Optimax BoilerLife
Monitor boiler components’ lifetime consumption
OPTIMAX® BoilerLife Challenge

- Increased use of steam generators for the cover of intermediate and peak load
- Higher load change rates
- Higher requirements for the design of highly stressed components
- Increasing efficiencies and therefore increased steam parameters
Features

- Online calculation of fatigue for critical boiler components
- TÜV-certified, EN12952-4 (10/2011)
- Monitoring of various units with one software package
- Archiving of all results in a database
OPTIMAX® BoilerLife
Solution examples of application

Thickwalled components
- Superheater
- Reheater
- Steam drum
- Separators
- T-compounds
- Pumps
- …

Piping
- Fittings
- Pipes
- Elbows
- …
OPTIMAX® BoilerLife
Creep and low cycle fatigue

High pressure and high temperature → Thick component wall → Temperature gradient

Creep damage → Low cycle fatigue

Limited service life

Replacement of components costs → (Un-)planned outage costs
OPTIMAX® BoilerLife
Design vs. operation

- Unit maintenance
- New unit operation
- Unit Trip

Design | Operation

- 14.11.84
- 11.08.87
- 07.05.90
- 31.01.93
- 28.10.95
- 24.07.98
- 19.04.01
OPTIMAX® BoilerLife Archiving

- Archiving of all relevant information over the entire service life of the power plant
 - Measuring values and calculation results are stored by the PGIM
 - Information about the stress and strain history is stored in the Optimax Lifetime Monitoring application database

- Advantage
 - Easy analysis of any process situation leading to increased service life consumption
 - Enable the engineers in charge of mechanical equipment to use the Lifetime Monitoring information directly at their desktop
 - The system is ready for future recalculation of the component status in case calculation algorithms will be changed
OPTIMAX® BoilerLife
Required instrumentation

- Data points for each boiler component
 - Steam Pressure
 - Inner surface (metal) temperature
 - Temperature difference calculation module replace mean wall (metal) temperature
 - Steam temperature instead of metal temperature is sufficient if the component is monitored for creep rupture only

- Data points for each boiler (statistics)
 - Boiler on/off
 - Main steam flow
 - Superheater outlet (metal) temperature
OPTIMAX® BoilerLife
Temperature difference ΔT and thermal stress

TRD (German guideline for steam boilers)
- With two measurements:
 \[\Delta T_{\text{adjusted}} = \Delta T_{\text{measured}} \cdot f_k \]
 with $\Delta T_{\text{measured}} = T_x - T_m$ and f_k: correction factor

TEDIBER (temperature difference calculation)
- Only one measurement necessary (T_x)
- Calculation of T_m with one dimensional heat transfer (Fourier)

Advanced TEDIBER without metal temperature measurement
- Main steam flow
- Steam temperature
OPTIMAX® BoilerLife
Used directives and standards

TRD 508:
long-term monitoring of boilers

TRD 508 Attachment 1
calculation methods when using computer-based monitoring

TRD 30x
stress calculation

TRD 10x
material requirements

VdTÜV 451-87/1 ; 451-87/3
451-87/1: load cycle count
451-87/3: requirements for the data acquisition
OPTIMAX® BoilerLife
TÜV certification
OPTIMAX® BoilerLife
Services and engineering

- Consulting and support
 - Recommendation: scope of monitoring
 - Engineering forms for acquisition of component and material data
 - Remote diagnosis and analysis
- Engineering
 - Acquisition of component data
 - Acquisition of material data
 - Input of data into the Optimax Lifetime Monitoring Database
 - Consistency check of the data
 - Integration test
- On-site installation and start-up
 - System and software
 - Startup and test
 - ‘As built’ documentation
- Training
 - On-site training and classroom training at ABB
OPTIMAX® BoilerLife
Benefits

- Have the information about the lifetime status of the critical components available online, whenever needed
- Be sure that components will:
 - not fail unexpectedly or
 - have to be replaced before they are written off
- Reduce costs for component surveillance
- Documented evidence of operational use of equipment
- Improved boiler maintenance scheduling, based on actual documented service life
- No sudden unexpected failure of thick-walled boiler components and therefore better exploitation of components
Power and productivity for a better world™
OPTIMAX® BoilerLife

References

<table>
<thead>
<tr>
<th>Power Plant / Customer</th>
<th>Size of Plant</th>
<th>No. Boilers</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW Heyden 4</td>
<td>800 MW</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>HKW Tiefstack</td>
<td>150 MW</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>IKW Wählitz</td>
<td>150 t/h</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>KW Boxberg N, P</td>
<td>2 x 500 MW</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>KW Boxberg Q</td>
<td>800 MW</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>HKW 2 Altbach</td>
<td>330 MW</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Lageweidie (NL)</td>
<td>AHK</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Diemen (NL)</td>
<td>AHK</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>KW Staudinger 1/2</td>
<td>2 x 285 MW</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>Leuna Raffin. Kraftwerk</td>
<td></td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>RDK 4 S</td>
<td>AHK</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>KW Bergkamen</td>
<td>680 MW</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>South Humberbank (GB)</td>
<td>AHK</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IKW PCK Schwedt</td>
<td>96 + 36 MW</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>HKW Cottbus</td>
<td>PFCB</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>KW Rostock</td>
<td>500 MW</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Hefei (China)</td>
<td>2 x 600 MW</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>KW Jönschwalde, Block</td>
<td>6 x 500 MW</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>Megalopolis Unit 4</td>
<td>300 MW</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>KW Dadri Unit 1,2,3,4</td>
<td>4 x 210 MW</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>(Indien)</td>
<td>2 x 300 MW</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>KW Pego Unit 1+2</td>
<td>140 MW</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>(Portugal)</td>
<td>702 MW</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>IKW Bernburg</td>
<td>117 MW</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>KW Ilbenbüren</td>
<td>411 MW</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>KW Delmara (Malta)</td>
<td>120 MW</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>KW Vendsysselverket,</td>
<td>330 MW</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Unit 3 (Dänemark)</td>
<td>AHK</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>BSL Olefinverband</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmbH, IKW Schkopau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.E.S Melita Achlada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 1 (Griechenland)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komotini (Griechenland)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>