The Company

ABB Instrumentation is an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company’s products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of ABB Instrumentation’s dedication to quality and accuracy.

Use of Instructions

⚠️ Warning.
An instruction that draws attention to the risk of injury or death.

🌟 Note.
Clarification of an instruction or additional information.

⚠️ Caution.
An instruction that draws attention to the risk of damage to the product, process or surroundings.

ℹ️ Information.
Further reference for more detailed information or technical details.

Although Warning hazards are related to personal injury, and Caution hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all Warning and Caution notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of Technical Communications Department, ABB Instrumentation.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

Warning. This operating manual applies only to those systems which have been designed and constructed to the standards specified in the schedules of the BASEEFA certificates listed. The separate units to which these certificates apply are clearly identifiable by model numbers and the data on the identification and BASEEFA certification labels fixed to them. Other combinations of similar equipment built to any earlier specifications are not covered by certificate number EX 77138. This is particularly important where new replacement units are to be incorporated into existing installations covered by any earlier certification standards. If in any doubt about the installation of particular combinations of certified equipment, please contact the Company for advice before proceeding. It is essential that units are installed strictly in accordance with the appropriate standards for electrical equipment for use in flammable atmospheres. Any deviation from the specified installation conditions, or any unauthorized repairs or adjustments can invalidate the safety assurances given by the certification of the unit.

The ultimate responsibility for any particular installation lies with the installing user/contractor.

This manual gives the installation, operating and maintenance information for this specific Model 6553 Intrinsically Safe Gas Analyzer System, normally used with hydrogen cooled electrical power generators.

The complete gas monitoring system uses a combination of three different units. Each unit is independently certified by BASEEFA (EECS) for use as part of an intrinsically safe system to the standards of SFA.3012:1972 for use in association with Group IIC (hydrogen) hazardous atmospheres. The different units of the system are:

1) The Model 6553 Gas monitor unit which is available in several options. The inputs to these units are certified to code Ex (ia) IIC under BASEEFA certificate Ex 77124/B/S with the unit installed in the safe area only.

2) The Model 6548-001 Katharometer Unit which forms part of an intrinsically safe Model 6548-100 Katharometer Analyzer Panel. The 6548-001 unit is certified to code Ex (ia) IIC T5 under BASEEFA certificate Ex 76179/B for installation in the hazardous area.

3) The Model 4234 constant current power supply unit, which provides a suitable supply for one katharometer unit. These units have their output certified to code Ex (ia) IIC under BASEEFA certificate Ex 76180/B/S for installation in the safe area only.

The complete gas monitoring system, if installed in accordance with the certificate schedules and the requirements given in this manual, is itself certified intrinsically safe to an overall code Ex (ia) IIC under the system certificate number Ex 77138.

If further information or assistance is required, Company specialist staff, service centres or worldwide organization may be contacted through the most convenient address given on the back cover of this manual. Specialist training courses can also be arranged by our Training Centre.
All the various system options consist of one or more of the following units with the further option of fitting the monitor and power supply units in a cubicle.

2.1 Model 6553 Purge Gas Monitor
The Purge Gas Monitor is a Unit suitable for panel mounting or in a control cubicle in the safe area. The various monitor options use one or two digital displays with protected access for zero adjustments and may also have a range selector switch or switches - see Fig. 2.1.

2.1.1 Range Display
A selector switch for each display provides independent parameter selection as follows:

Position (1) Percentage of Hydrogen in Air by volume.
This is the hydrogen purity measurement of the coolant gas under normal operation of the system. The display covers a range of 85 to 100% or 80 to 100% hydrogen in air depending on the range selected. Alarm output and a value retransmission signal (4 to 20 mA) are provided for this switch position only.

Position (2) Percentage of Hydrogen in Purge Gas by volume.
This range is for use in hydrogen purging operation. Alarm and retransmission signal are inhibited in this switch position.

Position (3) Percentage of Air in Purge Gas by volume.
This range is for use in the purging operation. Alarm and retransmission signal are inhibited in this switch position.

A further option of providing remote indication of range selector switch may be available dependent on the number of alarms specified.

The Model 4689 displays are dedicated variants of the Company’s Model 4600 Series Indicator/Controllers. With this special variant (4689), the displays and alarm indicators on the front panel remain the same but software control is specific to the Katharometer systems. The relay action of the alarms is fixed as ‘fail safe’. All user programmable data can be protected from unauthorized alteration by a programmable 5-digit security number.

The zero adjustments on the front panel of the monitor allow remote zeroing of the katharometers in the hazardous area. The adjustment access for a particular display is adjacent to the display and at the same level.

The monitor unit has a protective case which can be removed for access to the interior without removing the whole monitor unit from the panel.

The monitor also contains encapsulated zener barrier units to limit the electrical energy level that can be applied from the instrument circuits into the hazardous area. These zener barrier units are located below the display units, on a bus-bar which MUST be earthed (grounded). A metal screening arrangement segregates the connections made to equipment in the hazardous area. A main fuse is fitted inside the monitor case for the electricity supply line.

2.2 Model 6548 100 Katharometer Analyser Panel – Fig. 2.2
Each panel comprises a metering valve, a drying chamber, a thermally lagged katharometer type 6548 001, and a flowmeter (which is fitted with an intrinsically safe low flow alarm system). These items are mounted on a flat panel suitable for fixing to a vertical surface close to the sample point. The katharometers are calibrated for the hydrogen purity measurement as well as hydrogen in Purge Gas and air in Purge Gas.

Each sealed katharometer assembly incorporates a Wheatstone Bridge made up of fine glass coated platinum filaments. One pair of parallel arms is sealed in the reference gas and the other pair exposed to the sample gas.

When the intrinsically safe stabilized current from the power supply unit (Model 4234) is passed through this bridge, the temperature of the platinum filaments rises to a point of thermal equilibrium. Under conditions which are arranged to give minimum radiation and convection heat transfer, the equilibrium temperature depends on the thermal conductivity of the gas surrounding the filament. Thus any difference between the thermal conductivity of reference and sample gases causes an imbalance in the bridge; this imbalance (as a millivolt signal) is indicated by the monitor unit.

Zener diodes are connected across the input connections from the power supply unit to the katharometer in order to limit the maximum voltage which could be developed across the filament bridge under external fault conditions. The current is limited to a safe value under fault conditions by the power supply unit.
2.3 Model 4234 Power Supply Unit – Fig. 3.3

Warning. Do NOT connect mains supply to the power supply unit with the output terminals on open circuit. This causes premature component failure.

Caution. Ensure that the power supply unit is correct for the mains supply voltage available. A nominal 110 V unit cannot be adapted for use with a nominal 230 V supply, or the other way around.

To operate a katharometer unit in the hazardous area, one Model 4234 power supply unit is required for each katharometer. The power supply unit supplies a stabilized 350 mA d.c. signal, and must be mounted in the safe area. There are two separate versions available for either a nominal 110-120 V a.c. or 200-220/230 V a.c. supply voltage. The stabilized current output is current and voltage limited to restrict the energy supply into the hazardous area.

The model 4234 is housed in a metal case fitted with lugs for wall/panel mounting. Cable gland entries are provided at opposite ends of the case for supply voltage input and stabilized output cables to the hazardous area. The printed circuit board assembly and diode heat sink are mounted on a metal chassis and separate labelled terminal blocks are used for making electrical interconnections.

The circuit is protected by a cartridge fuse. This fuse must have a high breaking capacity (h.b.c.) rating of 4000 A to comply with the terms of the certification.

2.4 Cubicle Systems

Optionally, the purge gas monitors, power supply units, zener barriers and alarm relays are mounted and pre-wired in an IP55 rated, 2 mm steel frame cubicle for fitting in a non-hazardous area. This enclosure is in three parts:

- a safety glass door allowing view of the displays and access to the controls;
- a hinged case housing the monitor and controls and allowing access to
- the base case into which are mounted the power supply units, alarm relays, zener barriers and terminal blocks.

Cable glands are located along the bottom of the base section; five for cabling to the hazardous area, six for cabling to safe areas and two for mains power input.

The base case has four Ø12 mm holes in the bottom face for mounting the cubicle to a rail.

The katharometer analyzer panels, which are mounted remotely in the hazardous area, are as described in Section 2.2.

2.5 Remote Indicator/Controllers

The 6553 monitor unit has provision for retransmission values and ancillary indicator/controllers may be connected to these outputs, providing that they are installed in the safe area and the installation conforms to the requirements given in Section 5.1.
3 PREPARATION

3.1 Identification
It is essential that installers and users clearly identify the various units of the monitoring system as follows:

3.1.1 Model 6553 Monitor Unit – Fig. 3.1
The 6553 monitor is available in several options, these being defined by the code number as given in Section 3.1.4.

The identification and certification labels are fixed to the outside of the monitor case as shown in Fig. 3.1. The precise interpretation of the identification code gives information on the 6553 system as shown in Section 3.1.5.

Note. Although the display units may be marked as ‘4600’ on their front panels, they are special units for this monitor and a standard Model 4600 cannot be used. The precise identity of the display unit is given on the identification label shown in Fig. 3.1.

3.1.2 Model 6548 100 Katharometer Analyser Panel – Fig. 3.2
The identification of a panel is given by the panel reference number label as shown in Fig. 3.2. The identification and certification labels of the individual katharometer units (fixed to the katharometer case) are also shown in Fig. 3.2.

Note. ABB Instrumentation Ltd
St. Neots England PE19 8EU
Type No. 006548001
Unique Reference No.
Gas Type
Model No.
Zero Gas 85% H₂ IN N₂

ABB Instrumentation Ltd
Stonehouse, England
Type No. 006548001
Contract No. V60127
Serial No. XXXXXX
Range 85–100%
Output 0–10mV

ABB Instrumentation Ltd
Stoneside Lane, Stonehouse
Glou, England GL10 3TA
Code No. 6553-413101101
Serial No. GB0000
Voltage: 110–120
Hz: 50–60
Watts: 30

ABB Instrumentation Ltd
Ex (ia) IIC T5
Ex 76179/B
SFA 3012
SFA 3012

ABB Instrumentation Ltd
Ex (ia) IIC/BAS No.Ex77124/B/S
SFA3012

ABB Instrumentation Ltd
Katharometer Type 6548001
Ex
(SFA 3012)

ABB Instrumentation Ltd
Katharometer Unit
Panel Reference No.
6548100

Intrinsic Safety Label (UK)

Fig. 3.1 Typical Identification Labels and Locations – Model 6553 Gas Monitor Unit with Digital Displays

Fig. 3.2 Typical Identification Labels with Locations – Model 6548 100 Katharometer Analyzer Panel
3.1.3 Model 4234 Power Supply Unit – Fig. 3.3
The identification and certification labels are fixed to the outside of the unit case, as shown.
3.1.4 Coding System

<table>
<thead>
<tr>
<th>Features of Upper Indicator</th>
<th>Scale of Upper Indicator</th>
<th>Features of Lower Indicator</th>
<th>Scale of Lower Indicator</th>
<th>Range Selector Switch</th>
<th>Not Used</th>
<th>Fitted with Labels</th>
<th>Cubicle Type</th>
<th>Special Features</th>
<th>Main Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 6 Two alarms + retrans. 4–20 mA</td>
<td>6553/ [X]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The equipment conforms with the requirements of SFA 3012 for class IIC gases to Code Ex (ia) IIC provided that the equipment is installed in accordance with instructions provided. The display unit and power supply units must be installed in a safe (non-hazardous) area, and gas analysis panels may be mounted close to the sample point in the hazardous area.

3.1.5 Ordering Code – 6553 Hydrogen Purity and Purge Gas

<table>
<thead>
<tr>
<th>A Features of Upper Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Two alarms + retrans. 4–20 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B Scale of Upper Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 100–85% H₂ in Air</td>
</tr>
<tr>
<td>2 100–80% H₂ in Air</td>
</tr>
<tr>
<td>3 0–100% Air in CO₂, 0–100% H₂ in CO₂, 85–100% H₂ in Air</td>
</tr>
<tr>
<td>4 0–100% Air in CO₂, 0–100% H₂ in CO₂, 80–100% H₂ in Air</td>
</tr>
<tr>
<td>5 85–100% H₂ in Air</td>
</tr>
<tr>
<td>6 80–100% H₂ in Air</td>
</tr>
<tr>
<td>7 0–100% Air in Ar, 0–100% H₂ in Ar, 85–100% H₂ in Air</td>
</tr>
<tr>
<td>8 0–100% Air in Ar, 0–100% H₂ in Ar, 80–100% H₂ in Air</td>
</tr>
<tr>
<td>9 Special</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C Features of Lower Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Indicator Not Fitted</td>
</tr>
<tr>
<td>3 Two alarms + retrans. 4–20 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D Scale of Lower Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Indicator Not Fitted</td>
</tr>
<tr>
<td>1 0–100% Air in CO₂, 0–100% H₂ in CO₂</td>
</tr>
<tr>
<td>2 100–85% H₂ in Air</td>
</tr>
<tr>
<td>3 100–80% H₂ in Air</td>
</tr>
<tr>
<td>4 0–100% Air in CO₂, 0–100% H₂ in CO₂, 85–100% H₂ in Air</td>
</tr>
<tr>
<td>5 0–100% Air in CO₂, 0–100% H₂ in CO₂, 80–100% H₂ in Air</td>
</tr>
<tr>
<td>6 85–100% H₂ in Air</td>
</tr>
<tr>
<td>7 80–100% H₂ in Air</td>
</tr>
<tr>
<td>9 Special</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E Range Selector Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Not fitted</td>
</tr>
<tr>
<td>2 Fitted, with facilities for Remote Indication of Switch Position – upper indicator.</td>
</tr>
<tr>
<td>3 Fitted with two range switches, upper and lower indicator + remote indicator.</td>
</tr>
</tbody>
</table>

3.1.6 Option Combinations (6553/[X])

The digit decode is shown in Section 3.1.5.

<table>
<thead>
<tr>
<th>[X]</th>
<th>Purity only: top ind.</th>
<th>3-Range: top ind. only</th>
<th>Std. purge system</th>
<th>2 x purity display</th>
<th>2 x 3 ranges</th>
<th>Purity top : 3 ranges lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>1,2,5,6</td>
<td>3,4</td>
<td>1,2,5,6</td>
<td>1,2,5,6</td>
<td>3,4,7,8,9</td>
<td>1,2,5,6</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2,3,6,7</td>
<td>4,5,9,A,B</td>
<td>4,5</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1 to 4</td>
</tr>
<tr>
<td>H</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2,3,4</td>
<td>1.4</td>
</tr>
<tr>
<td>J</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>K</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3</td>
<td>1,2,3,12</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>
4 MECHANICAL INSTALLATION

4.1 Locating and Mounting System Items

4.1.1 Model 6553 Gas Monitor – Fig. 4.1

Users with cubicle systems ignore this section.

The monitor must be located in the safe area of the application plant in a sheltered interior environment.

The monitor is intended to be panel mounted in a position to suit reading of the displays and with access to the rear to enable wiring interconnections to be made. The panel preparation requirements and installation dimensions are shown in Fig. 4.1. The monitor is secured to the panel by two clamping brackets at opposite corners of the monitor chassis.

![Diagram of Model 6553 Gas Monitor Unit with Digital Displays]

atitis. All dimensions nominal millimeters unless indicated otherwise.

Fig. 4.1 Installation Dimensions and Interconnection Positions – Model 6553 Gas Monitor Unit with Digital Displays
4.1.2 Katharometer Analyser Panel – Fig. 4.2
The panel is located in the hazardous area (zone 0, 1 or 2) of the application plant in a sheltered interior environment. Avoid a location which subjects the katharometer unit to direct sunlight. When two katharometer panels are used they should be positioned so as to be at the same ambient temperature.

The katharometer unit is fixed to the panel which has fixing holes at each corner and should be mounted on a suitable vertical surface close to the sample tapping point. The installation dimensions for the panel is shown in Fig. 4.2.

![Fig. 4.2 Installation Dimension and Interconnection Positions – Model 6548 100 Katharometer Analyzer Panel](image)

Note. All dimensions nominal millimeters unless indicated otherwise.

4.1.3 Model 4234 Power Supply Unit – Fig. 4.3
Users with cubicle systems ignore this section.

The unit must be located in the safe area of the application plant in a sheltered interior environment.

The power supply unit has 4 fixing lugs and should be mounted on a suitable vertical surface. The installation dimensions are shown in Fig. 4.3.

![Fig. 4.3 Installation Dimensions and Interconnection Positions – Model 4234 Power Supply Unit](image)

Note. All dimensions nominal millimeters unless indicated otherwise.
4.1.4 Cubicle Mounted System – Figs 4.4 and 4.5

The cubicle must be located in a safe area of the application plant and mounted on the base using four M10 fixings.

Overall dimensions of the cubicle are given in Fig. 4.4 and the principal base case components are shown in Fig. 4.5.

![Fig. 4.4 Installation Dimensions – Cubicle](image)

The sample pressure must not exceed the value given in Section 13.

The incoming sample gas temperature must not exceed the temperature given in Section 13.

If there is a risk of significant particle contamination, a suitable 1 µm filter unit should be incorporated in the system before the sample gas enters the analyzer system.

Compression couplings are supplied at the sample inlet and outlet to the katharometer panel. These couplings are suitable for connecting 8 mm outside diameter metal tube. It is recommended that stainless steel tube is used.

The complete tubing system should be tested for leaks in accordance with the requirements of the responsible authority.

![Fig. 4.5 Location of Main Components on Cubicle Backplate](image)
5 ELECTRICAL INSTALLATION

5.1 Electrical Interconnections

Warning.
- Equipment in this system operates on a.c. mains supply voltage electricity. Suitable safety precautions must be taken to avoid the possibility of electric shock.
- Although certain instruments are fitted with internal fuse protection, a suitably rated external protection device, e.g. a 3 A fuse or miniature circuit breaker (m.c.b.), must also be fitted by the installer.
- The proper electrical connections and wiring standards must be achieved to establish the intrinsic safety of the system, as certified.
- The a.c. input and intrinsically safe d.c. output wiring must be routed separately from non-intrinsically safe wiring.

Fig. 5.6 shows the interconnecting wiring requirements for the gas analyser system, which must be strictly observed. Details of cable requirements, which must be strictly adhered to, are also given – see Section 5.3.1.

After completing the wiring, check that the continuity earthing (grounding) and isolation of all circuits is to the required local electrical standards for intrinsically safe circuits.

The separate units of the analyzer system must be interconnected as follows:

Fig. 5.1 Location of Components Inside Case (Rear View) – Model 6553 Gas Monitor Unit with Digital Displays
...5 ELECTRICAL INSTALLATION

Caution. The integrity of the fail-safe operation of the zener barrier units depends on a Safety Earth connection which must not have a resistance greater than 1Ω to the application plant earth (ground).

Make the Earth (Ground) and Safety Earth connection at the stud (TS1) – see Fig. 5.1.

On completion of wiring and checks, replace the outer case and secure the clamping brackets to the mounting panel.

5.1.2 Model 6548 100 Katharometer Analyser Panel

Electrical connections are made inside the katharometer unit (6548 001) and low alarm connection box on the analyzer panel – see Fig. 5.2.

Model 6548 001 Katharometer Unit

Remove the cover of the katharometer unit to gain access to the terminal block (TB1) inside.

For panel-mounted gas monitors make the electrical connections to the monitor in accordance with the information given in wiring diagram Fig. 5.3 and Section 5.3. For cubicle-mounted gas monitors make the electrical connections to the cubicle in accordance with the information given in wiring diagram Fig. 5.5 and Section 5.3.

The electrical connections are made at the terminal block (TB1) via the cable gland, or any replacement gland to suit the intrinsically safe wiring requirements. When the appropriate interconnections have been made, if remote zero is to be used, remove the 510R dummy ‘remote zero’ from across terminals 9 and 10 and set the zero adjustment on the katharometer to the approximate mid-point.

Replace the cover on completion of wiring up (panel-mounted monitors).

Low Flow Alarm Connection Box (Cubicle Systems only)

Remove the cover of the connection box to gain access to the terminal block inside.

Make the electrical connections to the cubicle in accordance with the information given in wiring diagram Fig. 5.5 and Section 5.3.
Fig. 5.3 Interconnection Wiring Diagram – Model 6553 Intrinsically Safe Analyzer System using two three range displays, as separate units

Warning. Interconnections marked with * MUST conform to the intrinsically safe wiring requirements given in the text.

All other wiring to suit power and signal requirements.

Important Note. With the mains supply OFF, remove the dummy load resistors from the power supply units (TB2) when connecting to the katharometer units.

Basic reference code for system: 6553/6XX110X0XX

X = As specified
5.1.3 Model 4234 Power Supply Unit – Fig. 5.4

Caution.
- Do **NOT** connect mains supply to the power supply unit with the output terminals on open circuit. This causes premature component failure. The unit is supplied with a dummy load resistor in place to prevent this.
- Ensure that the power supply unit is correct for the mains supply voltage available. A nominal 110 V unit cannot be adapted for use with a nominal 230 V supply, or the other way around.

Users with cubicle systems ignore this section.

Remove the cover of the unit to gain access to the terminal blocks inside.

Locate the terminal block (TB3) adjacent to the transformer T1. To ensure the correct transformer tapping is used for the incoming mains supply, adjust the brown wire, if necessary, to the appropriately marked TB3 terminal to either 110 or 120 V (200, 220 or 230 V, for alternative power supply unit).

With mains supply OFF, remove the dummy load resistor from TB2 when connecting to katharometer units. Make electrical connections in accordance with the information given in the wiring diagram Fig. 5.3 and Section 5.3.1.

The electrical connections are made at terminal blocks TB1 and TB2 through the appropriate cable gland, or any replacement gland to suit intrinsically safe wiring requirements. Secure the incoming cable by the cable clips adjacent to the terminal blocks.

Fit the cover on completion of wiring up.

Caution. To ensure system stability, always allow 30 minutes after switching on the power supplies before operating the system.

5.2 Cubicle System – Fig. 5.5

Warning. No connections must be made to the hazardous area terminal other than as specified in wiring diagram Fig. 5.5. The appropriate cable requirements must be also satisfied.

Caution.
- Do **NOT** connect mains supply to the cubicle with the output terminals on open circuit. This causes premature component failure. Dummy load resistors are fitted to terminals 5 & 6 and 12 & 13 on the Hazardous Area terminal block to prevent this.

Open the hinged case to gain access to the terminal blocks in the base case and remove the terminal block covers.

The electrical connections are made through the appropriate cable glands in the bottom of the base case into the terminal blocks immediately above. The mains power cables enter the case via the two right hand cable glands. There are separate cable glands for wires to the hazardous and safe areas – see Fig. 5.5.

Electrical connections to the low flow alarm at the junction box on the analyzer panel are made to the appropriate terminals on the terminal rail. Connections to low flow alarm equipment...
Important Note. Switch OFF the mains supply BEFORE removing the dummy load resistors (between terminals 5 & 6 and 12 & 13) and when making ANY connections to the Hazardous Area terminal block.

Warning. Interconnections indicated by dotted lines MUST conform to the intrinsically safe wiring requirements given in the text. All other wiring to suit power and signal requirements.

Basic reference code for system: 6553/6X3X30XXXX (X = As specified)

Fig. 5.5 Interconnection Wiring Diagram – Model 6553 Intrinsically Safe Analyzer System using two three range displays, Cubicle Version
Unspecified safe area equipment
(in accordance with Note 5)

1. L H₂ in Air
2. N H₂ in CO₂ or Ar
3. E 4689 502 Indicator

See Note 5

1. L H₂ in Air
2. N H₂ in CO₂ or Ar
3. E 4689 502 Indicator

See Note 5

Notes

1. The total capacitance and inductance or inductance to resistance ratio (L/R) of the cables connected to the output terminals (hazardous area) of the analyser and power supply unit must not exceed the following values:

<table>
<thead>
<tr>
<th>Group</th>
<th>Capacitance µF</th>
<th>Inductance µH</th>
<th>L/R ratio µH/Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>24</td>
<td>200</td>
<td>160</td>
</tr>
<tr>
<td>IIB</td>
<td>9</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>IIC</td>
<td>3</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

2. Terminal boxes (if required) must confirm to BASEEFA standard SFA 3012 clause 6.3. May be located in hazardous or safe area.

3. BASEEFA certified 5v 10Ω shunt zener diode barriers of like polarity, certified Ex(ia)IIC. MTL 105+ve

4. The installation must conform to the BASEEFA Installation Conditions, issue 6 dated 1 September 1976.

5. Safe area equipment must not contain a source of potential relative to earth in excess of 250V rms or 250V d.c.

Fig. 5.6 System Diagram. System Cert. Ex76181/1 dated Dec 1988
are made from the appropriate relays through terminals on the terminal rails.

The signal and other alarm outputs on 'mains' terminal block may be connected as required.

With mains supply OFF, remove the dummy load resistor from TB2 when connecting to katharometer units. Make the wiring connections in accordance with the information given in the wiring diagram Fig. 5.5 and Section 5.3.

On completion of wiring and checks, replace the terminal block covers and close and secure the hinged case to the base case.

5.3 Intrinsically Safe Requirements
These requirements relate to the interconnecting wiring made to and from Model 6548 100 Katharometer Analyzer Panel in the hazardous area, and those for remote ancillary items connected to the system.

5.3.1 Cable Requirements
The interconnecting cables between the various units of the gas analysis system are subject to stringent limitations because of the requirements of the intrinsic safety certification. These are listed below and detailed in Fig. 5.6.

All cables entering the hazardous area must be kept separate from cables in the safe area. Cables entering the hazardous area must not be run with other cables, and terminations must have an earthed screen to separate them from connections for other circuits. The detailed requirements are as follows:

1) Connections between Model 6548 100 Katharometer Analyzer Panel and Model 4234 Power Supply Unit.

All cables from the Katharometer in the hazardous area must have an inductance/resistance ratio not exceeding 18 µH/Ω, (for Group IIC gases). There is a further requirement that the maximum resistance of this interconnecting cable is limited to 2 Ω. This may place a limitation on the length of the total cable run.

Single sheathed conducting cables should be twisted together to reduce their mutual inductance, and routed separately from cabling for non-intrinsically safe circuits in the safe area.

2) Connections between Model 6548 100 Katharometer Analyzer Panel and Model 6553 Gas Monitor Unit.

Katharometer to display unit cables, carrying the output signals through zener barrier units inside the monitor unit, are subject to a maximum inductance/resistance ratio of 18 µH/Ω (for group IIC gases). These wires are indicated by a ★ in Fig. 5.3 and by dashed lines in Fig. 5.5.

No special requirements are necessary to limit the choice of cable for the interconnection between the katharometer zero adjustment controls and the monitor unit.

5.3.2 Recommended Cables
The limitations imposed restrict the choice of wiring cable to a few types. 'Pyrotenax' meet the requirements of less than 18 µH/Ω with their mineral insulated cable type CC 2L1.

The Company should be consulted with information on any other cables proposed for use in the installation of this system.

Detailed cable specifications of the above mentioned type is available from:
B.I.C.C. Pyrotenax Limited or Draka Calfax
P.O. Box 20
PRESCHOTT
Merseyside L34 5GB
Tel: 0151 430 4000 (Tech.)
0151 430 4050 (Sales)

5.3.3 Installing Remote Ancillary Items
Any indicator/controllers, or other electrical equipment, connected to TB1 of the Model 6553 Gas Monitor Unit must not be supplied from, nor contain, a potential source greater than 250 V d.c. or 250 V r.m.s. with respect to earth.

5.3.4 Full Intrinsically Safe Requirements
For systems to be modified or used with other gases the full BASEEFA requirements must be complied with as follows:

1) The total capacitance and inductance or inductance to resistance ratio (L/R) of the cables connecting the katharometer unit to the hazardous area terminals of the monitor unit (TB2) and power supply unit terminals (TB1) must not exceed the values given in Table 5.1.

2) Any terminal boxes used in the hazardous or safe areas must conform to BASEEFA Standard SFA.3012, Clause 6.3.

3) The overall installation must conform to the BASEEFA installation conditions, Issue 6 (September 1976) – see Fig. 5.6.

4) The wiring between the flow alarm junction box on the 6548 100 analyser panel and the alarm relay module must comply with the maximum permissible cable parameters – see Table 5.2.

5.3.5 Low Flow Alarm Relay Wiring Requirements

<table>
<thead>
<tr>
<th>Gas Group</th>
<th>Capacitance µF</th>
<th>Inductance mH</th>
<th>Inductance/Resistance µH/Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>4.8</td>
<td>0.152</td>
<td>144</td>
</tr>
<tr>
<td>IIB</td>
<td>1.8</td>
<td>0.057</td>
<td>54</td>
</tr>
<tr>
<td>IIC</td>
<td>0.6</td>
<td>0.019</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 5.1 6553 – Intrinsically Safe Wiring Requirements

<table>
<thead>
<tr>
<th>Gas Group</th>
<th>Capacitance µF</th>
<th>Inductance mH</th>
<th>Inductance/Resistance µH/Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIC</td>
<td>0.75</td>
<td>1.65</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 5.2 6553 – Low Flow Alarm Relay Wiring Requirements
When the gas analyzer system has been correctly installed in accordance with the requirements for intrinsic safety given in Section 5.2, carry out the following setting-up procedures:

6.1 Katharometer Analyser Panel – Filling the Drying Chamber – Fig. 6.1

1. Remove the drying chamber on the katharometer analyzer panel by unscrewing the large knurled nut at the base of the chamber. Pull the chamber down and out of the sealing groove to remove it from the panel.

2. Open a container of fresh granular calcium chloride. Ensure the filter gauze is in place at the bottom of the chamber, and immediately fill the drying chamber.

 ✠ Note. The capacity of the drying chamber is about 140 ml. To fill the chamber, approximately 100 g of calcium chloride is required.

3. Replace the drying chamber in its sealing groove and reposition the chamber to enable it to be secured and sealed by hand tightening the knurled nut.

4. Carry out an approved leak testing procedure before passing sample gas through the system.

6.2 Setting Sample Flow

When all tubing interconnections have been made and external parts of the sample system checked for leaks, the suggested procedure is as follows:

1. Arrange to supply calibration quality Purge gas through the gas analyzer system at the normal working pressure of the application plant and within the limits given in Section 13.

2. Remove the flow gauge front cover and slide the low flow alarm sensor to the required value. Replace the cover.

3. Gradually open the metering valve on the katharometer panel to pressurize the complete system to the maximum pressure given in Section 13.

 ✠ Caution. Testing for leaks with Carbon Dioxide or Argon may not be considered an adequate check of gas tight integrity in respect of the more penetrating hydrogen gas. Consideration may be given to the use of a gas, such as helium, which has penetrating properties nearer to that of hydrogen.

4. Slowly open the metering valve to give a nominal flowrate of gas of 100 to 150 ml min⁻¹. Do not exceed the maximum flowrate given in Section 13.

5. Set the flowrate and shut off the calibration gas external to the analyzer system.

6. Repeat this procedure for each katharometer analyzer panel, as required.
6.3 Electrical Checks
Carry out the following electrical checks:

6.3.1 Model 4234 Power Supply Unit Output

Warning. This unit is part of the certified intrinsically safe system. Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out this task.

Testing the output may only be carried out with the hazardous area cable disconnected and a dummy load resistor fitted across the output. *Never operate the unit to supply an open circuit.*

1) Electrically isolate the power supply unit.

2) Remove the cover from the power supply unit.

3) Disconnect the output wires to the hazardous area at terminals TB2+ and TB2–.

4) Connect a 10 Ω (2 W ±5%) dummy load resistor across terminals TB2+ and TB2–.

Warning. Ensure that proper electrical safety precautions are taken at all times when undertaking this procedure.

5) Switch on the power supply unit and check that it is stable at 350 mA.

6) On completion of tests, isolate the unit, remove the dummy load resistor and reconnect the output wires to the hazardous area.

7) Replace the cover on the unit.

6.3.2 Zener Barrier Units
The zener barriers in the 6553 monitor unit are checked at the time of manufacture. To ensure absolute safety when fitting a new instrument, check that the barriers in the monitor are properly earthed by carrying out a routine test before using the analyzer system.

Warning
- This unit is part of the certified intrinsically safe system. Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out this task.
- If these tests reveal a faulty zener barrier, the barrier MUST be replaced by a new unit. The barrier is a sealed unit and no repair is permitted. The correct zener barriers are certified intrinsically safe to EX (ia) IIC and no other type may be substituted.

1) Electrically isolate the 6553 monitor unit.

2) Remove the outer case from the monitor.

3) Disconnect the cable connected to terminal 3 of the barrier unit.

4) Using a low voltage ohmmeter, measure the resistance between terminals 1 and 3. This must be less than 18.15 Ω. If in excess of this value – change the barrier.

5) Using a low voltage ohmmeter, ensure that the resistance between terminals 2 and 4 of the barrier unit and the application plant safety earth is less than 1 Ω.

6) Connect the wire to terminal 3 on the barrier unit.

7) Fit the outer case to the 6553 monitor unit.

6.3.3 Checking System Earth
Check that the resistance between earth terminals on the analyser system and the application plant system safety earth does not exceed one ohm.
7 CONTROLS & DISPLAYS

7.1 Displays – Fig. 7.1
The displays comprise a 5-digit, 7-segment digital upper display line and a 16-character dot-matrix lower display line. The upper display line shows actual values of hydrogen purity, hydrogen in purge gas, air in purge gas, alarm set points or programmable parameters. The lower display line shows the associated units or programming information.

7.2 Switch Familiarization Fig. 7.1 and 7.2

Fig. 7.1 Location of Controls and Displays

Fig. 7.2 Function of the Membrane Switches
8.1 Instrument Start-Up

In normal operation the instrument displays the Operating Page which is a general use page in which parameters are viewed only and cannot be altered. Any changes to the operating parameters are implemented using the switches as described in 7.2 Switch Familiarization. To alter or program a parameter refer to Section 10. A 5-digit Security Code is used to prevent unauthorized access to programmable parameters. The value is preset at 00000 to allow access during commissioning but should be altered to a unique value, known only to authorized operators, as described in the Setup Outputs Page.

When all the required wiring connections and electrical checks have been correctly made, the power supplies to the various units may be switched on as follows:

1) Switch on the supply voltage to the 4234 power supply unit.
2) Switch on the supply voltage to the 6553 monitor unit.

8.2 Alarm Set Point

8.2.1 Type of Alarm Action

The alarm relay coil is energized during normal non-alarm relay states and is de-energized upon recognition of an alarm condition, thereby providing ‘fail-safe’ alarms, i.e. with Alarm 1 set point = 95.0, when the display is indicating greater than 95.0 (plus hysteresis), then Alarm Relay 1 is energized and Alarm 1 LED is OFF. When the display indicates less than 95.0 (minus hysteresis), then Alarm Relay 1 is de-energized and Alarm 1 LED is ON. This operating mode ensures that, in the event of a mains power failure, an alarm condition is signalled.

8.2.2 Hydrogen alarm Set Point

It is suggested that the hydrogen alarm set-points should be based on a reducing percentage of hydrogen as it is displaced by air entering the application plant. This can be achieved by setting Alarm 1 and Alarm 2 (if fitted) to give ample warning of the development of a potentially explosive mixture. Factory settings are Alarm 1 = 95.0 and Alarm 2 = 90.0 (if fitted).

The procedure is as follows:

Access the programming pages (Section 10) and input the alarm set-points in accordance with the information given in Set Up Outputs Page. The hydrogen alarm set point can only be set with the selector switch in position 1.

8.3 Electrical Calibration

The instrument is factory calibrated for electrical voltage signal input. No adjustment is normally necessary for proper functioning of the purge gas monitor. If electrical calibration is required, a voltage source capable of supplying 10.00 mV and 250.00 mV is needed. The katharometer input to the monitor unit should be disconnected and the voltage source signal applied according to the instructions in the Electrical Cal programming page (see Section 10).

Note. The 4600 Series instruments incorporate a two point calibration sequence requiring both zero and span inputs for a calibration. It is not possible to adjust either the range zero or the range span scale points independently.
8.4 Gas Calibration
Before putting the system on-line, it is recommended that a calibration check for the ‘zero’ reading is made using calibration standard sample gas.

The ‘zero gas’ is permanently marked on the data plate on the 6548 001 katharometer unit. This gas when passed through the katharometer gives a zero millivolt output. To provide a fail-safe condition the zero gas is a 80% or 85% hydrogen in nitrogen mixture so that if power is lost to the katharometer, an alarm condition occurs at the monitor unit.

Full scale output from the katharometer is obtained by a 100% hydrogen gas sample and no adjustment of the katharometer output is normally required. The maximum signal for the full scale reading is sealed during manufacture and should not be altered by users.

With the katharometer correctly adjusted using the ‘zero gas’ hydrogen in nitrogen mixture, purge gas and air mixtures are correctly displayed when the selector switch is in the appropriate position.

8.4.1 Hydrogen Gas Calibration

⚠️ **Warning.** Test for leaks in accordance with the requirements of the responsible authority after making any hydrogen connections.

1) Arrange to pass calibration quality Hydrogen gas through the Katharometer Unit on the appropriate katharometer analyzer panel, at the normal working pressure of the sample gas system. This should give the correct flowrate of gas, as set previously.

2) Power up the monitor unit, and the hydrogen katharometer unit by switching on the appropriate power supply unit.

3) Set the range selector switch on the monitor unit to position (1).

4) The display unit indicates the measurement parameter - percentage by volume of hydrogen in air (%H₂ in AIR) - on the lower line. The upper line indicates a value for the parameter.

5) With hydrogen calibration gas passing through the sample system at the normal flowrate, the displayed value should stabilize within 2 hours to read the correct value (80% or 85%) as appropriate.

🌟 **Note.** A zero adjustment facility is available from the potentiometer adjacent to the display unit. Adjustment is made by inserting a screwdriver through the hole behind the small escutcheon plate.

8.4.2 Purge Gas Check Reading

🌟 **Note.** No adjustment of the zero potentiometer is necessary. As any adjustment required will already have been made while calibrating the hydrogen-in-air range.

With the calibration performed according to Section 8.4.1 the purge gas readings (carbon dioxide, air or Argon) are correctly displayed when the selector switch is in the appropriate position.

As a check, calibration quality purge gas, air (or mixtures) may be passed through the katharometer and the displayed value compared to the stated mixture.

If adjustment is required, a hydrogen gas calibration (see Section 8.4.1) must be performed to achieve the required accuracy.
9 OPERATION

9.1 Normal
During normal operation the Model 6553 Gas Analyzer System is used to indicate the purity of hydrogen used as a coolant. The displays show the percentage of hydrogen in air, which should be safely in excess of the explosive limit at the hydrogen rich end.

There are no routine adjustments required to the gas analyzer system after completion of start-up procedures and putting on-line in monitoring mode. The system only requires minor adjustments to the metering valve to maintain the required flowrate and the carrying out of safety routines.

A summary of the functions and status of the system for the different range selector switch positions is shown in Table 9.1.

9.1.1 Purging of Hydrogen Coolant Gas
When the hydrogen coolant has to be removed from the application plant, it would be wasteful and dangerous to release the coolant gas directly into the atmosphere. So it is necessary to ensure that the system is outside the explosive limits for air in hydrogen before allowing air into the system.

Initially, inert purge gas is introduced into the system. When the hydrogen concentration is safely below the explosive limit, air is introduced into the system to completely displace the other two gases.

The Model 6553 Gas Analyzer System provides all the necessary indications and output signals to enable this operation to be carried out safely.

In respect of the operation of the gas analyzer system(s), the procedures are as follows:

⚠️ Warning. Suitable safety procedures apply to the operation of gas cooling and sample systems.

1) Select position (2) of the range selector switch on the monitor unit. This causes the display units to indicate and have the functions given in Table 9.1.

2) Commence the purging operation.

3) When the changeover to introduce air into the application plant is made, select position (3) of the range selector switch on the monitor unit. This causes the display units to indicate and have the functions as given in Table 9.1.

9.1.2 Filling with Hydrogen Coolant Gas
This procedure is a reversal of the purging procedure. Initially, inert purge gas is introduced into the application plant until the air content is safely below the explosive limit for air in hydrogen. When this limit is reached, hydrogen is gradually introduced into the system to displace the other two gases.

With respect to the operation of the gas analyzer system, the procedure is as follows:

⚠️ Warning. Suitable safety precautions will apply to the operation of the gas cooling and sample systems.

1) Select position (3) of the range selector switch of the monitor unit. This causes the display units to indicate and have the functions given in Table 9.1.

2) When the changeover to introduce hydrogen into the application plant is made, select range (2) of the range selector switch on the monitor unit. This causes the display units to indicate and have the functions as given in Table 9.1.

3) When the display indicates that hydrogen filling is complete, position the range selector switch at (1). The hydrogen measurement analyzer system is now on-line in monitoring mode.

<table>
<thead>
<tr>
<th>Range Selector Switch Position</th>
<th>Upper Display Line</th>
<th>Lower Display Line</th>
<th>Alarm 1 Set Point and Retransmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Display</td>
<td>Function</td>
<td>Actual Display</td>
<td>Function</td>
</tr>
<tr>
<td>(1) xxx.x</td>
<td>Variable Value</td>
<td>%H2 IN AIR</td>
<td>Hydrogen Purity</td>
</tr>
<tr>
<td>(2) xxx.x</td>
<td>Variable Value</td>
<td>%H2 IN CO2 or %H2 in Ar</td>
<td>Purge Gas</td>
</tr>
<tr>
<td>(3) xxx.x</td>
<td>Variable Value</td>
<td>%AIR IN CO2 or %AIR in Ar</td>
<td>Purge Gas</td>
</tr>
</tbody>
</table>

A/R – As required N/A – Not available

Table 9.1 Functions and Status of Display Units for Different Range Selector Switch Positions
Access to Secure Parameters

00000
SECURITY CODE

Range 1 Operating Page

XXX.X
%H2 IN AIR

XXX.X
Alarm 1 Setpoint

Language Page

SET UP OUTPUTS

Electrical Calibration Page

ELECTRICAL CAL

Note. All parameter values shown on the upper display line are the default settings.

Fig. 10.1 Overall Programming Chart for Display 4689 502 (Range 1)
Fig. 10.2 Overall Programming Chart for Display 4689 502 (Range 2)

Note. All parameter values shown on the upper display are the default settings.
Fig. 10.3 Overall Programming Chart for Display 4689 502 (Range 3)

Note. All parameter values shown on the upper display are the default settings.
10.1 Range 1 – %H₂ in Air

10.1.1 Access to Secure Parameters (Range 1)
A 5-digit code is used to prevent unauthorized access to the secure parameters.

Security Code
Enter the required code number, between 00000 and 19999, to gain access to the secure parameters. If an incorrect value is entered, access to subsequent programming pages is prevented and the display reverts to the Operating page.

Note. The security code is preset at '00000' to allow access during commissioning but should be altered to a unique value, known only to authorized operators – see Set Up Outputs Page

Advance to Language Page.

10.1.2 Language Page

Language Page
Select the required language for the display.

Advance to the Set Up Outputs Page.

10.1.3 Set Up Outputs Page

Page Header – SET UP OUTPUTS

Advance to next parameter.

Alarm 1 Set Point
The set point band is defined as the actual value of the set point plus or minus the hysteresis value. The hysteresis value is ±1% of the full span value displayed in the Electrical Calibration Page. Alarm action occurs if the input value is above or below the set point band. If the input moves within the set point band, the last alarm action is maintained.

The Alarm 1 Set Point can be set to any value within the input range being displayed. The decimal point position is set automatically. The alarm LEDs are illuminated in the alarm condition. This option is only available with the range switch in position 1.

RTX Range
The retransmission signal (4 to 20 mA) can be selected to be ranged 85 to 100% H₂ in Air or 80 to 100% H₂ in Air. This option is only available with the range switch in position 1.

Advance to the next parameter.

Test Retransmission Output
The instrument automatically transmits a test signal of 0, 25, 50, 75 or 100% of the retransmission range. The % test signal selected is shown on the upper line of the display.

Example – for the range 4 to 20 mA and 50% retransmission test signal, 12 mA is transmitted.

Select the required retransmission test signal.

Advance to the next parameter Alter Sec Code (continued on next page)…
...10 PROGRAMMING

...10.1.3 Set Up Outputs Page

V0000
Alter Sec. Code

Alter Security Code
Set the security code to a value between 00000 and 19999.
This value will then have to be entered to regain access to the secure parameters.
Advance to Electrical Calibration Page.

10.1.4 Electrical Calibration Page

Page header – ELECTRICAL CAL

Note. The 4600 Series instruments incorporate a two point calibration sequence requiring both zero and span inputs for a calibration. It is not possible to adjust the range zero or the range span scale points independently.
The instrument is fully calibrated before despatch and should not normally require further calibration.

Select Calibration
Select the calibration requirement using the scroll up or scroll down keys.
Calibrate No (default) skips to Adjust RTX Zero frame.
Calibrate Yes enables zero and span electrical calibrations to be carried out.
Advance to next parameter.

Calibration Range Zero
Apply a signal input equivalent to range zero (-250.00 mV). Allow the instrument display to stabilize.
Advance to next parameter.

Calibration Range Span, H2–AIR
Apply a signal input equivalent to range span (+10.000 mV). Allow the instrument display to stabilize.
Advance to next parameter

Adjust Retransmission Zero
Adjust the retransmission zero (4.00 mA) to the correct value. The retransmission zero signal will be either 85% or 80% H2 in Air as selected in Set Up Outputs page.
Allow the output signal to stabilize.
Advance to next parameter

Adjust Retransmission Span
Adjust the retransmission span (20.00 mA) to the correct value. The retransmission span signal corresponds to 100% H2 in Air.
Allow the output signal to stabilize.
Return to Operating Page.
10.2 Range 2 – %H₂ in Purge Gas (CO₂ or Ar)

10.2.1 Access to Secure Parameters (Range 2)
A 5-digit code is used to prevent unauthorized access to the secure parameters.

Security Code
Enter the required code number, between 00000 and 19999, to gain access to the secure parameters. If an incorrect value is entered, access to subsequent programming pages is prevented and the display reverts to the Operating page.

Note. The security code is preset at '00000' to allow access during commissioning but should be altered to a unique value, known only to authorized operators – see Set Up Outputs Page

Advance to Language Page.

10.2.2 Language Page

Language Page
Select the required language for the display.

Advance to the Set Up Outputs Page.

10.2.3 Set Up Outputs Page

Page Header – SET UP OUTPUTS

Advance to next parameter.

RTX Range
The retransmission signal (4 to 20 mA) can be selected to be ranged 85 to 100% H₂ in Air or 80 to 100% H₂ in Air.

Advance to the next parameter.

Test Retransmission Output
The instrument automatically transmits a test signal of 0, 25, 50, 75 or 100% of the retransmission range. The % test signal selected is shown on the upper line of the display. Example – for the range 4 to 20 mA and 50% retransmission test signal, 12 mA is transmitted.
Select the required retransmission test signal.

Advance to the next parameter.

Alter Security Code
Set the security code to a value between 00000 and 19999.

This value will then have to be entered to regain access to the secure parameters.

Advance to Electrical Calibration Page.
10.2.4 Electrical Calibration Page

Page header – ELECTRICAL CAL

Note. The 4600 Series instruments incorporate a two point calibration sequence requiring both zero and span inputs for a calibration. It is not possible to adjust either the range zero or the range span scale points independently.

The instrument is fully calibrated before despatch and should not normally require further calibration.

Select Calibration
Select the calibration requirement using the scroll up or scroll down keys.

Calibrate No (default) skips to Adjust RTX Zero frame.
Calibrate Yes enables zero and span calibrations to be carried out.

Advance to next parameter.

Calibration Range Zero
Apply a signal input equivalent to range zero (-250.00 mV). Allow the instrument display to stabilize.

Advance to next parameter.

Calibration Range Span
Apply a signal input equivalent to range span (+10.000 mV). Allow the instrument display to stabilize.

Advance to next parameter

Adjust Retransmission Zero
Adjust the retransmission zero (4.00 mA) to the correct value. The retransmission zero signal will be either 85% or 80% H₂ in Air as selected in Set Up Outputs page.

Allow the output signal to stabilize.

Advance to next parameter

Adjust Retransmission Span
Adjust the retransmission span (20.00 mA) to the correct value. The retransmission span signal corresponds to 100% H₂ in Air.

Allow the output signal to stabilize.

Return to Operating Page.
10.3 Range 3 – %Air in Purge Gas (CO₂ or Ar)

10.3.1 Access to Secure Parameters (Range 3)
A 5-digit code is used to prevent unauthorized access to the secure parameters.

Security Code
Enter the required code number, between 00000 and 19999, to gain access to the secure parameters. If an incorrect value is entered, access to subsequent programming pages is prevented and the display reverts to the Operating page.

Note. The security code is preset at '00000' to allow access during commissioning but should be altered to a unique value, known only to authorized operators – see Access Page

10.3.2 Language Page

Language Page
Select the required language for the display.

Advance to the Set Up Outputs Page.

10.3.3 Set Up Outputs Page

Page Header – SET UP OUTPUTS

RTX Range
The retransmission signal (4 to 20 mA) can be selected to be ranged 85 to 100% H₂ in Air or 80 to 100% H₂ in Air.

Advance to the next parameter.

Test Retransmission Output
The instrument automatically transmits a test signal of 0, 25, 50, 75 or 100% of the retransmission range. The % test signal selected is shown on the upper line of the display. Example – for the range 4 to 20 mA and 50% retransmission test signal, 12 mA is transmitted.

Select the required retransmission test signal.

Advance to the next parameter.

Alter Security Code
Set the security code to a value between 00000 and 19999.

This value will then have to be entered to regain access to the secure parameters.

Advance to Electrical Calibration Page.
32

...10 PROGRAMMING

10.3.4 Electrical Calibration Page

Page header – ELECTRICAL CAL

Nota. The 4600 Series instruments incorporate a two point calibration sequence requiring both zero and span inputs for a calibration. It is not possible to adjust either the range zero or the range span scale points independently.

The instrument is fully calibrated before despatch and should not normally require further calibration.

Select Calibration
Select the calibration requirement using the scroll up or scroll down keys.

Calibrate No (default) skips to Adjust RTX Zero frame.
Calibrate Yes enables zero and span calibrations to be carried out.

Advance to next parameter.

Calibration Range Zero
Apply a signal input equivalent to range zero (-250.00 mV). Allow the instrument display to stabilize.

Advance to next parameter.

Calibration Range Span
Apply a signal input equivalent to range span (+10.000 mV). Allow the instrument display to stabilize.

Advance to next parameter

Adjust Retransmission Zero
Adjust the retransmission zero (4.00 mA) to the correct value. The retransmission zero signal will be either 85% or 80% H₂ in Air as selected in Set Up Outputs page. Allow the output signal to stabilize.

Advance to next parameter

Adjust Retransmission Span
Adjust the retransmission span (20.00 mA) to the correct value. The retransmission zero signal corresponds to 100% H₂ in Air.

Allow the output signal to stabilize.

Return to Operating Page.
11 MAINTENANCE

11.1 General Maintenance

11.1.1 Pressure
The operation of the katharometer units is not affected significantly by changes in pressure providing that they are within the pressure limits given in Section 13.

11.1.2 Flow
The katharometer zero balance and sensitivity are independent of the sample flowrate, as the sample gas sensing system depends on molecular diffusion. But the speed of response is affected by the flowrate. This means that the flow resistance of the drying chamber is a compromise between obtaining speed of response, and avoiding a rapid degradation of the desiccant.

11.1.3 Leaks
There is an inherent safety requirement that there are no leaks into or out of the sample system. Any leaks could also affect the correct operation of the katharometer unit.

11.1.4 Vibration
The katharometer unit tolerates reasonable levels of mechanically induced vibration. Pulsations due to unsteady sample flow can affect the katharometer filaments and cause errors due to excessive cooling.

11.1.5 Contamination
Contamination in the sample system can arise from oil or suspended particles, or from erosion of material from the sample system upstream of the katharometer unit.

11.1.6 Ambient Temperature
The calibration of the katharometer is not significantly affected by variations of the ambient temperature. Temperature changes can affect the sensitivity and reduce accuracy on sensitive ranges.

11.1.7 Bridge Current
The working current of the katharometer bridge is 350 mA supplied from the power supply unit. This value must remain stable during normal operation as the katharometer output signal is approximately proportional to the cube of the bridge current.

11.2 Diagnostic Tests

11.2.1 Checking Output of 4234 Power Supply Unit
Carry out the test procedure given in Section 6.3.1.

11.2.2 Checking Integrity of Zener Barrier Units
Carry out the test procedure given in Section 6.3.2.

11.2.3 Checking the Katharometer Output

Warning.

• This unit is part of the certified intrinsically safe system. Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out this task.

• Ensure that the proper electrical safety precautions are taken at all times when undertaking this procedure.

1) Remove the outer cover from the 6548 001 katharometer unit.
2) With the katharometer operating, check if the voltage across terminals TB1 - 1 and TB1 - 4 is not above 4 V with 350 mA passing. If the voltage is above this value it is likely that one or more filaments of the bridge is broken.
3) With the katharometer operating, check that the voltage across terminals TB1 - 1 and TB1 - 4 is below 2.8 V with 350 mA passing. If the voltage is below this value and there is no zero adjustment available, it is likely that there is an accumulation of liquid within the katharometer block.
4) If the reading from the test made at step 3 is unstable when the katharometer block is tapped gently, this could indicate that a filament is damaged but not open circuit.

If any of these tests indicate that the katharometer is faulty the complete katharometer unit must be returned for repair or replacement.

The span adjustment of katharometer units are sealed and must not be tampered with.

11.3 Routine Maintenance

11.3.1 Hydrogen Katharometer Calibration
Carry out a calibration check in accordance with Section 8.3.

This task should be carried out at intervals of 3 months on-line use.
11.3.2 Purge Gas Katharometer Calibration
Carry out a calibration check in accordance with Section 8.3.

This task should be carried out before using the katharometer for monitoring a purging procedure.

11.3.3 Changing Desiccant in Drying Chamber
The need to change the desiccant in the drying chamber on the katharometer analyzer panel depends on the condition of the sample gas.

It is recommended that the analyzer system is monitored regularly during the initial phase of operation for indications that the desiccant is exhausted. Then a suitable maintenance interval for this task can be established.

As the desiccant degrades, the white grains can be seen to have a yellowish tinge and the granular form becomes more consolidated. If liquid contamination occurs, the desiccant becomes brown and consolidated. Desiccant should be changed before free liquid gathers in the drying chamber as this may lead to blocking of the outlet pipe.

As the desiccant degrades, the white grains can be seen to have a yellowish tinge and the granular form becomes more consolidated. If liquid contamination occurs, the desiccant becomes brown and consolidated. Desiccant should be changed before free liquid gathers in the drying chamber as this may lead to blocking of the outlet pipe.

1) Isolate the sample gas system from the main system. Carry out a limited hydrogen purging operation on the sample system in accordance with the instructions of the responsible authority.

2) Carry out the procedure given in Section 6.1.

3) After purging any residual air from the sample system in accordance with the requirements of the responsible authority, allow hydrogen to pass through the katharometer again.

This task should be undertaken on the basis of instrument response or at intervals of 1 year.

11.4 Repair Maintenance

11.4.1 Removing Liquid from Katharometer Measurement Block – Fig. 11.1
If tests indicate that there is likely to be an accumulation of liquid in the measurement block, it may be removed using the following procedure:

1) Electrically isolate the defective katharometer at its power supply unit.

2) Isolate the gas sample system to the particular katharometer from the main gas cooling system. Purge the sample system of hydrogen in accordance with the requirements of the responsible authority.

3) Remove the cover of the katharometer unit and dismantle the internal sample system tubing.

4) Remove the fixing screws which secure the mounting pillars to the case. See Fig. 5.2.

5) Disconnect the interconnecting wiring at terminal block TB1.

6) Remove the measuring unit from the case and tilt at 45° to the horizontal. This allows any liquid to drain from the measurement block. See Fig. 11.1.

7) Pour a small quantity of rectified spirit (ethanol) through the measurement block. Allow as much liquid as possible to drain out. Assist this by gentle shaking. Repeat this procedure several times until all evidence of contamination is removed.

8) Fit the measuring unit into its case. Replace the fixing screws and make the electrical interconnections at terminals TB1 - 1 and TB1 - 4.

9) Fit the internal sample gas tubing.

10) Remake the sample gas tube interconnection couplings.

11) Replace the desiccant in the drying chamber in accordance with the procedure given in Section 11.3.3.

12) Carry out a leak test in accordance with the requirements of the responsible authority.

13) Power up the katharometer unit by switching on the appropriate power supply unit.

14) Arrange to pass dry air or another suitable dry gas through the katharometer at the normal sample flowrate for 24 hours.
15) Isolate the katharometer unit at its power supply unit.
16) Make the remaining electrical connections at TB1 of the katharometer unit – see Fig. 5.3.
17) Replace the cover of the katharometer unit.
18) Power up the katharometer unit from its power supply unit.
19) Carry out a calibration procedure in accordance with Section 8.3.

Note. It is possible that the zero reading may drift for several days after the removal of liquid.

This task should be undertaken as required.

11.4.2 Removal of a Display Unit Chassis
1) Electrically isolate the gas monitor unit.
2) Release the retaining screw through the display facia and carefully withdraw the chassis from its edge connectors and out through the front panel. See Fig. 3.1.
3) Fit the chassis by carefully inserting and pressing firmly into position before tightening the retaining screw.
4) Power up the monitor unit and carry out a calibration in accordance with Section 8.3.

This task should be undertaken as required.

Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV Memory Error</td>
<td>The contents of the non-volatile memory has not been read correctly during power up. *</td>
</tr>
</tbody>
</table>

* To rectify fault, switch OFF, wait 10 seconds and switch ON again. If fault persists, contact the Company.

Table 11.1 Error Messages

12 SPARE PARTS LIST

Warning. Interference with any unit or its components implies acceptance of responsibility by that person for ensuring the continuing maintenance of intrinsic safety requirements. Unauthorized repair, spare parts or incorrect assembly may render any unit unfit for use within a hazardous area.

Note. Although the digital display units may be marked 4600 on their display facia, they are dedicated variants which are not interchangeable with the Company’s standard 4600 Controller/Display. These dedicated display units are identified (4689 502) as shown in Fig. 3.1. The programmed EPROM number is 4689/2002

When ordering a 6548 001 katharometer unit, it is necessary to specify the zero gas in association with the Company part number. See the typical identification label shown in Fig. 3.2.

12.1 Consumables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 6548 100 Katharometer Analyzer Panel</td>
<td></td>
</tr>
<tr>
<td>Granular anhydrous CaCl₂</td>
<td>Locally sourced</td>
</tr>
</tbody>
</table>

12.2 Routine Maintenance Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 4234 Power Supply Unit</td>
<td></td>
</tr>
<tr>
<td>Fuse, 500 mA≥4000 A h.b.c. cartridge</td>
<td>002417 005</td>
</tr>
<tr>
<td>Model 6548 100 Katharometer Analyser Panel</td>
<td></td>
</tr>
<tr>
<td>Seal, bottom of drying chamber</td>
<td>002310 012</td>
</tr>
<tr>
<td>Seal, inner of drying chamber</td>
<td>0211 035</td>
</tr>
<tr>
<td>Gauze, drying chamber</td>
<td>006548 018</td>
</tr>
<tr>
<td>Model 6553 Gas Monitor Unit</td>
<td></td>
</tr>
<tr>
<td>Fuse, 500 mA a/s 1.25x 0.25 in glass cart</td>
<td>002417 004</td>
</tr>
<tr>
<td>Function selector switch, 3 position., 2 wafer</td>
<td>0234 711</td>
</tr>
<tr>
<td>Potentiometer (1 kΩ), zero adjustment</td>
<td>002569 036</td>
</tr>
</tbody>
</table>

12.3 Repair Maintenance Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 4234 Power Supply Unit</td>
<td></td>
</tr>
<tr>
<td>Nominal 110 V unit</td>
<td>004234 000/01</td>
</tr>
<tr>
<td>Nominal 230 V unit</td>
<td>004234 000/02</td>
</tr>
<tr>
<td>Model 6548 100 Katharometer Analyser Panel</td>
<td></td>
</tr>
<tr>
<td>Flowmeter, 60 to 600 ml min⁻¹</td>
<td>0216 557</td>
</tr>
<tr>
<td>Valve, metering</td>
<td>0216 484</td>
</tr>
<tr>
<td>Katharometer unit (H₂ in AIR)</td>
<td>006548 001</td>
</tr>
<tr>
<td>Model 6553 Gas Monitor Unit</td>
<td></td>
</tr>
<tr>
<td>Display unit</td>
<td>4689 502</td>
</tr>
<tr>
<td>Zener barrier unit</td>
<td>0248 299</td>
</tr>
<tr>
<td>Cubicle 6553</td>
<td></td>
</tr>
<tr>
<td>Relay module (low flow alarm)</td>
<td>0234 512</td>
</tr>
<tr>
<td>Zener barrier unit</td>
<td>0248 298</td>
</tr>
</tbody>
</table>
13 SPECIFICATION

(a) Model 6553 Gas Monitor Unit

Available Ranges: ... (1) 85 to 100% or 80 to 100% hydrogen in air
(2) 0 to 100% hydrogen in Carbon Dioxide or Argon
(3) 0 to 100% air in Carbon Dioxide or Argon

Digital Display Units:
H2 in Air, Air in CO2 or Ar, and H2 in CO2 or Ar: 4689 502

Range Selector Switch Positions: .. (1) Percentage by volume, hydrogen in air
(2) Percentage by volume, hydrogen in purge gas
(3) Percentage by volume, air in purge gas

Accuracy (display units): .. ±2% fsd each range

Ambient Temperature Range: ... 0 to 45 °C

Power Supply: .. 110/120 or 200/220/230 V a.c., 50/60 Hz (2 separate
versions)

Power Consumption : .. 30 VA approximately.

Outline Dimensions: .. 290 x 362 x 272 mm

Weight : ... 12 kg approximately

Environment : .. Sheltered interior, 0 to 90% RH

(b) Model 6548 100 Katharometer Unit

Power Supply: .. 350 mA d.c., from 4234 PSU

Signal Output: ... 0 to 10 mV for 85% H2 in air to 100% H2

Accuracy: ... ±2% fsd each range

Dead Time: ... Typically 5 seconds

Response Time: .. Typically 40 s for 90% step change at katharometer.
Tubing and drying chamber introduce extra delays.

Ambient Temperature: .. Maximum of 50 °C

Sample Connections: .. Compression couplings, 8 mm outside diameter tube

Sample Pressure: .. Minimum, 125 mm H2O Differential across
Maximum, 0.35 bar (G) analyser

Static Pressure (Sample) .. Pressure tested to 10 bar (G)

Normal Sample Flowrate (on H2 flow meter): 100 to 150 ml min⁻¹ (H2)
230 to 370 ml min⁻¹ (CO2 and air)

Maximum Gas Flowrate (on H2 flow meter): 250 ml min⁻¹ (H2)
600 ml min⁻¹ (CO2 and air)

Minimum Gas Flowrate (on H2 flow meter): 60 ml min⁻¹ (H2)
130 ml min⁻¹ (CO2 and air)

Outline Dimensions: .. 610 x 305 x 152 mm

Weight: ... 8.6 kg approximately.

Environment: .. Sheltered interior
(c) Model 4234 Power Supply Unit

Input Voltage: 110/120 V or 200/220/230 V a.c., 50/60 Hz (2 separate versions)

Fuse Rating: 500 mA hbc (high breaking capacity ≥4000 A)

d.c. Output: 350 mA stabilized

Load Conditions: 1 katharometer – 13 Ω max.
Interconnecting cable – 2 Ω max.

Ambient Temperature Range: –5 to +50 °C

Supply Variations: ±6% (V)
±4% (Hz)

Regulation: Within ±0.8% for:
(i) Load var. of ±15%
(ii) Supply var. of ±6%
(iii) Ambient temp. var. of ±10 °C

Ripple: Less than 1 mA rms

Stability: Within ±0.7% of initial setting, over period of one month
with load resistance, supply voltage and ambient temperature at nominal stated values

Outline Dimensions: 148 x 283 x 135 mm

Weight: 3.8 kg approximately

Environment: Sheltered interior
A1.1 Model 4234 Power Supply Unit
Two different power supply units are available to suit different supply voltages. See Spare Parts List.

A1.1.1 Functional Description
A circuit diagram for each type is shown in Fig. A1 (230 V), Fig. A2 (110 V).

A stable supply voltage is produced across zener diodes Z3 and Z4 by utilizing the forward slope resistance of zener diodes Z1 and Z2 in the full-wave rectifier bridge connected to the secondary winding of transformer T1. A reference voltage is produced across C103 by zener diode Z101 in conjunction with R101, with diode D103 providing temperature compensation. This reference voltage is applied to the base of TR101, which is used to drive the power transistor TR102 to produce a constant current output of 350 mA. The small preset potentiometer RV101 is used to provide a fine adjustment for the current output.

The output current is restricted by inviolate resistors which ensure that the requirements of the intrinsic safety certification are met, even under a ‘2-fault’ condition.

Warning. This unit is part of the certified intrinsically safe system, Appropriate safety precautions must be taken to prevent any incendive electrical discharges in the hazardous area when carrying out maintenance tasks.

A1.1.2 Fault Finding
Caution. Do not operate this unit without an electrical load on the output.

If testing indicates that this unit is defective, further fault finding may be carried out based on the typical test point values given in Table A1. There are several test points available on the unit. Reference should be made to Figs. A1, A2 and the markings on the circuit boards for the location of test points and components.

A1.1.3 Parts List

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor R101, 910Ω, ±2%, 0.5 W, metal oxide</td>
<td>-</td>
</tr>
<tr>
<td>R102, 3kΩ, ±2%, 0.5 W, metal oxide</td>
<td>-</td>
</tr>
<tr>
<td>R103, 4R7, ±1%, 9 W, wirewound</td>
<td>-</td>
</tr>
<tr>
<td>R104, 100Ω, ±2%, 0.5 W, metal oxide</td>
<td>-</td>
</tr>
<tr>
<td>Variable resistor RV 101, 1kΩ, Spectrol Reliance, CW51</td>
<td>-</td>
</tr>
<tr>
<td>Capacitor C101, 1000 µF, 16 V, elect., Mullard 0175 15102</td>
<td>-</td>
</tr>
<tr>
<td>C102, 1000 µF, 16 V, elect., Mullard 0175 15102</td>
<td>-</td>
</tr>
<tr>
<td>C103, 100 µF, 16 V, elect., Mullard 0165 14101</td>
<td>-</td>
</tr>
<tr>
<td>Transistor TR101, BC 108, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>TR 102, 2N 3766, Motorola</td>
<td>-</td>
</tr>
<tr>
<td>Diode D101, BYX 36 - 600, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>D102, BYX 36 - 600, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>D103, AAZ - 15, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Zener diode Z1, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z2, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z3, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z4, BZY93C9V1, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Z101, BZY88C3V3, Mullard</td>
<td>-</td>
</tr>
<tr>
<td>Fuse FS1, 500 mA, hbc cartridge, Belling Lee L693</td>
<td>-</td>
</tr>
<tr>
<td>Transformer T1, 110 - 120 V primary</td>
<td>4234 130</td>
</tr>
<tr>
<td>T1, 200 - 220 - 230 V primary</td>
<td>4234 140</td>
</tr>
</tbody>
</table>

Note. The primary winding of the transformer T1 incorporates a thermal cutout device to prevent overloading under fault conditions. Sufficient time must be allowed for this to cool and reset after a fault has occurred, and before continuing further testing.

<table>
<thead>
<tr>
<th>Test Point</th>
<th>Voltage V</th>
<th>Form</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1</td>
<td>9.1</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP2</td>
<td>3.5</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP3</td>
<td>3.0</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP4</td>
<td>2.4</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>TP5</td>
<td>5.0</td>
<td>d.c.</td>
<td>With respect to 0V using 10Ω dummy load</td>
</tr>
<tr>
<td>TP6</td>
<td>1.7</td>
<td>d.c.</td>
<td>With respect to 0V</td>
</tr>
<tr>
<td>T1</td>
<td>9.1</td>
<td>a.c.</td>
<td>At secondary</td>
</tr>
</tbody>
</table>

Table A1 Test Point Values - Model 4234 Power Supply Unit
*Measured with a 10R load.

Fig. A1 Power Supply Unit Model 4234 -- Overall Circuit (200/220/230V Version)
Fig. A2 Power Supply Unit Model 4234 – Overall Circuit (110/120 Version)

*Measured with a 10R load.
A Comprehensive Instrumentation Range

Analytical Instrumentation
- **Transmitters**
 On-line pH, conductivity, and dissolved oxygen transmitters and associated sensing systems.
- **Sensors**
 pH, redox, selective ion, conductivity and dissolved oxygen.
- **Laboratory Instrumentation**
 pH and dissolved oxygen meters and associated sensors.
- **Water Analyzers**
 For water quality monitoring in environmental, power generation and general industrial applications including: pH, conductivity, ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine.
- **Gas Analyzers**
 Zirconia, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Controllers & Recorders
- **Controllers**
 Digital display, electronic, pneumatic. Discrete single-loop and multi-loop controllers which can be linked to a common display station, process computer or personal computer.
- **Recorders**
 Circular and strip-chart types (single and multi-point) for temperature, pressure, flow and many other process measurements.

Electronic Transmitters
- **Smart & Analog Transmitters**
 For draft, differential, gauge and absolute pressure measurement. Also, liquid level and temperature.
- **I to P Converters and Field Indicators**

Flow Metering
- **Magnetic Flowmeters**
 Electromagnetic, insertion type probes and watermeters.
- **Turbine Flowmeters**
- **Wedge Flow Elements**
- **Mass Flow Meters**
 Transmitters, sensors, controllers and batch/display units.

Level Control
- **Submersible, Capacitance & Conductivity.**

Pneumatic Instrumentation
- **Transmitters**
- **Indicating Controllers**
- **Recording Controllers**

Customer Support

ABB Instrumentation provides a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Instrumentation Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 821382

United States of America
ABB Automation Inc.
Instrumentation Division
Tel: +1 215-674-6000
Fax: +1 215-674-7183

Italy
ABB Kent-Taylor SpA
Tel: +39 (0) 344 58111
Fax: +39 (0) 344 58278

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:
1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of operating and maintenance records relating to the alleged faulty unit.