Applications
The Type KD-10 relay provides instantaneous tripping for all combinations of phase-to-phase, two phase-to-ground, and three-phase faults. The relay supplies a single zone of protection for all three phases.

Similar in construction to the KD-10, the KD-11 relay includes the origin in the characteristic impedance circle. It is used as a carrier-start relay in directional comparison blocking schemes, or for time-delay tripping in straight distance relaying. For time-distance applications, both the KD-10 and KD-11 relays may be used in combination with the types TD-4, TD-5, or TD-52 dc transistorized timers.

Both KD-10 and KD-11 relays have indicating contactor switches (ICS) rated 0.2/2.0 A dc. The 0.2 A tap is recommended for applications where a 125- or 250-volt lockout relay, such as the Type WL, is energized. The 2.0 A tap must be used with 48-volt lockout relays and for directional comparison blocking (KA-4) applications. The 2.0 A tap is also recommended for direct trip applications.

Construction
Front and rear views of the Types KD-10 and KD-11 relays show that each relay contains three comparators (air-gap transformers): \(T_{ab} \), \(T_{ac} \), and \(T_{bc} \); three tapped autotransformers; two four-pole, cylinder-type operating units; and an indicating contactor switch (ICS).

Compensator \(T_x \) is a two-winding air-gap transformer with one primary current winding. Compensators \(T_{wa} \) and \(T_{wc} \) are three-winding air-gap transformers with two primary current windings, each of which has seven taps terminating at the tap block. A single tap divides the secondary winding of each autotransformer into two sections. One section is connected inductively in series with the relay terminal voltage; the other is connected to a potentiometer and a fixed loading resistor. The resistor is used for adjusting the maximum torque angle of the relay.

The three tapped autotransformers permit expansion of the basic range of the compensator's secondary by \(\pm 18 \) percent, in three percent steps. The units can be connected additively or subtractively in the compensator secondary circuit.

Connected open delta, the two four-pole, cylinder-type operating units operate as three-phase induction units. One unit is phase-to-phase, the other three-phase. Each unit produces a contact closing torque when a negative-phase sequence voltage is applied to its terminals. Contact opening torque is produced when a positive-phase sequence voltage is applied. In other words, the phase sequence of the voltage applied to the terminals determines whether the torque is restraining or operating.

The indicating contactor switch (ICS) relieves the main relay contacts of carrying the relatively heavy trip coil current. The ICS consists of a small dc-operated clapper-type device connected in the trip circuit. The main contacts of the Types KD-10 and KD-11 relays will close 30 A at 250 Vdc, and the seal-in contact of the ICS will carry this current long enough to trip a breaker. The ICS indicator target can be reset from outside the case by using a push-rods located at the bottom of the relay cover.

Types KD-10 and KD-11 Compensator Distance Relays

Short Reach 0.2 – 4.35
Medium Reach 0.75 – 20.0
Long Reach 1.3 – 36.0
Device Number: 21

![Phase-Phase Operating Unit]

![Phase-Phase Operating Unit]

![Three Phase Operating Unit]

![Adjustable Potentiometers]

![KD-10 Chassis (Front)]

![KD-10 Chassis (Rear)]

General Characteristics
Impedance for short-reach, medium-reach, and long-reach relays can be set for any value in the range of 0.2-4.35, 0.75-20.0, and 1.3-36.0 ohms, respectively.

For all phase-to-phase units, the maximum torque angle is factory set at 75°. However, it may be reset in the field for any value from 60° to 80°.

For medium- and long-reach, three-phase units, the maximum torque angle is also factory set at 75° and may similarly be reset for any value from 60° to 80°. On the short-reach, three-phase unit, maximum torque angle is factory set at 60°, but may be reset for any value from 45° to 75°. For all ranges, the 90° setting is approached when potentiometer \(P_2 \) is open circuited.
KD-10 Phase-to-Phase Unit

Distance characteristics: the KD-10 phase-to-phase unit responds to all phase-to-phase faults and most two-phase-to-ground faults. It does not respond to load current, synchronizing surges, or out-of-step conditions. The characteristic circle plotted for this unit on the R-X diagram (Figure 1) is significant only in the first quadrant, where resistance and reactance values are positive. This portion of the circle describes the relay’s performance when arc resistance is involved in the fault. If the transmission line includes a series capacitor, a small portion of the fourth quadrant, where resistance values are positive and reactance values negative, could also be significant.

As shown by the R-X diagram, the circle of the phase-to-phase unit is dependent on source impedance Z_s. However, the circle always goes through the line balance-point impedance; and the react at the compensator and line angle is constant, regardless of the system source impedance. Since a relatively high source impedance broadens the characteristic circle, on short lines the phase-to-phase unit makes a greater allowance for resistance in the fault. The characteristics of the phase-to-phase unit approach those of a reactance relay more closely as the line being protected becomes shorter with respect to the source impedance behind the relay without being operated under load conditions.

When operating on an actual transmission system, the phase-to-phase unit is inherently directional. No separate directional unit is required.

Since the phase-to-phase unit is not responsive to balanced conditions, it need not be blocked by the out-of-step relays. Phase-to-phase or phase-to-phase-to-ground faults occurring during out-of-step can be cleared at high speed by this unit.

Sensitivity: Figure 2 plots relay reach, in percent of tap block setting, against relay terminal voltage. Overreach due to dc transients need not be considered when setting the KD-10 relay. The compensators are not sensitive to the dc transients that accompany faults.

KD-10 Three-Phase Unit

Distance characteristics: As Figure 3 shows, the three-phase unit has a characteristic circle which passes through the origin. This circle is independent of source impedance.

If a solid three-phase fault occurs at the relay location, the YZ voltage drops to zero, and the relay could not distinguish an internal from an external fault without the resonant circuit added to the relay’s YZ voltage circuit. This resonant circuit allows this voltage to collapse gradually (at rated frequency) enabling the relay to determine whether the fault is inside the protected line section, or behind the relay.

To accommodate more arc resistance, the maximum torque angle of the short range KD-10 three-phase unit may be set at less than the line impedance angle. The 60° torque angle set at the factory may be readjusted to as low as 45°.

The three-phase unit is inherently directional and does not require a separate directional unit.

KD-11 Three-Phase Unit

Distance characteristics: The characteristic circle of the KD-11 three-phase unit includes the origin (see Figure 4).

Sensitivity: on current only, the KD-11 three-phase unit will close the left-hand contact for a relay current of 3 A or more, with T set for 5.8 (or $T + 10.0$ for the 1.3-36.0 ohm relay).

Impedance Circle for Three-Phase Unit in KD-10 Relay

Impedance Curve for Three-Phase Unit in KD-10 and KD-11 Relays, (Medium and Long Reach)

Impedance Circle for Three-Phase Unit of KD-11 Relay

September, 1990
K-Dar Compensator Distance Relaying

Phase Protection – 1, 2, 3, or 4 Zones – 5 Amperes, 60 Hertz, Spst-cc Contacts (Device Number: 21)

Relay Function

<table>
<thead>
<tr>
<th>Relay Complement (Order each relay separately by style number)</th>
<th>One Zone</th>
<th>Two Zones</th>
<th>Three Zones</th>
<th>Four Zones</th>
<th>Primary</th>
<th>Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Zone Phase</td>
<td>KD-10</td>
<td>KD-5</td>
<td>KD-10</td>
<td>KD-10</td>
<td>KD-10</td>
<td>KD-10</td>
</tr>
<tr>
<td>2nd Zone Phase</td>
<td>KD-10</td>
<td>KD-11</td>
<td>KD-10</td>
<td>KD-10</td>
<td>KD-10</td>
<td>KD-10</td>
</tr>
<tr>
<td>3rd Zone Phase</td>
<td>TD-5®</td>
<td>TD-5®</td>
<td>TD-4</td>
<td>TD-4</td>
<td>TD-4</td>
<td>TD-4</td>
</tr>
<tr>
<td>Timer®</td>
<td>CO-7®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type

<table>
<thead>
<tr>
<th>Range: Secondary Ohms – Line-to-Neutral</th>
<th>Volts Dc</th>
<th>Maximum Torque Angle</th>
<th>Factory Setting – Degrees Current Lags Voltage</th>
<th>Indicating Contactor Switch Amps Dc®</th>
<th>Relay Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD-3® Single phase</td>
<td>Short reach: 75-20, Long reach: 1.13-30</td>
<td>75°</td>
<td>0.2/2.0</td>
<td>1.0</td>
<td>185A4068</td>
</tr>
<tr>
<td>KD-5® Three phase</td>
<td>0.2-4.5</td>
<td>75°</td>
<td>60°</td>
<td>0.2/2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>KD-10 Three phase</td>
<td>0.75-21</td>
<td>75°</td>
<td>75°</td>
<td>0.2/2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>KD-11 Three phase</td>
<td>0.2-4.5</td>
<td>75°</td>
<td>75°</td>
<td>0.2/2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:
- **Denotes item available from stock.**
- **50-Hertz relays and auxiliaries can be supplied at same price. Order "Similar to Style Number … except 50 Hertz."
- **IC®:** Indicating Contactor Switch (dc current operated) having seal-in contacts and indicating target which are actuated when the ICS coil is energized at or above pickup current setting. Suitable for dc control voltages up to and including 250 volts dc. Two current ranges available: (1) 0.2/2.0 amps dc, with tapped coil; (2) 1.0 amp dc, without taps.
- **Rating of ICS unit used in specific types of relays is shown in price tables. All other ratings must be negotiated.**
- **ACS unit may be supplied in place of an ICS unit at no additional cost. Specify system voltage rating on order.**