MEASUREMENT & ANALYTICS

MT5000 Series
Guided wave radar level transmitters
Measurement made easy

ABB’s MT series Guided Wave Radar Level Transmitters are the only level transmitters in the world to be IEC 61508 certified for operation in SIL2 and SIL3 environments.
A new level of safety for hazardous industry environments

Introduction
The guided wave radar’s self-monitoring capability continually checks for any faults that could cause device failures or false indications. The device features a graphic display incorporated into an all digital electronics module. Using this new format ABB has been able to add waveform screens to the modular electronics along with easy to follow multiple choice setup menus. These menus can be changed to many different languages for easy commissioning throughout the world. Pulses of microwave energy are directed to the product surface using a rigid rod or flexible cable type probe. This assembly has no moving parts and no loss of energy due to beam divergence.

Customer benefits
• Microwaves are unaffected by temperature, pressure, specific gravity and vapors
• Easy to install
• No moving parts
• Ignores light continuous coatings
• Good for vacuum service
• No beam angle to be concerned about like through-air radar or ultrasonic transmitters
• More direct energy return – more consistent signal
• No complicated setup, no computer or programmer required
• Built-in waveform screen (Scope Trace)
Principle of operation

Stable readings in the most challenging environments

ABB’s ability to provide engineered solutions for tough applications allows an engineer to specify the best coupler and probe design and material for the application. ABB can supply specialized couplers, rods, cables and probe-end connections.

These components can be supplied in stainless steel, Hastelloy C276, Hastelloy B, Titanium, Tantalum, Monel 400 or Inconel 625.

Time of flight

Guided wave radar uses the time domain reflectometry measurement principle.

- Microwave pulses are created and propagated down the probe or cable of the device.
- When the microwave pulse makes contact with a change in dielectric a reflection is created.
- ABB’s radar sends and receives 64,000 pulses per second and provides two output readings in that time. The higher the dielectric of the material, the greater amount of energy reflected back to the transmitter.
- Using the time of flight principle, we measure the distance to the surface and back and then divide by two.

Graphic Display

The MT5000 series guided wave radar transmitters feature a graphic display incorporated into an all digital electronics module. Using this new format ABB has been able to add waveform screens to the modular electronics along with easy to follow multiple choice setup menus. These menus can be changed to many different languages for easy commissioning throughout the world. Pulses of microwave energy are directed to the product surface using a rigid rod or flexible cable type probe. This assembly has no moving parts and no loss of energy due to beam divergence. The waveform display allows engineers and technicians to view measurements in real-time and has onboard diagnostics.

Electronics

- HART Protocol
- Foundation Fieldbus
- Modbus
Industries and applications
The leader in level detection

Typical industries:
- Oil and gas production
- Refining
- Pharmaceutical and biotech – Power generation
- Pulp and paper
- Iron and steel
- Chemicals
- Food and beverage
- Marine

Typical applications:
- Storage vessels
- Horizontal cylinders
- Open atmosphere sumps
- Cooling tower basin, flume and flumes
- Precipitator / fly ash
- Feedwater heaters
- Oil and gas separators
- Mud tanks
- Crude or hydrocarbon condensate tanks
- Process water tanks
- Crude oil storage tanks
- Chemical storage vessels
- Blending tanks
- Hydrocarbon storage
- Ammonia storage
- Service water storage
- Demineralization tanks
- Makeup water storage
- Condensate storage
- Condenser sump or hotwell
- Deaerator
- Steam boiler drums
- Boiler blowdown tanks
- Flash tanks
Specifications

<table>
<thead>
<tr>
<th>MT5000</th>
<th>MT5100</th>
<th>MT5200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process measurement</td>
<td>Liquid level</td>
<td>Liquid level, liquid/Liquid interface level</td>
</tr>
<tr>
<td>Features</td>
<td>• Reliable level measurement over varied process conditions</td>
<td>• Provides both lower and upper level fluid indications</td>
</tr>
<tr>
<td></td>
<td>• Standardization reduces inventory and training requirements</td>
<td>• Flooded or non-flooded chambers</td>
</tr>
<tr>
<td></td>
<td>• Modular electronics</td>
<td>• Transmission of interface and upper fluid signals with the use of the optional RI100 repeat indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Detection of the presence of a rag layer (patent pending)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Weak interface signal detection</td>
</tr>
<tr>
<td>Graphic display</td>
<td>Field selectable units in feet, inches, millimeters, centimeters, meters, or percentage and return signal waveform screens</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>Dual compartment power, coated aluminum (standard) or stainless steel</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>13.5 - 36 VDC standard; 9-32 VDC foundation fieldbus; 10-18 VDC Modbus</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Single 4-20 mA, HART, foundation fieldbus, MODBUS (RTU or ASCII)</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>+/- 0.0625 inches / 1.6 millimeters</td>
<td></td>
</tr>
<tr>
<td>Process connection</td>
<td>3/4 inch NPT standard</td>
<td></td>
</tr>
<tr>
<td>Menu languages</td>
<td>English, French, Russian, Italian, Spanish, Portuguese, Chinese (Mandarin)</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 0.2 in / 5 mm</td>
<td>± 0.2 in / 5 mm upper level</td>
</tr>
<tr>
<td></td>
<td>± 1.0 in / 25 mm interface level</td>
<td>± 1.0 in / 25 mm ULD mode</td>
</tr>
<tr>
<td>Approvals</td>
<td>Factory mutual (FM), Canadian standards association (CSA), GOST (Russian), ATEX, IEC, SIL2 and SIL3, INMETRO and NEPSI</td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>2 to 200 ft / 0.6 to 60.9 m</td>
<td>2 to 65 ft / 0.6 to 19.8 m</td>
</tr>
<tr>
<td>Sensor materials</td>
<td>316SS, Monel, Hastelloy C276 and B3, Titanium</td>
<td>316SS, Monel</td>
</tr>
<tr>
<td>Process pressure</td>
<td>Up to 5000 PSI / 344 bar</td>
<td>Up to 3000 PSI / 207 bar</td>
</tr>
<tr>
<td>Process temperature</td>
<td>Up to 800°F / 427°C</td>
<td>Up to 400°F / 204°C</td>
</tr>
<tr>
<td>Process dielectric constant</td>
<td>1.4 - 100+</td>
<td>Upper fluid 1.6 - 5 Lower fluid 15 - 100+</td>
</tr>
<tr>
<td>Process viscosity maximum</td>
<td>1500 cp</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous specifications</td>
<td>2000 PSI @ 635°F 138 bar @ 335°C, steam service</td>
<td>Secondary 4-20 mA output via RI100 repeat indicator</td>
</tr>
</tbody>
</table>
Additional Information

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

© ABB, 2019