MNS Low Voltage Switchgear
System Guide
This guide is intended to be used along with other publications related to MNS Low Voltage Switchgear, such as:

MNS Service Manual
Erection, Operation and Commissioning
Publication no. 1TGC902006M0403

MNS Safety Aspects
Publication no. 1TGC900009B0202

Further information on the integrated switchgear platform MNS /S can be obtained from:

MNS /S System Guide
Publication no. 1TGC910001B0204
Switchgear Evolution

ABB is the global leader for low voltage switchgear with over 1.4 million MNS cubicles delivered worldwide since the inception of this system in 1973. ABB's history in switchgear can be traced back even further, to the 1890's when we first manufactured switchgear systems in Sweden.

With these credentials it is no surprise that the MNS system is the benchmark for operational safety, reliability and quality.

ABB draws on this wealth of background knowledge in designing and manufacturing low voltage switchgear for its global and local customers. This together with the global service and support network established in over 30 manufacturing locations world wide ensures that the choice of MNS will be the right decision.
Features & Applications

The ABB MNS system is a low voltage switchgear assembly. Its design is verified in accordance with IEC 61439-1/-2. The consistent application of the modular principle both in electrical and mechanical design as well as the use of standardized components allows its flexible and compact design. Depending on operating and environmental conditions different design levels are available.

Notable system advantages with regard to design aspects:
- Optimum protection for personnel and plant
- Design verified by testing (type-tested) including arc fault containment
- High operational reliability and availability
- Earthquake-, vibration- and shock-proof designs are available
- Maintenance-free busbar and frame construction
- Simple retrofitting procedures
- Compact, space-saving design
- Simplified project implementation utilizing ABB’s dedicated engineering tool

Thus MNS proves to have the approved solution for the following industries:
- Oil & Gas, on and off shore
- Chemical/Petrochemical
- Pharmaceutical
- Power Stations
- Paper
- Water treatment
- Mining
- Steel
- Food
- Marine

as well as for infrastructure requirements:
- Data centers
- Airports
- Office buildings
- Shopping centers
- Hospitals
- Rail

Typical Set-up
ABB’s world wide competence is second to none, this is possible due to the global MNS switchgear platform, and local ABB manufacturing facilities.

ABB ensures conformance to IEC 61439-1/-2 throughout, these locations with a proprietary switchgear engineering tool. This tool provides a comprehensive database with predefined engineering solutions for MNS. This database is then utilized with minimal engineering effort to provide customer specific solutions, thus meeting local specifications.

Where specific solutions are required on a global basis, these can easily be deployed throughout the ABB manufacturing facilities network, thus significantly reducing project lead times.
Technical Data

<table>
<thead>
<tr>
<th>Standards</th>
<th>Low Voltage Switchgear and Controlgear Assemblies – Verification by testing*</th>
<th>IEC 61439-1/-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test certificates</td>
<td>ASTA, Great-Britain (resist. to accidental arcs acc. to IEC 61641 and IEC 60298, Appendix AA) DLR German Research Institute for Aeroscpace e. V. Jülich, Earthquake Test for Security Areas in Nuclear Power Stations IABG Industrieanlagen Betriebgesellschaft, Vibration and shock tests Complying with Germanischer Lloyd, Hamburg</td>
<td></td>
</tr>
<tr>
<td>Electrical data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated voltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated insulation voltage U_i</td>
<td>1000 V 3~, 1500 V- **</td>
<td></td>
</tr>
<tr>
<td>Rated operating voltage U_b</td>
<td>890 V 3~, 750 V-**</td>
<td></td>
</tr>
<tr>
<td>Rated impulse withstand voltage U_{imp}</td>
<td>8 / 8 / 12 kV **</td>
<td></td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II / III / IV **</td>
<td></td>
</tr>
<tr>
<td>Degree of pollution</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Rated frequency</td>
<td>up to 60 Hz</td>
<td></td>
</tr>
<tr>
<td>Rated current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper Busbars:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated current I_e</td>
<td>up to 6300 A</td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current I_{pk}</td>
<td>up to 250 kA</td>
<td></td>
</tr>
<tr>
<td>Rated short-time withstand current I_{cw}</td>
<td>up to 100 kA</td>
<td></td>
</tr>
<tr>
<td>Copper Distribution bars:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated current I_e</td>
<td>up to 2000 A</td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current I_{pk}</td>
<td>up to 176 kA</td>
<td></td>
</tr>
<tr>
<td>Rated short-time withstand current I_{cw}</td>
<td>up to 100 kA</td>
<td></td>
</tr>
<tr>
<td>Arc Fault Containment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operational voltage</td>
<td>up to 690 V</td>
<td></td>
</tr>
<tr>
<td>Prospective short-circuit current</td>
<td>up to 100 kA</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>300 ms</td>
<td></td>
</tr>
<tr>
<td>Criteria (IEC 61641)</td>
<td>1 to 7</td>
<td></td>
</tr>
<tr>
<td>Forms of separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to Form 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Cubicles and frame</td>
<td>DIN 41488</td>
</tr>
<tr>
<td></td>
<td>Recommended height</td>
<td>2200 mm</td>
</tr>
<tr>
<td></td>
<td>Recommended width</td>
<td>400, 600, 800, 1000, 1200 mm</td>
</tr>
<tr>
<td></td>
<td>Recommended depth</td>
<td>400, 600, 800, 1000, 1200 mm</td>
</tr>
<tr>
<td></td>
<td>Basic grid size</td>
<td>$E = 25$ mm acc. to DIN 43660</td>
</tr>
<tr>
<td>Degrees of Protection</td>
<td>According to IEC 60529</td>
<td>External from IP 30 to IP 54</td>
</tr>
<tr>
<td></td>
<td>Internal from IP 2X</td>
<td></td>
</tr>
<tr>
<td>Steel components</td>
<td>Frame, incl. internal subdivisions</td>
<td>2.0 / 2.5 mm</td>
</tr>
<tr>
<td></td>
<td>Cladding, internal</td>
<td>1.5 / 2.0 mm</td>
</tr>
<tr>
<td></td>
<td>Cladding, external</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Surface protection/Paint</td>
<td>Frame, incl. internal subdivisions</td>
<td>Zinc or Alu-zinc coated</td>
</tr>
<tr>
<td></td>
<td>Cladding, internal</td>
<td>Zinc or Alu-zinc coated</td>
</tr>
<tr>
<td></td>
<td>Cladding, external</td>
<td>Zinc or Alu-zinc coated and Powder coated RAL 7035 (light grey)</td>
</tr>
<tr>
<td>Plastic components</td>
<td>Halogen-free, self-extinguishing, flame retardant, CFC-free</td>
<td>IEC 60707, DIN VDE 0304 part 3</td>
</tr>
<tr>
<td>Optional Extras, available on request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar system</td>
<td>Busbars</td>
<td>Fully insulated with heat shrinkable sleeving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver plating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tin plating</td>
</tr>
<tr>
<td>Special qualification</td>
<td>Test certificates</td>
<td>See test certificates listed above</td>
</tr>
<tr>
<td>Paint</td>
<td>Enclosure</td>
<td>Special colours on request</td>
</tr>
</tbody>
</table>

* Design verification by testing: Where an Assembly has previously been tested in accordance with IEC 60439-1, and the results fulfil the requirements of IEC 61439-1/-2, the verification of these tests need not be repeated.

** Depending on the electrical equipment
The fulfillment of all instructions of the relevant standard for Low Voltage switchgear and controlgear assemblies assures a basic level for personal and system protection. With MNS, ABB exceeds these levels as a standard. This has been proven by type tests in accordance with IEC 60439-1 and by design verification by test in accordance with IEC 61439-1 and -2. ABB goes beyond these standards with the proven Safety "Plus" for Operators and Plants and additionally in cases where a high degree of exposure is anticipated, or specific risks (e.g. earthquake risk) have to be observed.

The MNS low voltage switchgear system has been subjected to verification by testing in compliance with the standards. In order to ensure the highest possible degree of safety, ABB continues to conduct tests as per a continuous development program. These tests are based on the most critical representative applications of the entire product or performance range of the switchgear with respect to the test standard.

In addition to the above specifications ABB adopted as a standard IEC 61641 for testing under conditions of arcing due to an internal fault. To meet the requirements of IEC 61641, the switchgear is connected and supplied corresponding to the normal service arrangement. An arc is then initiated within the switchgear, the point of ignition is chosen to produce the most stress on the assembly. There are five criteria observed for the test of personal protection. In line with its “Safety Plus” statement ABB ensures that all five are met. In addition to these five criteria ABB also meets the additional plant protection criteria as detailed in IEC 61641 (criteria 6 and 7).

For more information on arc fault containment the “MNS Safety Aspects” brochure delivers essential considerations concerning plant and personal safety assured by MNS, such as:

- Basic safety philosophy
- Switchgear assembly verified by testing
- Arc fault protection
- Degrees of protection (IP code)
- Internal separation
- Earthquake, vibration and shock
- Neutral conductor dimensioning
Switchgear Design

Functional Compartments and Segregation

The assembly is divided into compartments thus separating different functional areas.

Incoming circuit breaker solution

1 Equipment compartment
The equipment compartment is divided into 3 sub sections, each sub section having its own door.

The center sub section accommodates the circuit breaker and associated equipment in fixed or withdrawable design.

Depending upon the option for cable entry, for example with top entry solution access to incoming connections is via the door in the upper sub section, the auxiliary compartment is then located behind the door in the lower sub section. For bottom entry the configuration is vice versa.

3 Busbar compartment
Contains the MNS main busbar system. Connection to the main bus is via a ‘Partition Plate’ with gas sealed connections.

Outgoing solution

1 Equipment compartment
All equipment, including the motor starter modules in withdrawable design, is situated therein. The compartment can be divided into horizontal and vertical* sub compartments.

2 Cable compartment
Contains control cables and terminals, as well as power cables and connection units. Cable entry may be top or bottom.

3 Busbar compartment
Contains the MNS main busbar system. The distribution bars are embedded in the multifunction wall (MFW) which is located between the equipment compartment and the busbar compartment.

* Withdrawable solutions only
Switchboard Arrangements

MNS cubicles can be arranged as follows: free standing, back-to-back or duplex.

Switchboard Dimensions

MNS cubicles have the following representative dimensions:
Mechanical Design

Frame construction
The basic elements of the MNS frame construction are “C” shaped steel profiles with a 25 mm hole pitch according to DIN 43660. This 25 mm equals the dimension of 1E used in MNS to define the area usage within the switchgear.

Each cubicle is precision constructed by bolting horizontal and vertical profiles together, to form a rigid modular structure. The assembly is maintenance free as a result of the construction method utilizing a combination of thread locking ESLOK screws with bolted pressure plates and thread forming screws.

The profiles are galvanic protected (Zn or Al/Zn) against corrosion.

Enclosure
MNS switchboard enclosure is made of sheet steel protected by galvanic coating and powder coating for maximum durability.

The fixing of the enclosure with respect to doors, roof plates, rear and side walls is achieved with thread forming screws. Final construction varies depending upon the required degree of protection.

In accordance with the general safety philosophy followed with MNS, each compartment and sub-compartment which requires access for commissioning, operation or maintenance, has its own door.
Busbar System

Main Busbars
The MNS main busbar system is arranged in the rear of the switchgear. This assures a maximum distance between the busbars and the operator and maintenance staff. The main busbar system is fully separated from the equipment compartment as well as from the cable compartment.

The busbar system is a maintenance free construction as a result of utilizing thread locking ESLOK screws together with conical spring washers. This technology remains relatively unchanged since the introduction of MNS, and has been extensively supplied into the most demanding industries.

The busbar system and all associated parts are manufactured from copper in accordance with DIN 40500. Options are available for silver plating and/or a fully insulated solution utilizing heat shrinkable sleeving.
Protective Earth and Neutral Bars
As a standard, protective earth and neutral bars run horizontally within the front of the switchboard just above the base. The PE bar is fastened to the frame to assure electrical continuity. Inside the cable compartment they run vertically, located on the front right hand side of the compartment.

For applications where a 50% or 100% neutral size is required due to unbalance or harmonic distortion as well as for 4 pole switching, the neutral conductor can be arranged within the busbar compartment running in parallel with the main busbars.

Distribution bars
A fully phase segregated and encapsulated 3 or 4 pole distribution bar system runs the full height of the cubicle. The distribution bars are silver plated as standard.
Multifunction Wall

The multifunction wall (MFW) with the embedded distribution bars is a unique MNS design. It constitutes a complete barrier between the main busbars and the equipment compartment.

The distribution bars are fully phase segregated and insulated. This design makes it virtually impossible for an arc to pass between distribution bar phases or between main busbars and equipment compartment. The insulation material is CFC and halogen free, it is also flame-retardant and self-extinguishing.

Contact openings are finger proof (IP 2X) so that personal safety is guaranteed even when modules are removed.

With the use of MNS specific power contact housings full single phase segregation is assured prior to the connection of the power contacts to the distribution bars.

System Highlights

- Maintenance free bus bar construction
- Easy switchgear extension
- Main busbar arrangement at the rear thus assuring maximum safety to personnel
- Effective withstand against highest stresses in case of short circuit
- Optimum heat dissipation
- Gas tight seals for connection from the equipment compartment to the main busbar system
- Option for Form 4 separation for both incoming and outgoing assemblies
- Active and passive arc fault prevention tested according to IEC 61641
- Isolating materials are free of CFC and halogens
Power Contact
Connection to the distribution bar is realized using the precision-engineered MNS power contacts. The power contact is characterized by a turnable bearing, thus decoupling cable stress and electrical contact. Consequently any cable bending forces cannot affect the stability of the power contact.

The mechanical stabilisation is achieved by the supporting plate and the contact spring where the contact fingers ensure positive electrical contact. Contact fingers are silver plated as standard.

The contact has been subjected to several tests in order to prove the sophisticated design and the high quality, which provides a life cycle up to 1000 insertions.

Tests:
- Design verification acc. IEC 61439-1/-2
- Corrosion test acc. DIN 50017 and IEC 60068-2-60
- Crimping quality check acc. IEC 61238-1
- Vibration and shock test acc. IEC 60068-2-6 and IEC 60068-2-27

System Highlights
- Operational life cycle up to 1000 insertions (independently certified)
- Bearing construction eliminating cable stress
- Full single phase segregation assured prior to the connection of the power contacts to the distribution bars
The available module types have typical characteristics as shown in the graphic above. Where high process availability is essential and minimal time is required for module exchange the withdrawable solution has proved to be the definitive choice. In installations where internal access to the switchgear does not present an obstacle the plug-in option may be the practical solution.

Depending upon the choice of outgoing modules selected, the skill set of the personnel required to operate and maintain the switchgear may also differ.

Switchgear requirements differ from project to project. MNS easily allows the assembly to be configured to suit all plant operational procedures.
Plug-in Modules

MNS offer numerous alternatives for plug-in modules. When utilizing the multifunction wall, all modules have the ability to be exchanged without de-energizing the switchgear, should maintenance procedures allow.

The flexibility of the system allows power distribution and motor control to be offered in the most economical Form 2 solution. From this as a basis, options exist for internal/external operation and separation to Form 4.

The Slimline switch disconnector offers ABB’s most compact form of fused energy distribution, and is available in 3 or 4 pole options. This design is available in standard modules sizes with a maximum rating of 630 A.

Operation is performed via the handle on the front of the module which has an inbuilt padlocking facility and mechanical open/closed indication.

The following options are available:

- Ammeter
- Auxiliary contacts
- Fuse blown indication

The Slimline is also available as Intelligent Tier Switch enabling the following information to be sent via its fieldbus connection:

- Switch status
- Fuse indication
- Current
- Voltage
- Power & Power Consumption
- Power factor
- Temperature
Plug-in Modules

AC Industrial Drives
Due to its inherent modular design MNS can easily be adapted to house the ABB range of AC Industrial Drives. The switchgear can accommodate multiple drives in a single section. Each drive compartment has an individual isolator, options are available for filters to be installed and for the drive control panel to be door mounted to enable interrogation and parameterization without the need to open the door.

Full size cubicles are also available for the AC Industrial Drives solution. These are, however, of a fixed technique, enabling MNS to offer a complete range of drives all supplied from a common AC bus.

Reactive Power Compensation
MNS also offers the possibility of integrating reactive power compensation modules into its standard design thus reducing the requirements for additional external cubicles.

The modular design offers highest flexibility to adjust the compensation power to changes of the load connected to the network.

The standard range covers:
- Network voltages up to 690 V
- 50 or 60 Hz
- All common reactor rates (if reactor required)
- Modules up to 50 kVar
- Controllers available for 6 or 12 step options
Withdrawable Modules

The withdrawable technique has proved to be the appropriate solution for use in industrial applications where requirements for high availability are a must particularly in Motor Control Centers (MCC).

Modules can be easily exchanged under operational conditions thus assuring maximum flexibility.

Small modules
Withdrawable technique is distinguished by its compact design where, with the smallest 8E/4 module it is possible to physically define a maximum of 36 modules in the equipment compartment. This modularity enables the assembly to maximize the usage of the available space, which in turn reduces the overall footprint of the switchgear.

The condaptor unit enables the horizontal distribution of power from the vertical distribution bars, this allows 2 modules (8E/2) or 4 modules (8E/4) to be located adjacently within the same horizontal position in the cubicle. Condaptors are available in 3 or 4 pole options. Cable connections for main and auxiliary circuits are integrated into the condaptor and are accessible from the cable compartment.
Full width modules

These modules are available ranging from 4E to 48E in physical sizes. The construction of the full modules differs slightly from that of the small modules in utilizing a full width hinged door which is mechanically interlocked to the isolator.

All operational procedures for the modules are possible without the need to open the door of the module.

Full width modules connect directly to the distribution bars through the multifunction wall. The design of the module enables auxiliary components to be located on both the vertical and horizontal mounting plates within the module, thus optimizing the available space usage within the module. Cable connections for main and auxiliary circuits are accessible from the cable compartment.
Module operation
MNS modules are operated with the multifunction operating handle. This handle also activates the electrical and mechanical interlocking of the module and the module door. No further tools or unlocking devices are necessary to withdraw a module, thus replacing a module takes less than a minute. Replacement as well as retrofitting of modules can be performed under live conditions, should plant operating procedures allow.

System Highlights
- High stacking density, resulting in a reduced footprint
- Complete phase isolation of main power contact prior to connection to the distribution bars
- Full module functionality with external operation
- Module replacement possible in less than 1 minute, no tools required
Withdrawable module positions
All main and auxiliary connections are self locating, without the need of additional tools.

ON: Module is inserted, main switch closed, main and control circuit connected

OFF: Module is inserted, main switch open, main and control circuit disconnected, padlocking possible.

TEST: Module is inserted, main switch open, main circuit disconnected, control circuit connected, padlocking possible

ISOLATED: Module is withdrawn 30 mm from the inserted position, main switch open, main and control circuit disconnected, padlocking possible

MOVE: Module may be completely withdrawn from the switchgear

All positions/situations are clearly marked on the fixed section of the operation handle in accordance with IEC 61439-1/-2.
Incoming Solutions

All of the MNS incoming solutions are verified in accordance with IEC 61439-1/-2, in addition to IEC 60947-1 required for the individual apparatus, and engineered to meet the requirements of IEC 61641. This ensures ABB’s offering of ‘Proven Safety Plus’ for operators and plant.

Incoming options
All ACBs have as a minimum the following features:
- Manual charging lever and ‘Charged’ indication
- Manual Open/Close push buttons
- Mechanical ‘Open’/‘Closed’ indication
- Mechanical signalling of ‘Overcurrent’ release
- 4 auxiliary contacts

Project Specific Options
- Gas sealed connections to the main busbars (separation wall)
- 3 or 4 pole solutions
- Withdrawable/fixed configuration
- Top or bottom cable entry/bus duct
- 50% or 100% neutral
- Shunt opening/closing release
- Undervoltage release
- Electrical signalisation of ACB status
- Key locking facilities
- Shutter locking facilities

In order to satisfy all requirements there are three main switch incoming options:
- Load break switches
- Moulded case circuit breakers (MCCBs)
- Air circuit breakers (ACBs)

Please refer to the technical reference section of this document for a list of related documentation.

Further options available (but not limited to):
- Zone selectivity
- Dual protection settings
- Directional short circuit protection
- Reverse power
- Under-/overvoltage protection
- Annunciation of measured values, alarms
- Maintenance data
- Integration into a plant wide process control system (refer to page 28)
In addition to the above ABB circuit breakers offer a series of integrated programmable releases (PRs), where combinations of protection functions maybe selected with:

- Overload protection - L
- Selective short circuit protection - S
- Instantaneous short circuit protection – I
- Earthfault protection - G

ACB withdrawable operation

In a withdrawable solution the ACB assembly consists of two components, the fixed part (cassette) and the moving part (ACB). This enables the ACB to be located in 3 positions:

CONNECTED: The moving part is fully inserted into the fixed part with the connection of both the power terminals and the auxiliary contacts. The circuit breaker is operational and the mechanical indicator shows ‘CONNECTED’.

TEST/ISOLATED: The moving part is inserted into the fixed part without the connection of the power terminals, but with connection of the auxiliary terminals. The circuit breaker may be operated for offline tests. The mechanical indicator shows ‘TEST ISOLATED’.

DISCONNECTED: The moving part is inserted into the fixed part without any connection of the power and auxiliary terminals. In this position all electrical operation of the ACB is prevented. The mechanical indicator shows ‘DISCONNECTED’. The switchgear compartment door can remain closed, therefore not compromising the IP rating of the switchgear.

The ACB cassette (fixed part) has shutters which are positively driven closed during the racking out process to prevent the possibility of contact with live parts.
Integration into plant-wide Control Systems

System Connectivity Aspects

ABB’s structure with respect to offering site wide information is that a field bus connection for process control information and switching commands is utilized. An additional interface, which is typically Ethernet is used to support functions such as parameterization, data distribution to electrical SCADA and/or asset optimization systems. This configuration is also continued through the ABB medium voltage product portfolio.

Configuring the structure as detailed above ensures that the critical process data path is not compromised by also being utilized for parameterization and additional data required for engineering and maintenance.

With the introduction of MNS ABB has been providing market leading low voltage switchgear systems technology. In 1987 ABB installed the world’s first intelligent low voltage motor control center, since then ABB has delivered over 100,000 intelligent motor controllers.

In 2005, MNS iS the world’s first integrated low voltage switchgear platform was launched. MNS iS defines the next benchmark in low voltage switchgear, providing the following features:

- Improved personal safety – through a unique design
- Lower life cycle cost – from a totally scalable system
- Worlds first standardised motor controller and feeder modules
- World first self supervising switchgear by the use of asset monitoring
- Future proof, utilizing ABB’s patented interfacing technology

The MNS iS platform offers in addition to the above the basic characteristics of an intelligent motor control system (IMCS).

- Micro processor protection monitoring and control of motor and distribution circuits
- Interfacing to host systems via fieldbus communications
ABB’s goal is to ensure the assets’ maximum performance and availability. ABB has supplied over 1.4 million MNS cubicles from its world wide manufacturing locations. Each of these locations operates with an After Sales and Service department, offering unparalleled global support.

On completion of commissioning, the switchgear is at the peak of its performance. To maintain this condition it is essential to adopt a service and maintenance plan for this asset. If the switchgear does not receive maintenance, this could result in downtime. In production the availability of the switchgear ensures productivity, and any down time is a lost opportunity for profit. Down time can be attributed to the following maintenance practices.

- **Reactive maintenance** is costly for both production and unplanned downtime.
- **Preventive** or Continuous maintenance is usually performed on an annual basis, during a scheduled shutdown.
- By evaluating information from the intelligent switchgear it is possible to adopt a **Predictive maintenance** schedule.

Utilizing an ABB expertise can help to increase the life cycle of the switchgear.

Regular Services

ABB offers comprehensive service and support during the whole life time of the switchgear:

- Engineering assistance
- Product training
- Spares holding
- Installation and commissioning
- Service planning
- Hardware and software support
- Upgrades, expansions and modifications

Contract Services

ABB can offer comprehensive maintenance contracts designed specifically for each particular process. Through preventive maintenance programs unscheduled outages can be reduced and maintenance workflows are streamlined.

Utilization of integrated switchgear enables the maintenance to be taken into an even predictive maintenance practice, where information available from the switchgear can further assist with maintenance workflow.
Asset Monitoring with MNS \textit{iS}

In a further step of improving maintenance practices ABB’s MNS /iS platform is a fully self supervising switchgear that can eliminate costs for assets that do not require attention.

The asset monitor system evaluates all events, alarms and trips for predictive maintenance planning and essential working issues. The conditions are monitored and entered into groups; electrical, mechanical and plant associated. Each condition has a cause and suggested action for problem resolution.

Asset monitoring sets the next standard for integrated maintenance procedures enabling higher switchgear availability through \textit{Proactive maintenance}.
Items subject to agreement between manufacturer and user

The following details are intended as a checklist for the specification of low voltage switchgear.

Extract from IEC 61439-1/-2

<table>
<thead>
<tr>
<th>User defined functions and characteristics</th>
<th>Reference clause (for Parts 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical system</td>
<td></td>
</tr>
<tr>
<td>Earthing system</td>
<td>5.5, 8.4.3.2.3, 8.6.2, 10.5, 11.4</td>
</tr>
<tr>
<td>Rated voltage U_n (Volts)</td>
<td>3.8.8.1, 5.2.1, 8.5.3</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>5.2.4, 8.5.3, 9.1, Annex G</td>
</tr>
<tr>
<td>Unusual voltage transients, voltage stresses, temporary overvoltages</td>
<td>9.1</td>
</tr>
<tr>
<td>Rated frequency f_n (Hz)</td>
<td>3.8.11, 5.4, 8.5.3, 10.10.2.3, 10.11.5.4</td>
</tr>
<tr>
<td>Additional on site testing requirements: wiring, operational performance and function</td>
<td>11.10</td>
</tr>
</tbody>
</table>

Short circuit withstand capability	
Prospective short circuit current at supply terminals I_{cp} (kA)	3.8.6
Prospective short circuit current in the neutral	10.11.5.3.5
Prospective short circuit current in the protective circuit	10.11.5.6
SCPD in the incoming functional unit	9.3.2
Co-ordination of short-circuit protective devices including external short-circuit protective device details	9.3.4
Data associated with loads likely to contribute to the shortcircuit current	9.3.2

<table>
<thead>
<tr>
<th>Protection of persons against electric shock in accordance with IEC 60364-4-41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of protection against electric shock – Basic protection (protection against direct contact)</td>
</tr>
<tr>
<td>NOTE This type of protection is intended to protect against electric shock due to direct contact within the ASSEMBLY during normal service conditions.</td>
</tr>
<tr>
<td>Type of protection against electric shock – Fault protection (protection against indirect contact)</td>
</tr>
<tr>
<td>NOTE These types of protection are intended to protect against the consequences of a fault within the ASSEMBLY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location type</td>
</tr>
<tr>
<td>Protection against ingress of solid foreign bodies and ingress of liquid</td>
</tr>
<tr>
<td>External mechanical impact (IK)</td>
</tr>
<tr>
<td>NOTE IEC 61439-1 does not nominate specific IK codes.</td>
</tr>
<tr>
<td>Resistance to UV radiation (applies for outdoor assemblies only unless specified otherwise)</td>
</tr>
<tr>
<td>Resistance to corrosion</td>
</tr>
<tr>
<td>Ambient air temperature – lower limit</td>
</tr>
<tr>
<td>Ambient air temperature – upper limit</td>
</tr>
<tr>
<td>Ambient air temperature – daily average maximum</td>
</tr>
<tr>
<td>Maximum relative humidity</td>
</tr>
<tr>
<td>Pollution degree</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
<tr>
<td>EMC environment</td>
</tr>
<tr>
<td>Special service conditions (e.g. vibration, exceptional condensation, heavy pollution, corrosive environment, strong electric or magnetic fields, fungus, small creatures, explosion hazards, heavy vibration and shocks, earthquakes)</td>
</tr>
</tbody>
</table>
User defined functions and characteristics

<table>
<thead>
<tr>
<th>Installation method</th>
<th>Reference clause (for Parts 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>3.3, 5.5</td>
</tr>
<tr>
<td>Portability</td>
<td>3.5</td>
</tr>
<tr>
<td>Maximum overall dimensions and weight</td>
<td>6.2.1</td>
</tr>
<tr>
<td>External conductor type(s)</td>
<td>8.8</td>
</tr>
<tr>
<td>Direction(s) of external conductors</td>
<td>8.8</td>
</tr>
<tr>
<td>External conductor material</td>
<td>8.8</td>
</tr>
<tr>
<td>External phase conductor, cross sections, and terminations</td>
<td>8.8</td>
</tr>
<tr>
<td>External PE, N, PEN conductors cross sections, and terminations</td>
<td>8.8</td>
</tr>
<tr>
<td>Special terminal identification requirements</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Storage and handling

Maximum dimensions and weight of transport units	6.2.2, 10.2.5
Methods of transport (e.g. forklift, crane)	6.2.2, 8.1.7
Environmental conditions different from the service conditions	7.3
Packing details	6.2.2

Operating arrangements

| Access to manually operated devices | 8.4, 8.5.5 |
| Isolation of load installation equipment items | 8.4.2, 8.4.3.3, 8.4.5.2 |

Maintenance and upgrade capabilities

Requirements related to accessibility in service by ordinary persons; requirement to operate devices or change components while the ASSEMBLY is energised	8.4.5.1
Requirements related to accessibility for inspection and similar operations	8.4.5.2.2
Requirements related to accessibility for maintenance in service by authorized persons	8.4.5.2.3
Requirements related to accessibility for extension in service by authorized persons	8.4.5.2.4
Method of functional units connection	8.5.1, 8.5.2
Protection against direct contact with hazardous live internal parts during maintenance or upgrade (e.g. functional units, main busbars, distribution busbars)	8.4
Method of functional units connection	8.5.101
NOTE This refers to the capability of removal and reinserion of functional units.	
Form of separation	8.101
Capability to test individual operation of the auxiliary circuits relating to specified circuits while the functional unit is isolated	3.1.102, 3.2.102, 3.2.103, 8.5.101, Table 103

Current carrying capability

<table>
<thead>
<tr>
<th>Rated current of the ASSEMBLY InA (Amps)</th>
<th>3.8.9.1, 5.3, 8.4.3.2.3, 8.5.3, 8.8, 10.10.2, 10.10.3, 10.11.5, Annex E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current of circuits Inc (Amps)</td>
<td>5.3.2</td>
</tr>
<tr>
<td>Rated diversity factor</td>
<td>5.3.3, 10.10.2.3, Annex E</td>
</tr>
<tr>
<td>Ratio of cross section of the neutral conductor to phase conductors: phase conductors up to and including 16 mm²</td>
<td>8.6.1</td>
</tr>
<tr>
<td>NOTE Current in the neutral may be influenced where there are significant harmonics, unbalanced phase currents, or other conditions in the load that will necessitate a larger conductor.</td>
<td></td>
</tr>
<tr>
<td>Ratio of cross section of the neutral conductor to phase conductors: phase conductors above 16 mm²</td>
<td>8.6.1</td>
</tr>
<tr>
<td>NOTE For the standard value, the neutral current is assumed not to exceed 50% of the phase currents. Current in the neutral may be influenced where there are significant harmonics, unbalanced phase currents, or other conditions in the load that will necessitate a larger conductor.</td>
<td></td>
</tr>
</tbody>
</table>
Contact us

ABB Low Voltage Systems
Publication Editor:
ABB Automation Products GmbH
Ladenburg, Germany

Local Contacts on
www.abb.com/mns

Note:
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

Copyright© 2012 ABB
All rights reserved