General purpose ultrasonic level/
open channel flow transmitter
K-TEK Products

Introduction
This operating instruction manual provides the following information:
– Quick start guide for distance, level and flow - see page 3
– Guidelines on changing parameters - see page 5
– Installation instructions - see page 6
Table Of Contents

1.0 Introduction ... 3
2.0 Quick Start.. 3
 2.1 Quick Start for Distance ... 3
 2.2 Quick Start for Level .. 4
 2.3 Quick Start for Flow .. 4
3.0 Changing Parameters ... 5
4.0 Installation ... 6
 4.1 Key Description .. 7
 4.2 Security Code ... 7
5.0 Configuration Distance / Level ... 8
 5.1 Distance / Level Mode .. 9
6.0 Configuration Flow .. 13
 6.1 Flow Mode .. 14
7.0 Working with the Key Pad in Run Mode ... 18
 7.1 Run Mode Screen in Distance / Level Mode ... 18
 7.2 The Relay State Screen .. 19
 7.3 On Screen KSCOPE ... 19
 7.4 mA Graph Screen ... 20
8.0 Examples ... 20
 8.1 Distance Measurement ... 20
 8.2 Level Measurement ... 21
 8.3 Level Measurement and Engineering Units ... 21
 8.4 Level Measurement Using the Lineariser Function .. 22
 8.5 Level Measurement Using the Lineariser Function with a Non-Linear Vessel 23
 8.6 Venturi Flume .. 24
 8.7 V-Notch ... 24
 8.8 Working with the Simulator ... 25
 8.9 FIFO (First In First Out) Pump Cycling .. 26
 8.10 Rotate Pump Cycle ... 27
9.0 Fault Finding .. 28
10.0 Terminal Connections .. 29
11.0 Dimensions ... 30
12.0 Cable Extension ... 34
13.0 KSCOPE ... 35
14.0 Declaration of Conformity .. 36
15.0 Warranty ... 37
16.0 Customer Support ... 38
 16.1 ABB RMA Form ... 39
1.0 Introduction

KSONIK I works on the non-contact principle of ultrasonics. A pulse of energy emits from the transducer at the speed of sound and is detected upon its return. The transmitter can distinguish the difference between a correct echo and other ambient noise. When the signal returns, KSONIK I measures the time period and then knowing the speed of sound, it can accurately calculate the distance from the material to the transducer. The KSONIK I can measure distance, level and open channel flow.

In distance mode the KSONIK I measures distance from the transducer. This means the 20mA will be the furthest point and the 4mA will be the closest point.

In level mode the KSONIK I measures level in a tank. This means at the furthest point or when the tank is empty, the instrument will read 4mA. At the closest point the tank will be full and the instrument will read 20mA.

The Open Channel flow meter uses a level measurement from the KSONIK I and converts the reading into a flow measurement.

A microprocessor then controls the output functions of the relays, display and the analogue output signals.

2.0 QUICK START

2.1 Quick Start For Distance

KSONIK I was designed to be user friendly with a very simple configuration program. This allows the technician to set up KSONIK I without the aid of a complicated source-code book. There are no references to any codes in KSONIK I. The set up procedure is all menu-driven with the aid of questions and multiple-choice answers.

1. Connect up the power to the instrument and the transducer connections as described on the KSONIK I board or in the KSONIK I manual under terminal connections on page 29.

PLEASE NOTE: ALL CONNECTORS ARE CAPABLE OF BEING UNPLUGGED FROM THE PCB.

2. Aim the transducer at a wall about 6 ft. away and check the display. It should read the following:

- Dist. 6.00ft
 - mA Output: 7.20mA
 - Instant: 6.00 ft
 - Temperature: 20°C
 - Percentage: 20.00%

- If the reading is above 6.00 ft then move the transducer closer to the wall.
- If the reading is below 6.00 ft then move the transducer away from the wall.
- You may now proceed and check other parameters.
2.2 QUICK START FOR LEVEL

1. Connect up the power to the instrument and the transducer connections as described on the KSONIK I board or in the KSONIK I manual under terminal connections on page 29.

PLEASE NOTE: ALL CONNECTORS ARE CAPABLE OF BEING UNPLUGGED FROM THE PCB.

2. Press SCROLL

3. Use ▼ ▲ to get to the default security Code 5159 and then press ENTER

4. Use ▼ ▲ to select level and then press ENTER

5. Press RUN

Aim the transducer at a wall about 6 ft away and check the display. It should read the following:

- If the Level reading is below 26.25 ft then move the transducer closer to the wall.
- If the Level reading is above 26.25 ft then move the transducer away from the wall.
- You may now proceed and check other parameters.

2.3 QUICK START FOR FLOW

1. Connect up the power to the instrument and the transducer connections as described on the KSONIK I board or in the KSONIK I manual under terminal connections on page 29.

PLEASE NOTE: ALL CONNECTORS ARE CAPABLE OF BEING UNPLUGGED FROM THE PCB.

2. Press SCROLL

3. Use ▼ ▲ to get to the default security Code 5159 and then press ENTER

4. Use ▼ ▲ to select flow and then press ENTER

5. Press ENTER

Aim the transducer at a wall about 1.5 m away and check the display. It should read the following:

- If the head reading is below 1.64 ft or below 64.86 Lt/s then move the transducer closer to the wall.
- If the head reading is above 1.64 ft or above 64.86 Lt/s then move the transducer away from the wall.
- You may now proceed and check other parameters.
3.0 CHANGING PARAMETERS

1. Simply press **SCROLL**. The SECURITY CODE prompt should be displayed.

2. Enter the code 5159 by pressing the ▼ ▲ keys.

3. To confirm security code press **ENTER**.

If Code has been accepted, the screen will display:

```
Dist. 6.00 ft
mA Output: 7.20mA
Instant: 6.00 ft
Temperature: 20°C
Percentage: 20.00%
```

If Code has not been accepted, the screen will display:

```
Dist. 6.00 ft
mA Output: 7.20mA
Instant: 6.00 ft
Temperature: 20°C
Percentage: 20.00%
```

If the security code has been changed and forgotten then contact the nearest ABB agent for override code. To carry on with programming go to page 8.
4.0 INSTALLATION

The transmitter is weather proof so it can be mounted outside. Although KSONIK I is protected to IP65 it is recommended that it be installed inside another suitable enclosure. The LCD display should not be facing direct sunlight as this can cause the display to fail. KSONIK I should be fixed to a wall or chassis plate using the four holes provided.

- Do not install KSONIK I in areas of high vibration as this may cause failure.
- Do not install KSONIK I in the close vicinity of electrical cable, SCR's or variable speed drives.

The installation of the transducer is the most important section of this manual and has been divided into 7 sub sections.

- The transducer must be fitted at 1.64 ft above the highest point of level.
- Always use the plastic isolation kit. This kit must be fitted to a rigid support and must not be allowed to swing. Use mild steel or a suitable plastic. Do not use stainless steel as this can cause ringing and may increase the blanking distance.

- The transducer must be perpendicular to the material it is measuring with a clear line of sight and not above beams or filling points.

Liquid Level Measurement

Transducer at 90 deg to surface.

Solid Level Measurement

Transducer at 90 deg to surface.

- If the transducer is in a coned vessel, it must be positioned over the middle of the cone. This ensures that the transducer receives the true echo and not one from the sides of the cone.
• When a standpipe is being used it must be as wide as possible and preferably be made of plastic. The base MUST have a 45 degree chamfer to reduce the echo size from the bottom of the standpipe. No welding should be present on the inside of the pipe as this causes false echoes. Always increase the blanking 5.91 in / 150 mm past the end of the standpipe.

• If any large electrical equipment is installed in the vicinity, then earthed steel conduit must be used.
• An extension of up to 328 ft / 100 m using RG62U cable is possible. All connections must be soldered together. It is advisable to install the transducer cable inside steel conduit, especially if large electrical spikes (interference) are present.

4.1 KEY DESCRIPTION

KSONIK I is “user friendly” having only 5 keys and a menu driven display. The keys are listed below with their appropriate functions. This is used to initially access the programming and then to run through the various menus.

- **SCROLL**
 - This is used to initially access the programming and then to run through the various menus.

- **▼
 - This key is used to DECREASE the value in the various commands. This key also starts the simulation mode decreasing in level. See page 25 for details.

- **▲
 - This key is used to INCREASE the value in the various commands. This key also starts the simulation mode increasing in level. See page 25 for details.

- **ENTER**
 - When a value has been changed it is only accepted by pressing the ENTER key. The ENTER key while in run mode scrolls through the relay status screen, onscreen KScope screen and the mA output graph screen. See page 18 for details.

- **RUN**
 - When programming is complete, press RUN to return KSONIK I back to the run mode.

4.2 SECURITY CODE

To advance to the programming mode the correct security code must be entered. The factory default code is 5159. This code can be changed in the programming mode. If you forget the security code please contact your local ABB agent for the override code.
5.0 CONFIGURATION DISTANCE / LEVEL

<table>
<thead>
<tr>
<th>BASIC</th>
<th>OPTIONS</th>
<th>DEFAULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECURITY CODE</td>
<td>0-9999</td>
<td>5159</td>
</tr>
<tr>
<td>MODE</td>
<td>DISTANCE/LEVEL/FLOW</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>UNITS</td>
<td>FEET/METER</td>
<td>FEET</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>1.31-49 ft / 0.4-15.00 m</td>
<td>32.79 ft</td>
</tr>
<tr>
<td>SPAN</td>
<td>1.33-49 ft / 0.1-15.00 m</td>
<td>32.79 ft</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.00-49 ft / 0.3-14.90 m</td>
<td>1.63 ft</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>0.4-65 ft/min/0.01-20.0 m/min</td>
<td>3.20 ft/min</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>LIQUIDS/SOLIDS</td>
<td>LIQUIDS</td>
</tr>
<tr>
<td>FACTORY RESET</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>TEMPERATURE COMPENSATION</td>
<td>OFF/ON</td>
<td>OFF</td>
</tr>
<tr>
<td>SIMULATE</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>SET PASSWORD</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>BACKLIGHT</td>
<td>OFF/ON (1-60MIN) / PERM</td>
<td>2 MIN</td>
</tr>
<tr>
<td>LOSSTIME</td>
<td>30-900SEC</td>
<td>300SEC</td>
</tr>
<tr>
<td>FAILSAFE</td>
<td>3.6mA, 4.0mA, 20mA, 21mA, HOLD</td>
<td>HOLD</td>
</tr>
<tr>
<td>ENGINEERING UNITS</td>
<td>NONE, aaa-zzz, AAA-ZZZ, 0-9</td>
<td>NONE</td>
</tr>
<tr>
<td>MAXIMUM VALUE</td>
<td>0-99999</td>
<td>10000</td>
</tr>
<tr>
<td>DECIMAL POINT</td>
<td>0-3</td>
<td>2</td>
</tr>
<tr>
<td>ZERO OFF SET</td>
<td>-0.16 ft to 0.16 ft</td>
<td>0</td>
</tr>
<tr>
<td>SETUP RELAYS</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>RELAY 1 TO RELAY 3</td>
<td>OFF/LO/HI</td>
<td>OFF</td>
</tr>
<tr>
<td>SETPOINT</td>
<td>SPAN</td>
<td>0 ft</td>
</tr>
<tr>
<td>RESET POINT</td>
<td>SPAN</td>
<td>0 ft</td>
</tr>
<tr>
<td>PUMP CYCLE</td>
<td>OFF/FIFO/ROTATE</td>
<td>OFF</td>
</tr>
<tr>
<td>CLEAR RELAYS</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>SETUP LINEARISER</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>ACTIVATE LINEARISER</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>SETPOINT</td>
<td>1-21</td>
<td>1</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>0 ft-SPAN</td>
<td>0 ft</td>
</tr>
<tr>
<td>PERCENTAGE</td>
<td>0-100%</td>
<td>0%</td>
</tr>
</tbody>
</table>
5.1 DISTANCE / LEVEL MODE

SECURITY CODE
Security code to advance to programming.
DEFAULT 5159

MODE
Choose between Distance, Level.
DEFAULT Distance

UNITS
Choose between Feet and Meters.
DEFAULT Feet

EMPTY DISTANCE
This is the distance from the face of the transducer to the bottom of the tank.
DEFAULT 32.79 ft

SPAN
This figure is the measuring range of the instrument i.e. distance from the bottom of the tank to the highest point being measured. Remember, the material must not approach within 1.64 feet of the transducer face or within the blanking distance of the transducer.
DEFAULT 32.79 ft

BLANKING
This is the area where an echo cannot be processed because the return echo would be received while the transducer is still firing.
DEFAULT 1.64 ft

RATE OF CHANGE
This is used to set up the rate of change of the level output. The rate of change governs the rate at which the instrument output change. By increasing the rate of change (13.1 ft/min) it will allow the KSONIK I to monitor rapid changes in level. If the level moves faster than 3.20 ft/minute in measurement increase the rate of change. If a more stable output is required decrease the rate of change (1 ft/min).
DEFAULT 3.20 ft/min

APPLICATION
This selection can be used to select either liquid or solid applications. The solid application will provide more power to locate the correct echo.
DEFAULT Liquids

FACTORY RESET
This prompt will reset all values entered back to factory setting except the password. Please write down all settings before using this function.
DEFAULT No

TEMPERATURE COMPENSATION
Set temperature compensation on or off.
DEFAULT Off

SIMULATE
Simulates the level, relay outputs and mA outputs with the rate of change, selected.
5.1 DISTANCE / LEVEL MODE (continued)

DEFAULT No

SET PASSWORD
This prompt will allow you to change the default factory code. Should the factory code be forgotten please contact a local ABB agent for an override password.
DEFAULT No

BACKLIGHT
Choose between switching on the backlight for 1 - 60 minutes, switch off the backlight or to switch the backlight permanently on.
DEFAULT 2 Min

LOSSTIME
This is the amount of time between last receiving a correct echo and going into the Fail-safe condition. This time period is timed in seconds. This cannot be reduced to less than 30 seconds.
DEFAULT 300 Sec

FAILSAFE
If a loss of echo condition is reached then the 4-20mA output will follow the configured settings 3.60mA, 4mA, 20mA, 21mA or Hold the reading at the last recognized echo. This is usually due to a cable being cut or the instrument not being set up correctly.
DEFAULT Hold

ENGINEERING UNITS
This prompt will allow you to display in your own engineering units and can be made up from alphanumeric characters.
DEFAULT None

MAXIMUM VALUE/DECIMAL POINT
This is the maximum value the engineering units can be displayed instead of reading meters (m) or feet (ft).
DEFAULT 10000
After the maximum value is set the number of decimal points can be adjusted.
DEFAULT 2

ZERO OFFSET
Choose between –0.16 ft to 0.16 ft for setting the offset of the instrument.
DEFAULT 0

SETUP RELAYS
Select yes to enter the relay menu and set up the relay parameters.
DEFAULT No

RELAY1
The relays can be used either for a high alarm or a low alarm. A high alarm has its reset below the set point, and a low alarm has its reset above the set point. The relays can also be set up to have pump cycling enabled.
DEFAULT Off

SET POINT
This is the value where the relay will set.
5.1 DISTANCE / LEVEL MODE (continued)

DEFAULT 1.63 ft

RESET POINT
This is the value where the relay will reset.
DEFAULT 1.63 ft

PUMP CYCLE
Select the type of pump control that is required. The KSONIK I has two pump cycling routines which can be used to efficiently distribute the run cycles between various pumps that serve a common purpose. The ROTATE pump routine will use the relay set points configured for the pumps that require cycling, and rotate these set points among the pumps with the COMPLETION of each cycle.

NOTE: The COMPLETION of a cycle is reached once all pumps have switched OFF.
The FIFO (First In First Out) routine will use the relay set points configured for the pumps that require cycling, and rotate these set points among the pumps for subsequent cycles.
NOTE: The FIFO routine ensures that the lead pump will always switch off first.
HINT: It is advisable to configure the reset points for the pumps that require cycling to the same level.
DEFAULT Off

CLEAR RELAYS
Clears the number of cycles as well as the run hours recorded for the particular relay specified.
DEFAULT No

RELAY2
As above.
DEFAULT Off

RELAY3
As above.
DEFAULT Off

SETUP LINEARISER
This prompt will allow you to input a curve to linearise the vessel. The span is divided by 21 and you can input the new height for each point as well as the corresponding percentage fill at that point. KSONIK I prompts you at each point.
DEFAULT No

ACTIVATE LINEARISER
This function activates the lineariser.
DEFAULT No

SET POINT
This is the number at which point the user is inputting a linearized point.
5.1 DISTANCE / LEVEL MODE (continued)

HEIGHT/PERCENTAGE
Height is the distance from the bottom of the tank to a corresponding point where a suitable percentage can be determined.
DEFAULT 0.00 ft
Enter the percentage volume of vessel at a corresponding height.
DEFAULT 0.00 %

<table>
<thead>
<tr>
<th>Set point 1</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 m</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 2</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.64 ft</td>
<td>5.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 3</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.28 ft</td>
<td>10.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 4</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.92 ft</td>
<td>15.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 5</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.56 ft</td>
<td>20.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 6</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.20 ft</td>
<td>25.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 7</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.84 ft</td>
<td>30.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 8</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.48 ft</td>
<td>35.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 9</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.12 ft</td>
<td>40.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 10</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.76%</td>
<td>45.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 11</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.41 ft</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 12</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18.05 ft</td>
<td>50.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 13</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19.69 ft</td>
<td>55.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 14</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.33 ft</td>
<td>60.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 15</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.97 ft</td>
<td>70.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 16</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.61 ft</td>
<td>75.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 17</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26.25 ft</td>
<td>80.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 18</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27.89 ft</td>
<td>85.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 19</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29.53 ft</td>
<td>90.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 20</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31.17 ft</td>
<td>95.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 21</th>
<th>Height</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32.81 ft</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
6.0 CONFIGURATION FLOW

<table>
<thead>
<tr>
<th>FLOW MODE</th>
<th>OPTIONS</th>
<th>DEFAULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECURITY CODE</td>
<td>0-9999</td>
<td>5159</td>
</tr>
<tr>
<td>MODE</td>
<td>DISTANCE/LEVEL/FLOW</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>UNITS</td>
<td>FEET/METER</td>
<td>FEET</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>1.31-49 ft / 0.4-15.00 m</td>
<td>6.56 FT</td>
</tr>
<tr>
<td>SPAN</td>
<td>1.33-49 ft / 0.1-15.00 m</td>
<td>4.92 FT</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.00-49 ft / 0.3-14.90 m</td>
<td>1.65 FT</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>0.4-65 ft/min/0.01-20.0 m/min</td>
<td>1.65 FT/MIN</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>LIQUIDS/SOLIDS</td>
<td>LIQUIDS</td>
</tr>
<tr>
<td>FACTORY RESET</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>TEMPERATURE COMPENSATION</td>
<td>OFF/ON</td>
<td>OFF</td>
</tr>
<tr>
<td>SIMULATE</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>SET PASSWORD</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>BACKLIGTH</td>
<td>OFF/ON (1-60MIN) / PERM</td>
<td>2 MIN</td>
</tr>
<tr>
<td>LOSSTIME</td>
<td>30-900SEC</td>
<td>300SEC</td>
</tr>
<tr>
<td>FAILSAFE</td>
<td>3.6mA, 4.0mA, 20mA, 21mA, HOLD</td>
<td>HOLD</td>
</tr>
<tr>
<td>FLOW UNITS</td>
<td>SEE LIST</td>
<td>LT/SEC</td>
</tr>
<tr>
<td>MAXIMUM VALUE</td>
<td>0-99999</td>
<td>1000</td>
</tr>
<tr>
<td>ZERO OFF SET</td>
<td>-0.16 ft to 0.16 ft</td>
<td>0 ft</td>
</tr>
<tr>
<td>TOTALIZER COUNT</td>
<td>1-1000000</td>
<td>1</td>
</tr>
<tr>
<td>TOTALIZER UNITS</td>
<td>A-Z, a-z, 0-9</td>
<td>Lt</td>
</tr>
<tr>
<td>TOTALIZER RESET</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>FLOW CURVE</td>
<td>SEE LIST</td>
<td>V-NOTCH</td>
</tr>
<tr>
<td>SETUP RELAYS</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>RELAY1 TO RELAY3</td>
<td>OFF/LO/HI/COUNTER</td>
<td>OFF</td>
</tr>
<tr>
<td>SETUP LINEARISER</td>
<td>NO/YES</td>
<td>NO</td>
</tr>
<tr>
<td>ACTIVATE LINEARISER</td>
<td>NO/YES</td>
<td>YES</td>
</tr>
<tr>
<td>SETPOINT</td>
<td>1-21</td>
<td>1</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>0 ft - SPAN</td>
<td>0 FT</td>
</tr>
<tr>
<td>PERCENTAGE</td>
<td>0-100%</td>
<td>0%</td>
</tr>
</tbody>
</table>
6.1 FLOW MODE

SECURITY CODE
Security code to advance to programming.
DEFAULT 5159

MODE
Choose Flow.
DEFAULT Distance

UNITS
Choose between Feet and Meters.
DEFAULT Feet

EMPTY DISTANCE
This is the distance from the face of the transducer to the bottom of the flume.
DEFAULT 6.56 ft

SPAN
This figure is measuring the range of the instrument i.e. distance from the bottom of the flume to the highest point being measured.
Remember, the material must not approach within 1.65 feet of the transducer face or within the blanking distance of the transducer.
DEFAULT 4.92 ft

BLANKING
This is the area where an echo cannot be processed because the return echo would be received while the transducer is still firing.
DEFAULT 1.65 ft

RATE OF CHANGE
This is used to set up the rate of change of the level output. The rate of change governs the rate at which the instrument outputs changes. By increasing the rate of change (13 ft/min) it will allow the KSONIK I to monitor rapid changes in flow.
If the level moves faster than 1.65 ft/min then increase the rate of change. If a more stable output is required decrease the rate of change (1.00 ft/min).
DEFAULT 1.65 ft/min

APPLICATION
This selection can be used to select either liquid or solid applications. The solid application will provide more power to locate the correct echo.
DEFAULT Liquids

FACTORY RESET
This prompt will reset all values entered back to factory setting except the password. Please write down all settings before using this function.
DEFAULT No

TEMPERATURE COMPENSATION
Sets temperature compensation on or off.
DEFAULT Off

SIMULATE
Simulates the head, Relay output and mA output at the rate of change selected.
DEFAULT No

SET PASSWORD
This prompt will allow you to change the default factory code. Should the factory code be forgotten please contact a local
6.1 FLOW MODE (continued)

ABB agent for an override password.
DEFAULT No

BACKLIGHT
Choose between switching on the backlight for 1-60 minutes, switch off the backlight or to switch the backlight permanently on.
DEFAULT 2 Min

LOSSTIME
This is the time, in seconds, between last receiving a correct echo and going into the Fail-safe condition. Minimum 30 seconds.
DEFAULT 300 Sec

FAILSAFE
If the loss of echo condition is reached then the 4-20mA output will follow the configured settings 3.6mA, 4mA, 20mA, 21mA or Hold the reading at the last recognized echo. This is usually due to a cable being cut.
DEFAULT Hold

FLOW UNITS
Units can be set via the alphanumeric display to the desired value.
DEFAULT LT/SEC

MAXIMUM VALUE
This is the maximum flow rate of the flume.
DEFAULT 1000

ZERO OFFSET
Choose between -0.16 ft to 0.16 ft for small errors on the instrument.
DEFAULT 0

TOTALISER COUNT
Choose a value where the counter will increment for a certain unit of flow between 1-1000000 when in Flow mode.
DEFAULT 1

TOTALISER UNITS
Indication of units the totaliser is set up for.
DEFAULT Lt

TOTALISER RESET
Reset the totaliser counter when in Flow mode.
DEFAULT No

FLOW CURVE
The flow element can be selected. Select from the list below:
V-notch (5/2)
Venturi (3/2)
Parshall flume 1- 96 inch
Rectangular weir (3/2)
Own curve (21 point lineariser)
DEFAULT V-Notch

SETUP RELAYS
This prompt will allow a user to enter the menu to set up the relay parameters.
DEFAULT No
6.1 FLOW MODE (continued)

RELAY1
The relays can be used either for a high alarm, a low alarm or counter in flow mode. The difference is that a high alarm has its reset below the set point, and a low alarm has its reset above the set point. The counter will output a pulse every time a certain value is reached from the totalizer, which increments by more than a user defined value when in flow mode. The relays can also be set up to have pump cycling enabled.
DEFAULT Off

SET POINT
This is the distance value whereby the relay will set.
DEFAULT 1.63 ft

RESET POINT
This is the distance value whereby the relay will reset.
DEFAULT 1.63 ft

PUMP CYCLE
Select the type of pump control that is required. The KSONIK I has two pump cycling routines which can be used to efficiently distribute the run cycles between various pumps that serve a common purpose.

The ROTATE pump routine will use the relay set points configured for the pumps that require cycling, and rotate these set points among the pumps with the COMPLETION of each cycle.
NOTE: The COMPLETION of a cycle is reached once all pumps have switched OFF.

The FIFO (First In First Out) routine will use the relay set points configured for the pumps that require cycling, and rotate these set points among the pumps for subsequent cycles.
NOTE: The FIFO routine ensures that the lead pump will always switch off first.
HINT: It is advisable to configure the reset points for the pumps that require cycling to the same level.
DEFAULT No

COUNT VALUE
Choose a value where the relay will pulse between 1-1000000 when in Flow mode.
DEFAULT 1000

CLEAR RELAYS
Clears the number of cycles as well as the run hours recorded for particular relay specified.
DEFAULT No

RELAY2
As above.
DEFAULT Off

RELAY3
As above.
DEFAULT Off

SETUP LINEARISER
This prompt will allow you to input a curve to linearise the flume. The span is divided by 21 and you can input the new height for each point as well as the corresponding percentage fill at that point. KSONIK I prompts you at each point.
DEFAULT No

ACTIVATE
This function activates the lineariser.
DEFAULT Yes
HEALTH/PERCENTAGE
Height is the distance of the flume from the bottom to a point where a suitable percentage volume can be determined.
DEFAULT 0.00 ft
Enter the percentage volume of flume at a corresponding distance away from the bottom of the vessel or flume.
DEFAULT 0.00%

<table>
<thead>
<tr>
<th>Set point 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set point 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Percentage</td>
</tr>
</tbody>
</table>
7.0 WORKING WITH THE KEY PAD IN RUN MODE

In run mode the ENTER key has an alternative function.

While in run mode the screen looks similar to the following:

<table>
<thead>
<tr>
<th>Dist.</th>
<th>6.00 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA Output:</td>
<td>7.20mA</td>
</tr>
<tr>
<td>Instant:</td>
<td>8.00 ft</td>
</tr>
<tr>
<td>Temperature:</td>
<td>20°C</td>
</tr>
<tr>
<td>Percentage:</td>
<td>20.00%</td>
</tr>
</tbody>
</table>

Press ENTER once. The screen changes to the status screen of the relays.

<table>
<thead>
<tr>
<th>Relay</th>
<th>State</th>
<th>Hour</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL 1:</td>
<td>OFF</td>
<td>LO</td>
<td>0</td>
</tr>
<tr>
<td>REL 2:</td>
<td>ON</td>
<td>HI</td>
<td>1</td>
</tr>
<tr>
<td>REL 3:</td>
<td>ON</td>
<td>HI</td>
<td>3</td>
</tr>
</tbody>
</table>

Press ENTER again and the screen goes to the onscreen KScope.

Note: The screen reverts back to normal run mode within 2 minutes

Press again and the screen goes to the mA output screen.

Pressing ENTER again while in the onscreen KScope screen will revert the screen into normal run mode.

7.1 RUN MODE SCREEN IN DISTANCE/LEVEL MODE

1. Graphical representation of percentage fill.
2. Instantaneous distance
3. Temperature of transducer
4. Percentage fill
5. mA Output
6. Distance / Level Measurement
7. Type of transducer

Dist. 6.00 ft

mA Output: 7.20mA
Instant: 6.00 ft
Temperature: 20°C
Percentage: 20.00%
1. The graphical representation of the percentage fill of the application.
2. The instantaneous distance that the instrument is measuring at that specific time. Please note that this value can change on each pulse.
3. The temperature, which is being measured at the transducer, if temperature compensation has been enabled.
4. The value of percentage fill of the instrument.
5. The mA output of the instrument.
6. The average Distance/Level value which is calculated.
7. Type of transducer used.

7.2 THE RELAY STATE SCREEN

Press ENTER while in run mode to get the RELAY STATE SCREEN.

<table>
<thead>
<tr>
<th>Relay</th>
<th>State</th>
<th>Hour</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL 1</td>
<td>OFF LO</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>REL 2</td>
<td>ON HI</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>REL 3</td>
<td>ON HI</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

1. Relay state headings.
2. The number of cycles each relay has been through.
3. The number of hours each relay has been on.
4. The state at which the relay is at ON, OFF, HI, LO and CO-Counter.
5. The relay indication number.

7.3 ONSCREEN KScope

Press ENTER twice while in run mode in order to get to the onscreen KScope.

1. The maximum returned echo size in volts e.g. 0.4V
2. Displayed instant distance from transducer to substance or object being measured. e.g. 39 ft
3. The Gain needed to get the particular returned echo signal to give a particular measurement. e.g. 50%
4. The amount of power needed to obtain an echo. e.g. 15% power
5. Maximum distance or span. e.g. 49 ft
6. Graphical representation of the echo received by the transducer.
7. Threshold line whereby any echoes below this line will not be accepted.
8. Indication of good echo, noise, or loss of echo. E.g. E for good echo, N for noise or O for loss of echo.
9. The maximum voltage scale of the Onscreen KScope.
10. The echo loss timer started when no signal is present.

See page 35 for details of KScope
8.0 Examples

8.1 Distance Measurement

The above application deals with a moving piston:
The maximum range for the piston is 16.5 ft / 5.00 m and the closest the piston can get to the transducer is 1.63 ft / 0.50 m (Due to the blanking of the transducer).

<table>
<thead>
<tr>
<th>SECURITY CODE</th>
<th>5159</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>16.5 ft / 5.00 m</td>
</tr>
<tr>
<td>SPAN</td>
<td>14.85 ft / 4.50 m</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.63 ft / 0.50 m</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>3.28 ft/min / 1.00 m/min</td>
</tr>
</tbody>
</table>

Below is what KSONIK I will display on the above application.

The analogue output should be approximately 14.66mA.
8.2 Level Measurement

TIP: Set the relay set and reset point further apart to avoid the relays from chattering.

Below is what KSONIK I will display on the application shown left. Relay 1 will switch on (set) when the level rises above 13.2 ft / 4.00 m and reset when the level goes below 11.55 ft / 3.50 m. Relay 2 will switch on (set) when the level drops below 3.28 ft / 1.00 m and reset when the level goes above 4.95 ft / 1.50 m.

<table>
<thead>
<tr>
<th>Level</th>
<th>13.94 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA Output:</td>
<td>19.11 mA</td>
</tr>
<tr>
<td>Instant:</td>
<td>2.46 ft</td>
</tr>
<tr>
<td>Temperature:</td>
<td>20°C</td>
</tr>
<tr>
<td>Percentage:</td>
<td>94.44%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECURITY CODE</th>
<th>5159</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>16.5 ft / 5.00 m</td>
</tr>
<tr>
<td>SPAN</td>
<td>14.85 ft / 4.50 m</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.63 ft / 0.50 m</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>3.28 ft/min / 1.00 m/ min</td>
</tr>
<tr>
<td>SETUP RELAYS</td>
<td></td>
</tr>
<tr>
<td>RELAY 1</td>
<td></td>
</tr>
<tr>
<td>RELAY 1 SET</td>
<td></td>
</tr>
<tr>
<td>RELAY 1 RESET</td>
<td></td>
</tr>
<tr>
<td>RELAY 2</td>
<td></td>
</tr>
<tr>
<td>RELAY 2 SET</td>
<td></td>
</tr>
<tr>
<td>RELAY 2 RESET</td>
<td></td>
</tr>
</tbody>
</table>

8.3 Level Measurement and Engineering Units

Below is what KSONIK I will display on the application shown left. The analogue output should be approximately 19.11 mA.

ENG 37.77 LIT

mA Output:	19.11 mA
Instant:	2.46 ft
Temperature:	20°C
Percentage:	94.44%

<table>
<thead>
<tr>
<th>SECURITY CODE</th>
<th>5159</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>LEVEL</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>16.5 ft / 5.00 m</td>
</tr>
<tr>
<td>SPAN</td>
<td>14.85 ft / 4.50 m</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.63 ft / 0.50 m</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>3.28 ft/min / 1 m/min</td>
</tr>
<tr>
<td>ENGINEERING UNITS</td>
<td>LIT</td>
</tr>
<tr>
<td>MAXIMUM VALUE</td>
<td>40.00</td>
</tr>
<tr>
<td>DECIMAL POINT</td>
<td>40.00</td>
</tr>
</tbody>
</table>
8.4 Level Measurement Using the Lineariser Function

Before setting up the lineariser, check all other parameters are calculated for your application.

1. Scroll through the menus with either the \textbf{SCROLL} or \textbf{ENTER} until the menu SETUP LINEARISER appears.

2. Use \textbf{▼} \textbf{▲} to select YES and then Press \textbf{ENTER}

3. A prompt ACTIVATE LINEARISER will appear. Use \textbf{▼} \textbf{▲} to select YES and then press \textbf{ENTER}

4. Set up each of the 21 points of the lineariser as needed by using \textbf{▼} \textbf{▲} and then pressing \textbf{ENTER}

5. When finished press \textbf{RUN}

Shown to the left is what KSONIK I will display on the above application. The analogue output should be approximately 18.80mA.

Note: Due to the curve of the graph being linear only 3 points are needed from the lineariser.
8.5 Level Measurement Using the Lineariser Function with a Non-Linear Vessel

Note: Due to the curve of the graph being non-linear all 21 points are needed from the lineariser. The display shown to the bottom right is what KSONIK I will display on the above application. The analogue output should be approximately 18.31 mA.
8.6 Venturi flume

This is an example of a Venturi Flume application. The transducer is mounted 3.94 ft / 1.20 m above the zero of the flume, this is the Empty Distance. The Span is 1.97 ft / 0.60 m and the Blanking Distance is 1.97 ft / 0.60 m. The transducer must be fitted 3 x maximum head upstream. There is an external counter connected to the relay counter. The water flow must not dam up and cause a build-up inside the flume.

Please Note! The Empty Distance is to the zero of the flume and not the bottom of the flume.

<table>
<thead>
<tr>
<th>SECURITY CODE</th>
<th>5159</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>FLOW</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>3.94 ft / 1.20 m</td>
</tr>
<tr>
<td>SPAN</td>
<td>1.97 ft / 0.60 m</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.97 ft / 0.60 m</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>3.28 ft/min / 1.00 m/min</td>
</tr>
<tr>
<td>FAIL TIMER</td>
<td>300</td>
</tr>
<tr>
<td>FAIL SAFE</td>
<td>HOLD</td>
</tr>
<tr>
<td>FLOW UNITS</td>
<td>Lt/sec</td>
</tr>
<tr>
<td>MAXIMUM FLOW</td>
<td>1435</td>
</tr>
<tr>
<td>FLOW CURVE</td>
<td>Venturi</td>
</tr>
<tr>
<td>SETUP RELAYS</td>
<td>YES</td>
</tr>
<tr>
<td>RELAY 1</td>
<td>Counter</td>
</tr>
<tr>
<td>RELAY 1 COUNTER</td>
<td>1000</td>
</tr>
<tr>
<td>VALUE</td>
<td>HI</td>
</tr>
<tr>
<td>RELAY 2</td>
<td>1.64 ft / 0.50 m</td>
</tr>
<tr>
<td>RELAY 2 SET</td>
<td>1.61 ft / 0.49 m</td>
</tr>
<tr>
<td>TOTALISER RESET</td>
<td>NO</td>
</tr>
<tr>
<td>ZERO OFFSET</td>
<td>0</td>
</tr>
</tbody>
</table>

Shown to the right is what KSONIK I will display on the above application. The relay will drive the counter for every 1000 Lt/s and 1m³ of flow. The analogue output should be approximately 14.39 mA. Relay 2 would set at above 1.64 ft / 0.50 m and reset at below 1.61 ft / 0.49 m. TIP: Set the relay set and reset point further apart to avoid the relays from chattering.

8.7 V-Notch

This is an example of a V-Notch application. The transducer is mounted 6.56 ft / 2.00 m above the Notch in the V, this is the Empty Distance. The Span is 4.92 ft / 1.50 m and the Blanking Distance is 1.64 ft / 0.50 m. The transducer must be fitted 3 x maximum head-height upstream. There is an external counter connected to the relay counter. The water flow must not dam up and cause a build-up behind the weir.

Please Note! The Empty Distance is to the bottom of the V-Notch and not the bottom of the weir.
TIP: Set the relay set and reset point further apart to avoid the relays from chattering.

Below is what KSONIK I will display on the above application. The relay will drive the counter for every 1000 counts. The analogue output should be approximately 9.82 mA. Relay 2 will set above 4.76 ft / 1.45 m and reset below 4.43 ft / 1.35 m.

8.8 Working with the Simulator

TIP: Set the relay set and reset point further apart to avoid the relays from chattering.

In order to activate the simulator proceed with the following:

1. Scroll through the menus with either the SCROLL or ENTER until the option Simulate appears.
2. Use ▼ ▲ to select YES and then press ENTER
3. Press RUN to exit the menu.
4. Press ▼ or ▲ to start the simulator to increase or decrease the level at the rate of change.

Relay 1 will set above 13.3 ft / 4.00 m and reset below 11.55 ft / 3.50 m
Relay 2 will set below 3.28 / 1.00 m and reset above 4.95 ft / 1.50 m.

5. Press RUN to stop or start the simulator.

NOTE: In order for the instrument to go back to normal measurement mode, go back to the menus and select NO for the Simulate option or reset the power to the instrument.
8.9 FIFO (First In First Out) Pump cycling

<table>
<thead>
<tr>
<th>SECURITY CODE</th>
<th>5159</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>LEVEL</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>16.5 ft / 5.00 m</td>
</tr>
<tr>
<td>SPAN</td>
<td>14.85 ft / 4.50 m</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.63 ft / 0.50 m</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>3.28 ft/min / 1.00 m/min</td>
</tr>
<tr>
<td>SETUP RELAYS</td>
<td>YES</td>
</tr>
<tr>
<td>RELAY 1</td>
<td>HI</td>
</tr>
<tr>
<td>RELAY 1 SET</td>
<td>4.95 ft / 1.50 m</td>
</tr>
<tr>
<td>RELAY 1 RESET</td>
<td>3.28 ft / 1.00 m</td>
</tr>
<tr>
<td>PUMP CYCLING</td>
<td>FIFO</td>
</tr>
<tr>
<td>RELAY 2</td>
<td>HI</td>
</tr>
<tr>
<td>RELAY 2 SET</td>
<td>11.55 ft / 3.50 m</td>
</tr>
<tr>
<td>RELAY 2 RESET</td>
<td>8.20 / 2.50 m</td>
</tr>
<tr>
<td>PUMP CYCLING</td>
<td>FIFO</td>
</tr>
<tr>
<td>RELAY 3</td>
<td>HI</td>
</tr>
<tr>
<td>RELAY 3 SET</td>
<td>13.2 ft / 4.00 m</td>
</tr>
<tr>
<td>RELAY 3 RESET</td>
<td>9.84 ft / 3.00 m</td>
</tr>
<tr>
<td>PUMP CYCLING</td>
<td>FIFO</td>
</tr>
</tbody>
</table>

TIP: Set the relay set and reset point further apart to avoid the relays from chattering.

The following will occur in the FIFO pump cycling routine:

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 2</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 1 Level 4.27 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>1</td>
</tr>
<tr>
<td>Relay 2</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 2 Level 7.22 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 2</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 3 Level 11.81 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>2</td>
</tr>
<tr>
<td>Relay 2</td>
<td>ON</td>
<td>1</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 4 Level 14.11 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>3</td>
</tr>
<tr>
<td>Relay 2</td>
<td>ON</td>
<td>2</td>
</tr>
<tr>
<td>Relay 3</td>
<td>ON</td>
<td>1</td>
</tr>
</tbody>
</table>

Sequence 5 Level 9.19 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>OFF</td>
<td>4</td>
</tr>
<tr>
<td>Relay 2</td>
<td>ON</td>
<td>3</td>
</tr>
<tr>
<td>Relay 3</td>
<td>ON</td>
<td>2</td>
</tr>
</tbody>
</table>
8.10 Rotate Pump Cycle

<table>
<thead>
<tr>
<th>SECURITY CODE</th>
<th>5159</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>LEVEL</td>
</tr>
<tr>
<td>EMPTY DISTANCE</td>
<td>16.5 ft / 5.00 m</td>
</tr>
<tr>
<td>SPAN</td>
<td>14.85 ft / 4.50 m</td>
</tr>
<tr>
<td>BLANKING</td>
<td>1.63 ft / 0.50 m</td>
</tr>
<tr>
<td>RATE OF CHANGE</td>
<td>3.28 ft/in / 1.00 m/min</td>
</tr>
<tr>
<td>SETUP RELAYS</td>
<td>YES</td>
</tr>
<tr>
<td>RELAY 1</td>
<td>Hi</td>
</tr>
<tr>
<td>RELAY 1 SET</td>
<td>4.95 ft / 1.50 m</td>
</tr>
<tr>
<td>RELAY 1 RESET</td>
<td>3.28 ft / 1.00 m</td>
</tr>
<tr>
<td>PUMP CYCLING</td>
<td>ROTATE</td>
</tr>
<tr>
<td>RELAY 2</td>
<td>Hi</td>
</tr>
<tr>
<td>RELAY 2 SET</td>
<td>11.55 ft / 3.50 m</td>
</tr>
<tr>
<td>RELAY 2 RESET</td>
<td>8.2 ft / 2.50 m</td>
</tr>
<tr>
<td>PUMP CYCLING</td>
<td>ROTATE</td>
</tr>
<tr>
<td>RELAY 3</td>
<td>Hi</td>
</tr>
<tr>
<td>RELAY 3 SET</td>
<td>13.2 ft / 4.00 m</td>
</tr>
<tr>
<td>RELAY 3 RESET</td>
<td>9.84 ft / 3.00 m</td>
</tr>
<tr>
<td>PUMP CYCLING</td>
<td>ROTATE</td>
</tr>
</tbody>
</table>

TIP: Set the relay set and reset point further apart to avoid the relays from chattering.

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 2</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 2 Level 7.22 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>1</td>
</tr>
<tr>
<td>Relay 2</td>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 3 Level 11.81 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>2</td>
</tr>
<tr>
<td>Relay 2</td>
<td>ON</td>
<td>1</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequence 4 Level 14.11 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>3</td>
</tr>
<tr>
<td>Relay 2</td>
<td>ON</td>
<td>2</td>
</tr>
<tr>
<td>Relay 3</td>
<td>ON</td>
<td>1</td>
</tr>
</tbody>
</table>

Sequence 5 Level 9.19 ft

<table>
<thead>
<tr>
<th>Relay</th>
<th>Status</th>
<th>Time on in hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>ON</td>
<td>4</td>
</tr>
<tr>
<td>Relay 2</td>
<td>ON</td>
<td>3</td>
</tr>
<tr>
<td>Relay 3</td>
<td>OFF</td>
<td>2</td>
</tr>
</tbody>
</table>
9.0 FAULT FINDING

There are three categories of possible faults. The malfunction of the instrument, loss of echo, and wrong reading. The biggest problem is to identify the malfunction. If the instrument is not working satisfactorily then remove the transmitter and transducer to the workshop. Connect the power and the transducer directly, not using any extension cable. Aim the transducer to a wall about 4.95 ft / 1.5 m away, making sure that it is perpendicular to the wall. Now reset the instrument by the Factory Reset prompt. The Instrument should now read Distance 4.95 ft / 1.50 m. If it does not read the above then there is a malfunction with the instrument and it should be returned for repair.

If the above works and it still does not work in the field then there are many possible problems, which is listed below.

Loss of Echo
- Check all transducer cable connections and that the joints are soldered together.
- Check that you have used RG62U co-axial for an extension cable.
- Only use RG62U co-axial cable.
- Check the specification of the transducers as agitated surfaces and solids do not reflect as powerful a signal as flat surfaces.
- Aim the transducer straight down if used on liquids and perpendicular if used on solids.
- Check if the transducer face is dirty.

Wrong reading, anywhere in weir/channel
- Check to see if there is a reflection from the wall. Please Note! A piece of wire across a tank can cause a big enough echo to be accepted.

Are the parameters correct?
- Reset to factory default and check that KSONIK I reads correctly. If the factory settings are OK then your parameters need to be changed. Re-check these parameters with a tape measure.

Wrong reading, erratic.
- Reduce Rate of Change. Not many levels move faster than 3.28 foot/minute / 1 meter/minute.
- Make sure the application is set up correctly. On liquid applications it is very important that the liquid application is selected. Solid applications are only used for objects or substances being measured, which are in a solid form.

Wrong reading, slow.
- Increase Rate of Change.
10. TERMINAL CONNECTIONS

TERMINAL CONNECTIONS for KSONIK I/2
1. Transducer wire black
2. Transducer wire red
3. Transducer screen
4. Blue wire temperature transducer
5. White wire temperature transducer
6. + 4-20 mA Output
7. - 4-20 mA Output
8. Relay 1 normally closed
9. Relay 1 common
10. Relay 1 normally open
11. Relay 2 normally closed
12. Relay 2 common
13. Relay 2 normally open
14. Relay 3 normally closed
15. Relay 3 common
16. Relay 3 normally open
17. 220v live
18. 110v live
19. Neutral
20. Ground
Please see page 34 if extension Cable is used

TERMINAL CONNECTIONS for KSONIK I/1
1. Transducer wire black
2. Transducer wire red
3. Transducer screen
4. Blue wire temperature transducer
5. White wire temperature transducer
6. + 4-20 mA Output
7. - 4-20 mA Output
8. Relay 1 normally closed
9. Relay 1 common
10. Relay 1 normally open
11. Relay 2 normally closed
12. Relay 2 common
13. Relay 2 normally open
14. Relay 3 normally closed
15. Relay 3 common
16. Relay 3 normally open
17. 24VDC
18. Ground
Please see page 34 if extension Cable is used
11. DIMENSIONS

IMPORTANT:
Always use a rubber gasket and only use plastic nuts and bolts. Only hand tighten the bolts.
K10C General Purpose
- Maximum Measuring Length (ML) 50 ft. / 15 m
- Application: general use non-corrosive liquid
- K10C has two extra wires: Blue and white for temperature compensation

K10T3C PTFE Lined Transducer, 3 inch Flange
- Maximum Measuring Length (ML) 50 ft. / 15 m
- K10S3 Stainless Steel Flanged Transducer
- Application: corrosive liquids
K10T4C PTFE Lined Transducer, 4 inch Flange

- Maximum Measuring Length (ML) 50 ft. / 15 m
- K10S4 Stainless Steel Flanged Transducer
- Applications: corrosive liquids

K20C Intermediate Range

- Maximum Measuring Length (ML) 100 ft. / 30 m
- Application: liquids and solids
K20HC Intermediate Range with Dust
- Maximum Measuring Length (ML) 100 ft. / 30 m
- Application: solid or dust environments

K60C Long Range
- Maximum Measuring Length (ML) 196 ft. / 60 m
- Application: solid or dusty environments
12.0 CABLE EXTENSION

Should it be necessary to extend the cable, ABB only recommends RG62U co-axial cable as an extension cable. The temperature compensation must be a 2 core screened cable. The connections must be SOLDERED and connected as below.

The transducer cable to RG62U cable

The red wire from the transducer is soldered to the single conductor on the RG62U cable and the black and screen from the transducer is soldered to the screen of the RG62U co-axial cable. **RG62U cable connection on the KSONIK I.**

The other end of the RG62U cable should be connected to the transducer connection on the circuit board with the core going to the red marked terminal and the screen going to the SCRNR marked terminal. The extra length of cable should not exceed 492 ft / 150 m. This distance could be shorter if the cable is run close to high voltage cables. **The transducer cable to Co-axial and 2 core screened cable for a temperature compensated transducer.**

Solder all wires, the red wire from the transducer is soldered to the single conductor on the RG62U co-axial cable and the black and screen from the transducer is soldered to the screen of the RG62U co-axial cable. The blue wire is soldered to the blue wire and the white wire is soldered to the white wire on the 2 core screen cable. The screen on the 2 core cable must be connected to the screen on the co-axial cable and the screen on the transducer cable. Apply insulation tape or heat shrink to the wires so they do not short. **RG62U cable and 2 core cable connection on the KSONIK I.**

All wires should be connected as above, Co-Axial core to red, Co-Axial screen to screen. Blue and white from the temperature probe should be connected to blue and white on the board. The Black does not need a connection as it is already connected to the screen on the circuit board.

The extra length of cable should not exceed 492 ft / 150 m. This distance could be shorter if the cable is run close to high voltage cables.
13.0 KScope

KScope is a software package designed by ABB to enable the user of ABB’s range of KSONIK I Ultrasonic Level Instruments to enjoy rapid programming and fault finding when using the KSONIK I range of products. Please note KScope is not normally supplied with the KSONIK I and must be purchased separately. There is an on-screen KScope that comes with the instrument but the detail of the scope data is limited by the screen pixels and size.

Background
The nature of ultrasonic level equipment dictates that an oscilloscope transducer is not mounted correctly and this can cause endless problems with even a simple application. Without an oscilloscope one would not necessarily determine this problem. Many technical personnel do not have access to an oscilloscope; hence the reason for the development of KScope.

Operation
The KScope is equipped with an on-screen oscilloscope which enables the user to conduct fault finding in the simplest manner. It also has a full programming menu that enables the user to set-up the unit on installation and to make any necessary changes to the unit.

The traditionally simple manner of programming the KSONIK I range extends to the KScope. Once the access code has been entered correctly the complete programming menu opens up into a Windows-based display. All parameters can be altered in this window. The parameters of the KSONIK I will be reflected on the display of the KScope.

Starting KScope

1. Switch off instrument and connect the KScope cable to the Instrument and Computer. Make sure all transducers are connected properly.

2. Switch instrument on and hold for 1 second to start the instrument sending information. The instrument has a maximum KScope timeout of 1 hour, whereby the instrument will stop sending information to the computer.

Press again for 1 second to start the instrument sending information again.

3. Click the KScope XP icon to launch program.

If the profile does not appear on screen the following must be done: Click on the Commport menu to setup the serial port, which the KScope cable has been inserted into.

1. Select Maximum speed 38400. The Stop bits, Parity and Flow Control should be grayed out.
2. Click OK
3. The instruments profile should now be on screen.
Programming in KScope

1. Click on the icon or Press F3 or Go to the menu Parameters and then select KSONIK I parameters.
2. Enter the security code, 5159 is the default code. The screen shown to the right will appear.
3. All values that are saved on the KSONIK I will appear on the KScope programming page.
4. After all settings have been changed click on the save icon to save data to the KSONIK I.

14.0 Declaration of Conformity

KSONIK I complies with conformity in accordance with the following tests.

Electromagnetic Compatibility

Susceptibility:
EN50082-1
EN50082-2
EN801-2,3,4,
ENV50204
ENV50140
EN61000-4-2
EN61000-4-4
EN61000-4-11

Emission:
EN50081-2
EN55011
EN61000-4-2
EN61000-4-5
EN61000-4-4
EN61000-4-11

Safety:
BSEN61010-1
EN55022
EN60555-2, 3

CE Conformity Declaration
KSONIK I is in accordance with EN50081-2 1993 and EN50082-2 1995.
Prairieville, Louisiana, December 20, 2002.

Eric Fauveau

Eric Fauveau V.P. R&D, ABB
15.0 Warranty

5 YEAR WARRANTY FOR:
KM26 Magnetic Liquid Level Gauges; MagWave Dual Chamber System; LS Series Mechanical Level Switches (LS500, LS550, LS600, LS700, LS800 & LS900); EC External Chambers, STW Stilling Wells and ST95 Seal Pots.

3 YEAR WARRANTY FOR:
KCAP300 & KCAP400 capacitance switches.

2 YEAR WARRANTY FOR:
AT100, AT100S and AT200 series transmitters; RS80 and RS85 liquid vibrating fork switches; RLT100 and RLT200 reed switch level transmitters; TX, TS, TQ, IX and IM thermal dispersion switches; IR10 and PP10 External Relays; MT2000, MT5000, MT5100 and MT5200 radar level transmitters; RI100 Repeat Indicators; KP paddle switches; A02, A75 & A77 RF capacitance level switches and A38 RF capacitance level transmitters; Buoyancy Level Switches (MS50, MS10, MS8D & MS8F); Magnetic Level Switches (MS30, MS40, MS41, PS35 & PS45).

1 YEAR WARRANTY FOR:
KM50 gauging device; AT500 and AT600 series transmitters; LaserMeter and SureShot series laser transmitters; LPM200 digital indicator; DPM100 digital indicators; APM100 analog indicators; KVIEU series digital indicators and controllers; SF50 and SF60 vibrating fork switches, KB Electro-Mechanical Continuous Measuring Devices, KSONIK ultrasonic level switches, transmitters & transducers, ChuteMaster Microwave Transmitter / Receiver and TiltMaster Switches.

SPECIAL WARRANTY CONSIDERATIONS:
ABB does not honor OEM warranties for items not manufactured by ABB (i.e. Palm Pilots). These claims should be handled directly with the OEM.

ABB will repair or replace, at ABB’s election, defective items which are returned to ABB by the original purchaser within the period specified above from the shipment date of the item and which is found, upon examination by ABB, to its satisfaction, to contain defects in materials or workmanship which arose only under normal use and service and which were not the result of either alterations, misuse, abuse, improper or inadequate adjustments, applications or servicing of the product. ABB’s warranty does not include onsite repair or services. Field service rates can be supplied on request.

If a product is believed to be defective, the original purchaser shall notify ABB and request a Returned Material Authorization before returning the material to ABB, with transportation prepaid by the purchaser. (To expedite all returns/repairs from outside of the United States, consult ABB’s customer service team (service@ktekcorp.com) to determine an optimal solution for shipping method and turnaround time.) The product, with repaired or replaced parts, shall be returned to the purchaser at any point in the world with transportation prepaid by ABB for best-way transportation only. ABB is not responsible for expedited shipping charges. If the product is shipped to ABB freight collect, then it will be returned to the customer freight collect.

If inspection by ABB does not disclose any defects in material or workmanship, ABB’s normal charges for repair and shipment shall apply (minimum 250.00 USD).

The materials of construction for all ABB products are clearly specified and it is the responsibility of the purchaser to determine the compatibility of the materials for the application.

THE FOREGOING WARRANTY IS ABB’S SOLE WARRANTY AND ALL OTHER WARRANTIES EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXCLUDED AND NEGATED TO THE MAXIMUM EXTENT PERMITTED BY LAW. NO PERSON OR REPRESENTATIVE IS AUTHORIZED TO EXTEND ANY OTHER WARRANTY OR CREATE FOR ABB ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF ABB’S PRODUCTS. THE REMEDIES SET FORTH IN THIS WARRANTY ARE EXCLUSIVE OF ALL OTHER REMEDIES AGAINST ABB. ABB SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES OF ANY KIND. ABB’S SOLE OBLIGATION SHALL BE TO REPAIR OR REPLACE PARTS (FOUND TO BE DEFECTIVE IN MATERIALS OR WORKMANSHIP) WHICH ARE RETURNED BY THE PURCHASER TO ABB.
16.0 CUSTOMER SUPPORT

ABB
18321 Swamp Road
Prairieville, LA 70769 USA
Tel: (1) 225.673.6100
Fax: (1) 225.673.2525
Email: service@ktekcorp.com
Website: abb.com/level
16.1 ABB RMA Form

ABB
18321 Swamp Road
Prairieville, LA 70769
Phone: +1 (225) 673-6100
Fax: +1 (225) 673-2525
Email: service@ktekcorp.com
Toll Free: (800) 735-5835

*** IMPORTANT CUSTOMER NOTICE: PLEASE READ PRIOR TO RETURNING PRODUCTS TO ABB***

Be sure to include the Return Authorization (RA) number on the shipping label or package to the attention: Customer Service. A copy of this document should also be included with the packing list. ABB wants to maintain a safe work environment for its employees. In the event, the returned product or material has been in contact with a potentially hazardous chemical, per federal regulations, the customer must provide evidence of decontamination and the related chemical composition and characteristics. In order to expedite your return, please include the applicable Material Safety Data Sheets (MSDS) and decontamination tags by affixing these documents in close proximity to the shipment label for identification purposes. (January 18, 2006)

Return Authorization Form

<table>
<thead>
<tr>
<th>Customer:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Name:</td>
<td>Product:</td>
</tr>
<tr>
<td>Contact Email:</td>
<td>Serial No:</td>
</tr>
<tr>
<td>Contact Phone:</td>
<td>Job No:</td>
</tr>
<tr>
<td>Contact Fax:</td>
<td>Service Rep:</td>
</tr>
</tbody>
</table>

Completed by Customer

Reason:

Problem Found: None

Action Requested:

Is expedited return shipping requested? ☐ Yes

If yes, please provide a purchase order or your shipper’s account number (ex FedEx or UPS).

ABB pays return transport via standard ground shipments only.

If purchase order is issued, a copy of purchase order must be included with return authorization documentation.

Is ABB authorized to repair items determined to be non-warranty? ☐ Yes

If yes, a copy of purchase order must be included with return authorization documentation.

Customer PO#: Date:

Has product been in contact with any potentially hazardous chemical? ☐ Yes

If yes, documentation product and forward MSDS to ABB. “ATTN: Customer Service”

Return Repaired Product to Address

Shipping Address: Billing Address:

Ship Via: