Type KLF
Loss-of-Field Relay
50/60 Hertz

2.1 COMPENSATOR
The compensators which are designated T_A and T_C are two-winding air-gap transformers (Figure 10, page 21). The primary or current winding of the long-reach compensator T_A has seven taps which terminate at the tap block. They are taps which terminate at the tap block. They are marked 2.3, 3.16, 4.35, 5.93, 8.3, 11.5, 15.8. The primary winding of the short-reach compensator T_C also has seven taps which terminate at this tap block. They are marked 0.0, 0.91, 1.27, 1.82, 2.55, 3.64, 5.1. A voltage is induced in the secondary which is proportional to the primary tap and current magnitude. This proportionality is established by the cross sectional area of the laminated steel core, the length of an air gap which is located in the center of the coil, and the tightness of the laminations. All of these factors which influence the secondary voltage proportionality have been precisely set at the factory. The clamps which hold the laminations should not be disturbed by either tightening or loosening the clamp screws.

The secondary winding is connected in series with the relay terminal voltage. Thus a voltage which is proportional to the line current is added vectorially to the relay terminal voltage.

2.2 AUTO TRANSFORMER
The auto transformer has three taps on its main winding, S, which are numbered 1, 2, and 3 on the tap block. A tertiary winding M has four taps which may be connected additively or subtractively to inversely modify the setting by any value from -15 to +15 percent in steps of 3 percent.

The sign of M is negative when the R lead is above the L lead. M is positive when L is in a tap location which is above the tap location of the R lead. The M setting is determined by the sum of per unit values
Figure 1: Type KLF Relay
between the R and L lead. The actual per unit values which appear on the tap plate between taps are 0,.03,.06, and.06.

The auto transformer makes it possible to expand the basic ranges of the long and the short reach compensators by a multiplier of $\frac{S}{1+M}$. Any relay ohm setting can be made within \pm 1.5 percent from 2.08 ohms to 56 ohms for the long reach and from 0 ohms to 18 ohms for the short reach.

2.3 Impedance Tripping Unit

The impedance unit is a four-pole induction-cylinder type unit. The operating torque of the unit is proportional to the product of the voltage quantities applied to the unit and the sine of the phase angle between the applied voltages. The direction of the torque so produced depends on the impedance phasor seen by the relay with respect to its characteristic circle.

Mechanically, the cylinder unit is composed of four basic components: a die-cast aluminum frame, an electromagnet, a moving element assembly, and a molded bridge. The frame serves as a mounting structure for the magnetic core. The magnetic core which houses the lower pin bearing is secured to the frame by a locking nut. The bearing can be replaced, if necessary, without having to remove the magnetic core from the frame.

The electromagnet has two sets of two series connected coils mounted diametrically opposite one another to excite each set of poles. Locating pins on the electromagnet are used to accurately position the lower pin bearing, which is mounted on the frame, with respect to the upper pin bearing, which is threaded into the bridge. The electromagnet is secured to the frame by four mounting screws.

The moving element assembly consists of a spiral spring, contact carrying member, and an aluminum cylinder assembled to a molded hub which holds the shaft. The hub to which the moving contact arm is clamped has a wedge-and-cam construction, to provide low-bounce contact action. A casual inspection of the assembly might lead one to think that the contact arm bracket does not clamp on the hub as tightly as it should. However, this adjustment is accurately made at the factory and is locked in place with a lock nut and should not be changed. Optimum contact action is obtained when a force of 4 to 10 grams pressure applied to the face of the moving contact will make the arm slip from the condition of reset to the point where the clamp projection begins to ride up on the wedge. The free travel can vary between 15 and 20°.

The shaft has removable top and bottom jewel bearing. The shaft rides between the bottom pin bearing and the upper pin bearing with the cylinder rotating in an air gap formed by the electromagnet and the magnetic core. The stops are an integral part of the bridge.

The bridge is secured to the electromagnet and frame by two (2) mounting screws. In addition to holding the upper pin bearing, the bridge is used for mounting the adjustable stationary contact housing. This stationary contact has .002 to .006 inch follow which is set at the factory by means of the adjusting screw. After the adjustment is made the screw is sealed in position with a material which flows around the threads and then solidifies. The stationary contact housing is held in position by a spring type clamp. The spring adjuster is located on the underside of the bridge and is attached to the moving contact arm by a spiral spring. The spring adjuster is also held in place by a spring type clamp.

When the contacts close, the electrical connection is made through the stationary contact housing clamp, to the moving contact, through the spiral spring and out to the spring adjuster clamp.

2.4 Directional Unit

The directional unit is an induction-cylinder unit operating on the interaction between the polarizing circuit flux and the operating circuit flux.

Mechanically, the directional unit is composed of the same basic components as the distance unit: A die-cast aluminum frame, an electromagnet, a moving element assembly, and a molded bridge.

The electromagnet has two series-connected polarizing coils mounted diametrically opposite one another; two (2) series-connected operating coils mounted diametrically opposite one another; two (2) magnetic adjusting plugs; upper and lower adjusting plug clips, and two (2) locating pins. The locating pins are used to accurately position the lower pin bearing which is mounted on the frame, with respect to the upper pin bearing, which is threaded into the bridge. The electromagnet is secured to the frame by four mounting screws.

The moving element assembly consists of a spiral spring, contact carrying member, and an aluminum cylinder assembled to a molded hub which holds the shaft. The shaft has removable top and bottom jewel bearings. The shaft rides between the bottom pin
bearing and the upper pin bearing with the cylinder rotating in an air gap formed by the electromagnet and the magnetic core.

The bridge is secured to the electromagnet and frame by two (2) mounting screws. In addition to holding the upper pin bearing, the bridge is used for mounting the adjustable stationary contact housing. The stationary contact housing is held in position by a spring type clamp. The spring adjuster is located on the underside of the bridge and is attached to the moving contact arm by a spiral spring. The spring adjuster is also held in place by a spring type clamp.

2.5 UNDERVOLTAGE UNIT

The voltage unit is an induction-cylinder unit.

Mechanically, the voltage unit is composed like the directional unit, of four components; A die-cast aluminum frame, an electromagnet, a moving element assembly, and a molded bridge.

The electromagnet has two pairs of voltage coils. Each of diametrically opposed coils is connected in series. In addition one pair is in series with an adjustable resistor. These sets are in parallel as shown in Figure 2, page 5. The adjustable resistor serves not only to shift the phase angle of the one flux with respect to the other to produce torque, but it also provides a pick-up adjustment.

Otherwise the undervoltage unit is similar in its construction to the directional unit.

2.6 TELEPHONE RELAY

The telephone relay (X) has a slow (nominal 200 ms) drop-out characteristic. When energized, the solenoid core attracts an iron right-angle armature bracket which in turn opens the break contacts. In actual service, the relay is normally energized holding the break contacts open. Drop-out delay adjustment is obtained by varying the air-gap between the armature and the core.

2.7 INDICATING CONTACTOR SWITCH UNIT (ICS)

The dc indicating contactor switch is a small clapper-type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop. The target is reset from the outside of the case by a push-rod located at the bottom of the cover.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup of the switch.

3.0 OPERATION

The relay is connected and applied to the system as shown in Figure 3, page 6. The directional unit closes its contacts for lagging var flow into the machine. It’s zero torque line has been set at -13° from the R-axis. It’s primary function is to prevent operation of the relay during external faults. The impedance unit closes its contacts when, as a result of reduction in excitation, the impedance of the machine as viewed from its terminals is less than a predetermined value. The operation of both the impedance and directional units sounds an alarm, and the additional operation of the undervoltage unit trips the machine. As shown in Figure 3, the contacts of all three units are connected in series across a telephone type relay designed X, which provides approximately 12.5 cycles time delay on dropout before energizing the trip coil. This time delay is to insure contact coordination under all possible operating conditions. During normal conditions, all contacts are open.

3.1 PRINCIPLE OF IMPEDANCE UNIT OPERATION

The impedance unit is an induction cylinder unit having directional characteristics. Operation depends on the phase relationship between magnetic fluxes in the poles of the electromagnet.

One set of opposite poles, designated as the operating poles are energized by voltage V_{1T} modified by a voltage derived from the long reach compensator T_A. The other set of poles (polarizing) are energized by the same voltage V_{1T} except modified by a voltage derived by the short reach compensator T_C. The flux in the polarizing pole is adjusted so that the unit closes its contacts whenever flux in the operating set of poles leads the flux in the polarizing set.

The voltage V_{1T} is equal to

$$V_{AT} = V_{AB} + 0.5 V_{BC} = 1.5 V_{AN}$$

As shown in Figure 3, one-half of V_{BC}, voltage is physically derived in the relay at midtap of a reactor connected across voltage V_{BC}.

Figure 2: Internal Schematic of Type KLF Relay in FT 41 Case
Figure 3: External Schematic of Type KLF Relay

Figure 4: Generalized External Schematic
Reach of the impedance unit is determined by compensators T_A and T_C as modified by autotransformer settings. Compensators T_A and T_C are designed so that the mutual impedance Z_A or Z_C has known and adjustable values as described below under “CHARACTERISTICS AND SETTINGS”. The mutual impedance of a compensator is defined here as the ratio of secondary induced voltage to primary current and is equal to T_A or T_C. Each compensator secondary voltage is in series with the voltage V_{AT}. Compensator voltages are equal to $1.5 I_A Z_A$ for long reach compensator and $1.5 I_A Z_C$ for short reach compensator, where I_A is the relay current.

Figure 11, page 21 shows how the compensation voltages $1.5 I_A Z_A$ and $1.5 I_A Z_C$ influence the R-X circle. Note that Z_A independently determines the “long reach”, while Z_C independently fixes the “short reach”. With the reversing links in the vertical position ($+Z_C$) the circle includes the origin; in the horizontal link position ($-Z_C$) the circle misses the origin. The following paragraphs explain this compensator action.

Referring to Figure 3, note that R_B and C_B cause the polarizing voltage to be shifted 90° in the leading direction. Thus, when the current is zero, polarizing voltage V_{POL} leads the operating voltage V_{OP} by 90°, as shown in Figure 12(A) page 22. This relation produces restraining torque. To illustrate how Z_A fixes the long reach, assume a relay current which leads V_{IN} by 90° and of sufficient magnitude to operate the relay. This means the apparent impedance is along the -X axis. Note in Figure 12(B) that the Z_A compensation reverses the operating voltage phase position. The relay balances when this voltage is zero. Note that this balance is unaffected by the Z_C compensation, since this compensation merely increases the size of V_{POL}.

For lagging current conditions note in Figure 12(C), how V_{POL} is reversed by the Z_C compensation. In this case the Z_A compensation has no effect on the balance point. This explains why the reach point is fixed independently by Z_C.

Figure 12 assumes that Z_C is positive (circle includes origin). If the current coil link is reversed, the compensation becomes $+1.5 I_A Z_C$. In Figure 12(B) this change would result in, V_{POL} being reduced rather than increased by the compensation. As the current increases V_{POL} will finally be reversed, reestablishing restraining torque. Thus, the current need not reverse in order to obtain a “short reach” balance point. Instead the apparent impedance need only move towards the origin in the -X region to find the balance point. Therefore, the circle does not include the origin with a reversed link position.

4.0 CHARACTERISTICS

The type KLF relay is available in one range. Long reach ohms - 2.08 to 56 and Short reach ohms - 0 to 18.

4.1 IMPEDANCE UNIT

The impedance unit can be set to have characteristic circles that pass through the origin, include it, or exclude it, as shown in Figure 11 page 21.

The Z_A and Z_C values are determined by compensator settings and modified by autotransformer settings S and M. The impedance settings in ohms reach can be made for any value from 2.08 to 56 ohms for Z_A, and from 0 ohm to 18 ohms for Z_C in steps of 3 percent.

The taps are marked as follows:

\[
\begin{align*}
T_A & \rightarrow 2.4|3.16|4.35|5.93|8.3|11.5|15.8 \\
T_C & \rightarrow 0.0|0.91|1.27|1.82|2.55|3.64|5.1 \\
(S_A, S_C) & \rightarrow 1|2|3 \\
(M_A, M_C) & \pm \text{values between taps .03, .06, .06}
\end{align*}
\]

4.2 DIRECTIONAL UNIT

This unit is designed for potential polarization with an internal phase shifter, so that maximum torque occurs when the operating current leads the polarization voltage by approximately 13°. The minimum pickup has been set by the spring tension to be approximately 1 volt and 5 amperes at maximum torque angle.

4.3 UNDervoltage UNIT

The undervoltage unit is designed to close its contacts when the voltage is lower than the set value. The undervoltage unit is energized with V_{AT} voltage. This voltage is equal to $1.5 V_{AN}$ voltage. The contacts
can be adjusted to close over the range of 65 to 85 percent of normal system voltage. The dropout ratio of the unit is 98 percent or higher.

4.4 TRIP CIRCUIT
The main contacts will safely close 30 amperes at 250 volts dc and the seal-in contacts of the indicating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

4.5 TRIP CIRCUIT CONSTANT
Indicating Contactor Switch (ICS)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Impedance Unit</th>
<th>Potential at 120 Volts</th>
<th>Angle of Lag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Phase AB</td>
<td></td>
</tr>
<tr>
<td>(S_A = S_C)</td>
<td>(V_A)</td>
<td>60 Hz 50 Hz</td>
<td>60 Hz 50 Hz</td>
</tr>
<tr>
<td>1</td>
<td>18.0</td>
<td>18.0</td>
<td>2°</td>
</tr>
<tr>
<td>2</td>
<td>14.4</td>
<td>13.8</td>
<td>31°</td>
</tr>
<tr>
<td>3</td>
<td>13.9</td>
<td>13.0</td>
<td>39°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase BC</th>
<th>(V_A)</th>
<th>60 Hz 50 Hz</th>
<th>60 Hz 50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_A = S_C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.6</td>
<td>2.6</td>
<td>12°</td>
</tr>
<tr>
<td>2</td>
<td>5.9</td>
<td>5.5</td>
<td>38°</td>
</tr>
<tr>
<td>3</td>
<td>6.6</td>
<td>6.1</td>
<td>42°</td>
</tr>
</tbody>
</table>

4.6 BURDEN

<table>
<thead>
<tr>
<th>(T_A) & (T_C)</th>
<th>Current at 5 Amps</th>
<th>(V_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings</td>
<td>60 Hz</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Max.</td>
<td>18.6</td>
<td>15.7</td>
</tr>
<tr>
<td>Min.</td>
<td>3.8</td>
<td>3.4</td>
</tr>
</tbody>
</table>

4.8 THERMAL RATINGS
Potential: 132 volts (L-L) continuous
Current: 8 amperes continuous
200 amperes for 1 second

5.0 SETTING CALCULATIONS

5.1 GENERAL SETTING RECOMMENDATIONS
The KLF relay may be applied as a single-zone device, or two relays may be used to provide two-zone protection. The single-zone setting may be fully offset (Zone-1) or may include the origin (Zone-2). The two-zone application would require a Zone-1 KLF and a Zone-2 KLF, approximately equivalent to two-zone step-distance line protection. A generalized external schematic, which is applicable to either Zone-1 or Zone-2 relays is shown in Figure 3, page 6. The recommended settings and relative advantages of these various configurations are summarized in Table 1 (page 9).

The single-zone and two-zone setting recommendations are modified when two or more machines are bussed at the machine terminals. The voltage and time delay considerations are treated in detail in other sections of this leaflet. The recommended settings are outlined in Table 2 (page 9).

5.2 ZONE-2 SETTING CALCULATIONS
(IMPEDANCE UNIT)

Set the impedance unit to operate before the steady-state stability limit is exceeded. Also, to allow maximum output without an alarm, set the distance unit to allow the machine to operate at maximum hydrogen pressure and 0.95 per unit voltage (lowest voltage for which the capability curve machine cannot be realized without exceeding the steady-state stability limit). Set the distance unit to operate before the steady-state limit is exceeded. Capability curves similar to Figure 8, page 15 are obtained from the generator manufacturer.

To determine the desired setting convert the capability curve of Figure 8 to the impedance curve of Figure 9, page 20 by calculating \[\frac{|V_T|^2}{(kVA)_C} \], where \(V_T \) is the per-unit terminal voltage and \((kVA)_C\) is the per-unit output. The angle from the horizontal of each point on the impedance curve is the same angle as the corresponding point on the capability curve.

4.7 DRAINS

<table>
<thead>
<tr>
<th>DC Rating</th>
<th>Watts @ Rated</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>3.9</td>
</tr>
<tr>
<td>250</td>
<td>7.8</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Recommended Settings for KFL Relay</th>
<th>Zone 1 (Alone)</th>
<th>Zone 2 (Alone)</th>
<th>Both Zone 1 and Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPEDANCE SETTING</td>
<td>See Figure 5</td>
<td>See Figure 6</td>
<td>See Figures 5 & 6</td>
</tr>
<tr>
<td>VOLTAGE SETTING</td>
<td>(a) Contact shorted or (b) Set at 80% for security</td>
<td>80%</td>
<td>Zone 1 voltage contact shorted with Zone 2 set at 80%</td>
</tr>
<tr>
<td>TD-1</td>
<td>1/4 to 1 sec (1 sec preferred)</td>
<td>1/4 to 1 sec (1 sec preferred)</td>
<td>Zone 1 timer = 1/4 sec Zone 2 timer = 1 sec</td>
</tr>
<tr>
<td>TD-2</td>
<td>Not required for (a) above (b) for above use 1 min.</td>
<td>1 min.</td>
<td>1 min.</td>
</tr>
<tr>
<td>ADVANTAGES</td>
<td>Less sensitive to stable system swings</td>
<td>1) More sensitive to LOF condition 2) Can operate on partial LOF 3) Provide alarm features for manual operation</td>
<td>(1) Same as 1), 2) and 3) at left. (2) Provides back-up protection</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Special Settings for Multi Machines Bussed at Machine Terminals</th>
<th>Zone 1 (Alone)</th>
<th>Zone 2 (Alone)</th>
<th>Both Zone 1 and Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPEDANCE SETTING</td>
<td>See Figure 5</td>
<td>See Figure 6</td>
<td>See Figures 5 & 6</td>
</tr>
<tr>
<td>VOLTAGE SETTING</td>
<td>(a) Contact shorted or (b) Set at 87% for security</td>
<td>87%</td>
<td>Zone 1 voltage contact shorted with Zone 2 set at 87%</td>
</tr>
<tr>
<td>TD-1</td>
<td>1/4 to 1 sec (1 sec preferred)</td>
<td>1/4 to 1 sec (1 sec preferred)</td>
<td>Zone 1 timer = 1/4 sec Zone 2 timer = 1 sec</td>
</tr>
<tr>
<td>TD-2</td>
<td>Not required for (a) above (b) for above use 10 sec for cond. cooled, 25 sec for conv. cooled</td>
<td>10 sec for cond. cooled 25 sec for conv. cooled</td>
<td>10 sec for cond. cooled 25 sec for conv. cooled</td>
</tr>
</tbody>
</table>
For example, from Figure 8 page 15, an output of 0.6 per unit kW on 30# hydrogen pressure curve is -0.4 per unit reactive kVA. Therefore,

\[(kVA)_c = \sqrt{(0.6)^2 + (-0.4)^2} \]

\[= 0.721 \text{ per unit} \]

and,

\[\theta = \tan^{-1}\left(\frac{-0.4}{0.6}\right) = -33.6^\circ \]

Converting to the impedance curve:

\[|Z| = \frac{|V_t|^2}{(kVA)_c} = \frac{1.0^2}{0.721} \]

\[|Z| = 1.39 \text{ per unit} \]

Since the angle remains the same, the impedance plot conversion is:

\[Z = 1.39 \angle -33.6^\circ, \text{ as shown in Figure 9, page 20.} \]

Continue this process with other points from curves such as those of figure 8 until a complete curve like that of figure 9 is obtained. After plotting the steady-state stability limit and the machine capability curves on the R-X diagram, plot the impedance unit circle between the stability limit and the capability curve. (Note in Figure 9 the relay circle cannot be plotted within the 60# -V_T = 0.95 curve, since the machine is beyond the steady-state stability limit for these conditions.) This plot defines the desired reach Z_A and radius R of the relay circle. Then use the following procedure to select tap settings.

\[Z_{base} = \frac{1000(kV)^2 R_C}{(kVA)R_V} \quad (2) \]

where

\[Z_{base} = \text{one per unit primary ohms/as seen from the relay} \]

\[kV = \text{rated phase-to-phase voltage of the machine} \]

\[kVA = \text{rated kVA of the machine} \]

\[R_C = \text{the current transformer ratio} \]

\[R_V = \text{the potential transformer ratio} \]

The actual settings, Z_A and Z_C, are:

\[Z_A = (Z_A \text{ per unit}) \times (Z_{base}) \quad (3) \]

\[Z_C = (Z_C \text{ per unit}) \times (Z_{base}) = (2R-Z_A) \times (Z_{base}) \quad (4) \]

where \(R = \text{radius of circle in per unit.} \)

The tap-plate settings are made according to equations:

\[Z_A(\text{or Z}_C) = \frac{TS}{1 \pm M} \quad (5) \]

where:

\[T = \text{compensator tap value} \]

\[S = \text{autotransformer primary tap} \]

\[M = \text{autotransformer secondary tap value} \]

(M is a per-unit value determined by taking the sum of the values between the L and the R leads. The sign is positive when L is above R and acts to lower the Z setting. The sign is negative when R is above L and acts to raise the Z setting).

The following procedure should be followed to obtain an optimum setting of the relay:

1. Select the lowest tap S which give a product of 18.6S_A greater than desired Z_A and a product of 6S_C greater than desired Z_C.

2. Select a value of M that will most nearly make it equal to:

\[M = \frac{TS}{Z} - 1. \]

If the sign is negative, then the M taps are connected with the R lead above the L lead to raise the setting.

5.3 SAMPLE CALCULATIONS

Assume that a KLF relay is to be applied to the following machine:

3-phase, 60 hertz, 3600 rpm, 18 kV, rated at 0.9 pf, 183,500 kVA at 45#H_2.

\[R_C = 1400/1 \quad R_V = 150/1 \]

If the recommended setting from Figure 9 is used:

\[Z_A \text{ per unit} = 1.68 \]

\[Z_C \text{ per unit} = 2R - Z_A = 2(0.94) - 1.68 = 0.20 \]

(The relay circle in Figure 9 was obtained by trial and error using a compass to get the desired radius and offset.)
Figure 5: Zone-1 Impedance Characteristic

Figure 6: Zone 2 Impedance Characteristic
1) \[Z_{base} = \frac{1000(kV)^2 R_C}{(kVA)R_V} = \frac{1000 \times (18)^2 \times 1400}{183,500 \times 150} \]
\[= 16.48 \text{ ohms} \]

2) \[Z_A = \text{per unit} \quad Z_{base} = (1.68)(16.48) \]
\[= 27.7 \text{ ohms} \]

3) \[Z_C = \text{per unit} \quad (Z_{base}) = (0.20)(16.48) \]
\[= 3.29 \text{ ohms} \]

To set \(Z_A = 27.7 \)

Step 1: The lowest tap \(S_A \) for \(18.6 \text{ S}_A \) greater than \(Z_A = 27.7 \) is 2. Set \(S_A \) in tap 2.

Step 2: \(T_A \) nearest to \(\frac{27.7}{2} = 13.8 \) is \(T_A = 15.8 \)
Set \(T_A \) in 15.8 tap

Step 3: \[
\frac{T_A S_A}{Z} - 1 = \frac{15.8 \times 2}{27.7} - 1 = 1.145 - 1 = . \]
Set \(M = +.15 \). Place R lead in 0, L lead in upper.06 (giving 0.15 between tap leads). The relay setting is now:

Actual \(Z_A = \frac{T_A S_A}{1 + M} = \frac{15.8 \times 2}{1 + 0.15} = \frac{31.6}{1.15} = 27.5 \)

This is 99.3% of the desired setting.

To set \(Z_C = 3.29 \text{ ohms} \).

Step 1. The lowest tap \(S_C \) for \(6 \text{ S}_C \) greater than 3.29 is \(S_C = 1 \).
Set \(S_C = 1 \)

Step 2. \(T_C \) nearest to \(\frac{3.29}{1} = 3.29 \) is 3.64
Set \(T_C \) in 3.64 tap.

Step 3. \[
\frac{T_C S_C}{Z_C} - 1 = \frac{3.64 \times 1}{3.29} - 1 = 1.07 - 1 = 0 - 107 \]

Hence, the nearest \(M_C \) value is -0.12. Now set R lead in 0.03 tap and L lead in the 0.06 tap (giving 0.03 between tap leads).

(Since \(M_C \) has plus sign lead R must be over L.)

Then, \[Z_C = \frac{T_C S_C}{(1 + M_C)} = \frac{3.64}{1 + 0.12} = 3.25 \text{ ohms} \], or 98.8% of the desired value.

5.4 UNDervoltage Unit

A. The undervoltage unit is usually set to a value corresponding to the minimum safe system voltage for stability. This voltage depends on many factors, but is usually between 70 and 90 percent of normal system voltage. The undervoltage unit is set at the factory for 77% of normal system voltage, or \(92 V_{L-L} \) (equivalent to 80 volts on the undervoltage unit). In cases where each generator is equipped with its own transformer (unit connected system) the standard factory setting is usually satisfactory for the undervoltage unit.

B. In applications where multiple units are connected to the same bus, loss of field of one unit may not depress the bus voltage to the point where the undervoltage unit will operate if it has the standard setting. The following recommendations should be considered:

1. For cross-compound turbine generator applications, the dropout voltage (i.e., the voltage at which the back contact of the undervoltage unit closes) of the undervoltage unit should be set for 87% of normal voltage (equivalent to 90 volts on the undervoltage unit.)

2. For waterwheel generator applications, with multiple machines tied to a common bus, the dropout voltage of the undervoltage unit should be set at 87%.

3. For all applications where the alarm function is not to be used the undervoltage unit contact should be jumped (shorted).

4. For industrial applications, with two or more generators on the same bus, the undervoltage unit contact should be jumped (shorted) and the alarm circuit not used.

5. For small synchronous condenser and large motor applications, the undervoltage unit contact should, in general, be jumped (shorted), and the alarm circuit not used. In special cases the machine may be treated as in 2, above, where knowledge exists of expected undervoltage level.

6. For gas turbine units, with high generator impedance, the undervoltage unit may not operate on loss-of-field. For these applications the undervoltage contacts should be short circuited.
C. The desired undervoltage unit setting is computed by:

\[
\text{Setting} = V_{AT} = 1.5 \, V_{AN}
\]

where \(V_{AN} \) is phase-to-neutral voltage.

Note: An electrical check of this particular setting is outlined in this instruction leaflet, under the heading “Acceptance Check”.

5.5 TIME DELAY CONSIDERATIONS

It may be conservatively stated that the rotor structure and stator heating, as a result of a shorted field can be tolerated for 10 seconds on a conductor-cooled machine and 25 seconds for a conventional machine. This time may be as low as 5 seconds for an open field (as opposed to a field closed through a field discharge resistor or an exciter armature) and as high as one minute where the concern is protection of an adjacent tandem compound unit against partial loss-of-excitation in the faulted machine.

In view of the above considerations, it is often desirable to use an external timer in conjunction with the KLF Relay. The following examples are applications where an external timer would be desirable.

1. Cross-compound units, with undervoltage unit setting of 90 volts, should use an external timer to assure tripping before thermal damage can result. The timer is energized at the alarm output and should be set for 10 seconds for a cross-compound conductor cooled machine. For a conventionally cooled cross-compound machine, the external timer should be set for 25 seconds.

As an alternative to this, the KLF with shorted undervoltage contacts may be applied and the alarm feature not used. With this arrangement, tripping takes place after the 200 ms time delay provided by the X unit in the KLF relay.

2. Machines connected to a common high voltage bus may be protected against loss of voltage due to loss-of excitation in an adjacent machine by using a one minute timer driven by the alarm output of the loss-of-field relay.

3. In some critical applications 2-zone loss-of-field protection may be desirable. In this case, the Zone-1 KLF impedance circle should be small and fully offset in the negative reactance region. The long-reach should be set above synchronous reactance, \(X_d \). The short-reach should be set equal to one-half transient reactance, \(X_d/2 \). The trip circuit should be energized directly, with no time delay. The alarm circuit should operate a timer which may be set from 0.25 to 1.0 seconds, depending on user preference. If the condition persists, this timer permits tripping.

The second-zone KLF may be set with a larger impedance characteristic and will detect partial loss-of-field conditions. A typical setting would be to just allow the machine to operate at maximum hydrogen pressure and 0.95 per unit voltage. If a low voltage condition occurs, it is recommended that tripping be accomplished through a timer set for 0.8 seconds. Added to the X unit dropout time of 0.2 seconds, this gives an overall time of 1.0 second. If the voltage is maintained, then the alarm circuit should start a “last-ditch” timer. This timer may be set anywhere from 10 seconds to one minute depending on machine type and user preference.

5.6 PERFORMANCE DURING REDUCED FREQUENCY

During major system break-ups, it is possible that the generators may be called upon to operate at reduced frequency for long periods of time. During this condition the loss-of-field relay should be secure and not over-trip for load conditions. The KLF relay has a favorable characteristic during this condition, since this tripping characteristic becomes more secure during reduced frequencies, as shown Figure 7, page 15.

6.0 SETTING THE RELAY

The type KLF relay requires a setting for each of the two compensators \(T_A \) and \(T_C \), for each of the two autotransformers, primaries \(S_A \) and \(S_C \), and for the undervoltage unit.

6.1 COMPENSATOR (\(T_A \) AND \(T_C \))

Each set of compensator taps terminates in inserts which are grouped on a socket and form approximately three quarters of a circle around a center insert which is the common connection for all the taps. Electrical connections between common insert and tap inserts are made with a link that is held in place with two connector screws, one in the common and one in the tap.
A compensator tap setting is made by loosening the connector screw in the center. Remove the connector screw in the tap end of the link, swing the link around until it is in position over the insert for the desired tap setting, replace the connector screw to bind the link to this insert, and retighten the connector screw in the center. Since the link and connector screws carry operating current, be sure that the screws are turned to bind snugly. **DO NOT OVERTIGHTEN.**

Compensator T_C requires an additional setting for including or excluding the origin of R-X diagram from the distance unit characteristic. If the desired characteristic is similar to that shown on Figure 11B, page 21, the links should be set vertically in the $+T_C$ arrow direction. If a characteristic similar to that shown in Figure 11C, page 21, is desired, set links horizontally in the $-T_C$ arrow direction.

6.2 AUTOTRANSFORMER PRIMARY (S_A AND S_C)

Primary tap connections are made through a single lead for each transformer. The lead comes out of the tap plate through a small hole located just below the taps and is held in place on the proper tap by a connector screw.

An S setting is made by removing the connector screw, placing the connector in position over the insert of the desired setting, replacing and tightening the connector screw. The connector should never make electrical contact with more than one tap at a time.

6.3 AUTOTRANSFORMER SECONDARY (M_A AND M_C)

Secondary tap connections are made through two leads identified as L and R for each transformer. These leads come out of the tap plate each through a small hole, one on each side of the vertical row of M tap inserts. The lead connectors are held in place on the proper tap by connector screws.

Values for which an M setting can be made are from -.15 to +.15 in steps of .03. The value of a setting is the sum of the numbers that are crossed when going from the R lead position to the L lead position. The sign of the M value is determined by which lead is in the higher position on the tap plate. The sign is positive (+) if the L lead is higher and negative (-) if the R lead is higher.

6.4 UNDERVERTAGE UNIT

The voltage unit is calibrated to close its contact when the applied voltage is reduced to 80 volts. The voltage unit can be set to close its contacts from 70 volts to 90 volts by adjusting the resistor R_V located next to the directional unit (to the left of the upper operating unit). The spiral spring is not disturbed when making any setting other than the calibrated setting of 80 volts.

The undervoltage unit range of 70 to 90 volts is equivalent to 80 to 104 V_{LL} (or 67% to 87% normal system voltage). This is because the voltage on the unit is equal to 1.5 times V_{LN}.

6.5 DIRECTIONAL SETTING

There is no setting to be made on the directional unit.

6.6 INDICATING CONTACTOR SWITCH (ICS)

Connect the lead located in front of the tap block to the desired setting by means of the connecting screw. When the relay energizes a 125 volt or 250 volt dc type WL relay switch or equivalent, use the 0.2 ampere tap. For 48 volt dc applications set ICS in the 2 ampere tap and use Style # 304C209G01 type WL relay coil or equivalent.
Figure 7: KLF Frequency Response for 60 Hertz Impedance Unit

Figure 8: Typical Machine Capacity Curves Plotted on a Per Unit kVA basis

(183,500 kVA, 45# H2, 18 kV, 0.9 pt, 0.64 SRC, inner-cooled, 3600 rpm.)
7.0 INSTALLATION
The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration, and heat. Mount the relay vertically by means of the four mounting holes on the flange for semi-flush mounting or by means of the rear mounting stud or studs for projection mounting. Either a mounting stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screw for steel panel mounting or the terminal studs furnished with the relay for thick panel mounting. The terminal studs may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detailed FT Case information refer to I.L. 41-076.

8.0 ADJUSTMENTS AND MAINTENANCE
The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay, no customer adjustments, other than those covered under “SETTINGS,” should be required.

8.1 ACCEPTANCE CHECK
The following check is recommended to insure that the relay is in proper working order. The relay should be energized for at least one hour.

A. Impedance Unit (Z)
1. Connect the relay as shown in Figure 13, page 23, with the switch in position 2 and the trip circuit deenergized.

2. Make the following tap settings:
 \[T_A = 11.5 \quad T_C = 2.55 \]
 \[S_A = 2 \quad S_C = 1 \]
 \[M_A = -0.03 (R/L) \quad M_C = -0.09 (R/L) \]

 The reversing links should be set for +T_C direction (vertical).

 This setting corresponds to \(Z_A = 23.7 \) \(Z_C = 2.80 \)

 Adjust the phase shifter for 90° current lagging the voltage.

3. With the terminal voltage at 80 volts, increase current until contacts just close. This current should be within ±3% of 2.25 amp (2.32-2.18 amp). This value corresponds to 1.5\(Z_A \) setting since the voltage is applied to terminals 4 and 5 is equivalent to 1.5 \(V_{IN} \) voltage, or

 \[Z_A = \frac{V_{IN}}{I_1} = \frac{80}{1.5 \times 2.25} = 23.7 \text{ ohms} \]

4. Adjust phase shifter for 90° current leading the voltage.

5. With the terminal voltage at 80 volts increase current until contacts just close. This current should be within ±3% of 19.0 amps (19.6-18.4 amps) This value corresponds to 1.5\(Z_C \) setting for the same reason as explained above.

 Contact Gap — The gap between the stationary contact and moving contact with the relay in de-energized position should be approximately 0.040".

B. Directional Unit Circuit (D)
1. Connect the relay as shown in Figure 13 with the switch in position 1 and the trip circuit deenergized.

2. With a terminal voltage of 1 volt and 5 amperes applied, turn the phase shifter 13° (current leads voltage). The contacts should be closed. This is the maximum torque position.

3. Raise the voltage to 120 volts and vary the phase shifter to obtain the two angles where the moving contact just makes with the left hand contact. These two angles (where torque reverses) should be where the current leads the voltage by 283° and 103°, ±4° volts.

4. Contact Gap — The gap between the stationary contact and moving contact with the relay in the de-energized position should be approximately 0.020".

C. Undervoltage Circuit
1. Connect the relay as shown in Figure 13 with switch in position 2 and the trip circuit deenergized.

2. Decrease the voltage until the contacts close to the left. This value should be 80 ±3% volts.

D. Reactor Check
Apply 120 volts ac across terminal 6 and 7. Measure voltage from terminal 6 to 4 and 7 to 4. These voltages should be equal to each other within ±1% volts.

E. Telephone Relay

Apply rated dc volts across terminal 10 and 3. The telephone relay (X) should open its contact. Manually close impedance unit (Z) and directional unit (D) contacts and the X contact should close.

8.2 ROUTINE MAINTENANCE

All contacts should be periodically cleaned. A contact burnisher Style #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contacts.

8.3 REPAIR CALIBRATION

The relay should be energized for at least one hour.

A. Autotransformer Check

Autotransformers may be checked for turns ratio and polarity by applying ac voltage to terminals 4 and 5 and following the procedure below.

1) Set S_A and S_C on tap number 3. Set the “R” leads of M_A and M_C all on 0.0 and disconnect the “L” leads. Adjust the voltage for 90 volts. Measure voltage from terminal 5 to the tap #1 of S_A. It should be 30 volts (±1). From terminal 5 to tap #2 of S_A should be 60 volts. The same procedure should be followed for taps #1 and #2 of S_C.

2) Set S_A and S_C on 1 and adjust the voltage at the relay terminals for 100 volts. Measure voltage drop from terminals 5 to each of the M_A and M_C taps. This voltage should be equal to 100 (±1) plus the sum of values between R and tap being measured. Example 100 (1+.03 +.06) = 109 volts.

Transformers that have an output different from nominal by more than 1.0 volt probably have been damaged and should be replaced.

B. Impedance Unit (Middle Unit) Calibration

Make the following tap plate settings.

\[T_A = 15.8; \quad T_C = 5.1 \]
\[S_A = S_C = 1 \]

Make M_A = M_C = -.15 settings:

“L” lead should be connected to the “0” insert.

“R” lead should be connected to the upper “.06” insert. (-.03-.06.06 = -.15 between L and R).

For the most accurate calibration preheat relay for at least an hour by energizing terminals 5, 6, & 7 with 120 volts, 3 phase.

The links in the middle tap block should be set for the +T_c direction (vertical).

1) Contact Gap Adjustment

The spring type pressure clamp holding the stationary contact in position should not be loosened to make the necessary gap adjustments.

With moving contact in the open position, i.e., against right stop on bridge, screw in stationary contact until both contacts just make (use neon light for indication). Then screw the stationary contact away from the moving contact 1-1/3 turn for a contact gap of .040”.

2) Sensitivity Adjustment

Using the connections of Figure 13, apply 10 volts ac 90° lagging, to terminals 4 and 5 pass .420 amperes through current circuit (terminals 9 and 8). The spiral spring is to be adjusted such that the contacts will just close. De-energize the relay. The moving contact should return to the open position against the right-hand stop.

C. Impedance Characteristic Check

1) Maximum Torque Angle

Adjust resistor R_B (mounted on the back of the relay) to measure 8800 ohms. Applying 100 volts ac to terminals 5 and 4 and passing 5.2 amperes, through the current circuit Turn the phase shifter until the moving contact opens. Turn the phase shifter back (few degrees) until contacts close. Note degrees. Continue to turn the phase shifter until contact closes again. Note degrees. The maximum torque angle should be (±3°) computed as follows:

\[
\text{Degrees to Close Contacts at Left} + \frac{\text{Degrees to Close Contacts at Right}}{2} = 90°
\]

Adjust resistor R_B until the correct maximum-torque angle is obtained

2) Impedance Check

a) Adjust voltage to be 90 volts.

For current lagging 90° the impedance unit should close its contacts at 3.12 – 3.35 amp.
Reverse current leads, the impedance unit should close its contacts at 9.7 – 10.3 amperes.

b) Reverse the links in the middle tap block to -T_C position (horizontal). Apply current of 10 amps. The contacts should stay open. Reverse current leads to original position. The contacts should open when current is increased above 9.7 – 10.3 amperes.

Set links back to +T_C position (vertical). Change S_A and S_C to setting “2”. Keeping voltage at 90 volts, 90° lagging, check pickup current. It should be 1.56 – 1.68 amperes. Now set the phase shifter so that voltage leads the current by 90°. Impedance unit should trip now at 4.85 – 5.15 amperes.

c) Set T_A = 11.5, T_C = 2.55, S_A = 2, S_C = 1, M_A = -.03 M_C = -.09. Set voltage at 90 volts leading the current by 90°. Impedance unit should trip at 2.61 – 2.45 amp. Reverse current leads. Pickup should be 20.8 – 22.1 amp.

Change S_A, S_C = 3. Check pickup. It should be 6.95 – 7.35 amp. Reverse current leads. Pick-up should be now 1.74 – 1.63 amp.

3) Plug adjustment for reversing of spurious torques

a. Set T_C = 0.0. Connect a heavy current lead from TA center link to terminal 8.

b. Short Circuit terminals 6 and 7.

c. Screw in both plugs as far as possible prior to starting the adjustment.

d. Apply 80 amps only momentarily, and the directional unit need not be cooled during initial rough adjustment. But, the directional unit should be cool when final adjustment is made.

e. When relay contact closes to the left, screw out the right hand plug until spurious torque is reversed.

f. When plug adjustment is completed, check to see that there is no closing torque when relay is energized with 40 amps and voltage terminals 6 and 7 short-circuited.

4) Maximum Torque Angle Check

With 120 volts and 5 amperes applied, vary the phase shifter to obtain the two angles where the moving contacts just close. These two angles (where torque reverses) should be where the current leads the voltage by 283° ±4° and 103° ±4°. Readjust the reactor X_d if necessary.

E. Undervoltage Unit (Lower Unit)

NOTE: The moving contact is in closed position to the left when de-energized.

1) Contact Gap Adjustments

a) L.H. (Normally Closed) Contact Adjustment

With the moving contact arm in the closed position, against left-hand side of bridge, screw the left-hand contact in to just touch the moving contact (use neon light for indication) and then continue for one more complete turn.

b) R.H. (Normally Open) Contact Adjustment

With moving contact arm against the left-hand stationary contact, screw the right-hand stationary contact until it just touches the moving contact. Then back the right-hand contact out 2/3 of one turn to give 0.020 inch contact gap.
2) **Sensitivity Adjustment**

 a) Apply voltage to terminals 4 and 5. With the adjustable resistor, Rv, which is located at the upper left-hand corner, set for maximum resistance (2500 ohms) adjust the spring so that contacts make (to the left) at 70 volts. The contacts should open when unit is energized with 71 or more volts.

 b) Relay is shipped with 80 volts setting. This is accomplished by lowering resistance value of Rv until contacts make at 80 volts and open when unit is energized with 81 or more volts. The spring should not be used for this setting.

F. Indicating Contactor Switch (ICS)

Close the main relay contacts and pass sufficient dc current through the trip circuit to close the contacts of the ICS. This value of current should not be greater than the particular ICS tap settings (0.2 or 2.0) being used. The indicator target should drop freely.

G. Telephone Relay

Energize the telephone circuit, terminals 10 and 3, with rated dc voltage. The telephone relay (X) should operate positively. With an air gap of .003" – .004" the contacts should close in 167 to 250 ms when the telephone relay coil is shorted. This may be done by manually closing the impedance unit (Z) and directional unit (D) contacts.

H. Compensator Check

Accuracy of the mutual impedance T of the compensators is set within very close tolerances at factory and should not change under normal conditions. The mutual impedance of the compensators can be checked with accurate instruments by the procedure outlined below.

1. Set T_A on the 15.8 tap
 T_C on the 5.1 tap

2. Disconnect the L-leads of sections M_A and M_C

4. Measure the compensator voltage with an accurate high resistance voltmeter (5000 ohms/volt).

5. Compensator A voltage should be checked between lead L_A terminal 5.

 For $T_A = 15.8$ the voltage measured should be 237 volts ($\pm 3\%$).

6. Compensator C voltage should be checked between lead L_C and the fixed terminal on the resistor which is mounted in the rear.

 For $T_C = 5.1$, the voltage should be 76.5 volts ($\pm 3\%$).

7. For all other taps the compensator voltage is

 $$1.5 IT (\pm 3\%)$$

 where I – relay current
 T – tap setting

9.0 RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.
Figure 9: Typical Machine Capability Curves and Sample KLF Setting
Figure 10: Compensator Construction

Figure 11: R-X Diagram Characteristics with Various Z_C Compensator Settings
Figure 12: Effect of Compensator Voltages (Zc is positive)
Figure 13: Diagram of Test Connections for KLF Relay
Figure 14: Outline and Drilling Plan for the Type KLF Relay in the FT 41 Case