

IndustrialIT
Compact Control Builder AC 800M

Version 5.0

Basic Control Software
Introduction and Configuration

IndustrialIT
Compact Control Builder AC 800M

Version 5.0

Basic Control Software
Introduction and Configuration

NOTICE
The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license.

This product meets the requirements specified in EMC Directive 89/336/EEC and in Low
Voltage Directive 72/23/EEC.

Copyright © 2003-2006 by ABB.
All rights reserved. Release: June 2006
Document number: 3BSE040935R201 Rev A

TRADEMARKS
All rights to copyrights and trademarks reside with their respective owners.

TABLE OF CONTENTS

About This Book
General ..13

Document Conventions ...14

Warning, Caution, Information, and Tip Icons..14

Terminology...15

Section 1 - Basic Functions and Components
Introduction ...17

Control Project Templates ...18

Program Organization Units, POU..19

System Firmware Functions ..19

Hardware ...21

Standard System Libraries with Hardware...21

Customized Hardware Types..23

Configuring Controller ...23

Basic Hardware ..25

Basic Library for Applications ..26

Application Types and Objects..27

Types and Objects Concept ..28

Declare a Type in the Editors ...29

Control Modules or Function Blocks? ...35

Types in Applications...36

Types in Your Own Library..37

Modify Complex Types..38

Decisions When Creating Types ..39

Create and Connect Objects ...41

Function Block Execution..45

Control Module Execution ...46

Single Control Modules ...46
3BSE040935R201 Rev A 5

Variables and Parameters .. 48

Variable and Parameter Concept .. 49

Variables .. 51

Variable Entry .. 52

External Variables .. 57

Access Variables .. 58

Communication between Applications Using Access Variables 59

Communication in an Application Using Global Variables................................. 60

Control the Execution of Individual Objects ... 61

Project Constants ... 64

I/O Addressing Guidelines... 68

Connecting Variables to I/O Channels... 68

Extensible Parameters in Function Blocks .. 73

Keywords for Parameter Descriptions ... 74

Library Management ... 75

Connect Libraries... 76

Create Libraries.. 78

Library States ... 78

Library Password Protection.. 79

Add Types to Libraries Used in Applications.. 80

Add Customized Hardware Types to Library .. 81

Device Import Wizard.. 82

Additional Files for Libraries with Hardware.. 83

Delete Hardware Types.. 86

Type Usage for Hardware Types.. 86

Hide and Protect Control Module Types, Function Block Types and Data Types.......... 87

Protect a Self-Defined Type... 88
6 3BSE040935R201 Rev A

Task Control ..89

Task Connections ...89

Task Execution ...93

Task Priority ...93

Interval Time ..95

Offset ...96

Overrun and Latency ...100

Overrun Supervision ..100

Latency Supervision...102

Task Abortion...104

Load Balancing ..105

Non-Cyclic Execution in Debug Mode..106

Search and Navigation...107

Search and Navigation Dialog..107

Search Settings ...108

Symbol and Definition ...111

References ..112

Navigation to Editors ...116

Search and Navigation Settings..117

Search Data ..119

Reports ...119

Compact Flash ...120

Saving Cold Retain Values on Files ...120

Adding Compact Flash to Hardware..121

Downloading the Application to Compact Flash ...123

Configuration Load ..123

Reports...124

Difference Report ...124

Source Code Report ...125

Reports Generated at Download ..127
3BSE040935R201 Rev A 7

Project Documentation.. 129

Objects and Types .. 131

Editor Items.. 131

Used Types... 132

Section 2 - Alarm and Event Handling
Introduction ... 133

Alarms and Events ... 134

Alarm and Event Library ... 135

Process Alarm and Event Generation.. 135

Process Alarms and Events .. 136

Detection of Simple Events ... 144

Built-in Alarm and Event Handling in Other Libraries 145

External Time Stamps (S800 IO)... 147

External Time Stamps (INSUM) ... 148

Choose Alarm Handling Method for INSUM Alarms....................................... 152

System Alarm and Event Generation .. 154

Controller Generated System Alarms and System Simple Events 154

User Generated System Alarms ... 154

Handling Alarms and Events... 155

Simple Events .. 155

System Alarms and Events .. 156

Time Stamps .. 156

Alarm and Event Communication... 159

Subscriptions.. 159

Configuration of OPC AE Communication – Overview 159

Buffer Configuration.. 161

Local Printers ... 162

Sending an Alarm to the Application .. 162

Condition State Example ... 163

Inhibit Example.. 164

Simple Event Examples ... 166

Alarm and Event Functions... 170

System Diagnostics.. 170

Acknowledgement Rules – State Diagrams... 171
8 3BSE040935R201 Rev A

Section 3 - Communication
Introduction ...177

Communication Libraries ..178

COMLI Communication Library ...178

INSUM Communication Library ...178

MB300 Communication Library..181

MMS Communication Library...181

ModBus Communication Library ..182

Modem Communication Library..182

Siemens S3964 Communication Library ...182

SattBus Communication Library..182

Serial Communication Library...183

Supported Protocols...184

Control Network ..185

Network Redundancy...185

Statistics and Information on Communication...186

Variable Communication ...186

StartAddr ...187

Reading/Sending Data ...189

Connection Methods ..190

Communication Concepts ..192

Fieldbus Communication...195

Section 4 - Online Functions
Introduction ...197

Online Editors..198

Dynamic Display of I/O Channels and Forcing ..199

Scaling Analog Signals..201

Supervising Unit Status ...201

Find Out What is Wrong by Using HWStatus ...202

AllUnitStatus..203

Binary Channels ...204

Status Indications...205

Acknowledge Errors and Warnings..206
3BSE040935R201 Rev A 9

Tasks ... 207

Interaction Windows ... 207

Status and Error Messages .. 209

Search and Navigation in Online and Test Mode.. 210

Project Documentation.. 211

Section 5 - Maintenance and Trouble-Shooting
Introduction ... 213

Backup and Restore... 214

Introduction.. 214

Backup .. 214

Restore .. 215

Files for Separate Backup .. 215

Error Handler Configuration ... 216

Error Handler Settings in Controllers .. 217

Error Handler Log Entries ... 220

Trouble-Shooting... 221

General .. 221

Log Files .. 222

Crash Dumps for Analysis and Fault-Localization.. 234

Remote Systems Information... 235

Analysis Tools.. 237

Trouble-Shooting Error Symptoms.. 245

Error Reports ... 247
10 3BSE040935R201 Rev A

Appendix A - Array, Queue and Conversion Examples
Arrays ..249

SearchStructComponent...251

InsertArray ...255

SearchArray..256

Queues ...260

Conversion Functions ..264

DIntToBCD ..264

BCDToDInt ..265

ASCII ...266

ASCII Conversion ..268

Appendix B - System Alarms and Events
General ..275

OPC Server – Software..276

OPC Server – Subscription..278

Controller – Software ..280

Controller – Hardware ...310

Alarms and Events Common for all Units ...312

Unit Specific Alarms and Events ...314

Controllers Units and Communication Interfaces..315

Adapters ...329

S800 I/O ...336

S900 I/O ...382

S100 I/O ...418

INSUM Devices ...420

FF Devices..422

MB300 Nodes ..423

ABB Standard Drive ..423

Process Panel..425

ITS ...426

NAIO ff ...427

PPO ...433

Special IO Template ...437
3BSE040935R201 Rev A 11

INDEX
12 3BSE040935R201 Rev A

About This Book

General
This manual describes how to use the basic programming and configuration
functions that can be accessed via the Project Explorer interface.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules, which are not supported by this
standard.

• Section 1, Basic Functions and Components, describes all the basic functions
that are available via system functions, the Basic library, and via commands in
the Control Builder interface. This section also describes the type and object
concept, and how variables and parameters are used.

• Section 2, Alarm and Event Handling, describes the types in the Alarm and
Event library and how to use them to add alarm and event functions to objects
that do not have alarm functionality built into them.

• Section 3, Communication, describes the types in the Communication libraries
and how to use them to establish communication between controllers.

• Section 4, Online Functions, describes Control Builder functions in online
mode.

• Section 5, Maintenance and Trouble-Shooting, describes Control Builder
maintenance functions. It also describes how to write an error report, the
location of various log files, how to read these log files, and how to fix some
common problems.

• Appendix A, Array, Queue and Conversion Examples contains some examples
on how to use queues and arrays, and how to convert numbers from one format
to another.

• Appendix B, System Alarms and Events describes system alarms and system
simple events from a controller perspective.
3BSE040935R201 Rev A 13

Document Conventions About This Book

Document Conventions
Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons
This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Electrical Warning icon indicates the presence of a hazard which could result in
electrical shock.

Warning icon indicates the presence of a hazard which could result in personal
injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function
14 3BSE040935R201 Rev A

 About This Book Terminology

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

Terminology
The following is a list of terms associated with Compact Control Builder. You
should be familiar with these terms before reading this manual. The list contains
terms and abbreviations that are unique to ABB or have a usage or definition that is
different from standard industry usage.

Term/Acronym Description

Application Applications contain program code to be compiled and
downloaded for execution in a controller.

Control Builder A programming tool with a compiler for control software.
Control Builder is accessed through the Project Explorer
interface.

Control Module (Type) A program unit that supports object-oriented data flow
programming. Control modules offer free-layout
graphical programming, code sorting and static
parameter connections. Control module instances are
created from control module types.

Firmware The system software in the PLC.

Hardware Description The tree structure in the Project Explorer, that defines
the hardware’s physical layout.

IndustrialIT ABB’s vision for enterprise automation.

IndustrialIT 800xA
System

A computer system that implements the IndustrialIT

vision.

Interaction Window A graphical interface used by the programmer to interact
with an object. Available for many library types.
3BSE040935R201 Rev A 15

Terminology About This Book

MMS Manufacturing Message Specification, a standard for
messages used in industrial communication.

OPC/DA An application programming interface defined by the
standardization group OPC Foundation. The standard
defines how to access large amounts of real-time data
between applications. The OPC standard interface is
used between automation/control applications, field
systems/devices and business/office application.

Process Object A process concept/equipment such as valve, motor,
conveyor or tank.

Project Explorer The Control Builder interface. Used to create, navigate
and configure libraries, applications and hardware.

Type A type solution that is defined in a library or locally, in an
application. A type is used to create instances, which
inherit the properties of the type.

Term/Acronym Description
16 3BSE040935R201 Rev A

Section 1 Basic Functions and Components

Introduction
Control Builder is a programming tool that contains a compiler, programming
editors, standard libraries for developing controller applications and standard
hardware types (units) in libraries for configuring the controller. The Control
Builder tool also includes system firmware and common functions such as control
system templates and task supervision. You will find that you can accomplish most
of your application development using the basic functions and components
presented in this section.

This section is organized in this manner:

• Control Project Templates on page 18 describes the different templates that
you can use to create a project.

• Program Organization Units, POU on page 19 introduces the Program
Organization Unit (POU) concept.

• System Firmware Functions on page 19 describes firmware functions included
in the system, which can be used in any application.

• Hardware on page 21 describes the standard libraries for hardware types

• Basic Library for Applications on page 26 describes the objects of the Basic
library, which can be included in any project.

• Application Types and Objects on page 27 introduces the very important,
object-oriented, types and objects concept. This subsection also describes how
to add your own types and how to create objects (instances) from types.

• Variables and Parameters on page 48 describes how to use parameters and
variables to store and transfer values in your control system.

• Library Management on page 75 describes how to work with libraries.
3BSE040935R201 Rev A 17

Control Project Templates Section 1 Basic Functions and Components

• Hide and Protect Control Module Types, Function Block Types and Data
Types on page 87 describes how to hide and protect objects and types, using
the Hidden and Protected attributes.

• Task Control on page 89, describes how to set up tasks, to control the execution
of your applications.

• Overrun and Latency on page 100 describes how to configure latency control
for your tasks.

• Search and Navigation on page 107, describes how to use the search and
navigation function to find all instances of a type or to find out where a certain
variable is used.

• Compact Flash on page 120, describes how to use Compact Flash (CF) as a
mobile memory interface.

• Project Documentation on page 129, describes how to use the Project
Documentation function to document standard libraries, your own libraries,
and your applications in MS Word format.

Control Project Templates
A control project template sets up a minimum of necessary features for starting to
build a project. The project consists of system firmware functions, basic library
functions, application functions and a pre-set of hardware functions.

The Compact Control Builder provides the following project templates:

• AC800M
(normal use, for running applications),

• EmptyProject
(rare use, a minimum configuration with only the System folder inserted),

• SoftController
(development use, for simulating applications without a controller).
18 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Program Organization Units, POU

Program Organization Units, POU
The IEC 61131-3 standard describes programs, function blocks, (control modules)1
and functions as Program Organization Units (POUs). These units help you
organize your control project into code blocks, to minimize code writing, and to
optimize code structure and code maintenance.

A POU can best be described as an object type that contains an editor, where you
can write code and declare parameters and variables. All POUs can be repeatedly
used in a hierarchical structure, except for programs that can only be a 'top-level'
POU, inside an application.

System Firmware Functions
All system firmware functions are stored in the System folder, which is located at
the top of the library branch (in Project Explorer). However, it is important to
remember that the System folder is not a library, even though it is always shown in
the library branch, together with the libraries (Basic library, Icon library, etc.).

Instead, the System folder contains fundamental IEC 61131-3 data types and
functions, along with other firmware functions, which can be used in firmware in
the controller. They are all protected and automatically inserted via the selected
control system templates. The System folder cannot be changed, version handled or
deleted from a control project.

Table 1 briefly presents System firmware data types and functions. More
information and descriptions can be found in the Control Builder online help.

1. This manual treats control modules as POUs. However, the IEC 61131-3 standard does not discuss control
modules.

To access detailed online help and how-to-do instructions for a system firmware
function, select the data type or function and press the F1 key.
3BSE040935R201 Rev A 19

System Firmware Functions Section 1 Basic Functions and Components

Table 1. System Function Overview

System Functions Examples

Simple Data Types bool, dint, int, uint, dword, word, real, etc.

Structured Data Types time, Timer, date_and_time, etc.

Common Library Data
Types

Open structured data types like, BoolIO, DintIO,
DwordIO, RealIO, HWStatus, SignalPar, etc.

Bit String Operations and, or, xor, etc.

Relational and Equality
Functions

Equal to, Greater than, etc.

Mathematical Functions Trigonometric, Logarithmic, Exponential and
Arithmetic Functions.

Data Type Conversion Conversion of bool, dint, etc.

String Functions Handles strings like, inserts string into string,
deletes part of a string, etc.

Exception Handling Functions for handling zero division detection
integer and real values.

Task Functions SetPriority, GetPriority, etc,. Handles the priority of
the current task.

System Time Functions Exchanging time information between different
systems.

Timer Functions Functions to Start, Stop and Hold Timers.

Random Generation
Functions

Functions for generating random numbers or values.

Variable Handling Functions Reads and writes variable values.

Array Functions Handles arrays.

Queue Functions Handles queues.
20 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Hardware

Hardware
All hardware is defined as hardware types (units) in Control Builder. These reflects
the physical hardware in the system.

Hardware types are organized and installed as libraries. Thus, it is possible to handle
hardware types in a more independent way, which has some advantages:

• The libraries are version handled, thus different versions of the same hardware
type may exist, in different versions of the library. This makes it easy to
upgrade to newer system versions and to let new and old hardware units
coexist.

• New versions of a library, can in a easy way be delivered and inserted to the
system.

• Only used hardware types allocate memory in the system.

A number of standard libraries with hardware types are delivered with the system. A
standard library is write protected and cannot be changed.

Standard System Libraries with Hardware

The following standard libraries with hardware are delivered by the system:

Library Description

BasicHWLib Basic controller hardware types

CI851PROFIBUSHwLib Communication interface PROFIBUS DP

CI854PROFIBUSHwLib Communication interface PROFIBUS DP-V1

ABBDrvNpbaCI851HwLib
ABBDrvNpbaCI854HwLib

ABB Drive NPBA and subunits for PROFIBUS

ABBDrvRpbaCI851HwLib
ABBDrvRpbaCI854HwLib

ABB Drive RPBA and subunits for PROFIBUS

ABBProcPnlCI851HwLib
ABBProcPnlCI854HwLib

ABB Process Panel for PROFIBUS

ABBPnl800CI851HwLib
ABBPnl800CI854HwLib

ABB Panel 800 for PROFIBUS
3BSE040935R201 Rev A 21

Standard System Libraries with Hardware Section 1 Basic Functions and Components

CI855Mb300HwLib Communication interface MasterBus 300

CI857InsumHwLib Communication interface INSUM

CI858DriveBusHwLib Communication interface DriveBus

CI856S100HwLib Communication interface S100 I/O system and
S100 I/O units

S200IoCI851HwLib
S200IoCI854HwLib

S200 adapter and S200 I/O units for PROFIBUS

S800ModulebusHwLib S800 I/O units for ModuleBus

S800CI830CI851HwLib
S800CI830CI854HwLib
S800CI840CI854HwLib
S800CI801CI854HwLib

S800 adapters and S800 I/O units for PPOFIBUS

CI865SattCNHWLib Communication interface for remote I/O
connected via ControlNet

SerialHwLib Serial communication protocols

CI853SerialComHwLib RS-232C serial communication interface

CI852FFh1HwLib Communication interface FOUNDATION Fieldbus
H1

PrinterHwLib Printer unit

ModemHwLib Modem unit

SerialHwLib
COMLIHWLib
ModBusHWLib
S3964HWLib

Communication protocols

For a complete list of the hardware types in the standard libraries, see Control
Builder online help.

Library Description
22 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Customized Hardware Types

Customized Hardware Types

When it is not sufficient, with the standard system libraries, you can create user-
defined libraries (see Create Libraries on page 78), to which you can add your own
hardware types (customized hardware types) with the Device Import Wizard. The
wizard is used to import a device capability description file (for example a *.gsd
file), that is, convert the file to a hardware type and insert the type into the user-
defined library. (See also Device Import Wizard on page 82 and Supported Device
Capability Description Files on page 82.)

In exceptional cases, it may be relevant to insert individual external customized
hardware types to a user-defined library. A typical case is if there is a need to use a
specific hardware type, that have been converted and used in an earlier version of
Control Builder.

The Source Code Report can be used to view which hardware types that are loaded
in the project. See Source Code Report on page 125.

Configuring Controller

To make it possible to configure the controller you first have to insert the libraries
into the control project, containing the hardware types (units) to be used in the
controller configuration. Furthermore you also have to connect the libraries with the
hardware types to the controller. How to add and connect libraries, see Connect
Libraries on page 76. General library handling are described in Library
Management on page 75.

Add Unit to Hardware in Controller Configuration

To add a new hardware unit into the controller configuration in Project Explorer:

1. Make sure that the library, containing the hardware type to be added, is inserted
to the project and connected to the controller.

2. Right-click the unit you want to add a new hardware unit to and select Insert
Unit. It is not possible to select Insert Unit (dimmed) if the unit cannot contain
any subunits or if no more positions are available
3BSE040935R201 Rev A 23

Configuring Controller Section 1 Basic Functions and Components

.

Figure 1. Dialog for inserting hardware in a controller configuration.

3. Expand the relevant library folder under Connected Libraries and select the
hardware type you wish to add.
Libraries in Project contains libraries that are added to the project but not yet
connected to the controller. If a unit is selected under Libraries in Project, you
will be offered to connect the library to the controller.

4. Select a position for the hardware unit in the Position drop-down list. The first
available position is chosen by default. The Position drop-down list is empty
and the Insert button is dimmed, if there are no more available positions left.

5. For units supporting redundancy it is possible to check Enable redundant mode
check box and select a position for the backup unit.

6. Click Insert button to apply the current changes.
With the Previous or Next button it is possible to navigate to another unit in
Project Explorer hardware tree.

7. Click Close to close the dialog.

Some redundant units have a fix position offset. For these units the backup
position are automatically calculated by the dialog, and cannot be changed by the
user.
24 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Basic Hardware

Replace Hardware in a Controller Configuration

It is possible to replace a hardware unit in a controller configuration with a different
hardware unit. To replace a hardware unit:

1. Make sure that the library, containing the hardware type you want to replace
the unit with, is inserted to the project and connected to the controller.

2. Right-click on the unit you want to replace and select Replace Unit.

Apart from that it is not possible to change position, this dialog works in the same
way as Insert Unit (see above). The system does, as far as possible, retain settings,
connections and units in existing sub trees, for example, changing between two
similar CPUs can be done without losses.

Basic Hardware

The Basic Hardware library (BasicHwLib) contains standard system hardware types
to be used when configuring the AC 800M controller and SoftController. Standard
system hardware types are installed together with Control Builder.

BasicHwLib contains basic controller hardware for AC 800M. The Basic Hardware
library contain the following hardware:

• Controllers (AC 800 M and SoftController)

• Compact Flash units

• CPU units

• Ethernet links, serial Com ports and PPP ports

• ModuleBus.

Only one version of BasicHwLib can be connected to a controller.
3BSE040935R201 Rev A 25

Basic Library for Applications Section 1 Basic Functions and Components

Basic Library for Applications
The Basic library contains basic building blocks for AC 800M control software. It
contains data types, function block types and control module types with extended
functionality, designed by ABB. The contents inside the Basic library can be
categorized as follows:

• IEC 61131-3 Function Block Types

• Other Function Block Types

• Control Module Types

For a complete list of data types, function block types and control module types
in the Control Builder standard libraries, see the manual Extended Control
Software, Binary and Analog Handling (3BSE035981Rxxxx).

Table 2. Basic Library Overview

Basic Functions Examples

IEC 61131-3 Function Block
Types

Standard bistable function block types (SR, RS).

Standard edge detection function block types
(R_TRIG, F_TRIG).

Standard counter function block types (CTU, CTD,
etc.)

Standard timer function blocks type (TP, TOn, etc.)

Other Function Block Types ACOF (Automatic Check Of Feedback) functions,
converters, pulse generators, detectors, system
diagnostics, timers, compares, etc.

Control Module Type Connection module for group start sequences
(GroupStartObjectConn).
26 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Application Types and Objects

Application Types and Objects
Types and objects form the basis of your application structure, using the solutions
presented in this subsection. To help you get familiar with types and objects, this
subsection offers an overview of the following areas:

• The type concept, see Types and Objects Concept on page 28.

• The editors that are used to create and configure your types, see Declare a Type
in the Editors on page 29.

• Important differences between control module and function block types, see
Control Modules or Function Blocks? on page 35.

• How to create types directly in an application, and how to create types in your
library for re-use in applications. See Types in Applications on page 36 and
Types in Your Own Library on page 37.

• How to create complex types so that they are flexible enough for future
upgrades, see Modify Complex Types on page 38.

• What to consider and what to set up before creating types and using them, see
Decisions When Creating Types on page 39.

• How to create objects from types and connect the object to the surrounding
application or type, see Create and Connect Objects on page 41.

• How different objects are executed, see Function Block Execution on page 45
and Control Module Execution on page 46.

• How to use single control modules as containers for control modules, see
Single Control Modules on page 46.
3BSE040935R201 Rev A 27

Types and Objects Concept Section 1 Basic Functions and Components

Types and Objects Concept

To represent motors, valves, tanks, etc. that are located in a plant area, and then turn
them into manageable units in a control project, requires that you identify and create
types (motor types, valve types, mixer types, etc.) and then create a number of
objects, based on each of these types.

To help you understand the types and objects concept, this subsection offers a brief
presentation of how objects are created from a type and the inherit mechanism that
follows. A type is the source (the blue print) for a unit (motor, valve, tank, etc),
while an object (instance) represents the unit(s) in libraries and applications. There
is an inherit mechanism between a type and all its objects, whereas all objects will
have the same performance as the type, and changes performed in the type will
affect all objects simultaneously (single source).

A type is a generic solution, which can be used by many objects. Such a solution
may contain programming code with variables, functions, connection parameters
(textual and graphical), graphical objects and formal instances1. Figure 2 tries to
give a simplified picture of the relationship between a type located in a library, and
two objects created in an application. The type contains the code, whereas each
object contains a list of computed variable values. Hence, an object cannot contain
any code. Instead, it uses the code inside the type for manipulating its own local
variable values.

Figure 2. A simplified example of the relationship between a type an objects.

1. Formal instances are objects (instances of another type) that are located inside a type. Formal instances are
executed when objects based on the type execute in applications.

If A = 10then
B:= A+1;

end_if;

A

B

3

7

type

object1

A

B

10

11

object2

Library

Application
28 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Declare a Type in the Editors

A type is always static in the sense that it cannot run by itself in applications. In
order to execute the code inside the type, you must create an object based on the
type (an instance). The object will then execute the code located inside the type. To
create an object, point to a type in either a library, or in an application (an object
needs a type to exist).

All objects based on the same type have the same characteristics, which means they
have equal access to everything in the type. An object does not contain a
programming editor or code blocks (only a connection editor), hence you cannot
write code inside an object. All logic must be created in the type.

Allocated memory for creating for example, a motor type solution (one motor type
and 20 motor objects) is distributed mainly on the programming code inside the
type. Therefore, the cost (allocated memory) for each new object (motor) is very
small, compared to the type itself. The object only needs to allocate memory for
variables, since all code is located and executed from the type. However, the number
of objects are still relevant for the total CPU load.

Working with types and objects makes it easier to upgrade, since the inherit
mechanism takes care of changes that (often) concern hundreds of objects. A code
change, declaring additional connection parameters, etc, can be done once for the
type, and is then inherited by all objects simultaneously.

Control Builder also contains a number of structured data types. For more
information refer to the Application Programming manual. Hence, a type described
in this sub-section is either a function block type or a control module type.

Declare a Type in the Editors
This subsection describes the most common editors used inside a type. All of these
editors help you declare the necessary parameters, variables, functions, code, etc.
that are needed to make the type work. The editors presented here are opened from a
control module type. An Editor contains several declaration panes which can be
selected from a tab menu (see Figure 3):

• Declaration pane for declaring parameters (see below).
• Declaration pane for declaring local variables (see Figure 4).
• Declaration pane for declaring function blocks (see Figure 5).
• Programming editor for programming code (see Figure 6).
• Graphical editor, CMD Editor (see Figure 8).
3BSE040935R201 Rev A 29

Declare a Type in the Editors Section 1 Basic Functions and Components

Declaration Pane for Parameters

Figure 3 shows part of an editor for My_MotorType, where the declaration pane for
parameters is selected. These parameters can then be used for connecting variables
outside the object. To open the declaration pane for parameters, double-click the
type.

Figure 3. The declaration pane for creating connection parameters.

Declaration Pane for Local Variables

Figure 4 illustrates a declaration pane for creating local variables inside the type.
The local variables can be used by the code inside the type.

To open the declaration pane for variables, double-click the type to open the editor,
then select the Variables tab. If the editor is open already, simply select the Variables
tab.

Figure 4. The declaration pane for creating local variables.
30 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Declare a Type in the Editors

Declaration Pane for External Variables

External variables work as pointers to global variables, which means that an object
can declare an external variable locally and, via this variable, access the value in a
global variable located in the application. External variables and global variables are
discussed in External Variables on page 57.

Declaration Pane for Function Blocks

Figure 5 illustrates a declaration pane for declaring function blocks inside the type.

To open the declaration pane for function blocks, double-click the type to open the
editor and then select the Function Blocks tab. If the editor is open already, simply
select the Function Blocks tab. Name the function block and move the cursor to the
Function Block Type column. Press CTRL+J to open a context menu with all
function block types available.

Figure 5. Declaration pane for creating function blocks inside a type.

You must first connect all the libraries that contain the function block types into
your application. Only then will you be able to see available function block types
in the context menu (CTRL+J).
3BSE040935R201 Rev A 31

Declare a Type in the Editors Section 1 Basic Functions and Components

Programming Editor

Figure 6 illustrates part of a programming editor where you can write code in one of
the five programming languages, according to the IEC 61131-3 standard. (In our
examples, we use Structured Text, ST). The programming editor is always active,
and can be reached irrespective of which tab is selected (parameters, variables,
function blocks, etc.).

The editor can be expanded with code blocks for structuring the code, like adding
new pages to a folder. The code blocks are then executed in a predetermined order,
as decided by the compiler (control modules) or from left to right (function blocks).

Figure 6. A programming editor with two code blocks.

A brief description of Start_code block and code blocks in general:

• Code block Start_

A code block with the prefix Start_ is always executed first in an application
and only once, at application startup (after a warm and cold start, but not after a
power failure). It is therefore unsuitable to place functions, function blocks, etc,
in a Start_block. This block should be used for initiating alarm strings,
converting project constants to strings etc.

Code blocks Programming editor
32 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Declare a Type in the Editors

However, there are some limitations to the Start_ code block:

– It is only valid for code blocks in control modules.

– It is not valid for code blocks in SFC (Sequential Function Chart).

– The function FirstScanAfterApplicationStart must not be used.

– Function blocks for communication must not be used.

• Code blocks are very useful for structuring code. By dividing your
programming code into a number of code blocks, you can improve the overall
code structure and readability. Examples of code blocks are Control, Object
Error, Operators, etc.

• There is no actual limit to how many code blocks that can be created in a type.
However, you should only create the absolutely necessary amount of code
blocks, since each code block will affect memory consumption and the
execution time of the type.

Open Code Block Menu

1. Right-click on a code block tab to access the code block context menu.

Figure 7. The code blocks Start_Code and Control. Right-click a code block tab to
access the context menu.

If the application contains a very large amount of code that has to be run in first
scan (e.g. alarms in the Start_ code block), the execution time can be so high that
overrun occurs. This will lead to that the controller will eventually shut-down.

Code block names cannot contain certain characters. See online help for
information on which characters that cannot be used in code block names.
3BSE040935R201 Rev A 33

Declare a Type in the Editors Section 1 Basic Functions and Components

Graphical Editor

Figure 8 shows part of the graphical editor (CMD Editor). The Control Module
Diagram editor (CMD Editor) is a combined function for drawing and
programming. (The term diagram refers to the graphical view of control modules
and connections.) The editor allows you to create and edit control modules, code,
graphics, and to connect variables and parameters.

To open the CMD Editor, right-click the control module type and select CMD
Editor.

Figure 8. Graphical objects created in the CMD Editor.

The drawing functions in the control module diagram editor include basic auto
shapes (lines, rectangles, etc.), as well as ready-to-use interaction objects (option
buttons, check boxes, etc.) and composite objects (trend graphs, string selectors,
etc.). The graphical objects are dynamic, that is, points can move with changing
variable values, colors can change, numerical values can be presented, etc.
34 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Control Modules or Function Blocks?

Control Modules or Function Blocks?

A type can be a control module type or a function block type. Besides that, you can
always mix types and objects. For example, a control module can be created inside a
function block type (to add graphics), or you can create a function block inside a
control module type (to execute a list of basic functions). The following list
discusses some differences between control module types and function block types.

• Control modules types may have graphical connections (see Graphical
Connections on page 42).

• Control modules types use code sorting (see Control Module Execution on
page 46).

• Control modules are always executed by the system and always once per scan,
whereas function blocks are always executed from code. Therefore, a function
block can be executed, none, one time, or several times per scan. This is the
main difference between control module execution and function block
execution.

• Parameter values on function blocks are copied (except In_Out parameters, see
Function Block Execution on page 45).

• Function block types are required when using extensible parameters (see
Extensible Parameters in Function Blocks on page 73).

Other than this, the decision whether to use control module types or function block
types depends on the context and environment. More guidelines about the use of
control modules and function blocks are given in the Application Programming
manual.
3BSE040935R201 Rev A 35

Types in Applications Section 1 Basic Functions and Components

Types in Applications

Creating a type in an application is the quickest and easiest way to get started. No
libraries have to be created before creating types, and the available methods are still
there: you can connect libraries, create your own data types, and select which object
type to use (see Decisions When Creating Types on page 39). However, if you
choose to create a type directly in an application, it can only be used inside that
application.

Figure 9. Two examples of a type created especially for Application_1. (Left) A
control module type (My_MotorType), (Right) a function blocks type
(PumpMotor_type).

To gain access to standard libraries (or own libraries), the first step is to insert them
into the control project, see Library Management on page 75, and then connect them
to the application. Hence, types in the application may in turn use objects from
existing types in those connected libraries.
36 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Types in Your Own Library

Types in Your Own Library

A major reason for creating types inside a library, instead of creating them directly
in an application, is the possibility to re-use them in other applications (this will not
be possible if you create your types directly in an application). If you create types in
a library, all necessary functions and programming work can be stored in this
library. The library can then be connected to any application.

Provided that a new library has been created, self-defined types can be created in
that library (Compact Control Builder does not allow you to create types in a
standard library).

Figure 10. A Type (MyControlLoop) created in MyTypeLib library. This example
shows a control loop created as a control module type, while the components are
ready-made objects from the standard libraries.

Type

Functionality from the
Control libraries
3BSE040935R201 Rev A 37

Modify Complex Types Section 1 Basic Functions and Components

Modify Complex Types

This subsection describes a situation when it is preferable to copy two types, instead
of keeping a single, and very large, type in a library.

Refuse Incinerator Type Example

Assume that a plant area has two identical refuse incinerators.

A type solution like this would be complex, but manageable, if we build a Refuse
Incinerator type in a library with several underlying types. We could then re-use the
type twice (as two objects), in two separate applications, by simply connecting our
library to each application.

Examples of underlying types inside the Refuse Incinerator type:

• A Feeder type containing 10 conveyors,

• A Combustion type,

• An Ash Handling type,

• A Flue Gas type.

After building the Refuse Incinerator type in the library, it would be tempting (and
normal) to connect the library to both Application_1 and Application_2. It would
then be easy to create an Incinerator1 object in Application_1 and an Incinerator2
object in Application_2.

This (type and object) strategy works well, but with one important exception! If the
Incinerator2 object running in Application_2 suddenly needs an individual change,
perhaps, instead of 10 conveyors, it must be enlarged to 20 conveyors. Then we have
to re-enter the library and change the Feeder type inside the Refuse Incinerator type.
But, changing anything inside the Refuse Incinerator type would affect both
incinerators, (due to the type and object inherit mechanism).

By enlarging the Feeder type with 20 conveyors, both Incinerator objects will be
changed and suddenly contain 20 conveyors. This is not what we wanted.
38 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Decisions When Creating Types

The Refuse Incinerator Type Solution

The strategy to avoid this type of problem is to continue with types and object when
building complex type solutions, but once the type solution is ready, consider
possible individual (object) changes in the future. If you need to be able to change
an individual object, then copy your type on the highest type level (in our example,
Refuse Incinerator Type1 and Refuse Incinerator Type2).

In our example, we create an Incinerator10 object in Application_1, based on
Refuse Incinerator Type1, and then create an Incinerator20 object in Application_2,
based on the new type copy, Refuse Incinerator Type2. This will increase memory
consumption in the controller, but you gain the possibility to perform individual
changes. For example, you can now change the number of conveyors in the feeder
for one of the applications, without affecting the other.

Decisions When Creating Types

This sub-section describes how to set up a type, that is, decisions that have to be
made before you start programming code, declaring parameters and variables, etc.
Many functions and type solutions have been developed already, and Control
Builder helps you set up and access these options before you start programming.
Read more about design analysis in the Application Programming manual.

You have to make a number of decisions before you can start programming code,
declare parameters, download to controllers, etc. (see Figure 11). One of these
decisions is, for example, whether you need to create objects in your own type(s)
that are based on other types located in external libraries. Then you must first
connect those libraries to your library or application.
3BSE040935R201 Rev A 39

Decisions When Creating Types Section 1 Basic Functions and Components

Next decision you must make is whether you need to create self-defined structured
data types for passing parameters through several layers of objects. The data types
that you create will automatically be connected to your library or application.
Structured data types are often useful in more complex type solutions, with a deep
hierarchical structure. Your last decision is more of a programming choice. Do you
need a function block type, or should you use a control module type?It can be said
(though this a big generalization) that if you are going to program code in one of the
Program’s POUs1, then select function block types, if you are going to program
mainly in a graphical editor, and you want automatic code sorting, then select
control module types.

Figure 11. Available settings for setting up an object type, whether it is in libraries,
or applications
.

1. See Program Organization Units, POU on page 19.

How to access these methods is described in Control Builder online help. Select
one of the folders in Project Explorer and press F1.
40 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Create and Connect Objects

Create and Connect Objects

An object is a function block or control module based on a type. This means that
each time you create a new object Control Builder will prompt you for a type. The
type can be located in an inserted library (inserted into the control project) or
located in your library, or directly in an application. Either way, a type and its
location must always be selected. Once the type has been selected, the next step is to
connect the connection parameters.

Figure 12. Creating an object (Pump10) based on My_MotorType, which located in
the application. The object needs the location (Application_1) and type
(MyMotorType).

Connections

Control modules can be connected to each other in two different ways: through
graphics or through text. Graphical connections are implemented directly in the
Control Module Diagram editor and text-based connections in the Connection
editor.

Type location

Type name

New object name
3BSE040935R201 Rev A 41

Create and Connect Objects Section 1 Basic Functions and Components

Graphical Connections

Graphical nodes and graphical connections allow you to connect control modules in
a simple and efficient manner.

It is easy to recognize a control module parameter that can be graphically
connected. These parameters have NODE in the beginning of the parameter
description. This is standard for all control modules located inside the standard
libraries. Nodes for graphical connections can also be created for self-designed
control modules. Graphical connections are suitable for obtaining a comprehensive
view of main flows, for example, in a PID controller or for group start of several
motors. Figure 13 illustrates three graphical connections for group starting motors.
You connect the modules with the Graphical Connection function (located in the
CMD Editor).

Figure 13. Two motor objects that have been graphically connected with a Start and
Next object located in the Group Start library. Note the circles which symbolize the
connection nodes.

1

2

3

42 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Create and Connect Objects

Textual Connection

You can reach the Connections Editor via the Connections entry, simply right-click
the module and select Connections. Parameters can be connected to the actual
variables presented in the Connections Editor. It is not possible to connect the same
parameter both graphically and textually. Textual connection is the only way to
connect parameters when the control module is subordinate to a function block,
since there are no surrounding graphics.

Connect an Object

The Connections editor is a parameter/variable interface between the object and its
closest surroundings. The Connections editor displays the parameters that have been
declared in the type, seen through the control module object, and you connect
surrounding parameters/variables to the object.

If a control module object is created in an application (see Figure 14), then the
application can be seen as the closest surroundings, and variables in the application
should be connected to the object.

In the same way, when an object is created in a type (located for example in a
library), then the type can be seen as the closest surroundings, and
parameters/variables in the type should be connected to the object.

If you need to connect parameters to objects located several hierarchical layers
away (not the closest surrounding) then structured data types will simplify the
connections compared to passing corresponding parameters. For more
information on structured data types, see also the Application Programming
manual (3BSE044222R101).
3BSE040935R201 Rev A 43

Create and Connect Objects Section 1 Basic Functions and Components
 Figure 14. A control module object connected to variables in an application. The
application is the ‘surrounding area’ with the variables appfb1, Name (initial value
‘PumpMotor’) and appout1 connected to the object.

The connection parameters for the motor object illustrated in Figure 14 connect the
parameters (FB1, Name and OUT1) to the variables (appfb1, appout1, Name; Name
has the initial value PumpMotor) that have been declared in the application. Once
the variables have been connected to the object, it is ready to run in the application
(see Figure 15).

Figure 15. The object ‘Motor_object’ has been created in the application.

A Motor Type

Code

FB1

motor object

Application

appfb1

surrounding area

OUT1

FB1

OUT1

appout1

Name

Name‘PumpMotor’
44 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Function Block Execution

Function Block Execution

Function block parameters have three directions: In, Out and In_out.

Input and output parameters are passed by value, which means that the function
block creates copies of each variable value, before and after the function block is
executed. Input parameters create a copy of each variable before the function block
executes, and the output parameters create a new copy after the function block has
been executed, and pass the new values to the surrounding variables outside the
function block.

Figure 16. In and Out parameters for a function block. This example illustrates how
In and Out parameters copies the variable (var).

In_Out parameters, however, are passed by reference, which means only a reference
to the actual variable outside the function block is passed inside the function block.
In other words, no local representation of the parameter exists inside the function
block. Performing operations on an In_Out parameter inside a function block, thus
means performing the operations directly on the actual variable connected to the
function block. See also Connecting Variables to I/O Channels on page 68.

Function block

var In

var’

var’’ Out

code

var

before execution after execution

surrounding area (Program or in a type)
3BSE040935R201 Rev A 45

Control Module Execution Section 1 Basic Functions and Components

Figure 17. In_Out parameter for a function block. This example illustrates how the
In_Out parameter points as reference to the value in the variable varRef.

Control Module Execution

Control modules provide so-called data flow-driven execution, which makes the
code design much easier for solutions where several types and formal instances are
needed. All control modules communicate with each other, and can therefore
determine when each individual object can send and receive information. A data
flow-driven design prevents possible mistakes, when trying to foresee the correct
execution order, since the compiler rearrange or sort all your code behind the
scenes. This is called code sorting.

Single Control Modules

A special kind of control module type, the single control module, provides a way of
grouping graphical objects, variables, parameters, and control modules into a single
unit.

Compared to the previous discussions about types and objects, a single control
module can be considered as a hybrid of them both (see Figure 18). First of all, you
create a single control module as an object that is it must be created under the
control module folder (not the control module type folder) in an application.

For more information on Code Sorting, see the Application Programming
manual.

Function block

In_Out

code

varRefvarRef
46 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Single Control Modules

Once a single control module has been created it start acting as both a type and an
object, that is it contain code, editors for declaring parameters, function blocks etc
just like a regular type does. But still, it also contains object information like
variable values etc like regular objects do. A single control module can never be
reusable as a type that can be used to create many objects. However, it can be copied
to a new single control module, and then be modified.

Figure 18. A single control module. This module is not reusable, hence intended to
be used only once for grouping objects into a single unit.

Single control modules can be used as a framework and attach control module
objects inside, like an application does with objects. Figure 19 illustrates this, where
three single control modules (Transport, Heating, and Crushing) form the
framework for the control modules (Motor_1, etc.).

IfA = 10then
B:=A+1;

end_if;

A

B

3

7

type

object1

Single Control Module
Application

Control Module Types

Control Modules
3BSE040935R201 Rev A 47

Variables and Parameters Section 1 Basic Functions and Components
 Figure 19. Single control modules form the framework for the control modules.

Variables and Parameters
Variables and parameters are the carriers of data throughout the system. This section
contains information designed to help you use parameters and variables in the best
way possible:

• Variable and Parameter Concept on page 49 gives an overview of variables and
parameters and how they are used.

• Variables on page 51 gives an overview of the different variable types.

• Variable Entry on page 52 describes how to declare variables.

• External Variables on page 57 describes how to define external variables.

• Access Variables on page 58 describes how to define and use access variables.

• Communication between Applications Using Access Variables on page 59 and
Communication in an Application Using Global Variables on page 60 describe
how communicate between applications.
48 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Variable and Parameter Concept

• Control the Execution of Individual Objects on page 61 describes how to use
variables and parameters to control the execution of objects.

• Project Constants on page 64 describes the use of project constants and how to
update them.

• I/O Addressing Guidelines on page 68 describes the rules for addressing I/O
channels.

• Connecting Variables to I/O Channels on page 68 describes how to connect I/O
variables to I/O channels.

• Extensible Parameters in Function Blocks on page 73 describes extensible
parameters (these can only be used in function blocks).

• Keywords for Parameter Descriptions on page 74 describes keywords used in
description in editors to identify the function of a parameter.

Variable and Parameter Concept

Variables

There are a number of different kinds of variables in Control Builder for storing and
computing values. A way of understanding the use of these variables presented
throughout this section is perhaps to consider them as carriers on object, application
and network levels.

Local variables are mainly used inside objects as carriers of local values. Global
variables are declared in the application and holds values that can be reached by any
object in the application. Access variables are used as carriers for communication
between several applications and controllers in a network.

• Local variables is the most common variable type. They belong to the code and
can only be accessed within the same function block, control module or
program.

• Global variables on the other hand, are always declared in an application and
can be accessed by any function block, control module or program. However,
in order to reach a global variable, each object that intends to use a global
variable must have declared a corresponding External variable, see also
External Variables on page 57).
3BSE040935R201 Rev A 49

Variable and Parameter Concept Section 1 Basic Functions and Components

• Access variables allow data exchange between controllers, that is, access
variables can be accessed by other controllers. You can read more about access
variables in section Communication between Applications Using Access
Variables on page 59.

In spite of the different variables purposes, they all have one thing in common – a
variable holds or carries a value (except an external variable). They are defined by
their name and data type, which defines the characteristics of the variable (dint,
bool, real, string, etc.).

Parameters

Parameters on the other hand, cannot store any values. Instead, you can assign
variables to parameters of function blocks, control modules and functions. Variables
store the value of the corresponding (connection) parameters.

Simply put, use parameters for connecting objects and to point to variable values
that need to be read into code blocks and written from code blocks.

When function blocks read from a variable and write to a variable, they use input
and output parameters that temporarily copy the variable value, before and after
execution. In this case, one may claim that parameters can temporarily hold a
value. See Function Block Execution on page 45 for more details.
50 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Variables

Variables

Table 3 lists available variables in Control Builder.

Table 3. Variable types in Control Builder.

Variable type Scope Where to declare

Local variable Object level. Can only be
accessed within the function
block, control module or
program in which it is
declared.

Application editor (for passing
parameters between control
modules) or,

Programs editor (for access in
the program).

Function block editor (for
access inside the function
block).

Control module editor (for
access inside the control
module).

Global variable Application level. Can be
accessed from anywhere in
the code within an
application. An object that
intends to use a global
variable must declare an
external variable locally that
will point at the corresponding
global variable.

In the application editor. See
also Communication in an
Application Using Global
Variables on page 60.

Access variable Network level. Variable that
can be accessed by remote
systems for communication
between controllers. See also
Access Variables on page 58
and Communication between
Applications Using Access
Variables on page 59.

Access Variable editor of a
controller.
3BSE040935R201 Rev A 51

Variable Entry Section 1 Basic Functions and Components

Variable Entry

Control Builder helps you declare variables in applications, programs, function
block types and control module types. This section covers the entries: Name, Data
Type, Attributes, Initial Value and Description.

Name

It is recommended that variables are given simple and explanatory names, and that
they begin with a capital letter. Names consisting of more than one word should
have capital letters at the beginning of each new word. Examples of recommended
variable names are DoorsOpen, PhotoCell.

Certain names, however, are reserved by the system and cannot be used for other
purposes, for example true. You will receive an error message if such a word is
used. For naming guidelines and information on relevant tools, refer to the
Application Programming manual.

Data Types

A data type defines the characteristics of a variable type. There are both simple and
structured data types in Control Builder. A variable of simple data type contains a
single value, while a structured data type contains a number of components of
simple or structured data types.

Table 4 presents the most common simple data types and the initial value when the
variable is declared.

Table 4. Simple data types

Data type Description
Bytes allocated

by variable
Initial value

(default)

bool Boolean 4 False, 0

dint Double integer 4 0

int Integer 4 0

uint Unsigned integer 4 0
52 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Variable Entry

When declaring variables or parameters of the data type string, always define the
required length within square brackets (for example, string[20]), to minimize
allocated memory. If you do not define the string length, Control Builder will
automatically allocate memory for a 40 character string length.

string Character string(1) 10 bytes + string
length [n]

‘‘

word Bit string 4 0

dword Bit string 4 0

time Duration 8 T#0s

date_and_time Date and time of
day

8 1979-12-31-
00:00:00

real Real number 4 0.0

(1) String length is 40 characters by default, but can be changed by entering string[n] as the data
type, where n is the string length. The number of bytes allocated for string[40] will be (40 +10)
50. The maximum string length is 140.

Comparison of variables of unsigned data types (uint, word, and dword) will not
work properly if the most significant bit is set. Internally, they are handled as
signed, where the most significant bit is used as the sign. This means that a word
variable with a value above 32767 will be considered to be smaller than a word
variable with a value below 32768.

Use variables of data type string with care. Strings occupy a great deal of
memory, and require much execution time to be copied or concatenated.

Table 4. Simple data types (Continued)

Data type Description
Bytes allocated

by variable
Initial value

(default)
3BSE040935R201 Rev A 53

Variable Entry Section 1 Basic Functions and Components

A structured data type contains a number of components of simple or structured data
type. There are a number of predefined data types in Control Builder (for example
BoolIO and RealIO) that are structured data types. You can also create self-defined
structured data types, see Decisions When Creating Types on page 39.

Attributes

Attributes are used to define how variable values should be handled at certain
events, such as after cold restart, warm restart, etc. Variables that are supposed to
hold values over several downloads must for example, have a retain attribute in
order to keep their values after a warm start. Any of the attributes in Table 5, can be
given to a variable.

In a control module, the word “default” can be used as an initial value for a
parameter. This works for both simple and structured data types. For a structured
data type, the initial value “default” gives the default value of the data types for
all components.

This is useful when creating types; for input parameters of a structured data type
that do not have to be connected, and for output data types that do not have to be
connected.

More information is given in Control Builder online help. Search the index for
“structured data type”.

Table 5. Variable attributes

Name Description

no attribute The variable value is not maintained after a restart, or a download of
changes. Instead, it is set to the initial variable value. If the variable
has no initial value assigned, it will be assigned the default data type
value, see Table 4 on page 52.

retain The variable value is maintained after a warm restart, but not after a
cold restart. Control Builder sets retain on all variables by default. To
override this, the attribute field must be left empty in declaration pane.

coldretain The variable value is saved on disk, and retained after warm or cold
restart.(1)

Coldretain overrides the retain attributes in a structured data type.
54 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Variable Entry

Attribute Example

The following example tries to illustrate how a variable will be handled, depending
on different attribute settings. Suppose the variable valveC has the attribute
coldretain, valveR has the attribute retain and valve has no attribute. Also, suppose
that these three variables have the initial value = True (see Figure 20 for the variable
declaration).

constant You cannot change the value online once assigned.

This attribute overrides the coldretain and retain attributes in a
structured data type.

hidden The variable will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

nosort This attribute suppresses the code sorting feature for control module
types. Do not use the nosort attribute unless you know the data flow
characteristics in detail.

state This attribute will let the variable retain its old value between two
scans for control module types. The old and new value can be read by
adding :old and :new to the variable name.

(1) When an application is downloaded the very first time, variables will get their initial data type
values, even though they have been declared with the attribute coldretain, and, that the controller
has done a cold restart. Hence, no variables can receive their coldretain values before they have
been stored on disk. Correspondingly, will variables that have been declared later on, contain
their initial values until they have been saved on disk.

You can assign several attributes to a variable for example, retain, nosort, and
hidden can be assigned as (retain nosort hidden) attribute.

An intermediate variable (a variable which is automatically generated when
making a graphical connection between function blocks) in FBD or LD is always
assigned the attribute retain (even if the parameters on both sides of the graphical
connection have the attributes coldretain).

Table 5. Variable attributes (Continued)

Name Description
3BSE040935R201 Rev A 55

Variable Entry Section 1 Basic Functions and Components

Figure 20. Three variables with different attributes settings.

According to the attribute settings in Figure 20, the variables will be read or written
on different occasions in the given code example below, (read the comments under
each IF statement):

IF valveC THEN
(*Code in this position is only executed once after the very
first cold restart*)

valveC := false;
END_IF

IF valveR THEN
(*Code in this position is only executed once after a cold
restart*)

valveR := false;
END_IF

IF valve THEN
(*Code in this position is only executed once after a cold restart
and once after a warm restart*)

valve := false;
END_IF

Note that execution does not have to take place during the first scan after restart, for
example, when IF valve is embedded in another IF statement.

Variables and parameters should have the attribute retain, unless they are written at
each scan. When a change has been made to the application, the entire application
will be (warm) restarted and in doing so, variables without the attribute retain will
be set to their initial values, and there is a chance that the change will not be totally
bumpless. It is recommended that In and Out parameters to function blocks always
have the attribute retain.

More information is given in Control Builder online help. Search the index for
“attribute”.
56 3BSE040935R201 Rev A

Section 1 Basic Functions and Components External Variables

Initial Values

You can give the variable an initial value, which will be assigned to the variable the
first time the application is executed. This setting overrides the default data type
value. Table 4 shows default initial values for the most common data types.

Descriptions

The description field describes and provides information about the variable. A short
descriptive text may include an explanation of the cause of a condition or a simple
event, for example “Pump 1 is running”. Since the description is not downloaded to
the controller, the size of the description is irrelevant.

External Variables

External variables are not really variables, in the sense that they carry a value.
Instead, external variables work like parameters, that is, they point to a variable
value (in this case a global variable). In order for an object to reach a global variable
(located at the top of the application) it must use a pointer, or more specifically, an
external variable. By declaring an external variable inside an object, it is possible to
access global variables efficiently from a deep code design, without having to pass
variable values through parameters.

Figure 21. (Top): The variable z can be accessed deep down in the structure, using
several parameters. (Bottom): Using external (and global) variables, the variable z
is accessed directly, without having to use parameters.

variable z [global]

value of z

variable z

parameter z

parameter z

parameter z

value of z

[external]
3BSE040935R201 Rev A 57

Access Variables Section 1 Basic Functions and Components

Access Variables

Access variables are needed when the system works as a server. Allowed protocols
are MMS, COMLI and SattBus. Variables are declared in the Access Variable Editor
under the corresponding tab. The variable name must be unique within the physical
control system.

Open the Access Variable Editor by right-clicking the ‘Access Variables’ icon under
your Controller and select Editor.

MMS

MMS variables can only be accessed by name.

An MMS access variable name can be up to 32 characters long and contain letters,
digits and the characters dollar($) and underscore(_). However, an access variable
name cannot begin with a digit or the dollar ($) character.

All data types for single and structured variables are allowed, with the exception of
ArrayObject and QueueObject.

If you want to limit the access to an MMS variable, you must set the Attribute to
ReadOnly. If the attribute is left blank, both read and write will be possible.

SattBus

SattBus variables can be accessed in three ways:

• Standard SattBus name such as Valve:

– the name must consist of exactly five ASCII characters, but may not begin
with a percentage sign (%).

• COMLI direct addressing (see COMLI),

• IEC 61131-3 standard representation for variables.

– IEC61131-3 address must be entered under the COMLI tab

Allowed data types for a single variable are, bool, dint, int, uint, real or string.
Whereas a structured variable does not allow string data type.

If you want to limit the access to a variable, you can set the attribute to ReadOnly.
If the attribute is left blank it is possible to both read and write.
58 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Communication between Applications Using Access

COMLI

COMLI variables can be accessed in two ways only, either COMLI direct
addressing with capital X and the number for boolean, or capital R and the number
for registers (R0-R3071) beginning with a percentage sign or not, or according to
IEC 61131-3 standard representation for variables.

Allowed data types for a single variable are bool, dint, int, or uint, whereas
structured variables must all be of same data type. A structured variable is allowed
to contain more than 512 booleans and contain more than 32 components of integer
data type. Overlapping areas are not allowed.

Example

An access variable name "X0" is defined and connected to a variable which contains
544 Boolean components at octal address 0-1037. The next available address is then
1040 to ensure that areas do not overlap.

At least one of the variables in the access variable table has to be defined. For
missing variables, requested data of boolean data type will be returned with the
value False and requested data of integer data type will be returned with the value
"0". Writing to undefined variables is ignored.

Communication between Applications Using Access Variables

Two applications may communicate with each other via variables, but these
variables must be declared as access variables (see, Access Variables on page 58).
This also applies when two applications are downloaded to the same controller (see
Figure 22).

Figure 22. Variables for communication between applications must always be
declared as access variables.

When transferring access variables, it is important to use the same data type range
for the client (dint), as for the server (dint).

Application 2

Controller

Application 1
Application

Controller 1

Application

Controller 2
3BSE040935R201 Rev A 59

Communication in an Application Using Global Variables Section 1 Basic Functions and

It is, however, possible to connect variables with different ranges, such as a dint
variable on the server and an integer variable on the client.

As long as the variable values are within the range of an integer, this will work, but
once the value goes outside the integer range, it will not.

Communication in an Application Using Global Variables

In Programs

Global variables are declared at application level, in the Global Variables tab of the
application editor. They can be accessed directly, without any declaration in the
program editor. Variables that are not declared in the declaration pane in the
program editor are assumed to be global variables. A global variable can be used in
any program, without having external variables declared in a program.

In Function Blocks or Control Modules

In order to reach a global variable from either a function block type or a control
module type, each type must have either an external variable declared or a
parameter. Thus, the types access the global variable value by using an external
variable or a parameter to point at the global variable located in the application.

If an access variable is the only user of a variable that is connected to an I/O
channel, this variable is by default updated every second. To update this variable
with another interval, create a statement that involves the variable, but is never
executed.

A statement that is never executed, but still updates the variable x could look like
this:

if false then
x:=x;
end_if;

Connect this program to a task that executes with the desired interval. The
variable is updated every time the task is executed.
60 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Control the Execution of Individual Objects

Control the Execution of Individual Objects

Sometimes there is a need to execute specific sub function blocks and/or sub control
modules, with a time interval and priority different from the task connected to the
application. Depending on what you want to achieve, this can be done in two ways:

1. If you need to create a new task and connect this task to all the following
objects you should read the sub-section 'Using a Global Variable Connected to
an External Variable on page 61.

2. If you need the possibility to choose a new task for each individual object (and
for that object only), you should read the sub-section 'Using a Global Variable
Connected to a Parameter on page 62.

Using a Global Variable Connected to an External Variable

Assume that you have added a new task, for example SuperFast, to the other tasks
in the Project Explorer.

This method is based on declaring a global variable (for example Speed) of data
type string, with the attribute constant and the initial value 'SuperFast'. In order to
reach the following objects that have been created in the application, start by
declaring an external variable in the type (open the type editor and select the
external variable tab). Declare an external variable with the same name, data type
and attribute as the global variable. In this example, an external variable called
Speed of data type string and with the attribute constant is used.

Finally, connect the new task SuperFast to the object by right-clicking the object
and selecting Task connection. Type the variable name Speed in the task field. All
the following objects that are created will have this task connection, that is,
SuperFast.

The advantages with this method of using a global variable connected to an external
variable (declared in the type) is that every following object will be connected to the
same task (SuperFast). If you later on need to change the task connection for all the
objects (perhaps hundreds of objects), you only need to change the initial value for
the global variable in the application (see Figure 23). The present task connection
for all objects will point, via the external variable to the task declared by the global
variable.
3BSE040935R201 Rev A 61

Control the Execution of Individual Objects Section 1 Basic Functions and Components
 Figure 23. All objects will have the same task connected (SuperFast), once the first
object has connected Speed.

Using a Global Variable Connected to a Parameter

Assume that you have added a new task, for example SuperSlow, to the other tasks
in the Project Explorer.

The main advantage of this method, compared to the previous method with external
variables, is that you can change the task connection on each following formal
instance, by simply connecting a parameter to a different global variable. (See
Figure 24).

This method is based on declaring two global variables (for example, Slowly and
Learning) of the data type string, with the attribute constant, and the initial values
'SuperSlow' and ‘Slow’, respectively.

For more information on formal instances, see Types and Objects Concept on
page 28.

SuperFast

Fast

Normal

Slow

SuperSlow

Tasks Global variable
Speed initial value = ‘SuperFast’

type

External
variable = Speed

objects
Task connection = Speed
on the first created object.

Current task is SuperFast
for all following objects.
62 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Control the Execution of Individual Objects

In order to reach the following objects that have been created in the application, start
by declaring a parameter in the type (open the type editor and select the parameter
tab). Declare a parameter, for example Sleepy, of data type string. Select the formal
instance (object) inside the type:

1. Right-click the object and select Property > Task connection.

2. Type Sleepy in the task field.

Every created object that is based on the type (containing the formal instance) can
be connected via the connection parameter Sleepy and one of the global variables
Slowly or Learning, located in the application.

Figure 24. Each object can be connected to a different task via the parameter Sleepy
declared in the type and task connected in the formal instance.

SuperFast

Fast

Normal

Slow

SuperSlow

Tasks Global variables
Slowly with initial value = ‘SuperSlow’

type

Parameter = Sleepy

object1

Task connection = Sleepy
on the formal instance.

Current task is SuperSlow

Current task is Slow

Learning with initial value = ‘Slow’

formal instance

Sleepy connects = Slowly

Sleepy connects = Learningobject2
3BSE040935R201 Rev A 63

Project Constants Section 1 Basic Functions and Components

The advantage of this method is that the objects of the formal instance, located
inside the type can be connected to different tasks (global variables with a different
task name as init value).

Project Constants

Project constants are declared at the top level of libraries and projects. They are
globally visible, and can be used wherever a constant value is permitted, for
example, in program code and for variable initialization. With project constants, you
can create settings for an individual project, without having to modify any source
code, or having to introduce parameters which have to be passed on to all concerned
types.

Typically, project constants are declared in a library and given default values. They
are then used, for example, in code located inside types.

Project constants are allowed to have the same names as variables and parameters.
Control Builder will, however, choose the variable or parameter name if a name
conflict exists. This must be considered when adding, renaming or deleting
variables or parameters in an already running application.

Project constants declared at library level (user-defined libraries) can only be edited
and deleted from the library, that is, they cannot be deleted from the Project constant
dialog that is reach by right-click the control project folder (root object). To edit or
delete a library-declared project constant, right-click the library in Project Explorer
and select Project Constants.

Follow the naming convention, which says that project constants should begin
with the letter “c” (for example “cColors”). Use structured project constants, if
possible.

Note that project constants cannot be used to control the execution of function
blocks or control modules. Use a global variable or a parameter instead. For more
information see, Control the Execution of Individual Objects on page 61.

Naming conflicts between project constants appears when the same project
constant name exists in more than one library at the same time.

The only way to avoid a naming conflict is either to delete one of the constants or
not using the constant at all. A type conflict can never be overridden.
64 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Project Constants

Structured Project Constants

It is advisable to create one single structured project constant for an entire project or
library, where the project constant name is a concatenation of “c” and the project
name (or library name).

An example:
If the project name is “ACMEToothpaste”, the structured project constant should be
named “cACMEToothpaste”. Using a structured project constant makes sure that
there is little chance of conflict with variable and parameter names. Using a
structured project constant (“cACMEToothpaste”) enables you to, for example, use
“Max” without causing problems due to a variable or parameter called “Max”, since
the full path to the project constant “Max” would be “cACMEToothpaste.Max”.

Define only one project constant per library. This project constant can, and should,
be a structured project constant the concatenation of “c” and the library name in
which it is contained. For example, if the library name is “ACMEValveLib” the
(structured) project constant should be “cACMEValveLib”.

Typical Use

There are two typical use cases for project constants:

1. To satisfy the need for constant values in all project applications.

Some values might have to be constant throughout the entire project. If you
have to change such a “constant” value, you do not want to have to change it at
every occurrence, but once. For such cases, use a project constant. The project
constant is defined in one place only, and can be used throughout the project.
Changes to the project constant will be reflected throughout the project.

An example:
To be able to change the severity for all “High level alarms” in your entire
project, set up a project constant that defines the severity and use the project
constant in all alarm blocks in all applications. To change the severity, just
change the value of the project constant.

In this case, project constants should be defined on control project level, not in
a library.

All project constants defined in libraries and projects must have been given
unique names.
3BSE040935R201 Rev A 65

Project Constants Section 1 Basic Functions and Components

2. To be able to change library type solutions without having to make changes in
the library itself.

A method commonly used in control application engineering/programming is
to construct libraries, in which re-usable code is placed. It is good practice to
make the library as general as possible, to maximize its usefulness. The use of
project constants is an excellent solution for such situations.

Example 1: Easy Translation

Assume that you have created a library that makes extensive use of text strings.
Instead of including strings statically in the library, in your own native language,
you can use project constants. In this way, you allow another engineer to change the
values of these project constants and to translate the strings to another language.

For example, a project constant that was originally set (by you) to “Stop” can, easily
be translated by a German engineer to “Halt”, simply by changing the value of the
project constant. This would not be the case if you had typed “Stop” in the library.
Such string constants that are to be translated are best stored as a structured project
constant under the component .Settings.

The string “Stop” would, for example, be defined as the structured project constant
“cACMEValveLib.Settings.StopLabel” or, if you prefer even more levels;
“cACMEValveLib.Settings.Labels.Stop”.

Example 2: Combination of Dynamic and Static String Constants

Consider the following function block, in Figure 25, that controls high alarms.
Signal is of RealIO type, Alarmlevel is of real type, and Message is of string type.

Figure 25. The function block AlarmCond located in the Alarm library.

Signal

Alarm level

Message

AlarmCond
66 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Project Constants

Now, we want a “customized” message to be passed to Message, such as

High Level (> 75 ºC)

The message consists of five important elements that make up the message.

1. “High Level”

2. “(> “(note the spaces)

3. 75 (a value set by Alarm level)

4. ºC (a value set by Signal.parameters.unit)

5. “)”

All in all, three strings (1, 2, and 5) and two values (3 and 4).

Defining these 3 strings locally would be poor design, since the strings would be
defined for every object that is created from the type. To create a dynamic
environment, you should use project constants, or, more specifically, structured
project constants.

In the example above, we actually have different string categories – “High Level”,
“(> “, and, “)”.

The first one is a (dynamic) string that you may want to translate, depending on
target customer nationality, whereas the other two are static and independent of
language. This calls for two different views of project constant.

Using structured project constants, and the naming convention mentioned earlier in
this section, a defined structured project constant for “High Level” could be:
cACMEValveLib.Settings.HighLevelLabel.

As described in the first example (Example 1 above), we make use of the component
“Settings” in the structure. Underneath this component, we define the constants that
are to be translated, or changed, depending on circumstances.

Next, we define the structured project constant cACMEValveLib.Internal.Str1 and
cACMEValveLib.Internal.Str2 to contain “(> “and “)”. Note the component
“Internal”, which implies that components (constants) under this level are not to be
changed by the user. Of course, you may use the structure
cACMEValveLib.Settings.Labels.HighLevel, as described earlier, if you prefer
more levels.
3BSE040935R201 Rev A 67

I/O Addressing Guidelines Section 1 Basic Functions and Components

I/O Addressing Guidelines

A good I/O variable structure is the key to being able to debug and change an
application. A good structure also makes the connection of the application to system
I/O easier to read and understand.

Below are some hints and tips to ensure that your I/O connections have a good
structure.

• A good I/O connection structure requires a good application program structure,
and also a realistic translation of the process to be controlled, into the
application program.

• Try to collect I/O of the same process object in the same controller, and even in
the same object in your application program.

• Try to divide your application program into process cells, with contents similar
to the real process.

These hints are basic rules for object-based programming for real processes, and
once your application has a good structure, it is easier to divide I/O signals into
groups or cells of the process.

Connecting Variables to I/O Channels

You can only connect one variable to each I/O signal, and vice versa. This is not a
problem for output signals, but for input signals it may be necessary to read the
same input signal from different programs, or even from different places in the same
program. This can be done by placing the connected IO variables in a common area,
for example, in the application. Then the variables can be read by the program(s).

Note that the result of an IO copying is different depending on whether the
parameter is IN or IN_OUT. An IN parameter will result in a copy of the value,
whereas an IN_OUT parameter will result in a reference to the current value. While
different tasks can copy the same I/O signal, a task with a higher priority may
update the signal value in the middle of a scan. See also Function Block Execution
on page 45.
68 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

If the same I/O signal must be read by different applications, the I/O copying must
be done from one of the applications. The copied value can then be moved to other
applications through ordinary communication services. See also Communication
between Applications Using Access Variables on page 59.

The address for a hardware unit is composed of the hardware tree position numbers
of the unit and its parent units, described from left to right and separated by dots.
For example, channel 1 on the I/O unit DO814 in Figure 26 has the address
Controller_1.0.11.1.1.

Figure 26 illustrates an example of a controller hardware position.

Figure 26. An example of how IO channel addresses are created in a control project.

All I/O access is done via variables connected to I/O channels and these variables
are connected in the hardware configuration editor. The Connections tab displays all
channels that can be connected.

Controller_1

Position 11

Unit 11.1

Channel 1
= Controller_1.0.11.1.1

Hardware pos. 0
3BSE040935R201 Rev A 69

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

I/O Data Types

Variables connected to I/O can be of any of the simple data types, bool, dint, dword
or real, or any of the system-defined I/O data types. For example, an IO unit input
can be connected to a variable of bool data type or a variable of BoolIO data type.
For applications that only require a simple channel value, it is enough to connect a
variable of simple data type. But for applications that need comprehensive
information like forcing IO channels, reading status, or validate analog channel
values, must connect variables that is of system defined (structured) IO data type.

You can always choose a variable that is of the simple data type bool, dint, dword, or
real, and connect it directly to the I/O channel, as long as you are content with a
simple value in return. However, such a connection does not take advantage of
certain auxiliary signals which come with structured data types. A predefined
structured data type includes signals for I/O forcing, analog signal status, maximum
and minimum values, etc.

Figure 27 presents as an example the available components inside the structured
data type BoolIO.

Figure 27. Components inside the structured data type BoolIO.

You can force I/O values, and display forced and non-forced values from an
engineering station, regardless of whether the channel is of a simple data type or
an I/O data type.

Always use In_Out parameters when writing to output I/O variables from a
function block. This will prevent unintentional overwriting of I/O variable
component values, such as scaling. Do not use Out parameters for this purpose.
70 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Connecting Variables to I/O Channels

A structured data type, for example, the BoolIO data type, contains four components
and by declaring a local variable MyIOVar as a BoolIO data type, and then connect
MyIOVar to an IO channel, you will automatically access these four component
values, at the same time.

If you choose to declare MyIOVar as a simple data type, Bool, you will only be able
to access the channel value. In other words, you cannot read or write other values
from your code.

Table 6 shows the (hardware editor) entries to different IO channels. The Type
column presents the IO channel data type in the hardware editor, whereas the
Variable column presents possible data type connections (simple, structured).

By declaring a structured data type, you will get access to more information from
the IO channel, which can be read/written in code.

When connecting a structured data type to an I/O channel, always connect the
data type (like MyIOVar). Do not try to connect one of the components inside
(like Value, I/O Value, Forced etc.) directly on the I/O channel.

This is a common mistake, due to the fact that the I/O channel only lists bool,
real, etc., in the type column, and does not include the corresponding BoolIO,
RealIO, etc.

Table 6. Possible variable (data types) connections to IO channels.

Channel Name Type Variable

IX, QX Boolean. input (IX) and output (QX) bool bool, BoolIO

IW, QW Non-boolean. input (IW) and output (QW) real real, RealIO

IW, QW Non-boolean. input (IW) and output (QW) real dint, DintIO

IW, QW Non-boolean. input (IW) and output (QW) dword dword, DwordIO

IW0, QW0 (1)All Inputs, All Outputs

(1) ISP and OSP values are not set for variables connected to All Inputs/All Outputs! For more
information see also Access All Inputs and All Outputs on page 204.

dword dword

IW0 Channel status dword dword

IW0 UnitStatus dint dint, HWStatus
3BSE040935R201 Rev A 71

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

See Figure 28 and the corresponding structured data types in Table 6.

Figure 28. A correct way of connecting IO variables. The structured data type
MyIOVar connected to an IO channel.

Example of I/O Channel Representation

The IO channel in Figure 28, IX0.11.1.1, interpreted from Table 6, gives the
following: IX is a Boolean input, whereas 0.11.1 represents the hardware address
and .1 represents the I/O channel.

Monitoring the Status for Hardware and I/O

UnitStatus is a hardware connection to individual hardware and I/O units in the
Project Explorer. You can connect a variable to Unit Status or selecting the Unit
Status tab in the hardware editor.

If you choose to connect a variable to Unit Status this must be either of a dint data
type or of an HWStatus structured data type. The simple data type dint will return
one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a variable of
HWStatus will provide you with more extended unit status information. See the
contents inside the Unit Status tab in Figure 29.

IO channel of type bool. MyIOVar of BoolIO (correct connection).
72 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Extensible Parameters in Function Blocks

Figure 29. The components available inside the HWStatus.

In addition to the Unit Status there is a 'collective' hardware connection,
AllUnitStatus, which contains errors and warnings regarding all hardware units
connected to the controller.

Similar to Unit Status, you can choose to connect a variable of simple data type dint
or a variable of the structured data type HWStatus. The simple data type dint will
return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus will provide you with more extended unit status information.

Figure 30. The AllUnitStatus connection gives access to the status of all units.
.

Extensible Parameters in Function Blocks

Some function block types have extensible parameters, such as MMSRead,
COMLIRead, etc. This means that the number of input/output parameters is
changeable, and must be specified when you declare the function block in the
function block tab.

For information about supervising IO channels and unit status in online mode, see
Supervising Unit Status on page 201.
3BSE040935R201 Rev A 73

Keywords for Parameter Descriptions Section 1 Basic Functions and Components

The editor automatically inserts [1] when you specify a function block type with
extensible parameters. Change the number within the brackets to the required
number of parameters.

Keywords for Parameter Descriptions

Types that are located in standard libraries contain keywords in the description
column for parameters. These keywords help you to organize your parameters and
document their purposes.

To see which function block types that can have extensible parameters and the
maximum number of parameters for each type, see Control Builder online help.

There is no support for online values on Extensible Parameters. No such values
will be presented in online editors or in the project documentation and
consequently it is not recommended to trust these values.

Table 7. Type description keywords.

Keyword Description

IN The parameter direction is IN (read).

OUT The parameter direction is OUT (write).

IN(OUT) The parameter direction is both IN and OUT, but mainly IN (read).

OUT(IN) The parameter direction is both IN and OUT, but mainly OUT (write).

NODE Applies only to control modules. Used to indicate that the parameter has
a graphical connection.

EDIT Applies only to IN parameters. The parameter, which must have a value,
is only read following changes to the application, warm restart or cold
restart.

Be careful not to connect a variable to a parameter with the keyword
EDIT. Use a literal instead.
74 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Library Management

Library Management
From the user point of view, there are two main types of library:

• Standard libraries, that are installed with the product. These are protected and
cannot be changed.

• Your own libraries, in which you can add your own types. Copies of template
types (data types, function block types and control module types), from the
standard libraries can be modified and also added into your own libraries.

The following operations are relevant to both library types:

• Libraries must be inserted into the control project in which they are used, see
Insert Libraries into Control Projects on page 76.

• A library that contains types for applications must be connected to all libraries
and applications that use types from the library. Libraries containing the
hardware types (units) used in the controller configuration have to be
connected to the controller. See Connect Library to Application, Library or
Controller on page 77.

• A library can be disconnected from, an application, library or controller, see
Disconnect Libraries on page 77.

The following operations are relevant to non-standard libraries only, since standard
libraries are protected and cannot be changed:

• A new library can be created, see Create Libraries on page 78.

• The state of a library can be changed, see Library States on page 78.

• The version of a library with hardware types can be changed, see Library
Password Protection on page 79.

• Types can be added to a library with hardware types, as long as its state is
Open, see Add Types to Libraries Used in Applications on page 80 and Add
Customized Hardware Types to Library on page 81.

• A library with hardware types can only be deleted if it is not connected to any
application, library or controller.

• A library can be password-protected, see Library Password Protection on page
79.
3BSE040935R201 Rev A 75

Connect Libraries Section 1 Basic Functions and Components

Connect Libraries

In Project Explorer, libraries connected to a control project are stored in the
Libraries folder, while libraries connected to applications and libraries are stored in
the Connected Libraries folder, see Figure 31.

Figure 31. Libraries in Project Explorer.

Insert Libraries into Control Projects

A library always has to be inserted into the control project before it can be
connected to an application or a controller. To connect a library to a control project:

1. In Project Explorer, expand the Project folder.

2. Select the Libraries/Hardware folder, right-click it and select Insert Library.

Libraries connected to the control project

Libraries connected to the application

Libraries connected to the controller
76 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Connect Libraries

Connect Library to Application, Library or Controller

To connect a library to an application, a library or a controller:

1. In Project Explorer, expand the corresponding Library, Application or
Controller folder.

2. Select the corresponding Connected folder, right-click and select Connect
Library.

Replace Connected Library

A connected library can be replaced, for example, when you want to update to a
newer library version. Replacing to a newer version, results in that all instances of a
type in the new library will be used instead of the type in the old version.

To replace a connected library:

1. In the corresponding Connected folder, right-click the library and select
Replace Library.

2. Press the Yes button and select a library from the drop-down list in dialog.

3. Click the Replace button to confirm.

Disconnect Libraries

A library can only be removed if the library and its types are not used within the
project.

To remove a library from a control project:

• In the Libraries/Hardware folder, right-click the library and select Remove.
The library is removed from the control project.

Libraries can be disconnected from both applications, libraries and controllers:

• In the corresponding Connected folder, right-click the library and select
Disconnect (Library). The library is disconnected, but it can be re-connected
at any time, since it is still inserted to the control project.
3BSE040935R201 Rev A 77

Create Libraries Section 1 Basic Functions and Components

Create Libraries

To create a new library:

1. In Project Explorer, right click Libraries or Hardware and select New
Library... The New Library dialog is displayed.

Figure 32. New Library dialog.

2. Enter the name of the new library and click OK. The new library is created and
inserted into the control project.

Library States

A library is always in one out of three possible states:

• Open
The contents of the library can be changed. This is the normal state for a library
when it is under development.

• Closed
The contents of the library cannot be changed. However, the state can still be
changed back to Open.

• Released
The contents of the library cannot be changed.
78 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Library Password Protection

To change the library state:

1. In Project Explorer, right-click the library and select Properties>State. The
State dialog is displayed.

Figure 33. State dialog.

2. Select the desired state and click OK. The library state is changed.

The library state can only change:

• From Open to Closed or Released.

• From Closed to Open or Released.

Library Password Protection

You can password protect your libraries:

1. Right-click the library and select Properties>Protection. The Password dialog
is displayed.

Figure 34. Password dialog.
3BSE040935R201 Rev A 79

Add Types to Libraries Used in Applications Section 1 Basic Functions and Components

2. Enter the new password and confirm it in the Verify new password field.

3. Click OK. The library can now not be changed without entering the password.

Add Types to Libraries Used in Applications

Types can only be added if the library state is Open. To add a type to a library:

1. In Project Explorer, expand the corresponding library folder.

Figure 35. Library with sub folders.

2. You can now add to the library (see Figure 35):

a. To connect another library to your library, right-click the Connected
Libraries folder and select Connect Library.

b. To add project constants to your library, right-click the library folder and
select Project Constants.

If the library is already password protected, you have to enter the old password
before entering a new one. A password may consist of both letters and digits. It
must be at least 6 characters long.
80 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Add Customized Hardware Types to Library

c. To add a type to the library, right-click the folder corresponding to the type
you want to add and select the command for creating a new type.

Add Customized Hardware Types to Library

Customized hardware types can only be added to the library if the library state is
Open. To add a customized hardware type to a library:

1. In Project Explorer, expand Libraries > Hardware.

Figure 36. Hardware with its libraries.

2. Right-click Hardware types folder under your chosen library, and select
Insert/Replace Hardware Type(s).

3. Browse and select the device capability description file (for example a *.gsd
file) you want to add as hardware and click Open. (See also Supported Device
Capability Description Files on page 82).

4. The Device Import Wizard starts. Follow the instructions in the wizard.

In exceptional cases, it is possible to insert individual external customized hardware
types to a user-defined library, for example, a hardware type of a *.gsd file that have
been converted and used in an earlier version of Control Builder.

In this case, right-click the Hardware types folder under your chosen library and
select Insert/Replace Hardware Type(s) and browse to the hardware type (*.hwd
file) to be inserted. With Insert/Replace Hardware Type(s) it is also possible to
replace same hardware type.

For more information on working with types and project constants, see
Application Types and Objects on page 27.
3BSE040935R201 Rev A 81

Device Import Wizard Section 1 Basic Functions and Components

Device Import Wizard

You use this wizard to import a device capability description file. The wizard will
convert this file to a hardware type and insert the type into a user-defined library.
The appearance of some wizard dialog boxes will be different depending on the file
type to import.

• You can import a new device capability description file, as described above
(Add Customized Hardware Types to Library on page 81).

• You can change conversion settings for a previous import, as described in
Wizard on page 84.

• When you receive an updated device capability description file, you may want
to replace the previous import. Import the new file the same way as the old one,
as described above.

Supported Device Capability Description Files

You can only import supported device capability description files. The following
files are supported: PROFIBUS GSD-files.

For PROFIBUS GSD-files, *.gsd is the standard file extension. However, a file can
also have a different extension that specifies its language, for example, *.gse
(English) or *.gsg (German).

Always complete the wizard, even if you are not finished. Then, you can re-
import the file and continue where you left off.

When a wizard dialog box is displayed, relevant information is read from the
device capability description file. If it is large this may take a while, and a
progress bar will be shown.

For more information on the Device Import Wizard, refer to the online help.

You can only import PROFIBUS GSD-files with hardware types for CI854, and
not for CI851. (However, when you upgrade a previous system offering, any
included hardware types for CI851 will be upgraded as well.)

For more information on using the Device Import Wizard with PROFIBUS GSD-
files, refer to the Industrial IT 800xA - Control and I/O, PROFIBUS DP,
Engineering and Configuration manual.
82 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

Additional Files for Libraries with Hardware

There are a number of files associated with libraries for hardware and hardware
types. For standard system libraries, it is not possible to perform any operation on
these type of files. For a user-defined library there are some files that can be
managed.

The file types, below, are associated with the hardware definition file. These files
cannot be changed or replaced

File Types Associated with Hardware Types

To display the Additional Files dialog for a hardware type, proceed as follows:

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Files.

The only file type (in a user-defined library) that the user can perform any
operations on is the Help File. See Help File on page 85.

The file types, below, are associated with the hardware type and cannot be managed
by the user.

File Type Description

Firmware File Firmware file for CPU or communication interface unit.

Update File Update file for firmware; a download support file.

Firmware Idx File Idx file for firmware, used when analyzing a crash dump.

Protocol Handler Control
Builder File

Protocol handler used by Control Builder.

Protocol Handler
Controller File

Protocol handler used by controller

Protocol Handler Idx File Idx file for controller protocol handler, used when
analyzing a crash dump.
3BSE040935R201 Rev A 83

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

File Types Associated with Libraries

To display the Additional Files dialog for a library with hardware types, proceed as
follows:

1. In Project Explorer, expand Libraries > Hardware.

2. Right-click the library and select Properties > Files.

The file types, below, are associated with the library.

Wizard

Settings for a previously added device capability description file can be changed.

1. In Additional Files for a library, select the row with the device capability
description file (Import File) and press the Wizard button.

2. In the displayed Device Import Wizard, define the new conversion settings.

It is only possible to manage Additional files for a user-defined library.

File Type Description

Help File A help file (of *.chm or *.hlp type) can be added,
replaced, deleted or extracted, See Help File on page 85

Import File Import file is a device capability description file (for
example a *.gsd file) that has been added with the
Device Import Wizard. This type of file can be deleted
(Delete button), or extracted (Extract button) to a file on
disk. By pressing the Wizard button it is also possible to
change the previous done settings. See Wizard .
84 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

Help File

A help file (of *.chm or *.hlp type) can be added, replaced, deleted or extracted for
a customized hardware type, as well as for a user-defined library.

Adding a help file to a customized hardware type or a user-defined library provides
access to the associated help file when you press F1on the user-defined library or on
the customized hardware type, in Project Explorer. For further information about
requirements on customized online help, see the Extended Control Software
manual.

To add a help file to a user-defined library or to a customized hardware type:

1. In Additional Files dialog, select the Help File row and press the Add button.

Browse to the help file (of *.chm or *.hlp type) and click Open.

Replace and Delete

A help file that has been added can be replaced and deleted by selecting the row
with the help file and pressing Replace and Delete button respectively. It is also
possible to delete a device capability file (Import File) for a user-defined library.

Extract and Save a Copy of a File

A help file can be extracted and saved on disk by selecting the row with the help file
and press the Extract button (to the right of the grid). Browse to a place on disk and
save a copy of the file by pressing Save button.

In some exceptional cases there is a need to extract an individual customized
hardware type to a hardware definition file (*.hwd file). In this case, press the
Extract button under Hwd File.

Properties on Hardware Types

In Additional Files for a customized hardware type, it is possible to set a version
information text of maximum 18 character to the help file, by pressing the
Properties button.
3BSE040935R201 Rev A 85

Delete Hardware Types Section 1 Basic Functions and Components

Delete Hardware Types

A hardware type in a library can be removed.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Remove.

Type Usage for Hardware Types

It is possible to display a list of which controller(s) that use(s) the hardware type
together with hardware tree position numbers.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Type Usage.

Figure 37. Type Usage for a selected hardware type.

It is not possible to remove a hardware type from a library, if it is used in any
hardware configuration.
86 3BSE040935R201 Rev A

Section 1 Basic Functions and ComponentsHide and Protect Control Module Types, Function Block

Hide and Protect Control Module Types, Function Block
Types and Data Types

When you create libraries with self-defined control module types, function block
types and data types, Control Builder provides you with two protection features
(attributes). These two attributes are called Hidden and Protected, and can be set
from Project Explorer.

Hidden

Setting the Hidden attribute will completely hide your code from other users. To
hide the code makes it easier to improve your type as often as you like. This is a
common situation when developing types that will be re-used over and over again in
different library solutions.

Protected

Setting your type to Protected will protect the internal type structure from being
seen. This means that only the type itself will be visible, and thus your type
definition will be protected from external exposure, as well as any attempt to
duplicate it. This is extra valuable when you create a type solution for re-use
engineering. When you set the protected attribute, the type interface will be read-
only to other users, meaning that only parameter connection is possible. The
complete type structure will still be protected from external exposure.

Override

After you have protected your types, you can always override the hidden and
protected attribute temporarily, while you work on improvements. The override
protection property can be set in Project Explorer.

For self-made libraries with password protection, you must enter the password
before you make an override, see Library Password Protection on page 79

The Hidden and Protected attribute can also be used for structured data types.

The protection cannot be overridden for Control Builder standard libraries. They
cannot be updated or changed by the user.
3BSE040935R201 Rev A 87

Protect a Self-Defined Type Section 1 Basic Functions and Components

Protect a Self-Defined Type

To protect a self-defined type:

1. In Project Explorer, right-click the type and select Properties > Protection
and Scope. A Protection and Scope window opens.

2. Check the desired protection radio button(s) and click OK.

Override Protection Attributes

To override protection for a library or application:

1. In Project Explorer, right-click the library (or application) and select
Properties > Protection. A Protection Properties window opens.

2. Check the Override check box (see figure above) and click OK. The Override
feature will have impact in Project Explorer only.

Check this box
88 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Task Control

Task Control
A task is defined as an execution control element that is capable of starting, on a
periodic basis, the execution of a set of POUs (Programs, Function blocks, functions
etc.).

The Control Builder setup three tasks (Fast, Normal and Slow) by default, provided
that an AC 800M Control Project template has been selected. The tasks are
connected to their respective programs (one task per program). The tasks serve as
'work schedulers' for the programs and contain settings for interval time and priority.
However, setting interval time and priority is not enough; you must also tune your
tasks.

If a program does not have a task connected, it will run by the task connected to the
corresponding Application.

You may create and connect several tasks to a controller, but experience show that
more than five tasks in each controller makes it difficult to overview.

Task Connections

A task can be connected to a program, a function block, a control module or a single
control module, and several tasks may execute in the same controller. An
application can also be connected to a task, and all POUs in an application execute
in this task, unless otherwise specified. A task can only execute POUs in one
application. Hence, POUs from different applications can not be connected to the
same task.

To learn how to tune tasks, see Application Programming, Introduction and
Design manual (3BSE044222R101).
3BSE040935R201 Rev A 89

Task Connections Section 1 Basic Functions and Components

Create a New Task

To create and configure a new task:

1. Expand the Hardware tree, until you find Tasks.

2. Right-click Tasks and select New Task. A ‘New Task’ window opens.

3. Name the task.

4. Click OK.

Figure 38. A new task has been created.

After the task has been created, it is time to configure the task with new properties.

5. Right-click the new task (SuperFast) and select Properties. A ‘Task Properties’
window opens.
90 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Task Connections

Figure 39. A Task Properties window for configuring a task.

6. Change the interval time to 40 ms. Click Apply followed by OK.

7. Right-click Tasks and select Editor to view the new task. A ‘Task Overview’
window opens.

The Task Overview window lists all the tasks with each property settings. To change
the settings for a certain task:

8. Select a task in the Task Overview window and open Tools > Task Properties.

Right-click a task directly in the hardware tree and select Properties to open the
Task Properties window directly.
3BSE040935R201 Rev A 91

Task Connections Section 1 Basic Functions and Components

Connect a Task to a Program

To connect the task SuperFast to Program1:

1. Right-click Program1 and select Task Connection. A ‘Task Connection’
dialog opens.

2. Select a task from the drop-down menu (here SuperFast) and click OK.

Figure 40. Program1 has changed task to SuperFast.

Function Blocks with Different Task Connections

You can connect function blocks inside a program to a task different from the one
connected to the program, (right-click on the function block and select ‘Task
Connection’).

However, variables inside the function block that pass values to and from the
function block are controlled by the program task. The code in the function block
will run according to its task, but the parameters will be updated according to the
program task. This means, in practice, that the function block in a program can only
run at a slower, or a least at the same, speed as the program. However, if you use
external variables or connect I/O directly to the function block, there will be a direct
reference, independent of the task cyclicity of the function block.
92 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Task Execution

To set-up specific time intervals and task priority different from the task connected
to the application whilst for example, designing libraries, can be done by declaring
and using global variables, or by using parameters.

Task Execution

There are three important task parameters that can be set to optimize program
execution:

• Priority, which sets the execution order for tasks, see sub section Priority
below.

• Interval time, sets the task intervals during the program is executed, see sub
section Interval Time on page 95.

• Offset, a parameter that helps you to avoid unexpected delays in execution
when tasks are scheduled to execute at the same time. See sub section Offset on
page 96.

All POUs connected to a task execute with the same priority, interval time and
offset.

Task Priority

There are six levels of priority: Time Critical, Highest, High, Normal, Low, and
Lowest, numbered from 0 to 5. The tasks are executed according to their priority,
where the time-critical task has the highest priority. A task with higher priority may
interrupt any task with lower priority, but a task cannot interrupt another task with
the same priority. There can only be one time-critical task. Such a task may interrupt
the execution at any point, while other tasks may only interrupt execution at defined
points.

An ordinary (non-time-critical) task can be interrupted:

• at the start of any code block,

• at backward jumps, for example for, while, repeat statements.

For more information, see Control the Execution of Individual Objects on page
61.
3BSE040935R201 Rev A 93

Task Priority Section 1 Basic Functions and Components

A time-critical task has special properties.

• The task is not driven by the same scheduler as the rest of the tasks. Instead, the
task is driven from the system’s real-time clock (hence the high precision).

• The tasks have high precision in execution time. The resolution is 1 ms.

• A change to/from time-critical priority in Online mode is not possible.

• A change to/from time-critical priority in Offline mode requires re-compilation
of the application.

Consider the following points, when using the time-critical priority.

• Only one time-critical task per controller is allowed.

• The execution time for a time-critical task (priority 0) must not exceed 100ms.
This restraint prevents the task from blocking other functions, for example
communication.

• All functions cannot be called from the program connected to the task. You
cannot set time-critical priority if the code contains invalid instructions (this is
checked during compilation). The time-critical task interrupts execution at any
time, which means that execution might be interrupted mid-statement.

• If a power failure occurs while the time-critical task is running, the execution of
the current code block is completed (assuming that it can be completed within
1 ms). For a warm start to be possible, no code block in the time-critical task
may take more than 1 ms to execute.

Task priorities 1–5 can be set by using the firmware function SetPriority. This
function is located in the System folder.
94 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Interval Time

Interval Time

The interval time, during which the program is executed, is set in the Task
Properties dialog. Default values are 50 ms (Fast), 250 ms (Normal) and 1000 ms
(Slow). You can change these values at any time. For a time-critical task, the interval
time can be as short as 1 ms. The interval time of tasks of priority 1–5 cannot be less
than 10 ms. The resolution is 1 ms.

Execution Example

Figure 41 shows two tasks executing in the same system. Task 1 and task 2 have
interval times of 30 and 200 ms, and execution times of 10 and 50 ms, respectively.

When the tasks have been assigned the same priority, the execution start time of task
1 is very much delayed. It also drops one execution.

Figure 41. Execution of two tasks with the same priority.

In Figure 42, task 1 has higher priority than task 2, and interrupts the execution of
task 2. Hence task 1 is not delayed much by task 2.

If two tasks have the same priority, and they both wait for execution, the task with
the shortest interval time will be executed first.

All task intervals must be multiples of each other. The shortest interval is the
"time base".
3BSE040935R201 Rev A 95

Offset Section 1 Basic Functions and Components

Figure 42. Execution of two tasks with different priorities.

Offset

If your tasks are scheduled to execute at the same time you will receive a warning
during download. However, this compiler function is merely calculating theoretical
periodic executions, which means that it will not warn you for task collision caused
by, for example a too close offset time. Therefore, consider the compiler warning as
a first preliminary check provided to you and not as a guarantee that will prevent
task collisions.

Turning off Task Collision warnings

You can turn off the task collision warning from the Project Explorer.

1. Righ-click the Project item and select Settings > Compilation Warnings from
the context manu. A Compilation warnings dialog will open.

2. Click to clear Task Collisions check box and then OK.

The compiler will detect inappropriate offset settings.

The offset of each task must be equal or greater than the sum of the execution
times of all higher-priority tasks.
96 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Offset

When tasks are scheduled to execute at the same time, the task with the highest
priority will be executed first. If tasks have the same priority the task with the
shortest interval time will be executed first. Offset is a mechanism that can be used
to avoid unexpected delays in execution when tasks are scheduled to execute at the
same time.

In Figure 43 and Figure 44, the execution of two tasks with the same priority with
interval times of 50 ms and 100 ms is shown. When both tasks have a 0 ms offset
(Figure 43), the execution start time of task 2 is delayed, and the actual interval time
for task 2 is influenced by variations in the execution time of task 1.

Figure 43. No offset. The two tasks have the same priority, but different interval
times (50 and 100 ms).

If task 2 is assigned an offset, as in Figure 44, neither task is delayed, and the actual
interval time for task 2 will not be affected by task 1.

Figure 44. Offset is set on task 2. The two tasks have the same priority, but different
interval times (50 and 100 ms) and are thus executed at the requested times.
3BSE040935R201 Rev A 97

Offset Section 1 Basic Functions and Components

An application starts to execute by scheduling all tasks in the application to execute
at the same time. The task with highest priority is executed first, and if tasks have
the same priority, the task with the shortest interval time will be executed first.
When a task has been executed, the start of its next execution is synchronized to
time 0 (the time when the controller began to execute). This means that if the time is
t when the task has finished execution, the task will be scheduled to execute at time
(n + 1) * (interval time). However, if (interval time) – d, is less than 10 ms, then the
task will be scheduled to execute at time (n + 2) * (interval time).

t = n * (interval time) + d, 0 <= d < interval time,

If offset > 0, then If offset > d, the start of the next execution will be at a time
n* (interval time) + offset. If offset < d, the start of the next execution will be at a
time (n + 1)*(interval time) + offset. If the time to the start of the next execution is
less than 10 ms, the interval time will be added to the start time of the next
execution. The same synchronization of execution time will be performed after a
change in interval time or offset.

Communication Considerations

POU execution has higher priority than other functions, such as communication.
These functions are performed in the gaps between the execution of different tasks.
If several tasks with long execution times are executed immediately, one after the
other, the time gaps are few but long (see Figure 45).

Figure 45. The result of having no offset for three tasks with long execution times.
The gap (Ta+Tb) is the time available for the execution of other functions, for
example communication.
98 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Offset

The offset mechanism can be used to make the time gaps more frequent (see
Figure 46).

Figure 46. The result of assigning offset to tasks 2 and 3, is that the time available
for the execution of other functions occurs more often (Ta).

The same processor handles communication and IEC 61131-3 code. This means
that you have to consider how much code you include in each task, when you tune
the tasks.

Assume that we have a task running code with an execution time of 500 ms and an
interval time of 1000 ms. This means a cyclic load of 50%
(load = execution time / interval time). But, this also means that no communication
can be performed during the 500 ms execution (since communication has lower
priority than the task).

Now, assume that we have divided the code into 4 tasks such that each one
corresponds to 125 ms of the execution time. The interval time is still 1000 ms,
hence the load is still 50%. But, if we set the offset for the 4 tasks to 0, 250, 500, and
750 ms, the result will be completely different. Now, code will be executed for
125 ms, after which there will be a pause when communication can be performed.
Following this, code will be executed for another 125 ms followed by another pause
when further communication can be performed. Hence, we still have the same cyclic
load, but the possibility for communication has increased considerably.

To conclude, try to tune your tasks using offsets before you change the priority.
Actually, the only time you have to change the priority, is when two tasks have so
much code that their execution cannot be “contained” within the same time slot, that
is, the total execution time exceeds the length of the time slot. It is then necessary to
specify which of the two tasks is most important to the system.
3BSE040935R201 Rev A 99

Overrun and Latency Section 1 Basic Functions and Components

Overrun and Latency
Overrun and Latency are two functions for supervising a task. Overrun checks if
each task finishes before it is supposed to start the next time, and detects if the task
runs for too long. Latency on the other hand, checks that a task starts on time (on
each cyclic start), and detects if the task starts too late.

The Overrun function is configured per controller via the Controller Settings dialog,
while the Latency function is configured per task via the Task Properties dialog.
Both Overrun and the Latency function uses the Error Handler to report any errors.

Overrun Supervision

Overrun occurs when the execution of a task takes too long, that is, the task is still
executing when the next execution of the task is scheduled to start.

By setting the maximum number of consecutive overruns allowed (missed scans),
you can control when a fatal overrun error is considered to have occurred, and
consequently configure a controller reaction.

These reaction settings are:

• Nothing,

• Stop Application,

• Reset Controller.

In an AC 800M controller, load balancing and overrun supervision functions are
mutually exclusive, whereas the Load Balancing function is default. Hence, the
overrun supervision is turned off. For more information about load balancing and
cyclic load, see Load Balancing on page 105.

More information about task tuning can be found in the Application
Programming manual.
100 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Overrun Supervision

Configuring Overrun Supervision

Overrun supervision is set for each controller in the Controller Settings dialog. To
select Overrun Supervision for a controller, follow these steps:

1. Expand the Hardware tree until the controller (for example, Controller_1).

2. Right-click the controller and select Properties > Controller Settings from
the pop-up menu. A ‘Controller Settings’ dialog opens.

3. Uncheck Load Balancing, (Enable overload compensation check box).

4. Select a reaction for Fatal Overrun from the Reaction drop-down menu, (Reset
Controller or Stop Application will activate the Limit field).

5. Enter the number of consecutive overruns allowed in the Limit field, (number
of consecutive overruns before a fatal overrun is considered to have occurred).
3BSE040935R201 Rev A 101

Latency Supervision Section 1 Basic Functions and Components

6. Use the tabs under Error Reaction to set-up actions for different error types and
severity. (For information on Error Reaction settings, see Error Handler
Settings in Controllers on page 217).

7. Click OK.

Latency Supervision

Latency occurs when the execution of a task is delayed, that is, the task starts to
execute later than scheduled. The latency function will supervise your tasks (start on
time on each cyclic load), and detect if a task starts sooner or later than scheduled.

Latency is activated in the Task Properties dialog, where you set the acceptable
latency in percent (accepted latency in percentage of the cycle time). The lowest
accepted value for Latency Time is always 10 ms.

Configuring Latency Supervision

Latency supervision is set for each task in the Task Properties dialog. To select
Latency Supervision for a task, follow these steps:

1. Expand the Hardware tree, until you find Tasks.

2. Right-click a task and select Properties from the pop-up menu. A ‘Task
Properties’ dialog opens.

If overrun errors occur, re-program the faulty task to decrease load.
102 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Latency Supervision

3. Select Latency, (check Enable latency supervision check box).

4. Enter latency percentage into the Accepted latency entry field. The actual used
latency time is shown to the right of the entry field (here 25 ms). The lowest
accepted latency time is 10 ms.

5. Click Apply. Note how the actual latency time changes if the accepted latency
percentage exceeds 10 %.

6. Click OK.

If latency error occurs, re-program the faulty task to decrease load.

Enable
Latency supervision
check box
3BSE040935R201 Rev A 103

Task Abortion Section 1 Basic Functions and Components

Task Abortion

If a task is aborted, the corresponding application will be stopped. The following
criteria apply to a task abortion.

Time-critical Tasks

Time-critical tasks (priority 0) are aborted when the execution time exceeds 300 ms.

Non Time-critical Tasks

Non-time-critical tasks (priority 1-5) are aborted when:

• The execution time exceeds 10 seconds.

• The execution time exceeds (100 * IntervalTime).

This means that if IntervalTime is set to 100 ms or higher (100 * 100 ms = 10
seconds), tasks will be aborted if they have not been executed within 10 seconds.

If IntervalTime has been set to <100 ms, tasks will be aborted if they are not
executed within (100 * IntervalTime).
104 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Load Balancing

Load Balancing

The cyclic load is the percentage of controller CPU power used for program
execution of application code. If the cyclic load exceeds 70% in the controller,
so-called load balancing is initiated automatically. The interval time for all tasks,
except the time-critical task, is then generally increased, to limit the cyclic load to
70%.

If the cyclic load then falls below 70% again, the interval time will normally be
decreased in all tasks, except for the time-critical task. However, the interval time
never falls below the original defined interval time.

Whenever the interval time is changed due to load balancing, a SystemSimpleEvent,
expressed in percent (%) of the actual interval time, is generated, and added to the
system log.

Load balancing for the time-critical task is handled as follows (this differs from
non-time-critical tasks). The interval time for the time-critical task is increased,
whenever its execution time exceeds 50% of its interval time.

For example, if a time-critical task has an interval time of 100 ms, and the
execution time becomes 54 ms in an interval, then the new interval time becomes
108 ms. However, the interval time must be reset manually, after it has been
increased. The interval time of the time-critical task is never decreased
automatically, as for the other tasks.

Change the Requested Interval Time to its original value, or another suitable
value, in the Task Properties dialog (in Online mode). Press Apply or OK to
bring the reset into effect.

Whenever the interval time is increased for the time-critical task, due to load
balancing, a SystemSimpleEvent, expressed as the actual interval time in ms, is
generated and added to the system log.
3BSE040935R201 Rev A 105

Non-Cyclic Execution in Debug Mode Section 1 Basic Functions and Components

Non-Cyclic Execution in Debug Mode

A task can be set up for non-cyclic execution. Use non-cyclic execution to simplify
the debugging of a program.

Debug Mode

Debug mode allows you to debug an application by halting the application running
in the controller, and executing the code one execution at the time.

Debug mode is enabled from the Task Properties dialog (right-click the task in
Project Explorer, and select Properties).

When you have selected Enable debug mode, you can halt the cyclic execution of a
task by clicking Halt. When the task is halted, you can execute the task once by
clicking One Execution. (This is referred to as “non-cyclic execution”.)

Other tasks will not be affected if one task is set up for Debug mode, they will run in
normal cyclic execution mode.

To return to normal cyclic execution of the task, click Run.

A task in Debug mode is indicated in Project Explorer with a warning icon (a
yellow circle with a black exclamation point).

Functions based on the real-time clock (PID controllers, timers, etc.) cannot be
properly debugged in Debug mode.

Timer functions will take into account the actual time elapsed since started,
regardless if, for example, the task is halted in Debug mode.
106 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Search and Navigation

Search and Navigation
The Search and Navigation function makes it possible for the user to search for
symbols (see Symbol and Definition on page 111) in a project, by using advanced
queries, for example, to find out where a certain variable is used in an application.

All symbols matching the search criteria are shown, together with definitions where
the symbols are declared. If a symbol is selected, all references where the selected
symbol is used in the project are also shown. By double-clicking on a definition, it is
possible to navigate to the editor where the symbol is declared. A double-click on a
reference shows the editor where the symbol is used.

A report that contains the last search result shown in the Search and Navigation
dialog can also be generated (see Reports on page 119).

Search and Navigation Dialog

The Search and Navigation dialog mainly consists of Search settings, Symbol,
Definition and References. All Search settings are remembered and will be applied
next time the dialog is used (until Control Builder is shut down).

The Search and Navigation dialog can be accessed from Project Explorer, context
menus and editors:

• In the Project Explorer, select Edit > Search.

• Right-click a Project Explorer object (not Tasks) and select Search or
Alt+F12.

• Select Edit > Search or right click and select Search (or Alt+F12) in a POU
editor, a connection editor, a hardware editor or an access variable editor. These
editors also have a search tool bar button that has the same function.

The Search and Navigation function is available in offline, online and test mode.
For information on search and navigation in online mode, see Search and
Navigation in Online and Test Mode on page 210.
3BSE040935R201 Rev A 107

Search Settings Section 1 Basic Functions and Components
 Figure 47. The Search and Navigation dialog

Search Settings

The Search part of the dialog consists of the Search For: drop-down list, the Search
In: drop-down list, the Search Options radio buttons, the Max no of Hits edit field
and the Search button. Filter Result belongs to References (see Filter Result on
page 116) and the Rebuild button rebuild the Search data base (see Search Data on
page 119).

Search For:

In the Search For text field you enter the symbols to search for (see Symbol and
Definition on page 111). Search Options can be selected for the symbol text entered
in the Search For: text field. An empty text or an asterisk (*) character in the Search
For: text field search for all symbols. All symbols are case-insensitive, that is, a
search for the texts “my”, “My”, “mY” and “MY” gives the same search results.

References

Search

Symbol

Definition

settings
108 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Search Settings

Search Options

The default setting of Search Options is Match whole word. The Match substring
option searches for all symbols containing the entered text as a substring and the
Match prefix option searches for all symbols containing the entered text in the
beginning of the symbol names.

Max no of Hits:

The entered value in the Max no of Hits: field maximizes the number of symbols
that can be found at a search. The default value is 100.

Search In:

The selection in the Search In: drop-down list specifies where, in the project, you
want to search for the entered text symbol. An empty text field gives a search
through the whole project. Applications, Controllers or Libraries are selected if a
search after the Symbol is performed in all applications, all controllers or all
libraries respectively.

The text in the Search and Navigation Dialog on page 108,
Applications.Application_1 1.0-0.Program1 performs a search in Program1 of
Application_1. This search also finds symbols from libraries, because the HWStatus
data type is used in Program1.

Select Search “In: Applications” (not Controllers) if you want to know in which I/O
unit a certain variable is connected.

In Controllers it is only possible to search for access variables and I/O channels as
symbols, since the search symbol has to be defined (declared) under Controllers,
in Project Explorer, to match the search criteria.
3BSE040935R201 Rev A 109

Search Settings Section 1 Basic Functions and Components

Example

In the example below, see Figure 48, a search for the variable “start” is performed to
find out which I/O channel it is connected to. “start” is connected to channel 1 in
hardware on position 0.11.3. By double-clicking on I/O channel (1), in References
pane, you navigate to the I/O unit editor there “start” is connected.

Figure 48. (Part of Search and Navigation dialog at top) A search for “start”
variable in “Applications” to find out which I/O channel “start” is connected to.
(Part of Hardware Editor at bottom).

Search Button

A click on the Search button performs the search according to the settings. The
search result will be shown.

Always on Top

If Always on Top is checked, the Search and Navigation dialog is placed in front of
all other Windows dialogs.
110 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Symbol and Definition

Symbol and Definition

The Symbol objects or the Definitions can be sorted in ascending or descending
order, by clicking on the corresponding title. A new click will toggle the sorting
order. The selected sorting order is remembered and will be used next time.

Figure 49. The Symbol and Definition part of the Search and Navigation dialog.

Symbol

A symbol is an object, which can be search for in a project, by using the Search and
Navigation dialog.

Examples of symbols are:

• hardware channels, access variables, project constants, variables, global
variables, external variables, parameters, extensible parameters, programs,
function blocks, function block types, control modules, control module types,
single control modules, data types, functions, Sequential Function Chart steps,
Sequential Function Chart transitions, Sequential Function Chart sequences,
applications, controllers and libraries.

Examples of objects that are not symbols:

• hardware types, tasks, task connections, comments, descriptions and language
statements in the code, labels in Instruction List code, code block names,
connected libraries.

A symbol can be selected by clicking on it, clicking on the definition of the symbol
or by using the arrow up/down keys on the keyboard.
3BSE040935R201 Rev A 111

References Section 1 Basic Functions and Components

Definition

The definition of a symbol is where the symbol is declared. The definition of a
variable is where in the project the variable is declared, for example in a program.

It is possible to navigate to the definition by double-click on it or by using the
context menu. The enter key on the keyboard can also be used. The editor where the
symbol is declared is shown with the symbol highlighted.

Definition Context Menu

Right-click a Definition to get the context menu selections.

• Go To Definition in Editor navigates to the editor where the symbol is
declared.

• Go To Definition in Project Explorer navigates to the location of the symbol
in Project Explorer.

• Report... See Reports on page 119.

References

The References of a symbol is where in the project the symbol is used.

For example, a variable can be used/accessed by several code lines in several code
blocks, and as an actual parameter to a function call or function block call, or as a
parameter to a control module/single control module. The variable can also be used
(connected to) an I/O channel or an access variable.

Figure 50. The References part of the Search and Navigation dialog.
112 3BSE040935R201 Rev A

Section 1 Basic Functions and Components References

In the example in Figure 50, the AC 800M symbol is used at two locations:

• at line 3, position 47, in Code code block of Program1.
• in channel 0 of unit at position 0 in Controller_1.

It is possible to navigate to a reference by double-clicking it, or by using the context
menu. The enter key of the keyboard can also be used. The present editor is shown
with the symbol highlighted.

References Context Menu

Right-click on a Reference to get the context menu selections.

• Go To Reference in Editor navigates to the editor of the selected reference.

• Go To Reference in Project Explorer navigates to the referenced object in the
Project Explorer.

• The Search menu selection gives the user a possibility to initiate new searches
from the references pane. This is useful when a variable/parameter is connected
to a parameter of a control module, single control module or a function block.

Figure 51. A search for Variable “AppVar1” in Applications.
3BSE040935R201 Rev A 113

References Section 1 Basic Functions and Components

In the example in Figure 51, Appvar1 is connected to a parameter SM1P1 of a
Single Control Module named SM1.

1. In References, select SM1.SM1P1(1).

2. Right-click and select Search.
The Search For: and Search In: text fields will be automatically updated
according to Figure 52. A new search is performed.

Figure 52. A search for SM1P1 in SM1.

A new search can be done to follow parameter Par1 in single control module SM2.

3. In References, select SM2.Par1(1).

4. Right-click and select Search.

The Execute Search Instantly check box (see Execute Search Instantly on page
117) has to be checked. If it is not checked, the user must click the Search button.
114 3BSE040935R201 Rev A

Section 1 Basic Functions and Components References

Figure 53. A search for parameter Par1 in SM1.

This example shows an easy way for the user to follow a parameter through a
control module hierarchy. The users only have to use the Search context menu to
follow the parameter downwards the control module hierarchy. It is also possible to
follow a parameter upwards a module/function block hierarchy.

Icons in References

The references are marked in blue and preceded by an icon.The icon can be any of
the following:

Icon Description

The symbol is written.

The symbol is read.

The symbol is a function block/function block call.

The symbol is accessed by reference.

The symbol is a reference to a graphical connection.
3BSE040935R201 Rev A 115

Navigation to Editors Section 1 Basic Functions and Components

Filter Result

The Filter Result option makes it possible to show references with write access only,
or to show references with read access only.

The possible selections are read, write, I/O Channel Out and I/O Channel In. I/O
Channel Out shows references to output channels only, and Channel In shows
references to input channels only.

Navigation to Editors

It is possible to navigate to the following editors and dialogs:
– The POU editor
– The Connection editor (offline only)
– The Control Module Diagram editor
– The Hardware configuration editor
– The Access Variables editor
– The Project Constant dialog (offline only)

It is possible to navigate from a control module parameter or a single control
module parameter connection in the References to a Connection editor. However, if
the parameter connection is a graphical connection, Control Builder navigates to the
Control Module Diagram editor.

When navigating to an editor or a dialog the window already can be active, but
minimized as well as hidden behind other windows.
116 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Search and Navigation Settings

Search and Navigation Settings

The Search and Navigation settings dialog has two settings regarding update of the
search database and one setting for a “quick-search” function.

Select Tools > Setup > Station > Search and Navigation Settings to display the
Search and Navigation settings dialog.

Figure 54. The Search and Navigation settings dialog with default setting.

Rebuild the Search Data when Opening Project

When this option is checked, Control Builder will rebuild search data when a new
project is loaded in the Control Builder M. This check box is by default not checked.

Rebuild the Search Data when Going to Online/Test Mode

When this option is checked, search data is rebuilt when Control Builder M is
entering online mode or test mode. This setting ensures that the search data is
consistent in online and test mode compared to offline mode. This check box is by
default checked.

Execute Search Instantly

When this option is checked, the Search and Navigation dialog will instantly
perform a search when the dialog is accessed with the Search command, from a
menu or tool bar button, that is, the user do not have to press the Search button in
the dialog. The search is only performed if it is obvious what symbol to search for,
that is, both the Search For: and Search In: boxes in the Search and Navigation
dialog have to be filled in automatically. This check box is by default checked.
3BSE040935R201 Rev A 117

Search and Navigation Settings Section 1 Basic Functions and Components

Example:

Figure 55. Selection of the AC800MStatus in Program1.

1. Click on the AC800MStatus variable in code block Code in Program1.
2. Select Edit > Search (or Alt-F12).

Figure 56. The search result after performing above steps.
118 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Search Data

Search Data

The Search data base contains search data, that is, information about all symbols,
information about the definition of each symbol and information about all
references of each symbol.

It is possible to perform a manual rebuild of the Search data base, in offline mode.
The Search data base can be rebuild in the following ways:

• selecting Rebuild Search Data from the context menus of application,
controller and library.

• selecting Tools > Rebuild all Search Data

• clicking the Rebuild button in the Search and Navigation dialog

Reports

The search result can be transformed into a report by using Basic HTML Report.xslt,
that is by default installed together with Control Builder. The report contains the last
search result shown in the Search and Navigation dialog. All symbols, definitions
and references are included in the report. The symbols in the report are shown in the
same order as in the Search and Navigation dialog.

1. Right-click on a Definition and select Report....

Figure 57. The Create Search and Navigation report dialog.

2. Click Create Report button.
If the Open report with registered application is checked, the report will be
opened in a registered application. The Basic HTMLReport produces reports in
HTML format, that is, the report is opened in the registered Web browser.
3BSE040935R201 Rev A 119

Compact Flash Section 1 Basic Functions and Components

3. Specify a directory to save the report in and enter a suitable file name.

4. Click Save button to store the report file on disk.

It is possible to export the report to Microsoft Excel by using Export to Microsoft
Excel in the Internet Explorer context menu.

Compact Flash
Compact Flash (CF) is a memory card that can be easily inserted to the card slot
located at the front of AC 800M controllers.

The memory card keeps the application saved in unpredictable power supply
environments, which rapidly wear out the controller's battery strength. It is also
convenient for transporting new or updated applications over great distances without
depending on traditional battery support.

The card will be activated and read after a long controller reset (or power failure)
and your application(s) can be loaded into the new controller host without
performing a monitored application download from a Control Builder station.

Saving Cold Retain Values on Files

The cold retain values used by Compact Flash can either be saved cyclic via settings
in the hardware editor or from the code via the function block (SaveColdRetain).

Either way, these values are only saved on files located on the CF card. Thus, not be
confused with the cold retain values saved by Control Builder or OPC Server during
a download.

For more information about the AC 800M controller, see the subsection ‘Product
Overview’ in the AC 800M Controller Hardware manual.

Compact Flash does not support distributed applications; hence you cannot use
the memory card in a controller that run distributed applications.

Read more about the SaveColdretain function block type in Control Builder
online help.
120 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Adding Compact Flash to Hardware

Adding Compact Flash to Hardware

From the Project Explorer:

Make sure that BasicHwLib is inserted under Hardware and that it is connected to
the controller.

1. Expand the Controllers item until you reach the CF Reader item (Figure 58).

2. Right-click the CF Reader and select Insert Unit from the context menu. A
dialog will open.

3. Select CF Card in the dialog and click Insert.

4. Click Close.

Figure 58. The Controllers item expanded and the CF Card connected to the CF
Reader item.

Setting Up Cyclic Save of Cold Retain Values

As mentioned earlier, saving cold retain values cyclic are one of two methods for a
single CPU configuration. The other method is saving cold retain values based on
process events, accomplished by calling the function block (SaveColdRetain) from
the code. You should typically decide one of these two methods. However, if you
run with a redundant CPU configuration, then you must read Cold Retain Values for
Redundant CPU Configuration on page 122.

This subsection will describe how to save cold retain values cyclic. Provided that
you have added the CF Card to your Hardware tree according to Figure 58, do the
following:

1. Double-click the CF Card and select Settings tab in the hardware editor.
3BSE040935R201 Rev A 121

Adding Compact Flash to Hardware Section 1 Basic Functions and Components

2. Set the cyclic interval time for saving cold retain values to file. The default
value is (60 min.). See Figure 59.

Figure 59. Settings for Save cold retain values (default 60 min.).

3. Close the hardware editor.

Cold Retain Values for Redundant CPU Configuration

If you have a redundant CPU configuration; you cannot save cold retain values
cyclic or by the function block.

However, you can always save cold retain values via the Tool menu in Control
Builder so that your cold retain values will be part of the application, thus be loaded
to the Compact Flash memory card.

To save cold retain values for a redundant CPU configuration in Control Builder,
first make sure your project is Online:

1. In the Project Explorer menu bar select Tool > Save “ColdRetain” Values. A
‘Save “ColdRetain” Values’ dialog will open.

2. Click Save. The cold retain values have been saved with your application and
you are now ready to download to the Compact Flash memory card.

To prevent Compact Flash for saving additional cold retain values, you must set
the parameter Value to zero (0). Otherwise it will keep saving new values to file.
Setting the value to 0 would normally be the case before shipping the CF to a host
control system.
122 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Downloading the Application to Compact Flash

Downloading the Application to Compact Flash
Before you can download your application to Compact Flash, you must connect an
external Compact Flash Writer to your Control Builder PC. The writer is normally
connected to the PCs USB port.

From the Project Explorer, make sure your project is in offline mode:

1. Insert a Compact Flash card in the Writer slot.

2. Right-click controller and select Compact Flash from the context-menu. A
‘Pick removable media’ dialog window will open.

3. Select Writer and click OK. The Control Builder will write the application to
the Compact Flash card.

Configuration Load
Configuration Load means to load a controller configuration, all applications and
their corresponding cold retain values from Compact Flash. After a configuration
load, the application can read all the critical process (cold retain) values that was
stored on Compact Flash.

If or when a control system is breaking-down due to power failure, and no battery
backup in the controller is available, Compact Flash can re-boot the control system
with the latest and the most efficient cold retain values.

Application Version Check

If the application version in the controller is not identical with the version in
Compact Flash or vice verse; a warning message will alert and no more cold retain
values can be saved.

In case the Control Builder source code files is to be placed on the card, it is
recommended to zip these files into one single file before placing it on the card.

For a redundant CPU configuration, you need to write the same application twice
(two CF cards, one in each CPU). Copy (in Windows Explorer) the downloaded
application (two folders) from the CF card and paste them temporarily on your
local disk. Insert the next memory card into the Writer and drag your two folders
from the hard disk and drop them on the new CF memory card.

In case of a redundant processor unit configuration, it is recommended to insert a
CF in both CPUs.
3BSE040935R201 Rev A 123

Reports Section 1 Basic Functions and Components

Reports

Difference Report

If the Difference Report function is enabled, the Difference Report Before
Download dialog displays (in the same dialog):

• Difference report,
• Source code report.

Based on the information presented in the reports you can either accept or reject the
changes, if you want the download to be carried out or cancelled.

The function is enabled/disabled by right-click the control project folder (root
object) and select Settings > Difference Report.

Difference report shows the difference between data downloaded to the controller
and the data present in Control Builder, see Figure 60. The tree view to the left
shows the parts of the application that have changed. By clicking an item in the tree,
you can display the present controller code to the left, and the new code to the right.
Differences are also indicated by colors (the color coding is explained on the status
bar at the bottom of the report window).

Figure 60. Difference report before download
124 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Source Code Report

The difference report presents found differences, see Table 8.

Source Code Report

The source code report shows the complete source code for the current project in the
Control Builder, and enables a review of the source code that is independent of
editors and user interfaces of the Control Builder.

You perform the review by comparing the code presented in the report with the code
in the editors of the Control Builder, checking that the source codes correspond with
each other. If you find discrepancies, for example in the controller configuration,
you can try to compile and download again.

The main difference compared with the difference report is that the source code
report shows all source code from the different parts.

Table 8. Differences presented in difference report.

Data Example

Application data User defined types, start values,
execution order, connected libraries.

Controller configuration data Access variables, hardware units,
hardware definition files (hwd files), task
properties, connected applications,
settings from external configuration tool
(such as Fieldbus Builder FF), controller
settings (error handler), communication
interval settings.

Project constants

System variable EnableStringTransfer

To reduce the compilation time during download of a project to a controller, it is
possible to exclude the start values from the difference report. The start value
analysis is enabled/disabled via Tools > Difference Report Settings.
3BSE040935R201 Rev A 125

Source Code Report Section 1 Basic Functions and Components
 Figure 61. Source code report before download

The left part of the dialog displays a tree containing the different parts of the report
(see table below). To view the source code for a specific item, navigate the tree until
you find the item, and then double-click the item (or right-click the item and select
Show Source Code).

The source code report presents information as shown in Table 9.

Table 9. Information presented in source code report .

Data Example

Application data User defined types, execution order,
connected libraries.

Controller configuration data Access variables, hardware units,
hardware definition files (hwd files), task
properties, connected applications,
controller settings (error handler),
communication interval settings,
structural changes, simulation mark,
signature.
126 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Reports Generated at Download

Information about execution order will be part of the report, provided that a
compilation has been performed.

Source code for protected types will not be displayed in the report. In the report, a
protected type is indicated by a padlock icon . If the protected type is part of a
library, it is possible to override the protection by entering the password.

To print the source code for the whole project, select File > Print. To print the
source code for selected parts of the project, navigate the tree to the item you want
to print, right-click the item and select Print Source Code. Alternatively, you can
select File > Print, and select print range Selection in the Print dialog.

Reports Generated at Download

Difference Report and Source Code Report Generated at Download

For a description of the difference report and source code report generated when
you perform a download of a project from the Control Builder to the controller, see
Difference Report on page 124 and Source Code Report on page 125.

Project constants

System variable EnableStringTransfer

The source code report has a filter function to increase the readability of the
source code for Function Block Diagrams and Control Modules. This filter is by
default turned on (select Tools > Filter).

You can generate a source code report without compilation or download. See
Source Code Report Generated for Project in Control Builder on page 128.

You can also generate a source code report for the project in the controller. See
Source Code Report Generated for Project in Controller on page 128.

Table 9. Information presented in source code report (Continued).

Data Example
3BSE040935R201 Rev A 127

Reports Generated at Download Section 1 Basic Functions and Components

Source Code Report Generated for Project in Control Builder

To generate a source code report for the project in the Control Builder, without
performing any compilation or download, select Tools > Source Code Report.

Figure 62. Source code report generated without prior compilation

Source Code Report Generated for Project in Controller

A source code report for the project running in the controller can be generated
provided that:

• A successful download to the controller, with difference report enabled, has
been performed.

• The project in the Project Explorer is the same as the project in the controller.

To generate a source code report for the project in the controller, right-click the
controller in the Project Explorer and select Remote System, and then click Show
Downloaded Items. In the Downloaded Items dialog, click Source Code Report.
128 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Project Documentation

Figure 63. Source code report generated for project in controller.

Project Documentation
The project documentation function provides you with filter options while
documenting your control project. The filter helps you specify parts of the control
project and keeping the document size to a minimum. All documentation is
produced as Microsoft Word documents as default, hence Microsoft Office must be
installed.

A complete overview of a library, an application, a controller, or an object in these
folders can be exported to a file for printout from Project Explorer. However, it is
not possible to select a folder at the root level, for example the Libraries object
folder.

All project documentation will be connected to a standard template. But you can
create templates of your own for the documentation.
3BSE040935R201 Rev A 129

Project Documentation Section 1 Basic Functions and Components

Printing Project Documentation

To print documentation, in Project Explorer:

1. Right-click any object in the tree view and select Documentation. A
‘Documentation’ dialog will open.

2. Click More to filter information. An ‘Edit Properties’ dialog opens.

Figure 64. Editor Properties dialog for filter options.

The Editor Properties dialog inside the Documentation function, contains three
main areas, which are represented by tabs in the dialog, see Figure 64.

• Objects and Types,

• Editor Items,

• Used Types.
130 3BSE040935R201 Rev A

Section 1 Basic Functions and Components Objects and Types

Objects and Types

This is the start level for filtering the contents of your application or library. As you
can see, all options have been selected by default. You adjust the filter setting by
exclude an option.

Editor Items

Figure 65. Editor item tab for selecting items inside filtered types and objects.

After adjusting the filter settings for types and objects, another filtering can be done
per item. You can now specify which items to include/exclude for the previous
selected types and objects. The items are grouped under Declaration Pane and
Source code.
3BSE040935R201 Rev A 131

Used Types Section 1 Basic Functions and Components

Used Types

Figure 66. Used Types dialog for printing used types only.

This filtering option selects types in a library that has an object (instance) in an
application or inside another library. The resulting documentation from this dialog
will only include the information for those types that have been matched as a
reference in the selected application or library (see the drop-down menus in
Figure 66).

In order to select a library or an application/library reference from the drop-down
menus, you must first check the Used Types check box.

Used Types must
be checked.
132 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling

Introduction
An important part of an automation system is to be able to supervise and interact
with the system. For this to be possible, information about the status of the
supervised processes must be made available to the operator. Both the operator and
the controllers need to be able to interact with the process.

This requires that information is transferred to and from the operator interface, in
the form of commands, alarms, and events.

Alarms and events are generated in three ways:

• by using objects based on library types containing alarm and event functions,

• by using objects especially made for alarm and event handling (based on the
types in the Alarm and Event library),

• by hardware units throughout the system (system alarms).

This section describes how to add alarm and event handling when there are no built-
in functions for this. For information on how to configure alarm and event handling
using objects that already contain alarm and event handling functions, please refer
to the Extended Control Software manual, and to online help for the object in
question.

This chapter describes the alarm handling functions in the Alarm and Event
library. Signal objects, process objects, and a number of control objects have
built-in alarm functionality that is similar to the functions described in this
section. For a description of built-in alarm functions, see the references above.
3BSE040935R201 Rev A 133

Alarms and Events Section 2 Alarm and Event Handling

Alarms and Events

Alarms and events inform the operator of the status of processes and systems. An
alarm represents a named state, also called an alarm condition (this is an OPC
standard term). Events give information about changes that is needed to analyze
various error situations. The OPC standard defines three kinds of events:

• Condition-related events, which are created when an alarm state changes.

• Simple events, which are created at occurrences like when a motor starts.

• Tracking-related events, which are created at occurrences like an operator
action.

Alarms are usually presented to the operator in alarm lists, while events are
presented in event lists. Alarms and events can also be handled by various parts of
the system without the involvement of an operator, so that, for example, a process is
stopped when a certain alarm goes on.

Alarms and events are collected from controllers and other parts of the system, and
transferred to subscribing OPC clients (operator interfaces) using an OPC server,
see Alarm and Event Communication on page 159.

Alarms and events are often logged, for use in trouble-shooting and when tracing
the origins of an error, see Section 5, Maintenance and Trouble-Shooting.

There are two main types of alarms and events:

• Process alarms and events are generated by changes in the alarm condition of a
monitored process signal, see Process Alarm and Event Generation on page
135.

• System alarms and events are generated by a change in the status of the system
itself, for example by a hardware failure or by the application via function
block (SystemAlarmCond). See Detection of Simple Events on page 144 and
System Alarm and Event Generation on page 154.

Alarm and event handling also requires clock synchronization, in order for time
stamps to be reliable when trying to analyze a sequence of events. See Time Stamps
on page 156 and Sequence of Events (SOE) on page 147.

All alarms and events follow the OPC Alarm and Event specification.
134 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Alarm and Event Library

Alarm and Event Library
The Alarm and Event library contains function blocks and control modules for:

• Creating alarms and events when a monitored signal of type bool changes,

• Creating simple events with user-defined data, for use in, for example, batch
applications,

• Printing alarms and events.

Additional Information

For examples of how to use components from the Alarm and Event library, see
Condition State Example on page 163. For details on how to use alarm and event
functions, see Alarm and Event Functions on page 170. This sub-section also
describes how to set up printers and print queues.

For a complete list of all objects in the Alarm and Event library, see the manual
Basic Control Software.

Process Alarm and Event Generation
Process alarms and events can be generated using a number of objects based on
types in the Alarm and Event library.

• The function block types AlarmCond and AlarmCondBasic, as well as the
control module types AlarmCondM and AlarmCondBasicM, can be used to
generate alarms and events each time there is a change in a monitored signal
(of type bool). See Process Alarms and Events on page 136.

• The function block type SimpleEventDetector can be used to generate a simple
event whenever a monitored signal of type bool changes. See Detection of
Simple Events on page 144.

• The function block type DataToSimpleEvent can be used to create a simple
event and add user-defined data to it. Detection of Simple Events on page 144.

There are also system generated alarms and events, see System Alarm and Event
Generation on page 154.

The function block type AlarmCondBasic and the control module type
AlarmCondBasicM are versions of AlarmCond and AlarmCondM, which
consume less memory. These types do not allow inverting the monitored signal
and they support internal time stamps only.
3BSE040935R201 Rev A 135

Process Alarms and Events Section 2 Alarm and Event Handling

Process Alarms and Events

Alarm condition-driven alarms and events are created when the monitored signal
changes, that is, when an alarm condition is fulfilled. This monitored signal must be
of type bool and is typically taken from another function block or module in the
system, or from an external device. The alarm condition function blocks and control
modules are state machines, which change from one state to another following a set
of configurable rules, whenever the monitored signal changes. This is defined as a
change in the alarm condition. Each time an alarm condition changes, an event is
created as well.

AlarmCond and AlarmCondM

The two basic types for creating alarm conditions are the function block type
AlarmCond and the control module type AlarmCondM. The principle behind the
two is the same. Through parameters, it is possible to connect to the monitored
signal, add information to the alarm, provide other objects with status information,
and to control the behavior of the alarm condition. In Figure 67, the function block
type AlarmCond is used to illustrate the function of the different parameters.

All alarm condition objects can be used in time-critical tasks.
136 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Process Alarms and Events

Figure 67. The function block AlarmCond.

In parameters used for
the monitored signal

Signal

SignalID

AlarmCond
function block

Out parameters for the
status of the alarm condition

Error

CondState

Status

Message

SrcName

CondName

Severity

Class

In parameters used
to add information
to the alarm

FilterTime

UseSigToInit

EnDetection

AckRule

EnCond

DisCond

AckCond

Inverted

In parameters used to
control the behavior of
the alarm condition

ExtTimeStamp

TransitionTime
3BSE040935R201 Rev A 137

Process Alarms and Events Section 2 Alarm and Event Handling

.

The control module type AlarmCondM has similar functions and uses the same
parameters as the AlarmCond function block type.

Alarm Condition Types with Reduced Functionality

In applications where it is necessary to minimize memory consumption, the
function block type AlarmCondBasic and the control module type
AlarmCondBasicM offer an alternative to AlarmCond and AlarmCondM.

Basically, they are the same as their counterparts AlarmCond and AlarmCondM,
with the following differences:

• They consume less memory.

• They always use acknowledgement rule number 1 (AckRule=1).

• It is not possible to invert the in signal, that is, the Inverted parameter cannot be
used.

• External time stamps cannot be used, that is, the parameters ExtTimeStamp and
SignalID are not used.

• Remote time stamps cannot be used, since the parameter TransitionTime
cannot be used.

If you change the value of an Edit parameter, this change will not take effect until
after a warm or cold download.

The following alarm condition parameters are Edit parameters:

• ExtTimeStamp,

• SignalID,

• UseSigToInit,

• SrcName,

• CondName,

• Inverted,

• AckRule.

The Description field in the parameter editor starts with EDIT if the parameter is
an Edit parameter.

For more information on parameters and their possible values, also see online
help and the Description column in the parameter editor.
138 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Process Alarms and Events

Select Signal to Monitor

The monitored signal can be internal (that is, reside in the controller), or external
(that is, reside outside the controller).

Which type of signal that is monitored is indicated by the parameter ExtTimeStamp.
If this parameter is True, the external signal indicated by the hardware address in the
parameter SignalID is monitored. If ExtTimeStamp is false, the parameter Signal is
used to connect to the monitored signal.

The parameter Inverted can be used to invert the in signal (True=invert signal).

UseSigToInit is used to indicate from where the initial value of the signal should be
taken (the state machine needs a start value). This parameter is only relevant when
the monitored signal is external. When UseSigToInit is True, Signal is used to get an
initial value.

Control the Behavior of the Alarm Condition

The following parameters can be used to control the behavior of an alarm condition:

• AckRule determines which acknowledgement rule is used. The
acknowledgement rule decides the behavior of the alarm condition when an
alarm has been created. This parameter is an EDIT parameter (that is, it is used
for configuration purposes only, and cannot be changed without a restart) and it
cannot be changed from the code.

• FilterTime determines how long the signal must deviate before a change is
considered to have taken place. The filter time should be set so that glitches do
not cause an alarm.

• TransitionTime determines the time of the event occurrence when the Signal
change. If the value is equal the default value (the time) will be read inside this
FB instead

• EnDetection enables detection when True. When this parameter becomes
False, the alarm condition goes to an inactive state and the signal is no longer
monitored. By setting this parameter to False, you will stop detection of new
alarms and leave existing alarms unacknowledged.

• AckCond is used to acknowledge an alarm (True = acknowledge). It is normally
used to acknowledge alarms from simple devices such as push buttons.
3BSE040935R201 Rev A 139

Process Alarms and Events Section 2 Alarm and Event Handling

• DisCond disables the alarm condition when True.

• EnCond enables the alarm condition when True.

How the condition state changes when an alarm is acknowledged depends on the
value of the acknowledgement rule (AckRule) parameter. This parameter is available
in the AlarmCond and AlarmCondBasic function blocks, and in the AlarmCondM
and AlarmCondBasicM control modules.

There are five acknowledgement rules:

• AckRule = 1, “normal handling”, alarms must be acknowledged and inactive
before the “normal” state is resumed,

• AckRule = 2, alarms need no acknowledgement,

• AckRule = 3, alarms return to “normal” state on acknowledgement,

• AckRule = 4, not used (reserved for future use),

• AckRule = 5, alarms return to “normal” state when a sum system alarm is
acknowledged and returns to its normal state.

For more information about the different acknowledgement rules, see
Acknowledgement Rules – State Diagrams on page 171.

Alarm and Event Information

There are a number of parameters for adding information to alarms and events:

• Message can be used to add a textual description of the alarm condition, for
example, “temperature low”.

• SrcName identifies the alarm source, for example, “Motor101”.

• CondName identifies the alarm condition, for example, “Level_High“.

• Severity indicates the degree of severity, where 1 is the least severe, and 1000 is
the most severe level. This parameter is very useful when filtering alarms and
events.

The AckRule parameter is normally set to 1 (normal). It cannot be changed
online.
140 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Process Alarms and Events

• Class can be used to classify the alarm (1-9999). This parameter is also useful
when filtering events,

This information can be displayed in the operator interface and written to various
logs. It can also be used to sort and filter alarms and events.

Since the source name and the condition name identify the alarm, the combination
of the two must be unique within a controller. Any attempt to define an alarm
condition that results in a non-unique combination of source name and condition
name will result in an error (the Error parameter will become True). Also, a simple
event is generated.

If an OPC server detects a non-unique alarm (that is, two controllers have the same
combination of source name and condition name), a system simple event is
generated.

There are two alternatives for indicating the source of an alarm or event:

• Leave the SrcName parameter empty. The Name parameter of the alarm owner
(see Alarm Owner Concept on page 144) will be used as the source name.

• Set the SrcName parameter to whatever source name you want to use.

The condition name is normally the name of the alarm condition function block or
control module instance, for example Level_High, but could also be set via the
CondName parameter.

The same condition names should be used throughout the whole project, since it is
important that the operator has a limited set of condition names to deal with. Using
condition names in a consistent and structured manner also makes it easier to
understand the process.

For a program or application to have a source name, you need to create a variable
called Name in the program or application. If the SrcName parameter is left
empty and the alarm owner is a program or application, the value of the Name
variable will be used as the source name.

All alarms belonging to the same alarm owner must have the same source name.

Condition names are case sensitive, that is, Level_High is not the same as
LEVEL_HIGH.
3BSE040935R201 Rev A 141

Process Alarms and Events Section 2 Alarm and Event Handling

The class parameter (Class) can be used to classify all alarms.

Status Information

There are three parameters that can be used to retrieve status information for an
alarm condition:

• CondState indicates the state of the alarm condition (0-6, see below).

• Error indicates an error in the alarm condition.

• Status gives the status code from the latest execution.

Alarm conditions are state machines, which change from one state to another
following fixed rules. The most important reason for an alarm condition to change is
a change in a monitored signal. The alarm condition (indicated by the parameter
CondState) also changes if:

• an alarm is acknowledged,

• an alarm is disabled,

• an alarm is enabled,

• auto-disable occurs.

For detailed information about source name and condition name restrictions and
syntax, see online help for the Alarm and Event library.

The default class is 9950 for all system alarms and system events. All other
numbers can be used as required. Possible values are 1-9999. The default value
can be changed by changing the CPU setting AE System AE class.

If a parameter is outside its defined range, the Status parameter will take a
negative value or the value 703.
142 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Process Alarms and Events

The condition state (CondState) parameter indicates the state of an alarm. An alarm
can be in one of seven states:

The CondState parameter can be used to pass the state of an alarm to other parts of
the software.

Autodisable

AC 800M controllers have a CPU parameter called AE Limit auto disable. This
setting controls the number of times an alarm can go on and off, without being
acknowledged. When the limit is reached, the alarm condition is automatically
disabled, and the state AutoDisabled is entered. The default setting is 3, and the
maximum setting is 127. If AE Limit auto disable is set to 0, autodisabling is turned
off and alarms can be activated an unlimited number of times.

Integer value State

0 Alarm condition not defined

1 Disabled

2 Enabled, Inactive, Acked - Idle

3 Enabled, Inactive, Unacked

4 Enabled, Active, Acked

5 Enabled, Active, Unacked

6 Enabled, AutoDisabled, Unacked

To see the state of all alarm conditions for a certain object in Project Explorer,
right-click the object and select Alarm Conditions from the context menu.
3BSE040935R201 Rev A 143

Detection of Simple Events Section 2 Alarm and Event Handling

Alarm Owner Concept
The alarm owner concept is important, since it is the key to manipulating the source
of an alarm. Not all objects in the Project Explorer tree hierarchy are alarm owners.

For an object (for example, a tank object) to be an alarm owner, it must fulfill two
criterias:

1. It must have the attribute Alarm Owner set to True.
2. It has to be the last link in an unbroken chain of alarm owners, all the way from

the program or application, down to this particular object.

If an object is not an alarm owner, or the alarm owner chain is broken, the system
looks further up in the hierarchy, until it finds an object on a higher level that is
directly above the origin of the alarm or event, and fulfills the above criteria.

This is the point of the alarm owner concept. By not setting the Alarm Owner
attribute for low-level objects, alarms and events can be connected to an object on a
level higher than their true origin. If no alarm owner is found, the program or
application itself becomes the alarm owner. The following objects are always alarm
owners:

• Applications,
• Programs.

Detection of Simple Events
A simple event detector generates a simple event each time there is a change in the
monitored signal. A simple event detector can be implemented by means of the
function block type SimpleEventDetector.

SimpleEventDetector can be used with internal, external or remote time stamps.
This function block type is connected to the monitored signal exactly the same way
as the function block type AlarmCond, that is, using the parameters Signal,
SignalID and UseSigToInit. See Select Signal to Monitor on page 139. It is also
possible to set the filter time (via a FilterTime parameter).

The function block DataToSimpleEvent can be used to add data to a simple event.
See Simple Events on page 155.

For more information on how to configure these function blocks, see alarm and
event online help.

For SimpleEventDetector, the following applies:
If ExtTimeStamp is True, FilterTime is not used.
144 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Built-in Alarm and Event Handling in Other Libraries

Built-in Alarm and Event Handling in Other Libraries

This section deals with alarm and event handling based on the Alarm and Event
library. However, alarm and event functions are built in to a number of other types in
the standard libraries that are delivered with Compact Control Builder.

This sub-section gives a short introduction to signal objects and to the built-in alarm
and event functions of process objects and control loops. It also describes the inhibit
and disable functions for these objects, since they are relevant to the interaction with
the types in the Alarm and Event library.

Alarm and Event Handling Using Signal Objects

The Signal Library contains types that can be used to create representations of
objects with an input or output signal, for example a temperature sensor. By using a
signal object, you can go to manual mode and set the value of the signal, as well as
supervise the signal and generate alarms when the signal deviates.

For more information about the Signal library, see online help and the Extended
Control Software manual.

Alarm and Event Handling in Control Loops and Process Objects

Alarm and event handling is built into a number of library types, such as control
loops and process objects. These alarms and events are handled the same way as
other process alarms and events.

Alarms and events can be generated directly by those objects, each time the alarm
condition is fulfilled, or the object can generate a bool signal that can be connected
to an alarm condition object.

Never use types from the Signal Library to represent all I/O channels. This will
consume a lot of memory and will result in poor performance. Use signal objects
when there is a real need to control and monitor an I/O signal. Signal objects
normally represent an object with a single signal.

For a description of how to configure built-in alarm handling for various library
types, see online help for the type in question, and the Extended Control Software
manual.
3BSE040935R201 Rev A 145

Built-in Alarm and Event Handling in Other Libraries Section 2 Alarm and Event Handling

Inhibit and Disable Alarms and Events

Sometimes there is a need for temporarily suspending alarm and event generation.
This can be done for all objects with built-in alarm handling:

• Disable – the alarm condition is disabled, no alarms and events are generated,
nothing is sent, and no control action is taken (that is, the system does not act
upon the alarm condition).

• Inhibit – the control action itself is inhibited (that is, the system does not act
upon this alarm or event), while alarms and events are still presented to the
operator in the operator interface.

Alarms and events can be disabled from the interaction windows and from OPC AE,
as well as from the application, via interaction parameters.

Inhibit Parameters

The inhibit function is present in the following standard library types.

• Signal library:
– SignalInReal,
– SignalReal,
– SignalInBool,
– SignalBool.

• Standard Control library:
– Level6CC,
– Level4CC,
– Level2CC.

In these types, control actions are inhibited by setting a parameter InhXAct, where X
stands for the name of the condition, for example InhGTHAct (where GTH stands
for Greater Than High).

Normally, the control action will be a boolean signal that causes a certain
reaction, for example, a signal that stops a motor. However, a control action could
also cause a more complex series of actions.

Inhibit is only available in the types listed under Inhibit Parameters on page 146.
146 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling External Time Stamps (S800 IO)

There are also parameters for indicating if the alarm condition (event generation)
has been inhibited or not.

Disable/Enable Parameters

The disable function is available in all types that contain built-in alarm handling. An
alarm condition is disabled by setting the EnableY parameter to False, where Y
stands for the name of the condition, for example EnableGTH (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition has been disabled or
not.

External Time Stamps (S800 IO)

Sequence of Events (SOE)

Some I/O modules add a low-level time stamp to an alarm or event when it detects a
change in a signal. Instead of using the time stamp created by the controller when it
detects a change in the monitored signal (that is, when the task is executed), the
controller simply adds the time stamp created by the I/O module. In this way, the
time stamp shows when the change actually occurred, instead of when it was
detected by the controller.

For this to work, the I/O module will have to support Sequence of Events (SOE).
SOE is currently supported on ModuleBus only. For information on
enabling/disabling and configuring SOE, see online help for S800 I/O.

There are additional parameters that affect the behavior of built-in alarm
conditions, for example AEConfigX. For more information on parameters, see
online help for the object in question (select and press F1).

A special form of external time stamp is created by external units with Sequence-
of-Event (SOE) support, such as DI831. A low level event is then time-stamped
by the I/O unit and sent to the controller to be dealt with. This triggers alarms or
simple events in the controller. The change of status is time-stamped with the low
level event time stamp.
3BSE040935R201 Rev A 147

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

External Time Stamps (INSUM)

Creating an Application that Handles INSUM Alarms

All INSUM devices (MCU, Circuit Breaker) have supervision functions that can
report alarms. The different device types supervise and report specific alarm types.
The alarms are reported in specific Network Variables.

MCUs report the alarms in the Network Variable NVAlarmReport.

The user can decide if there should be a summary entry that tells that there are some
alarms (one or more) in the device. It is possible to have a separate summary alarm
for warnings and a separate alarm for trips.

This subsection discusses both methods, receiving INSUM alarms in the application
program, and generating alarm to the alarm lists. The user can decide to use either
methods or just one of them.

Receiving INSUM Alarms in the Application

To receive alarms in the application program the INSUMReceive function block is
used in the same way as when receiving other input network variables from an
INSUM device, choose the correct NVindex and data type. The data type should in
this case be NVAlarmReport (see also the MCUAlarmTrips/WarningsStructs
regarding how to interpret the bits).

The time stamp set by the INSUM device in the alarm variable is presented in the
two time fields of the NVAlarmReport. This time information is only correct if the
clock in the INSUM device is synchronized. The system software does not fill in
these fields if the time stamp received from the INSUM device is incorrect. (See
below).

Generating Alarms for Alarm Lists

The controller system software generates alarms for the alarm and event lists in the
system, based on the updates of the INSUM alarm information if the parameter
Generate Alarms on the device is set to Enabled or Enabled Trip/Warning or
Enabled Detailed.
148 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

If the time stamp received from the INSUM device is correct (a valid time) this time
stamp is used for the generated alarm message. If it is not, the system software tags
the generated alarm message with the current controller time.

In this case, the alarm messages are time stamped in the controller. If this time
accuracy is sufficient, this method is probably to be recommended because it is
easier to configure. No System Clock is needed in the INSUM system. If you let the
system software generate the alarms it can use the time stamp given by the INSUM
devices. If the INSUM System Clock is used this is a much more accurate time
stamp.

Summary Alarms, One Alarm Object Per Device

Generate Alarms = Enabled means that the system software internally (without
needing INSUMReceive) creates a subscription of the alarm variable from the
INSUM device. When this variable is updated from the INSUM system, the system
software evaluates the content.

If a bit (one or more) which is classified as an alarm (e.g. not the bit "Started1") is
set and no such bit previously was set, the system software generates one alarm
message.

If an alarm update is received with the change that no alarm classified bits are set
any more, the system software generates the alarm-off message.

Summary Alarms, One Alarm Object For Warnings and One for Trips

Generate Alarms = Enabled Trip/Warning. The difference compared to the handling
for Enabled is that the system software generates one specific alarm message when
a warning bit is set and another alarm message when a trip bits are set.

If the parameter Generate Alarms is set to disabled, alarm information can
anyway be sent to the alarm and event lists by the application. This can be done
by creating an AlarmCond function block and to connect information received
from an INSUM device to the parameter Signal and to set
External Time Stamp = FALSE.
3BSE040935R201 Rev A 149

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

This means that there will be one alarm message for the first warning and one for
the first trip. To use this setting two AlarmCond blocks should be created for each
INSUM device, one for the warnings and one for the trips. If an alarm update is
received with the change that no warning bits are set there will be an alarm off
message for the warnings. The same applies for the trip bits.

Detailed Alarms

Generate Alarms = Enabled Detailed. The difference compared to the handling for
Enabled (see Summary Alarms, One Alarm Object Per Device on page 149) is that
for each alarm classified bit which is set (and previously was not set) the system
software generates one separate alarm message. If an alarm update is received with
the change that an alarm classified bit that previously was set now is reset, the
system software generates the alarm off message for that bit.

Creating AlarmCond Blocks for Generated Alarms

The function block AlarmCond should be used to get descriptive messages in the
event and alarm list and get an association with an alarm object. AlarmCond is
associated with the alarm messages that the system generates by setting
ExternalTimeStamp=TRUE and to identify the alarm object with the parameter
SignalId.

Alarm Generation = Enabled

The SignalId should be a string that specifies the hardware position for the INSUM
device. This is done with the syntax C.G.D, where:

• C is the position of the CI857,

• G is the position of the INSUM Gateway and,

• D is the position of the INSUM device. The position numbers are separated by
a dot '.'.

Using Enabled Detailed means that one AlarmCond block should be created for
each alarm type that the INSUM device sends. For a large INSUM configuration
where more than just a few alarm types per device should be supervised this
easily leads to a very large number of AlarmCond blocks.
150 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

Example:

• The syntax 2.1.204 means the alarm for device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Trip/Warning

The SignalId should be a string that in addition to the hardware position for the
INSUM device, also specifies a trip or a word.

This is done with the syntaxes C.G.D-T or C.G.D-W, where:

• C, G and D as above,

• T represents Trips and W represents Warnings.

Examples:

• The syntax 2.1.204-W means a warning for device #204 connected via
Gateway #1 on CI857 #2.

• The Syntax 2.1.204-T means a trip in device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Detailed

The SignalId should be a string that, in addition to the hardware position for the
INSUM device, also specifies the alarm word and bit within the word. This is done
with the syntax C.G.D-X/B, where:

• C, G, and D as above, and,

• X is the word within NVAlarmRep (preceded by a dash “-”),

• B is the bit within the word.

There are four words with warnings called W0-W3 and four words with trips called
T0-T3. The bits are numbered from 0 to 15. The word and the bit is separated by a
slash ‘/’.

Example:

The syntax 2.1.204-W1/3 means the alarm bit 3 in word W1 in device #204
connected via Gateway #1 on CI857 #2.
3BSE040935R201 Rev A 151

Choose Alarm Handling Method for INSUM Alarms Section 2 Alarm and Event Handling

Choose Alarm Handling Method for INSUM Alarms

This section contains some suggestions about choosing and handling INSUM
alarms. Whether to send alarms to alarm list or not:

• If Alarms should be possible to view, but are not necessary to see in the Alarm
lists:

– Set Generate Alarms = Disabled.

– Do not create any AlarmCond blocks.

• If the INSUM Alarms should be sent to the alarm list:

– Use AlarmCond function blocks. See INSUM Alarms in Alarm Lists
below.

INSUM Alarms in Alarm Lists

Time stamping:

• If local (in the INSUM devices) time stamping should be used:

– Use a system clock in the INSUM system.

– Set Generate Alarms = Enabled, Enabled Trip/Warning, Enabled Detailed

– Use an AlarmCond block with External Time Stamp = TRUE.

• If it is sufficient with time stamping in the application in the controller:

– Set Generate Alarms = Disabled

– Use an AlarmCond block with External Time Stamp = FALSE.

– Connect it to the variable with the INSUM device information to be
supervised. The accuracy of this time stamping cannot be better than the
cycle time of the application where the AlarmCond is executed.

Separation of alarms in the alarm list:

• If the timing between different alarms within a device must be possible to see
in the alarm list than it is required to:

– Set Generate Alarms = Enabled Detailed.

– Use one AlarmCond per alarm type.
152 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Choose Alarm Handling Method for INSUM Alarms

• If it is sufficient to be able to identify the device than it is possible to:

– Set Generate Alarms = Enabled.

– Use one AlarmCond per INSUM device.

• If it is sufficient to be able to identify the first warning and the first trip in a
device than it is possible to:

– Set Generate Alarms = Enabled Trip/Warning

– Use two AlarmCond blocks per INSUM device.

Number of devices:

• If there are a lot of devices needing external time stamping than required for:

– Use two (or one) AlarmCond per INSUM device.

– Set Generate Alarms = Enabled Trip/Warning (or Enabled)

• If there are a few devices that need external time stamping than it is possible to:

– Use one AlarmCond per alarm type.

– Set Generate Alarms = Enabled Detailed
3BSE040935R201 Rev A 153

System Alarm and Event Generation Section 2 Alarm and Event Handling

System Alarm and Event Generation
System alarms and system simple events that are generated in a controller are
distributed to OPC alarm and event clients and locally connected printers, according
to the current system configuration.

All system alarms available in a controller can be located by printing all alarms (use
the PrintAlarms function block type and set the parameters to show the alarms you
want to see). They can also be displayed by and interacted with applications, by
means of the function block AttachSystemAlarm (this function block type retrieves
the alarm condition state and some other information for an alarm condition). When
units that are visible in Project Explorer (hardware units or program tasks) generate
system alarms or system simple events, a warning icon is displayed on the
corresponding unit.

System alarms and system simple events are used to draw attention to deviations
from normal system behavior. All system alarms and system simple events can be
sent to the OPC Alarm and Event Clients and even printed to the system log file,
depending on the current system configuration.

Controller Generated System Alarms and System Simple Events

Controller generated system alarms and system simple events are defined within the
controller. A list of all defined system alarms and system simple events within an
AC 800M controller can be found in Appendix B, System Alarms and Events.

User Generated System Alarms

User generated system alarms can be defined in your applications via the function
block SystemAlarmCond.
154 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Handling Alarms and Events

Handling Alarms and Events
When implementing alarm and event handling, it is very important to create a good
system for:

• classifying alarms and events,

• setting the severity of different types of alarms,

• indicating the source of an alarm or event,

• naming alarm conditions.

The most obvious reason for this is that you will be able to create an operator
environment in which the operator will quickly be alerted to various things that
require attention. The operator will also be able to quickly obtain additional
information and decide on the best course of action.

However, alarms and events are also logged, in order to be used for trouble-
shooting, and when analyzing things in order to improve performance of the plant.

This subsection describes:

• How to send data in XML format, see Simple Events on page 155. This is
useful when creating batch records.

• How to handle system alarms and events, see System Alarms and Events on
page 156.

• Internal, remote, and external time stamps (Sequence of Events, SOE),
including time synchronization, see Time Stamps on page 156.

Simple Events

The DataToSimpleEvent function block is used to send data in XML format, for
example, to record data for batch processes.

For more information on how to use this function block, see online help. For
examples on how to use the DataToSimpleEvent function block, see Condition State
Example on page 163.
3BSE040935R201 Rev A 155

System Alarms and Events Section 2 Alarm and Event Handling

System Alarms and Events

The handling of system alarms and events is to a certain degree configurable. The
function block AttachSystemAlarm can be used to retrieve information on system
alarms and events, such as state, and whether the alarm has been disabled or
acknowledged.

The function block SystemAlarmCond can be used to retrieve system alarms and
events via the application.

Time Stamps

When an alarm or event is created, a time stamp can be added to it, showing the
exact time when the event occurred. There are three types of time stamp:

• Internal Time Stamps, that are created by the controller.

• Remote Time Stamps that are read from external communication partners via
the parameter TransitionTime.

• External Time Stamps that are created by an I/O unit and transferred together
with the event.

The TransitionTime parameter (of type date_and_time) can be used to read a remote
time from a remote partner, via other protocols than MMS. The parameter is read
each time a change is detected in the monitored signal. If it is left unconnected, it
will have no effect.

Internal time stamps simply show when the execution cycle in which the alarm was
created started. External and remote time stamps show the actual time at which the
alarm condition occurred in the external device or partner. All time stamps have a
resolution of 1 ms; however, it is the interval time of the task where the alarm
function block or module runs that determines the accuracy of the internal time
stamps. All alarm function blocks and modules in the same task are given the same
time stamp, if activated concurrently.

When adding remote time stamps, it is possible to add any time. However,
settings in the operator interface might filter out alarms and events with times that
are outside the “normal” range (in the future or far back).
156 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Time Stamps

This is the point of using external and remote time stamps. Internal time stamps can
never be more accurate than the execution time of the task allows for. With external
or remote time stamps, the accuracy of the time-stamping mechanism in the external
or remote device (for example, an S800 I/O unit) sets the limit, something which
could seriously improve the accuracy of the time given in entries with external or
remote time stamps.

If external time stamps are to be used, the external time stamp parameter
(ExtTimeStamp) has to be set to True. When using external time stamps, there is also
a SignalId parameter that is used to indicate the source of the external alarm or
event.

All time stamps use UTC (Coordinated Universal Time).

Clock Synchronization

For time stamps to be useful, the whole system must use the same time, that is, the
time must be synchronized. See also the Getting Started manual
(3BSE041584R101).

Depending on the type of controller, clock synchronization is possible by four
different protocols: CNCP, SNTP, MB 300 TS, and MMS Time Service. Clock
synchronization is set up in the controller hardware editor.

It is important to understand the difference between accuracy and resolution when
calculating how much a time stamp may deviate from the true system time:

• Resolution is the number of decimals that are used to write the time. If the time
is given as, for example, 2004-02-19 19:43:22:633, the resolution might
be 1 ms (but could also be, for example, 0.5 ms).

External time stamps can only be created by external units with Sequence-of-
Event (SOE) support.
3BSE040935R201 Rev A 157

Time Stamps Section 2 Alarm and Event Handling

• Accuracy is a measure of how accurate a time stamp is, that is, how much it
may deviate from the true system time. If the accuracy is 1 ms, then
2004-02-19 19:43:22:633 actually means any time between
2004-02-19 19:43:22:632 and 2004-02-19 19:43:22:634.

It is also important to understand that the accuracy deteriorates if a time stamp is
created in a unit that is supplied with the time from a controller, via ModuleBus.

The possible difference between the time stamps of two events that occurred at
exactly the same time, but in two different units in two different controllers, is the
sum of the accuracy of time synchronization in the network and two times the
accuracy of the ModuleBus time synchronization.

This means that the difference between external time stamps can be far greater than
the accuracy of time synchronization between controllers.

The highest accuracy is achieved by using the CNCP protocol, with an AC 800M
controller as master.

For a more detailed, conceptual description of time synchronization, see the
Industrial IT, 800xA - Control and I/O, Communication, Protocols and Design
(3BSE035982Rxxxx)
158 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Alarm and Event Communication

Alarm and Event Communication
Alarm and event information is communicated throughout the control network via
OPC servers, that is, a number of OPC Server for AC 800M. When the state of an
alarm condition changes, an event notification is sent to all subscribing OPC
servers, which then forward these notifications to their clients. Changes in alarms in
the OPC server are also forwarded to its clients. .

Subscriptions

An OPC server subscribes to event notifications from a control system. Each
controller compiles an internal list of all servers interested in various events.
Condition-related events are generated when alarm conditions change their state.
Simple events can be generated, for example, by the start of a motor. When an event
occurs, the control system sends event notifications to all servers on the subscription
list.

Configuration of OPC AE Communication – Overview

The whole system for transferring alarms and events, that is, controllers, OPC
servers, and OPC clients, must be configured so that there are no disturbances in the
alarm and event traffic.

There are several basic rules regarding system configuration:

• A control system can send data or event notifications to one or two subscribing
OPC servers.

• A maximum of five OPC clients can subscribe to data or event notifications
from the same OPC server.

• A maximum of four Ethernet links (two redundant) are supported via Ethernet
cards.

• A maximum of four Point-to-Point Protocols (PPP) are supported via serial
cards.

For detailed information on how to configure OPC Server for AC 800M, please
refer to the OPC Server for AC 800M manual.
3BSE040935R201 Rev A 159

Configuration of OPC AE Communication – Overview Section 2 Alarm and Event Handling

The OPC server must be configured to recognize the control systems it is to
communicate with. The OPC client must be configured to recognize the OPC
server(s) it is to communicate with. See Figure 68.

Figure 68. Example of a control network configuration.

Information about how to configure individual OPC servers is found in the OPC
Server for AC 800M manual, and in the online help, which can be opened from the
OPC server panel.

OPC Client 1 OPC Client 2 OPC Client 3

OPC Server 1
Subscr. list:

OPC client 1

OPC Server 2
Subscr. list:

OPC client 3

Control System 1

Subscr. list:

OPC server 1

Control System 2

Subscr. list:

OPC server 1

Control System 3

Subscr. list:

OPC server 2

Control System 4

Subscr. list:

OPC server 2

Control Systems:

Control System 1
OPC client 2 Control System 2

Control System 3
Control System 4

Control Systems:

Control System 1
Control System 2

OPC server 2 OPC server 2

Panel 800
Control Systems:

Control System 1
Control System 2
160 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Buffer Configuration

Buffer Configuration

Alarm and event handling requires a number of buffers. Memory for these buffers
must be allocated in the controllers. These settings have to be made for each
controller, in the Project Explorer CPU settings tab, see Table 10. Also, see System
Diagnostics on page 170.

Table 10. Memory planning for buffer configuration

Parameter Comment

AE Local printer event queue size Each position allocates approximately 300
bytes of memory. The total memory need
for local printers is:

300 * AE Local printer event queue size *
AE Max number of local printer event
queues

AE Max number of local printer event
queues

The maximum number of event queues in
the controller

AE Event subscription queue size Each position allocates approximately 300
bytes of memory. Total memory need for
subscribing OPC Servers are:

300 * AE Event subscription queue size *
AE Max number of event subscriptions

AE Max number of event subscriptions Number of subscribing OPC Servers

AE Buffer size of low level event Each position allocates 72 bytes of
memory. Total memory need for
Sequence of Events are:

72 * AE Buffer size of low level event

Set this setting to 2 if Sequence of Events
is not used
3BSE040935R201 Rev A 161

Local Printers Section 2 Alarm and Event Handling

Local Printers

A local printer can be connected to the serial port of a controller, and print out event
lists and/or alarm lists as needed.

Figure 69. Example of a controller and local printer configuration.

There can be only one local alarm/event printer connected to each controller.
Additional printers are invalid. There is limited data flow support for alarm/event
printers connected to controllers. Alarms and events that occur when the printer is
offline may not be printed when the printer goes online again. This applies to all
printers with direct connection to a controller.

Sending an Alarm to the Application

Instead of sending your alarms to a local printer you can choose to only redirect the
alarm to the application. The function block PrintEvents contain two parameters; the
first parameter EventItem catch the values (Source Name, Condition name, Time
stamp, Severity etc) and the second parameter EventItemText format these values as
if they was send to a printer and bring it to the application as well. Hence, these
values can then be sent and processed by your local code.

However, sending an alarm only to the application requires that you do not connect
the Channel parameter (leaving the Parameter field empty).

AE Max no of Name Value items The maximum number of XML tagged
events

AE Max percent of log strings The percentage of Name Value items that
are strings. Used to allocate memory for
Name Value item strings.

Table 10. Memory planning for buffer configuration (Continued)

Parameter Comment

Buffer

AC 800M

Printer
162 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Condition State Example

Condition State Example

The following example shows how to use the condition state parameter (CondState)
to control a pump.

Figure 70. Manipulating the condition state using I/O.

Figure 70 shows two alternative ways of stopping a pump when the temperature is
too high. The TEMP signal goes high when the temperature is too high.

In alternative A, the TEMP signal is simply used to stop the pump (using the
blocking function, note that the TEMP input is inverted). There is no way to disable
this alarm. The pump is blocked as long as TEMP is high.

By sending an alarm to the application you can then redirect this information to
your cell phone. Every time an incoming alarm has a severity higher than 700,
you should be notified with a SMS.

&

Signal

AlarmCond

CondState

2

time
>

TEMP

Blocking

B

Start

Stop

energize

A

3BSE040935R201 Rev A 163

Inhibit Example Section 2 Alarm and Event Handling

Alternative B uses an AlarmCond function block, which makes it possible to wait
for an action from the operator, before unblocking the pump. The blocking signal to
the pump does not go high until CondState > 2, that is, the alarm is enabled and not
idle (for a list of possible states, see Status Information on page 142). Once it has
gone high, it does not go low until Condstate => 1, that is, the alarm is disabled or
has returned to its idle state (this means that the alarm must be acknowledged by the
operator and TEMP must go low before the pump is unblocked, as long as
acknowledgement rule 1 is used).

Alternative B also makes it possible to disable the blocking function by simply
disabling the alarm condition.

Inhibit Example

The below example shows how to implement the inhibit function for a motor M103
(see Figure 71):

• An oil pressure sensor, P103, is used to stop the motor M103 if the oil pressure
is too low.

• A SignalInReal object is used to supervise the sensor and a MotorUni is used to
control the motor.

• The LTLLAct output from SignalInReal is connected to the PriorityCmd01 in
MotorUni. This means that the motor will be forced to stop when the oil
pressure is below the LL level. LTLLStat may be connected to a warning lamp
in a panel.

During start up of the equipment it is known that the oil pressure will be below the
limit, but it must be possible to start the motor. Therefore, the application logic will
set the EnableLL parameter in SignalInReal to False during start-up. This means
that LTLLAct will not be set, that is, the motor will not be stopped and no alarm is
sent to the alarm list as long as the motor is starting up. LTLLStat will not be set and
the lamp will not be lit.

This example has been simplified to illustrate a principle. In reality, it would not
be desirable to have a motor start when an alarm is acknowledged. Instead, the
operator would acknowledge the alarm, and then start the motor with a separate
command.
164 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Inhibit Example

Suppose the operator, maybe for testing, wants to run the equipment at an oil
pressure below the LL level. He could then inhibit SignalInReal from the faceplate.
The motor will still run during the test, but an alarm will be sent to the alarm list.
LTLLStat will be set and the lamp will be lit.

Figure 71. Example of how to implement inhibition of an alarm.

P103

M103
3BSE040935R201 Rev A 165

Simple Event Examples Section 2 Alarm and Event Handling

Simple Event Examples

The below examples show how to use the DataToSimpleEvent function block to
send simple event data, for example for a batch process, where data records should
be generated for the process at a number of points. There are three examples:

• Simple Data on page 166,

• Structured Data – Example 1 on page 168,

• Structured Data – Example 2 on page 168.

Simple Data

Presume that an engineer wants to record three parameters in the process:
a temperature, a pressure and a stirring rate. Consequently, the engineer names
them:

varTEMP = “TEMP”

varPRESS = “PRESS”

varSTRAT = “STRAT”

These are the names the user wants to see on the screen when the recording is done,
but these names are not the same as the variable names. Instead, the names are
coupled to the extensible parameters in the Name field:

Name[1] = varTEMP

Name[2] = varPRESS

Name[3] = varSTRAT

During execution TEMP=300.2, PRESS=23.1, and STRAT=10. Temp and press are
real values (real) and STRAT is an integer, which causes no problem since Values is
of AnyType.
166 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Simple Event Examples

NestingLevel “1” is chosen and this is how it could look in Control Builder:

varTEMP = “TEMP”
tempValue := 300.2;
pressValue := 23.1;
My Log(SrcName := SrcName,

Message := Message,
Class := Class,
EventCode := thisNbrEvent
RecipePath := myLongPath,
Status => Status,
Name[1] := varTEMP,
Value[1] := tempValue,
NestingLevel[1] := 1,
Name[2] := varPRESS,
Value[2] := pressValue,
NestingLevel[2] := 1,
Name[3] := varSTRAT,
Value[3] := stratValue,
NestingLevel[3] := 1);

In OPC Server for AC 800M, this will be encoded into an XML string.

<DATA_EV_LOG>
<TEMP Value=”300.2” type=”real”/>
<PRESS Value=”23.1” type=”real”/>
<STRAT Value=”10” type=”int”/>

</DATA_EV_LOG>
3BSE040935R201 Rev A 167

Simple Event Examples Section 2 Alarm and Event Handling

Structured Data – Example 1

An engineer wants to record data that belong together, that is, he or she wants to
create a structure named PHYS_DATA containing physical properties of an object,
in this case a tank.

The structure (PHYS_DATA) has no value in itself and the NestingLevel=1 when
PHYS_DATA is coupled to the first extensible parameter.

The next step is to give PHYS_DATA properties, and three components are created
in the following three extensible parameters:

height=4.1

length=3.0

depth=1.0

Since the parameters above are physical properties of PHYS_DATA, they are
assigned with NestingLevel=2. They are all floats.

In this case, the XML data in OPC Server for AC 800M will look like:

<DATA_EV_LOG>
<PHYS_DATA Value=”” type=””>
<height Value=”4.1” type=”real”/>
<depth Value=”3.0” type=”real”/>
<length Value=”1.0” type=”real”/>

</PHYS_DATA>
</DATA_EV_LOG>

Structured Data – Example 2

In this example, the engineer is in the same situation as in the previous example, but
now he or she also wants to record the recipe parameters in one of the batch objects.
The same procedure as in Example 1 is performed but a new parameter
“RecipePar” is added and NestingLevel=-1 is set. With NestingLevel=-1 it is
indicated that the recipe parameters to be fetched are placed on NestingLevel=1,
since the height, depth, and length values in the previous example were to be placed
on NestingLevel=2.
168 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Simple Event Examples

The recipe parameters are fetched in the controller and are:

heat=3.4

temp=349.4

heating=true

From a Control Builder view, this would look like:

structName := “PHYS_DATA”;
varHeight := “height”;
heightValue := 4.1;

varRecipe := “RecipePar”

LogThis(SrcName := SrcName,
Message := Message,
Severity := Severity,
Class := Class,
EventCode := thisNbrEvent,
RecipePath := myLongPath,
Status => Status,
Name[1] := structName,
Value[1] := EmptyValue,
NestingLevel[1] := 1,
Name[2] := varHeight,
Value[2] := heightValue,
NestingLevel[2] := 2,
Name[3] := varDepth,
Value[3] := depthValue,
NestingLevel[3] := 2,
Name[4] := varLength,
Value[4] := lengthValue,
NestingLevel[4] := 2,
Name[5] := varRecipe,
Value[5] := EmptyValue,
NestingLevel[5] := -1);
3BSE040935R201 Rev A 169

Alarm and Event Functions Section 2 Alarm and Event Handling

The XML data will look as below. The last three parameters are fetched from a
Batch Object.

<DATA_EV_LOG>
<PHYS_DATA Value=”” type=””>
<height Value=”4.1” type=”real”/>
<depth Value=”3.0” type=”real”/>
<length Value=”1.0” type=”real”/>

</PHYS_DATA>
<RecipePar Value=”” type””/>
<heat Value=”3.4” type=”real”/>
<temp Value=”349.4” type=”real”/>
<heating Value=”true” type=”bool”/>

</DATA_EV_LOG>

Alarm and Event Functions
There are a number of functions that can be used to analyze and supervise alarm and
event handling:

• The function block SystemDiagnostics contains a part that displays alarm and
event related information. See System Diagnostics on page 170.

• For those who need detailed information about the alarm and event state
machine, there is a collection of state diagrams. See Acknowledgement Rules –
State Diagrams on page 171.

System Diagnostics

When in online mode, it is possible to view information regarding memory via the
interaction window of the function block SystemDiagnostics (located in the Basic
library).

The advanced mode of the interaction window displays system memory
information.
170 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

There is also an Alarm and Event button which, if clicked, displays information
regarding:

• Used amount of buffer size,

• The number of:

a. alarms in the controller,

b. different condition names in the controller,

c. local printer queues,

d. subscribing OPC Servers.

• The IP-addresses of the subscribing OPC Servers.

Acknowledgement Rules – State Diagrams

The control system handles four different condition state diagrams according to five
different acknowledgement rules.

Acknowledgement Rule 1

Rule number 1 uses three different state diagrams.

Figure 72. State diagram for enabled alarm conditions with AckRule 1, part 1.

In Figure 72 above, the alarm is in its normal state when it becomes active. It is then
acknowledged, and on becoming inactive it returns to its normal state.

State 4
Active, Acked

State 2
Inactive, Acked

State 5
Active, Unacked
3BSE040935R201 Rev A 171

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

Figure 73. State diagram for enabled alarm conditions with AckRule 1, part 2.

In Figure 73 above, the alarm is in its normal state when the alarm becomes active.
It then becomes inactive, and on being acknowledged returns to its normal state.

Figure 74. State diagram for enabled alarm conditions with AckRule 1, part 3.

State 3
Inactive, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked

State 6
Autodisabled

State 3
Inactive, Unacked
172 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

The third instance occurs when an alarm switches between active and inactive
without being acknowledged. In Figure 74, the alarm starts in its normal state and
becomes active. It then switches twice between active and inactive without being
acknowledged. When the alarm becomes inactive a third time it is automatically
placed in the Auto-disabled state. Whether the alarm is active or inactive in this
state is of no significance. When acknowledged the alarm returns to its normal state.

Acknowledgement Rule 2

Figure 75. State diagram for enabled alarm conditions with AckRule 2.

Alarm conditions with AckRule 2 does not require acknowledgement and therefore
follow a different state diagram. When the alarm becomes active it switches to an
active and acknowledged state. On becoming inactive it returns to its normal state.

The default setting for auto-disable is three times. This can be changed through
the CPU setting AE Limit Auto Disable. If it is set to 0, there will be no auto-
disable function. There is also a system variable called AlarmAutoDisableLimit
which affects all process alarms with acknowledgement rule number 1
(AckRule=1).

State 2
Inactive, Acked

State 4
Active, Acked
3BSE040935R201 Rev A 173

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

Acknowledgement Rule 3

Figure 76. State diagram for enabled alarm conditions with AckRule 3.

Regardless of the signal being monitored, alarm conditions with AckRule 3 changes
immediately to is normal state on acknowledgement. The alarm is no longer active
and disappears from the alarm list provided by an OPC client.

Acknowledgement Rule 4

Presently, Acknowledgement Rule 4 (AckRule 4) is reserved for future use.

Acknowledgement Rule 5

Figure 77. State diagram for enabled alarm conditions with AckRule 5, part 1.

AckRule 5 is used for so called sum system alarms. System alarms associated with
hardware units are typical examples of sum system alarms. They are used to
indicate several different errors that occur at the same time.

State 2
Inactive, Acked

State 5
Active, Unacked

State 4
Active, Acked

State 2
Inactive, Acked

State 5
Active, Unacked
174 3BSE040935R201 Rev A

Section 2 Alarm and Event Handling Acknowledgement Rules – State Diagrams

There are two procedures for sum system alarms, that is, for AckRule 5. The first of
these is described in Figure 77 above. The sum system alarm is in its normal state
when it becomes active. Sum system alarms are used as a collection of errors and
Acknowledgement means that all errors are acknowledged. On becoming inactive it
returns to its normal state.

Figure 78. State diagram for enabled alarm conditions with AckRule 5, part 2.

The second instance is shown in Figure 78 above. The sum system alarm is in its
normal state when it becomes active. It then becomes inactive, and on being
acknowledged returns to its normal state.

Any alarm can be disabled from any state, and when re-enabled placed in the
Inactive and Acked state. If the alarm state engine receives an incorrect Enable,
Disable or Acknowledgement request, the request is ignored.

State 3
Inactive, Unacked

State 2
Inactive, Acked

State 5
Active, Unacked
3BSE040935R201 Rev A 175

Acknowledgement Rules – State Diagrams Section 2 Alarm and Event Handling

176 3BSE040935R201 Rev A

Section 3 Communication

Introduction
This section describes how to configure communication throughout your control
network. How to design your control network, and which protocol(s) to choose for
this is described in the Communication manual.

This section is split into the following parts:

• Communication Libraries on page 178 gives a brief overview of the
Communication standard libraries.

• Control Network on page 185 describes Control Network, which is used to
communicate between controllers, engineering stations, and external devices.

• Variable Communication on page 186 describes variable communication
briefly, and contains references to more detailed information.

• Reading/Sending Data on page 189 describes reading and sending data.

• Fieldbus Communication on page 195 describes the supported fieldbus
protocols briefly.
3BSE040935R201 Rev A 177

Communication Libraries Section 3 Communication

Communication Libraries
The Communication libraries contains a number of libraries, one for each protocol,
with function block types for reading and writing variables from one system to
another. Typical communication function block types are named using the protocol
name and function, for example, COMLIRead or INSUMConnect.

COMLI Communication Library

The COMLI Communication library (COMLICommLib) contains function block
types and data types for COMLI communication.

COMLI function block types follow the IEC 1131 standard, but some divergences
occur. COMLI can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. Only address-oriented COMLI is supported on serial
channels.

INSUM Communication Library

The INSUM Communication library (INSUMCommLib) contains function block
types and data types for INSUM (Integrated System for User-optimized Motor
control) communication.

INSUM is a system for protection and control of motors and switchgear. AC 800M
controllers communicate with the INSUM system via TCP/IP, using the
communication interface CI857.

The INSUM system consists of devices that are connected via a LonWorks network.
There are different device types for different types of equipment that can be
controlled and supervised. The device type used for motor control is called a Motor
Control Unit (MCU). The MCU is located in the motor starter module.

All supported protocols are described in the Communication manual, which also
contains general information about how to set up communication in a control
network. For detailed information on how to connect and configure function
block types and control module types, see the corresponding online help (select
the type and press F1).
178 3BSE040935R201 Rev A

Section 3 Communication INSUM Communication Library

Network Variables in Motor Control Units (MCU)

The table shows Network Variables that are defined in the INSUM Motor Control
Unit.

Function/Object
in MCU

NV name in MCU Dir. Description

Current
Measuremen

nvoCurrRep In Current information: A, % and Earth
current

TOL (Thermal
overload)

nvoCalcProcVal In Thermal capacity: % to Thermal
Overload

nvoTimeToTrip In Estimate of time until the motor will trip
due to thermal overload based on the
current load.

Motor Control nvoTimeToReset In Remaining time until it is possible to
reset the MCU after a thermal overload
trip.

nviDesState Out Commands: Start, Stop etc

nvoCumRunT In Cumulated run hours

nvoMotorStateExt In Motor status: Running, Stopped, Alarm
etc

Contactor 1 nvoOpCount1 In Number of switch cycles for contactor 1.

Contactor 2 nvoOpCount2 In Number of switch cycles for contactor 2.

Contactor 3 nvoOpCount3 In Number of switch cycles for contactor 3.

Control Access nviCAPass Out Control access commands:
Local/Remote control of the device

nvoActualCA1 In Feedback of Control access commands

Node nvoAlarmReport In Alarmreport with Warning- and Trip
information

Voltage
Measurement

nvoVoltRep In Phase voltages and frequency
3BSE040935R201 Rev A 179

INSUM Communication Library Section 3 Communication

Network Variables in Circuit Breakers

The table shows Network Variables that are defined in the INSUM Circuit Breakers.

Power
Measurement

nvoPowRep In Motor power: Active power, reactive
power and power factor

General Purpose
I/O

nviGpOut1 Out General Purpose Output 1

nvoGpOut1Fb In Feedback of General Purpose Output 1

nviGpOut2 Out General Purpose Output 2

nvoGpOut2Fb In Feedback of General Purpose Output 2

nvoGpIn1 In General Purpose Input 1

nvoGpIn2 In General Purpose Input 2

Function/Object in
Circuit Breaker

NV name in Circuit
Breaker

Dir. Description

Node nvoNodeAlarmRep In Alarm report with Warning- and Trip
information

nviNodeCommand Out Commands: Open, Close etc

nvoNodeStatusRep In Circuit Breaker Status: Closed, Open,
Alarm etc

RMS Current nvoAmpsCurrRep In Current information: A, % and Earth
current

Control Access nviCAPass Out Control access commands:
Local/Remote control of the device

nvoCAOwner In Feedback of Control access commands

Function/Object
in MCU

NV name in MCU Dir. Description
180 3BSE040935R201 Rev A

Section 3 Communication MB300 Communication Library

MB300 Communication Library

The MB300 Communication library (MB300CommLib) contains function block
types for MB300 communication. The MasterBus 300 (MB 300) protocol can be
used with AC 800M and AC 400. The CI855 communication interface unit for AC
800M is used to connect to AC 400 controllers via MasterBus 300.

Dataset communication between controllers connected to MasterBus 300 is handled
by three function blocks. A dataset consists of an address part and up to 24 elements
(32-bit values). Values can be a 32-bit integer, a 16-bit integer, a real or 32
booleans.

Each CI855 unit behaves as a unique node on the MasterBus 300 network it is
connected to, and has to be configured accordingly in the Control Builder hardware
tree.

MMS Communication Library

The MMS Communication library (MMSCommLib) contains MMS data types,
function block types and control module types for establishing communication with
systems using the MMS protocol. MMS (Manufacturing Message Specification) is
used as a common application layer protocol. MMS defines communication
messages transferred between units, and has been specifically designed for
industrial applications.

MMS is the base protocol in Control Network. All communication between Control
Builders/OPC Servers and controllers uses MMS, for example, project download,
firmware download and online communication. Alarm and event handling also uses
MMS.

Normally, communication between controllers has to be defined using access
variables and function block types and/or control module types from the MMS
Communication library.

For more information on MMS communication, see the Communication manual.
3BSE040935R201 Rev A 181

ModBus Communication Library Section 3 Communication

ModBus Communication Library

The ModBus Communication library (ModBusCommLib) contains data types and
function block types for communication via the ModBus protocol.

ModBus can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. ModBus slave communication is not supported, only
master communication.

Modem Communication Library

The Modem Communication library (ModemCommLib) contains function block
types used for serial communication over a modem. To use a modem connection,
the modem must be configured to a serial (Com) port and the COMLI protocol must
be added and configured (for more information, see Control Builder online help).

For more information about modem communication, see also the Communication
manual.

Siemens S3964 Communication Library

The Siemens S3964 Communication library (S3964CommLib) contains function
block types to establish communication with a system supporting the Siemens
3964R protocol.

Siemens 3964R is a point-to-point protocol, which means that only one Siemens
system can be connected to each channel. The Siemens system requires an
Interpreter RK 512 unit.

SattBus Communication Library

The SattBus Communication library (SattBusCommLib) contains function block
types supporting SattBus. The types are used to communicate through Ethernet,
using the SattBus name-oriented model.

SattBus is only available for TCP/IP on Ethernet.
182 3BSE040935R201 Rev A

Section 3 Communication Serial Communication Library

Serial Communication Library

The Serial Communication library (SerialCommLib) contains function block types
for communication with external devices via serial channels with user-defined
protocols, for example printers, terminals, scanner pens. You can write an
application which controls the characters sent and checks that the correct answer is
received, using serial channel handling function blocks.

Example (Buffer handling)

A SerialListen function block is set up to read a specified message length of for
example 5 characters (MsgLength = 5).

While the Enable parameter has the value True and the buffer contains characters
the Ndr parameter will be True and 5 characters at a time will be passed to the Rd
parameter.

If an incoming message "012345678901234" has been received with a size of 15
characters (3x5) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (012345678901234), Buffer = 5678901234

Second scan: Rd = 56789 (012345678901234), Buffer = 01234

Third scan: Rd= 01234 (012345678901234), Buffer is empty

There will be no fourth scan since the buffer is empty.

If the message length is not a multiple of the MsgLength parameter the buffer will
keep the remaining characters until the number of characters in the buffer again is
greater than or equal to the MsgLength parameter value.

If an incoming message "0123456789012" has been received with a size of 13
characters (2x5+3) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (0123456789012), Buffer = 56789012

Second scan: Rd = 56789 (0123456789012), Buffer = 012

There will be no third scan as the buffer does not contain at least 5 characters. The
buffer will retain these values until additional characters are added to the buffer and
it once again equals, or exceeds, 5 characters in length. At that time, the first 5
characters will be passed to the Rd parameter.

By setting the En_C parameter of the SerialConnect function block to value False
(disconnecting), the buffer of the serial channel will be cleared.
3BSE040935R201 Rev A 183

Supported Protocols Section 3 Communication

Supported Protocols
Table 11 lists all supported protocols.

For more information on supported protocols, see the Communication manual.

Table 11. Protocols and supported by Control Builder.

Protocol Port/Interface

MMS on Ethernet CN1, CN2 (TP830)

MMS on RS-232C (PPP) COM3 (TP830), CI853

MasterBus 300 CI855

SattBus on TCP/IP CN1 (TP830)

COMLI(1)

(1) Both master and slave

COM3 (TP830), CI853

Siemens 3964R(2)

(2) Master only

COM3 (TP830), CI853

ModBus RTU(3)

(3) Master only

COM3 (TP830), CI853

PROFIBUS DP-V1 CI854

DriveBus CI858

INSUM CI857
184 3BSE040935R201 Rev A

Section 3 Communication Control Network

Control Network
Control Network is a private IP network domain especially designed for industrial
applications. This means that all communication handling will be the same,
regardless of network type or connected devices. Control Network is scalable from a
very small network with a few nodes to a large network containing a number of
network areas with hundreds of addressable nodes (there may be other restrictions
such as controller performance).
Control Network uses the MMS communication protocol on Ethernet and/or
RS-232C to link workstations to controllers. In order to support Control Network on
RS-232C links, the Point-to-Point Protocol (PPP) is used.

Control Network, as well as other protocols and fieldbuses, is configured using
Control Builder (via the Project Explorer interface). Control Network settings are
specified in the parameter lists, accessed by right-clicking CPUs, Ethernet ports
and/or PPP connections.

Network Redundancy

The Redundant Network Routing Protocol (RNRP), developed by ABB, handles
alternative paths between nodes and automatically adapts to topology changes.

For more information on redundancy and RNRP, see the Automation System
Network manual.

For information on time stamps and clock synchronization within Control
Network, see the Communication manual. Time synchronization is also briefly
described in Section 2, Alarm and Event Handling.

The address of controller Ethernet ports should in some cases be set using the
IPConfig tool. See the Getting Started manual.

For information on communication parameter settings, see Control Builder
online help for the object in question. Select the object in Project Explorer, then
press F1 to display the corresponding online help topic.
3BSE040935R201 Rev A 185

Statistics and Information on Communication Section 3 Communication

Statistics and Information on Communication

Statistics concerning all MMS communication in a system are displayed in the
Remote System dialog. Information can be viewed at any engineering station that is
connected to the network, by selecting Tools>Maintenance>Remote System,
followed by Show Remote Systems. You can get the following MMS-related
information:

• Tools>Maintenance>Show MMS Variables shows which MMS variables are
present in the selected remote system

• Tools>Maintenance>Show MMS Connections shows all connections,
including information on the type of connection, the destination system, and a
number of statistics.

There is also a function block type System Diagnostics that is stored in the Basic
library. This function block will (among other things) show Ethernet statistics.

Variable Communication
Communication between applications uses access variables. Access variables are
defined in the access variable editor, which is displayed by double-clicking Access
Variables in the Controllers folder. The access variable editor can also be displayed
from the application editor, by double-clicking an access variable field in the Access
Variables column.

Access variables can use the MMS, COMLI and SattBus protocols. Paths to local
variables are given using the syntax
ApplicationName.ProgramName.FunctionblockName.VariableName

For more information on the contents of the Remote System dialog and the
System Diagnostics function block type, see Control Builder online help.

For more information about variable communication, see Variables and
Parameters on page 48.

Variables are not updated in synchronization with IEC 61131 code. This must be
taken into account when designing variable communication.
186 3BSE040935R201 Rev A

Section 3 Communication StartAddr

StartAddr

StartAddr identifies the first requested variable in the remote system.

Set a prefix and a start address via the StartAdr parameter. This sets the access
variable which identifies the memory area in the remote system from which data is
to be read or to which it is to be written.

For further information regarding memory addressing: see IEC 61131-3 Variable
Representation for IEC 61131-3 direct addressing and Access Variable Syntax for
direct addressing.

Example 1

You can read 16 bits from a subsystem, starting from the decimal address 64 (octal
address 100), as follows.

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

Table 12. StartAddr parameter setting

Protocoll IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)

ModBus %IX8#100 (input)
%QX8#100 (output)

%IX10#64 (input)
%QX10#64 (output)

%IX16#40 (input)
%QX16#40 (output)

Not supported

COMLI %MX8#100

%MX10#64

%MX16#40

%X100 or X100

Siemens
3964R

%MX8#100

%MX10#64

%MX16#40

See also Siemens 3964R Addresses

%X100 or X100
3BSE040935R201 Rev A 187

StartAddr Section 3 Communication

Text in bold face indicates the most commonly used values.

Example 2

You can read a Register 45 from a subsystem, starting from the decimal address 45,
as follows:

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

Text in bold face indicates the most commonly used values.

If you exclude the base from the format it is assumed to be base 10. For example,
%MX64 is interpreted as %MX10#64.

Protocoll IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)

ModBus %MW8#55
%IW8#55 (input)
%QW8#55 (output)

%MW10#45
%IW10#45 (input)
%QW10#45 (output)

%MW16#2D
%IW16#2D (input)
%QW16#2D (output)

Not supported

COMLI %MW8#55

%MW10#45

%MW16#2D

%R45 or R45

Siemens
3964R

%MW8#55

%MW10#45

%MW16#2D

See also Siemens 3964R Addresses

%R45 or R45

If you exclude the base from the format it is assumed to be base 10. For example,
%MW45 is interpreted as %MW10#45.
188 3BSE040935R201 Rev A

Section 3 Communication Reading/Sending Data

Reading/Sending Data
The communication libraries contain all types you need to set up communication for
the supported protocols. For most protocols, there are three main types:

• Connect Types
Connect types are used to initiate a communication channel and establish a
connection to a remote system with a unique node address in a network.
Connect types are used to open a communication channel. The identity of the
opened channel is communicated to the Read and Write types via an identity
parameter (the exact name of this parameter varies between protocols). For
example, MMSConnect is used by MMSRead and MMSWrite.

A connection is established when an enable parameter is set to true. This means
that a communication channel can be opened whenever needed. The identity of
the system to which a connection has been established is communicated to the
corresponding read and write types via an Id parameter.

Connect types have a built-in continuous supervisory function, which detects if
communication is interrupted after connection has been established.

• Read Types
Read types read data (often an access variable) from a target system. The
source system (the communication channel) is indicated by the Id parameter,
which is passed from the corresponding connect function block or control
module.

• Write Types
Write types write data to a target system. The target system (the
communication channel) is indicated by the Id parameter, which is passed from
the corresponding connect function block or control module.

Due to variations between various protocols, the name of individual types and
parameters may vary slightly between the different communication libraries.
However, the communication principles are still the same.

Communication function blocks should not be called more than once per scan.
Exceptions to this are stated explicitly in the corresponding online help. Do not
call communication function blocks in SFC, in IF statements, in CASE
statements, etc.
3BSE040935R201 Rev A 189

Connection Methods Section 3 Communication

For some protocols, there are also additional types, such as types for cyclic reading
of data, data conversion, download of measuring ranges, etc.

Connection Methods

Function blocks from the communication libraries are used to read and write
variables from a remote system:

Figure 79. Function blocks in the communication libraries.

In the application program, a common Connect function block is used in a client
(master) to establish connection to a server (slave). The function blocks Read and
Write can then be used repeatedly. Refer to online help for a description of the
parameters concerned. Variables to be accessed must be declared in the server
Access variable editor.

To display the editor, right-click the Access Variables object and select Editor.
190 3BSE040935R201 Rev A

Section 3 Communication Connection Methods

Example 1:

Controller 2 (client) connects to Controller 1 (server) by means of a Connect
function block. Refer to online help for a description of how Partner and Channel
are specified for different communication protocols. Read and Write function blocks
with the same identity (ID) as the Connect block can then be used repeatedly.

As an example, Controller 2 has a Read function block in its application program
that sends a Read request to Controller 1 for an access variable named %R100. This
name must exist in the access variable list in Controller 1, which then reads the
value of Program1.A (%R100) and sends it to Controller 2. The value is then written
to the application variable named in Rd.

In the same way, the value of a variable in the Controller 1 access variable list can
be changed by means of a Write function block in Controller 2.

Figure 80. Variable read by controller 2, from controller 1.

The function blocks ReadCyc and WriteCyc perform in a similar manner, but are
used to cyclically read or write to/from a server system with the interval specified
by the SupTime parameter.

Controller 1 (server) Controller 2 (client)

Partner

ID

Access
variable

list

%R100

Program1.A

%R100

IDID

Connect

Read Write
StartAddr

StartAddr
Rd

Sd

Channel
3BSE040935R201 Rev A 191

Communication Concepts Section 3 Communication

Example 2:

Write and read requests are triggered by the Req parameter being set to True after
having been False for at least one scan. This problem can be avoided if two function
blocks are executed, one after the other. In this way, a request is always outstanding.
Additional requests triggered by the Req parameter will be ignored by the function
block, until the Done (or Ndr) parameter has become True.

Figure 81. Resetting the Req parameter using two function blocks.

Communication Concepts

When setting up communication with external devices and other controllers, it is
also important to be familiar with the following:

• The client/server concept (master/slave), see Client/Server Communication on
page 193,

• The publisher/subscriber (also called subscriber/provider) concept, see
Publisher/Subscriber Communication on page 194.

• There is also the choice between cyclic and asynchronous communication, see
Cyclic vs. Asynchronous Communication on page 195.

Req Done

Done

Write

Write

Req•

StartAddr

StartAddr
192 3BSE040935R201 Rev A

Section 3 Communication Communication Concepts

Client/Server Communication

The main principle of client/server communication is the following:

• The client is the active party, which requests (reads) data from the server.

• The server is a passive provider of information that simply answers to requests
from the clients.

Figure 82 shows the principle.

Figure 82. Client/server principle. The client reads data from the server. The server
sends data to the client when requested.

Client/server communication could also be described as master/slave
communication. In that case, the client is the master, and the server is the slave.

Read function
block (client)

Client application

Function block
providing data
(server)

Server application

Request for data (cyclic or triggered)

Data (sent on request)

(Communication Channel)
3BSE040935R201 Rev A 193

Communication Concepts Section 3 Communication

Publisher/Subscriber Communication

The main principle of publisher/subscriber communication is the following:

• The publisher publishes (the publisher is also known as the provider) data
cyclically, in a pre-determined location.

• The subscriber is a consumer of information, which subscribes to published
data.

Figure 83 shows the publisher/subscriber principle.

Figure 83. Publisher/subscriber principle. The publisher publishes data to a pre-
defined location, which is read by the subscriber.

Read function
block (subscriber)

Subscriber application

Function block
providing data
(server)

Publisher application

Request for data (cyclic or triggered)

Data (written cyclically)

(Communication Channel)Data storage

(Communication Channel)

Data (sent on request)
194 3BSE040935R201 Rev A

Section 3 Communication Fieldbus Communication

Cyclic vs. Asynchronous Communication

An important decision when setting up communication is whether communication
should be cyclic, that is, take place regularly, with a certain time interval, or
asynchronous, that is, take place when triggered by a certain event or condition.

Which method to use depends on things such as:

• How much does the execution of communication code affect performance?

• How often can a value be expected to change?

• How important is it that a change in a certain value is communicated
immediately?

Fieldbus Communication
Fieldbuses offer communication on a dedicated bus, using a special fieldbus
communication protocol. Fieldbus devices often contain distributed code, which
means that they need to be set up not only from Control Builder, but also using a
fieldbus-specific configuration tool.

For more information about communication, performance and design, see
Application Programming manual.

For information on how to make part of your code execute with a different
interval, see Control the Execution of Individual Objects on page 61.

For detailed information on how to configure the fieldbuses, please refer to the
corresponding, fieldbus-specific documentation. For detailed information on how
to configure communication with fieldbus devices, see the corresponding Control
Builder online help.
3BSE040935R201 Rev A 195

Fieldbus Communication Section 3 Communication

The following fieldbuses are supported:

• PROFIBUS DP

PROFIBUS (PROcess FIeld BUS) is a fieldbus standard, especially designed
for communication between systems and process objects. This protocol is open
and vendor independent. It is based on the standard EN 50 170. With
PROFIBUS, devices from different manufacturers can communicate without
special interface adjustments. PROFIBUS can be used for both high speed,
time critical transmission and extensive, complex communication tasks.

PROFIBUS has defined the three types of protocol: PROFIBUS FMS, DP and
PA. With AC 800M access to PROFIBUS DP and PA is supported.

PROFIBUS DP is connected to the controller via the CI854/CI854A
communication interface unit. The connection to PROFIBUS PA can be
established by use of the Linking Device LD 800P that links between
PROFIBUS DP and PROFIBUS PA.

The original version of PROFIBUS DP, designated PROFIBUS DP-V0, has
been expanded to include version DP-V1 and DP-V2. With CI854/CI854A
support for DP-V1 and the acyclic services (toolrouting) is given. In addition
CI854/CI854A supports line and slave redundancy and CI854A supports
master redundancy as well.

The PROFIBUS DP-V0 configuration and parameter data for slave devices are
engineered in Control Builder and downloaded via CI854/CI854A.

PROFIBUS slave types are usually supplied with a *.gsd file. This file
describes the properties of the slave type. The *.gsd file must be converted with
the Device Import Wizard, in order to be used in the project.

• DriveBus

The DriveBus protocol is used to communicate with ABB Drives and ABB
Special I/O units. DriveBus is connected to the controller via a CI858
communication interface unit.

The protocols used by the supported fieldbuses are described in detail in the
Communication manual.
196 3BSE040935R201 Rev A

Section 4 Online Functions

Introduction
When a controller project is in online mode and test mode, it is possible to inspect
the code while running it, and interact with the code. Furthermore, you can issue
operations to the controller. There are also functions to help the user to find online
errors and to document the control project.

The following functions are available in online mode and test mode:

• Online editors, see Online Editors on page 198.

• Dynamic display of I/O channels and forcing, see Dynamic Display of I/O
Channels and Forcing on page 199.

• Scaling analog signals, see Scaling Analog Signals on page 201.

• Unit status and channel status, see Supervising Unit Status on page 201.

• Hardware and task status indications, see Status Indications on page 205.

• Tasks, see Tasks on page 207.

• Interaction windows, see Interaction Windows on page 207.

• Status and error messages, see Status and Error Messages on page 209.

• Reports and analysis, see Search and Navigation in Online and Test Mode on
page 210.

• Project documentation, see Project Documentation on page 211.
3BSE040935R201 Rev A 197

Online Editors Section 4 Online Functions

Online Editors
From the Project Explorer in online mode, you have access to editors similar to
those in offline mode, such as the application editor, the program editor, the
hardware configuration editor and the function block editor. By using the online
editors the code currently running in the controller(s) can be inspected. Variable
values and parameters can be changed.

You can open one or several new online editor windows from the Project Explorer
by double-clicking on the Program Organization Unit (POU, see Application Types
and Objects on page 27) you want to view. You can also select the POU, click the
right mouse button and select View.

Figure 84. Part of Program editor in online mode

In online mode there are fewer menu entries in the menu bar than in the offline
editor. Edit and Insert are not available in online mode. The options available in
online menus are also somewhat different from those in offline mode. Columns in
the editor that are dimmed are not accessible.

An online editor window consists of a title row, menu bar, tool bar, and a status bar
at the bottom. The window is split into three panes, as follows.
198 3BSE040935R201 Rev A

Section 4 Online Functions Dynamic Display of I/O Channels and Forcing

• In the upper declaration pane the variables and parameters of the POU are
displayed in forms that resemble Excel data sheets. Each sheet, with its tab, has
a unique appearance with respect to the number of columns and their names.
Select a tab to see its sheet, available columns and their names. See also Online
Change of Variable Values in the online help.

• The middle code pane displays the various code blocks in the POU, in any of
the 1131 programming languages.

• The lower description pane displays descriptions of the types and POUs.

It is possible for the user to enter editor settings in the Setup Editor dialog, using the
Tools > Setup menu.

From the online editor window you can activate the POU editor window using the
Tools > Edit Type menu or the Edit Type button .

You can activate an online window for the POU parent via the Tools > View Parent
menu or the View Parent button .

Dynamic Display of I/O Channels and Forcing
In test mode and online mode, you can use the hardware configuration editor for
dynamic online display of I/O channel values and forcing.

Forcing of I/O channels is performed in the hardware configuration editor under the
Status tab, or in the POU editor in online mode. All I/O channels that can be
connected to a variable in an application can also be forced in online mode, except
for channels such as UnitStatus on each I/O unit and AllUnitStatus on the current
controller (see Supervising Unit Status on page 201).

See the Control Builder online help for more information about the Setup Editor
dialog, Edit Type and View Parent.
3BSE040935R201 Rev A 199

Dynamic Display of I/O Channels and Forcing Section 4 Online Functions

Normally, only channels with variable connections to application programs can be
forced. However, if no variable is connected, you have to change the parameter
Copy unconnected channels under the Settings tab for the current controller to
obtain a status update. The I/O channels you can copy are None, Inputs or Outputs,
or both the Inputs and Outputs. When selected, the unconnected I/O channels are
copied once a second so their status is available in the Status tab like normally
connected I/O channels.

Application programs requiring information about forcing and forced values, can
use the I/O data types when connecting variables to I/O channels. In this way, you
can use the Forced component (which indicates if the I/O channel is forced) and the
IOValue component (contains the value of the I/O channel) of the I/O data type.

When a channel is forced, all copying between the I/O value and the application
value stops. The forced value is different for inputs and outputs. For inputs, forcing
changes the variable value sent to the application. For outputs, forcing changes the
physical I/O channel value. In this way, the application can see both the Variable
(application) value and the Channel (I/O) value.

Forcing can be activated or deactivated using a check box in the Forced column for
the channel. The background of the forced Variable Value changes to yellow to
indicate forcing. To change the channel value, type in a new value for the Variable
Value. This value overrides the values for the channel.

Figure 85. I/O channel with the variable Photo_Cell forced to true.

Copy unconnected channels is for test purposes only and should never be selected
for a controller in a running plant, since it will increase CPU load.

More information is given in Control Builder the online help. Search the Index
for “I/O”.
200 3BSE040935R201 Rev A

Section 4 Online Functions Scaling Analog Signals

Scaling Analog Signals
It is possible to temporarily change the scaling values for analog signals in online
mode.

Supervising Unit Status
Each hardware unit has a UnitStatus channel that describes the current error status
of the unit. Both dynamic and static warnings and errors are collected in this
channel.

The data type, for the variable connected to the UnitStatus channel of the hardware
unit, can be either of dint data type or of HwStatus data type. If a variable of dint
data type is connected to the UnitStatus channel, the possible unit status values are:
0 (OK), 1 (Error), or 2 (Warning).

The HwStatus data type contains the same information as shown under the
Unit Status tab of the hardware configuration editor, that is, unit status information
and status message acknowledgement functions. These components will be
available by using the HwStatus data type as a variable connection to the UnitStatus
channel.

In the example below, see Figure 86, the DO814UnitStatus variable of dint data
type is connected to UnitStatus of DO814 (unit status is 0=OK!). The
DO810UnitStatus variable of HWStatus type is connected to UnitStatus of DI810
(HWState is 1, that is, unit status is Error).

If scaling values for an analog signal are changed in online mode, the change will
be lost if you enter offline mode, make configuration changes and then perform a
download.
3BSE040935R201 Rev A 201

Find Out What is Wrong by Using HWStatus Section 4 Online Functions

Figure 86. The UnitStatus connection gives access to the status of individual
hardware units.

Find Out What is Wrong by Using HWStatus

You cannot find out exactly what is wrong by using the simple data type dint, only
that something is wrong. Table 6 on page 71 shows that, in addition to using the dint
type, you can also use the data type HWStatus. By using the structured data type
HWStatus, instead of the simple data type dint, you may also find out what is wrong
with the unit.

Among other things, the structured data type HWStatus contains the component
ErrorsAndWarnings, which contains a bit pattern, representing the different errors
that may occur in the unit. Each bit in the word represents a unique error.

Figure 87 illustrate how the component ErrorsAndWarnings in HWStatus can be
accessed.

For example, the word takes the value of 16#80020000 (hexadecimal notation), if
the CPU battery suffers from low voltage.

By combining AC800MStatus.ErrorsAndWarnings with the bit pattern 800200001
and using the AND operator, it is possible to trigger an error (or warning) from the
hardware unit, together with the specific error code for “low CPU battery voltage”.
The result is assigned to the boolean variable BatteryLow. The ST code for this
condition is as follows:

For more information on error codes, see Control Builder online help.

1. Typed in ST editor in hexadecimal notation as 16#80020000.
202 3BSE040935R201 Rev A

Section 4 Online Functions AllUnitStatus

(*Set the Boolean variable "BatteryLow" when AC 800M has low
battery*)
BatteryLow := (AC800MStatus.ErrorsAndWarnings AND
16#80020000) <>0;

In online mode it will be displayed as below in Figure 87.
I

Figure 87. The variable AC800MStatus (of HWStatus type) has been used to access
the component ErrorsAndWarnings.

AllUnitStatus

Each controller hardware object has one channel called AllUnitStatus, containing
the summarized status of all hardware units added to the controller. The most
serious unit status is forwarded up to the controller object, that is, the unit status of
the controller is error if one unit has an error, and one has a warning.

AllUnitStatus can be used in the same way as UnitStatus, that is, the variable
connected to AllUnitStatus can be of dint data type or of HWStatus data type.

Figure 88. The AllUnitStatus connection gives access to the status of all units for a
controller.

The variable connected to AllUnitStatus can be used in the application program, to
write different conditions depending on status value (see UnitStatus Example
Figure 87).
3BSE040935R201 Rev A 203

Binary Channels Section 4 Online Functions

Binary Channels

Access All Inputs and All Outputs

Some units return a binary value, as a number of inputs divided on 8 or 16 channels.
Typically, this applies to different types of sensors. These values can be collected
via an overall channel, namely “All input”’. This means that, instead of reading all
variable values from each channel, one variable can be connected to the channel
“All inputs” (IW0, see Table 6 on page 71), provided the variable is of dword data
type. This technique can also be used for digital outputs. However, for digital output
units, you must choose either to connect all individual channels or connect one
variable to the channel “All outputs” (QW0, see Table 6 on page 71). You cannot
use both methods simultaneously.

Check Channel Status

There are two ways to check the channel status for an I/O unit. You can either use
the structured data type BoolIO, that is, read the component Status via BoolIO, or
you can connect a variable of type dword to the “Channel status” (IW0, see Table 6
on page 71).

The component Status in BoolIO only gives you the status for that connected
channel, whereas a variable of type dword that is connected to channel “Channel
status” will read the status for all channels, given with bit 0 equivalent to channel 1,
bit 1 equivalent to channel 2, etc. However, a variable of type BoolIO that is
connected to each channel contains more information, since the component Status is
a 32 bit dword, whereas AllChannel is a 16 bit dword. Connecting each channel to
BoolIO gives more information, but also more variables to connect.

ISP and OSP values are not set for variables connected to All Inputs/All Outputs!

ISP/OSP (Input/Output Set as Predetermined) will not work when using the
channel "All Inputs" or "All Outputs". I/O values will be lost in an error situation.
204 3BSE040935R201 Rev A

Section 4 Online Functions Status Indications

Connecting a variable to AllChannel will give you less information, but only one
variable to connect.

Status Indications

In the Project Explorer, dynamic status indications for the hardware units and tasks
are displayed as shown below.

Figure 89. Status indications of hardware and tasks in Project Explorer.

• OK!
No errors or warnings.

Do not try to connect the component Status (inside BoolIO) directly to the
channel. You must connect BoolIO. For information about connecting structured
data types to IO channels, see I/O Data Types on page 70 and the variable
example given in Figure 28 on page 72.

Status indications are not displayed in Test mode.

Error!

Warning!

OK!
3BSE040935R201 Rev A 205

Acknowledge Errors and Warnings Section 4 Online Functions

• Error!
Hardware objects are marked with a red triangle icon if an error is detected in
the hardware, for example, if a hardware unit is missing.
The task is marked with a red triangle when a serious error has occurred, for
example, when a task is aborted as a consequence of too long execution time.
The error is described in the Remark field of the Task Properties dialog. See
Task Abortion on page 104 for more information.

• Warning!
Hardware objects are marked with a warning icon if there is an overflow or
underflow at an analog channel, if the forcing of a channel is detected, or if an
unacknowledged fault disappears. The task icon is marked with a warning icon
if the task is not used (“Not in use”), in the case of overload, or when the task is
in debug mode and the task is halted, that is, non-cyclic mode (see Debug
Mode in the Getting Started manual. The warning is described in the Remark
field of the Task Properties dialog. See Task Control on page 89 for more
information about tasks.

An error has higher priority than a warning, for example, an error is indicated if an
error occurs at the same time as channel forcing is detected.

A collapsed object folder shows status indications for all underlying objects, that is,
status indication is always forwarded up to the controller icon. It is not until an
object folder is fully expanded that you can be sure that status indications are shown
next to the unit they actually belong to. If, for example, a single task has a warning,
both its task folder icon and its controller icon are marked with a warning. Status
indications are displayed up to the controller level only.

Acknowledge Errors and Warnings

All hardware unit errors and warnings have to be acknowledged by the user. Use the
status tab in the hardware editor to obtain information about the error or the
warning. See Control Builder online help for more information about dynamic
online display of I/O channel values and forcing and how to acknowledge errors and
warnings.

Warnings concerning tasks do not have to be acknowledged.
206 3BSE040935R201 Rev A

Section 4 Online Functions Tasks

Tasks
Use the Task Overview dialog to display task information in online mode.

For each task, you can make changes to the Requested Interval Time, Offset,
Priority and Latency using the Task Properties dialog. The maximum encountered
intervals and the maximum encountered execution time can be reset.

Debug mode can be used, but for debugging only. Functions based on the real-time
clock (PID controllers, timers etc.) do not work properly when debug mode is used
(also, see Debug Mode in the Getting Started manual.

You can also select Always update output signals last in next execution, or select
Always update output signal first in next execution.

Interaction Windows
An interaction window contains the graphics of a control module and is only
accessible in online mode. An interaction window may contain both supervisory
features, such as signal status, and interactive features, such as push buttons. The
window can be accessed from:

• A control module in the Project Explorer.

It is not possible to change the task priority to/from 0 (Time-Critical priority) in
online mode.

If debug mode is used in a running plant, task execution will be stopped.

For further basic information about tasks, see Task Control on page 89. For
Latency information, see Latency Supervision on page 102. See also Control
Builder online help for how to carry out task changes.
3BSE040935R201 Rev A 207

Interaction Windows Section 4 Online Functions

• A function block in the Project Explorer. This is, however, only available under
the condition that at least one control module exists and is connected to the
selected function block type. By default, the first control module in the list will
appear in the interaction window (this can be changed in offline-mode by right-
clicking on the type name in the Project Explorer and selecting Properties>
Set Interaction Window Control Module).

• An online program editor containing a control module.

• An online program editor containing a function block (compare with item 2
above).

• From interaction window objects in a control module.

Figure 90. The left window is an interaction window activated from an application
window interaction object. The right window (supervision only) appears after
clicking the info interaction window button.
208 3BSE040935R201 Rev A

Section 4 Online Functions Status and Error Messages

Status and Error Messages
There are function block types, control module types and functions that contain a
parameter named Status. The Status parameter shows, in online mode and in test
mode, a status code that correspond to a status message. The status code changes
depending on the current state of the function block, control module or function.

There are function-specific status codes that are used within its range of application
only, for example, communication-specific status codes. Some status codes are
general and are used for most function blocks and control modules, and for
functions with a Status parameter.

Function block types and control module types with a Status parameter also have an
Error parameter. The Error parameter is set to true if the Status parameter < 0, for
example, if Status is -35 (Maximum size limit has been exceeded). Status codes >1
is used as warnings and do not set the Error parameter.

Figure 91. A function block with Status parameter and Error parameter (operation
successful=1).

The Error and Status parameters can be used in the application program, for
example, a condition can be written in the program for a specific status code.

The different status messages are described in Control Builder online help.
3BSE040935R201 Rev A 209

Search and Navigation in Online and Test Mode Section 4 Online Functions

Search and Navigation in Online and Test Mode
The Search and Navigation function makes it possible for the user to search for
symbols (see Symbol and Definition on page 111) in the Project Explorer, by using
advanced queries. In online mode, for example, an online error can be found.

All symbols matching the search criteria are shown together with definitions where
the symbols are declared. If a symbol is selected, all references where the selected
symbol is used in the Project Explorer are shown as well. By double-clicking on a
definition, it is possible to navigate to the editor where the symbol is declared. A
double-click on a reference shows the editor where the symbol is used.

A report that contains the last search result shown in the Search and Navigation
dialog can also be generated (see Reports on page 119).

There are some differences between offline and online/test mode. For dialog
settings and more specific explanations about dialog contents, see description of
Search and Navigation on page 107 in offline mode.

Figure 92. The Search and Navigation function in online mode.

There are following differences in online/test mode (compared to offline mode):

• Search In: drop-downs can only contain search paths for objects that you can
see in online/test mode, for example, libraries cannot be searched.
210 3BSE040935R201 Rev A

Section 4 Online Functions Project Documentation

• References only show information concerning where the symbol is used, as can
be seen in online mode.

• It is only possible to navigate to online editors and to the Project Constant
dialog. The online editors that can be navigated to are the following:

– POU editor,
– Connection editor,
– Control Module Diagram editor,
– Hardware configuration editor,
– Access variables editor.

In online mode, it is also possible to navigate from the Search and Navigation
function to the corresponding object in the Project Explorer.

• The Rebuild Search Data menu selection does not exist in online mode. It is
also not possible to click the Rebuild button (dimmed) in the Search and
Navigation dialog. The Control Builder will, however, update search data
before entering online or test mode.

Project Documentation
Project Documentation in online mode is used to document (part of) the application
tree in online or test mode. You can select any application object, set the “tree
depth” in relation to the selected object, to document part of the tree only. You can
also use filter conditions for a more specific search. Unlike the offline mode
version, the values of variables, parameters, etc. are included. The output is a
Microsoft Word file, hence Microsoft Office must be installed.

1. Enter online or test mode and select an application object in Project Explorer.

All project documentation will be connected to a standard template.
3BSE040935R201 Rev A 211

Project Documentation Section 4 Online Functions

2. Select File > Documentation Online... to open the Project Documentation
dialog.

Figure 93. The Documentation Online dialog.

3. See Control Builder online help for information about dialog settings and
selections.

See Project Documentation on page 129 for information about Project
Documentation in offline mode.
212 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting

This section provides important information for maintenance and trouble-shooting
Compact Control Builder products. It mainly advises you on how to maintain your
system, and how to collect information from a malfunctioning control system. The
latter information is particularly valuable if your supplier’s service department is to
be involved.

Introduction
Software maintenance and trouble-shooting includes the following activities:

• Backup and Restore on page 214 gives a short overview of backup and restore.

• Error Handler Configuration on page 216 describes how to configure handling
and logging of system alarms and events, using the Error Handler.

• Trouble-Shooting on page 221 lists a number of error symptoms, and suggest
actions upon these.

• Error Reports on page 247 describes how to write a complete error report, so
that the support engineers get a complete picture of an error situation.
3BSE040935R201 Rev A 213

Backup and Restore Section 5 Maintenance and Trouble-Shooting

Backup and Restore

Introduction

This function provides a backup of your project, and enables you to move a project
from one Control Builder station to another with the restore function. You can
choose to backup a complete project or select parts of the project.

Backup

Compact Control Builder suggest the current project in Project Explorer for backup,
or you can browse via a button to another project on your hard disk. Furthermore,
Control Builder suggests a destination folder, named Project Backup which will be
created next to the Project folder.

To Backup a project, select (in Project Explorer) Tools>Maintenance>Project
Backup. A Project Backup dialog window will open, (Figure 94).

Figure 94. Backup menu in Project Explorer.
214 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Restore

Complete Backup

This option includes all files that are needed to restore the project on another
computer.

Typical Backup

A Typical backup of a project includes all source code files that are needed to
restore the project on another computer. However, Retain, Cold Retain or Domain
files will not be included with this option.

Custom Backup

Advanced users may want to choose explicitly which files to back up. This option
provides a list of all files included in the project.

Restore

The restore function is used to install a backup, for example, after a disk crash, or
when moving a project to another system. You may decide to make a Complete,
Typical or Custom restore.

When you are restoring a complete project, all the project-related files are copied
from the backup folder to the project folder.

Files for Separate Backup

There are some settings files that are stored locally. These need to be backed up
separately:

• OPC Server Configuration and System Setup Files
The OPC Server stores configuration files (*.cfg) and system setup files
(*.sys) on local disc. These files are stored in the OPC server working
directory and need to be manually copied to safe media on a regular basis. See
the OPC Server for AC 800M manual for more information.

• Control Builder Settings File
Each Control Builder client saves its settings in the file systemsetup.sys.
This file is saved on local disk, in the Control Builder working directory, and
has to be manually backed up to safe media on a regular basis.
3BSE040935R201 Rev A 215

Error Handler Configuration Section 5 Maintenance and Trouble-Shooting

Error Handler Configuration
The Error Handler is used to configure controller behavior on system alarms and
events of different severities, and how different errors are logged.

Error Handler settings are made for each controller, in the Controller Settings
dialog. There are certain settings that cannot be changed (they are dimmed in the
dialog). You can add additional actions, but you cannot change the original
settings.Error Handler settings are slightly different for High Integrity and non-High
Integrity controllers:

• Error Handler Settings in Controllers on page 217 describes how to configure
the Error Handler in a controller.

Errors can be reported from the code using the ErrorHandler function block type
or the ErrorHandlerM control module type. Using these types, errors identified by
the code can be handled in the same way as other errors. For more information on
how to configure the ErrorHandler(M) types, see corresponding online help.

The ErrorHandler(M) types should be used with care, since they can be used to
reset the controller.
216 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Error Handler Settings in Controllers

Error Handler Settings in Controllers

Figure 95 shows the Controller Settings dialog for a AC 800M controller. It is
displayed by right-clicking the controller in Project Explorer and selecting
Properties > Controller Settings.

Figure 95. Controller Settings dialog for an AC 800M controller.

If load balancing is enabled, overrun and latency supervision is automatically
disabled, see Overrun and Latency on page 100.

The default setting for a controller is that load balancing is enabled and overrun and
latency supervision disabled. If you disable load balancing overrun and latency
supervision is automatically enabled.

Fatal overrun settings are used only if overrun and latency supervision is enabled
(this part will be dimmed if load balancing is enabled, see Figure 95).
3BSE040935R201 Rev A 217

Error Handler Settings in Controllers Section 5 Maintenance and Trouble-Shooting

The Fatal Overrun part of the dialog lets you set how many overruns (missed scans)
that are allowed before a fatal error is considered to have occurred. The Reaction
setting is used to select which action the controller should take when a fatal overrun
error occurs. The options are Nothing, Stop Application, and Reset Controller
(Nothing is default). The default setting for the limit is 10 overruns.

For a controller, the Error Reaction part lets the user set the following, see Table 13.

The above table shows controller reactions (fixed and configurable) when alarms of
different severities are received by the Error Handler in a controller.

It is important to avoid configuring the error handler in such a way that a fatal
overrun error has two corresponding reactions, one that is set in the Fatal Overrun
part of the dialog (for example, Stop Application) and one that is set in the Error
Reaction dialog (for example, Reset Controller for the corresponding severity).
Note that severity Fatal and Critical will always lead to a controller reset.

If settings are inconsistent, you will receive a warning when trying to save the
new settings.

Table 13. Error Reaction. This part of the dialog is used to set controller actions at system alarms of
different severity.

Severity Log Event Reset Controller

1 Low Configurable for all Configurable for all Configurable for all

2 Medium Always for system
diagnostics and
execution
Configurable for I/O

Configurable for all Configurable for all

3 High Always for system
diagnostics and
execution
Configurable for I/O

Always for system
diagnostics and
execution
Configurable for I/O

Configurable for all

4 Critical Always Always Always

5 Fatal Always Always Always
218 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Error Handler Settings in Controllers

There are three tabs in the Error Reaction part of the dialog:

• The System Diagnostics tab contains settings for system alarms generated by
the System Diagnostics module, for example, CEX module errors, protocol
handler errors.

• The Execution tab contains settings for system alarms generated during
execution of IEC-61131 code, for example, latency errors, CRC check failures.

• The I/O tab contains settings for I/O module errors.

The following definitions have been used for the severity of system errors when
designing error handling for different modules:

• 1 Low
Minor, of diagnostic or informative sort. Does not affect system integrity or the
functionality of the reporting module.

• 2 Medium
An error, such as I/O channel failure, communication failed, or similar, has
occurred. Does not affect system integrity, but affects functionality in the
reporting module.

• 3 High
Severe error, but not critical, for example I/O module failure. May affect
system integrity. Functionality in the reporting module is affected. Redundancy
may maintain the system integrity

• 4 Critical
A severe error has occurred, for example, a task has stalled, ModuleBus stalled,
I/O cluster down. Will affect system integrity, since the reporting module has
failed. Redundancy may maintain the safety of the system.

• 5 Fatal
Systematic software errors have been found. The whole reporting subsystem
has failed. Redundancy will not maintain the system integrity. This severity is
only used when there is no possibility to safely continue using a backup PM.
3BSE040935R201 Rev A 219

Error Handler Log Entries Section 5 Maintenance and Trouble-Shooting

Error Handler Log Entries

If an error of a certain severity is configured to be logged, it will generate a
Controller System log (see Controller System Log on page 231) entry with the
following general structure.

E yyyy-mm-dd hh:mm:ss:ms ErrorHandler PM: Error descr.(x,y,R)

• Such an entry should be read according to the below table.

Table 14. How to read a log entry generated by the Error Handler.

Part Description Allowed Value(s)

E Error

yyyy-mm-dd Date

hh:mm:ss:ms Time when error was time
stamped

ErrorHandler PM: Error detected by ErrorHandler PM:

=Processor Module

Error descr. A text describing the error

(x,y,ERS)

x=error type 1 (System Diagnostics)
2 (Execution),
3 (I/O)

y=severity 1 (Low)
2 (Medium)
3 (High)
4 (Critical)
5 (Fatal)

ERS=action type E (Event)
R (Reset)
S (System Alarm)
220 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting

Trouble-Shooting

General

When a control system error occurs, it is important to investigate it as soon as
possible. In doing this, the possibility of finding and eliminating the problem will be
substantially increased. The reasons are:

• The personnel involved will not have forgotten what happened.

• The application software involved will not have been changed.

• The systems involved will not have been changed (location, setup etc.).

• You may need a work-around quickly, to be able to continue your work.

• Some errors only occur under very special circumstances and/or in special
hardware/software configurations. The person who reports the problem may
have the only installation/configuration where we know it could occur.

The task of trouble-shooting is usually very difficult, and requires a great deal of
intuition and ability to draw conclusions from known facts. This subsection aims to
provide some guidelines on solving problems.

Here are some basic troubleshooting questions which should first be answered.

• What is the problem?

• Is it a known problem? Check the available information (for example, Release
Notes and Product Bulletins) and discuss it with colleagues.

• Has the system worked previously (with the same hardware)? If so, the
problem may have occurred due to poor installation or due to setup problems.

• Has anything been modified recently? The problem is often to be found in
modifications. If possible, revert to the previous state, and test.

• Can the problem be linked to any special event?

• Is it possible to reproduce the problem?

A well-described error, with all vital information included, will always increase
the probability of correcting the error quickly and effectively. Error Reports on
page 247 provides some hints when writing an error report.
3BSE040935R201 Rev A 221

Log Files Section 5 Maintenance and Trouble-Shooting

Log Files

The Industrial IT products described in this subsection have built-in logging
routines that continuously write to log files. Log files will contain important
information whenever a failure occurs during a programming session, or when a
controller is running. These files and the crash files (see section Crash Dumps for
Analysis and Fault-Localization on page 234) are very useful for troubleshooting
and contain crucial information for analyzing malfunctions.

System Log File

The system log is created the first time Control Builder is started (or if there is no
log file), and is used to store general information concerning Control Builder.
Examples of information logged are start/stop of Control Builder and changes in the
setup of Control Builder via the Tools menu. The System log can be read via the
menu entry Tools > Maintenance > Analysis > System Log. Figure 96 shows an
example of the system log.

The path and file name of the System log are given in Table 15.

Figure 96. An example of the system log

Table 15. The System log file path.

Denomination Path/Note

Control Builder
System Log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\

Compact Control Builder \LogFiles\System.log

Note

Only one version of this file exists.

(1) The default working directory is shown.
222 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Log Files

Session Log Files

At start-up, Control Builder, OPC Server for AC 800M, MMS Server for AC 800M,
SoftController, automatically creates a session log file on the hard disk. These files
contain information generated during one session, that is, from the time the product
is started, until it is stopped. New files will be created upon each new start-up.

At start-up, information about hardware and software versions, and later,
information on system events, such as mode changes (Offline to Online, or vice
versa) and error print-outs, will be logged in the session log. Session logs are
continuously updated in a running system, and whenever a problem occurs it is a
good idea to look at the logs to see if there are any printouts. It is possible to read
log files for the current session via the menus.

Ten successive start-ups will generate the following session log files; Session.log
(from last start-up), Session.log _bak1 (next to last), Session.log _bak2, etc to
Session.log _bak9 (the first start-up or oldest saved start-up). This means that when
you start-up the system a eleventh time Session.log _bak9 will be overwritten and
the previous Session.log will be renamed as Session.log _bak1 and a new
Session.log will be created.

• Session.LOG

• Session.LOG_bak1

• Session.LOG_bakn.......

• Session.LOG_bak9

• Session.LOG_bak9

Session logs are saved from the previous nine sessions. It is important to save a
file containing information about a problem, with a new name, before it is
overwritten.

You will lose the oldest saved file because all the files are pushed one step after
each start-up. This means that (_bak8) is pushed to (_bak9), (_bak7) to (_bak8)
etc and Session.log to (_bak1).
3BSE040935R201 Rev A 223

Log Files Section 5 Maintenance and Trouble-Shooting

The paths and file names of the session logs are given in Table 16.

Table 16. Session log file paths.

Denomination Path/Note

Control
Builder
session log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder\LogFiles\Session.log

Note

Session log files stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

OPC Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\OPC Server for AC 800M\
LogFiles\Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9
224 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Log Files

MMS Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ MMS Server for AC 800M\
Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

SoftController
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\ SoftController \ Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

(1) The default working directory is shown.

Table 16. Session log file paths. (Continued)

Denomination Path/Note
3BSE040935R201 Rev A 225

Log Files Section 5 Maintenance and Trouble-Shooting

OPC Server (Session.log) Example

The list example shows an extract from an OPC Server session log file and how to
interpret the given data in four separate error occurrences. Important information
has been highlighted with typeface bold.

E = error, AE = Alarm Event, DA = Data Access.

E 2003-11-07 11:11:54.867 On Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:03.335 On Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

E 2003-11-07 11:12:04.913 Off Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:27.398 Off Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

1. The first event description tells us that the OPC server lost connection (On) to
controller for Alarm and Event subscription (and when this error occurred).

2. The second event description tells us that the OPC server also lost connection
(On) to controller for Data and Access subscription.

3. The third event description tells us that the OPC server regained connection
(Off) to controller for Alarm and Event subscription.

4. The forth event description tells us that the OPC server regained connection
(Off) to controller for Data and Access subscription.

As you can see, letter (E) stands for error and it occurs both when error activates
(On) and when the same error is gone (Off).
226 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Log Files

Control Builder Start Log

Control Builder creates a Start Log file for logging the last Offline to Online transfer
(in Test or Online mode). Information, such as warnings and error messages, will be
logged. The Start log is very useful when investigating errors that might occur
during or just after an Offline -> Online transition. Sometimes the Start log will give
a natural explanation of what at first looks like an error (for example, lost Cold
Retain values).

The nine latest Start logs are saved.

The path and file name of the Control Builder start log, are given in Table 17.

It is important to save a file containing information about a problem, with a new
name before it is overwritten. Furthermore, check that the date and time in the
Start log correspond with the time when the problem occurred.

Table 17. The Control Builder start log file path.

Denomination Path/Note

Control Builder
Start log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder\LogFiles\startlog.txt

Note

The nine latest Start log files are saved:
startlog.txt
startlog.txt_bak1,startlog.txt_bak2, startlog.txt_bakn....
startlog.txt_bak9

(1) The default working directory is shown.
3BSE040935R201 Rev A 227

Log Files Section 5 Maintenance and Trouble-Shooting

Field bus parameter log files

During compilation and simulation, CI851, CI854 master parameters will be
automatically calculated.

The calculation is performed for all controllers in the project and for all masters
connected to the controllers. The result is sent to text files, which is stored in the
same place as the Control Builder log files. The text files have no backup, and are
replaced at every compilation and simulation.

The path and file name of the Field bus parameter log files, are given in Table 18.

Table 18. The Field bus parameter log files path.

Denomination Path/Note

CI851
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder\LogFiles\Profibus_DP_Calculation.txt

(1) The default working directory is shown.

CI854
parameter log
file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder\LogFiles\Profibus_DPV1_Calculation.txt
228 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Log Files

Control Builder System Information Report

The system information report is a list of hardware, software and setup information
for an engineering station. This information is generated by a menu command and
presented in a text editor.

To generate a new report perform either of these two alternatives.

• Select menu Help > About Compact Control Builder> List all Information

• In the Control Builder Setup Wizard, click Show Settings button.
This alternative generates almost the same information as the alternative above,
but fewer Environment variables are printed.

The path and file name of the Control Builder System information report file are
shown in Table 19.

It is important to generate a new file containing information that was valid at the
time the problem occurred.

Table 19. The Control Builder system information report file path.

Denomination Path/Note

Control Builder
System
information
report

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder\LogFiles\ SystemInformation.txt

(1) The default working directory is shown.
3BSE040935R201 Rev A 229

Log Files Section 5 Maintenance and Trouble-Shooting

Heap Statistics Log

There are heap statistics log files for Control Builder, SoftController, and OPC
Server for AC 800M. Every time a message “memory full” occurs (see Figure 97)
in these products, the system software will automatically generate a heap statistics
log file containing information about the content of the heap1.

If “memory full” occurs in a situation that cannot be explained as normal, then this
file should be included in an error report to your supplier’s service department.

When a system is unable to store more information in the heap, an error message
will be displayed. In most cases (more than 98%), this is due to an attempt to store
too much information in too small a heap. If this occurs for a product running on an
engineering station, increase the heap size for that product, using the Setup Wizard.

Figure 97. The “memory full” message.

The paths and file names of the heap statistics log files are given in Table 20

1. A product, for example, a Control Builder, an OPC server, or a controller, uses a general memory area to store
information. This area is called a heap. In the engineering station this area does not necessarily reside in the
RAM memory.

Table 20. The heap statistics log file paths.

Denomination Path/Note

Control Builder
heap statistics
log

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(1)\
Compact Control Builder\LogFiles\heapstat.dat

Note

The file is intended to be stored and be included in an error report.
230 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Log Files
 Controller System Log

Controllers have a circular log buffer that can hold a certain amount of information,
normally all information that has been generated during the last 5 to 8 start-ups.

A lot of the information gathered in a controller log file can be of great assistance,
but a controller file is circular, which means that the last error often disguises more
important previous errors. This means that the original error can be hard to discover.
Therefore, you are advised to first save the log file to a safe location (no risk of
deleting history) and then fault-find your way back. After renaming the first
controller log file, it is safe to fetch as many controller log files as necessary.

The Controller System log is never deleted. Provided that the battery backup is
working properly, the information can be retained during a power failure. This
function makes it possible to restart a faulty system immediately to regain control of
the process, without losing vital information about the error.

OPC Server
for AC 800M
heap statistics
log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\OPC Server for AC 800M \
LogFiles\heapstat.dat

Note

The file is intended to be stored and included in an error report.

SoftController
heap statistics
log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(1)\SoftController \heapstat.dat

Note

The file is intended to be stored and included in an error report.

(1) The default working directory is shown.

You must first save the Controller system log file on a safe location before fault-
finding; it is much more difficult to identifying the original error after several
startups.

Table 20. The heap statistics log file paths.

Denomination Path/Note
3BSE040935R201 Rev A 231

Log Files Section 5 Maintenance and Trouble-Shooting

The recommended way to access the Controller System log information is to fetch it
via Control Builder. Selecting Tools > Maintenance > Remote System… will
show a Remote System dialog, see Figure 98.

Figure 98. The Remote System dialog box.

Enter the controller identity (the IP address) and click on the Show Controller Log
button to show the Controller System Log.

The information will be shown in a text editor and also be stored in a file (see the
path in Table 21).

However, the first controller log can still be overwritten. The 'First-in-First-out'
principle is still valid for controller logs if you activate the ‘Show Controller Log’
function from the Project Explorer.

Figure 99 below, is an excerpt of the controller system log.

A redundant controller creates one log file for the primary unit and one for the
backup unit, hence two different log files.
232 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Log Files

Figure 99. One section of the controller system log showing the actual firmware in
the controller.

The path and file name of the Controller System log file are given in Table 21
3BSE040935R201 Rev A 233

Crash Dumps for Analysis and Fault-Localization Section 5 Maintenance and Trouble-Shooting
 Crash Dumps for Analysis and Fault-Localization

If a crash occurs (in Control Builder, OPC Server, SoftController, MMS Server
for AC 800M, two new files are generated at the same location as the session log
files. The first one is a dump file and the second is a rewritten session log file. These
two files contain crucial information that should be delivered to the support
personnel

If a Control Builder crash occurs at 16:20 on the 19:th of May, then a dump file and
a rewritten session log file will look like:

ControlBuilderStd 2006-05-19 16.20.29.184.dmp

ControlBuilderStd 2006-05-19 16.20.29.184 Session.LOG

After these two files have been generated, an error message window will show up on
the screen.

Table 21. The controller system log and controller integrity log file paths .

Denomination Path/Note

Controller
System log

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data(1)\Compact Control Builder
\LogFiles\Controller_a_b_c_d.log (BackupCPU_a_b_c_d.log)

Note

a_b_c_d is the IP address of the controller. See Controller System Log on
page 231.
The nine latest Controller System logs are saved:
Controller_a_b_c_d.log
Controller_a_b_c_d.log_bak1, Controller_a_b_c_d.log_bak2, etc
Controller_a_b_c_d.log_bak9

(1) The default working directory is shown.
234 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Remote Systems Information

Figure 100. Error message, showing where to find the Crash Dump and Session
Dump.

Remote Systems Information

A connected remote control system1 can be inspected and maintained from Control
Builder. This can be an important tool when troubleshooting the system.

Select Tools > Maintenance > Remote System to open the Remote System dialog,
see Figure 101.

Figure 101. Remote System dialog.

1. Remote systems are controllers, OPC servers, and engineering stations connected to the same Control network
as your own local system.

The “Show Remote System” function can only list nodes on the same physical
network! Thus, you must connect a Control Builder PC on the same Ethernet
network; you cannot Show Remote System on nodes beyond routers, sub-
networks etc.
3BSE040935R201 Rev A 235

Remote Systems Information Section 5 Maintenance and Trouble-Shooting

The following remote system functions are available, see the Table 22 below. Click
on a button in the dialog to retrieve information.

Table 22. The available remote system dialog functions.

Menu Item Function

Show Remote Systems Shows a list of all addresses to the control
systems (including MMS process numbers)
connected to the same network as the requesting
system.

Show Downloaded Items Shows information about controller configuration
and about the application(s) running in the
selected remote controller system, such as
application name, application status, compilation
date and time, compiling engineering station
identity, and the checksum of the application. You
can also remove a running application here.

You can also access the source code report from
the Show Downloaded Items dialog, see Source
Code Report Generated for Project in the Getting
Started manual.

Show Firmware Information Shows information from a controller, such as unit
position, type of hardware unit, name and version
of the current firmware and firmware creation date.
Firmware can also be loaded to selected
controllers here.

Show MMS Variables Shows all the MMS variables in the system.

Show Controller Log Shows the Controller System log, described in the
section Controller System Log on page 231.

Show MMS Connections Shows connection information about the remote
systems, such as IP address, server/client
function, identity of the connected system
(destination system), usage, and number and
maximum of transactions sent since connection
was established.
236 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Analysis Tools

Analysis Tools

Control Builder Tools

The Control Builder Tools menu contains more useful tools for troubleshooting.
Note that a great deal of the information is only valuable for your supplier’s service
department.

Select Tools > Maintenance > Analysis to open the following menu items, see
Table 23.

Change System Variables Shows a dialog box where the system variable
values in a controller can be changed.

For further information, refer to Control Builder online help. Use the Help button
in the Remote System dialog, see Figure 101.

For further information, refer to Control Builder online help.

Table 23. The menu items of the Analysis tool.

Menu Item Function

Disable Double-buffering Not useful for troubleshooting

Disable Information Zoom Not useful for troubleshooting

Disable Clipping Not useful for troubleshooting

Image Selector Info in Online
Mode

Not useful for troubleshooting

Image Selector Information Not useful for troubleshooting

Show control modules in
Online Mode

Not useful for troubleshooting

Table 22. The available remote system dialog functions. (Continued)

Menu Item Function
3BSE040935R201 Rev A 237

Analysis Tools Section 5 Maintenance and Trouble-Shooting

Exceeding the Maximum Number of Instances

To be able to count modules and instances the application must be compiled. To find
out the number of instances:

1. In Project Explorer, go to Test mode or Online mode.

2. Select Tools > Maintenance > Analysis > WriteVariableMemory. The
Variable Memory dialog is displayed.

3. Select the application and click OK. A window will show variable information.
This information will also be stored in a file called varmem.txt, which is stored

Write Variable Memory Used for counting modules and instances as
described in Exceeding the Maximum Number of
Instances on page 238.

Write Exported Variables Not useful for troubleshooting

Write Variables in View Not useful for troubleshooting

Write Heap Statistics Creates the Control Builder Heap Statistics Log,
described in Heap Statistics Log on page 230.

Application Information Shows information on the application selected in
Control Builder. The application name, creation
date and checksum are shown. The checksum may
be useful, for instance, to check if two applications
loaded into two different engineering stations have
the same status.

Start log Shows the Control Builder Start log, described in
Control Builder Start Log on page 227.

System log Shows the Control Builder System log, described in
System Log File on page 222.

Table 23. The menu items of the Analysis tool. (Continued)

Menu Item Function
238 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Analysis Tools

together with other log files at C:\ABB Industrial IT Data\Engineer IT
Data\Compact Control Builder x.y\LogFiles\.

4. Open the text file, see Figure 102, and browse to the end.

Figure 102. Contents of varmem.txt file (this file can be very long, only part of the
information is shown here in the figure).

5. Scroll to the end of the file. The number of instances is shown at the bottom
row of the file. Find the last row that starts with the word “INSTANCE”–the
number of instances will follow immediately after this word. This row might
look as in the below example:

INSTANCE 170 Application_1.MotorUniM2.GroupStartIcon.UniIcon1

In the above example, the number of instances is 170.

If the maximum number of instances has been exceeded, it is not possible to
compile the application. For instructions on what to do in this case, see page 240.

This is a useful check to perform every now and then. If your application
approaches the maximum number of instances (65535), you should consider re-
structuring your code.

INSTANCE 1 BasePicture

DEFINITION 1 BasePicture

NO EVENT GUID ALLOCATED

TASK 'Normal'

 --User defined variables--------

 1 String "" --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name1

 2 DWORD 0 --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name1Status

 3 String "" --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name2

 4 DWORD 0 --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name2Status

 5 String "" --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name3

 6 DWORD 0 --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name3Status

 7 String "" --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name4

 8 DWORD 0 --N-- 1 GroupStartIn.Forward.FirstHeadNames.Name4Status

 9 String "" --N-- 1 GroupStartIn.Forward.PrevHeadName

3BSE040935R201 Rev A 239

Analysis Tools Section 5 Maintenance and Trouble-Shooting

The maximum number of instances in an application is 65536. When this number is
exceeded, the following dialog is shown.

Figure 103. Error message shown at download, when an application has too many
instances.

If you have already exceeded the limit, you will not be ably to compile the
application. Perform the following steps to find out how many instances you have:

1. Repeat the following steps until compilation is successful:

a. Remove an item from your system, for example, a program.

b. Compile the application.

c. If compilation is still not successful, remove an additional item.

2. Once compilation is successful, check the number of instances, as described in
the previous instruction. Write this number down, call it A.

3. Experiment with adding removed items and try to find two items that can be
added without compilation errors. For each successful compilation, check the
number of instances with that particular item added, and write it down. Call
these two numbers B and C.

4. You can now calculate the total number of instances as A+(B-A)+(C-A).

5. You will now have to re-structure your application in such a way that the
problem is eliminated. This could be done by splitting the application into two
different applications, or by decreasing the number of instances.
240 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Analysis Tools

System Diagnostics Function

The Basic library contains a function block type called System Diagnostics. You can
use this function block type to measure and display the following functions.

• Cyclic load resulting from task execution,

• Stop time and memory usage during a controller download,

• Current memory in use,

• Maximum memory used since the last cold start,

• Alarm and event information,

• Total CPU Load,

• Ethernet statistics:

– number of data packages sent,

– number of sent data packages that were lost,

– number of data packages received,

– number of received data packages that were lost.

The System Diagnostics function block is, as default, located in one of the Program
folders of the Project Explorer tree, see Figure 104.

Figure 104. The System Diagnostics function block

Values can be updated either on command or cyclically using the Interaction
Window, which is opened by selecting the System Diagnostics function block, right-
clicking, and then selecting Interaction Window.

The System Diagnostics Interaction window is only available in Test/Online
mode.
3BSE040935R201 Rev A 241

Analysis Tools Section 5 Maintenance and Trouble-Shooting

System Diagnostics Interaction Window

The System Diagnostics Interaction window contains system memory and program
download information. The interaction windows can be displayed in two versions,
Simple and Advanced.

The Simple Interaction window contains the following information:

The values shown in Test mode are not those valid in Online mode. You cannot
use this information to check in advance which controller size you have to
purchase.

Table 24. The Simple Interaction window

Function Description

System Displays the TCP/IP address of the supervised system.

Cyclic load Displays cyclic load due to task execution in percent.

Latest update Displays the time of the last update.

Cyclic update Cyclic update is activated by checking the check box.
Cyclic update interval is set in time format, for example 5 m
(5 minutes).

Total Load CPU Shows the total CPU load for the controller. The total load
is available as a parameter of type dint, called
TotalSystemLoadPerCent.

Ethernet Statistics By clicking the Ethernet button, you display Ethernet
statistics in a separate window.

This window shows the number of sent/received
packages, and how many of those that were lost. These
statistics are available as parameters. There are also
parameters for resetting the counters. See online help for
the SystemDiagnostics function block.
242 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Analysis Tools

Click on the Advanced button, and the Advanced Interaction window will appear. It
contains the following additional information.

Table 25. The Advanced interaction window.

Function Description

Memory size The allocated heap size, see Figure 105.

Used memory The part of the heap used in bytes and percent of the total
heap size.

Max used memory The maximum part of the heap used in bytes and percent of
the total heap size.

Memory quota The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.
Note. This setting is only used for a warning indication.

Stop time Stop time during the last download.

Init peak memory Memory used during initiation phase.

Used memory at
stop

The part of the heap used during the stop phase in bytes
and percent of the total heap size.

Max used memory at
stop

The maximum part of the heap used during the stop phase
in bytes and percent of the total heap size.

Memory quota at
download

The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.
3BSE040935R201 Rev A 243

Analysis Tools Section 5 Maintenance and Trouble-Shooting

In the System Diagnostics function block, “Memory size” is the total physical
memory, minus executing firmware. This is sometimes also called the “heap”.

Memory usage is also displayed in the dialog “Heap Utilization” which can be
displayed for each controller. The available memory is called “Non-Used Heap” and
the rest is called “Used Shared Heap”.

Figure 105. Memory organization

Available Memory

“Non-used heap”
Memory Size
“Heap”

Empty Project

Used by Firmware

Executing Firmware

Spare
(20-50%)

8-32 MB
RAMUsed

Shared
Heap

Max
Used
Shared
Heap
244 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting Error Symptoms

Trouble-Shooting Error Symptoms

Below are some examples of error symptoms and suggested measures.

Table 26. Examples of error symptoms and suggested measures.

Error Symptom Measure

Control Builder fails, the message in
Figure 100 is shown.

1.Click OK.

2.Copy the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 234), the
Start Log and the Heap Statistics Log files (if there are
any).

3.Read the Session Log, and see if there is any
information that indicates the source of the problem.

4.Try to start Control Builder. If it starts, select
Help>About Compact Control Builder>List all
information in the Project Explorer and the Control
Builder System Information Report will be created.

5.Try to reproduce the fault, if possible. If the problem is
reproducible, export the project with all dependencies
and include the .afw file in the error report.

6.Check basic things, such as if the hard disk full.

7.If the fault appears during Offline to Online transfer,
and it is possible to reproduce the fault, check the
message written in the message pane, just prior to
fault occurrence. This will give a hint about what
operation (for example, sorting, compiling) and what
application is involved in the problem.

8.Make an error report and include the log files.

A Memory Full message appears. The
Heap Statistics log (Control Builder,
SoftController, or OPC Server for
AC 800M) states that the heap is full.

Increase the heap size in Control Builder, SoftController,
or OPC Server for AC 800M, see Heap Statistics Log on
page 230. Open Help > About and check the amount of
free memory. Free memory should not be lower than
30%.
3BSE040935R201 Rev A 245

Trouble-Shooting Error Symptoms Section 5 Maintenance and Trouble-Shooting

A Too many instances in application
message appears.

The maximum number of about 65535
instances has been reached.

1.Try to reduce your application, see Exceeding the
Maximum Number of Instances on page 238.

The MMS Server, OPC Server, or
SoftController fails. An error message
like the one in Figure 100is shown.

1.Click OK.

2.Locate the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 234).

3.Read the Session Log, and see if there is any
information that points to the source of the problem.

4.Make an error report and include the log file.

The controller fails. The red F LED is lit,
and the green R LED is off.

1.Press the Init push-button on the controller until the
Run LED starts to blink. Note that the controller will be
empty if the red F LED is lit, that is, the application
program has been deleted.

2.Fetch the Controller System log and save it, see
Remote Systems Information on page 235.

3.Study the log, and find the marked reason for the stop
(normally, at the end of the log).

4.If an OPC Server for AC 800M is involved in
communication, check the OPC Server function.

5.Make an error report and include the saved log files.

6.Reload the application.

7.If possible, try to reproduce the problem. If the
problem is reproducible, backup the project.

Note that behavior similar to the example above is when
there is no firmware installed in the controller (for
example, when a new controller has been installed).

Table 26. Examples of error symptoms and suggested measures. (Continued)

Error Symptom Measure
246 3BSE040935R201 Rev A

Section 5 Maintenance and Trouble-Shooting Error Reports

Error Reports
An error report contains information to the problem in question. A detailed report is
particularly valuable if your supplier’s service department is to be involved.

The following information should always be included in an error report.

• Name of the person reporting the error (and the project, site, customer, etc.).

• Product (including the type of product and version).

• A listing of all information from the faulty system, such as the appropriate logs
and reports, see Log Files on page 222. The latter includes a great deal of
information such as software version and revision, setup, etc. If the fault
occurred during, or just after downloading a new version of the application
program, the Control Builder Start Log and the Control Builder Session Log
from the engineering station that performed the download should be included.
Whenever a problem involving I/O handling occurs, it is very important to
include a complete description of the I/O configuration.

• A description of the problem. Add all information that could help solve the
problem, for example, what happened just before the error occurred, and other
important circumstances. If it is possible to reproduce the error, describe the
circumstances under which the error occurs. Sometimes it is advisable to create
a small application to demonstrate the error, and add it to the error report.

If several systems are involved, information about the system configuration must
be included (hardware type, etc.).
3BSE040935R201 Rev A 247

Error Reports Section 5 Maintenance and Trouble-Shooting

248 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion
Examples

In this section you will find examples on how to handle arrays, queues, and some
examples on how to use bit conversion functions.

Arrays
It is possible to create a one-dimensional array with elements of any type, that is, the
elements can be a struct with variables of any type, or a single variable of any type.
Using PutArray and/or CopyArray, it is possible to build a tree structure of arrays.
Array elements are accessed direct via an index. A lower and upper boundary of the
index should be defined. The array must first be created using CreateArray.

The size of an array is limited to 65,524 components (variables of simple data type).

Example

In this example, there is a data type trec1 with the components b (bool), i (dint), and
st (string).

The following variables are also needed:

Name Data Type Initial Value

MyArray ArrayObject

lrec trec1

lrec1 trec1

lrec2 trec1

lrec3 trec1

Status dint

FirstScan bool TRUE
3BSE040935R201 Rev A 249

Arrays Appendix A Array, Queue and Conversion Examples

Create and initialize an array with 20 array elements of the type trec1.

Use an IF – THEN statement for the CreateArray function and let it be controlled by
a variable, which is executed once during startup.
IF FirstScan THEN
FirstScan := false;
CreateArray(MyArray,1,20,lrec,status);
end_if;

Set up values for the different variables:
lrec1.b := TRUE
lrec1.i := 123
lrec1.st := A variable contaning the string 'Hello'
lrec2.b := FALSE
lrec2.i := 27
lrec2.st := A variable contaning the string 'BYE'
lrec3.b := TRUE
lrec3.i := 53
lrec3.st := A variable contaning the string 'BYE'

Set up the array contents:
PutArray (MyArray,1,lrec1,status);
PutArray (MyArray,2,lrec2,status);
PutArray (MyArray,3,lrec3,status);
250 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples SearchStructComponent

The array now contains the following:

SearchStructComponent
SearchRecComponent is a boolean function which searches for a specific part in a
record component. The corresponding components in Exrecord are scanned to find
a part in the component which matches the SearchComponent.
Variable = SearchRecComponent(ExRecord, ComponentIndex,
SearchCount, SearchRecord, SearchComponent, FoundRecord,
Status)

Table 27.

Parameter Data type Description

ExRecord AnyType in var

ComponentIndex integer in/out

SearchCount integer in

SearchRecord AnyType in var

SearchComponent AnyType in var

FoundRecord AnyType out

Status integer out

b = TRUE
i = 123
st = 'Hello'

1

b = FALSE
i = 27
st = 'BYE '

2

b = TRUE
i = 53
st = 'BYE '

3

b = Undef.

i = Undef.
st = Undef.

4

b = Undef.
i = Undef.
st = Undef.

20
3BSE040935R201 Rev A 251

SearchStructComponent Appendix A Array, Queue and Conversion Examples

The data type SearchComponent is either a single variable or a record containing a
couple of variables corresponding to a subset of the record component in ExRecord.
The SearchComponent could be either a boolean, integer, real or string data type or
a sub record which contains these data types. The SearchRecord shall consist of a
variable of SearchType and variables of the data types as the remaining variables in
the record component and at the same positions.

Figure 106. An example of the SearchComponent and a SearchRecord.

The SearchComponent may contain structured data types but the match is only
carried out on the boolean, integer, real and string data types. The variables in
SearchComponent of string data types must have the same length and content for a
match. The content of string is not case sensitive and the space characters are treated
as any other character. On match the whole record component is copied to
FoundRecord and the function returns true.
252 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples SearchStructComponent

Figure 107. The working principal of the SearchRecComponent.

The search starts in the index ComponentIndex + 1 and ends at the first equivalent
component located or, if there are no more sub-records, in the last component of the
record.

A maximum number of record components given by SearchCount are scanned. The
component, in which a match occurs, is returned in FoundRecord and the index is
returned in ComponentIndex.

Note that ComponentIndex always points to the last record component that was
scanned, even if no matching occurs. This index can then be used in a repeated call
to find all occurrences of SearchComponent within the record.
3BSE040935R201 Rev A 253

SearchStructComponent Appendix A Array, Queue and Conversion Examples

Restrictions

The following data types in ExRecord will NOT be copied: QueueObject and
tObject.

The status returns:

• (1 Success)
– The Search was successful

• (- 5 ErrTypeMismatch)
– 1: Found sub-record was not of the same type as theFoundRecord.
– 2: SearchComponent was not a subset of SearchRecord

• (- 6 ErrSizeMismatch)
– 1: SearchRecord was not of the same size as the FoundRecord.
– 2: SearchComponent size is zero.

• (-30 ErrInvalidPar)
– 1: ComponentIndex was less than 0 or greater than the number of the

ExRecord minus one.
– 2: SearchCount was less or equal to zero.
– 3: SearchComponent has no valid components (i.e., boolean, real, integer

or string)
254 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples InsertArray

InsertArray

InsertArray(ArrayName, Index, ArrElement, Status)

Procedure: Inserts a new element in an array. All successive elements are moved one
step, and the last element overwritten. Inserts the contents of ArrElement into the
record at position Index in the array ArrayName. The records at position Index + 1
to position LastIndex will be moved one position higher. The contents (even objects)
of the record at position LastIndex will be lost. Variables of the data type tObjects
will not be copied, unless the variable is an ArrayObject, then this array and its
whole tree structure of arrays will be copied into an identical tree structure. If the
record at position Index lacks some array in the tree structure, the array will be
created.

Table 28.

Parameter Data type Description

ArrayName ArayObject in var

Index integer in

ArrElement AnyType in var

Status integer out
3BSE040935R201 Rev A 255

SearchArray Appendix A Array, Queue and Conversion Examples

SearchArray

SearchArray(Arrayname, SearchIndex, SearchCount, SearchElement,
SearchComponent, FoundElement, Status)

This boolean function searches the array ArrayName for a certain component in an
array element. All elements in the array are scanned to find an element with a
component (e.g. a string, or an entire record) that matches the search variable
component.

The component SearchComponent in the element SearchElement is tested for
equality with corresponding components in each array element. The function
returns true if there is a find.

The search starts in the index SearchIndex + 1 and ends at the first equivalent
component located or if there are no more elements in the array to be scanned. A
maximum of number of array elements indicated by SearchCount are scanned. The
array element, in which a find occurs, is returned in FoundElement and the index for
the find is also returned in SearchIndex.

Note that SearchIndex always points to the last element that was scanned, even if no
find occurs. This index can then be used in a repeated call in order to find all
occurrences of SearchComponent within the array.

An error status is returned if:
• the index SearchIndex points outside array limits.
• the counter SearchCount is less then or equal to 0.
• the element SearchElement is not of the same type as FoundElement.
• the element SearchElement has a different size than FoundElement.
• the SearchComponent is not a part of the element SearchElement.
Variable = SearchArray(Arrayname, SearchIndex, SearchCount,
SearchElement, SearchComponent, FoundElement, Status)
256 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples SearchArray

Example

Table 29.

Parameter Data type Description

Arrayname ArayObject in var

SearchIndex integer out

SearchCount integer in

SearchElement AnyType in var

SearchComponent AnyType in var

FoundElement AnyType out

Status integer out

Table 30. Data Type Definitions

Name Data Type

trec1 RECORD

b Boolean

i Integer

s String

tSearchRec RECORD

b Boolean

SSR tSearchSubRec

tSearchSubRec RECORD

i Integer

s String
3BSE040935R201 Rev A 257

SearchArray Appendix A Array, Queue and Conversion Examples
 Create and initialize an array with 20 array elements of type trec1.

IF Firstscan THEN
Firstscan = false;
CreateArray(Array,1,20,lrec,status);
ENDIF;

Set up values for the different variables e.g. via interaction objects:
lrec1.b <- TRUE
lrec1.i <- 123
lrec1.s <- "hello"
lrec2.b <- FALSE
lrec2.i <- 27
lrec2.s <- "BYE"
lrec3.b <- TRUE
lrec3.i <- 53
lrec3.s <- "BYE"

Table 31. Variables

Name Data type Initial value

Array ArrayObject

HitBoolean Boolean

HitRec trec1

Lrec trec1

Irec1 trec1

Irec2 trec1

Irec3 trec1

Status Integer

SearchRec tSearchRec

FirstScan Boolean TRUE

The Create function may be in a Start_Code and in that case it is not necessary to
use the IF -THEN statement and Firstscan variable.
258 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples SearchArray

Set up array contents:
PutArray (Array,1,lrec1,status);
PutArray (Array,2,lrec2,status);
PutArray (Array,3,lrec3,status);

The array now contains the following:

Figure 108. An example of an Array.

Access the array by index:
Index = 3;
GetArray(Array,Index,lrec,status);

lrec now contains:
TRUE 53 "BYE "

Now access the array by searching. First set up the search component.
SearchRec.SSR.i = 27;
3BSE040935R201 Rev A 259

Queues Appendix A Array, Queue and Conversion Examples

SearchRec.SSR.s has its default value "BYE " Search a maximum of 10 array
elements for the search component. A find occurs where the integer element is 27
and the string element is "BYE ", in this case at array index no 2. Start searching in
the first element number 1.

Index = 0;
IF SearchArray(Array,Index,10,SearchRec,SearchRec.SSR,
HitRec,Status) THEN
IF Status > 0 THEN
HitBoolean = HitRec.b;(Save Boolean content of hit element)
ENDIF;
ENDIF;

Queues
A queue may consist of elements of any type, that is, the elements could be a struct
with variables of any type, or a single variable of any type. Queue elements can be
accessed at both ends of the queue, that is, only the first and last element can be
accessed, but any element in the queue can be read. When using PutFirstQueue and
GetFirstQueue, the queue act as a stack. When using PutLastQueue and
GetFirstQueue, the queue will act as a FIFO queue. The size of the queue is not
dynamic, and has to be defined. The number of elements in the queue is dynamic.

The size of a queue is limited to 65,524 components (variables of simple data type).
260 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples Queues

Example 1

The following structured variable Item is needed:

The following variables are needed:

Create and initialize an array with 10 elements of data type item:

Name Data Type Initial Value

b bool TRUE

i dint 123

st string 'Hello'

Name Data Type Initial Value

data1 Item

data2 Item

Queue QueueObject

Status dint

FirstScan bool TRUE

flag1 bool

flag2 bool
3BSE040935R201 Rev A 261

Queues Appendix A Array, Queue and Conversion Examples

In an IF – THEN statement the CreateQueue function may be controlled by a first
scan variable.
if FirstScan then

FirstScan := false;
CreateQueue(Queue := Queue,

Size := 10,
QueueElement := data1,
Status := status);

end_if;
if flag1 then

PutLastQueue(Queue := Queue,
QueueElement := data2,
Status := status);
flag1 := false;

elsif flag2 then
GetFirstQueue(Queue := Queue,

QueueElement := data2,
Status := status);

flag2 := false;
end_if;

Example 2

The following parameters are needed:

Name Data Type Description

Size dint Max no. of elements in queue

InData AnyType In element, of same type as OutData

OutData AnyType Out element, of same type as InData

Put bool Put InData in queue on up edge

Get bool Get OutData from queue on up edge

Clear bool Clear contents of queue

Error bool Out: type or size of error
262 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples Queues

The following variables are needed:

Code block 1 called Start_name
(*CreateQueue*)
CreateQueue(Queue,Size,InData,status);
Error := status < 0;

Code block 2 (queue statement)
PutState := Put;
GetState := Get;
if PutState:NEW and not PutState:OLD then

PutLastQueue(Queue,InData,status);
Error := status < 0;

end_if;
if GetState:NEW and not GetState:OLD then

GetFirstQueue(Queue,OutData,status);
Error := status < 0;

end_if;
if Clear then

ClearQueue(Queue,status);
Error := false;

end_if;

Name Data Type Description

Queue QueueObject Queue object

PutState bool state

GetState bool state

Status dint
3BSE040935R201 Rev A 263

Conversion Functions Appendix A Array, Queue and Conversion Examples

Conversion Functions

DIntToBCD

The DIntToBCD function converts an integer to a BCD value. An error status is
returned if overflow occurs and no BCD value is produced.

Example

The following variables are needed:

Convert an integer into a BCD value:

N = 12345 (N is 0 0 0 1 2 3 4 5)

N can be divided into eight four-bit nibbles, where each nibble represents one BCD
digit. The least significant nibble is 5, the next 4, etc. These nibbles can be written in
binary form as below:

DIntToBCD (N, BCD, Status) ;

BCD now contains the value 74565.

Name Data Type

N dint

BCD dint

Status dint

All four-
bit
nibbles

0000 0000 0000 0001 0010 0011 0100 0101

which is
equiv. to

00 000 000 000 000 010 010 001 101 000 101

BCD as
decimal
value

0 0 0 0 0 0 7 4 5 6 5
264 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples BCDToDInt

BCDToDInt

BCDToDInt converts a BCD value to an integer. An error status is returned if the
BCD value is illegal (no integer value in these cases).

Example

The following variables are needed:

Convert the BCD value into an integer:

BCD = 74565

Each nibble represents one BCD digit. The least significant nibble is 5, the next 4,
etc. These nibbles can be written in decimal form as: 0 0 0 1 2 3 4 5.

BCDToDInt (BCD, N, Status) ;

N now contains the value 12345.

Name Data Type

N dint

BCD dint

Status dint

BCD as
decimal
value

0 0 0 0 0 0 7 4 5 6 5

BCD as
32-bit
pattern

00 000 000 000 000 010 010 001 101 000 101

BCD as
four-bit
nibbles

0000 0000 0000 0001 0010 0011 0100 0101
3BSE040935R201 Rev A 265

ASCII Appendix A Array, Queue and Conversion Examples

ASCII

ASCII character codes

ASCII (American Standards Committee for Information Interchange) originally
defined a set of codes for 128 characters and commands. Manufacturers later
extended the ASCII codes to provide another 128 characters.

ASCII is a method of coding characters and command sequences, which is
extensively used by manufacturers of peripheral equipment. Many devices transmit
information in ASCII code (for example bar-code readers, keyboards) and many
devices accept information in this form (for example VDUs and printers).

ASCII-coded strings allow for the transmission of non-printable characters and
control characters. ASCII character sequences can be used to change the mode of a
VDU display, or the character set of a printer.

Control Builder provides three procedures and one function manipulating ASCII
strings (ISO Latin-1 only). These are useful when a device requires ASCII-coded
information, and can be used to send ASCII-coded strings to printers, terminals etc.

Any ASCII character code may be used, thus it is possible to send control characters
and sequences to switch printers and VDUs into various display modes. (Bold,
Double Space, Reverse video etc.).

Before describing the procedures and functions available for ASCII strings, it is
useful to examine the way in which an integer is stored in the system memory.

Integers are represented by a four-byte (32-bit) storage area. In normal usage, the
bits are used to store both the value and the sign of the integer. This 4-byte storage
space may also be used to store a series of values which represent an ASCII string.

Each ASCII character requires 1 byte of storage space. Therefore, it is possible to
store up to 4 ASCII characters in a single memory area reserved for an integer.

Figure 109. Integers are stored as four bytes in memory.

Bit31 Bit0

Byte 0Byte 1Byte 2Byte 3
MSB LSBMSB LSBMSB LSBMSB LSB
266 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples ASCII

The procedures below allow 1, 2 or 4 characters to be stored per integer.

Each ASCII character is coded with an integer value (in binary) between 0 and 255
(decimal). ASCII codes are normally represented as either their decimal equivalent,
or as a hexadecimal number. If the character is represented as a hexadecimal
number, then 2 digits are required for each character.

The hexadecimal digits, their decimal, and binary bit pattern equivalents are given in
the table below:

The letter capital “A” is represented by the ASCII code 6510 or 41HEX. Thus the
letter “A” is stored as a byte having the bit pattern 0100 0001.

Table 32. ASCII code representatives

Hexadecimal digit Decimal digit Binary bit pattern

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111
3BSE040935R201 Rev A 267

ASCII Conversion Appendix A Array, Queue and Conversion Examples

ASCII Conversion

StringToASCIIStruct (String1, NoOfCharsPerDint, DintStruct, Status)

This procedure converts a string to an ASCIIStruct. An ASCIIStruct consists of any
number of integer components (see below).

The value of the parameter NoOfCharsPerDint determines how many ASCII
characters are stored within each ASCII record component. This value can be 1, 2, 4
or –1, –2, –4 only. A negative value means that the sequence of bytes is reversed.

NoOfCharsPerDint determines how many character codes are packed into the four
bytes available for the integer. If one character is stored per integer, then only the
first eight least significant bits of each integer are used for storage, if positive, or the
last eight, if negative.

DintStruct must be defined as follows: the type definition and its components can be
given any name, but the components must all be of integer data type. The number of
components (of integer type) should be decided based on the length of the string to
be converted, and also the number of characters which are to be stored in each
integer. The converted string may need to be transmitted to a peripheral device, so
the characteristics of this device should also be taken into account.

The maximum length for any string is 140 characters, and if this maximum is to be
stored in the minimum number of integer components, then this will require 35
integer components in the integer record (at four ASCII characters per integer). If
you anticipate the need to store this number of characters, then an integer record of
35 integer components should be defined.

Status returns an indication of the result of the operation.
268 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples ASCII Conversion

Storage with Different Character Packing Factors

When NoOfCharsPerDint is set to 1, each integer variable holds the value for one
ASCII character. Thus the character capital “A” is stored as decimal 65 in the
integer, as a bit pattern of 0100 (Nibble1) and 0001 (Nibble0).

When NoOfCharsPerDint is set to 2, each integer variable stores the value for two
ASCII characters. The characters “AB” are stored as decimals 65 and 66 in the
integer. The value 65 for “A” is stored in the first byte of the integer, and that for “B”
in the second byte.

When NoOfCharsPerDint is set to 4, each integer variable contains the value for
four ASCII characters. The characters “ABCD” are stored as decimals 65, 66, 67
and 68 in the integer. The value 65 for “A” is stored in the first byte of the integer,
“B” in the second byte, “C” in the third byte, and “D” in the fourth byte.

Figure 110. The ASCII code for “A” stored in an integer (packing = 1 character per
integer)

Figure 111. The ASCII codes for “AB” stored in an integer (packing = 2 characters
per integer)

Figure 112. The ASCII codes for “ABCD” stored in an integer (packing = 4
characters per integer)

Bit31

Byte 0Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

AMSB LSB

Bit31

Byte 0Byte 1Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

Nibble2Nibble3
0 1 00 0 0 01

AB MSB LSB

Bit31

Byte 0Byte 1Byte 2Byte 3

Nibble0Nibble1
0 1 00 0 0 10

Nibble2Nibble3
0 1 00 0 0 01

Nibble4Nibble5Nibble6Nibble7
0 1 00 0 0 110 1 00 0 1 00

ABCD MSB LSB
3BSE040935R201 Rev A 269

ASCII Conversion Appendix A Array, Queue and Conversion Examples

Definition of DintStruct type

The appropriate length of an integer struct to store ASCII code is defined by the
number of components required as follows.

Suppose we want to be able to store the maximum string length at a packing factor
of 4 characters per integer. A data type called, for instance, ASCIIMaxStringType,
should be defined consisting of 35 components which must be of integer data type
called, for example Chars1_4, Chars5_8 etc.

Usage

A string interaction is used to input the value of a string, (to a string variable called
String1), which is to be converted to ASCII code. The code is stored in an integer
struct called IntStruct which has 4 components (Comp1 to Comp4).

The procedure call:

StringToASCIIStruct(String1,1,IntStruct,Status1)

will write to the integer record components.

If the input string is “ABCD”, then the components will have the values 65, 66, 67
and 68, respectively. The literal value of 1 for the NoOfCharsPerDint determines
that there is to be one character code in each component.

If NoOfCharsPerDint had been set to 2, then the first integer component would have
the value 16961 (which is the decimal equivalent of 65 in the first byte and 66 in the
second), and the second component would have the value 17475, which is the
decimal equivalent of 67 in the first byte and 68 in the second. The other two bytes
in each integer component are set to 0000.

Unused components

NoOfCharsPerDint determines how many bits are allocated for storage (8 bits – 1
byte per character) for a component. For example, if NoOfCharsPerDint is set to 2,
then only the first two bytes are used in each component for data storage. The
remaining bytes are set to 0 (zero).
270 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples ASCII Conversion

This is illustrated below:

Figure 113. The diagram shows four integer components of an integer record.
NoOfCharsPerDint has been set to 2, so that each component stores two ASCII
characters. The character string “ABCD” has been transferred to the struct.

Bit31

Byte 0Byte 1Byte 2Byte 3

0 1 00 0 0 100 1 00 0 0 01

AB

Bit31

Byte 0Byte 1Byte 2Byte 3

0 1 00 0 0 110 1 00 0 1 00

CD

Bit31

Byte 0Byte 1Byte 2Byte 3

Bit31

Byte 0Byte 1Byte 2Byte 3

0 0 00 0 0 000 0 00 0 0 00

0 0 00 0 0 000 0 00 0 0 00

NullNull

0 0 000 0 00 0 0 00

NullNull

0 0 00

0 0 000 0 00 0 0 00

NullNull

0 0 00 0 0 010 0 01 0 0 00

SpaceSpace

0 0 00

0 0 010 0 01 0 0 00

SpaceSpace

0 0 00

Component1

Component2

Component3

Component4

Null Null
3BSE040935R201 Rev A 271

ASCII Conversion Appendix A Array, Queue and Conversion Examples

Note the following

If there are two characters per integer, the allocated storage areas Byte 0 and Byte 1
contain either the code for the string character, or if there is no character available,
the code for a space (20HEX). Unused bit positions (Bytes 2 and 3 in this case)
contain zero.

Note:

• Characters from the string to be transferred are read from the current pointer
position in the source string.

• Space characters are inserted into the allocated storage areas within each
component. They are also inserted into all records to which no characters have
been transferred, for example, if the actual string requires less than the number
of components available for storage.

• An error status is returned to the value of Status, if the string to be transferred is
longer than the storage space allocated. In this case, no transfer of any part of
the string occurs.

ASCIIStructToString(DIntStruct, NoOfCharacters, NoOfCharsPerDint, String1,
Status)

This procedure is the reverse of StringToASCIIStruct described above. It takes an
integer struct, which contains the codes for an ASCII string, and recreates the string
from the values in the components of the record. (See StringToASCIIStruct for full
details of the structure of the integer struct and the encoding method.)

The component values of the integer struct, DIntStruct are read and translated to the
value of the destination string, String1.

The value of the parameter NoOfCharacters determines how many ASCII
characters are read from the source record, DIntStruct, and the value of the
parameter NoOfCharsPerDInt informs the procedure how many characters are to be
expected in each integer component. Status returns an indication of the result of the
operation.

The DIntStruct parameter must be structured as an integer struct, that is, it must
have integer components only. (See details in StringToASCIIStruct.)
272 3BSE040935R201 Rev A

Appendix A Array, Queue and Conversion Examples ASCII Conversion

NoOfCharacters and NoOfCharsPerDInt may be variables, module parameters or
literals.

Usage

Suppose the integer struct DIntStruct from the previous example is to be converted
back to a string. The destination string is called String1 and the three characters are
to be copied. It is known that the original storage protocol defined 2 characters per
integer component.

The following code will perform the task:

ASCIIStructToString(DIntStruct,3,2,String1,Status2)

After execution the value of String1 value will be “ABC”.

Note

• The number of characters per integer of the original record must be known,
only values of 1, 2, 4 or –1, –2, –4 are allowed.

• The new output string will be inserted at the current pointer position in the
destination string.

• An error status is reported as a value to Status if the generated string results in a
new string which is longer than the permitted length for the destination string.
3BSE040935R201 Rev A 273

ASCII Conversion Appendix A Array, Queue and Conversion Examples

274 3BSE040935R201 Rev A

Appendix B System Alarms and Events

This section is divided in sub-sections for system alarms and system simple events
and it describes system alarms and system simple events from a controller
perspective. Additional information can also be found in the Control Builder online
help.

General

OPC Server

System alarms and system simple events generated within OPC server can be
divided in two general groups regarding to originating part of the OPC server
(source).

• Software

• Subscriptions

Controller

System alarms and system simple events generated within controller can be divided
in two general groups regarding to originating part of the controller (source).

• Software generated system alarms and system simple events.

• Hardware generated system alarms and system simple events.
3BSE040935R201 Rev A 275

OPC Server – Software Appendix B System Alarms and Events

OPC Server – Software
All system alarms and system simple events triggered by base code executing in
OPC Server belong to this group. This group is further divided into appropriate parts
uniquely identified by source name suffix.

• _SWFirmware – for common base code

• _SWDataAccess – for OPC Data Access specific code

• _SWAlarmEvent – for OPC Alarm and Event specific code

The SrcName shall be automatically formed as:

SrcName = SystemIP address- SrcNameSuffix

Example: SrcName = 172.16.85.90:200-_SWFirmware

SrcNameSuffix = _SWFirmware

System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

SrcNameSuffix = _SWDataAccess

System Simple Event SaveColdRetainFailed

Generated when OPC Data Access server can not save cold retain files for an
application.

SrcNameSuffix = _SWFirmware;
Message = "(5000) Save Cold Retain failed for {1}";
{1} = The name of the application.
SeverityLevel = Medium;
276 3BSE040935R201 Rev A

Appendix B System Alarms and Events OPC Server – Software

SrcNameSuffix = _SWAlarmEvent

System Simple Event AlarmNotUnique

Generated when OPCAE server discover that there are two alarms with same
combination SouceName ConditionName defined in two different controllers.

SrcNameSuffix = _SWAlarmEvent ;
Message = "(6000) Alarm not unique {1}, {2}";
{1} = Source name of the alarm
{2} = Condition name of the alarm
SeverityLevel = Medium;

System Simple Event AlarmHandler overflow

Generated when an item in the EventHandler must be deleted because of overflow.
If there is space again in the EventHandler, the system initializes an AlarmSummary
and updates the missing information. The size of the EventHandler is limited by the
system variable MaxNoOfAlarms.

SrcNameSuffix = _SWAlarmEvent ;
Message = "(6001) AlarmHandler overflow. MaxNoOfAlarms exceeded";
SeverityLevel = Medium;

System Simple Event FailedToSubscribe

Generated when a try from OPC AE server to subscribe to a certain control system
was not successful. The corresponding control system name shall be concatenated to
this message.

SrcNameSuffix = _SWAlarmEvent;
Message = "(6002) Failed to subscribe on {1}";
{1} = The IP address of the control system.
SeverityLevel = Medium;
3BSE040935R201 Rev A 277

OPC Server – Subscription Appendix B System Alarms and Events

System Simple Event Overflow in queue to OPC client

Generated after an overflow of the event queue to an OPC client queue and when the
queue is filled less than 75% of the actual size. The system event is generated and
sent to the client to announce the overflow. On overflow the latest event is thrown
away. The size of every event queue to an OPC client queue is limited by the system
setting "Queue size".

SrcNameSuffix = _SWAlarmEvent;
Message = "(6003) Overflow in queue to OPC client";
SeverityLevel = Medium;

OPC Server – Subscription
OPC server can subscribe a number of controllers from both Data Access and Alarm
and Event part. Thus, each subscribed controller may have one or two system alarms
for its disposal, depending on number of subscription to controller from OPC server.
These system alarms must be created in a moment of corresponding connection i.e.
subscription establishing.

The SrcNameSuffix for Data Access subscriptions group is:

SrcNameSuffix = SubDataAccess
Example: SourceName = 172.16.85.90:22-SubDataAccess

The SrcNameSuffix for Alarm and Event subscriptions group is:

SrcNameSuffix = SubAlarmEvent
Example: SourceName = 172.16.85.90:22-SubAlarmEvent

The ConditionName for these system alarms is supposed to provide a unique
combination of SrcName and ConditionName (since SrcName is the same for whole
category). Thus, ConditionName has form that contains controller IP address.

Example: ConditionName = 172.16.85.90:2-ConnectionError

The following category of system alarms and system simple events handle errors
and warnings concerning connection towards subscribed controllers.
278 3BSE040935R201 Rev A

Appendix B System Alarms and Events OPC Server – Subscription

SrcNameSuffix = SubDataAccess

Each controller subscribed from Data Access should have one system alarm for its
disposal. Note that these system alarms shall be:

• defined when a new subscription (connection) is established

• activated when an error occurs on this connection

• inactivated when all errors are corrected or disappeared

• deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = 10.46.37.121:2-ConnectionError.

System Alarm ConnectionError to DA subscription

SrcNameSuffix = SubDataAccess;
Condition name = -ConnectionError;
Message = "(5500) Connection error to DA subscribed controller";
Severity Level = Critical;

SrcNameSuffix = SubAlarmEvent

Each controller subscribed from Alarm and Event should have one system alarm for
its disposal. Note that these system alarms shall be:

• defined when a new subscription (connection) is established

• activated when an error occurs on this connection

• inactivated when all errors are corrected or disappeared

• deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = "10.46.37.121:2-ConnectionError".
3BSE040935R201 Rev A 279

Controller – Software Appendix B System Alarms and Events

System Alarm ConnectionError to AE subscription

SrcNameSuffix = SubAlarmEvent;
Condition name = -ConnectionError;
Message = "(6500) Connection error to AE subscribed controller";
Severity Level = Critical;

Controller – Software
All system alarms and system simple events triggered by base code belongs to this
group.

This is important to note that system alarms and system simple events issued by
protocol specific code may belong to this group. Normally system alarms and
system simple events issued by protocol specific code are handled within 'Hardware
group'. Under certain circumstances when it is necessary to define errors or
warnings that are not cowered by HW state error handling, this group i.e.
corresponding dedicated SrcNameSuffix should be used. The following set of
source name suffixes are defined for this group.

• _SWFirmware - for base code

• _SW1131Task - for 1131 task execution specific code

• _SWTargets - for HW and OS abstraction layer of the base code

• _SWInsum-, _SWS100-, _SWMB300-, _SWProfibus-, _SWModbus- 1for
protocol specific code

SrcNameSuffix = _SWFirmware

System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

1. System alarms and system simple events generated by respective communication protocol are described in the
online help function for respective protocol.
280 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Alarm ErrorHandler sum alarm

SrcNameSuffix = _SWFirmware
Condition name = ErrorHandler;
Message = "(1001) ErrorHandler sum alarm created";
SeverityLevel = Medium;

System Alarm Data transfer failed during FW-upgrade of Alarm&Event

This alarm is generated when Alarm&Event failed in the transfer of
Alarm&Event data from Primary CPU to Trainee CPU. It shows how many
items of different Alarm&Event data that failed. The consequence after
upgrade could be that inactive alarms disappear but active alarms will be
activated again.

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1002) Alarm&Event failed in FW-upgrade. No of Static alarms =
{1}. No of Simple events = {2}. No of Dynamic alarms = {3}. No of SOE-
events = {4}";
{1} = Number of failed items.
{2} = Number of failed items.
{3} = Number of failed items.
{4} = Number of failed items.
SeverityLevel = High;

System Simple Event EventNotificationLost

An event notification was lost. This can happen when the particular OPC-
Server or printer queue containing event notification is full. A system simple
event is generated when there is space again in this queue. After this the
missing information about alarms in the subscribing systems-OPC Servers is
updated, but this does not mean that all missed events are regenerated.

SrcNameSuffix = _SWFirmware;
Message = "(1010) Lost event notification(s) to {1}";
{1} = The remote systems (the OPC Servers) IP address when generated
event indicates full OPC-Server queue or with string "local printer" when
there is a lost event notification from a filled buffer in printer queue.
Severity Level = Medium;
3BSE040935R201 Rev A 281

Controller – Software Appendix B System Alarms and Events

System Simple Event Alarm definition failed

An attempt to define a process alarm in controller, or a system alarm in
controller or in OPC server was not successfully completed.

SrcNameSuffix = _SWFirmware;
Message = "(1011) Alarm definition failed for {1}, {2}";
{1} = Source name
{2} = Condition name
Severity Level = Medium;

System Simple Event Undeclared External event

A low level event issued by external device is received, but no declaration was
found in applications.

SrcNameSuffix = _SWFirmware;
Message = "(1012) Undeclared external event; {1}";
{1} = Signal ID and new value delivered by low level event.
Severity Level = Medium;

System Simple Event No enable/disable of alarms in SIL applications

An attempt enable/disable an alarm (via MMS) in a SIL application which is
not permitted.

SrcNameSuffix = _SWFirmware;
Message = "(1013) No enable/disable of alarms in SIL applications ({1},
{2})";

This message is concatenated with source name and condition name of the
alarm.

Severity Level = Medium;

System Simple Event Event notification(s) lost during firmware upgrade

Generated if events are lost during firmware upgrade

SrcNameSuffix = _SWFirmware;
Message = "(1014) Event notification(s) lost during firmware upgrade"
SeverityLevel = Medium
282 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event Alarm definition(s) failed during firmware upgrade

Generated if there are attempting to create alarms during firmware upgrade.

SrcNameSuffix = _SWFirmware;
Message = "(1015) Alarm definition(s) failed during firmware upgrade"
SeverityLevel = Medium

System Simple Event CommandedSwitchover

The system event below is issued when a commanded switchover has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1020) CPU Switchover was commanded";
SeverityLevel = Medium;

System Simple Event CommandedSwitchoverFailed

The system event below is issued when a commanded switchover has been
unsuccessfully executed.

SrcNameSuffix = _SWFirmware;
Message = "(1021) CPU Switchover command failed";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU was commanded

The system event below is issued when a commanded reset of backup CPU has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1022) Reset of backup CPU was commanded";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU command failed

The system event below is issued when a commanded reset of backup CPU has
unsuccessfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1023) Reset of backup CPU command failed";
SeverityLevel = Medium;
3BSE040935R201 Rev A 283

Controller – Software Appendix B System Alarms and Events

System Simple Event Error found in DataToSimpleEvent

The system event below is generated during calls to DataToSimpleEvent
function block.

SrcNameSuffix = _SWFirmware;
Message = "(1030) AE setting NamValItem/LogStrings to low";
Message = "(1031) Error in FB parameters";
Message = "(1032) Data overflow in communication buffer";
SeverityLevel = Medium;

System Simple Event Reset of controller forces performed

System event generated from Access Management. Message when Override
Control has made a reset of controller forces.

SrcNameSuffix = _SWFirmware;
Message = "(1033) Reset of controller forces performed";
SeverityLevel = Medium;

System Simple Event Ack of event denied

System event generated from Access Management, when acknowledgement of
an alarm is denied.

SrcNameSuffix = _SWFirmware;
Message = "(1034) Acknowledge of event denied ({1}, {2})";
{1} = source name of the alarm
{2} = condition name of the alarm
SeverityLevel = Medium;

System Simple Event No configuration image found at compact flash card

The system event below is issued when a compact flash card, without a
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = ">(1040) No configuration image found at compact flash
card";
SeverityLevel = Medium;
284 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event Configuration image found at compact flash card is
corrupt

The system event below is issued when a compact flash card, with a corrupt
configuration image, is detected during startup of controller

SrcNameSuffix = _SWFirmware;
Message = "(1041) Configuration image found at compact flash is
corrupt";
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash does not
match controller

SrcNameSuffix = _SWFirmware;
Message = "(1042) Configuration image found at compact flash does not
match controller"
SeverityLevel = Medium

System Simple Event Configuration load is started from compact flash

SrcNameSuffix = _SWFirmware;
Message = "(1043) Configuration load is started from compact flash"
SeverityLevel = Medium

System Simple Event Configuration image found at compact flash has different
format

SrcNameSuffix = _SWFirmware;
Message = "(1044) Configuration image found at compact flash has
different format"
SeverityLevel = Medium
3BSE040935R201 Rev A 285

Controller – Software Appendix B System Alarms and Events

System Simple Event Configuration image found at compact flash does not
match controller

The system event below is issued when a compact flash card, with a
configuration image created for another type of CPU, is detected during startup
of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1042) Configuration image found at compact flash does not
match controller"
SeverityLevel = Medium;

System Simple Event Configuration load is started from compact flash

The system event below is issued when a compact flash card, with a valid
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1043) Configuration load is started from compact flash"
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash has not equal
format

The system event below is issued when a compact flash card, with a
configuration image created in a format not supported, is detected during
startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1044) Configuration image found at compact flash has
different format"
SeverityLevel = Medium;
286 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

SrcNameSuffix = _SW1131Task

System Alarm TaskAbort

SrcNameSuffix = _SW1131Task;
Condition name = TaskAbort;
Message = "(2000) Execution time too long in Task {1}";
{1} = Task name will be added to message, for example, "Execution time
too long in Task Fast"
Severity Level = Fatal;

System Simple Event Interval time in ordinary tasks inc

SrcNameSuffix = _SW1131Task;
Message = "(2001) Interval time in ordinary tasks increased {1}%";
{1} = The increase of the interval time in percent with the precision of one
decimal.
Severity Level = Medium;

System Simple Event Interval time in ordinary tasks dec

SrcNameSuffix = _SW1131Task;
Message = "(2002) Interval time in ordinary tasks decreased {1}%";
{1} = The decrease of the interval time in percent with the precision of
one decimal.

Severity Level = Medium;

System Simple Event Interval Time was changed

Only used for tasks executing at Time-Critical priority.

SrcNameSuffix = _SW1131Task;
Message = "(2003) Interval time changed to {1} ms. Task={2}";
{1} = New interval time ,
{2} = Name of the task.
Severity Level = Medium;
3BSE040935R201 Rev A 287

Controller – Software Appendix B System Alarms and Events

System Alarm Latency high in normal tasks

The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;
Message On = "(2004) Latency high in task {1}, {2} ms"
{1} = Name of the task,
{2} = Actual latency.
Message Off = "(2004) Latency high inactive "
Condition name = High Latency
SeverityLevel = Medium

System Alarm Latency high in time critical task

The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;
Message On = "(2005) Latency high in task {1}, {2} ms"
Message Off = "(2005) Latency high inactive "
{1} = Name of the task,
{2} = Actual latency.

Condition name = High Latency
SeverityLevel = Medium

SrcNameSuffix = _SWTargets

System Simple Event RCU error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4000) Primary CPU: RCUError(0x{2})";
{2} = Content of the RCU Error Register in hexadecimal format.
Severity Level = High;
288 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event RCU test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4001) Primary CPU: RCUTestError({2}, 0x{3})";

{2} = Test Number
1 = RCU Register test
2 = Log Parity test
3 = Log test
4 = Log Range test
5 = I O Emulation test
6 = CPU Bus Timeout test

{3} = The Error status is printed in hexadecimal format.

Severity Level = High;

System Simple Event Dual test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4002) Primary CPU: DualTestError({2}, 0x{3})";
{2} = The Dual Test status (see Table 33)
{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

Table 33. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup CPU

CPUCEXBusMessageError Failed to receive test message from the Backup CPU

CheckpointTestError Failed to upgrade memory of the Backup CPU
3BSE040935R201 Rev A 289

Controller – Software Appendix B System Alarms and Events

System Simple Event Backup CPU CEX-Bus test error detected in the Primary
CPU

SrcNameSuffix = _SWTargets;
Message = "(4003) Primary CPU: BkpCEXBusTestError({2}, 0x{3})";
{2} = The Test status (see Table 34)
{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

System Simple Event Error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4004) Primary CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 35)
{3} = The state when the error was detected.
Severity Level = High;

Table 34. Test status from Backup CPU

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup
CPU

CPUCEXBusMessageError Failed to receive response message from the
Backup CPU

CEXBusTestError Failed to test the CEX-Bus interface in the
Backup CPU

Table 35. The name of the detected error.

Message Description

SDCError RCU Service data channel error

RCUConnectorOpen The RCU Link cable is not connected to the own CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the peer CPU

RCUDrvErro Failed when calling the RCU driver
290 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event A Backup CPU is recognized and started

SrcNameSuffix = _SWTargets;
Message = "(4005) Primary CPU: Backup CPU started";
Severity Level = Medium;

System Simple Event The system has reached the Synchronized state

The Backup CPU is ready to take-over if the Primary CPU fails

SrcNameSuffix = _SWTargets;
Message = "(4006) Primary CPU: Synchronized state";
Severity Level = Medium;

InitCommError Failed to initialize interrupt handling with the peer CPU

InformCommParamError Failed to inform other CPU about communication
parameters

GetCommParamError Failed to get communication parameters from other
CPU

BkpCPUNotAlive The Backup CPU is not alive

BkpCPUCEXBusError Backup CPU not connected to the CEX-bus

BkpCPUIllegalExternalState Backup CPU has an illegal External state

Timeout Backup CPU has not sent a response message within
a specified timeout time

CloningStartError Failed to start cloning in state Upgrading

CloningNotCompletedError Cloning not completed in state Unconfirmed

CloningError Cloning failed in state Synchronized

BkpFirmwareError Backup CPU’s firmware id not equal to Primary CPU’s
firmware id

Table 35. The name of the detected error.

Message Description
3BSE040935R201 Rev A 291

Controller – Software Appendix B System Alarms and Events

System Simple Event Switchover has occurred

SrcNameSuffix = _SWTargets;
Message = "(4007) Switchover to {2} has occurred";
{2} = "Lower CPU" or "Upper CPU"
Severity Level = Medium;

System Simple Event Report of Backup CPU error after a switchover

SrcNameSuffix = _SWTargets;
Message = "(4008) Primary CPU: {2} in {3}";
{2} = The error reported from the backup CPU
{3} = The position reported from the backup CPU
Severity Level = Medium;

System Simple Event The Backup CPU has stopped

SrcNameSuffix = _SWTargets;
Message = "(4009) Primary CPU: Backup CPU stopped ({2})";
{2} = Stop reason (seeTable 36)
Severity Level = High;

System Simple Event The Primary CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4010) Primary CPU: CPU halted";
Severity Level = High;

Table 36. Stop reason.

Message Description

BkpCPUCEXBusError Backup CPU not connected to the CEX bus

BkpHaltRequest A Backup CPU problem has been detected in the Primary
CPU. The Backup CPU however seems fully alive

BkpCPUNotAlive The Backup CPU has stopped or been removed without
reporting its status to the Primary CPU

Status sent from backup CPU Backup CPU status received via the CEX bus
292 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event RCU error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4020) Backup CPU: RCUError(0x{2})";
{2} = The contents of the RCU Error Register in hexadecimal format.
Severity Level = High;

System Simple Event RCU test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4021) Backup CPU: RCUTestError({2}, 0x{3})";
{2} = Test Number (see Table 37)
{3} = Error Status. in hexadecimal format.
Severity Level = High;

System Simple Event Dual test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4022) Backup CPU: DualTestError({2}, 0x{3})";
{2} = Dual Test status (see Table 38)
{3} = Error Status. in hexadecimal format.
Severity Level = High;

Table 37. Test Number

Test Number Error Status

1 RCU Register test

2 Log Parity test

3 Log test

4 Log Range test

5 I/O Emulation test

6 CPU Bus Timeout test
3BSE040935R201 Rev A 293

Controller – Software Appendix B System Alarms and Events

System Simple Event Error detected in the Backup CPU

SrcNameSuffix = _SWTargets;
Message = "(4023) Backup CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 39)
{3} = The state when the error was detected.
Severity Level = High;

Table 38. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Primary
CPU

CPUCEXBusMessageError Failed to receive test message from the
Primary CPU

RCUDrvError Failed when calling the RCU driver to set
threshold value for the Log Data Buffer

Table 39. The name of the detected error.

Message Description

SDCError RCU Service data channel error

RCUConnectorOpen The RCU Link cable is not connected to the own
CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the
peer CPU

RCUDrvError Failed when calling the RCU driver

InitCommError Failed to initialize interrupt handling with the
peer CPU

InformCommParamError Failed to inform other CPU about
communication parameters

GetCommParamError Failed to get communication parameters from
other CPU
294 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event The Backup CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4024) Backup CPU: CPU halted";
Severity Level = High;

System Simple Event Stopped due to ModuleBus inaccessible from Backup
CPU

This event is issued from the MBTestMC unit if the Backup CPU has been stopped
due redundancy supporting modules on the module bus turned out to be inaccessible
from the Backup CPU.

SrcNameSuffix = _SWTargets;
Message = "(4030) Stopped due to ModuleBus inaccessible from Backup
CPU";
Severity Level = "High";

EqualityCheckFailed Memory upgrading of Backup CPU has failed

RCUMessageHaltReceived A Halt request has been received from the
Primary CPU

PrimCPUExitConnection Primary CPU has exit connection

Table 39. The name of the detected error. (Continued)

Message Description
3BSE040935R201 Rev A 295

Controller – Software Appendix B System Alarms and Events

System Simple Event Switched over due to ModuleBus inaccessible from
Primary CPU

This event is issued from the MBTestMC unit if a switch-over occurred due to
redundancy supporting modules on the module bus turned out to be inaccessible
from the Primary CPU.

SrcNameSuffix = _SWTargets;
Message = "(4031) Switched over, ModuleBus inaccessible from Primary
CPU";
Severity Level = High;

Events from Network Interface Supervision

System Simple Event Backup CPU halted: Bad Network interface

This event is issued from the NIS primary task if the Backup CPU has been halted
due to both network interface in Backup CPU are not working properly.

SrcNameSuffix = _SWTargets;
Message = "(4040) Backup CPU halted: Bad Network interface";
Severity Level = High;

Events from Checking of Available MAC address in Backup

System Simple Event No MAC address in Backup CPU

This event is issued to the primary PM if the backup PM has no MAC address.

SrcNameSuffix = _SWTargets;
Message = "(4041) No MAC address in backup PM";
Severity Level = High;
296 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

Events from Modulebus driver

System Simple Event Diverse pointer check

This event is issued from the check of pointers to the DPM which is used in all
accesses to read/write data to/from IO modules.

SrcNameSuffix = _SWTargets;
Message = "(4050) Fatal Error in diverse pointer check";
Severity Level = Fatal;

System Simple Event Failed to send message to queue

SrcNameSuffix = _SWTargets;
Message = "(4051) Mbus msgQ failed: control of Primary/Backup Leds
not run";
Severity Level = Low;

System Simple Event Null pointer

SrcNameSuffix = _SWTargets;
Message = "(4052) Null pointer check failed";
Severity Level = Fatal;

System Simple Event Failed to create message queue

SrcNameSuffix = _SWTargets;
Message = "(4053) Failed to create message queue";
Severity Level = High;

System Simple Event Test of RAM Error in MBM1 failed

SrcNameSuffix = _SWTargets;
Message = "(4054) Cyclic test of Ram Error in MBM1 failed";
Severity Level = Critical;

System Simple Event Runtime RAM Error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4055) Runtime Ram Error in MBM1";
Severity Level = Critical;
3BSE040935R201 Rev A 297

Controller – Software Appendix B System Alarms and Events

System Simple Event Diagnostic test of CRC32 calculator in FPGA failed

SrcNameSuffix = _SWTargets;
Message = "(4056) Cyclic test of CRC32 calculator failed in {1}";
{1} = Cause of failure. Example: checkFailed, timeout
Severity Level = Critical;

System Simple Event Switch PM is performed via errorHandler

SrcNameSuffix = _SWTargets;
Message = "(4057) Failure in SM detected by PM";
Severity Level = Critical;

System Simple Event Switch PM is performed via errorHandler due to Bus
Error

SrcNameSuffix = _SWTargets;
Message = "(4058) Try to switch PM due to Bus Error";

Severity Level = Critical;

System Simple Event CPU interface error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4059) CPU interface error in FPGA";
Severity Level = Critical;

Events from the MMU

System Simple Event Software errors

SrcNameSuffix = _SWTargets;
Message = "(4060) Software error detected by MMU";
Severity Level = Fatal;

System Simple Event Memory violation

SrcNameSuffix = _SWTargets;
Message = "(4061) Attempted write access in write-protected memory";
Severity Level = Fatal;
298 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

System Simple Event MMU checker error

SrcNameSuffix = _SWTargets;
Message = "(4062) Unexpected write in protected memory";
Severity Level = Critical;

System Simple Event DMA checker error

SrcNameSuffix = _SWTargets;
Message = "(4063) DMA Checker time. Test failed";
Severity Level = Critical;

System Simple Event Primary CPU: DMA memory violation

SrcNameSuffix = _SWTargets;
Message = "(4064) Primary CPU: DMA memory violation at {2}"
{2} = General fail address information
SeverityLevel = High

Events from FW Integrity Verification

Indication that FW CRC did not match original in primary PM.

SrcNameSuffix = _SWTargets;
Message = "(4070) FW Integrity Verification primary:CRC did not
match original";
Severity Level = Medium;

Indication that FW CRC did not match original in backup PM.

SrcNameSuffix = _SWTargets;
Message = "(4071) FW Integrity Verification backup:CRC did not match
original";
Severity Level = Medium;

Indication that FW CRC did not match in stand alone PM.

SrcNameSuffix = _SWTargets;
Message = "(4072) FW Integrity Verification standalone:CRC did not
match original";
Severity Level = Medium;
3BSE040935R201 Rev A 299

Controller – Software Appendix B System Alarms and Events

Address parameter failure in FW Integrity Verification.

SrcNameSuffix = _SWTargets;
Message = "(4073) FW Integrity Verification: Address parameter
failure";
Severity Level = Medium;

System Simple Event CRC error in FW Integrety Verification

SrcNameSuffix = _SWTargets;
Message = "(4074) FW Integrity Verification trainee CRC did not match
original"
SeverityLevel = Critical

Events from the Heap: Software Errors

SrcNameSuffix = _SWTargets;
Message = "(4080) Software error detected by Heap manager";
Severity Level = Fatal;

Events from the Heap: Memory Violation

SrcNameSuffix = _SWTargets;

Message = "(4081) Heap violation during allocation of an element";
Severity Level = Fatal;

Message = "(4082) Heap violation during deallocation of an element";
Severity Level = Fatal;

Message = "(4083) Null element is deallocated in the heap";
Severity Level = Fatal;

Message = "(4084) Corrupt element is deallocated in the heap";
Severity Level = Fatal;

Message = "(4085) Corrupt elements are detected after a power fail";

Severity Level = Fatal;

Message = "(4086) The Protected Heap is out of memory";
Severity Level = Low;
300 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

Message = "(4087) The Shared Heap is out of memory";
Severity Level = Low;

Message = "(4093) The max boundary size of an element is exceeded in
the Shared Heap";
Severity Level = Medium;

Message = "(4094) The max boundary size of an element is exceeded in
the Protected Heap";
Severity Level = Medium;

Events from the Heap: Heap Checker Error

System Simple Event MemFree error - CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4088) Heap Checker detects a corrupt element during
deallocation of an element";
Severity Level = Critical;

System Simple Event MemFree error - no CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4089) Heap Checker detects a corrupt element during
deallocation of an element";
Severity Level = Fatal;

System Simple Event Synchronous heap check error - logging

SrcNameSuffix = _SWTargets;
Message = "(4090) Corrupt element during synchronous heap check";
Severity Level = Low;

System Simple Event Cyclic heap check error - CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4091) Corrupt element during cyclic heap check";
Severity Level = Critical;
3BSE040935R201 Rev A 301

Controller – Software Appendix B System Alarms and Events

System Simple Event Cyclic heap check error - no CPU Switch

SrcNameSuffix = _SWTargets;
Message = "(4092) Corrupt element during cyclic heap check";
Severity Level = Fatal;

System Simple Event Max boundary size exceeded in the Shared Heap

SrcNameSuffix = _SWTargets
Message = "(4093) The max boundary size of an element is exceeded in
the Shared Heap."
SeverityLevel = Medium

System Simple Event Max boundary size exceeded in the Protected Heap

SrcNameSuffix = _SWTargets
Message = (4094) The max boundary size of an element is exceeded in the
Protected Heap."
SeverityLevel = Medium

Events from Irq Supervisor

These messages are short (twelve characters) since most of them have to be printed
from interrupt context when an irq error has occurred, which means there is only a
very small time margin.

SrcNameSuffix = _SWTargets;

Message = "(4100) Irq error. Unable to spawn Reset Irq Supervisor
thread";
Severity Level = Medium;

Message = "(4101) Irq error. MSCallout array full; not possible to add
SuperviseIrq; the IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4102) Irq error. Irq supervisor: Irq timed out; primary PM
will be shut down";
Severity Level = Medium;
302 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

Message = "(4103) Irq error. Irq supervisor: Irq timed out; backup PM
was shut down";
Severity Level = Medium;

Message = "(4104) Irq error. Irq supervisor: Irq timed out error in
standalone PM";
Severity Level = Medium;

Message = "(4105) Irq error. Unable to create a OS periodic timer, the
IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4106) Iirq error. Unable to raise thread priority, the
IrqSupervision thread will be suspended";
Severity Level = Medium;

Message = "(4107) Irq supervisor: Irq timed out; trainee PM was shut
down"
SeverityLevel = Medium

Events from CEX Bus Interrupt Handler

SrcNameSuffix = _SWTargets;

Message = "(4110) Hanging CEX IRQ: All CEMs on the upper CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4111) Hanging CEX IRQ: All CEMs on the lower CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4112) Hanging CEX IRQ: The upper PM has been shut
down";
Severity Level = Critical;

Message = "(4113) Hanging CEX IRQ: The lower PM has been shut
down";
Severity Level = Medium;
3BSE040935R201 Rev A 303

Controller – Software Appendix B System Alarms and Events

Message = "(4115) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4116) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM.
Severity Level = Medium;

Message = "(4117) Invalid CEX IRQ backup PM: The upper PM has
been shut down";
Severity Level = Medium;

Message = "(4118) Invalid CEX IRQ backup PM: The lower PM has
been shut down";
Severity Level = Medium;

Message = "(4119) Spurious CEX IRQ: {1} spurious IRQs since system
startup";
{1} = Number of spurious IRQ since start
Severity Level = Low;

Message = "(4120) Hanging CEX IRQ: All CEMs on the dir CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4121) Hanging CEX IRQ: All CEMs on the indir CEX bus
segment are disabled";
Severity Level = Medium;

Message = "(4122) Hanging CEX IRQ: The PM has been shut down";
Severity Level = Critical;

Message = "(4123) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;
304 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

Message = "(4124) Invalid IRQ CEM {1}: All CEMs on this CEX bus
segment are disabled";
{1} = Module number of interrupting CEM
Severity Level = Medium;

Message = "(4125) Insufficient memory to create the Reset BC thread";
Severity Level = Medium;

Events from DMA Supervisor

SrcNameSuffix = _SWTargets;

Message = "(4126) Error in DMA Supervisor configuration";
Severity Level = Fatal;

Events from Internal Diagnostics Engine

SrcNameSuffix = _SWTargets;

Message = "(4130) Software error detected by Diagnostic Engine";
Severity Level = Medium;

Message = "(4131) Diagnostic Engine: FDRT deadline passed";
Severity Level = Medium;

Message = "(4132) Diagnostic Engine: Diurnal deadline passed";
Severity Level = Medium;

Events from RAMTest

SrcNameSuffix = _SWTargets;

Message = "(4133) RAMTest Primary Parity error self test;
Severity Level = Critical;

Message = "(4134) RAMTest Backup Parity error self test";
Severity Level = Critical;

Message = "(4135) RAMTest Standalone Parity error self test";
Severity Level = Critical;
3BSE040935R201 Rev A 305

Controller – Software Appendix B System Alarms and Events

Message = "(4136) RAMTest Primary Address line test 0x{1}";
{1} = Fail address
Severity Level = Critical;

Message = "(4137) RAMTest Backup Address line test 0x{1}";
{1} = Fail address
Severity Level = Critical;

Message = "(4138) RAMTest Standalone Address line test 0x{1}";
Severity Level = Critical;
{1} = Fail address

Message = "(4139) RAMTest Primary Internal error";
Severity Level = Fatal;

Message = "(4140) RAMTest Backup Internal error";
Severity Level = Fatal;

Message = "(4141) RAMTest Standalone Internal error";
Severity Level = Fatal;

Events from the RCU CRC Checker

SrcNameSuffix = _SWTargets;

Message = "(4142) Hardware error detected by RCU CRC Checker";
Severity Level = Critical;

Events from RAMTest

Message = "(4143) RAMTest Trainee Parity error self test"
SeverityLevel = = Critical

Message = "(4144) RAMTest Trainee Address line test 0x{1}"
{1} = Fail address
SeverityLevel = Critical

Message = "(4145) RAMTest Backup Internal error"
SeverityLevel =Critical
306 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

Events from SSPActiveTest

Message = "(4146) SSP error detected by SSPActiveTest"
SeverityLevel = Fatal

Events from HWSetupVerification

These events are issued if HW Setup Verification detected an error in HW Setup.
The message also contains a test label, specifying the failing test.

SrcNameSuffix = _SWTargets;

Message = "(4150) HW Setup Verification in Primary: {1}";
{1} = Subtest strings used to specify the failing test method.
Severity Level = Medium;

Message = "(4151) HW Setup Verification in Backup: {1}";
Severity Level = Medium;
{1} = Subtest strings used to specify the failing test method.

Message = "(4152) HW Setup Verification in Standalone: {1}";
{1} = Subtest strings used to specify the failing test method.
Severity Level = Medium;

Message = "(4153) HW Setup Verification in Trainee: {1}"
{1} = Subtest strings used to specify the failing test method.
SeverityLevel = Critical

Events from EXTCLKSupervision

These events are issued from the EXTCLK Supervision if etiher the EXTCLK
frequency is or the FPGA divider is working incorrect.

SrcNameSuffix = _SWTargets;

Message = "(4160) EXTCLK Error Allowed range {1} us";
{1} = Sleep-time information
Severity Level = Medium;

Message = "(4161) EXTCLK Supervision Error: FATAL error";
Severity Level = Medium;
3BSE040935R201 Rev A 307

Controller – Software Appendix B System Alarms and Events

Events from HRESETSupervision

This event is issued from the Oscillator Supervision task if etiher the SPPL or
EXTCLK frequency is working incorrect.

SrcNameSuffix = _SWTargets;
Message = "(4170) HRESET Error asserted by {1}";
{1} = Strings used to specify the signals generating HRESET
Severity Level = High;

Events from Modulebus Driver

System Simple Event Comparision of CRC32 from SM and PM failed

SrcNameSuffix = _SWTargets;
Message = "(4180) MBM1 SM vs PM CRC32 failed, address 0x{1}";
{1} = Address (hexadecimal)
Severity Level = Low;

System Simple Event Failed to create SMDrv in Modulebus

SrcNameSuffix = _SWTargets;
Message = "(4181) Failed to create SMDrv From Modulebus";
Severity Level = Medium;

System Simple Event BusErrorIn interrupt routine

SrcNameSuffix = _SWTargets;
Message = "(4182) Bus Error In Modulebus ISR address 0x{1}";
{1} = Address (hexadecimal)
Severity Level = Critical;

System Simple Event BS Exception in MBM1scanner

SrcNameSuffix = _SWTargets;

Message = "(4183) BS EXCEPTION In MBM1 Scanner";
Severity Level = Critical;

Message = "(4184) Incoming safety header failure, address 0x{1}"
{1} = Address (hexadecimal)
SeverityLevel = Medium
308 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Software

Message = "(4185) Primary shutdown due to suspect SM"
SeverityLevel = Medium

Message = "(4186) No answer from SM address 0x{1}, error code 0x{2}"
SeverityLevel = Medium

Message = "(4187) Failure in safety IO, address 0x{1}, error code 0x{2}"
{1} = Address (hexadecimal)
{2} = Error code (hexadecimal)
SeverityLevel = Medium

Events from ModuleBus

System Simple Event

Message = "((4901) Event overflow in module: {1}{2}"
{1} = Path to ModuleBus unit.
{2} = Unit number.
SeverityLevel = Medium
3BSE040935R201 Rev A 309

Controller – Hardware Appendix B System Alarms and Events

Controller – Hardware
Hardware generated system alarms are automatically available when the hardware is
configured. They may however be disabled.

All Hardware Units in the hardware configuration have one system alarm and one
system simple event each for its disposal. The intention is to have a sum alarm and a
sum event for different errors and warnings that can be detected on the hardware
unit.

.

Table 40. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions

Class All hardware generated system alarms and events have the same
value of parameter 'Class' that is determined by the value of CPU
setting 'AE System AE class'.

Severity Values of severity are defined through the CPU setting 'AE System
AE high severity' for hardware generated system alarms, respective
'AE System AE medium severity' for hardware generated system
simple events.
310 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controller – Hardware

Message The message contains reference to more detailed information,
because each alarm is a sum alarm that can indicate many different
errors on the unit. This information is given in the description of
Errors and Warnings in CB and or in the System status viewer in
Operate IT.

The error code is stored in two 32 bit words first word is
ErrorsAndWarnings and the second is ExtendedStatus.

In each hardware generated system alarm or event message,
ErrorsAndWarnings and ExtendedStatus bit patterns are translated
into a text in the OPC-server. General status bits are translated into
a explaining text e.g. "I/O configuration error". Device specific bits
from ErrorsAndWarnings are displayed as "Device spcific bit xx" in
the message e.g. "Device spcific bit 31" . The same goes for
ExtendedStatus. Unit specific bits from ExtendedStatus are
displayed as "Extended status bit xx" in the message e.g. "Extended
status bit 0" . Every unit have a table in this document there the bits
are explained.

Example
"Controller_1 (0000) I/O configuration error, Device specific bit 31,
Extended status bit 0"

If the Unit in this example is a PM865, "Device specific bit 31"=
"Battery low" and "Extended status bit 0" = "Backup CPU stopped"

In the controller sessionlog ErrorsAndWarnings and ExtendedStatus
are presented as HEX format.

Example:

"E 2004-03-08 10:25:06.677 On Unit= 2 HWError Controller_1
Errorcode=16#80004000 16#00000001 (0000) See HW-tree

SrcName The syntax for the source name in the SrcName parameter is
dynamically based on the IP address together with the
SrcNameSuffix that is the hardware unit address in the hardware
tree configuration.

Example: IP address (172.16.85.33) + SrcNameSuffix (2.5.101)
= "172.16.85.33-2.5.101".

Table 40. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions
3BSE040935R201 Rev A 311

Alarms and Events Common for all Units Appendix B System Alarms and Events

Alarms and Events Common for all Units

Table 41 lists those status bits that have the same meaning for all hardware units.

Note however that different units have different capabilities. A specific unit will
typically only be able to generate alarms and events for an assortment of the
common status bits.

CondName All hardware generated system alarms have "HWError" as common
condition name in the CondName parameter.

AckRule Ack Rule 5 is used for these system alarms,.

Table 41. General status bit

Bit StatusType Indication Generation Severity Description

0 ErrorsAndWarnings Error Alarm High Connection down

1 ErrorsAndWarnings Error Alarm Medium I/O error

2 ErrorsAndWarnings Error Alarm High Module missing

3 ErrorsAndWarnings Error Alarm High Wrong module
type

4 ErrorsAndWarnings Warning Alarm Medium Channel error

5 ErrorsAndWarnings Warning Event Low I/O warning

6 ErrorsAndWarnings Warning Alarm Low Underflow

7 ErrorsAndWarnings Warning Alarm Low Overflow

8 ErrorsAndWarnings Warning Event Low Forced

9 ErrorsAndWarnings Error Alarm High Watchdog timeout

10 ErrorsAndWarnings Error Alarm High Device failure

11 ErrorsAndWarnings Error Alarm High Device not found

12 ErrorsAndWarnings Error Alarm High Wrong device type

Table 40. Parameters for Hardware Generated System Alarms and Events

Parameters Descriptions
312 3BSE040935R201 Rev A

Appendix B System Alarms and Events Alarms and Events Common for all Units

13 ErrorsAndWarnings Error Alarm Medium I/O connection
error

14 ErrorsAndWarnings Error Alarm Medium I/O configuration
error

15 ErrorsAndWarnings Error Alarm High Hardware
configuration error

18 ErrorsAndWarnings Warning Event Low Warning on
primary unit

19 ErrorsAndWarnings Warning Event Low Warning on
backup unit

20 ErrorsAndWarnings Warning Alarm Medium Error on backup
unit

21 Reserved

22 Reserved

23 ExtendedStatus Error Alarm High Version of the
Running Primary
is incompatible

24 ExtendedStatus Warning Alarm Medium Version of the
Running Backup is

incompatible

25 ExtendedStatus Warning Alarm Medium Version of the
Running Primary
is not preferred

26 ExtendedStatus Warning Alarm Medium Version of the
Running Backup is

not preferred

27 ExtendedStatus Warning Alarm Low Watchdog timeout
on backup

28 ExtendedStatus Warning Alarm Low Backup device
failure

Table 41. General status bit (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 313

Unit Specific Alarms and Events Appendix B System Alarms and Events

Unit Specific Alarms and Events

This subsection lists the unit specific alarms and events, sorted in the following
categories of units:

• Controller units and communication interfaces (see Controllers Units and
Communication Interfaces on page 315).

• Adapters (see Adapters on page 329).

• S800 I/O (see S800 I/O on page 336).

• S900 I/O (see S900 I/O on page 382).

• S100 I/O (see S100 I/O on page 418).

• INSUM devices (see INSUM Devices on page 420).

• FF devices (see FF Devices on page 422).

• MB300 nodes (see MB300 Nodes on page 423).

• ABB Standard drive (see ABB Standard Drive on page 423).

29 ExtendedStatus Warning Event Low Switchover in
progress

30 ExtendedStatus - - - Redundant mode
enabled

31 ExtendedStatus - - - Unit B acts
primary

Table 41. General status bit (Continued)

Bit StatusType Indication Generation Severity Description
314 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

Controllers Units and Communication Interfaces

Table 42. PM851 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.
3BSE040935R201 Rev A 315

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

Table 43. PM856 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.
316 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

Table 44. PM860 / TP830

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.
3BSE040935R201 Rev A 317

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

Table 45. PM861 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.
318 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 46. PM864 / TP830

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Warning Alarm Medium CEX-bus fuse on
Backup

 24 ErrorsAndWarnings Warning Alarm Medium RPB on Backup

 25 ErrorsAndWarnings Warning Alarm Medium RPA on Backup

 26 ErrorsAndWarnings Warning Alarm Medium Battery Low on
Backup

 28 ErrorsAndWarnings Warning Alarm High CEX-bus fuse

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 31 ErrorsAndWarnings Warning Alarm Medium Battery Low

 0 ExtendedStatus Warning Alarm Medium Backup CPU
stopped

Table 45. PM861 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 319

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

 1 ExtendedStatus Warning Alarm Medium Switchover
occurred

 2 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

upper CEX bus
segment are

disabled.

 3 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All

CEMs on the lower
CEX bus segment

are disabled.

 4 ExtendedStatus Warning Alarm Medium Hanging or invalid
CEX IRQ: A PM
has been shut

down.

 5 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

direct CEX bus
segment are

disabled.

 6 ExtendedStatus Warning Alarm High Hanging or invalid
CEX IRQ: All
CEMs on the

indirect CEX bus
segment are

disabled.

7 ExtendedStatus Warning Alarm Medium RCUcable
connector is open

Table 46. PM864 / TP830 (Continued)

Bit StatusType Indication Generation Severity Description
320 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

Table 47. CF Card

Bit StatusType Indication Generation Severity Description

27 ErrorsAndWarnings Warning Alarm Medium Image is corrupt

28 ErrorsAndWarnings Warning Alarm Medium Controller version
mismatch

29 ErrorsAndWarnings Warning Alarm Medium Invalid save setting

 30 ErrorsAndWarnings Warning Alarm Medium Application version
mismatch

 31 ErrorsAndWarnings Warning Alarm Medium No card present

Table 48. CI852

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Warning Alarm Medium Ext FF Config
missing

 25 ErrorsAndWarnings Error Alarm High CIff DB
Compatibility Error

 26 ErrorsAndWarnings Warning Alarm Medium CIff EEPROM
error

 27 ErrorsAndWarnings Error Alarm High CIff Power Up Test
Fail

 28 ErrorsAndWarnings Error Alarm High Ctrl WD Stall

 29 ErrorsAndWarnings Error Alarm High CIff WD Stall

 30 ErrorsAndWarnings Error Alarm High Syst Mgm Not Op

 31 ErrorsAndWarnings Warning Event Medium H1 Bus Idle
3BSE040935R201 Rev A 321

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

Table 49. CI854

Bit StatusType Indication Generation Severity Description

23 ErrorsAndWarnings Error Alarm Medium Hardware
watchdog on

CI854(A) expired

24 ErrorsAndWarnings Error Alarm Medium Error in
PROFIBUS master

configuration

25 ErrorsAndWarnings Warning Alarm Medium PROFIBUS com.
failure between

Primary and
Backup

26 ErrorsAndWarnings Warning Event High Communication
memory obtained

too long

27 ErrorsAndWarnings Warning Alarm Medium Duplicate slave
address

28 ErrorsAndWarnings Warning Alarm Medium No activity on
PROFIBUS line A

29 ErrorsAndWarnings Warning Alarm Medium No activity on
PROFIBUS line B

30 ErrorsAndWarnings Error Alarm High Hardware fail of
CI854(A)

31 ErrorsAndWarnings Error Alarm Medium Firmware needs to
be reloaded

0 ExtendedStatus Warning Event Low Timeout on bus,
maybe duplicate

slave address
(TTO)

1 ExtendedStatus Warning Event Low Bus
synchronization

failure, check
hardware (SYN)
322 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

2 ExtendedStatus Warning Event Low Taken out of ring
by another master,

check system
conf.

3 ExtendedStatus Warning Event Low Fatal medium
access error

4 ExtendedStatus Warning Event Low Fatal hardware
error

5 ExtendedStatus Warning Alarm Medium All slaves failed

6 ExtendedStatus Warning Event Low Hardware
configuration error

on backup

7 ExtendedStatus Warning Event Low Backup device not
found

8 ExtendedStatus Warning Alarm Medium I/O configuration
error on backup

9 ExtendedStatus Warning Alarm Medium I/O connection
error on backup

10 ExtendedStatus Warning Event Low Hardware
watchdog on

Backup CI854(A)
expired

11 ExtendedStatus Warning Event Low Error in
PROFIBUS master

configuration of
Backup

12 ExtendedStatus Warning Alarm Medium No activity on
PROFIBUS line A

of Backup

Table 49. CI854 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 323

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

13 ExtendedStatus Warning Alarm Medium No activity on
PROFIBUS line B

of Backup

14 ExtendedStatus Warning Alarm Medium Hardware fail of
CI854A Backup

15 ExtendedStatus Warning Alarm Medium Firmware needs to
be reloaded on

Backup

16 ExtendedStatus Warning Alarm Medium CEX-Bus com.
failure between

Primary and
Backup

17 ExtendedStatus Error Alarm High Fatal error on
Primary detected

18 ExtendedStatus Warning Alarm Medium Fatal error on
Backup detected

Table 50. CI855

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Warning Alarm Medium No communication
on port 1

23 ErrorsAndWarnings Warning Alarm Medium No communication
on port 2

31 ErrorsAndWarnings Warning Event Low MB300 System
message received.

Check log-file

Table 49. CI854 (Continued)

Bit StatusType Indication Generation Severity Description
324 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

Table 51. CI856

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Warning Event Low CPU overload

1 ExtendedStatus Warning Event Low Scan task
overload

2 ExtendedStatus Warning Event Low Lack of scan
resources

3 ExtendedStatus Warning Event Low PTC status queue
full

4 ExtendedStatus Warning Event Low PTC event queue
full

5 ExtendedStatus Warning Event Low SOE status queue
full

6 ExtendedStatus Warning Event Low DI queue full

7 ExtendedStatus Warning Event Low AI queue full

8 ExtendedStatus Warning Alarm Medium Unknown I/O
module type

9 ExtendedStatus Warning Alarm Medium Illegal I/O module
ID

10 ExtendedStatus Warning Alarm Medium I/O module ID
conflict

11 ExtendedStatus Warning Alarm Medium Max number of
PTC devices

exceeded

Table 52. CI857

Bit StatusType Indication Generation Severity Description

22 ErrorsAndWarnings Error Alarm High FW downl mode

23 ErrorsAndWarnings Error Alarm High Internal Supv

24 ErrorsAndWarnings Error Alarm High Appl Task Failed
3BSE040935R201 Rev A 325

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

25 ErrorsAndWarnings Error Alarm High Init Failed

26 ErrorsAndWarnings Error Alarm High Device Not Found

27 ErrorsAndWarnings Error Alarm High FW Watchdog
Error

28 ErrorsAndWarnings Error Alarm High Ethernet Error

29 ErrorsAndWarnings Error Alarm High Device Failure

30 ErrorsAndWarnings Warning Event Low Warning!

31 ErrorsAndWarnings Error Alarm Medium Error!

0 ExtendedStatus Error Alarm High No MAC Addr

1 ExtendedStatus Error Alarm High HW Fail

2 ExtendedStatus Error Event Medium Error reading CI
status reg.

3 ExtendedStatus Warning Alarm Medium Suspend State

4 ExtendedStatus Warning Alarm Medium Shutdown State

6 ExtendedStatus Warning Event Medium Cfg State

7 ExtendedStatus Warning Event Medium Init State

8 ExtendedStatus Error Alarm High Incompat driver
version

9 ExtendedStatus Error Alarm High Incompat FW
version

10 ExtendedStatus Error Alarm Medium PH task stalled

12 ExtendedStatus Error Alarm High Wrong dev type

13 ExtendedStatus Warning Event Low Data Trans Q Full

14 ExtendedStatus Warning Event Low Status Trans Q
Full

15 ExtendedStatus Warning Event Low Misc Trans Q Full

Table 52. CI857 (Continued)

Bit StatusType Indication Generation Severity Description
326 3BSE040935R201 Rev A

Appendix B System Alarms and Events Controllers Units and Communication Interfaces

16 ExtendedStatus Warning Event Low Dev Trans Q Full

17 ExtendedStatus Warning Event Low Trans Q Full

18 ExtendedStatus Warning Event Low Net Q Full

19 ExtendedStatus Warning Event Low Intern Q Full

20 ExtendedStatus Error Alarm High FW Corrupt

Table 53. CI865 (Satt I/O Interface)

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Alarm Medium Overload

Table 54. ModuleBus

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Medium RPA

 30 ErrorsAndWarnings Warning Alarm Medium RPB

 0 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 1 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 2 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 3 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

Table 52. CI857 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 327

Controllers Units and Communication Interfaces Appendix B System Alarms and Events

 4 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 5 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

 6 ExtendedStatus Warning Alarm High Backup CPU,
ModuleBus cluster

modem error

Table 55. Ethernet

Bit StatusType Indication Generation Severity Description

29 ErrorsAndWarnings Warning Alarm Medium No communication
Backup CPU

 30 ErrorsAndWarnings Warning Alarm Medium No communication

Table 56. MODBUS

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Event Medium Offline

Table 57. PPP

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Medium No communication

Table 54. ModuleBus (Continued)

Bit StatusType Indication Generation Severity Description
328 3BSE040935R201 Rev A

Appendix B System Alarms and Events Adapters

Adapters

Table 58. DSBC 173A

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Table 59. DSBC 174

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning

Table 60. DSBC 176

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Alarm Low Inhibit

 27 ErrorsAndWarnings Warning Event Low Parity error

 28 ErrorsAndWarnings Warning Alarm Low Regulator failure

 29 ErrorsAndWarnings Warning Alarm Low Regulator missing

 30 ErrorsAndWarnings Warning Alarm Medium Fan failure

 31 ErrorsAndWarnings Warning Alarm Low Voltage warning
3BSE040935R201 Rev A 329

Adapters Appendix B System Alarms and Events

Table 61. CI801

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event High Station warning

 26 ErrorsAndWarnings Warning Alarm Low Power B error

 27 ErrorsAndWarnings Warning Alarm Low Power A error

0 ExtendedStatus Error Alarm Medium Slave does not
exist

1 ExtendedStatus Error Alarm Medium Configuration data
fault

2 ExtendedStatus Error Alarm Medium Parameter data
fault

3 ExtendedStatus Warning Event Low Static diagnostic

5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

6 ExtendedStatus Warning Event Medium Report diagnostics
fault

10 ExtendedStatus Warning Alarm Low Station address
warning

Table 62. CI830

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Alarm Low Power B error

 29 ErrorsAndWarnings Warning Alarm Low Power A error

 30 ErrorsAndWarnings Warning Event High Peripheral HW
error

 31 ErrorsAndWarnings Error Alarm Medium Error

 0 ExtendedStatus Error Alarm Medium Slave does not
exist
330 3BSE040935R201 Rev A

Appendix B System Alarms and Events Adapters

 1 ExtendedStatus Error Alarm Medium Configuration data
fault

 2 ExtendedStatus Error Alarm Medium Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

4 ExtendedStatus Warning Alarm Low Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report diagnostics
fault

Table 63. CI840

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event High Station warning

 26 ErrorsAndWarnings Warning Alarm Low Power B error

 27 ErrorsAndWarnings Warning Alarm Low Power A error

 28 ErrorsAndWarnings Warning Alarm Low Cable B error

 29 ErrorsAndWarnings Warning Alarm Low Cable A error

 30 ErrorsAndWarnings Warning Alarm Low Unit A error

 31 ErrorsAndWarnings Warning Alarm Low Unit B error

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm Medium Configuration data
fault

 2 ExtendedStatus Error Alarm Medium Parameter data
fault

Table 62. CI830

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 331

Adapters Appendix B System Alarms and Events

 3 ExtendedStatus Warning Event Low Static diagnostic

 4 ExtendedStatus Warning Alarm Low Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report diagnostics
fault

 10 ExtendedStatus Warning Alarm Low Station address
warning

Table 64. S900

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error - - Slave does not
exist

 1 ExtendedStatus Error - - Configuration data
fault

 2 ExtendedStatus Error - - Parameter data
fault

 3 ExtendedStatus Warning - - Static diagnostic

 4 ExtendedStatus Warning - - Redundant slave
does not exist

Table 65. CI920* (CIPB)

Bit StatusType Indication Generation Severity Description

 29 ErrorsAndWarnings Warning Alarm Low Red. CIPB missing

 31 ErrorsAndWarnings Warning Event Low Red. CIPB error

 0 ExtendedStatus Error Alarm Medium ROM error

 1 ExtendedStatus Error Alarm Medium RAM error

Table 63. CI840 (Continued)

Bit StatusType Indication Generation Severity Description
332 3BSE040935R201 Rev A

Appendix B System Alarms and Events Adapters

 2 ExtendedStatus Error Alarm Medium EEPROM error

 3 ExtendedStatus Warning Event Low Cold start

 4 ExtendedStatus Warning Event Low Error 20

 5 ExtendedStatus Warning Event Low Error 21

 6 ExtendedStatus Error Event Medium Internal bus fault

 7 ExtendedStatus Warning Event Low Internal bus fault
(passive)

 8 ExtendedStatus Warning Event Low Power supply 1
error

 9 ExtendedStatus Warning Event Low Power supply 2
error

 10 ExtendedStatus Warning Event Low Reset after
watchdog

 11 ExtendedStatus Warning Event Low Redundancy
switchover

 12 ExtendedStatus Warning Event Low Red. CIPB missing

 13 ExtendedStatus Warning Event Low Red. CIPB not
ready

 14 ExtendedStatus Warning Event Low Red. CIPB error

 15 ExtendedStatus Warning Event Low Red. CIPB no DP
comm.

Table 65. CI920* (CIPB) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 333

Adapters Appendix B System Alarms and Events

Table 66. RPBA-01 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm High Configuration data
fault

 2 ExtendedStatus Error Alarm High Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic

 4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

10 ExtendedStatus Warning Event Low Communication
temporary lost

11 ExtendedStatus Warning Event Low Communication
permanently lost

Table 67. NPBA-12 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description

 0 ExtendedStatus Error Alarm Medium Slave does not
exist

 1 ExtendedStatus Error Alarm High Configuration data
fault

 2 ExtendedStatus Error Alarm High Parameter data
fault

 3 ExtendedStatus Warning Event Low Static diagnostic
334 3BSE040935R201 Rev A

Appendix B System Alarms and Events Adapters

 4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

 5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

 6 ExtendedStatus Warning Event Medium Report
Diagnostics fault

Table 67. NPBA-12 (PROFIBUS DP adapter module)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 335

S800 I/O Appendix B System Alarms and Events

S800 I/O

Table 68. AI801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error
336 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 69. AI810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

Table 68. AI801 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 337

S800 I/O Appendix B System Alarms and Events

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 70. AI820 and AI825

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

Table 69. AI810 (Continued)

Bit StatusType Indication Generation Severity Description
338 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 71. AI830

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

Table 70. AI820 and AI825 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 339

S800 I/O Appendix B System Alarms and Events

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 72. AI835

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

Table 71. AI830 (Continued)

Bit StatusType Indication Generation Severity Description
340 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 73. AI843

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

Table 72. AI835 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 341

S800 I/O Appendix B System Alarms and Events

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 74. AI845

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Warning Event Low Backup Warning

 27 ErrorsAndWarnings Warning Alarm Medium Backup Error

 28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

Table 73. AI843 (Continued)

Bit StatusType Indication Generation Severity Description
342 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

 29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

 30 ErrorsAndWarnings Warning Event Low Warning

 31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedWarning Warning Event Low OSP

 1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

 4 ExtendedStatus Warning Event Low Not configured

 5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

 8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 74. AI845 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 343

S800 I/O Appendix B System Alarms and Events

Table 75. AI890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
344 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 76. AI893 RTD

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 345

S800 I/O Appendix B System Alarms and Events

Table 77. AI893 TC

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
346 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 78. AI895

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 347

S800 I/O Appendix B System Alarms and Events

Table 79. AO801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
348 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 80. AO820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 349

S800 I/O Appendix B System Alarms and Events

Table 81. AO810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
350 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 82. AO845

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 351

S800 I/O Appendix B System Alarms and Events

Table 83. AO890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
352 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 84. AO895

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 353

S800 I/O Appendix B System Alarms and Events

Table 85. DI801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
354 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 86. DI802

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 355

S800 I/O Appendix B System Alarms and Events

Table 87. DI803

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
356 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 88. DI810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 357

S800 I/O Appendix B System Alarms and Events

Table 89. DI811

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Warning

 0 ExtendedStatus Warning Event Low OSP

 4 ExtendedStatus Warning Event Low Not configured

Table 90. DI814

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing
358 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 91. DI820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

Table 90. DI814

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 359

S800 I/O Appendix B System Alarms and Events

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 92. DI821

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

Table 91. DI820 (Continued)

Bit StatusType Indication Generation Severity Description
360 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 93. DI830

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

Table 92. DI821 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 361

S800 I/O Appendix B System Alarms and Events

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 94. DI825

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 93. DI830 (Continued)

Bit StatusType Indication Generation Severity Description
362 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 95. DI831

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

Table 94. DI825 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 363

S800 I/O Appendix B System Alarms and Events

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 95. DI831 (Continued)

Bit StatusType Indication Generation Severity Description
364 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 96. DI840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 365

S800 I/O Appendix B System Alarms and Events

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

Table 97. DI885

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

Table 96. DI840 (Continued)

Bit StatusType Indication Generation Severity Description
366 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 98. DI890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

Table 97. DI885 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 367

S800 I/O Appendix B System Alarms and Events

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 99. DO801

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

Table 98. DI890 (Continued)

Bit StatusType Indication Generation Severity Description
368 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 100. DO802

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

Table 99. DO801 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 369

S800 I/O Appendix B System Alarms and Events

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 101. DO810

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

Table 100. DO802 (Continued)

Bit StatusType Indication Generation Severity Description
370 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error

Table 101. DO810 (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 371

S800 I/O Appendix B System Alarms and Events

Table 102. DO814

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
372 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 103. DO815

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 373

S800 I/O Appendix B System Alarms and Events

Table 104. DO820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
374 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 105. DO821

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 375

S800 I/O Appendix B System Alarms and Events

Table 106. DO840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
376 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 107. DO890

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 377

S800 I/O Appendix B System Alarms and Events

Table 108. DP820

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
378 3BSE040935R201 Rev A

Appendix B System Alarms and Events S800 I/O

Table 109. DP840

Bit StatusType Indication Generation Severity Description

26 ErrorsAndWarnings Warning Event Low Backup Warning

27 ErrorsAndWarnings Warning Alarm Medium Backup Error

28 ErrorsAndWarnings Warning Alarm Medium Backup Module
Missing

29 ErrorsAndWarnings Warning Alarm Medium Backup Wrong
module type

30 ErrorsAndWarnings Warning Event Low Warning

31 ErrorsAndWarnings Error Alarm High Error

0 ExtendedStatus Warning Event Low OSP

1 ExtendedStatus Warning Event Low Backup Not
configured

2 ExtendedStatus Warning Event Low Backup OSP

3 ExtendedStatus Warning Event Low Backup Process
power missing

4 ExtendedStatus Warning Event Low Not configured

5 ExtendedStatus Warning Event Low Backup Internal
channel error

6 ExtendedStatus Warning Event Low Backup
PulseSyncError

7 ExtendedStatus Warning Event Low Process power
missing

8 ExtendedStatus Warning Event Low Internal channel
error

9 ExtendedStatus Warning Event Low Channel short
circuit

10 ExtendedStatus Warning Event Low Channel open wire

11 ExtendedStatus Warning Event Low Channel sensor
power sup. error
3BSE040935R201 Rev A 379

S900 I/O Appendix B System Alarms and Events

S900 I/O

Table 110. AI910* (AI4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1
380 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 111. AI920* (AI4I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

Table 110. AI910* (AI4) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 381

S900 I/O Appendix B System Alarms and Events

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 112. AI921* (AI4I U)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

Table 111. AI920* (AI4I) (Continued)

Bit StatusType Indication Generation Severity Description
382 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 113. AI930* (AI4H A)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

Table 112. AI921* (AI4I U) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 383

S900 I/O Appendix B System Alarms and Events

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

Table 113. AI930* (AI4H A) (Continued)

Bit StatusType Indication Generation Severity Description
384 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 114. AI930* (AI4H A 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning - - Line fault ch. 1

 1 ExtendedStatus Warning - - Line fault ch. 2

 2 ExtendedStatus Warning - - Line fault ch. 3

 3 ExtendedStatus Warning - - Line fault ch. 4

Table 113. AI930* (AI4H A) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 385

S900 I/O Appendix B System Alarms and Events

 4 ExtendedStatus Warning - - Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning - - Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning - - Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning - - Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning - - Lower limit
underrun ch. 1

 9 ExtendedStatus Warning - - Lower limit
underrun ch. 2

 10 ExtendedStatus Warning - - Lower limit
underrun ch. 3

 11 ExtendedStatus Warning - - Lower limit
underrun ch. 4

 12 ExtendedStatus Warning - - HART status
available ch. 1

 13 ExtendedStatus Warning - - HART status
available ch. 2

 14 ExtendedStatus Warning - - HART status
available ch. 3

 15 ExtendedStatus Warning - - HART status
available ch. 4

 16 ExtendedStatus Warning - - HART
communication

error ch. 1

Table 114. AI930* (AI4H A 1H) (Continued)

Bit StatusType Indication Generation Severity Description
386 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning - - HART
communication

error ch. 2

 18 ExtendedStatus Warning - - HART
communication

error ch. 3

 19 ExtendedStatus Warning - - HART
communication

error ch. 4

Table 115. AI930* (AI4H A 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 114. AI930* (AI4H A 1H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 387

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 115. AI930* (AI4H A 4H) (Continued)

Bit StatusType Indication Generation Severity Description
388 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 116. AI930* (AI4H A 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 115. AI930* (AI4H A 4H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 389

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 116. AI930* (AI4H A 8H) (Continued)

Bit StatusType Indication Generation Severity Description
390 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 117. AI931* (AI4H P)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 116. AI930* (AI4H A 8H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 391

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 117. AI931* (AI4H P) (Continued)

Bit StatusType Indication Generation Severity Description
392 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 118. AI931* (AI4H P 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning - - Line fault ch. 1

 1 ExtendedStatus Warning - - Line fault ch. 2

 2 ExtendedStatus Warning - - Line fault ch. 3

 3 ExtendedStatus Warning - - Line fault ch. 4

 4 ExtendedStatus Warning - - Upper limit
exceeded ch. 1

Table 117. AI931* (AI4H P) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 393

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning - - Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning - - Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning - - Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning - - Lower limit
underrun ch. 1

 9 ExtendedStatus Warning - - Lower limit
underrun ch. 2

 10 ExtendedStatus Warning - - Lower limit
underrun ch. 3

 11 ExtendedStatus Warning - - Lower limit
underrun ch. 4

 12 ExtendedStatus Warning - - HART status
available ch. 1

 13 ExtendedStatus Warning - - HART status
available ch. 2

 14 ExtendedStatus Warning - - HART status
available ch. 3

 15 ExtendedStatus Warning - - HART status
available ch. 4

 16 ExtendedStatus Warning - - HART
communication

error ch. 1

Table 118. AI931* (AI4H P 1H) (Continued)

Bit StatusType Indication Generation Severity Description
394 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning - - HART
communication

error ch. 2

 18 ExtendedStatus Warning - - HART
communication

error ch. 3

 19 ExtendedStatus Warning - - HART
communication

error ch. 4

Table 119. AI931* (AI4H P 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 118. AI931* (AI4H P 1H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 395

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 119. AI931* (AI4H P 4H) (Continued)

Bit StatusType Indication Generation Severity Description
396 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 120. AI931* (AI4H P 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 119. AI931* (AI4H P 4H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 397

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

Table 120. AI931* (AI4H P 8H) (Continued)

Bit StatusType Indication Generation Severity Description
398 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 121. AI950* (TI4 R)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

Table 120. AI931* (AI4H P 8H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 399

S900 I/O Appendix B System Alarms and Events

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 122. AI950* (TI4 T)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

Table 121. AI950* (TI4 R) (Continued)

Bit StatusType Indication Generation Severity Description
400 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 1

 5 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 2

 6 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 3

 7 ExtendedStatus Warning Event Low Upper limit
exceeded ch. 4

 8 ExtendedStatus Warning Event Low Lower limit
underrun ch. 1

 9 ExtendedStatus Warning Event Low Lower limit
underrun ch. 2

 10 ExtendedStatus Warning Event Low Lower limit
underrun ch. 3

 11 ExtendedStatus Warning Event Low Lower limit
underrun ch. 4

Table 123. AO910* (AO4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

Table 122. AI950* (TI4 T) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 401

S900 I/O Appendix B System Alarms and Events

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 124. AO920* (AO4I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 123. AO910* (AO4) (Continued)

Bit StatusType Indication Generation Severity Description
402 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

Table 125. AO930* (AO4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1
3BSE040935R201 Rev A 403

S900 I/O Appendix B System Alarms and Events

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 126. AO930* (AO4H 1H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

Table 125. AO930* (AO4H) (Continued)

Bit StatusType Indication Generation Severity Description
404 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 127. AO930* (AO4H 4H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

Table 126. AO930* (AO4H 1H) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 405

S900 I/O Appendix B System Alarms and Events

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 127. AO930* (AO4H 4H) (Continued)

Bit StatusType Indication Generation Severity Description
406 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

Table 128. AO930* (AO4H 8H)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 12 ExtendedStatus Warning Event Low HART status
available ch. 1

 13 ExtendedStatus Warning Event Low HART status
available ch. 2

 14 ExtendedStatus Warning Event Low HART status
available ch. 3

 15 ExtendedStatus Warning Event Low HART status
available ch. 4

 16 ExtendedStatus Warning Event Low HART
communication

error ch. 1
3BSE040935R201 Rev A 407

S900 I/O Appendix B System Alarms and Events

 17 ExtendedStatus Warning Event Low HART
communication

error ch. 2

 18 ExtendedStatus Warning Event Low HART
communication

error ch. 3

 19 ExtendedStatus Warning Event Low HART
communication

error ch. 4

Table 129. DO910* (DO4)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

Table 128. AO930* (AO4H 8H) (Continued)

Bit StatusType Indication Generation Severity Description
408 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

Table 130. DO930* (RO6)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

Table 131. DO940* (TO8)

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event Medium External power
supply missing

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2
3BSE040935R201 Rev A 409

S900 I/O Appendix B System Alarms and Events

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 132. DO980* (TO16)

Bit StatusType Indication Generation Severity Description

 25 ErrorsAndWarnings Warning Event Medium External power
supply missing

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

Table 131. DO940* (TO8) (Continued)

Bit StatusType Indication Generation Severity Description
410 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

 8 ExtendedStatus Warning Event Low Line fault ch. 9

 9 ExtendedStatus Warning Event Low Line fault ch. 10

 10 ExtendedStatus Warning Event Low Line fault ch. 11

 11 ExtendedStatus Warning Event Low Line fault ch. 12

 12 ExtendedStatus Warning Event Low Line fault ch. 13

 13 ExtendedStatus Warning Event Low Line fault ch. 14

 14 ExtendedStatus Warning Event Low Line fault ch. 15

 15 ExtendedStatus Warning Event Low Line fault ch. 16

Table 133. DP910* (FI2 P)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

Table 132. DO980* (TO16) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 411

S900 I/O Appendix B System Alarms and Events

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 134. DP910* (FI2 F)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

Table 133. DP910* (FI2 P) (Continued)

Bit StatusType Indication Generation Severity Description
412 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 135. DX910* (DIO8)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 134. DP910* (FI2 F) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 413

S900 I/O Appendix B System Alarms and Events

Table 136. DX910* (DIO8 S)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 137. DX910* (DIO8 8I)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected
414 3BSE040935R201 Rev A

Appendix B System Alarms and Events S900 I/O

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 138. DX910* (DIO8 8I S)

Bit StatusType Indication Generation Severity Description

 26 ErrorsAndWarnings Error Alarm Medium Error

 27 ErrorsAndWarnings Error Alarm Medium Parameter
inconsistent

 28 ErrorsAndWarnings Error Alarm Medium Unknown module
detected

 29 ErrorsAndWarnings Error Alarm Medium Unknown module
configured

 30 ErrorsAndWarnings Error Alarm Medium Internal address
conflict

 31 ErrorsAndWarnings Error Alarm Medium Module error

 0 ExtendedStatus Warning Event Low Line fault ch. 1

Table 137. DX910* (DIO8 8I) (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 415

S100 I/O Appendix B System Alarms and Events

S100 I/O

 1 ExtendedStatus Warning Event Low Line fault ch. 2

 2 ExtendedStatus Warning Event Low Line fault ch. 3

 3 ExtendedStatus Warning Event Low Line fault ch. 4

 4 ExtendedStatus Warning Event Low Line fault ch. 5

 5 ExtendedStatus Warning Event Low Line fault ch. 6

 6 ExtendedStatus Warning Event Low Line fault ch. 7

 7 ExtendedStatus Warning Event Low Line fault ch. 8

Table 139. DSAI 130/130A (S100 I/O)

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 140. DSAI 130D

Bit StatusType Indication Generation Severity Description

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 138. DX910* (DIO8 8I S) (Continued)

Bit StatusType Indication Generation Severity Description
416 3BSE040935R201 Rev A

Appendix B System Alarms and Events S100 I/O

Table 141. DSAI 133/133A

Bit StatusType Indication Generation Severity Description

 27 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 28 ErrorsAndWarnings Warning Event Low Conversion
overflow

 29 ErrorsAndWarnings Warning Event Low Conversion time-
out

 30 ErrorsAndWarnings Warning Event Low Max ref. level error

 31 ErrorsAndWarnings Warning Event Low Zero ref. level error

Table 142. DSAX 110

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 31 ErrorsAndWarnings Warning Event Low Reference level
error

Table 143. DSAX 110A

Bit StatusType Indication Generation Severity Description

 30 ErrorsAndWarnings Warning Event Low Semaphore time-
out

 31 ErrorsAndWarnings Warning Event Low Reference level
error
3BSE040935R201 Rev A 417

INSUM Devices Appendix B System Alarms and Events

INSUM Devices

Table 144. INSUM Device

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

Table 145. INSUM Gateway

Bit StatusType Indication Generation Severity Description

 22 ErrorsAndWarnings Error Alarm Medium GW Disconnected

 23 ErrorsAndWarnings Error Alarm Medium CI857 Connection
error

 25 ErrorsAndWarnings Warning Event Low HA Offline

 26 ErrorsAndWarnings Warning Event Low GW paused

 27 ErrorsAndWarnings Warning Alarm Medium GW shutdown

 28 ErrorsAndWarnings Warning Event Low Status unknown

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!
418 3BSE040935R201 Rev A

Appendix B System Alarms and Events INSUM Devices

 3 ExtendedStatus - - - Gateway sending
lifelist

 4 ExtendedStatus Warning Alarm Medium Consistency check
failed

 5 ExtendedStatus Warning Event Low Switched Offline
via LNT

Table 146. Circuit Breaker (INSUM)

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

 7 ExtendedStatus Warning Event Low LocalOpMode

 14 ExtendedStatus Warning Event Low Tripped

 15 ExtendedStatus Warning Event Low Warning

Table 145. INSUM Gateway (Continued)

Bit StatusType Indication Generation Severity Description
3BSE040935R201 Rev A 419

FF Devices Appendix B System Alarms and Events

FF Devices

Table 147. MCU (INSUM)

Bit StatusType Indication Generation Severity Description

 23 ErrorsAndWarnings Error Alarm Medium GW Connection
error

 28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

 29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

 30 ErrorsAndWarnings Warning Event Low Warning!

 31 ErrorsAndWarnings Error Alarm Medium Error!

 3 ExtendedStatus Warning Event Low Tripped

 4 ExtendedStatus Warning Event Low Alarm

 8 ExtendedStatus Warning Event Low Failsafe

 9 ExtendedStatus Warning Event Low TOLBypass

10 ExtendedStatus Warning Event Low TestPos

14 ExtendedStatus Warning Event Low No remote reset

15 ExtendedStatus Warning Event Low LocalOpMode

Table 148. FF Device

Bit StatusType Indication Generation Severity Description

 27 ErrorsAndWarnings Error Alarm High FF CIff Power Up
Test Fail

 28 ErrorsAndWarnings Error Alarm High FF Ctrl WD Stall

 29 ErrorsAndWarnings Error Alarm High FF CIff WD Stall

 30 ErrorsAndWarnings Error Alarm High FF Resources Low

 31 ErrorsAndWarnings Warning Event Medium FF H1 Bus Idle
420 3BSE040935R201 Rev A

Appendix B System Alarms and Events MB300 Nodes

MB300 Nodes

ABB Standard Drive

Table 149. MB300 Node

Bit StatusType Indication Generation Severity Description

 31 ErrorsAndWarnings Warning Alarm Medium Node unreachable

Table 150. ABB Standard Drive

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Mediu
m

Communicati
on broken

1 ExtendedStatus Error Alarm High Wrong drive
type

2 ExtendedStatus Error Alarm High Wrong
application ID

3 ExtendedStatus Warni
ng

Event Low Undefined
error

4 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

5 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error

6 ExtendedStatus Warni
ng

Event Mediu
m

Undefined
error
3BSE040935R201 Rev A 421

ABB Standard Drive Appendix B System Alarms and Events

Table 151. ABB Engineering Drive

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error

Table 152. ABB Drive Template (basic)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error
422 3BSE040935R201 Rev A

Appendix B System Alarms and Events Process Panel

Process Panel

Table 153. ABB Drive Template (extension)

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Wrong drive type

2 ExtendedStatus Error Alarm High Wrong application
ID

3 ExtendedStatus Warning Event Low Undefined error

4 ExtendedStatus Warning Event Medium Undefined error

5 ExtendedStatus Warning Event Medium Undefined error

6 ExtendedStatus Warning Event Medium Undefined error

Table 154. ABB Process Panel

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Slave does not
exist

1 ExtendedStatus Error Alarm High Configuration data
fault

2 ExtendedStatus Error Alarm High Parameter data
fault

3 ExtendedStatus Warning Event Low Static diagnostic

4 ExtendedStatus Warning Event Medium Redundant slave
does not exist

5 ExtendedStatus Warning Event Medium Diagnostic
configuration data

fault

6 ExtendedStatus Warning Event Medium Report
Diagnostics fault
3BSE040935R201 Rev A 423

ITS Appendix B System Alarms and Events

ITS

Table 155. ITS

Bit StatusType Indication Generation Severity Description

23 ErrorsAndWarnings Error - - GW Connection
error

28 ErrorsAndWarnings Error Alarm Medium Wrong INSUM
device type

29 ErrorsAndWarnings Error Alarm Medium INSUM Device not
found

30 ErrorsAndWarnings Warning - - Warning!

31 ErrorsAndWarnings Error - - Error!

0 ExtendedStatus Warning - - Fuse Ph1 blown

1 ExtendedStatus Warning - - Fuse Ph2 blown

2 ExtendedStatus Warning - - Fuse Ph3 blown

3 ExtendedStatus Warning - - Tripped

4 ExtendedStatus Warning - - Warning

10 ExtendedStatus Warning - - Overcurr Ph1

11 ExtendedStatus Warning - - Overcurr Ph2

12 ExtendedStatus Warning - - Overcurr Ph3

13 ExtendedStatus Warning - - Overtemp Ph1

14 ExtendedStatus Warning - - Overtemp Ph2

15 ExtendedStatus Warning - - Overtemp Ph3
424 3BSE040935R201 Rev A

Appendix B System Alarms and Events NAIO ff

NAIO ff

Table 156. NAIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 157. NBIO-21

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken
3BSE040935R201 Rev A 425

NAIO ff Appendix B System Alarms and Events

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 158. NBIO-31

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 157. NBIO-21 (Continued)

Bit StatusType Indication Generation Severity Description
426 3BSE040935R201 Rev A

Appendix B System Alarms and Events NAIO ff

Table 159. NCTI

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 160. NDIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken
3BSE040935R201 Rev A 427

NAIO ff Appendix B System Alarms and Events

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 161. NDSC

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 160. NDIO

Bit StatusType Indication Generation Severity Description
428 3BSE040935R201 Rev A

Appendix B System Alarms and Events NAIO ff

Table 162. NPCT

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 163. NTAC

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken
3BSE040935R201 Rev A 429

NAIO ff Appendix B System Alarms and Events

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 164. NWIO

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken

Table 163. NTAC (Continued)

Bit StatusType Indication Generation Severity Description
430 3BSE040935R201 Rev A

Appendix B System Alarms and Events PPO

PPO

Table 165. PPO Type1

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 166. PPO Type2 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
3BSE040935R201 Rev A 431

PPO Appendix B System Alarms and Events

Table 167. PPO Type 2

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 168. PPO Type 3

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
432 3BSE040935R201 Rev A

Appendix B System Alarms and Events PPO

Table 169. PPO Type 4 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 170. PPO Type 4

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
3BSE040935R201 Rev A 433

PPO Appendix B System Alarms and Events

Table 171. PPO Type 5 no data consistency

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit

Table 172. PPO Type 5

Bit StatusType Indication Generation Severity Description

31 ErrorsAndWarnings Error Alarm Medium Error

0 ExtendedStatus Warning Event Low Short circuit

1 ExtendedStatus Warning Event Low Under-voltage

2 ExtendedStatus Warning Event Low Over-voltage

3 ExtendedStatus Warning Event Low Overload

4 ExtendedStatus Warning Event Low Over-temperature

5 ExtendedStatus Warning Event Low Wirebreak

6 ExtendedStatus Warning Event Low Upper limit
exceeded

7 ExtendedStatus Warning Event Low Value below lower
limit
434 3BSE040935R201 Rev A

Appendix B System Alarms and Events Special IO Template

Special IO Template

Table 173. Special IO template

Bit StatusType Indication Generation Severity Description

0 ExtendedStatus Error Alarm Medium Communication
broken

1 ExtendedStatus Error Alarm High Communication
broken

2 ExtendedStatus Error Alarm High Communication
broken

3 ExtendedStatus Warning Event Low Communication
broken

4 ExtendedStatus Warning Event Medium Communication
broken

5 ExtendedStatus Warning Event Medium Communication
broken

6 ExtendedStatus Warning Event Medium Communication
broken
3BSE040935R201 Rev A 435

Special IO Template Appendix B System Alarms and Events

436 3BSE040935R201 Rev A

INDEX

A
abort

tasks 104
access variables 58
accuracy 158
acknowledge

errors 206
warnings 206

acknowledgement rules 140, 171
add

message to alarm 140
to libraries 80

alarm condition
name 140

alarm conditions 136
Alarm handling

INSUM 152
Alarm lists

INSUM 152
AlarmCond 136

parameters 137
AlarmCondBasic 138
AlarmCondBasicM 138
AlarmCondM 136
alarms

add message 140
classify 141
communication 159
condition name 140
disable 146
disable condition 140
enable 139
examples 163
in control loops 145
inhibit 146

local printer 162
logging 155
severity 140
source name 140
state diagrams 171
status 142
subscribe to 159
system 154

alarms and events
ABB standard drive 423
adapters 329
controller units and communcation

interfaces 315
FF devices 422
INSUM devices 420
MB300 nodes 423
S100 I/O 418
S800 I/O 336
S900 I/O 382
unit specific 314

all inputs 204
all outputs 204
all unit status 203
analog signals

scale 201
analysis tools 237
arrays

example 249
ASCII codes 266
ASCII conversion 268
aspect objects 48
asynchronous communication 195
attributes

Hidden 87
Protected 87
3BSE040935R201 Rev A 439

IndexIndex

B
backup 214

individual files 215
BasicLib 26
buffer queues 161
buffers

configure 161
memory planning 161

C
change

library state 79
channel status

check 204
check

channel status 204
classify

alarms 141
client/server 193
Closed 78
CNCP 157
codes

ASCII 266
COMLI 178
communication

alarm and event 159
client/server 193
cyclic vs. asynchronous 195
function blocks 190
libraries 178, 190
master/slave 193
modem 182
provider/subscriber 194
serial 183
statistics 186
using access variables 59
using global variables 60
variables 186

complex types
modify 38

condition name
alarms 140

condition-related events 134
configure

buffers 161
Error Handler 216
OPC AE communication 159

connect
I/O channels 68
libraries 76
library 77
objects 41
to other system 189

Control Builder
start log 227
system information report 229

Control Builder start log
file path 227

control loops
alarms 145

control module types
AlarmCondBasicM 138
AlarmCondM 136

control modules
execution 46
single 46

Control Network 185
network areas 185

control project
insert library 76
remove library 77

controller logs
file paths 234

controller system log 231
controllers

system alarms 154
conversion

ASCII 268
conversion functions

example 264
440 3BSE040935R201 Rev A440 3BSE040935R201 Rev A

Index

conversions
ASCII 266

Coordinated Universal Time 157
crash dumps 234
create

library 78
objects 41

cyclic communication 195

D
data

read 189
send 189

data types 52
simple 52

debug mode 106
decisions

when creating types 39
declare

external variables 31
function blocks 31
parameter 30
types 29
variables 30

define
variables 52

development state
libraries 78

dialogs
Remote System 186

disable
alarm condition 140
alarms 146
events 146

disconnect
library 77

document conventions 14
download

reports 127

E
EDIT parameters 138
editors

declare types 29
graphics 34
online mode 198
programming 32

enable
alarm detection 139

enter
variables 52

Error Handler
configure 216
log entries 220

error messages 209
Error Reaction

settings 218
error reports 247
errors

acknowledge 206
non-unique alarms 141
suggested actions 245
symptoms 245

events
communication 159
condition-related 134
disable 146
inhibit 146
logging 155
low level 147
simple 134
system 154
tracking-related 134

examples
alarm and event 163
arrays 249
conversion functions 264
queues 260
type protection 89
3BSE040935R201 Rev A 441

IndexIndex

execution
control for individual objects 61
control modules 46
control using external variables 61
control using parameter 62
debug mode 106
function blocks 45
non-cyclic 106

extensible parameters 73
external 57
external time stamps 156
external variables 57

declare 31

F
fatal overrun 217
fault localization

crash dumps 234
file paths

Control Builder start log 227
controller logs 234
heap statistics log 230
session logs 224

firmware functions 19
folders

System 19
function block types

AlarmCond 136
AlarmCondBasic 138
System Diagnostics 241
SystemDiagnostics 170

function blocks
communication 190
declare 31
execution 45

functions 19

G
graphical editor 34

H
hardware

monitor 72
hardware status 202
heap 244
heap statistics log 230

file path 230
Heap Utilization 244
Hidden

attribute 87

I
I/O addressing 68
I/O channels

connect 68
force values 199
monitor 72
online mode 199

IEC 61131-3 19
inhibit

alarms 146
events 146

initial values 57
INSUM

Alarm handling method 152
Alarm lists 152

INSUM Alarms 148
interaction windows 207
internal time stamps 156
interval time

tasks 95
intervals

tasks 95

K
keywords

in parameter descriptions 74
442 3BSE040935R201 Rev A442 3BSE040935R201 Rev A

Index

L
latency 100, 102
latency supervision 217
libraries

add to 80
BasicLib 26
communication 178, 190
connect 76
connect to application 77
connect to library 77
create 78
disconnect 77
insert into control project 76
management 75
remove from control project 77
states 78

library management 75
library state

change 79
library states

Closed 78
Open 78
Released 78

load balancing 105, 217
local printers 162
log

alarms and events 155
simple events 155

log entries
Error Handler 220

log files 222
Control Builder start log 227
controller system log 231
heap statistics 230
session 223
system log 222

logging
alarms and events 155

low level event 147

M
master

time synchronization 158
master/slave 193
MB 300 TS 157
MB300 181
memory size 244
MMS 181
MMS Time Service 157
ModBus 182
modem communication 182
monitor

hardware 72
I/O channels 72

N
network areas 185
network redundancy 185
non-cyclic execution 106
non-unique alarms

errors 141
number conversion

example 264

O
objects 27

connect 41
control execution 61
create 41

offset
tasks 96

online mode 72
all inputs/outputs 204
all unit status 203
editors 198
force I/O channels 199
hardware status 202
I/O channels 199
interaction windows 207
messages 209
3BSE040935R201 Rev A 443

IndexIndex

online mode 72
project documentation 211
search and navigation 210
SIL applications 198
status indications 205
task overview 207
unit status 201

OPC AE communication
configure 159

OPC Server
session log example 226

OPC server
subscriptions 159

OPC Server for AC 800M 159
Open 78
open

code block menu 33
override

protection 88
type protection 87

overrun 100
overrun supervision 217

P
parameter

declare 30
parameters 48

AckCond 139
AckRule 139
AE Limit auto disable 143
AlarmCond 137
Class 141
CondName 140
CondState 142
DisCond 140
EDIT 138
EnCond 140
EnDetection 139
Error 142
extensible 73

parameters 48
ExtTimeStamp 139
FilterTime 139
Inhibit 146
Inverted 139
keywords 74
Message 140
Severity 140
Signal 139
SignalID 139
SrcName 140
Status 142
TransitionTime 156
UseSigToInit 139

POU 19
definition 19

printers
local 162

priorities
tasks 93

process alarms 135
PROFIBUS

DP-V1 196
programming editor 32
project

insert library 76
remove library 77

project constants 64
structured 64

project documentation 129, 211
Protected

attribute 87
protection

example 89
override 88
override for types 87

protocols
COMLI 178
MB300 181
MMS 181
444 3BSE040935R201 Rev A444 3BSE040935R201 Rev A

Index

protocols
ModBus 182
modem communication 182
SattBus 182
serial communication 183
Siemens S3964R 182
supported 184

provider/subscriber 194
publisher/subscriber 194

Q
queues

buffer 161
example 260

R
read

data 189
redundancy

network 185
Released 78
Remote System dialog 186
remote systems information 235
reports

at download 127
system information 229

resolution 157
restore 214
RS-232C 185

S
S3964R 182
SattBus 182
scale

analog signals 201
search and navigation 107

online mode 210
self-defined types 88
send

data 189

Sequence-of-Events (SOE) 147
serial communication 183
session log

OPC server example 226
session log files 223
session logs

file paths 224
severity

alarms 140
Siemens

S3964R protocol 182
SIL applications

online mode 198
simple data types 52
simple events 134

log 155
single control modules 46
SNTP 157
Source Code Report 125
source name

alarms 140
start code blocks 33
state

libraries 78
state diagrams

alarms 171
alarms,alarms

state diagrams 171
statistics

communication 186
status

alarms 142
indications 205

status messages 209
structured project constants 64
subscribe

to alarms 159
sum system alarms 174
3BSE040935R201 Rev A 445

IndexIndex

supervise
hardware 72
I/O channels 72
unit status 201

supervision
latency 102
overrun 100

supported protocols 184
System alarms

List 154
system alarms

controller generated 154
sum 174

system alarms and events 154
System Diagnostics 186, 241
system diagnostics 170, 241
System folder 19
system information 229
system log file 222

T
tasks 207

abort 104
execution 93
interval time 95
offset 96
priorities 93
time-critical 93

terminology 15
time stamps 156

external 156
internal 156

time synchronization 157
time-critical tasks 93
tools

analysis 237
tracking-related events 134
TransitionTime 156
trouble-shooting 221

symptoms and measures 245

type concept 27
types 27

document 129
in applications 36
in libraries 37
self-defined 88

U
unit status

supervise 201
UTC 157

V
variable communication 186
variables 48, 57

access 58
attributes 54
declare 30
define 52
initial values 57
list 51

W
warnings

acknowledge 206
446 3BSE040935R201 Rev A446 3BSE040935R201 Rev A

3BSE040935R201 Rev A. Printed in Sweden June 2006
Copyright © 2003-2006 by ABB. All Rights Reserved
® Registered Trademark of ABB.
™ Trademark of ABB.

Automation Technology Products
Mannheim, Germany
www.abb.de/controlsystems

Automation Technology Products
Wickliffe, Ohio, USA
www.abb.com/controlsystems

Automation Technology Products
Västerås, Sweden
www.abb.com/controlsystems

http://www.abb.com

	HOME
	Basic Control Software
	TABLE OF CONTENTS
	About This Book
	General
	Document Conventions
	Warning, Caution, Information, and Tip Icons
	Terminology

	Section 1 Basic Functions and Components
	Introduction
	Control Project Templates
	Program Organization Units, POU
	System Firmware Functions
	Hardware
	Standard System Libraries with Hardware
	Customized Hardware Types
	Configuring Controller
	Basic Hardware

	Basic Library for Applications
	Application Types and Objects
	Types and Objects Concept
	Declare a Type in the Editors
	Control Modules or Function Blocks?
	Types in Applications
	Types in Your Own Library
	Modify Complex Types
	Decisions When Creating Types
	Create and Connect Objects
	Function Block Execution
	Control Module Execution
	Single Control Modules

	Variables and Parameters
	Variable and Parameter Concept
	Variables
	Variable Entry
	External Variables
	Access Variables
	Communication between Applications Using Access Variables
	Communication in an Application Using Global Variables
	Control the Execution of Individual Objects
	Project Constants
	I/O Addressing Guidelines
	Connecting Variables to I/O Channels
	Extensible Parameters in Function Blocks
	Keywords for Parameter Descriptions

	Library Management
	Connect Libraries
	Create Libraries
	Library States
	Library Password Protection
	Add Types to Libraries Used in Applications
	Add Customized Hardware Types to Library
	Device Import Wizard
	Additional Files for Libraries with Hardware
	Delete Hardware Types
	Type Usage for Hardware Types

	Hide and Protect Control Module Types, Function Block Types and Data Types
	Protect a Self-Defined Type

	Task Control
	Task Connections
	Task Execution
	Task Priority
	Interval Time
	Offset

	Overrun and Latency
	Overrun Supervision
	Latency Supervision
	Task Abortion
	Load Balancing
	Non-Cyclic Execution in Debug Mode

	Search and Navigation
	Search and Navigation Dialog
	Search Settings
	Symbol and Definition
	References
	Navigation to Editors
	Search and Navigation Settings
	Search Data
	Reports

	Compact Flash
	Saving Cold Retain Values on Files
	Adding Compact Flash to Hardware
	Downloading the Application to Compact Flash
	Configuration Load

	Reports
	Difference Report
	Source Code Report
	Reports Generated at Download

	Project Documentation
	Objects and Types
	Editor Items
	Used Types

	Section 2 Alarm and Event Handling
	Introduction
	Alarms and Events
	Alarm and Event Library

	Process Alarm and Event Generation
	Process Alarms and Events
	Detection of Simple Events
	Built-in Alarm and Event Handling in Other Libraries
	External Time Stamps (S800 IO)
	External Time Stamps (INSUM)
	Choose Alarm Handling Method for INSUM Alarms

	System Alarm and Event Generation
	Controller Generated System Alarms and System Simple Events
	User Generated System Alarms

	Handling Alarms and Events
	Simple Events
	System Alarms and Events
	Time Stamps

	Alarm and Event Communication
	Subscriptions
	Configuration of OPC AE Communication - Overview
	Buffer Configuration
	Local Printers
	Sending an Alarm to the Application
	Condition State Example
	Inhibit Example
	Simple Event Examples

	Alarm and Event Functions
	System Diagnostics
	Acknowledgement Rules - State Diagrams

	Section 3 Communication
	Introduction
	Communication Libraries
	COMLI Communication Library
	INSUM Communication Library
	MB300 Communication Library
	MMS Communication Library
	ModBus Communication Library
	Modem Communication Library
	Siemens S3964 Communication Library
	SattBus Communication Library
	Serial Communication Library

	Supported Protocols
	Control Network
	Network Redundancy
	Statistics and Information on Communication

	Variable Communication
	StartAddr

	Reading/Sending Data
	Connection Methods
	Communication Concepts

	Fieldbus Communication

	Section 4 Online Functions
	Introduction
	Online Editors
	Dynamic Display of I/O Channels and Forcing
	Scaling Analog Signals
	Supervising Unit Status
	Find Out What is Wrong by Using HWStatus
	AllUnitStatus
	Binary Channels

	Status Indications
	Acknowledge Errors and Warnings

	Tasks
	Interaction Windows
	Status and Error Messages
	Search and Navigation in Online and Test Mode
	Project Documentation

	Section 5 Maintenance and Trouble-Shooting
	Introduction
	Backup and Restore
	Introduction
	Backup
	Restore
	Files for Separate Backup

	Error Handler Configuration
	Error Handler Settings in Controllers
	Error Handler Log Entries

	Trouble-Shooting
	General
	Log Files
	Crash Dumps for Analysis and Fault-Localization
	Remote Systems Information
	Analysis Tools
	Trouble-Shooting Error Symptoms

	Error Reports

	Appendix A Array, Queue and Conversion Examples
	Arrays
	SearchStructComponent
	InsertArray
	SearchArray

	Queues
	Conversion Functions
	DIntToBCD
	BCDToDInt
	ASCII
	ASCII Conversion

	Appendix B System Alarms and Events
	General
	OPC Server - Software
	OPC Server - Subscription
	Controller - Software
	Controller - Hardware
	Alarms and Events Common for all Units
	Unit Specific Alarms and Events
	Controllers Units and Communication Interfaces
	Adapters
	S800 I/O
	S900 I/O
	S100 I/O
	INSUM Devices
	FF Devices
	MB300 Nodes
	ABB Standard Drive
	Process Panel
	ITS
	NAIO ff
	PPO
	Special IO Template

	INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Emulate Acrobat 4 CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Emulate Acrobat 4)
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /AllegroBT-Regular
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Webdings
 /WeltronUrban
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /Vivaldii
 /VladimirScript
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [530.079 643.465]
>> setpagedevice

