaded from http://www.microsoft.com/downl oads.

e To debug with VS 2008 (as well as V'S 2005 without SP1) you must follow a
procedure that will be presented on the RAB User Forum. The procedure will be
different for each RobotWare release.

» If your PC isrunning under Windows Vista “Windows Mobile Device Center” needs
to beinstalled in order to connect to the device.

Setting up the network

Thisillustration shows how to connect the FlexPendant, the Robot Controller and your PC in
order to debug your application using the Visual Studio debugger.

Switch
or
Huh
| |

192168 8 xx 192168 8 vy

192.1658.126.10 192.168.126.1 192168 126.5
TFU port L& port

FP RC PC

9.1.4 3
The FlexPendant hasa static | P address 192.168.126.10. Your PC | P address must be one on
the 126 subnet, i.e. 192.168.126.x (not 1 or 255).

Note that this setup is completely independent of the LAN and Service ports. You are
plugging the TPU cable from the RC into the switch, a cable from the switch to the RC, and
a cable from your PC to the switch.

A connection over the LAN port isoptional, but useful, asyou may need to use RSO or FTP
at the same time. To use both connections, your PC requires two NICs.

Continues on next page

286

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.3. Debugging the FlexPendant device

Continued

Debugging procedure

Follow these steps to set up and attach the Visual Studio 2005 SP1debugger to the
FlexPendant device:

Step

1
2

Action

On the Tools menu in Visual Studio 2005 click Options.

In the Options dialog expand the Device Tools node and select Devices. Select

Windows CE 5.0 Device as shown below.

Options

Environment Show devices For platform:

- Perf Tool
[#- Performance Tools Windows CE 5.0

Projects and Solutions
Source Control Devices:
Text Editar
DevPartner
Database Tools
Debugging
[=- Device Tools
General
Devices
Farm Factors
HTML Designer
Microsoft Office Keyboard Settings

x5 CE 5.0 Device

Save As...
Rename...

Team Foundation Server PowerToys
Test Tools
‘Wwindows Forms Designer

Default device:

Ok H Cancel]

9.1.4 6

Note! If your FlexPendant version is SxTpul the option Windows CE 5.0 Device is
not available. Instead you should select Pocket PC 2003 Device.

When the right device has been selected click Properties and then Configure.

Apply the settings shown in the picture.

Configure TCP/IP Transport

Use fixed port number:

5655

Device IF address
() Obtain an IP address automatically using ActiveSync

(%) Use specific IP address:

| 192.168.126.10 v|

oK |[Cancel]

9147

Continues on next page

3HAC028083-001 Revision: D

287

8 Debugging and troubleshooting

8.1.3. Debugging the FlexPendant device

Continued

RAB User Forum

Step

NOTE!

Action

On the Debug/Tools menu in Visual Studio click Attach To Process. In the dialog
select Smart Device for Transport and click the Browse button to specify platform
and device. Then click Connect.

o Proce

Transport: | Smart Device

2]

Qualifier; |

VH Browse. .,]

Transport Information

Use this transport For all smart device projects, Then specify the device Name by clicking Browse,

Attach to: To connect to a physical device or launch an emulator image,

Available Processes

Connect to Device

select a platform, then choose a device below,

Cancel

Process

Flatform:

| windows CE 5.0 |

Devices:

Pocket PC 2003 Device

Pocket PC 2003 SE Emulator

Packet PC 2003 SE Square Emulator
Pocket PC 2003 5E Square WGA Emulator
Pocket PC 2003 SE YGA Emulator

‘Windows CE 5.0 Device

L]

Cancel

914 8

In the Available Processes list select taf.exe. Click Attach.

Set a break point in your source code.

On the FlexPendant, press a button of your application or something else that will
make program execution hit the breakpoint.

If your PCisNOT using XPwith VS 2005 SP1 you need to find information on how to attach
the V'S debugger for your specific environment on the RAB User Forum.

The User Forum of ABB’s RobotSudio Community has a section dedicated to Robot
Application Builder. Here beginnersaswell as expertsdiscuss code and solutionsonline. This
is also where you find RAB releases for free download and any information that the
development or support team want to share with you. See RobotSudio Community on page

17.

288

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.4. Troubleshooting FlexPendant applications

8.1.4. Troubleshooting FlexPendant applications

Overview
If you encounter problems when running your application there are a few things you should
do before contacting your service organization. The following steps represent a rough
guideline:
Action

1 Is it possible to start your application? If not see FlexPendant application does not start
on page 289.

2 Have you checked the RAB Release Notes? Many questions will find an answer in the
Release Notes of the specific release. These are available on the RW DVD and at the
Software Download Site.

3 Have you tried to pinpoint the problem by debugging the FlexPendant? If not see
Debugging the FlexPendant device on page 286 for information about how to do it.

4 Have you tried to get debug printouts? See Debug output on page 279 for further infor-
mation.

5 Is the problem FlexPendant hangings? Make sure you use Invoke when modifying the
user interface due to a robot controller event. See GUI and controller event threads in
conflict on page 68 and Invoke method on page 68.

When a hanging occurs attach the Visual Studio debugger to the FlexPendant. On the
Debug menu, point at Windows and select Threads. Examine the threads to discover
any deadlocks.
TIP!
Q If you till have not found a solution to your problem, take alook at the User Forum of

RobotSudio Community, which includes a forum dedicated to discussion and chat on Robot
Application Builder topics. See RobotSudio Community on page 17

FlexPendant application does not start
If you are unable to start your application the table below suggests possible scenarios.

Problem Possible solution

The proxy assembly (*.gtpu.dll) is not Correct any parameter error in the TpsView

built. attribute. See FlexPendant TpsView attribute on
page 54.

Continues on next page

3HAC028083-001 Revision: D 289

8 Debugging and troubleshooting

8.1.4. Troubleshooting FlexPendant applications

Continued

Problem Possible solution

The ABB Compliance Tool complains it It happens that the installation of Visual Studio
cannot find the C# compiler. does not set the path to the C# compiler properly.
The C# compiler is necessary for running the ABB
Compliance Tool.
Confirm that the C# compiler is available by
starting a command window and run “CSC.EXE".
If the result is similar to this the path is properly
set:
C:\>csc.exe

Microsoft (R) Visual C# .NET Compiler version
7.10.3052.4

for Microsoft (R) .NET Framework version
1.1.4322Copyright (C) Microsoft Corporation
2001-2002. All rights reserved.

fatal error CS2008: No inputs specified

If not, find CSC.EXE and copy its path to the
Properties dialog of your Visual Studio project.
Also add the path to the system PATH
environment variables.For Windows 2000 Pro and
Windows XP find the dialog for this at:Control
Panel -> System -> Advanced ->Environment
Variables -> System variables-> Add new. Add the
path to the directory where the C# compiler is
kept. Notice that a semicolon separates the path
items.Verify in the command window afterwards
that the CSC.EXE runs.

The application does not appear inthe Make sure the robot system has the FlexPendant
ABB menu. Interface option.

Null reference exception or “Can’t find Make sure all arguments in the TpsView attribute
object” when tapping the application icon are appropriate. See FlexPendant TpsView

in the ABB menu. attribute on page 54.

The bitmap constructor fails when the Change your images if they use more than 256
real FlexPendant tries to load your colors. The operating system of the first
images, in the virtual environment this generation FlexPendant device (SxTPUL) only
does not happen. supports 256 colors.

The Virtual FlexPendant process remains If you forget to dispose an object that has a COM

alive. reference, such as the Controller object or a
Signal, the Virtual FlexPendant process might
stay alive. Go through the application and make
sure that you dispose of all objects that have a
Dispose method.

Important support information
If you cannot solve the problem on your own, make sure that before taking contact with a
support organization thisinformation is available:

» Written description of the problem.
» Application source code.

e System error logs.

» A backup of the system.

» Description of work-around if such exists.

Continues on next page
290 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.1.4. Troubleshooting FlexPendant applications

Continued
TIP!
Q Even better than the complete application is a small repro program, which exposes your
problem.

3HAC028083-001 Revision: D 201

8 Debugging and troubleshooting

8.2.1. Debugging

8.2 PC - Debugging and troubleshooting

8.2.1. Debugging

Introduction

Using the Visual Studio debugger for aPC SDK application presents no difference compared
to standard .NET development. Debugging can be done using the virtual IRC5 in
RobotStudio or areal controller.

Exception error codes

Some exceptionsthat may appear during development have error codes associated with them.
The error codes may help you correct the problem.

Code

0x80040401
0x80040402

0xC0040401
0xC0040402
0xC0040403
0xC0040404

0xC0040405
0xC0040406
0xC0040408

0xC0040409
0xC0040410
0xC0040411
0xC0040412
0xC0040413

0xC0040414

0xC0040415

0xC0040416

0xC0040417

0xC0040418

0xC0040601

Description

The requested poll level could not be met, poll level low is used.

The requested poll level could not be met, poll level medium is
used.

No connection with controller.
Error connecting to controller.
No response from controller.

Message queue full. (Should only happen if asynchronous calls
are made.)

Waiting for a resource.
The message sent is too large to handle.

A string does not contain characters exclusively from a
supported encoding, e.g. ISO-8859-1 (ISO-Latin1).

The resource can not be released since it is in use.

The client is already logged on as a controller user.

The controller was not present in NetScan.

The NetScanlID is no longer in use. Controller removed from list.

The client id is not associated with a controller user. Returned
only by methods that need to check this before sending request
to controller. Otherwise, see 0xC004840F.

The RW version is later than the installed RobAPI. A newer
RobAPI needs to be installed. Returned by RobHelperFactory.

The major and minor part of the RW version is known, but the
revision is later and not fully compatible. A newer RobAPI needs
to be installed. Code returned by RobHelperFactory.

The RW version is no longer supported. Code returned by Rob-
HelperFactory.

The helper type is not supported by the RW. Helper might be
obsolete or for later RW versions, or the helper may not be
supported by a BootLevel controller. Code returned by Rob-
HelperFactory.

System id and network id mismatch, they do not identify the
same controller.

Call was made by other client than the one that made the
Connect() call.

Continues on next page

292

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

Code
0xC0040602

0xC0040603

0xC0040604
0xC0040605
0xC0040606

0xC0040607

0xC0040608
0xC0040609

0xC0040701

0xC0040702

0xC0040703

0xC0040704
0xC0040705

0xC0048401
0xC0048402
0xC0048403
0xC0048404
0xC0048405
0xC0048406

0xC0048407

0xC0048408
0xC0048409

0xC004840A
0xC004840B

0xC004840C
0xC004840D
0xC004840F
0xC0048410
0xC0048411

0xC0048412
0xC0048413
0xC0048414
0xC0048415

8.2.1. Debugging

Continued

Description

File not found on the local file system. Can be that file, directory
or device does not exist.

File not found on the remote file system. Can be that file,
directory or device does not exist.

Error when accessing/creating file on the local file system.
Error when accessing/creating file on the remote file system.

The path or filename is too long or otherwise bad for the
VxWorks file system.

The file transfer was interrupted. When transferring to remote
system, the cause may be that the remote device is full.

The local device is full.

Client already has a connection and can not make a new
connection until the present one is disconnected.

One or more files in the release directory is corrupt and cannot
be used when launching a VC.

One or more files in the system directory is corrupt and cannot
be used when launching a VC.

A VC for this system has already been started; only one VC per
system is allowed.

Could not warm start VC since it must be cold started first.

The requested operation failed since VC ownership is not held
or could not be obtained.

Out of memory.

Not yet implemented.

The service is not supported in this version of the controller.
Operation not allowed on active system.

The data requested does not exist.

The directory does not contain all required data to complete the
operation.

Operation rejected by the controller safety access restriction
mechanism.

The resource is not held by caller.

An argument specified by the client is not valid for this type of
operation.

Mismatch in controller id between backup and current system.

Mismatch in key id, i.e. options, languages etc. between backup
and current system.

Mismatch in robot type between backup and current system.
Client not allowed to log on as local user.

The client is not logged on as a controller user.

The requested resource is already held by caller

The max number of the requested resources has been reached.
No request active for the given user.

Operation/request timed out on controller.

No local user is logged on.

The operation was not allowed for the given user.

Continues on next page

3HAC028083-001 Revision: D

293

8 Debugging and troubleshooting

8.2.1. Debugging

Continued

Code
0xC0048416

0xC0048417
0xC0048418
0xC0048419
0xC004841A
0xC004841B
0xC004841C

0xC004841D
0xC004841E
0xC004841F
0xC0048420

0xC0048421
0xC0048422
0xC0048423
0xC0049000
0xC0049001
0xC0049002

0xC0049003
0xC0049004
0xC0049005
0xC0049006
0xC0049007
0xC0049008
0xC0049009

0xC004900A
0xC004900B

0xC004900C
0xC004900D
0xC004900E
0xC004900F

0xC0049010
0xC0049011
0xC0049012

0xC0049013
0xC0049014

Description

The URL used to initialize the helper does not resolve to a valid
object.

The amount of data is too large to fulfill the request.
Controller is busy. Try again later.

The request was denied.

Requested resource is held by someone else.
Requested feature is disabled.

The operation is not allowed in current operation mode. For
example, a remote user may not be allowed to perform the
operation in manual mode.

The user does not have required mastership for the operation.
Operation not allowed while backup in progress.
Operation not allowed when tasks are in synchronized state.

Operation not allowed when task is not active in task selection
panel.

Mismatch in controller id between backup and current system.
Mismatch in controller id between backup and current.

Invalid client id.

RAPID symbol was not found.

The given source position is illegal for the operation.

The given file was not recognized as a program file, e.g. the
XML semantics may be incorrect.

Ambiguous module name.

The RAPID program name is not set.
Module is read protected.

Module is write protected.

Operation is illegal in current execution state.
Operation is illegal in current task state.

The robot is not on path and is unable to restart. Regain to or
clear path.

Operation is illegal at current execution level.

Operation can not be performed without destroying the current
execution context.

The RAPID heap memory is full.
Operation not allowed due to syntax error(s).
Operation not allowed due to semantic error(s).

Given routine is not a legal entry point. Possible reasons are:
routine is a function, or routine has parameters.

lllegal to move PCP to given place.
Max number of rob targets exceeded.

Object is not mod possible. Possible reasons are: object is a
variable, object is a parameter, object is an array.

Operation not allowed with displacement active.

The robot is not on path and is unable to restart. Regain to path.
Clear is not allowed.

Continues on next page

294

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

Code
0xC0049015

0xC004A000
0xC004A001
0xC004A002
0xC004A003
0xC004A004
0xC004A005
0xC004A006
0xC004A007
0xC004A008
0xC004A009
0xC004A00B
0xC004A00C
0xC004A200

8.2.1. Debugging

Continued

Description

Previously planned path remains. Choose to either consume the
path, which means the initial movement might be in an
unexpected direction, or to clear the path and move directly to
next target.

General file handling error.

The device is full.

Wrong disk. Change disk and try again.
The device is not ready.

Invalid path.

Not a valid device.

Unable to create directory.

The directory does not exist.

The directory already exists.

The directory contains data.

Unable to create file.

File not found or could not be opened for reading.
Disable of unit not allowed at trustlevel 0.

3HAC028083-001 Revision: D

295

8 Debugging and troubleshooting

8.2.2. Troubleshooting

8.2.2. Troubleshooting

Overview

v

If you encounter problems with your PC SDK application follow these steps before
contacting ABB support.

TIP!

Action

See if your problem is in the checklist of the next section.

Many questions will find an answer in the Release Notes of the specific RAB release.
The document is available on the RW DVD and on the Software Download Site.

Pinpoint the problem by debugging your code so that a precise problem description can
be provided.

See the User Forum of ABB’s RobotStudio Community, which includes a forum
dedicated to discussion and chat on Robot Application Builder topics.

At www.abb.com/roboticssoftware there is alink to the RobotSudio Community.

Checklist

Cannot connect to controllers? Make sure the system on the controller has the
RobotWare option PC Interface. This applies to both virtual and real controllers.

Is the problem GUI hangings? Make sure you use Invoke When modifying the user
interface due to arobot controller event. See GUI and controller event threadsin
conflict on page 68 and Invoke method on page 68 for further information.

Isthe problem related to netscan? If Network Scanner.Scan does not find the robot
controller during netscan you should try to increase the time allowed for scanning.
Increase the networks canner delay time in an app.config file as explained in
Application configuration file on page 43 or add thetime directly in the codelikethis:
NetworkScanner aScanner = new NetworkScanner () ; aScanner.Scan() ;

System.Threading.Thread.Sleep(4000) ;aScanner.Scan() ;

Do you get “Invalid Client ID” when trying to do aread operation toward the robot
controller? If so, the reason is probably that you have forgotten to log on to the
controller. To be able to write to RAPID data or to the configuration database, for
example, you also need to require mastership. For further information see Logon and
logoff on page 214 and Mastership on page 41.

If you are working with a previous version of RAB (earlier than 5.10) you might run
into problems related to licence verification? If you get the run-time error “ A valid
license cannot be granted for the type ABB.Robotics.Controllers.Licenses.PCSdk.
Contact the manufacturer of the component for moreinformation” when accessing the
NetworkScanner and the Controller classesyou need to add alicx file to the
project. See Licenses.licx on page 40 for further information.

Continues on next page

296

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

8 Debugging and troubleshooting

8.2.2. Troubleshooting

Continued

Important support information

If you cannot solve the problem on your own, make sure thisinformation is available when
taking contact with ABB’s support organization:

e Written description of the problem.

» Application source code.

» System error logs.

» A backup of the system.

» Description of work-around if such exists.

TIP!

Q Even better than the complete application is asmall repro program, which exposes your
problem.

3HAC028083-001 Revision: D 297

8 Debugging and troubleshooting

8.2.2. Troubleshooting

298

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

9 Localizing a FlexPendant application

8.2.2. Troubleshooting

9 Localizing a FlexPendant application

3HAC028083-001 Revision: D 299

9 Localizing a FlexPendant application

9.1. Adding support for several languages

9.1. Adding support for several languages

Introduction

This chapter provides the information needed to localize a customized application. The
FlexPendant has built-in support for localization, and the mechanisms used by the standard
FlexPendant applications can also be used by RAB applications.

This enables customized applications to be presented in the active language of the
FlexPendant, i.e. the language selected in the standard view Control Panel - Language.

For thisto work the texts displayed in the customized application must be translated and the
application localized as described in this chapter.

Get started

Develop the application using English as the default language. The recommendation isto
design, implement and test the application before adding support for other languages. To
localize a FlexPendant application carefully complete each procedure of this chapter.

NOTE!
H A method is needed to handle localization when new application functionality is added.

1 Create project for text resources
This procedure sets up a separate project for the user interface texts.

Step

1.

Action

Create a new project in the solution. Choose a Smart Device - Windows CE 5.0 -
Empty Project and name the project <YourAppName>Texts.

NOTE!

Both projects should belong to the same solution. The application will now compile to
three assemblies: <YourAppName>.dll , <YourAppName>.gtpu.dll and <YourApp-
Name>Texts.dll.

. In the Texts project add a reference to System (.Net).

. Set the Output type to Class Library (this is done in the Project Properties).

The namespace used for the Texts project must be the same as used for the main
project. As the namespace is not visible in the resource file you must change it in the
Project Properties like this:

Ascembly name: Default namespace:
[TosviewiRCSAnpTasts [TesviewtRC Szl
1015

Add a Resources file to the project by right clicking the project in Solution Explorer
and selecting Add New Item. Set the name of the file to “strings.resx". This file will
contain the texts of the default language (normally English).

Continues on next page

300

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

9 Localizing a FlexPendant application

Step
6.

9.1. Adding support for several languages
Continued

Action

Open the resource file and add nhame and value for the texts of the default language.
Use capital letters in the name column.

Data for data

name vale | comment | bype: mimetype

P_THT_AEE_MENLI_TITLE Your Application {rull) (ol {rull)

| |TMT_MESSAGE_ETN Message {ruall) ol {rull)
TET_BOX_M3G Press one of the button {null) il {raall)y
-TKT_BDK_CP.PTIDN Message Caption (il il {rwll)
TxT_RESPOMSE_YES ‘fou pressed Yes il il {rwll)
THT_RESPOMSE_HO You pressed No rully il {rwll)
THT_RESPOMSE_CANCE You pressed Cancel (rully fuall Crull})

T

6.5.1 1

. In the Texts project create a folder with the culture short form as name, e.g. de for

German and sv for Swedish.

[des 'cs","Czech"
-[dds 'da","Danish"
[dde 'de","German"
[des 'es","Spanish"
A R "Finndisht
afr fr", "French"
e e, "Italian”
[dija 'ja","Jlapanese”
[k ko', "Korean"
n 'n1", "Dutch”
g 'pt", "Portuguese"
s 'sv',"Swedish"
gz ‘'zh","Chinese"

i
=
[
o

NOTE!
Russian (ru) has been added in RW/RAB 5.11.

(D

CAUTION!
The standard short forms listed above must be used.

NOTE!

To be able to use Chinese or another language with non-western characters, you must
use the FlexPendant font, TpsFont, for any Ul controls. It internally checks what
language is currently active on the FlexPendant and uses the correct font for that
language.

Continues on next page

3HAC028083-001 Revision: D

301

9 Localizing a FlexPendant application

9.1. Adding support for several languages

Continued

Step Action

8. Copy the “strings.resx” file to the folder(s) created in the previous step.

9. The name of the file used for the foreign resources should be strings.<culture>.resx,
e.g. “strings.sv.resx" as in the picture below. Right click the file and rename it.

J Solution 'TpstiewLocalizeddpp' (2 projects)
= :;E Tps¥iewlLocalizedApp

4 |»3] References

#] AssemblyInfo.cs
= £| Wi, c5
EE] wWiEw, resy

= :;E TpsWiewlLocalizedappTexts

4 |»3] References

I e T
+ _‘; skrings. sw resx
[d zh
_‘; strings. resx:

+

+

10.1_4

10. Open the resource file and translate the texts in the value column. The name is the
identity of the text and should remain the same.

NOTE!

Obviously, texts might get longer or shorter when translated. You may therefore need
to increase the sizes of some GUI controls when you have tested the application.

2 Prepare main project for localization
Follow these stepsto add localization to your main project:

Step Action

1. Add a reference to ABB.Robotics.Taf.Base in the main project.

2. Inthe TpsView attribute of the view class insert the name of the Texts dll like this:
[assembly: TpsView ("ABB MENU TITLE TXT", "tpu-

Operator32.gif", "tpu-Operatorl6.gif",
"TpsViewIRC5App.dll",
"TpsViewIRC5App . TpsViewIRC5App",
StartPanellLocation.Left,
TpsViewType.Static, "TpsViewLocalizedAppTexts.dll",
TpsViewStartupTypes.Manual)]

Continues on next page
302 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

9 Localizing a FlexPendant application

Step

9.1. Adding support for several languages

Continued

Action

Declare a TpsResourceManager object at the top of the class as a private member
variable and initialize it in the constructor.

Add a call to an InitializeTexts method.

//declaration

private ABB.Robotics.Tps.Resources.TpsResourceManager
__tpsRM;

//constructor method

_tpsRM = new
ABB.Robotics.Tps.Resources.TpsResourceManager ("TpsVi
ewLocalizedApp.strings",
ABB.Robotics.Taf.Base.TafAssembly.Load ("TpsViewLocal
izedAppTexts.dll")) ;

InitializeComponent () ;

InitializeTexts () ;

NOTE!

The first constructor argument should be the name of your application with .strings
as an added suffix. The second argument is the name of the assembly containing the
resources.

Implement InitializeTexts(). Use the TpsResourceManager object and call
GetString() using the identity (name) of the text you want as argument. Depending
on the active language of the FlexPendant this call will retrieve the corresponding
language resource.

Example:
InitializeTexts ()

{

this.Labell.Text = tpsRM.GetString ("TXT INSTR LABEL") ;

Leave the contents of the InitializeComponent method asitis, e.g.
Labell.Text = "Signals" etc.

The TpsResourceManager object has not yet been created when the application
icon and title are to appear in the ABB menu, and therefore another technique must
be used to have them correctly displayed. Add a resource name for the application
title and a value in the resource file of each language.

In the TpsView attribute the first argument is the application title. Replace it with the
resource name. It may look like this:

[assembly: TpSView("ABB_MENU_TITLE_TXT", coopgooo
TpsViewIRC5AppTexts.dll")]

The corresponding resource value will now be used. In case no resource is found the
name will be used as is.

Continues on next page

3HAC028083-001 Revision: D

303

9 Localizing a FlexPendant application

9.1. Adding support for several languages

Continued

3 Build satellite assembly

Follow these steps to create a satellite assembly of the localized resx file:

Step Action

1. The localized resource file should not be built with the ordinary build process, i.e. the

property Build Action should be set to “None". Right click on the strings.<cul-
ture>.resx file and select properties:

strings.zh.resy File Properties -
®== (A
®=2 ?'-’I'
Build Action Mone W
Copy bo Qubput Directory Do not copy
Custam Toal ReskFileCodeGener ator
Custom Toaol Mamespace
File Mame strings. zh.resx
Build Action

Howw the File relates ko the buid and deployment processes,

6.5.1_4

. You should now use the Visual Studio 2005 tool resgen.exe to compile the resx file

to a binary resource. After this the Visual Studio 2005 assembly linker tool al.exe
should make a satellite assembly of the binary resource.

Read the following steps very carefully to make sure the satellite assembly is built
correctly.

NOTE!
Localization with Visual Studio 2008 has not yet been tested.

Continues on next page

304

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

9 Localizing a FlexPendant application

Step

3.

9.1. Adding support for several languages

Continued

Action

Create a post-build event in the Texts project in order to automate the building
process.

Example: TpsViewLocalizedApp with resources in Swedish:

mkdir ..\..\language

mkdir ..\..\language\sv

mkdir ..\..\language\sv\tps

cd ..\..\sv\

del *.resources

del *.dll

if exist strings.sv.resx (

resgen strings.sv.resx TpsViewLocalizedApp.strings.sv
.resources

al /t:1lib /embed:TpsViewlLocalizedApp.strings.sv.resources
/culture:en /
out : TpsViewLocalizedAppTexts.resources.dll

copy TpsViewLocalizedAppTexts.resources.dll

. .\language\sv\tps\TpsViewLocalizedAppTexts.resource
s.dll)

Post-build Event Command Line EiEd

cd LA et
del " rezources

=
del *.dll
if ewizt strings. av.ress |
resgen strings. sv.resy T psviewlocalizeddpp. stings. sv.resournces

al tlib fembed: T pstiewlocalizedbpp. strings. sv. resources Aoulture:en

dout: TpsViewlocalizedappT exts. resources. dil

copy TpstiewLocalizeddppT exts. rezources. dll

Mlanguagessyitpsh T peviewlocalizedd ppT exts rezources. dll] LI

Macroz >

J

ak | Cancel

2

10.1_9
The resgen command is written like this:

resgen strings.<cultures>.resx
<Namespace>.strings.<culture>.resources

where <culture> should be replaced with the correct language short form and
<Namespace> should be replaced with the application namespace.

The a1l command takes the resulting dll located in the same directory as the resx file
and makes a satellite assembly of it:

al /t:1ib /embed:<Namespace>.strings.<cultures>.resources /

culture:en /out:<AssemblyNames>.resources.dll

NOTE!
The name of the satellite assembly will be the same for all localized languages.

The third argument of the a1l command, culture:en, should be “en” . The reason is
that the FlexPendant operating system has English as the underlying language.

Continues on next page

3HAC028083-001 Revision: D

305

9 Localizing a FlexPendant application

9.1. Adding support for several languages

Continued

Step Action

4. Itis necessary to ensure that the post-build step is executed with the correct versions
of resgen.exe and al.exe. The easiest way to do this is to use a VS 2005 Command
prompt to build the project (or solution) or to start Visual Studio from that prompt.
First click Windows Start menu to launch the Command Prompt (at Programs >
Microsoft Visual Studio 2005 > Visual Studio Tools).Then use the command devenv
in order to start VS 2005.

Now open your solution and build it. The post-build command is now guaranteed to
execute with the correct settings.

e+ Wisual Studio 2005 Command Prompt

Letting enuvironment for uwsing Microsoft Uisuwal Studio 2085% x86 tools.

C:“Program Files“Microsoft Uizuwal Studio 8~UCXdevenv_

6.51 5

NOTE!

As default, Visual Studio will run post-build commands using the PC’s user settings
(paths etc.). If you had VS 2003 installed earlier the post-build command is therefore
very likely to use the wrong versions of resgen.exe and al.exe. The procedure
described above guarantees that the VS 2005 versions are used.

(These can be found at: C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin/
resgen.exe C:\WINNT\Microsoft. NET\Framework\v2.0.50727/al.exe)

4 Test a localized application

In order to test alocalized application, the resources must be correctly organized in thefile
system of the controller. This should be done in the same way either the test is doneon a
virtual or areal FlexPendant. Follow these stepsto test the application on areal FlexPendant:

Step Action

1. Transfer, using an FTP client or the File Manager of RobotStudio, your application
assemblies to the HOME directory of the active system. (TpsViewLocalizedApp-
Texts.dll, TpsViewLocalizedApp.gtpu.dll, TpsViewLocalizedApp.dll in the picture
below).

Continues on next page

306

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

9 Localizing a FlexPendant application

9.1. Adding support for several languages

Continued

Step Action

2. Copy the language folder that was created by the post-build event to the HOME
directory.

™ 192.168.8.238 - FTP Voyager

File Edit “iew Tools Schedule Queue Help

Sites.RhinoSoft, MMI klasskest v | Y Connect a4 ¥ Quick Comn
=) SystemS10100 L O Back - ¥ | %) Dow
=) BACKUP
(=R HCME Marme
=1+ language ilanguange
=) s dt]TpsViEWLDCE"ZEdF’.pDTEXtS.d"
l:hl tps .j«j TpstiewLocalizedapp. gtpu.dil
=0 szl " .i«] TpstiewLocalizedapp.dll
ps :
-1 S¥SPAR user.sys
1013
NOTE!

Itis also possible to have both the assemblies and the language folder located under
the SYSTEM folder one level up. The advantage of using HOME is that the files are
included in a backup.

3. Verify that the language folder has folders for each language and that each tps folder
have a .resources dll. If this is not the case, you need to go back to the post-build event
of your Texts project and check what has gone wrong.

™ 192.168.8.238 - FTP Voyager

File Edit Yiew Tools Schedule Queue Help
Sites.RhinoSoft.MMI Kasstest v | Y Connect A fF Quick Conn €

L SvsS_10_0076 - 0 Back - +* '5,'] Downlo:
=) SystemS10100

) BACKUP Marne
(=2 HOME %] TpsviewLocalizedappTexts.resources.dl
=) language
=Ty 5w
=
= zh
1 tps

[+li7=h SWCPAR

4 * 4 *

NOTE!

The name of the satellite assembly is the same for all languages, TpsViewLocal-
izedAppTexts.resources.dll in the example above.

4. Switch to another language (Control Panel - Languages) and restart the FlexPendant.
5. Verify that the name of your application in the ABB menu is correct.

Continues on next page

3HAC028083-001 Revision: D 307

9 Localizing a FlexPendant application

9.1. Adding support for several languages

Continued

Step Action

6. Open the application and verify that the GUI texts are correctly displayed. Especially
verify that text boxes, labels, listview columns etc. are wide enough to display the
translated texts.

308 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

10 Packaging RAB applications

10.1.1. Overview

10 Packaging RAB applications

10.1 Deployment of a PC SDK application

10.1.1. Overview

Introduction

When your applicationisready it hasto be deployed to the customer’s PC. This chapter gives
information about the facilities for deployment included in the RAB installation.

NOTE!

ﬂ Neither RAB nor aRAB licence need to beinstalled on the PC that will host your application.
Furthermore, from RAB 5.10 you do NOT need to add the licence key to your project as
described in Licenses.licx on page 40, as deployed PC applications no longer perform license
verification when executing.

Facilities for deployment
In the redistributable folder at C:\Program Files\ABB Industrial I T\Robotics IT\Robot
Application Builder\ there are somefilesto be used for deployment of aPC SDK application:

» ABBControllerAPl.msm
* ABB Industria Robot Communication Runtime.msi
Thesetwo packagesinclude all dependenciesaPC SDK application has apart from .NET 2.0.

Continues on next page

3HAC028083-001 Revision: D 309

10 Packaging RAB applications

10.1.1. Overview

Continued

ABBControllerAPl.msm

A PC SDK application cannot execute without the PC SDK assembliesit references. For your
convenience, the ABBControllerAPI merge modul e contains the PC SDK assemblies. Add it
to your install program to have them installed in the Global Assembly Cache (GAC).

The GAC isautomatically installed with the .NET runtime. It enables a PC to share
assemblies across numerous applications. If the customer’s PC has Robot Studio Online of
the same release as the PS SDK used to create the application the PC SDK dlls your
application needs should be in the GAC already.

NOTE!

If you want to create an msi file (or a setup.exe) of the msm file, you can include the
ABBControllerAPl.msm filein aVisual Studio SetUp Project.

NOTE!

Before, ABBControllerAPl.msm worked only with Install Shield. This problem has now been
resolved.

ABB Industrial Robot Communication Runtime.msi

For a PC SDK application to be able to connect to a controller either RobotStudio or Robot
Communications Runtimeisrequired. If RobotStudio is not installed on the PC that will host
your application, Robot Communications Runtime needs to be included in your installation.
ABB Industrial Robot Communication Runtime.msi can be used for redistribution as a
separate installation.

310

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

10 Packaging RAB applications

10.2.1. Overview

10.2 Deployment of a FlexPendant SDK application

10.2.1. Overview

Introduction
For the end customer to be ableto use your application, it hasto be deployed to the customer’s
robot controller. Thisis done when the customer robot system is created, by using the System
Builder in RobotStudio. The custom application can then either be added as an additional
option by using alicense key, or added to the Home directory of the controller file system by
using one of the dialogs of the System Builder wizard.

For an application with multi-language support there are afew more things to deal with.

NOTE!

H Using an FTP client to upload the application from a PC to arobot controller can be done for
testing purposes. It can aso be doneif the custom application needsto be added to an existing
system, which is aready running in production. See Deployment using FTP on page 318 for
information about how thisis done.

Making a product
These are the steps to make a product of a custom FlexPendant application:

1. Approva of the FP SDK product regquirement specification.
Design and development of a FP SDK GUI prototype.
Approval of the FP SDK GUI prototype.

Design and development of a FP SDK functional prototype.
Approval of the FP SDK functional prototype.

Design and development of a FP SDK product.

Approval of the FP SDK product.

Design and development of a deployable FP SDK product.

© N o g &~ WD

Deployment of a FlexPendant SDK product
Before deploying a custom application you need to consider these issues:

* Should the product be licensed, i.e. be sold as an option?
» Isthere aneed tolocalize the product, i.e. create support for native languages?

Depending on how the above questions are answered there are four alternatives (detailed
separately in the following sections of this manual):

1. License and localization
2. License but no localization
3. Nolicense but localization

4. No license and no localization

NOTE!
ﬂ If the product isto be licensed it should be deployed as an additional option. If not,
RobotStudio should be used to deploy the application to the Home directory of the system.

3HAC028083-001 Revision: D 311

10 Packaging RAB applications

10.2.2. Deployment of an application without a license

10.2.2. Deployment of an application without a license

Overview
If you do not make an additional option of your application, the end user does not need a
license to useiit.

When the customer system is created, by using the System Builder of RobotStudio, your
application should be added to the Home directory of the system.

This section gives information about how thisis done. The easiest alternative, which offers
no support for additional languages, is explained first.

No license and no localization
Thisis how you deploy an application without license nor multi-language support.

Step Action

1. Use System Builder in RobotStudio.

2. Add the application assemblies(.dll) and other resources ('.jpg, *.gif,*.bmp) to the
Home directory:

“ndfy Conbroler Syshem [System500_buildsz] x|

Add Hies 1o Remove Mes liom Home Bhecion
Borwves B Flar 1o bes ackdad 1o tha spohem in the apstens: Hiome dectony
T et e pall b choniusciind b hee conimodiar bogethest vl dhe
i

Filaz Acbched ez

[C Datatvinual tuc 200][TeeamdR L340 o
J_I TR LS po. plpas

]

cBak | Heds Ben | Carl |

10.1_2

3. Download the system to the robot controller.

Continues on next page
312 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

10 Packaging RAB applications

10.2.2. Deployment of an application without a license

Continued

NOTE!
ﬂ Having the application deployed to the Home directory meansit will beincluded in asystem

backup.

No license but localization

Thisis how you deploy an application with no license but with multi-language support.

Step
1.

Action

Implement multi-language support. See Localizing a FlexPendant application on

page 299 for information on how to do it.

2. Use System Builder in RobotStudio.

3. Add the application assemblies(.dlls) and other resources ('.jpg, *.gif,*.bmp) to the

4.

Home directory:

oy Controler System [System 500 _balds2]

A e o # Remove fdes Biom Home Doeclom

Browves Bos Flas 1o be addad 1o e spetem in e gpsiens: Home deechoy
T o= sasbestad Bl pall b chowmiouschesd b Uhes conimlias hogethest waln e
Al

Fili Adchad ez

CADoadavius Thid 20020 = ||] G
T CShpo, plpas 20

|

tBok | Heax | Feah |

Cancel |

101 2
Note! TpsViewIRC5AppTexts.dll is missing in the figure.

Generate the robot system.

Continues on next page

3HAC028083-001 Revision: D

313

10 Packaging RAB applications

10.2.2. Deployment of an application without a license

Continued

Step

5.

Action

In the generated RobotWare system, add a language directory with all supported
languages in the Home directory. Then for each supported language, add a culture
specific and a tps directory.

™ 192.168.B.238B - F
File Edit ‘ew Tools Sche

Sites,RhinoSaft, MMI klasskest

=1+ System510100
) BACKUR
=20
=) language

10.1_3

NOTE!

Standard names (de, zh etc.) must be used for the different languages. See 1 Create
project for text resources on page 300 for the complete list.

Transfer each resource binary to the tps sub-directory of the respective culture
directory, e.g.:

TpsViewlRC5App.strings.de.resources.dll to language/de/tps directory etc.
Download the system to the robot controller.

See Localizing a FlexPendant application on page 299 for information on how to add
support for native languages to your custom application.

314

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

10 Packaging RAB applications

10.2.3. Deployment of a licensed application

10.2.3. Deployment of a licensed application

Overview

When the customer system is created by System Builder of RobotStudio, a FlexPendant
application can be added to the system as an additional option.

This section describes how to make the additional option, which is necessary for deployment
of alicensed custom application. It also describes how the customer installs the option.

CAUTION!
@ An additional option must be distributed in accordance with RobotWare version and revision.
Pay attention if you are using functionality, which has been included in arevision!

NOTE!
ﬂ An additional option must be deployed with the structure of RobotStudio.

Procedure for making an additional option
Thisis how you make an additional option of a FlexPendant SDK application.

Step

1.

Action

Implement multi-language support if considered necessary. See Localizing a
FlexPendant application on page 299 for information on how to do it.

Order a license and a CD Key Maker from your local ABB office, who will in turn
contact ABB SEROP product support in Sweden.

Create the following structure:
=\ MYOPTIONSOE
_llanguage
;I tps
Erjinsl:all.n:md
E relkey.txt

5‘%1 wersion. xmil
10.1_12

The language folder is needed if there is to be support for other languages.

NOTE!
Always use capital letters for the option name.

Continues on next page

3HAC028083-001 Revision: D

315

10 Packaging RAB applications

10.2.3. Deployment of a licensed application

Continued

Step

8.

Action

. Create the version.xml file. It may look like this:

LVeCIlon>
<Major>3</Hajors
<Minae»DE</ Hinor>
<Revisionx00</Reviaions
ABuL lolx0f Bud 1o
“TiC1le>MYOPTIONS08<, Tit Lle>
<Description>My Optional FlexPendant Application</Descriptions
<Date>2006-04-30</Date>
<TypexhdditionalOption/ Types
</ Version>
10.1_13

Create the install.cmd file. It may look like this:

esho -text "Inacalling My Opcional FlexPendant Applicacion™
register -type aption -description MYOPTIONSODE -path SHBOOTPATH
10.1_14

Create relkey.txt file. It may look like this:

title HYOPTICHNSOB

10.1_15

. With the license, which is entered in the CD key Maker, generate a key file including

the serial number of the Robot controller, e.g. MYOPTION508.kxt
(This is the file the user will enter in System Builder when the robot system is created.)

Package the product on CD the way your organization recommends.

NOTE!

If the option is only a FlexPendant SDK application the described procedure is enough. But
if the option should also include RAPID and configuration, you need to read about how to
make an additional option in another manual, which isfor ABB internal use. See Related
information at the end of this section.

Installing the option at the customer
Thisisthe how the customer installs alicensed application:

1
2.
3.

Install the additional option from a CD.
Create the robot system by using System Builder.

In the Add Parameters/Add Additional Options dialog browse to the key file, e.g.
MY OPTION508.kxt which came with the installation of the additional option.

Continues on next page

316

3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

© Copyright 2007 - 2009 ABB. All rights reserved.

10 Packaging RAB applications

10.2.3. Deployment of a licensed application

Continued

vy U ardeales Spanens [e erndde ks B =]

T, i samad Theats

T e R sk, erlsy b hey bl dith
i Bl pai e - B, Tinimmes e, fade0l & Rln i e B
Jeed pred Foieed

Eréariap Akiad cpie
Vb1 e ECH SR _I | o ooplirl Fhalaancinnd A ol ai
o] e—]]
< Beack Heas P | cawd |

10.1_16

Related information
Application manual - Additional Options, 3HAC023668-001
The manual isintended for ABB use only. Contact After Salesin Vasteras, Sweden.

3HAC028083-001 Revision: D 317

10 Packaging RAB applications

10.2.4. Deployment using FTP

10.2.4. Deployment using FTP

Overview
The general ruleisthat deployment using an FTP client should only be done during the
development phase.
If deployment to a customer is done this way each controller has to be individually updated
with assembly files aswell as graphical and language resources. The organization of filesin
therobot controller file system istheresponsibility of the application devel oper or the system
integrator.
Procedure
Follow these steps to deploy your application using for example the File Manager of
RobotStudio or an FTP client such as Ftp Voyager:
Step Action
1 On the controller navigate to the system you want to update with the FlexPendant
application.
2 Transfer the assembly, the proxy assembly and graphical resources used by the
application to the system directory Home.
3 For multi-language support, in the Language directory create sub-directories for
each language using the short name of the culture.
Create a “tps” sub-directory in each of these directories.
Copy each language resource to the tps folder of the corresponding culture.
Restart the FlexPendant. The custom application should now be accessible from the
ABB menu.
See Restart the FlexPendant on page 49 for information about how to restart the
FlexPendant but not the controller.
318 3HAC028083-001 Revision: D

© Copyright 2007 - 2009 ABB. All rights reserved.

AL DD
MipD

ABB AB

Robotics Products

S-721 68 VASTERAS
SWEDEN

Telephone: +46 (0) 21 344000
Telefax: +46 (0) 21 132592

3HAC028083-001, Revision C, en

	Application manual - Robot Application Builder
	Table of contents
	About this manual
	Usage
	Who should read this manual?
	Prerequisites
	Organization of chapters
	References
	Revisions
	General
	Product manuals
	Technical reference manuals
	Application manuals
	Operating manuals
	Safety of personnel
	Safety of regulations
	1 Introduction
	1.1. About Robot Application Builder
	Flexible user interfaces
	Ease-of-use on the factory floor
	.NET and Visual Studio
	Robustness and performance

	1.2. Documentation and help
	Introduction
	User’s Guide
	SDK Reference Help
	FP StyleGuide
	RobotStudio Community
	RAB Product Specification
	MSDN

	1.3. Terminology
	About terms and acronyms
	Definitions

	2 Installation and development environment
	2.1. Installation overview
	About this section
	Supported platforms
	Requirements for installing and using Robot Application Builder
	About the Robot Application Builder installation
	RAB 5.11and later
	RAB 5.10

	What is installed?
	Working with several versions
	FlexPendant applications
	PC applications

	Installation procedure

	2.2. How to obtain and install a license key for RAB 5.09 or earlier
	Overview
	Install licence key

	2.3. How to set up your PC to robot communication
	Overview
	Why is a connection needed?
	Ethernet network connection
	Service port connection with automatic IP address
	Service port connection with fixed IP address
	Related information

	2.4. Development environment
	Overview
	Microsoft .NET and Microsoft Visual Studio
	Visual design support and data binding
	Choosing a programming language
	Integration with Visual Studio

	2.5. Two development models - virtual and real
	About this section
	Virtual robot technology
	Requirements for virtual environment
	Requirements for real environment
	Virtual test and debug
	Real tests necessary
	Porting the application from virtual to real IRC5
	Deployment to customer

	2.6. Conversion of VS 2005 projects to Visual Studio 2008
	Overview

	3 Run-time environment
	3.1. Two platforms - PC and FlexPendant
	About this chapter
	Selecting the platform your application should use
	Local vs remote client
	Software architecture
	PC platform
	FlexPendant platform

	CAPI

	3.2 Running PC Applications
	3.2.1. Licence verification - applies only to versions earlier than RAB 5.10
	Overview
	Licenses.licx

	3.2.2. Mastership
	Controlling controller resources
	Manual and automatic mode
	PC SDK mastership domains
	Remote privilege in manual mode
	Losing mastership

	3.2.3. PC application configuration
	Application configuration file
	Add App.config to the project
	Section tag
	Capi section
	<defaultSystem>
	<remoteControllers>
	<discovery.networkscanner>
	<defaultUser>
	<rmmp>
	<controllerCall>
	<eventStrategy>

	3.2.4. Communication between PC and controller
	COM technique
	Resource identification
	Hard real-time demands

	3.3 Running FlexPendant Applications
	3.3.1. Components, assemblies and dlls
	Building blocks
	One or several assemblies

	3.3.2. Deployment of FlexPendant application to a robot system
	Proxy assembly
	Download to real controller
	Using the command window
	FTP deployment
	Restart the FlexPendant
	Deploy application to virtual IRC5

	3.3.3. Communication between FlexPendant and controller
	COM technique
	Resource identification
	Hard real-time demands

	3.3.4. Understanding FlexPendant application life cycle
	Overview
	TAF - Application host framework
	Starting a custom application
	Application life cycle
	Illustration
	Limited resources

	3.3.5. FlexPendant TpsView attribute
	Overview
	Project wizard settings
	Visual appearance
	Application name
	Application icon
	TaskBar icon
	Application assembly
	Class name
	Application location
	Application type
	Startup type
	Related information

	3.3.6. ITpsViewSetup and ITpsViewActivation
	ITpsViewSetup
	Install and Uninstall
	ITpsViewActivation
	Activate and Deactivate
	Simple code examples

	3.4. Release upgrades and compatibility
	About this section
	Platform upgrades
	Matching RAB and RobotWare release
	RobotWare upgrades
	Prepared for change

	4 Developing RAB applications
	4.1. Introduction
	About this chapter
	Basic approach

	4.2. Analysis and design
	About this section
	Object oriented software development
	Object oriented Analysis and Design
	Analysis based on communication and use cases
	Design is about managing complexity
	Do you need to do design?
	As complex or as easy as you wish

	4.3. Controller events and threads
	Overview
	Controller events
	GUI and controller event threads in conflict
	Invoke method

	4.4. User Authorization System
	Overview
	Accessing UAS from custom applications
	Grants and Groups
	MessageBox feedback
	GetCurrentGrants and DemandGrant

	4.5. Exception handling
	Overview
	Try-catch-finally
	Typecasting
	Exception handling for the PC platform
	Exception handling for the FlexPendant platform
	.NET Best Practices

	4.6. How to use the online help
	Overview

	5 Using the FlexPendant SDK
	5.1 Introduction
	5.1.1. About this chapter
	Overview

	5.1.2. System features supporting the use of customized screens
	Flexible user interfaces
	Configure the FlexPendant
	Additional Test View
	View On Operating Mode Change

	Use RAPID instruction to launch RAB application

	5.2 Setting up a new project
	5.2.1. Using the project template in Visual Studio
	Overview
	Setup procedure
	Add any missing references

	5.2.2. Setting up design support for FlexPendant controls
	Overview
	Procedure

	5.3 Building the user interface
	5.3.1. Introduction to visual design support
	What is visual design support?
	Why special controls for the FlexPendant?
	Illustration
	Hands on - Hello world
	Hands on - step 2
	Visual design and user experience

	5.3.2. GUI controls and memory management
	Overview
	How to avoid memory leaks
	Coding the Dispose method
	Freeing allocated memory for a GUI control

	5.3.3. Container style
	Overview
	Empty or Form?
	Empty
	Form

	How to build the command bar
	Adding a view to a custom application
	Launching the view

	5.3.4. Command bar
	Overview
	How to add menu items
	How to add menu item event handling

	5.3.5. FlexPendant fonts
	Overview
	TpsFont

	5.3.6. The use of icons
	Overview
	FlexPendant controls with images
	PictureBox and ImageList
	The TpsIcon class

	5.3.7. TabControl
	Overview
	Illustration
	How to add tab images
	How to add an event handler using the Properties window
	Disposing TabControl

	5.3.8. Button, TextBox and ComboBox
	Overview
	Using Button
	Using TextBox
	Using ComboBox

	5.3.9. AlphaPad
	Overview
	Launching the AlphaPad
	Adding event handlers
	Validating the result at the Closing event
	Using the result at the Closed event
	Removing the AlphaPad control

	5.3.10. ListView
	Overview
	Illustration
	Using properties to control appearance
	ABB specific properties

	5.3.11. CompactAlphaPad and NumPad
	Using CompactAlphaPad
	Using NumPad

	5.3.12. GTPUMessageBox
	Overview
	Design issues
	Simple code example
	Using a callback

	5.3.13. GTPUFileDialog
	Overview
	File dialog types
	Illustration
	Implementation details
	Example

	5.3.14. DataBinding of RAPID data and IO signals
	What is databinding?
	FlexPendant SDK classes to be used as binding sources
	RapidDataBindingSource
	SignalBindingSource

	GUI example
	How to use the VS designer for data binding
	SuspendBinding/ResumeBinding

	5.4 Launching other views
	5.4.1. Using launch service
	Overview
	ITpsViewSetup Install
	Launching standard views
	LaunchView / CloseView example

	Launching custom applications

	5.4.2. Using standard dialogs to modify data
	Overview
	Creating the dialog
	Type checking

	5.5 Using the Controller API
	5.5.1. ABB.Robotics.Controllers
	Controller API
	CAPI domains
	CAPI and controller domains
	What controller functionality is provided?
	Releasing memory
	FP SDK Reference

	5.5.2. Accessing the controller
	Overview
	Controller instance
	Subscribing to controller events
	Create a backup
	Dispose

	5.5.3. Rapid domain
	5.5.3.1. Working with RAPID data
	Overview
	Providing the path to the RAPID data
	Direct access
	Hierarchical access
	Accessing data declared in a shared module

	Creating an object representing the RAPID data value
	IRapidData.ToString method
	IRapidData.FillFromString method
	String format

	Writing to RAPID data
	Letting the user know that RAPID data has changed
	Add subscription
	Handle event
	Read new value from controlller

	RapidData disposal

	5.5.3.2. Handling RAPID arrays
	Overview
	ArrayData object
	Array dimensions
	Array item access by using indexers
	Array item access using enumerator

	5.5.3.3. ReadItem and WriteItem methods
	Overview
	ReadItem method
	WriteItem method

	5.5.3.4. UserDefined data
	Overview
	Creating UserDefined object
	Reading UserDefined data
	Writing to UserDefined data
	Implement your own struct representing a RECORD
	Creating ProcessData type
	Implementing ProcessData struct
	Implementing IRapidData methods
	Property implementation

	5.5.3.5. RAPID symbol search
	Overview
	SearchRapidSymbol method
	Search properties
	Default instance
	Data type argument
	Symbol name argument
	Example 1
	Example 2
	Example 3

	SearchRapidSymbol example
	Search for UserDefined RAPID data - example

	5.5.3.6. RAPID execution
	Start and Stop RAPID programs
	RAPID execution change event
	ResetProgramPointer method

	5.5.3.7. Modifying modules and programs
	Overview
	Load modules and programs
	Save and unload RAPID program
	Save module
	ProgramPointer and MotionPointer
	ModifyPosition method

	5.5.4. IO system domain
	Overview
	Accessing signals
	Getting signals using SignalFilter
	Reading IO signal values
	Digital signal
	Analog signal

	Writing IO signal values
	Digital signal
	Analog signal

	Listening to signal changes
	Visual Basic
	C#
	Start and stop subscriptions
	Avoiding threading conflicts
	Finding out the new value

	5.5.5. Event log domain
	Overview
	Access the controller event log
	Access event log categories
	Access event log messages
	MessageWritten event

	5.5.6. Motion domain
	Overview
	MotionSystem object
	Accessing Mechanical units
	Jogging
	Mechanical unit properties and methods
	DataChanged event

	5.5.7. File system domain
	Overview
	Accessing files and directories
	Controller and FlexPendant file system
	Loading controller files
	Saving files
	Getting multiple files and directories
	Using search patterns

	5.5.8. System info domain
	Overview
	SystemInfo class
	System options
	Additional options

	6 Robust FlexPendant applications
	6.1. Introduction
	Overview
	Technical overview of the FlexPendant device
	How large can a custom application be?

	6.2. Memory management
	Garbage collection and Dispose
	Application Framework usage - ITpsViewSetup
	How to program the Dispose method - example
	Discover memory leaks

	6.3. Performance
	About performance
	Less code means faster code
	Fewer controller accesses means faster code
	Fewer objects means faster code
	Transferring files
	Application Framework usage - ITpsViewActivation
	Excessive string manipulation is costly
	Avoid Control.Refresh
	Avoid boxing and unboxing
	Foreach
	Reflection is performance demanding
	Efficiently parsing Xlm

	6.4. Reliability
	Overview
	Error handling in .NET applications
	SDK exception classes
	Thread affinity
	Invoke
	Memory leaks
	Utilizing multi-threading
	Lock statement
	Multicast delegates

	7 Using the PC SDK
	7.1. Controller API
	PC SDK domains
	CAPI illustration
	PC SDK Reference

	7.2. Create a simple PC SDK application
	Overview
	Set up the project
	Create the user interface
	Implement network scanning
	Add a network watcher
	Handle event
	Establish connection to controller
	Implement event handler
	Start program execution

	7.3. Discovery domain
	Overview
	NetworkScanner
	ControllerInfo object
	Add controllers from outside local network
	NetworkWatcher

	7.4. Accessing the controller
	Controller object
	Memory management in PC applications
	Dispose
	Logon and logoff
	Mastership
	Controller events
	Backup and Restore
	Backup sample
	Restore sample

	VirtualPanel
	Learn more

	7.5 Rapid domain
	7.5.1. Working with RAPID data
	Overview
	Providing the path to the RAPID data
	Direct access
	Hierarchical access
	Accessing data declared in a shared module

	Creating an object representing the RAPID data value
	IRapidData.ToString method
	IRapidData.FillFromString method
	String format

	Writing to RAPID data
	Letting the user know that RAPID data has changed
	Add subscription
	Handle event
	Read new value from controlller

	Implementing high priority data subscriptions
	RapidData disposal

	7.5.2. Handling arrays
	Overview
	ArrayData object
	Array dimensions
	Array item access by using indexers
	Array item access using enumerator

	7.5.3. ReadItem and WriteItem methods
	Overview
	ReadItem method
	WriteItem method

	7.5.4. UserDefined data
	Overview
	Creating UserDefined object
	Reading UserDefined data
	Writing to UserDefined data
	Recursively reading the structure of any RECORD data type
	Implement your own struct representing a RECORD
	Creating ProcessData type
	Implementing ProcessData struct
	Implementing IRapidData methods
	Property implementation

	7.5.5. RAPID symbol search
	Overview
	Search method
	Search properties
	Default instance
	Data type argument
	Symbol name argument
	Example 1
	Example 2
	Example 3

	SearchRapidSymbol example
	Search for UserDefined RAPID data - example

	7.5.6. Working with RAPID modules and programs
	Overview
	Load modules and programs
	Save programs and modules
	ResetProgramPointer method
	Start program
	Execution change event

	7.5.7. Enable operator response to RAPID UI-instructions from a PC
	Remote operator dialog
	Supported RAPID instructions
	UIInstructionType

	Increased flexibility
	Basic approach
	UIInstructionEvent
	UIInstruction event arguments
	UIInstructionEventArgs
	UIListViewEventArgs

	UIInstructionEventType
	SendAnswer method

	7.6. IO system domain
	Overview
	Accessing signals
	Getting signals using SignalFilter
	Reading IO signal values
	Digital signal
	Analog signal

	Writing IO signal values
	Digital signal
	Analog signal

	Listening to signal changes
	Visual Basic
	C#
	Start and stop subscriptions
	Implementing high priority event subscription
	Limitations for high priority events
	Avoiding threading conflicts
	Reading the new value

	7.7. Event log domain
	Overview
	Accessing the controller event log
	Accessing event log categories
	Accessing event log messages
	MessageWritten event

	7.8. Motion domain
	Overview
	Motion system
	Accessing Mechanical units
	Mechanical unit properties and methods

	7.9. File system domain
	Overview
	Accessing files and directories
	Controller and PC directory
	Environment variables
	Loading files
	Saving files
	CopyFile and CopyDirectory
	Getting multiple files and directories
	Using search patterns

	7.10. Messaging domain
	Overview
	RobotWare option
	Messaging illustration
	Benefits
	The Messaging namespace
	Basic approach
	What can be sent in a message?
	RAPID Message Queue system parameters
	Remote RmqType
	Code example
	PC SDK - C#
	RAPID

	8 Debugging and troubleshooting
	8.1 FlexPendant - Debugging and troubleshooting
	8.1.1. Debug output
	Overview
	Enable debug output
	FlexPendant Command Server
	Trace and Debug

	8.1.2. Debugging the virtual FlexPendant
	Overview
	Debugging procedure
	Attach to Process
	Windows Task Manager
	Launching debugger programatically

	8.1.3. Debugging the FlexPendant device
	Overview
	Prerequisites
	Setting up the network
	Debugging procedure
	RAB User Forum

	8.1.4. Troubleshooting FlexPendant applications
	Overview
	FlexPendant application does not start
	Important support information

	8.2 PC - Debugging and troubleshooting
	8.2.1. Debugging
	Introduction
	Exception error codes

	8.2.2. Troubleshooting
	Overview
	Checklist
	Important support information

	9 Localizing a FlexPendant application
	9.1. Adding support for several languages
	Introduction
	Get started
	1 Create project for text resources
	2 Prepare main project for localization
	3 Build satellite assembly
	4 Test a localized application

	10 Packaging RAB applications
	10.1 Deployment of a PC SDK application
	10.1.1. Overview
	Introduction
	Facilities for deployment
	ABBControllerAPI.msm
	ABB Industrial Robot Communication Runtime.msi

	10.2 Deployment of a FlexPendant SDK application
	10.2.1. Overview
	Introduction
	Making a product
	Deployment of a FlexPendant SDK product

	10.2.2. Deployment of an application without a license
	Overview
	No license and no localization
	No license but localization

	10.2.3. Deployment of a licensed application
	Overview
	Procedure for making an additional option
	Installing the option at the customer
	Related information

	10.2.4. Deployment using FTP
	Overview
	Procedure

