Firmwarehandleiding
ACS800 Standaardbesturingsprogramma 7.x
ACS800 Standaardbesturingsprogramma 7.x

Firmwarehandleiding
Inhoudsopgave

Inleiding
Overzicht van de hoofdstukken ... 13
Compatibiliteit ... 13
Veiligheidsinstructies .. 13
Doelgroep ... 13
Inhoud ... 13
Informatie over producten en service 14
Producttraining ... 14
Feedback geven over ABB-omvormerhandleidingen 14

Opstarten en besturing via de I/O
Overzicht van de hoofdstukken ... 15
Opstarten van de omvormer .. 15
 Opstarten via de Opstartassistent (behandelt alle nodige instellingen) .. 15
 Beperkt opstarten (behandelt uitsluitend de basisinstellingen) .. 17
Besturen van de omvormer via de I/O-interface 15
Uitvoeren van de ID Run .. 23
 Procedure voor de ID-run .. 23

Bedieningspaneel
Overzicht ... 25
Overzicht van het paneel .. 25
 Bedrijfsmodustoetsen en schermen van het bedieningspaneel .. 25
 Statusregel .. 25
Besturing omvormer met paneel ... 25
 Starten, stoppen en de draairichting wijzigen .. 27
 Instellen van de toerentalreferentie ... 28
Actuele gegevensuitleesmodus ... 29
 Kiezen van actuele gegevens voor weergave .. 29
 Weergeven van de volledige naam van de actuele gegevens ... 30
 Bekijken en resetten van de foutgeschiedenis .. 30
 Weergeven en resetten van een actieve fout .. 30
 Informatie over de foutgeschiedenis .. 31
Parametermodus ... 32
 Een parameter kiezen en de waarde wijzigen .. 32
 Aanpassen van een bronkeuze (pointer) parameter .. 33
Functiemodus ... 34
 Toegang krijgen tot een assistent, doorlopen en afsluiten .. 34
 Gegevens uploaden van een omvormer naar het paneel .. 36

Inhoudsopgave
Inhoudsopgave

- Kiezen van een omvormer en wijzigen van het ID-nummer op de paneelverbinding .. 39
- 'Packed boolean'-waarden op de display lezen en invoeren ... 41

Programmamakenmerken

- Overzicht ... 43
- Start-up Assistant .. 43
 - Inleiding .. 43
 - De standaardvolgorde van taken ... 43
 - Lijst van taken met de relevante omvormerparameters .. 44
 - Inhoud van de assistentschermen .. 45
- Lokale besturing t.o.v. externe besturing ... 45
 - Lokale besturing .. 46
 - Externe besturing .. 46
 - Instellingen .. 47
 - Diagnostiek .. 47
 - Blokdiagram: bron van start-, stop-, draairichtingsopdrachten voor EXT1 48
 - Blokdiagram: referentiebron voor EXT1 .. 48
- Referentietypes en hun verwerking ... 49
 - Instellingen .. 49
 - Diagnostiek .. 49
- Reference trimming ... 50
 - Instellingen .. 50
 - Voorbeeld ... 51
- Programmeerbare analoge ingangen ... 52
 - Updatecyclussen in het standaardbesturingsprogramma .. 52
 - Instellingen .. 52
 - Diagnostiek .. 52
- Programmeerbare analoge uitgangen .. 53
 - Updatecyclussen in het standaardbesturingsprogramma .. 53
 - Instellingen .. 53
 - Diagnostiek .. 53
- Programmeerbare digitale ingangen ... 54
 - Updatecyclussen in het standaardbesturingsprogramma .. 54
 - Instellingen .. 54
 - Diagnostiek .. 54
- Programmeerbare relaisuitgangen ... 55
 - Updatecyclussen in het standaardbesturingsprogramma .. 55
 - Instellingen .. 55
 - Diagnostiek .. 55
- Actuele gegevens ... 56
 - Instellingen .. 56
 - Diagnostiek .. 56
- Motoridentificatie ... 56
 - Instellingen .. 56
- Werking bij korte spanningsuitval ... 57
- Automatische start ... 57
Instellingen .. 57
Safe torque off (STO) ... 58
Diagnostiek ... 58
Preventie van onverwacht opstarten (POUS) ... 58
Veilig beperkt toerental (SLS) (alleen AS7R firmware-versie) 59
Instellingen ... 59
Diagnostiek en besturing .. 59
DC-magnetisatie .. 60
Instellingen ... 60
DC Houd ... 60
Instellingen ... 60
Fluxremmen .. 60
Instellingen ... 60
Fluoptimalisatie .. 61
Instellingen ... 61
Acceleratie- en deceleratiehellingen .. 62
Instellingen ... 62
Kritische toeren .. 62
Instellingen ... 62
Constante toeren ... 62
Instellingen ... 62
Afregeling van de toerenregelaar .. 63
Instellingen ... 63
Diagnostiek ... 64
Prestaties van toerenregeling .. 64
Prestaties van koppelregeling .. 64
Scalarbesturing .. 65
Instellingen ... 65
IR-compensatie bij scalarbesturing ... 65
Instellingen ... 65
Hexagonale motorflux .. 66
Instellingen ... 66
Programmeerbare beveiligingsfuncties .. 66
AI<Min .. 66
Instellingen ... 66
Paneeluitval ... 66
Instellingen ... 66
Externe fout ... 66
Instellingen ... 66
Thermische motorbeveiliging .. 67
Thermisch motortemperatuurmodel ... 67
Gebruik van een thermistor in de motor ... 67
Instellingen ... 67
Stall Protection .. 68
Instellingen ... 68
Onderbelastingsbeveiliging ... 68
Instellingen ... 68
Motorfaseverlies ... 68
Instellingen ... 68
Aardfoutbeveiliging ... 69

Inhoudsopgave
Inhoudsopgave

Instellingen ... 69
Communicatiefout .. 69
Instellingen .. 69
Bewaking van een optionele IO 69
Instellingen .. 69
Voorgeprogrammeerde storingen 69
 Overstroom ... 69
 DC-overspanning ... 69
 DC-onderspanning .. 70
 Omvormer temperatuur ... 70
 Uitgebreide monitoring van de omvormertemperatuur voor ACS800, frames R7 en R8 70
 Instellingen ... 71
 Diagnostiek .. 71
 Kortsluiting ... 71
 Uitval van ingangsfasen .. 71
 Temperatuur van de besturingskaart 71
 Overfrequentie ... 71
 Interne fout ... 71
 Werkbereik ... 72
 Instellingen ... 72
 Diagnostiek .. 73
 Parameterslot ... 73
 Instellingen ... 73
 Proces PID regeling ... 74
 Blokschema's ... 74
 Instellingen ... 75
 Diagnostiek .. 75
 Slaapfunctie van de PID-regeling 75
 Voorbeeld ... 76
 Instellingen ... 76
 Diagnostiek .. 76
 Meting van de motortemperatuur via de standaard I/O 77
 Instellingen ... 78
 Diagnostiek .. 78
 Meting van de motortemperatuur via de analoge I/O-uitbreiding 79
 Instellingen ... 80
 Diagnostiek .. 80
 Adaptief programmeren met behulp van functieblokken 80
 DriveAP ... 80
 Besturing van een mechanische rem 81
 Voorbeeld ... 81
 Tijdschema van de rembesturing 82
 Statuswijzigingen ... 83
 Instellingen ... 84
 Diagnostiek .. 84

Inhoudsopgave
Inhoudsopgave

Gebruik van meerdere omvormers met Master/Follower .. 84
 Instellingen en diagnostiek ... 84
Tornen .. 85
 Instellingen ... 85
 Diagnostiek ... 86
Gereduceerde Run-functie ... 86
 Instellingen ... 86
 Diagnostiek ... 86
Belastingscurve gebruiker ... 87
 Overload ... 87
 Instellingen ... 88
 Diagnostiek ... 88

Applicatiemacro’s

Overzicht van de hoofdstukken ... 89
Overzicht van de macro’s .. 89
Opmerking betreffende externe voeding .. 90
 Parameterinstellingen .. 90
Macro Fabriek .. 91
 Standaardbesturingsaansluitingen ... 92
Macro Hand/Auto ... 93
 Standaardbesturingsaansluitingen ... 94
Macro PID-regeling .. 95
 Aansluitvoorbeeld, 24 tweedraadssensor VDC / 4…20 mA 95
 Standaardbesturingsaansluitingen ... 96
Macro Koppelregeling ... 97
 Standaardbesturingsaansluitingen ... 98
Macro Volgordebesturing ... 99
 Werkingsschema .. 99
 Standaardbesturingsaansluitingen ... 100
Gebruikersmacro’s .. 101

Actuele signalen en parameters

Overzicht hoofdstuk ... 103
Termen en afkortingen ... 103
01 ACTUELE GEGEVENS .. 104
02 ACTUELE GEGEVENS .. 106
03 ACTUELE GEGEVENS .. 106
04 ACTUELE GEGEVENS .. 108
09 ACTUELE GEGEVENS .. 108
10 START/STOP/DRAAIR .. 109
11 REFERENTIE KEUZE .. 112
12 CONSTANT TOEREN ... 117
13 ANALOGE INGangen .. 120
14 RELAISUITGANGEN ... 123
15 ANALOGE UITGANGEN .. 129
16 STUURINGANGEN ... 131
20 LIMIETEN ... 134
21 START/STOP .. 137

Inhoudsopgave
Inhoudsopgave

Besturing via een veldbus

Overzicht .. 203
Systeemoverzicht .. 203
 Redundante veldbusbesturing 204
Communicatie-instelling via een veldbusadaptermodule 205
Besturing via de standaard Modbusverbinding 207
 Adresseren van de Modbus 208
Instellen van communicatie via Advant controller 209
Besturingsparameters omvormer 211
De veldbusbesturingsinterface 215
 Het controlwoord en het statuswoord 216
 Referenties .. 216
 Veldbusreferentie,-keuze en -correctie 216
 Referentiebeheer .. 217
 Actuele waarden .. 218
Blokdiaagram: Ingang besturingsgegevens vanuit de veldbus bij gebruik van een veldbusadapter van het type Rxxx 219
Blokdiaagram: Keuze van werkelijke waarde voor de veldbus bij gebruik van een veldbusadapter van het type Rxxx 220
Blokkdiagram: Ingang besturingsgegevens vanuit de veldbus bij gebruik van een veldbusadapter van het type Nxxx ... 221
Blokkdiagram: Keuze van werkelijke waarde voor de veldbus bij gebruik van een veldbusadapter van het type Rxxx 222
Communicatieprofielen .. 223
ABB Drives communicatieprofiel .. 223
 03.01 HOOFD CONTROLWOORD ... 224
 03.02 HOOFD STATUSWOORD ... 225
 Schaling van de veldbusreferentie .. 227
Generic Drive communicatieprofiel ... 228
 Omvormeropdrachten ondersteund door het Generic Drive communicatieprofiel .. 229
 Schaling van de veldbusreferentie .. 230
CSA 2.8/3.0 communicatieprofiel ... 231
 STATUS WOORD voor het CSA 2.8/3.0 communicatieprofiel 232
Diverse status-, fout-, alarm- en limietwoorden 233
 03.03 AUXILIARY STATUS WOORD ... 233
 03.04 LIMIET WOORD 1 .. 234
 03.05 FOUTWOORD 1 ... 234
 03.06 FOUTWOORD 2 ... 235
 03.07 SYSTEEMFOUTWOORD .. 236
 03.08 ALARMWOORD 1 ... 236
 03.09 ALARMWOORD 2 ... 237
 03.13 AUX STATUSWOORD 3 .. 237
 03.14 AUX STATUSWOORD 4 .. 238
 03.15 FOUTWOORD 4 ... 238
 03.16 ALARMWOORD 4 ... 239
 03.17 FOUTWOORD 5 ... 239
 03.18 ALARMWOORD 5 ... 240
 03.19 INT INIT FOUT ... 240
 03.30 LIMIETWOORD INVRT .. 241
 03.31 ALARMWOORD 6 ... 241
 03.32 EXT IO STATUS ... 242
 03.33 FOUTWOORD 6 ... 242
 04.01 FOUTE INT INFO .. 243
 04.02 INT SC INFO ... 244

Foutopsporing

Overzicht ... 245
Veiligheid ... 245
Waarschuwingen- en foutindicaties .. 245
Resetten ... 245
Foutgeschiedenis ... 245
Door de omvormer gegenereerde waarschuwingssmeldingen 246
Waarschuwingssmeldingen gegenereerd door het bedieningspaneel 253
Foutmeldingen gegenereerd door de omvormer 254
Inhoudsopgave

Analoge uitbreidingsmodule

Overzicht ... 263
Toerenregeling via de analoge uitbreidingsmodule ... 263
 Basiscontroles .. 263
 Instellingen van de analoge uitbreidingsmodule en omvormer 263
Parameterinstellingen: bipolaire ingang bij standaard toerenregeling 264
Parameterinstellingen: bipolaire ingang bij joystickbesturing 265

Aanvullende gegevens: actuele gegevens en parameters

Overzicht ... 267
Termen en afkortingen ... 267
Veldbusadressen .. 267
 Rxxx adaptermodules (zoals RPBA-01, RDNA-01, etc.) 267
 Adaptermodules van het type (zoals NPBA-12, NDNA-02, etc.) 267
 NPBA-12 Profibus Adapter: .. 267
 NIBA-01 InterBus-S Adapter: .. 268
 NMBP-01 ModbusPlus® Adapter en NMBA-01 Modbus Adapter 268
Actuele gegevens .. 269
Parameters ... 273

Besturingsblokschema’s

Overzicht ... 283
Besturingsketen, blad 1: macro’s FABRIEK, HAND/AUTO, VOLGORDE BST en
 KOPPELREGEL (vervolgd op volgende pagina …) .. 284
Besturingsketen, blad 2: Alle macro’s (vervolgd op volgende pagina …) 286
Starten, stoppen, startvrijgave en startvergrendeling 288
 Resetten, in- en uitschakelen ... 290

Index
Inleiding

Overzicht van de hoofdstukken

Dit hoofdstuk bevat een beschrijving van de inhoud van de handleiding. Daarnaast bevat het informatie over de compatibiliteit, veiligheid en de beoogde doelgroep.

Compatibiliteit

De handleiding is compatibel met het Standaardbesturingsprogramma versies ASXR7360 en AS7R7363. Zie parameter 33.01 SW. VERSIE.

Veiligheidsinstructies

Volg de veiligheidsinstructies die bij de omvormer zijn geleverd.

- Lees de **volledige veiligheidsinstructies** voordat u de omvormer installeert, in bedrijf neemt of gebruikt. De volledige veiligheidsinstructies zijn te vinden aan het begin van de Hardwarehandleiding.
- Lees de **specifieke waarschuwingen en opmerkingen betreffende softwarefuncties** alvorens de standaardinstelling van een functie te wijzigen. Bij elke functie worden in deze handleiding waarschuwingen en opmerkingen gegeven in de paragraaf over de gerelateerde, door de gebruiker instelbare parameters.

Doelgroep

Van de lezer wordt aangenomen dat deze op de hoogte is van standaard bedradingen, elektrische onderdelen en elektrische symbolen.

Inhoud

Deze handleiding bevat de volgende hoofdstukken:

- **Opstarten en besturing via de I/O** beschrijft de instelling van het applicatieprogramma en bijzonderheden over het starten, stoppen en de toerenregeling van de omvormer.
- **Bedieningspaneel** beschrijft het gebruik van het bedieningspaneel.
- **Programmakenmerken** beschrijft de programmakenmerken en bevat de referentielijst met gebruiksinstellingen en diagnostische meldingen.
- **Applicatiemacro’s** geeft een korte beschrijving van elke macro samen met een aansluitschema.
- **Actuele signalen en parameters** beschrijft de actuele gegevens en parameters van de omvormer.
• **Besturing via een veldbus** beschrijft de communicatie via de seriële communicatieverbinding.

• **Foutopsporing** geeft een overzicht van de waarschuwings- en storingsmeldingen samen met de mogelijke oorzaken en oplossingen.

• **Analoge uitbreidingsmodule**, beschrijft de communicatie tussen de omvormer en de analoge I/O-uitbreidingsmodule (optioneel).

• **Aanvullende gegevens: actuele gegevens en parameters** bevat aanvullende informatie over de actuele gegevens en parameters.

• **Besturingsblokschema’s** bevat stroomdiagrammen voor de besturingsketen en het starten, stoppen, de startvrijgave en startvergrendeling.

Informatie over producten en service

Wendt u zich voor meer informatie over het product tot uw plaatselijke ABB-vertegenwoordiger, waarbij u de typecode en het serienummer van de betreffende unit vermeldt. Een lijst met ABB verkoop-, ondersteunings- en servicecontacten is te vinden op www.abb.com/drives door **Sales, Support and Service network** te kiezen.

Producttraining

Voor informatie over ABB-producttraining, gaat u naar www.abb.com/drives en selecteert u *Training courses*.

Feedback geven over ABB-omvormerhandleidingen

Opstarten en besturing via de I/O

Overzicht van de hoofdstukken

Dit hoofdstuk bevat instructies voor:

• het opstarten
• het starten, stoppen, wijzigen van de draairichting en aanpassen van het toerental van de motor via de I/O-interface
• het uitvoeren van een identificatierun van de omvormer.

Opstarten van de omvormer

De gebruiker kan uit twee manieren kiezen om de omvormer te starten: de Opstartassistent gebruiken of beperkt opstarten. De Assistent leidt de gebruiker door alle benodigde uit te voeren instellingen. Bij beperkt opstarten geeft de omvormer geen begeleiding: de gebruiker doorloopt de basisinstellingen door de instructies in de handleiding te volgen.

• Als u gebruik wilt maken van de Assistent, volgt u de instructies gegeven onder Opstarten via de Opstartassistent (behandelt alle nodige instellingen) op pagina 15.

• Als u beperkt wilt opstarten, volgt u de instructies gegeven onder Beperkt opstarten (behandelt uitsluitend de basisinstellingen) op pagina 17.

Opstarten via de Opstartassistent (behandelt alle nodige instellingen)

Zorg dat u de motorplaatgegevens bij de hand hebt voordat u begint.

VEILIGHEID

Het opstarten mag uitsluitend worden uitgevoerd door een gekwalificeerd elektricien. Gedurende het opstarten moeten de veiligheidsinstructies worden opgevolgd. Zie de betreffende hardwarehandleiding voor de veiligheidsinstructies.

- Controleer de installatie. Zie de installatiechecklist in de betreffende hardware/ installatiehandleiding.
- Controleer of het starten van de motor geen gevaar oplevert.

Ontkoppel de aangedreven machine als:
- er een risico van schade bestaat bij een eventueel verkeerde draairichting of
- een standaard identificatierun moet worden uitgevoerd tijdens het opstarten. (de ID-run is alleen nodig voor toepassingen waarbij zeer nauwkeurige motorbesturing vereist is.)
Opstarten en besturing via de I/O

SPANNINGINSCHAKELEN

- Schakel de netvoeding in. Het bedieningspaneel geeft eerst de identificatiegegevens van het paneel weer ...
- ... en vervolgens de identificatiegegevens van de omvormer ...
- ... daarna het scherm met actuele gegevens ...

...waarna een prompt verschijnt om de taal te kiezen.
(Als gedurende een paar seconden geen toets wordt ingedrukt, zal de display gaan wisselen tussen het scherm met actuele gegevens en de prompt om de taal te kiezen.)

De omvormer is nu gereed voor opstarten.

TAALKEUZE

- Druk op de FUNC-toets.

- Kies met behulp van de pijltoetsen (↑ of ↓) de gewenste taal en druk op ENTER.
(De omvormer laadt dan de gekozen gebruikstaal, schakelt terug naar het scherm met actuele gegevens en wisselt dan tussen het scherm met actuele gegevens en de prompt om te beginnen met de begeleide motorgegevensinvoer.)

BEGINNEN MET DE BEGELEIDE MOTORGEGEVENSINVOER

- Druk op FUNC om te beginnen met de begeleide motorgegevensinvoer.
(De display geeft aan welke algemene opdrachttoetsen moeten worden gebruikt om de assistent te doorlopen.)

- Druk op ENTER voor de volgende stap.
Volg de instructies die op de display worden gegeven.

CDP312 PANEL Vx.xx

ACSS800

ID NUMBER 1

1 -> 0.0 rpm O
FREQ 0,00 Hz
STROOM 0,00 A
VERMOGEN 0,00 %

1 -> 0.0 rpm O

*** INFORMATIE ***

Druk FUNC voor starten Taalkeuze

Language Selection 1/1

LANGUAGE?
[ENGLISH]
ENTER:OK ACT:EXIT

1 -> 0.0 rpm O

*** INFORMATIE ***

Druk FUNC voor starten Motorgegevensinvoer

Motor Setup 1/10
ENTER: Ok/Continue
ACT: Exit
FUNC: More Info

Motorgeg. invoer
2/10
MOTOR PLAATSBEGEGEVENS
BESCHIKBAAR?
ENTER:Ja FUNC:Info
Beperkt opstarten (behandelt uitsluitend de basisinstellingen)
Zorg dat u de motorplaatgegevens bij de hand hebt voordat u begint.

VEILIGHEID

Het opstarten mag uitsluitend worden uitgevoerd door een gekwalificeerd elektricien. Gedurende het opstarten moeten de veiligheidsinstructies worden opgevolgd. Zie de betreffende hardwarehandleiding voor de veiligheidsinstructies.

- Controleer de installatie. Zie de installatiechecklist in de betreffende hardware/installatiehandleiding.
- Controleer of het starten van de motor geen gevaar oplevert.

Ontkoppel de aangedreven machine als:
- er een risico van schade bestaat bij een eventueel verkeerde draairichting of
- een standaard identificatierun moet worden uitgevoerd tijdens het opstarten. (de ID-run is alleen nodig voor toepassingen waarbij zeer nauwkeurige motorbesturing vereist is.)

SPANNING INSCHAKELEN

- Schakel de netvoeding in. Het bedieningspaneel geeft eerst de identificatiegegevens van het paneel weer …
 … en vervolgens de identificatiegegevens van de omvormer …
 … daarna het scherm met actuele gegevens …

…waarna een prompt verschijnt om de taal te kiezen.
(Als gedurende een paar seconden geen toets wordt ingedrukt, zal de display afwisselend het scherm met actuele gegevens en de prompt voor de taalkeuze tonen.)

Druk op ACT om de prompt voor het kiezen van de taal te wissen.
De omvormer is nu gereed voor beperkt opstarten.

<table>
<thead>
<tr>
<th>CDP312 PANEL Vx.xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID NUMBER 1</td>
</tr>
<tr>
<td>1 -> 0.0 rpm O</td>
</tr>
<tr>
<td>FREQ 0,00 Hz</td>
</tr>
<tr>
<td>STROOM 0,00 A</td>
</tr>
<tr>
<td>VERMOGEN 0,00 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACS800</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -> 0.0 rpm O</td>
</tr>
<tr>
<td>*** INFORMATIE ***</td>
</tr>
<tr>
<td>Druk FUNC voor</td>
</tr>
<tr>
<td>starten Taalkeuze</td>
</tr>
<tr>
<td>1 -> 0.0 rpm O</td>
</tr>
<tr>
<td>FREQ 0,00 Hz</td>
</tr>
<tr>
<td>STROOM 0,00 A</td>
</tr>
<tr>
<td>VERMOGEN 0,00 %</td>
</tr>
</tbody>
</table>
Kies de taal. De algemene procedure voor parameterinstellingen wordt hieronder beschreven.

De algemene procedure voor parameterinstellingen:
- Druk op PAR om de parametermodus van het paneel te kiezen.
- Druk op de dubbele-pijltoetsen (↑ of ↓) om de parametergroepen te doorlopen.
- Druk op de pijltoetsen (↑ of ↓) om de parameters binnen een groep te doorlopen.
- Activeer de instelling van een nieuwe waarde met ENTER.
- Wijzig de waarde met de pijltoetsen (↑ of ↓), snel wijzigen met de dubbele-pijltoetsen (↑ of ↓).
- Druk op ENTER om de nieuwe waarde te accepteren (haakjes verdwijnen).

Kies de applicatiemacro. De algemene procedure voor parameterinstellingen is hierboven gegeven. De standaardwaarde FABRIEK voldoet in de meeste gevallen.

Kies de motorbesturing. De algemene procedure voor parameterinstellingen wordt hierboven beschreven. DTC voldoet in de meeste gevallen. De besturingsmodus SCALAR verdient aanbeveling
- voor omvormers met meerdere motoren wanneer het aantal op de omvormer aangesloten motoren varieert
- wanneer de nominale stroom van de motor minder dan 1/6 van de nominale stroom van de omzetter bedraagt
- wanneer de omzetter voor testdoeleinden wordt gebruikt, zonder aangesloten motor.

Voer de motorgegevens vanaf de motortypeplaat in:

<table>
<thead>
<tr>
<th>Cat. no</th>
<th>3GAA 202 001 - ADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>6312/C3</td>
</tr>
<tr>
<td>U Hz kW r/min A cos ϕ λ IN t E/s Ins.cl. F IP 55</td>
<td></td>
</tr>
<tr>
<td>690 V 50 30 1475 52.5 0.83</td>
<td></td>
</tr>
<tr>
<td>690 V 50 30 1475 54 0.83</td>
<td></td>
</tr>
<tr>
<td>690 V 50 30 1475 59 0.83</td>
<td></td>
</tr>
<tr>
<td>380 D 50 30 1770 59 0.83</td>
<td></td>
</tr>
<tr>
<td>415 D 50 30 1770 59 0.83</td>
<td></td>
</tr>
<tr>
<td>440 D 60 35 1770 59 0.83</td>
<td></td>
</tr>
</tbody>
</table>

- nominale motorspanning
 Toegestaan bereik: 1/2 · U_N ... 2 · U_N van ACS800. (U_N verwijst naar de hoogste spanning in elk van de nominale spanningsbereiken: 415 VAC bij 400 VAC omvormers, 500 VAC bij 500 VAC en 690 VAC bij 600 VAC omvormers.)

Opmerking: Stel de motorgegevens op precies dezelfde waarde in als op het typeplaatje. Als het nominale toerental van de motor op het plaatje bijvoorbeeld 1440 rpm bedraagt, dan zal instellen van de waarde van parameter 99.08 M NOM TOERENTAL op 1500 rpm een verkeerde werking van de omvormer tot gevolg hebben.
- nominale motorstroom
Toegestaan bereik: ongeveer 1/6 \cdot I_{2hd} \ldots 2 \cdot I_{2hd} van ACS800 (0 \ldots 2 \cdot I_{2hd} als parameter 99.04 = SCALAR))

- nominale motorfrequentie
Bereik: 8 \ldots 300 Hz

- nominaal motortoerental
Bereik: 1 \ldots 18000 rpm

- nominaal motorvermogen
Bereik: 0 \ldots 9000 kW

Nadat de motorgegevens zijn ingevoerd, verschijnen er afwisselend twee displays (waarschuwing en informatie). Ga naar de volgende stap zonder een toets in te drukken.

Opmerking: Als u STANDARD ID Run selecteert, wordt de rem gelicht wanneer de startopdracht wordt gegeven vanaf het bedieningspaneel en blijft de rem open totdat de standaardidentificatierun is voltooid. Als u ID MAGN selecteert, blijft de rem bekrachtigd tijdens de ID-run.

Kies de methode van motoridentificatie.
De standaardwaarde ID MAGN (ID-magnetisatie) voldoet voor de meeste toepassingen. Deze waarde wordt in deze beperkte opstartprocedure toegepast. Als u ID-magnetisatie kiest, ga dan naar de volgende stap zonder een toets in te drukken.

De ID-run (STANDAARD of GEREDUCEERD) moet worden gekozen als:
- Het bedrijfspunt ligt constant dicht bij nul toeren en/of
- gedraaid wordt in een koppelbereik boven het nominale motorkoppel binnen een breed toerentalbereik, terwijl geen terugkoppeling van het gemeten toerental vereist is.

Als u de ID-run kiest, ga dan door met de afzonderlijke instructies welke verderop zijn beschreven onder Uitvoeren van de ID Run op pagina 23.
IDENTIFICATIEMAGNETISATIE (met ID-run motor ingesteld op ID MAGN)

- **WAARSCHUWING**
 - MOTOR START

1. **WAARSCHUWING**
2. **WAARSCHUWING**
3. **WAARSCHUWING**

- **WAARSCHUWING**

DRAAIRICHTING VAN DE MOTOR

- **WAARSCHUWING**

TOERENTALLIMIETEN EN ACCELERATIE-/DECELERATIETIJDEN

- **WAARSCHUWING**

Opmerking: Controleer tevens acceleratietijd 2, als uw toepassing twee acceleratietijden nodig heeft.
Deceleratietijd 1 instellen.

Opmerking: Controleer tevens deceleratietijd 2, als uw toepassing twee deceleratietijden nodig heeft.

<table>
<thead>
<tr>
<th></th>
<th>1 L ->0,0 rpm</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>ACCEL/DECEL</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>DECELER TIJD 1</td>
<td></td>
</tr>
</tbody>
</table>

De omvormer is nu gereed voor gebruik.
Besturen van de omvormer via de I/O-interface

De onderstaande tabel geeft aan hoe de omvormer kan worden bestuurd via de digitale en analoge ingangen, nadat:

- het opstarten van de motor is uitgevoerd en
- de standaard (fabriek) parameterinstellingen geldig zijn.

VOORLOPIGE INSTELLINGEN

<table>
<thead>
<tr>
<th>Zorg dat de macro Factory actief is.</th>
<th>Zie parameter 99.02.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als u de draairichting moet wijzigen, wijzig dan de instelling van parameter 10.03 naar VERZOEK.</td>
<td>Zie het hoofdstuk Applicatiemacro’s.</td>
</tr>
<tr>
<td>Zorg dat de besturingsaansluitingen zijn uitgevoerd volgens het aansluitschema voor de macro Factory.</td>
<td>Bij afstandsbesturing is geen L zichtbaar op de eerste regel van de paneeldisplay.</td>
</tr>
<tr>
<td>Zorg dat de omvormer naar externe besturing is geschakeld. Druk op de LOC/REM-toets om tussen afstandsbesturing en lokale besturing te schakelen.</td>
<td></td>
</tr>
</tbody>
</table>

DE MOTOR STARTEN EN HET TOERENTAL REGELLEN

| Start door digitale ingang DI1 in te schakelen. | 1 -> 0.0 rpm I
FREQ 0.00 Hz
STROOM 0.00 A
VERMOGEN 0.00 % |
|---|------------------|
| Regel het toerental door de spanning van analoge ingang AI1 aan te passen. | 1 -> 500.0 rpm I
FREQ 16.66 Hz
STROOM 12.66 A
VERMOGEN 8.33 % |

DE DRAAIRICHTING VAN DE MOTOR WIJZIGEN

| Vooruit: Schakel digitale ingang DI2 uit. | 1 -> 500.0 rpm I
FREQ 16.66 Hz
STROOM 12.66 A
VERMOGEN 8.33 % |
|--|------------------|
| Achteruit: Schakel digitale ingang DI2 in. | 1 <- 500.0 rpm I
FREQ 16.66 Hz
STROOM 12.66 A
VERMOGEN 8.33 % |

DE MOTOR STOPPEN

| Ingang DI1 uitschakelen. | 1 ->- 500.0 rpm I
FREQ 0.00 Hz
STROOM 0.00 A
VERMOGEN 0.00 % |

Opstarten en besturing via de I/O
Uitvoeren van de ID Run

De omvormer zal bij starten automatisch de ID-magnetisatie uitvoeren. Bij de meeste toepassingen is het niet nodig om een afzonderlijke ID-run uit te voeren. Kies de ID-run (standaard of gereduceerd) als:

- Het werkpoint nabij 0 toeren ligt en/of
- De motor in een koppelbereik boven het nominale motorkoppel draait, binnen een breed toerentalbereik en zonder enige toerentalterugkoppeling.

De gereduceerde ID-run wordt in plaats van de standaardversie uitgevoerd als het niet mogelijk is om de aangedreven machine los te koppelen van de motor.

Opmerking: Als u STANDARD ID Run selecteert, wordt de rem gelicht wanneer de startopdracht wordt gegeven vanaf het bedieningspaneel en blijft de rem open totdat de standaardidentificatierun is voltooid. Als u ID MAGN selecteert, blijft de rem bekrachtigd tijdens de ID-run.

Procedure voor de ID-run

Opmerking: Als er vóór de ID-run parameterwaarden (groep 10 tot 98) zijn gewijzigd, controleer dan of de nieuwe instellingen aan de volgende voorwaarden voldoen:

- 20.01 MINIMUM TOERENTAL ≤ 0 rpm
- 20.02 MAXIMUM TOERENTAL > 80% van nominale motortoerental
- 20.03 MAXIMUM STROOM ≥ 100% · I_{hd}
- 20.04 MAXIMUM KOPPEL > 50%

- Zorg dat de omvormer naar lokale besturing is geschakeld (L zichtbaar op de statusregel). Druk op de LOC/REM-toets om tussen afstandsbesturing en lokale besturing te schakelen.
- Kies voor de ID-run STANDAARD of GEREDEUCEERD.

1 L ->1242.0 rpm O
99 OPSTARTGEGEVENS
10 MOTOR IDENT. RUN [STANDAARD]

- Druk op ENTER om de keuze te bevestigen. De volgende waarschuwing wordt weergegeven:

1 L ->1242.0 rpm O
ACS800
WAARSCHUWING
ID RUN GESEL

Opstarten en besturing via de I/O
Druk op de toets \[\text{\ding{106}}\] om de ID-run te starten. De signalen voor startvergrendeling (digitale ingang DI_IL) en startvrijgave (parameter 16.01 STARTVRIJGAVE) moeten actief zijn.

Over het algemeen wordt aangeraden tijdens de ID-run geen enkele toets op het bedieningspaneel in te drukken. Maar:

- de motor-ID-run kan op elk gewenst moment worden gestopt door op de toets \[\text{\ding{106}}\] op het bedieningspaneel te drukken.
- nadat de ID-run is gestart met de toets \[\text{\ding{106}}\], kunnen de actuele gegevens worden gecontroleerd door eerst op de **ACT**-toets en vervolgens op de dubbele-pijltoets (\[\text{\ding{106}}\]) te drukken.

<table>
<thead>
<tr>
<th>Waarschuwing wanneer de ID-run wordt gestart</th>
<th>Waarschuwing tijdens de ID-run</th>
<th>Waarschuwing nadat een ID run met succes is voltooid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 L -> 1242,0 rpm ACS800 WAARSCHUWING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR START</td>
<td>1 L -> 1242,0 rpm ACS800</td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td></td>
</tr>
<tr>
<td>ID RUN</td>
<td>ID RUN</td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td></td>
</tr>
<tr>
<td>ID VOLTOOID</td>
<td>ID VOLTOOID</td>
<td></td>
</tr>
</tbody>
</table>

WAARSCHUWING

Motor START

1 L -> 1242,0 rpm

ACS800

WAARSCHUWING

ID RUN

ACS800

WAARSCHUWING

ID VOLTOOID
Bedieningspaneel

Overzicht

Dit hoofdstuk beschrijft het gebruik van het bedieningspaneel CDP 312R. Alle omvormers van het type ACS800 zijn voorzien van hetzelfde bedieningspaneel en de instructies zijn dus van toepassing op elk type ACS800. De gebruikte displayvoorbeelden zijn gebaseerd op het standaardbesturingsprogramma; displays afkomstig van andere applicatieprogramma’s kunnen enigszins verschillen.

Overzicht van het paneel

Het LCD-display geeft 4 regels van elk 20 tekens weer. De taal wordt bij het starten gekozen (parameter 99.01). Het bedieningspaneel heeft vier bedrijfsmodi:
- Actuele gegevensuitleesmodus (ACT-toets)
- Parametermodus (PAR-toets)
- Functiemodus (FUNC-toets)
- Omvormerselectiemodus (DRIVE-toets)
Het gebruik van de enkele en dubbele pijltjes en van ENTER is afhankelijk van de bedrijfsmodus van het paneel.

De bedieningstoetsen van de omvormer zijn:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Gebruik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
</tr>
<tr>
<td>2</td>
<td>Stop</td>
</tr>
<tr>
<td>3</td>
<td>Referentie-instelling activeren</td>
</tr>
<tr>
<td>4</td>
<td>Vooruit</td>
</tr>
<tr>
<td>5</td>
<td>Achteruit</td>
</tr>
<tr>
<td>6</td>
<td>Fout resetten</td>
</tr>
<tr>
<td>7</td>
<td>Schakelen tussen bedieningspaneel en afstandsbesturing</td>
</tr>
</tbody>
</table>
Bedrijfsmodustoetsen en schermen van het bedieningspaneel

De onderstaande afbeelding laat de bedrijfsmodustoetsen van het paneel zien samen met de standaardfuncties en schermen in elke modus.

Actuele gegevensuitleesmodus

<table>
<thead>
<tr>
<th>Act. gegevens / foutgeschiedenis keuze</th>
<th>Statusregel</th>
<th>Namen en waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Act. gegevens / foutcode bladeren</td>
<td>Modusselectie invoeren</td>
</tr>
</tbody>
</table>

Parametermodus

<table>
<thead>
<tr>
<th>Keuze parametergroep</th>
<th>Statusregel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Modusselectie invoeren</td>
</tr>
</tbody>
</table>

Functiemodus

<table>
<thead>
<tr>
<th>Regel kiezen</th>
<th>Statusregel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Lijst van functies</td>
</tr>
</tbody>
</table>

Omvormerselectiemodus

<table>
<thead>
<tr>
<th>Omvormertype</th>
<th>Statusregel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Versie en ID nummer</td>
</tr>
</tbody>
</table>

Statusregel

De onderstaande afbeelding beschrijft de tekens in de statusregel.

- **ID-nummer omvormer**
- **Besturingsstatus omvormer**
 - **L** = Lokale besturing
 - **R** = Externe besturing
 - **** = Externe besturing
- **Draarichting**
- **Omvormer-referentie**
- **Omvormerstatus**
 - **I** = IN BEDRIJF
 - **O** = STOP
 - **** = Run onmogelijk

Bedieningspaneel
Besturing omvormer met paneel

De gebruiker kan de omvormer als volgt met het paneel besturen:

- starten, stoppen en de draairichting van de motor wijzigen
- de toerenreferentie of koppelreferentie van de motor opgeven
- een procesreferentie opgeven (als de PID-regeling actief is)
- storings- en waarschuwingsmeldingen resetten
- wijzigen tussen lokale en externe besturing van de omvormer.

Het paneel kan altijd voor besturing van de omvormer worden gebruikt zolang de omvormer op lokale besturing is ingesteld en de statusregel op de display zichtbaar is.

Starten, stoppen en de draairichting wijzigen

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Statusregel weergeven.</td>
<td></td>
<td>1 ©242.0 rpm I FREQ 45.00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>2.</td>
<td>Naar lokale besturing schakelen. (alleen als de omvormer niet op lokale besturing is ingesteld, d.w.z. geen L op de eerste regel van de display.)</td>
<td></td>
<td>1 L ©242.0 rpm I FREQ 45.00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>3.</td>
<td>Stoppen</td>
<td></td>
<td>1 L ©242.0 rpm O FREQ 45.00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>4.</td>
<td>Starten</td>
<td></td>
<td>1 L ©242.0 rpm I FREQ 45.00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>5.</td>
<td>Draairichting naar achteruit wijzigen.</td>
<td></td>
<td>1 L ©242.0 rpm I FREQ 45.00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>6.</td>
<td>Draairichting naar vooruit wijzigen.</td>
<td></td>
<td>1 L ©242.0 rpm I FREQ 45.00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
</tbody>
</table>
Instellen van de toerentalreferentie

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Statusregel weergeven.</td>
<td>1 (\rightarrow)1242,0 rpm I
[\text{FREQ}] 45,00 Hz
[\text{STROOM}] 80,00 A
[\text{VERMOGEN}] 75,00 %</td>
<td>![ACT], ![PAR], ![FUNC]</td>
</tr>
<tr>
<td>2.</td>
<td>Naar lokale besturing schakelen. (alleen als de omvormer niet op lokale besturing is ingesteld, d.w.z. geen L op de eerste regel van de display.)</td>
<td>1 L (\rightarrow)1242,0 rpm I
[\text{FREQ}] 45,00 Hz
[\text{STROOM}] 80,00 A
[\text{VERMOGEN}] 75,00 %</td>
<td>![LOC], ![REM]</td>
</tr>
<tr>
<td>3.</td>
<td>Toegang tot de instellingsfunctie voor toerentalreferentie.</td>
<td>1 L (\rightarrow)[1242,0 rpm] I
[\text{FREQ}] 45,00 Hz
[\text{STROOM}] 80,00 A
[\text{VERMOGEN}] 75,00 %</td>
<td>![REF]</td>
</tr>
<tr>
<td>4.</td>
<td>Wijzigen van de referentie. (langzaam wijzigen) (snel wijzigen)</td>
<td>1 L (\rightarrow)[1325,0 rpm] I
[\text{FREQ}] 45,00 Hz
[\text{STROOM}] 80,00 A
[\text{VERMOGEN}] 75,00 %</td>
<td>![△], ![▽]</td>
</tr>
<tr>
<td>5.</td>
<td>De referentie opslaan. (De waarde wordt in het permanente geheugen opgeslagen en wordt automatisch hersteld na een uitschakeling van de voeding)</td>
<td>1 L (\rightarrow)1325,0 rpm I
[\text{FREQ}] 45,00 Hz
[\text{STROOM}] 80,00 A
[\text{VERMOGEN}] 75,00 %</td>
<td>![ENTER]</td>
</tr>
</tbody>
</table>

Bedieningspaneel
Actuele gegevensuitleesmodus

In de actuele-gegevensuitleesmodus kan de gebruiker:

- gelijktijdig drie actuele gegevens op de display weergeven
- de actuele gegevens voor weergave kiezen
- de foutgeschiedenis bekijken
- de foutgeschiedenis resetten.

Het paneel gaat over naar de actuele gegevensuitleesmodus wanneer de gebruiker op de **ACT**-toets drukt of wanneer deze binnen een minuut geen andere toets indrukt.

Kiezen van actuele gegevens voor weergave

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kies de actuele gegevensuitleesmodus.</td>
<td>ACT</td>
<td>1 L -->1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>2.</td>
<td>Kiezen van een regel (de gekozen regel wordt door de knipperende cursor aangegeven).</td>
<td></td>
<td>1 L -->1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>3.</td>
<td>De keuzefunctie voor actuele gegevens invoeren.</td>
<td>ENTER</td>
<td>1 L -->1242,0 rpm I 1 ACTUELE GEGEVENS 04 STROOM 80,00 A</td>
</tr>
<tr>
<td>4.</td>
<td>Kiezen van een actueel gegeven. Wijzigen van de groep actuele gegevens.</td>
<td></td>
<td>1 L -->1242,0 rpm I 1 ACTUELE GEGEVENS 05 KOPPEL 70,00 %</td>
</tr>
<tr>
<td>5.a</td>
<td>Accepteren van de keuze en terugkeren naar de actuele gegevensuitleesmodus.</td>
<td>ENTER</td>
<td>1 L -->1242,0 rpm I FREQ 45,00 Hz KOPPEL 70,00 % VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>5.b</td>
<td>De keuze annuleren en de oorspronkelijke keuze behouden. De gekozen toetsenbordmodus wordt ingevoerd.</td>
<td>ACT, PAR, FUNC, DRIV</td>
<td>1 L -->1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>Stap</td>
<td>Handeling</td>
<td>Druk op toets</td>
<td>Paneel</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Weergeven van de volledige naam van de drie actuele gegevens.</td>
<td>Hold</td>
<td>1 L ->1242,0 rpm I FREQUENTIE STROOM VERMÖGEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT</td>
</tr>
<tr>
<td>2.</td>
<td>Terugkeren naar de actuele gegevensuitleesmodus.</td>
<td>Release</td>
<td>1 L ->1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMÖGEN 75,00 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACT</td>
<td></td>
</tr>
</tbody>
</table>

Bekijken en resetten van de foutgeschiedenis

Opmerking: Resetten van de foutgeschiedenis is niet mogelijk als er storingen of waarschuwingen actief zijn.

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kies de actuele gegevensuitleesmodus.</td>
<td></td>
<td>1 L ->1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMÖGEN 75,00 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACT</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Het scherm Foutgeschiedenis kiezen.</td>
<td></td>
<td>1 L ->1242,0 rpm I LAATSTE FOUT +OVERSTROOM 6451 H 21 MIN 23 S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kiezen van de vorige (OMHOOG) of volgende fout/waarschuwing (OMLAAG).</td>
<td></td>
<td>1 L ->1242,0 rpm I LAATSTE FOUT +OVERSPANNING 1121 H 1 MIN 23 S</td>
</tr>
<tr>
<td></td>
<td>Foutgeschiedenis wissen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Terugkeren naar de actuele gegevensuitleesmodus.</td>
<td></td>
<td>1 L ->1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMÖGEN 75,00 %</td>
</tr>
</tbody>
</table>

Bedieningspaneel
Weergeven en resetten van een actieve fout

WAARSCHUWING! Als voor de startopdracht een externe bron is gekozen en deze is AAN, dan zal de omvormer onmiddellijk na een foutreset starten. Als de oorzaak van de fout niet is weggenomen, schakelt de omvormer weer uit.

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
</table>
| 1. | Weergeven van een actieve fout. | **ACT** | 1 L -\> 1242,0 rpm
ACS800
** FOUT **
ACS800 TEMP |
| 2. | De fout resetten. | **RESET** | 1 L -\> 1242,0 rpm O
FREQ 45,00 Hz
STROOM 80,00 A
VERMOGEN 75,00 % |

Informatie over de foutgeschiedenis

De foutgeschiedenis herstelt de informatie over de recentste voorvallen (fouten, waarschuwingen en resets) met de omvormer. De onderstaande tabel laat zien hoe voorvallen worden opgeslagen in de foutgeschiedenis.

Een foutgeschiedenisscherm

- **Teken**
- **Volgnummer** (1 is het meest recente voorval)
- **Naam en code**
- **Inschakeltijd**

Voorval

De omvormer detecteert een fout en genereert een foutmelding

Volgnummer van het voorval en tekst LAATSTE FOUT.
Naam van de fout en het teken "+" vóór de naam.
Totale inschakeltijd.

De gebruiker reset de foutmelding.

Volgnummer van het voorval en tekst LAATSTE FOUT.
Tekst RESET FOUT.
Totale inschakeltijd.

De omvormer genereert een waarschuwingsmelding.

Volgnummer van het voorval en tekst LAATSTE WAARSCHUWING.
Naam van de waarschuwing en het teken "+" vóór de naam.
Totale inschakeltijd.

De omvormer deactiveert de waarschuwingsmelding.

Volgnummer van het voorval en tekst LAATSTE WAARSCHUWING.
Naam van de waarschuwing en het teken "-" vóór de naam.
Totale inschakeltijd.
Parametermodus

In de parametermodus kan de gebruiker:

- de parameterwaarden bekijken
- de parameterinstellingen wijzigen.

Het paneel gaat over naar de parametermodus wanneer de gebruiker op de **PAR**-toets drukt.

Een parameter kiezen en de waarde wijzigen

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>De parametermodus kiezen.</td>
<td>1 L -> 1242,0 rpm O
10 START/STOP/DRAAIER
01 EXT1 STRT/STP/RIC
DI1,2</td>
<td>PAR</td>
</tr>
<tr>
<td>2.</td>
<td>Een groep kiezen.</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
01 PANEELREF KEUZE
REF1(rpm)</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
AI1</td>
</tr>
<tr>
<td>3.</td>
<td>Een parameter binnen een groep kiezen.</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
AI1</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
AI1</td>
</tr>
<tr>
<td>4.</td>
<td>De instellingsfunctie voor parameterwaarde activeren.</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
[AI1]</td>
<td>ENTER</td>
</tr>
<tr>
<td>5.</td>
<td>De parameterwaarde wijzigen.
- (langzaam wijzigen voor getallen en tekst)
- (snel wijzigen uitsluitend voor getallen)</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
[AI1]</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
[AI2]</td>
</tr>
<tr>
<td>6a.</td>
<td>De nieuwe waarde opslaan.</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
AI2</td>
<td>ENTER</td>
</tr>
<tr>
<td>6b.</td>
<td>Druk op een van de modustoetsen om de nieuwe waarde te annuleren en de oorspronkelijke waarde te behouden. De gekozen modus wordt ingevoerd.</td>
<td>1 L -> 1242,0 rpm O
11 REFERENTIE KEUZE
03 EXTERN REF1 KEUZE
AI1</td>
<td>ACT PAR DRIVE FUNC</td>
</tr>
</tbody>
</table>
Aanpassen van een bronkeuze (pointer) parameter

De meeste parameters bepalen waarden die rechtstreeks in het applicatieprogramma van de omvormer worden gebruikt. Pointerparameters zijn uitzonderingen: zij verwijzen naar de waarde van een andere parameter. De instelling van deze parameters verschilt enigszins van die van andere parameters.

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Zie de tabel hierboven voor - toegang tot de parametermodus - kiezen van de correcte parametergroep en parameter - toegang tot de instellingsfunctie voor parameters</td>
<td></td>
<td>1 L ->1242,0 rpm O 84 ADAPTIVE PROGRAM 06 INGANG1 [±000.000.00]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ENTER</td>
</tr>
<tr>
<td>2.</td>
<td>Overschakelen tussen de inversie-, groeps-, index- en bitvelden.¹)</td>
<td></td>
<td>1 L ->1242,0 rpm O 84 ADAPTIVE PROGRAM 06 INGANG1 [±000.000.00]</td>
</tr>
<tr>
<td>3.</td>
<td>De waarde van een veld aanpassen.</td>
<td></td>
<td>1 L ->1242,0 rpm O 84 ADAPTIVE PROGRAM 06 INGANG1 [±001.018.00]</td>
</tr>
<tr>
<td>4.</td>
<td>De waarde accepteren.</td>
<td>ENTER</td>
<td></td>
</tr>
</tbody>
</table>

¹) 1 L ->1242.0 rpm O 84 ADAPTIVE PROGRAM 06 INGANG1 [-001.018.00]

Opmerking: In plaats van naar een andere parameter te verwijzen, is het ook mogelijk om een constante te definiëren via een pointerparameter. Ga als volgt te werk:

- Wijzig het inversieveld naar C. Het aanzien van de regel verandert. De rest van de regel is nu een veld met een constante instelling.
- Geef een constante waarde aan het veld met de constante instelling.
- Druk op Enter om de waarde te accepteren.
Functiemodus

In de functiemodus kan de gebruiker:

• een begeleide procedure beginnen voor het aanpassen van de omvormerinstellingen (via assistenten)

• de parameterwaarden van de omvormer en de motorgegevens vanaf de omvormer naar het paneel uploaden.

• parameterwaarden in groep 1 tot 97 vanaf het paneel naar de omvormer downloaden. ¹)

• de contrastinstelling van de display wijzigen.

Het paneel gaat over naar de functiemodus wanneer de gebruiker op de **FUNC**-toets drukt.

¹) Parametergroep 98, 99 en de resultaten van de motoridentificatie zijn standaard niet opgenomen. Deze beperking voorkomt het downloaden van ongeschikte motorgegevens. In speciale gevallen is het echter mogelijk om alles te downloaden. Neem voor aanvullende informatie contact op met de plaatselijke ABB-vertegenwoordiger.
Toegang krijgen tot een assistent, doorlopen en afsluiten

De onderstaande tabel toont de werking van de basistoetsen welke de gebruiker door een assistent begeleiden. De taak Motorgegevensinvoer van de Opstart-assistent wordt als voorbeeld gebruikt.

De Start-up Assistant is niet beschikbaar in Scalar modus of wanneer het parameterslot aan is. *(99.04 MOTOR CTRL MODE = SCALAR of 16.02 PARAMETER SLOT = OP SLOT of 16.10 ASSIST SEL = UIT)*

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>De functiemodus kiezen.</td>
<td></td>
<td>1 L -> 1242,0 rpm O Motorgeg.invoer Applicatiemacro Toerentalregeling EXT1</td>
</tr>
<tr>
<td>2.</td>
<td>Kiezen van een taak of functie uit een lijst (de knipperende cursor geeft de keuze aan). Dubbele pijlen: pagina wijzigen voor meer assistenten/ functies.</td>
<td></td>
<td>1 L -> 1242,0 rpm O Motorgeg.invoer Applicatiemacro Toerenregelaar EXT1</td>
</tr>
<tr>
<td>3.</td>
<td>De taak invoeren.</td>
<td>ENTER</td>
<td>Motorgeg.invoer 1/10 ENTER: Accoord ACT: Eruit FUNC: Meer info</td>
</tr>
<tr>
<td>5.</td>
<td>Accepteren en verdergaan.</td>
<td>ENTER</td>
<td>Motorgeg.invoer 3/10 M NOM SPANNING? [0 V] ENTER: Ok RESET: Terug</td>
</tr>
<tr>
<td></td>
<td>b. Informatie vragen over de aangevraagde waarde. (om de informatieschermen te doorlopen en terug te keren naar de taak).</td>
<td>FUNC</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>a. Een waarde accepteren en verdergaan met de volgende stap</td>
<td>ENTER</td>
<td>Motorgeg.invoer 4/10 M NOM STROOM? [0,0 A] ENTER: Ok RESET: Terug</td>
</tr>
</tbody>
</table>
Bedieningspaneel

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Annuleren en afsluiten. Opmerking: 1 x ACT brengt u terug naar het eerste scherm van de taak</td>
<td>2 x ACT</td>
<td>1 L -> 0,0 rpm O FREQ 0,00 Hz STROOM 0,00 A VERMogens 0,00 %</td>
</tr>
</tbody>
</table>

Gegevens uploaden van een omvormer naar het paneel

Opmerking:
- Uploaden voorafgaand aan downloaden.
- Zorg dat de firmware van de omvormer die als ontvanger dient dezelfde is (bijvoorbeeld standaard firmware).
- Alvorens het paneel uit een omvormer te nemen moet u zorgen dat het paneel op afstandsbesturing is ingesteld (wijzigen met de LOC/REM-toets).
- De omvormer stoppen alvorens te downloaden.

Voer voorafgaand aan het uploaden bij beide omvormers de volgende stappen uit:
- Stel de motoren in.
- Activeer de communicatie naar de optionele apparatuur. (zie parametergroep 98 OPTIMODULES.)

Doe voorafgaand aan het uploaden het volgende in de omvormer vanwaar gekopieerd gaat worden:
- Gebruik de voorkeur instelling voor parameters in groep 10 tot 97.
- Ga dan verder met het upload programma (zie hieronder).

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kies de functiemodus.</td>
<td>func</td>
<td>1 L -> 1242,0 rpm O Motorgeg.invoer Applicatiemacro Toerentalregeling EXT1</td>
</tr>
<tr>
<td>2.</td>
<td>Ga naar de pagina die de upload-, download- en contrastfuncties bevat.</td>
<td>-down</td>
<td>1 L -> 1242,0 rpm O LEZEN <<= SCHRIJVEN == CONTRAST 4</td>
</tr>
<tr>
<td>3.</td>
<td>Kies de uploadfunctie (de knipperende cursor geeft de gekozen functie aan).</td>
<td>down</td>
<td>1 L -> 1242,0 rpm O LEZEN <<= SCHRIJVEN == CONTRAST 4</td>
</tr>
<tr>
<td>Stap</td>
<td>Handeling</td>
<td>Druk op toets</td>
<td>Paneel</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>4.</td>
<td>De uploadfunctie invoeren.</td>
<td>ENTER</td>
<td>1 L -> 1242,0 rpm O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEZEN <=<=</td>
</tr>
<tr>
<td>5.</td>
<td>Naar externe besturing schakelen.</td>
<td>LOC/REM</td>
<td>1 L -> 1242,0 rpm O</td>
</tr>
<tr>
<td></td>
<td>(geen L op de eerste regel van de display.)</td>
<td></td>
<td>LEZEN <=<=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCHRIJVEN =>=></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTRAST 4</td>
</tr>
<tr>
<td>6.</td>
<td>Koppel het paneel los en sluit het aan op de omvormer waarna de gegevens worden gedownload.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gegevens downloaden van het paneel naar een omvormer

Lees de opmerkingen onder *Gegevens uploaden van een omvormer naar het paneel* op pagina 36.

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sluit het paneel met de geüploade gegevens aan op de omvormer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Zorg dat de omvormer op lokale besturing is ingesteld (L zichtbaar op de eerste regel van de display). Indien nodig, op de LOC/REM -toets drukken om naar lokale besturing te schakelen.</td>
<td>LOC/REM</td>
<td>1 L -> 1242,0 rpm I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FREQ 45,00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STROOM 80,00 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VERMOGEN 75,00 %</td>
</tr>
<tr>
<td>3.</td>
<td>Kies de functiemodus.</td>
<td>FUNC</td>
<td>1 L -> 1242,0 rpm O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Motorgeg.invoer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Applicatiemacro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toerentalregeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXTI</td>
</tr>
<tr>
<td>4.</td>
<td>Ga naar de pagina die de upload-, download- en contrastfuncties bevat.</td>
<td>Down</td>
<td>1 L -> 1242,0 rpm O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEZEN <=<=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCHRIJVEN =>=></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTRAST 4</td>
</tr>
<tr>
<td>5.</td>
<td>Kies de downloadfunctie (de knipperende cursor geeft de gekozen functie aan).</td>
<td>Up</td>
<td>1 L -> 1242,0 rpm O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEZEN <=<=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCHRIJVEN =>=></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CONTRAST 4</td>
</tr>
<tr>
<td>6.</td>
<td>Begin de download.</td>
<td>ENTER</td>
<td>1 L -> 1242,0 rpm O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCHRIJVEN =>=></td>
</tr>
</tbody>
</table>
Contrast van het paneel instellen

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kies de functiemodus.</td>
<td></td>
<td>![Func] 1 L -> 1242,0 rpm O Motorreg.invoer Applicatiemacro Toerentalregeling EXT1</td>
</tr>
<tr>
<td>2.</td>
<td>Ga naar de pagina die de upload-, download- en contrastfuncties bevat.</td>
<td></td>
<td>![Down] 1 L -> 1242,0 rpm O LEZEN <=<= SCHRIJVEN =>=> CONTRAST 4</td>
</tr>
<tr>
<td>3.</td>
<td>Kies een functie (de knipperende cursor geeft de gekozen functie aan).</td>
<td></td>
<td>![Up] 1 L -> 1242,0 rpm O LEZEN <=<= SCHRIJVEN =>=> CONTRAST 4</td>
</tr>
<tr>
<td>4.</td>
<td>Toegang tot de instellingsfunctie voor het contrast.</td>
<td>![Enter]</td>
<td>1 L -> 1242,0 rpm O CONTRAST [4]</td>
</tr>
<tr>
<td>5.</td>
<td>Contrast aanpassen.</td>
<td></td>
<td>![Up Down] 1 L -> 1242,0 rpm O CONTRAST [6]</td>
</tr>
<tr>
<td>6.a</td>
<td>Gekozen waarde accepteren.</td>
<td>![Enter]</td>
<td>1 L -> 1242,0 rpm O LEZEN <=<= SCHRIJVEN =>=> CONTRAST 6</td>
</tr>
<tr>
<td>6.b</td>
<td>Druk op een van de modustoetsen om de nieuwe waarde te annuleren en de oorspronkelijke waarde te behouden.</td>
<td>![Act Par Func Drive]</td>
<td>1 L -> 1242,0 rpm I FREQ 45,00 Hz STROOM 80,00 A VERMOGEN 75,00 %</td>
</tr>
</tbody>
</table>

De gekozen modus wordt ingevoerd.
Omvormerselectiemodus

Deze functies zijn gereserveerd voor toepassingen waarbij diverse omvormers zijn aangesloten op één paneelverbinding. Zie voor aanvullende informatie *Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, [3AFY58919748 (Engels)]*.

In de omvormerselectiemodus kan de gebruiker:

- De omvormer kiezen waarmee het paneel communiceert via de paneelverbinding.
- Het identificatienummer wijzigen van een omvormer aangesloten op de paneelverbinding.
- De status bekijken van omvormers aangesloten op de paneelverbinding.

Het paneel gaat over naar de omvormerselectiemodus wanneer de gebruiker op de **DRIVE**-toets drukt.

Elk aangesloten station moet een eigen identificatienummer (ID) hebben. Het ID-nummer van de omvormer is standaard 1.

Opmerking: Het standaard ID-nummer van de omvormer mag niet worden gewijzigd, tenzij deze via de paneelverbinding moet worden verbonden met andere aangesloten omvormers.

Kiezen van een omvormer en wijzigen van het ID-nummer op de paneelverbinding

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>De omvormerselectiemodus kiezen</td>
<td></td>
<td>ACS800 ASAAA5000 xxxxxx ID NUMBER 1</td>
</tr>
<tr>
<td>2.</td>
<td>De volgende omvormerschermweergave kiezen. Het ID-nummer kan worden gewijzigd door eerst op ENTER te drukken (het ID-nummer komt tussen haakjes te staan) en dan de waarde aan te passen met de pijlootoetsen. De nieuwe waarde wordt met ENTER geaccepteerd. De voeding naar de omvormer moet worden uitgeschakeld om de nieuwe instelling van het ID-nummer te bevestigen. De statusweergave van alle omvormers aangesloten op de paneelverbinding wordt na de laatste omvormer getoond. Als de omvormers niet allemaal gelijktijdig op de display passen, druk dan op de dubbele omhoogpijl om de overige omvormers te bekijken.</td>
<td></td>
<td>ACS800 ASAAA5000 xxxxxx ID NUMBER 1</td>
</tr>
</tbody>
</table>

Statusweergavesymbolen:
- = Omvormer gestopt, draairichting vooruit
- = Omvormer in bedrijf, draairichting achteruit
- = Omvormer uitgeschakeld door fout
Stap 3.
Kies een van de modustoetsen om de laatst weergegeven omvormer aan te sluiten en om een andere modus te kiezen.

De gekozen modus wordt ingevoerd.

<table>
<thead>
<tr>
<th>Stap</th>
<th>Handeling</th>
<th>Druk op toets</th>
<th>Paneel</th>
</tr>
</thead>
</table>
| 3. | Kies een van de modustoetsen om de laatst weergegeven omvormer aan te sluiten en om een andere modus te kiezen. | ![Druk op toets](image) | 1 L -> 1242,0 rpm I
FREQ 45,00 Hz
STROOM 80,00 A
VERMogen 75,00 % |
‘Packed boolean’-waarden op de display lezen en invoeren

Sommige actuele waarden en parameters hebben een ‘packed boolean’-vorm, d.w.z. elke individuele bit heeft een gedefinieerde betekenis (uitgelegd bij het corresponderende signaal of parameter). Op het bedieningspaneel worden ‘packed boolean’-waarden in hexadecimale opmaak gelezen en ingevoerd.

In dit voorbeeld zijn bits 1, 3 en 4 van de ‘packed boolean’-waarden AAN:

```
<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>0000 0000 0001 1010</td>
</tr>
<tr>
<td>Hex</td>
<td>0 0 1 A</td>
</tr>
</tbody>
</table>
```
Programmakenmerken

Overzicht

Dit hoofdstuk beschrijft de programmakenmerken. Bij elk kenmerk vindt u een lijst met gebruiksinstellingen, actuele gegevens en storings- en waarschuwingsmeldingen.

Start-up Assistent

Inleiding

De assistent leidt de gebruiker door de opstartprocedure en helpt deze de benodigde gegevens (parameterwaarden) bij de omvormer in te voeren. De assistent controleert tevens of de ingevoerde waarden geldig zijn, d.w.z. binnen het toegelaten bereik vallen. Bij de eerste maal starten verschijnt er een prompt om de eerste taak van de assistent, Language Select, in te voeren.

De Start-up Assistent is onderverdeeld in taken. De gebruiker kan de taken activeren in de volgorde die door de Start-up Assistent wordt voorgesteld, of onafhankelijk van elkaar. De gebruiker kan de omvormerparameters ook op de gebruikelijke wijze, zonder tussenkomst van de assistent, aanpassen.

Zie het hoofdstuk Bedieningspaneel voor het starten, browsen en afsluiten van de assistent.

Opmerking: De assistent van optiemodules wordt niet ondersteund vanaf firmware-versie AS7R7363 en later.

De standaardvolgorde van taken

Afhankelijk van de gemaakte applicatiekeuze (parameter 99.02), bepaalt de Start-up Assistent welke opeenvolgende taken voor te stellen. De onderstaande tabel laat de standaardtaken zien.

<table>
<thead>
<tr>
<th>Applicatiekeuze</th>
<th>Standaardtaken</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABRIEK, VOLGORDE BST</td>
<td>Taalkeuze, Motorgegevensinvoer, Applicatie, Optiemodules, Toerenregeling EXT1, Start/Stop-besturing, Beveiligingen, Uitgangssignalen</td>
</tr>
<tr>
<td>HAND/AUTO</td>
<td>Taalkeuze, Motorgegevensinvoer, Applicatie, Optiemodules, Toerenregeling EXT2, Start/Stop-besturing, Toerenregeling EXT1, Beveiligingen, Uitgangssignalen</td>
</tr>
<tr>
<td>KOPPELREGEL</td>
<td>Taalkeuze, Motorgegevensinvoer, Applicatie, Optiemodules, Koppelregeling, Start/Stop-besturing, Toerenregeling EXT1, Beveiligingen, Uitgangssignalen</td>
</tr>
<tr>
<td>PID REGELING</td>
<td>Taalkeuze, Motorgegevensinvoer, Applicatie, Optiemodules, PID-regeling, Start/Stop-besturing, Toerenregeling EXT1, Beveiligingen, Uitgangssignalen</td>
</tr>
</tbody>
</table>
Lijst van taken met de relevante omvormerparameters

<table>
<thead>
<tr>
<th>Benaming</th>
<th>Omschrijving</th>
<th>Stelt parameters in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taalkeuze</td>
<td>Kiezen van de taal van het bedieningspaneel</td>
<td>99.01</td>
</tr>
<tr>
<td>Motorgegevens-invoer</td>
<td>Setting the motor data</td>
<td>99.05, 99.06, 99.09, 99.07, 99.08, 99.04</td>
</tr>
<tr>
<td></td>
<td>Uitvoeren van de motoridentificatie. (Als de toerentallimieten buiten het toegelaten bereik liggen: instellen van de limieten).</td>
<td>99.10 (20.8, 20.07)</td>
</tr>
<tr>
<td>Toepassing</td>
<td>Kiezen van de applicatiemacro</td>
<td>99.02, parameters behorende bij de macro</td>
</tr>
<tr>
<td>Option Modules</td>
<td>Activeren van de optimodules</td>
<td>Groep 98, 35, 52</td>
</tr>
<tr>
<td>Toerentalregeling EXT1</td>
<td>Kiezen van de bron voor de toerentalreferentie</td>
<td>11.03</td>
</tr>
<tr>
<td></td>
<td>(Bij gebruik van AI1: Instellen van de limieten, schaal en inversie van analoge ingang AI1)</td>
<td>(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)</td>
</tr>
<tr>
<td></td>
<td>Instellen van de referentielimieten</td>
<td>11.04, 11.05</td>
</tr>
<tr>
<td></td>
<td>Instellen van de toerental- (frequentie-) limieten</td>
<td>20.02, 20.01, (20.08, 20.07)</td>
</tr>
<tr>
<td></td>
<td>Instellen van de acceleratie- en deceleratietijden</td>
<td>22.02, 22.03</td>
</tr>
<tr>
<td></td>
<td>(instellen van de remchopper bij activatie via parameter 27.01)</td>
<td>(Groep 27, 20.05, 14.01)</td>
</tr>
<tr>
<td></td>
<td>(Als 99.02 niet VOLGORDE BST is: instellen constant toerental)</td>
<td>(Groep 12)</td>
</tr>
<tr>
<td>Toerentalregeling EXT2</td>
<td>Kiezen van de bron voor de toerentalreferentie</td>
<td>11.06</td>
</tr>
<tr>
<td></td>
<td>(Bij gebruik van AI1: Instellen van de limieten, schaal en inversie van analoge ingang AI1)</td>
<td>(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)</td>
</tr>
<tr>
<td></td>
<td>Instellen van de referentielimieten</td>
<td>11.08, 11.07</td>
</tr>
<tr>
<td>Koppelregeling</td>
<td>Kiezen van de bron voor de koppelreferentie</td>
<td>11.06</td>
</tr>
<tr>
<td></td>
<td>(Bij gebruik van AI1: Instellen van de limieten, schaal en inversie van analoge ingang AI1)</td>
<td>(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)</td>
</tr>
<tr>
<td></td>
<td>Instellen van de referentielimieten</td>
<td>11.08, 11.07</td>
</tr>
<tr>
<td></td>
<td>Instellen van koppelopbouwtijd en koppelafbouwtijd</td>
<td>24.01, 24.02</td>
</tr>
<tr>
<td>PID-regeling</td>
<td>Kiezen van de bron voor de procesreferentie</td>
<td>11.06</td>
</tr>
<tr>
<td></td>
<td>(Bij gebruik van AI1: Instellen van de limieten, schaal en inversie van analoge ingang AI1)</td>
<td>(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)</td>
</tr>
<tr>
<td></td>
<td>Instellen van de referentielimieten</td>
<td>11.08, 11.07</td>
</tr>
<tr>
<td></td>
<td>Instellen van de toerental(referentie)limieten</td>
<td>20.02, 20.01 (20.08, 20.07)</td>
</tr>
<tr>
<td></td>
<td>Instellen van de bron en limieten van de actuele proceswaarde</td>
<td>40.07, 40.09, 40.10</td>
</tr>
<tr>
<td>Start/Stop besturing</td>
<td>Instellen van de bron van de start- en stopsignalen van de twee externe besturingslocalities, EXT1 en EXT2</td>
<td>10.01, 10.02</td>
</tr>
<tr>
<td></td>
<td>Schakelen tussen EXT1 en EXT2</td>
<td>11.02</td>
</tr>
<tr>
<td></td>
<td>Bepalen van de draairichting</td>
<td>10.03</td>
</tr>
<tr>
<td></td>
<td>Bepalen van de start- en stopmodussen</td>
<td>21.01, 21.02, 21.03</td>
</tr>
<tr>
<td></td>
<td>Startvrijgavesignaal kiezen</td>
<td>16.01, 21.07</td>
</tr>
<tr>
<td></td>
<td>Instellen van de hellingtijd van de startvrijgavefunctie</td>
<td>22.07</td>
</tr>
<tr>
<td>Beveiligingen</td>
<td>Instellen van de koppel- en stroomlimieten</td>
<td>20.03, 20.04</td>
</tr>
<tr>
<td>Uitgangssignalen</td>
<td>Kiezen van de aangegeven signalen via relaisuitgangen RO1, RO2, RO3 en optionele RO’s (indien geïnstalleerd)</td>
<td>Groep 14</td>
</tr>
<tr>
<td></td>
<td>Kiezen van de aangegeven signalen via analoge uitgangen AO1, AO2 en optionele AO’s (indien geïnstalleerd). Instellen van minimum, maximum, schaal en inversie.</td>
<td>15.01, 15.02, 15.03, 15.04, 15.05, 15.06, (Groep 96)</td>
</tr>
</tbody>
</table>

Programmakenmerken
Inhoud van de assistentschermen

<table>
<thead>
<tr>
<th>Hoofdscherm</th>
<th>Informatiescherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motorgeg.invoer</td>
<td>INFO P99.05</td>
</tr>
<tr>
<td>2 MOTOR NOM VOLTAGE?</td>
<td>Set as given on the motor nameplate.</td>
</tr>
<tr>
<td>3 [0 V]</td>
<td></td>
</tr>
<tr>
<td>4 ENTER:Ok RESET:Terug</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hoofdscherm</th>
<th>Informatiescherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naam van de assistent,</td>
<td>Tekst INFO, in te stellen index van</td>
</tr>
<tr>
<td>stapnummer / totaal</td>
<td>parameter</td>
</tr>
<tr>
<td>aantal stappen</td>
<td></td>
</tr>
<tr>
<td>Verzoek/vraag</td>
<td>Hulptekst ...</td>
</tr>
<tr>
<td>Invoerveld</td>
<td>... hulptekst vervolgd</td>
</tr>
<tr>
<td>Opdrachten: waarde</td>
<td>dubbele pijl (geeft aan dat de tekst</td>
</tr>
<tr>
<td>accepteren en stap</td>
<td>wordt vervolgd)</td>
</tr>
<tr>
<td>verder of annuleren</td>
<td></td>
</tr>
<tr>
<td>en stap terug</td>
<td></td>
</tr>
</tbody>
</table>

Lokale besturing t.o.v. externe besturing

De omvormer kan start-, stop- en draairichtingsopdrachten ontvangen via het bedieningspaneel of via digitale en analoge ingangen. Een optionele veldbusadapter
maakt besturing via een open veldbusverbinding mogelijk. De omvormer kan ook worden bestuurd via een pc voorzien van het programma DriveWindow.

Lokale besturing

Bij lokale besturing worden de stuursignalen gegeven vanaf het toetsenbord van het bedieningspaneel. L op de display van het paneel geeft lokale besturing aan.

\[
\text{II L} \rightarrow 1242 \text{ rpm}
\]

Bij lokale besturing heeft het bedieningspaneel altijd voorrang op het externe stuursignaal van een externe bron.

Externe besturing

Bij externe besturing van de omvormer worden de stuursignalen via standaard I/O-aansluitingen (digitale en analoge ingangen), optionele I/O-uitbreidingsmodules en/ of de veldbusinterface gegeven. Daarnaast is het ook mogelijk om het bedieningspaneel als bron voor externe besturing in te stellen.
Externe besturing wordt aangegeven door een spatie op het bedieningspaneel of met een R in die speciale gevallen waarin het paneel wordt ingesteld als bron voor externe besturing.

![Diagram](image)

De gebruiker kan de stuursignalen aansluiten op twee externe besturingslocaties, EXT1 of EXT2. Afhankelijk van de keuze van de gebruiker is één van de twee actief. Deze functie werkt binnen 12 ms.

Instellingen

<table>
<thead>
<tr>
<th>Paneeltoets</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC/REM</td>
<td>Schakelen tussen lokale en externe besturing</td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>11.02</td>
<td>EXT1 of EXT2 kiezen</td>
</tr>
<tr>
<td>10.01</td>
<td>Bron van start-, stop- en draairichtingsopdrachten voor EXT1</td>
</tr>
<tr>
<td>11.03</td>
<td>Referentiebron voor EXT1</td>
</tr>
<tr>
<td>10.02</td>
<td>Bron van start-, stop- en draairichtingsopdrachten voor EXT2</td>
</tr>
<tr>
<td>11.06</td>
<td>Referentiebron voor EXT2</td>
</tr>
<tr>
<td>Groep 98</td>
<td></td>
</tr>
<tr>
<td>OPTIEMODULES</td>
<td>Activering van de optionele I/O- en seriële communicatie</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Actuele gegevens</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.11, 01.12</td>
<td>EXT1 referentie, EXT2 referentie</td>
</tr>
<tr>
<td>03.02</td>
<td>Bit voor EXT1/EXT2-selectie in een ‘packed boolean’ woord</td>
</tr>
</tbody>
</table>
Blokdiafram: bron van start-, stop-, draairichtingsopdrachten voor EXT1

Het onderstaande diagram geeft de parameters die de interface voor de start-, stop, en draairichtingsopdrachten via externe besturingslocatie EXT1 bepalen.

Blokdiafram: referentiebron voor EXT1

Het onderstaande diagram geeft de parameters die de interface voor de toerentalreferentie via externe besturingslocatie EXT1 bepalen.
Referentietyptes en hun verwerking

Naast het gebruikelijke analoge ingangssignaal en de signalen van het bedieningspaneel accepteert de omvormer diverse andere referenties.

- De omvormerreferentie kan door twee digitale ingangen worden gegeven: de ene digitale ingang verhoogt het toerental, de andere verlaagt het.
- De omvormer accepteert een bipolaire analoge toerentalreferentie. Hierdoor kunnen zowel het toerental als de draairichting worden gestuurd via een enkele analoge ingang. Het minimumsignaal is met volle toeren achteruit en het maximumsignaal is met volle toeren vooruit.
- De omvormer kan met behulp van een wiskundige functie een referentie samenstellen uit twee analoge ingangssignalen: optellen, aftrekken, vermenigvuldigen, selectie van een minimum, selectie van een maximum.
- De omvormer kan met behulp van wiskundige functies een referentie samenstellen uit een analoog ingangssignaal en een signaal ontvangen via een seriële communicatie-interface: optellen en vermenigvuldigen.

Het is mogelijk de externe referentie zodanig in te schalen dat de minimum- en maximumwaarden van het signaal corresponderen met een ander toerental dan de onderste en bovenste toerentallimieten.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 11 REFERENTIE KEUZE</td>
<td>Externe referentie voor bron, type en schaal</td>
</tr>
<tr>
<td>Groep 20 LIMIETEN</td>
<td>Bedrijfslimieten</td>
</tr>
<tr>
<td>Groep 22 ACCEL/DECEL</td>
<td>Acceleratie- en deceleratiehellingen voor de toerentalreferentie</td>
</tr>
<tr>
<td>Groep 24 TORQUE CTRL</td>
<td>Opbouw- en afbouwtijden voor de koppelreferentie</td>
</tr>
<tr>
<td>Groep 32 BEWAKING</td>
<td>Referentiebewaking</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Actueel signaal</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.11, 01.12 Waarden van externe referenties</td>
<td></td>
</tr>
<tr>
<td>Groep 02 ACTUELE GEGEVENS</td>
<td>De referentiewaarden in verschillende stadia van de referentieverwerkingsketen.</td>
</tr>
</tbody>
</table>

Parameter

| Groep 14 RELAISUITGANGEN | Actieve referentie / referentie-uitval via een relaisuitgang |
| Groep 15 ANALOGUE UITGANGEN | Referentiewaarde |
Reference trimming

Bij referentiecorrectie wordt de externe %-referentie (externe referentie REF2) gecorrigeerd afhankelijk van de gemeten waarde van een secundaire applicatievariabele. De functie wordt geïllustreerd in onderstaand blokschema.

%ref = De omvormerreferentie vóór correctie
%ref' = De omvormerreferentie na correctie
max. toerent. = Par. 20.02 (of 20.01 als de absolute waarde hoger is)
max. freq = Par. 20.08 (of 20.07 als de absolute waarde hoger is)
max. koppel = Par. 20.14 (of 20.13 als de absolute waarde hoger is)

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.14…40.18</td>
<td>Instellingen van de correctiefunctie</td>
</tr>
<tr>
<td>40.01…40.13, 40.19</td>
<td>Blokinstellingen van de PID-regeling</td>
</tr>
<tr>
<td>Groep 20 LIMIETEN</td>
<td>Bedrijfslimieten voor de omvormer</td>
</tr>
</tbody>
</table>
Voorbeeld

De omvormer stuurt een transportband. De snelheid van de band is begrensd maar met de trek op de band moet ook rekening worden gehouden: Als de gemeten trek groter is dan het referentiepunt voor de trek, dan wordt de snelheid enigszins verminderd en omgekeerd.

Om de gewenste toerentalcorrectie te bereiken moet de gebruiker:

- de correctiefunctie activeren en het referentiepunt voor de trek en de gemeten trek aan de correctiefunctie koppelen
- de correctiefunctie op een aanvaardbaar niveau afstellen.

Transportband met begrensde snelheid

![Vereenvoudigd blokschema](image)

Vereenvoudigd blokschema

- Toerentalreferentie
- Gemeten trek
- Referentiepunt trek
- Add
- Gecorrigeerde toerentalreferentie
- PID
Programmeerbare analoge ingangen

De omvormer heeft drie programmeerbare analoge ingangen: een spanningsingang (0/2 tot 10 V of -10 tot 10 V) en twee stroomingangen (0/4 tot 20 mA). Er zijn twee extra ingangen beschikbaar als een optionele analoge I/O-uitbreidingsmodule wordt gebruikt. Elke ingang kan worden geïnverteerd en gefilterd, en de maximum- en minimumwaarde kan worden aangepast.

Updatecyclussen in het standaardbesturingsprogramma

<table>
<thead>
<tr>
<th>Ingang</th>
<th>Cyclus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI / standaard</td>
<td>6 ms</td>
</tr>
<tr>
<td>AI / uitbreiding</td>
<td>6 ms (100 ms)</td>
</tr>
</tbody>
</table>

1) Updatecyclus in de meetfunctie voor de motortemperatuur. Zie groep 35 MOT TEMP METING.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 11 REFERENTIE KEUZE</td>
<td>AI als een referentiebron</td>
</tr>
<tr>
<td>Groep 13 ANALOGE INGANGEN</td>
<td>Verwerken van standaardingangen</td>
</tr>
<tr>
<td>30.01 Bewaking tegen AI-verlies</td>
<td></td>
</tr>
<tr>
<td>Groep 40 PID REGELING</td>
<td>AI als actuele gegevens of referentie voor de PID-regeling</td>
</tr>
<tr>
<td>35.01</td>
<td>AI in een meting van motortemperatuur</td>
</tr>
<tr>
<td>40.15</td>
<td>AI in een correctie van een omvormerreferentie</td>
</tr>
<tr>
<td>42.07</td>
<td>AI in een regelfunctie voor een mechanische rem</td>
</tr>
<tr>
<td>98.06</td>
<td>Activeren van optionele analoge ingangen</td>
</tr>
<tr>
<td>98.13</td>
<td>Optionele AI signaaltype definitie (bipolair of unipolair)</td>
</tr>
<tr>
<td>98.14</td>
<td>Optionele AI signaaltype definitie (bipolair of unipolair)</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.18, 01.19, 01.20</td>
<td>Waarde van standaardingangen</td>
</tr>
<tr>
<td>01.38, 01.39</td>
<td>Waarde van optionele ingangen</td>
</tr>
<tr>
<td>Groep 09 ACTUELE GEGEVENS</td>
<td>Geschaalde analoge ingangswaarden (integraalwaarden voor het programmeren van functieblokken)</td>
</tr>
</tbody>
</table>
Programmeerbare analoge uitgangen

Er zijn standaard twee programmeerbare stroomuitgangen (0/4 tot 20 mA) beschikbaar en er kunnen twee extra uitgangen worden toegevoegd als een optionele analoge I/O-uitbreidingsmodule wordt gebruikt. Analoge uitgangssignalen kunnen worden geïnverteerd en gefilterd.

De analoge uitgangssignalen kunnen evenredig zijn aan het motortoerental, procestoerental (geschaald motortoerental), de uitgangsfrequentie, uitgangsstroom, het motorkoppel, motorvermogen, enz.

Het is mogelijk om een waarde naar een analoge uitgang te schrijven via een seriële communicatieverbinding.

Updatecyclus in het standaardbesturingsprogramma

<table>
<thead>
<tr>
<th>Uitgang</th>
<th>Cyclus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO / standard</td>
<td>24 ms</td>
</tr>
<tr>
<td>AO / uitbreiding</td>
<td>24 ms (1000 ms <sup>1)</sup>)</td>
</tr>
</tbody>
</table>

¹ Updatecyclus in de meetfunctie voor de motortemperatuur. Zie groep 35 MOT TEMP METING.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 15 ANALOGE UITGANGEN</td>
<td>Kiezen en verwerken van een AO-waarde (standaarduitgangen)</td>
</tr>
<tr>
<td>30.20</td>
<td>Gebruik van een extern bestuurde AO bij een communicatiebreuk</td>
</tr>
<tr>
<td>30.22</td>
<td>Bewaking van het gebruik van een optionele AO</td>
</tr>
<tr>
<td>Groep 35 MOT TEMP METING</td>
<td>AO in de meting van motortemperatuur</td>
</tr>
<tr>
<td>Groep 96 EXTERNAL AO</td>
<td>Kiezen en verwerken van een optionele AO-waarde</td>
</tr>
<tr>
<td>Groep 98 OPTIEMODULES</td>
<td>Activeren van een optionele I/O</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.22, 01.23</td>
<td>Waarde van standaarduitgangen</td>
</tr>
<tr>
<td>01.28, 01.29</td>
<td>Waarde van optionele uitgangen</td>
</tr>
<tr>
<td>Waarschuwing</td>
<td></td>
</tr>
<tr>
<td>IO CONFIG (FF8B)</td>
<td>Onjuist gebruik van een optionele I/O</td>
</tr>
</tbody>
</table>
Programmeerbare digitale ingangen

De omvormer heeft standaard zes programmeerbare digitale ingangen. Er zijn zes extra ingangen beschikbaar als een optionele digitale I/O-uitbreidingsmodule wordt gebruikt.

Updatecyclussen in het standaardbesturingsprogramma

<table>
<thead>
<tr>
<th>Ingang</th>
<th>Cyclus</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI / standaard</td>
<td>6 ms</td>
</tr>
<tr>
<td>DI / uitbreiding</td>
<td>12 ms</td>
</tr>
</tbody>
</table>

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 10 START/STOP/ DRAAIR</td>
<td>DI als start, stop, draairichting</td>
</tr>
<tr>
<td>Groep 11 REFERENTIE KEuze</td>
<td>DI in de selectie van een referentie of in een referentiebron</td>
</tr>
<tr>
<td>Groep 12 CONSTANT TOEREN</td>
<td>DI in de selectie van constante toeren</td>
</tr>
<tr>
<td>Groep 16 STUURINGANGEN</td>
<td>DI als extern signaal voor startvrijgave, een foutreset of wijziging van een gebruikersmacro</td>
</tr>
<tr>
<td>22.01</td>
<td>DI als selectiesignaal voor een acceleratie- of deceleratiehelling</td>
</tr>
<tr>
<td>30.03</td>
<td>DI als externe foutbron</td>
</tr>
<tr>
<td>30.05</td>
<td>DI in de bewakingsfunctie voor overtemperatuur</td>
</tr>
<tr>
<td>30.22</td>
<td>Bewaking van het gebruik van een optionele I/O</td>
</tr>
<tr>
<td>40.20</td>
<td>DI als activeringssignaal voor de slaapfunctie (bij PID-regeling)</td>
</tr>
<tr>
<td>42.02</td>
<td>DI als bevestigingssignaal voor een mechanische rem</td>
</tr>
<tr>
<td>98.03…96.05</td>
<td>Activering van de optionele digitale I/O uitbreidingsmodules</td>
</tr>
<tr>
<td>98.09…98.11</td>
<td>Indicatie van de optionele digitale ingangen in het applicatieprogramma</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.17</td>
<td>Waarde van standaard digitale ingangen</td>
</tr>
<tr>
<td>01.40</td>
<td>Waarde van optionele digitale ingangen</td>
</tr>
</tbody>
</table>

Waarschuwing

| I/O CONFIG (FF8B) | Onjuist gebruik van een optionele I/O |

Fout

| I/O COMM FT (7000) | Communicatieuitval naar de I/O |
Programmeerbare relaisuitgangen

Er zijn standaard drie programmeerbare relaisuitgangen. Er kunnen zes uitgangen worden toegevoegd als een optionele digitale I/O-uitbreidingsmodule wordt gebruikt. Door middel van een parameterinstelling is het mogelijk te kiezen welke informatie via de relaisuitgang moet lopen: gereed, bedrijf, storing, waarschuwing, motorstilstand, enz.

Het is mogelijk een waarde naar een relaisuitgang te schrijven via een seriële communicatieverbinding.

Updatencyclusen in het standaardbesturingsprogramma

<table>
<thead>
<tr>
<th>Uitgang</th>
<th>Cyclus</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO / standaard</td>
<td>100 ms</td>
</tr>
<tr>
<td>RO / uitbreiding</td>
<td>100 ms</td>
</tr>
</tbody>
</table>

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 14 RELAISUITGANGEN</td>
<td>RO-waardeselecties en draaitijden</td>
</tr>
<tr>
<td>30.20</td>
<td>Gebruik van een extern gestuurde relaisuitgang bij een communicatiebreuk</td>
</tr>
<tr>
<td>Groep 42 MECH REMBEST</td>
<td>RO in de regeling van een mechanische rem</td>
</tr>
<tr>
<td>Groep 98 OPTIEMODULES</td>
<td>Activeren van optionele relaisuitgangen</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.21</td>
<td>Standaard relaisuitgangsstatussen</td>
</tr>
<tr>
<td>01.41</td>
<td>Optionele relaisuitgangsstatussen</td>
</tr>
</tbody>
</table>
Actuele gegevens

Er zijn verscheidene actuele gegevens beschikbaar:

- Uitgangsfrequentie, -spanning, -stroom, -vermogen van de omvormer
- Motortoerental en -koppel
- Voedingsspanning en gelijkspanning van de tussenkring
- Actieve besturingslocatie (Lokaal, EXT1 of EXT2)
- Referentiewaarden
- Temperatuur van de omvormer
- Draaitijdteker (uur), kilowattuurteller
- Status digitale I/O en analoge I/O
- Actuele gegevens PID-regeling (als de macro PID-regeling is gekozen)

Er kunnen drie actuele gegeven gelijktijdig op de display van het bedieningspaneel worden weergegeven. Het is tevens mogelijk de waarden via de seriële communicatieverbinding of via de analoge uitgangen te lezen.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 15 ANALOGE UITGANGEN</td>
<td>Koppeling van een actueel gegeven aan een analoge uitgang</td>
</tr>
<tr>
<td>Groep 92 D SET TR ADDR</td>
<td>Koppeling van een actueel gegeven aan een dataset (seriële communicatie)</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 01 ACTUELE GEGEVENS 09 ACTUELE GEGEVENS</td>
<td>Lijst van actuele gegevens</td>
</tr>
</tbody>
</table>

Motoridentificatie

Het functioneren van DTC (Direct Torque Control) is gebaseerd op een nauwkeurig motormodel bepaald tijdens het opstarten van de motor.

Magnetisatie voor motoridentificatie wordt na de eerste startopdracht automatisch uitgevoerd. Tijdens de eerste maal starten wordt de motor gedurende enkele seconden gemagnetiseerd bij nul toeren, zodat het motormodel kan worden samengesteld. Deze identificatiemethode is voor de meeste toepassingen genoeg.

Bij veeleisende toepassingen is een afzonderlijke identificatieruim mogelijk.

Instellingen

Parameter 99.10.
Werking bij korte spanningsuitval

Als de voedingsspanning uitvalt, zal de omvormer in bedrijf blijven door de kinetische energie van de draaiende motor te benutten. De omvormer blijft volledig in bedrijf zolang de motor draait en energie opwekt. De omvormer kan na de uitval normaal bedrijf hervatten als de hoofdmagneetschakelaar gesloten is gebleven.

\[U_{DC} = \text{spanning van de tussenkring van de omvormer}, \quad f_{\text{out}} = \text{uitgangsfrequentie van de omvormer}, \quad T_M = \text{motorkoppel} \]

Spanningsuitval bij nominale belasting \((f_{\text{out}} = 40 \text{ Hz})\). De gelijkspanning van de tussenkring daalt tot de ondergrens. De regelaar houdt de spanning op peil zolang de voedingsspanning is uitgevallen. De omvormer laat de motor als generator draaien. Het motortoerental zal dalen, maar de omvormer blijft in bedrijf zolang de motor voldoende kinetische energie heeft.

Opmerking: Omvormers gemonteerd in een kast en voorzien van een hoofdmagneetschakelaar hebben een ‘houdkring’ die de regelkring van de schakelaar tijdens een korte spanningsuitval gesloten houdt. De toegestane duur van de uitval kan worden ingesteld. De fabrieksinstelling is vijf seconden.

Automatische start

Aangezien de omvormer binnen milliseconden de status van de motor kan detecteren, kan er onder alle omstandigheden onmiddellijk worden gestart. Er is geen sprake van een herstartvertraging.

Instellingen

Parameter 21.01.
Safe torque off (STO)

De Safe torque off functie ontkoppelt de stuurspanning van de vermogenshalfgeleiders van de inverter, d.w.z. de uitgangsspanning van de omvormer wordt uitgeschakeld. Zie de stroomschema's die met de omvormer meegeleverd zijn, voor de bedrading die door de gebruiker aangelegd moet worden.

WAARSCHUWING! De Safe torque off functie schakelt de spanning van de hoofdcircuits van de omvormer niet uit. Daarom mag onderhoudswerk aan elektrische delen alleen uitgevoerd worden nadat het omvormersysteem van de voeding is losgekoppeld.

De Safe torque off functie werkt als volgt:

- De operator geeft een activatie-opdracht voor de STO functie (bijvoorbeeld via een schakelaar die op het bedieningspaneel gemonteerd is).
- De voedingsspanning van de ASTO-x1C kaart wordt losgekoppeld.
- Het applicatieprogramma van de omvormer ontvangt een intern signaal van de AINT-kaart dat er een activatie-opdracht voor de STO-functie gegeven is. Indien de activatie-opdracht voor de STO-functie gegeven werd tijdens bedrijf, loopt de omvormer uit tot stilstand.
- De Safe Torque Off-functie wordt geactiveerd.
- Het alarm START INHIBI wordt geactiveerd (03.08 De waarde van bit 0 van Alarmwoord 1 is 1).
- 03.03 De waarde van bit 8 van AUX STATUS WORD wordt binnen 3 seconden ingesteld op 1 (= Safe torque off functie is actief).

Opmerking: Fout START INHIBI wordt gegenereerd (de waarde van bit 8 van 03.03 AUX STATUS WORD is 1) indien de Safe torque off functie geactiveerd wordt terwijl de motor draait of als er een motorstartopdracht gegeven wordt wanneer de Safe torque off functie al actief is.

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.03 AUX STATUS WORD, bit 8</td>
<td>Activatie-status van de Safe torque off functie</td>
</tr>
<tr>
<td>03.08 ALARMWOORD 1, bit 0 / 03.03 AUX STATUS WORD, bit 8</td>
<td>Safe torque off functie alarm/fout</td>
</tr>
</tbody>
</table>

Preventie van onverwacht opstarten (POUS).

TD functie Preventie van onverwacht opstarten werkt zoals hierboven beschreven Safe torque off, met de volgende uitzonderingen:

- POUS mag niet geactiveerd worden tijdens bedrijf.
- POUS vereist een AGPS-x1C-kaart (niet ASTO-x1C).
Veilig beperkt toerental (SLS) (alleen AS7R firmware-versie)

De SLS-functie beperkt het motortoerental tot een veilige waarde.

Opmerking: Indien de SLS-functie zonder een veiligheids-PLC gebruikt wordt, voldoet de functie niet aan de eisen voor SIL-classificatie zoals gedefinieerd in EN IEC 61800-5-2.

Wanneer de SLS-functie geactiveerd wordt, worden de toerentallimieten langs een helling verlaagd van de waarden van 20.01 MINIMUM TOERENTAL en 20.02 MAXIMUM TOERENTAL tot de waarde van respectievelijk 20.22 SLS SPEED LIMIT en zijn additieve inverse. Het verlagen begint bij de absolute waarde van het actuele toerental. Als het actuele toerental al lager is dan de SLS limiet, geldt de limiet onmiddellijk, zonder verlaging langs helling.

Wanneer de SLS-functie gedeactiveerd wordt, worden de toerentallimieten weer langs een helling verhoogd tot de waarden gedefinieerd door 20.01 en 20.02, en het actuele toerental keert terug naar de referentiewaarde indien het door deze functie begrensd werd.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.09 SLS ACTIVE</td>
<td>Selectie van DI bron</td>
</tr>
<tr>
<td>20.22 SLS SPEED LIMIT</td>
<td>Veilig beperkte toerentallimiet</td>
</tr>
<tr>
<td>22.10 SLS ACCELER TIME</td>
<td>Tijd die de toerentallimiet nodig heeft om langs helling van SLS tot normaal toe te nemen.</td>
</tr>
<tr>
<td>22.11 SLS DECELER TIME</td>
<td>Tijd die de toerentallimiet nodig heeft om langs helling af te nemen van huidige actuele toerental tot SLS</td>
</tr>
</tbody>
</table>

Diagnostiek en besturing

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.04 FREQ_LIMIT, bit 15</td>
<td>SLS activatie-status</td>
</tr>
</tbody>
</table>

Zie ook Safe speed functions for ACS800 cabinet-installed drives (+Q965/+Q966) Application guide [3AUA0000090742 (Engels)].

Opmerking: Wanneer SLS-functie actief is, hebben de instellingen van kritische toeren in parametergroep 25 geen effect.
DC-magnetisatie

Wanneer DC-magnetisatie is geactiveerd, zal de omvormer de motor voorafgaand aan de start automatisch voormagnetiseren. Deze mogelijkheid waarborgt het hoogst mogelijke startkoppel, tot 200% van het nominale motorkoppel. Door de voormagnetisatiertijd aan te passen is het mogelijk de start van de motor en bijvoorbeeld de mechanische-remvrijgave te synchroniseren. De automatische start en DC-magnetisatie kunnen niet gelijktijdig worden geactiveerd.

Instellingen

Parameters 21.01 en 21.02.

DC Houd

Door DC Hold te activeren is het mogelijk de rotor van de motor bij nul toeren te vergrendelen. Als zowel de referentie als het toerental van de motor onder het vooraf ingesteld ‘DC Hold’-toerental komen, brengt de omvormer de motor tot stilstand en injecteert gelijkstroom in de motor. Zodra het referentietoerental weer boven het ‘DC Hold’-toerental komt, wordt normaal bedrijf van de omvormer hervat.

Instellingen

Parameters 21.04, 21.05, en 21.06.

Fluxremmen

De omvormer kan snellere deceleratie bieden door het magnetisatieniveau van de motor te verhogen. Door verhogen van de flux in de motor, kan de door de motor tijdens het remmen opgewekte energie worden omgezet in thermische energie in de motor. Dit kenmerk is nuttig bij motorvermogens onder 15 kW.

De omvormer kan snellere deceleratie bieden door het magnetisatieniveau van de motor te verhogen. Door verhogen van de flux in de motor, kan de door de motor tijdens het remmen opgewekte energie worden omgezet in thermische energie in de motor. Dit kenmerk is nuttig bij motorvermogens onder 15 kW.
De omvormer bewaakt de motorstatus voortdurend, ook tijdens fluxremmen. Daarom kan fluxremmen worden toegepast voor zowel het stoppen van de motor als het wijzigen van het toerental. De overige voordelen van fluxremmen zijn:

- Het remmen begint onmiddellijk na het geven van een stopopdracht. De functie hoeft niet te wachten op de fluxreductie om met remmen te beginnen.
- De motorkoeling is efficiënt. De statorstroom van de motor gaat tijdens fluxremmen omhoog, niet de rotorstroom. De stator koelt veel efficiënter dan de rotor.

Instellingen

Parameter 26.02.

Fluxoptimalisatie

Fluxoptimalisatie reduceert het totale energieverbruik en het geluidsniveau van de motor wanneer de omvormer onder zijn nominale belasting werkt. Het totale rendement (van de motor plus omvormer) kan 1% tot 10% toenemen, afhankelijk van het lastkoppel en het toerental.

Instellingen

Parameter 26.01.
Acceleratie- en deceleratiehellingen

Er zijn twee door de gebruiker in te stellen acceleratie- en deceleratiehellingen beschikbaar. Het is mogelijk om de acceleratie- en deceleratietijden en de vorm van de helling aan te passen. Het schakelen tussen de twee hellingen kan worden bestuurd via een digitale ingang.

De beschikbare hellingvormen zijn de lineaire curve en de S-curve.

linear: Geschikt voor omvormers die een gelijkmatige of langzame acceleratie/deceleratie behoeven.

curve_**: Ideaal voor transportbanden bestemd voor fragiele ladingen of andere toepassingen waarbij een gelijkmatige overgang vereist is bij het wijzigen van de snelheid.

Instellingen

Parametergroep 22 ACCEL/DECEL.

Kritische toeren

Er is een kritische toerenfunctie beschikbaar voor toepassingen waarbij het noodzakelijk is om bepaalde motortoerentallen of toerentalbanden te vermijden vanwege bijvoorbeeld mechanische resonantie.

Instellingen

Parametergroep 25 KRITISCHE FREQ.

Constante toeren

Het is mogelijk om vooraf 15 constante toerentallen in te stellen. Constante toeren worden via digitale ingangen gekozen. Activering van constante toeren heeft voorrang op de externe toerentalreferentie.

Deze functie werkt binnen 6 ms.

Instellingen

Parametergroep 12 CONSTANT TOEREN.
Afregeling van de toerenregelaar

Tijdens de motoridentificatie wordt de toerenregelaar automatisch afgeregeld. Het is echter mogelijk om de sterkte van de regeling, de integratietijd en de differentiatietijd met de hand aan te passen of de omvormer een afzonderlijke autotune van de toerenregeling te laten uitvoeren. Bij een autotune wordt de toerenregeling afgered op basis van de belasting en de traagheid van de motor en machine. De onderstaande afbeelding laat de toerenrespons bij een toerentalreferentiestap zien (doorgaans 1 tot 20%).

\[
\frac{n}{n_N} \%
\]

Hieronder wordt een vereenvoudigd blokschema van de toerenregeling weergegeven. De uitgang van de regeling is de referentie voor de koppelregeling.

Instellingen

Parametergroep 23 TOERENREGELAAR en 20 LIMIETEN.
Diagnostiek

Actueel gegeven 01.02.

Prestaties van toerenregeling

De onderstaande tabel geeft gebruikelijke prestatiecijfers voor de toerenregeling bij gebruik van DTC (Direct Torque Control).

<table>
<thead>
<tr>
<th>Toerenregeling</th>
<th>Zonder pulsgewer</th>
<th>Met pulsgewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statische toerenfout, % van n_N</td>
<td>± 0,1 tot 0,5% (10% van de nominale slip)</td>
<td>± 0,01%</td>
</tr>
<tr>
<td>Dynamische toerenfout</td>
<td>0,4 %sec.*</td>
<td>0,1 %sec.*</td>
</tr>
</tbody>
</table>

*Dynamische toerenfout is afhankelijk van afregeling van de toerenregelaar.

Prestaties van koppelregeling

De omvormer heeft een nauwkeurige koppelregeling zonder enige toerentalterugkoppeling van de motoras. De onderstaande tabel geeft gebruikelijke prestatiecijfers voor de koppelregeling bij gebruik van DTC (Direct Torque Control).

<table>
<thead>
<tr>
<th>Koppelregeling</th>
<th>Zonder pulsgewer</th>
<th>Met pulsgewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity fout</td>
<td>± 4%*</td>
<td>± 3%</td>
</tr>
<tr>
<td>Herhaalbaarheids fout</td>
<td>± 3%*</td>
<td>± 1%</td>
</tr>
<tr>
<td>Koppelopbouwtijd</td>
<td>1 tot 5 ms</td>
<td>1 tot 5 ms</td>
</tr>
</tbody>
</table>

*Bij bedrijf met een frequentie nabij nul kan de fout groter zijn.
Scalarbesturing

Het is mogelijk om scalarbesturing in plaats van DTC (Direct Torque Control) als motorbesturing te kiezen. Bij scalarbesturing wordt de motor gestuurd met een frequentiereferentie. Met scalarbesturing wordt niet de uitstekende motorbesturing bereikt die met de standaard gebruikte DTC mogelijk is.

Het verdient aanbeveling om bij de volgende speciale toepassingen scalarbesturing te activeren:

- bij omvormers met meerdere aangesloten motoren: 1) als de belasting niet gelijkmatig over de motoren verdeeld is, 2) als het motoren van verschillende grootte betreft of 3) als de motoren na de motoridentificatie gewijzigd gaan worden
- als de nominale motorstroom minder is dan 1/6 van de nominale uitgangsstroom van de omvormer
- als de omvormer zonder aangesloten motor wordt gebruikt (bijvoorbeeld voor testdoeleinden)
- als een middenspanningsmotor via een transformator op de omvormer is aangesloten.

Bij scalarbesturing zijn sommige standaardfuncties niet beschikbaar.

Instellingen

Parameter 99.04.

IR-compensatie bij scalarbesturing

De IR-compensatie is uitsluitend actief bij gebruik van scalarmotorbesturing (zie onder Scalarbesturing op pagina 65 hierboven). Bij actieve IR-compensatie geeft de omvormer een extra spanningsboost aan de motor bij lage toeren. IR-compensatie is voor toepassingen die een hoog startkoppel vereisen. Bij DTC is geen IR-compensatie mogelijk of noodzakelijk.

Instellingen

Parameter 26.03.
Hexagonale motorflux

De omvormer stuurt de motorflux doorgaans zodanig dat de draaifluxvector een cirkelpatroon volgt. Dit is ideaal bij de meeste toepassingen. Bij gebruik boven het veldverzwakkingspunt (FWP, doorgaans 50 of 60 Hz), is het echter niet mogelijk om 100% van de uitgangsspanning te bereiken. Het piekbelastingsvermogen van de omvormer is lager dan bij volle spanning.

Bij keuze van hexagonale fluxregeling wordt de motorflux in een cirkelpatroon onder het veldverzwakkingspunt gehouden en in een hexagonaal patroon in het veldverzwakkingsgebied. Het toegepaste patroon wordt geleidelijk gewijzigd naarmate de frequentie toeneemt van 100% tot 120% van het FWP. Bij gebruik van het hexagonale fluxpatroon kan de maximale spanningsuitgang worden bereikt; Het piekbelastingsvermogen is hoger dan bij een cirkelvormig fluxpatroon maar het continue belastingsvermogen is vanwege toegenomen verliezen lager in het frequentiegebied FWP tot 1,6 · FWP.

Instellingen
Parameter 26.05.

Programmeerbare beveiligingsfuncties

AI<Min

De functie AI<Min bepaalt de werking van de omvormer als het analoge ingangssignaal beneden de vooraf ingestelde minimumlimiet komt.

Instellingen
Parameter 30.01.

Paneeluitval

De functie Paneeluitval bepaalt de werking van de omvormer als het als besturingsplaats van de omvormer gekozen bedieningspaneel niet meer communiceert.

Instellingen
Parameter 30.02.

Externe fout

Externe fouten kunnen worden bewaakt door een digitale ingang aan te wijzen als de bron voor een extern foutsignaal.

Instellingen
Parameter 30.03.
Thermische motorbeveiliging

De motor kan tegen oververhitting worden beveiligd door de functie Thermische motorbeveiliging te activeren en een van de beschikbare thermische beveiligingsmodussen voor de motor te kiezen.

De thermische beveiligingsmodussen zijn gebaseerd op een thermisch motortemperatuurmodel of op een overtemperatuurmeting afkomstig van de motorthermistor.

Thermisch motortemperatuurmodel

De omvormer berekent de temperatuur van de motor op basis van de volgende aannames:

1) De motor is op de geschatte temperatuur (waarde van 01.37 MOTOR TEMP EST opgeslagen bij uitschakeling van de voeding) wanneer de voeding van de omvormer ingeschakeld wordt. Wanneer de voeding voor de eerste keer ingeschakeld wordt, verkeert de motor in de omgevingstemperatuur (30°C).

2) De motortemperatuur wordt berekend aan de hand van een door de gebruiker aan te passen of automatisch berekende thermische tijdscurve en belastingscurve van de motor (zie afbeeldingen hieronder). De belastingscurve moet worden aangepast in het geval de omgevingstemperatuur hoger is dan 30°C.

Gebruik van een thermistor in de motor

Het is mogelijk om oververhitting van de motor te detecteren door een motorthermistor (PTC) aan te sluiten tussen de +24 VDC voeding geleverd door de omvormer en digitale ingang DI6. Bij een normale bedrijfstemperatuur van de motor behoort de thermistorweerstand minder dan 1,5 kOhm (stroom 5 mA) te bedragen. De omvormer brengt de motor tot stilstand en geeft een foutmelding als de thermistorweerstand boven 4 kOhm uitstijgt. De installatie moet voldoen aan de voorschriften inzake beveiliging tegen aanraking.

Instellingen

Parameters 30.04 tot 30.09.
Stall Protection

De omvormer beschermt de motor bij blokkering. Het is mogelijk de bewakingslimieten aan te passen (koppel, frequentie, tijd) en te kiezen hoe de omvormer moet reageren op blokkering van de motor (waarschuwings- / foutmelding & omvormer stoppen / geen reactie).

De koppel- en stroomlimieten, die de blokkeerlimiet bepalen, moeten ingesteld worden in overeenstemming met de maximale belasting van de gebruikte applicatie. **Opmerking:** De blokkeerlimiet wordt begrensd door de interne stroomlimiet 03.04 TORQ_INV_CUR_LIM.

Als de applicatie de blokkeerlimiet bereikt en de uitgangsfrequentie van de omvormer beneden de blokkeerfrequentie is: Fout wordt geactiveerd na de blokkeertijdvertraging.

Instellingen

Parameters 30.10 tot 30.12.

Parameters 20.03, 20.13 en 20.14 (Bepalen de blokkeerlimiet.)

Onderbelastingssbeveiliging

Het verlies van motorbelasting kan een procesdefect aangeven. De omvormer heeft een onderbelastingsfunctie om de machine en het proces tijdens een dergelijke ernstige storing te beveiligen. Bewakingslimieten - Onderbelastingscurve en onderbelastingstijd - zijn instelbaar, evenals de door de omvormer te nemen actie in het geval van onderbelasting (waarschuwings- / foutmelding & omvormer stoppen / geen reactie).

Instellingen

Parameters 30.13 tot 30.15.

Motorfaseverlies

De faseverliesfunctie bewaakt de status van de motorkabelaansluiting. Deze functie is nuttig tijdens het opstarten van de motor: de omvormer detecteert of alle motorfasen zijn aangesloten; zo niet, dan start hij niet. De faseverliesfunctie bewaakt de motorkabelaansluiting ook tijdens normaal bedrijf.

Instellingen

Parameter 30.16.
Aardfoutbeveiliging

De aardfoutbeveiliging detecteert aardfouten in zowel de motor als de motorkabel. De aardfoutbeveiliging is gebaseerd op het meten van een somstroom.

- Een aardfout in de voedingskabel geeft geen activering van de beveiliging.
- Bij een geaarde voeding wordt de beveiliging binnen 200 microsec. geactiveerd.
- In een ongeaarde voeding moet de voedingscapacitatie 1 microfarad of meer zijn.
- De capacitieve stromen veroorzaakt door afgeschermd motorkabels tot 300 meter geven geen activering van de beveiliging.
- Aardfoutbeveiliging wordt gedeactiveerd wanneer de omvormer gestopt wordt.

Opmerking: Bij parallel aangesloten uitgangsmodules is de aardfoutaanduiding CUR UNBAL xx. Zie hoofdstuk *Foutopsporing.*

Instellingen

Parameter 30.17.

Communicatiefout

De communicatiefoutfunctie bewaakt de communicatie tussen de omvormer en een externe besturing (bijvoorbeeld een veldbusadaptermodule).

Instellingen

Parameters 30.18 tot 30.21.

Bewaking van een optionele IO

De functie bewaakt het gebruik van de optionele analoge en digitale ingangen en uitgangen in het applicatieprogramma en waarschuwt als de communicatie naar de ingang/uitgang uitvalt.

Instellingen

Parameter 30.22.

Voorgeprogrammeerde storingen

Overstroom

De uitschakellimiet van de omvormer voor overstroom is $1,65 \text{ tot } 2,17 \cdot I_{\text{max}}$ afhankelijk van het type omvormer.

DC-overspanning

Uitschakellimiet voor DC-overspanning is $1,3 \times 1,35 \times U_{1,\text{max}}$, waarbij $U_{1,\text{max}}$ de maximum waarde van het voedingsspanningsbereik is. Voor 400 V-omvormers is $U_{1,\text{max}} = 415$ V. Voor 500 V-omvormers is $U_{1,\text{max}} = 500$ V. Voor 690 V-omvormers is $U_{1,\text{max}} = 690$ V. De feitelijke spanning in het tussenliggende circuit overeenkomend met het uitschakelniveau van de voedingsspanning is 728 V DC voor 400 V-omvormers, 877 V DC voor 500 V-omvormers en 1210 V DC voor 690 V-omvormers.
DC-onderspanning

De uitschakellimiet voor DC-overspanning is $0,6 \times 1,35 \times U_{1\text{min}}$, waarbij $U_{1\text{min}}$ de minimumwaarde van het voedingsspanningsbereik is. Voor 400 V- en 500 V-omvormers is $U_{1\text{min}}$ 380 V. Voor 690 V-omvormers is $U_{1\text{min}}$ 525 V. De feitelijke spanning in het tussenliggende circuit overeenkomend met het uitschakelniveau van de voedingsspanning is 307 V DC voor 400 V- en 500 V-omvormers en 425 V DC voor 690 V-omvormers.

Omvormer temperatuur

De omvormer bewaakt de temperatuur van de omzettermodule. Er zijn twee bewakingsgrenzen: een waarschuwinglimiet en een uitschakellimiet als gevolg van een storing.

Uitgebreide monitoring van de omvormertemperatuur voor ACS800, frames R7 en R8

Vanouds gebruikelijk is het monitoren van de omvormertemperatuur gebaseerd op temperatuurmeting van de vermogenshalfgeleider (IGBT), die vergeleken wordt met een vaste maximum IGBT temperatuurlimiet. Bepaalde abnormale omstandigheden, zoals een defect in de koelventilator, onvoldoende koelluchtstoming of een te hoge omgevingstemperatuur kunnen echter oververhitting veroorzaken binnen in de omvormermodule, die de gebruikelijke temperatuurmonitoring alleen niet detecteert. De uitgebreide monitoring van de omvormertemperatuur verbetert de beveiliging in dit soort situaties.

Deze functie monitort de temperatuur van de omvormermodule door cyclisch te controleren of de gemeten IGBT-temperatuur niet te hoog is gezien de belastingsstroom, omgevingstemperatuur en andere factoren die de temperatuurstijging in de omvormermodule beïnvloeden. De berekening maakt gebruik van een experimenteel bepaalde vergelijking die de normale temperatuurveranderingen in de module simuleert afhankelijk van de belasting. De omvormer genereert een waarschuwing wanneer de temperatuur de limiet overschrijdt, en schakelt uit wanneer de temperatuur de limiet met 5°C overschrijdt.

Opmerking: De monitoring is beschikbaar voor ACS800-02, -04 en -07, frames R7 en R8 met Standaardbesturingsprogramma versie ASXR7360 (en latere versies). Voor ACS800-U2, -U4 en -U7, frames R7 en R8, is monitoring beschikbaar met Standaardbesturingsprogramma versie ASXR730U (en latere versies).

Types waarvoor de uitgebreide monitoring van de omvormertemperatuur beschikbaar is:

- ACS800-XX -0080-2
- -0100-2
- -0120-2
- -0140-2/3/7
- -0170-2/3/5/7
- -0210-2/3/5/7

Programmakenmerken
Er zijn drie afzonderlijke beveiligingskringen voor detectie van kortsluiting in de motorkabel en omzetter. Als kortsluiting wordt gedetecteerd, zal de omvormer niet starten en zal een foutmelding geven.

Uitval van ingangsfasen
De beveiliging tegen uitval van een ingangsfasen bewaakt de aansluiting van de voedingskabel door detectie van tussenkringrimpel. Bij verlies van een fase neemt de spanningsrimpel toe. Wanneer de spanningsrimpel hoger is dan 13%, wordt de omvormer uitgeschakeld en wordt een foutmelding gegeven.

Temperatuur van de besturingskaart
De omvormer bewaakt de temperatuur van de besturingskaart. Een foutmelding CTRL B TEMP wordt gegeven als de temperatuur boven 88°C stijgt.

Overfrequentie
Als de uitgangsfrequentie van de omvormer boven een vooraf ingestelde waarde uitstijgt, wordt de omvormer uitgeschakeld en wordt een foutmelding gegeven. De vooraf ingestelde waarde ligt 50 Hz boven het absolute maximumtoerental van het werkbereik (als Direct Torque Control actief is) of de frequentielimiet (als Scalarbesturing actief is).

Interne fout
Als de omvormer een interne fout detecteert, wordt de omvormer uitgeschakeld en wordt een foutmelding gegeven.

<table>
<thead>
<tr>
<th>Instellingen</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Aanvullende informatie</td>
</tr>
<tr>
<td>95.10 TEMP INV AMBIENT</td>
<td>Omgevingstemperatuur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostiek</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waarschuwing/Fout</td>
<td>Aanvullende informatie</td>
</tr>
<tr>
<td>INV OVERTEMP</td>
<td>Te hoge temperatuur omvormermodule</td>
</tr>
</tbody>
</table>

-0230-2
-0260-2/3/5/7
-0270-5
-0300-2/5
-0320-3/5/7
-0400-3/5/7
-0440-3/5/7
-0490-3/5/7
-0550-5/7
-0610-5/7

Programmamenmerken
Werkbereik

De ACS800 heeft instelbare limieten voor het toerental, de stroom (maximum), het koppel (maximum) en de gelijkspanning.

Instellingen

Parametergroep 20 LIMIETEN.

Vermogenslimiet

Vermogensbeperking wordt gebruikt om de ingangsbrug en de DC tussenkring te beschermen. Als het maximaal toegestane vermogen overschreden wordt, wordt het omvormerkoppel automatisch begrensd. De maximale overbelasting en de continue vermogenslimiet zijn afhankelijk van de omvormer hardware. Zie voor de specifieke waarden de betreffende hardwarehandleiding.

Automatische resets

De omvormer is voorzien van een automatische resetfunctie na de volgende fouten: overstroom, overspanning, onderspanning en “analoge ingang onder een minimum”-fouten. Elk van deze automatische resets moet door de gebruiker worden geactiveerd.

Instellingen

Parametergroep 31 AUTOMATISCHE RESET.

Bewaking

De omvormer controleert of bepaalde door de gebruiker gekozen variabelen binnen de door de gebruiker ingestelde limieten blijven. De gebruiker kan limieten instellen voor het toerental, de stroom, enz.

De bewakingsfuncties werken binnen 100 ms.

Instellingen

Parametergroep 32 BEWAKING.
Diagnostiek

<table>
<thead>
<tr>
<th>Actuele gegevens</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.02</td>
<td>Bits in een ‘packed boolean’ woord die een bewakingslimiet aangeven</td>
</tr>
<tr>
<td>03.04</td>
<td>Bits in een ‘packed boolean’ woord die een bewakingslimiet aangeven</td>
</tr>
<tr>
<td>03.14</td>
<td>Bits in een ‘packed boolean’ woord die een bewakingslimiet aangeven</td>
</tr>
<tr>
<td>Groep 14 RELAISUITGANGEN</td>
<td>Bewakingslimiet aangegeven via een relaisuitgang</td>
</tr>
</tbody>
</table>

Parameterslot

De gebruiker kan aanpassing van parameters voorkomen door het parameterslot te activeren.

Instellingen

Parameters 16.02 en 16.03.
Proces PID regeling

De omvormer heeft een ingebouwde PID-regeling. De regeling kan worden gebruikt om procesvariabelen als druk, volumestroom en vloeistofniveau te sturen.

Wanneer de PID-regeling wordt geactiveerd, wordt een procesreferentie (referentiepunt) in plaats van een toerentalreferentie op de omvormer aangesloten. Er wordt tevens een werkelijke waarde (processterugkoppeling) naar de omvormer teruggezonden. De PID-regeling past het toerental van de omvormer aan om de gemeten procesvariabele (werkelijke waarde) op het gewenste niveau (referentie) te houden.

De regeling werkt binnen 24 ms.

Blokschema's

Het onderstaande blokschema geeft een illustratie van de PID-regeling.

De afbeelding links geeft een applicatievoorbeeld: De regeling past het toerental van een boosterpomp aan op basis van de gemeten druk en de ingestelde drukreferentie.
Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Functie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.12, 01.24, 01.25, 01.26 en 01.34</td>
<td>Referentie, werkelijke waarden en foutwaarde voor de PID-regeling</td>
</tr>
<tr>
<td>32.13...32.18</td>
<td>De bewakingslimieten voor de procesreferentie REF2 en de variabelen WERK1 en WERK2</td>
</tr>
<tr>
<td>40.01...40.13, 40.19, 40.25...40.27</td>
<td>Instellingen van de PID-regeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Functie</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.02</td>
<td>Activeren van de PID-regeling</td>
</tr>
<tr>
<td>40.20</td>
<td>Keuze</td>
</tr>
<tr>
<td>40.22</td>
<td>Vertraging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 14 RELAISUITGANGEN</th>
<th>Functie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 14 RELAISUITGANGEN</td>
<td>Waarden van de PID-regeling via een relaisuitgang</td>
</tr>
<tr>
<td>Groep 15 ANALOGUE UITGANGEN</td>
<td>Waarden van de PID-regeling via standaard analoge uitgangen</td>
</tr>
<tr>
<td>Groep 96 EXTERNAL AO</td>
<td>Waarden van de PID-regeling via optionele analoge uitgangen</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Actuele gegevens</th>
<th>Functie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 14 RELAISUITGANGEN</td>
<td></td>
</tr>
</tbody>
</table>

Slaapfunctie van de PID-regeling

De slaapfunctie werkt binnen 100 ms.

Het onderstaande blokschema illustreert de in-/uitschakellogica van de slaapfunctie. De slaapfunctie kan uitsluitend worden gebruikt als de PID-regeling actief is.

Mot.toeren: Werkelijk toerental van de motor
%refActive: De %-referentie (EXT REF2) wordt gebruikt. Zie parameter 11.02.
PIDCtrlActive: 99.02 is PID CTRL modulating: De IGBT-regeling van de omzetter is actief
Voorbeeld

Het onderstaande tijdschema maakt de werking van de slaapfunctie duidelijk..

De slaapfunctie voor een boosterpomp onder PID-regeling: Het waterverbruik daalt 's nachts. De PID-regeling vermindert daarom het motortoerental. Door natuurlijk verlies in de leidingen en het lage rendement van de centrifugaalpomp bij lage toeren stopt de motor echter niet, maar blijft draaien. De slaapfunctie detecteert de lage toeren en stopt de onnodige pompactiviteit nadat de slaapvertraging is verstreken. De omvormer schakelt naar de slaapmodus, maar blijft de druk controleren. De pomp start opnieuw als de druk onder het toegestane minimumniveau is gedaald en de wekvertraging is verstreken.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.02</td>
<td>Activeren van de PID-regeling</td>
</tr>
<tr>
<td>40.05</td>
<td>Inversie</td>
</tr>
<tr>
<td>40.20...40.24</td>
<td>Instellen van de slaapfunctie</td>
</tr>
</tbody>
</table>

Diagnostiek

De waarschuwing SLAAPMODE op het display van het bedieningspaneel.

Programmakenmerken
Meting van de motortemperatuur via de standaard I/O

Dit onderdeel beschrijft de temperatuurmeting van één motor wanneer de omvormerbesturingskaart RMIO als de interface wordt gebruikt.

WAARSCHUWING! Volgens IEC 664 is voor de aansluiting van de motortemperatuursensor op de RMIO-kaart dubbele of versterkte isolatie tussen de onder spanning staande motoronderdelen en de sensor noodzakelijk. Versterkte isolatie omvat een vrije afstand en kruipafstand van 8 mm (apparatuur van 400 / 500 VAC). Als de machinegroep hieraan niet voldoet:

- moeten de klemmen van de RMIO-kaart tegen aanraken worden beveiligd en mogen ze niet op andere apparatuur worden aangesloten.

Of

- de temperatuursensor moet galvanisch worden gescheiden van de klemmen van de RMIO-kaart

Zie ook de sectie *Thermische motorbeveiliging* op pagina 67.
Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.01</td>
<td>Analoge uitvoer bij een temperatuurmeting van motor 1. Stel in op M1 TEMP MEET.</td>
</tr>
<tr>
<td>35.01…35.03</td>
<td>Instellingen voor temperatuurmeting van motor 1</td>
</tr>
</tbody>
</table>

Overig

Parameters 13.01 tot 13.05 (AI1 verwerking) en 15.02 tot 15.05 (AO1 signaalkeuze en verwerking) werken niet.

Aan de motorzijde moet de kabelafscherming worden geaard via een condensator van 10 nF. Als dit niet mogelijk is, mag het scherm niet worden aangesloten.

Diagnostiek

<table>
<thead>
<tr>
<th>Actuele gegevens</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.35</td>
<td>Temperatuurwaarde</td>
</tr>
</tbody>
</table>

Waarschuwingen

- MOTOR 1 TEMP (4312) Gemeten motortemperatuur heeft de ingestelde alarmlimiet overschreden
- T MEET ALARM (FF91) Motortemperatuurmeting is buiten toegestaan bereik

Fouten

- MOTOR 1 TEMP (4312) Gemeten motortemperatuur heeft de ingestelde foutlimiet overschreden
Meting van de motortemperatuur via de analoge I/O-uitbreiding

Dit onderdeel beschrijft de temperatuurmeting van één motor wanneer een optionele analoge I/O-uitbreidingsmodule RAIO als de interface wordt gebruikt.

WAARSCHUWING! Volgens IEC 664 is voor de aansluiting van de motortemperatuursensor op de RAIO-module dubbele of versterkte isolatie tussen de onder spanning staande motoronderdelen en de sensor noodzakelijk. Versterkte isolatie omvat een vrije afstand en kruipafstand van 8 mm (apparatuur van 400 / 500 VAC). Als de machinegroep hieraan niet voldoet:

• moeten de klemmen van de RAIO-module tegen aanraken worden beveiligd en mogen ze niet op andere apparatuur worden aangesloten.

Of

• de temperatuursensor moet galvanisch worden gescheiden van de klemmen van de RAIO-module.

Zie ook de sectie Thermische motorbeveiliging op pagina 67.
Adaptief programmeren met behulp van functieblokken

De gebruiker stelt de omvormer traditioneel in met behulp van parameters. Elke parameter biedt een vast aantal instellingen of een instelbereik. De parameters vereenvoudigen het programmeren, maar de keuzes zijn beperkt. De gebruiker kan de werking van de omvormer naast de standaardmogelijkheden niet verder aanpassen. Het Adaptieve programma maakt dit aanpassen mogelijk zonder dat een speciaal programmeermiddel of een speciale programmeertaal vereist is:

- Het programma is opgebouwd uit standaard functieblokken die in het applicatieprogramma van de omvormer zijn opgenomen.
- Het bedieningspaneel vormt het programmeermiddel.
- De gebruiker kan het programma documenteren door het met behulp van programmastroomschema’s uit te tekenen.

De maximumgrootte van het Adaptieve programma is 15 functieblokken. Het programma kan verscheidene afzonderlijke functies bevatten.

Voor aanvullende informatie, zie de aparte handleiding Application Guide for Adaptive Program [3AFE64527274 (Engels)].

DriveAP

DriveAP is een op Windows gebaseerde tool voor adaptief programmeren. Met DriveAP is het mogelijk om het Adaptieve Programma van de drive te lezen en het met de PC te bewerken.

Zie voor aanvullende informatie de DriveAP User’s Manual [3AFE64540998 (Engels)].
Besturing van een mechanische rem

Een mechanische rem wordt gebruikt om de motor en aangedreven apparatuur op nul toeren te houden wanneer de omvormer wordt gestopt of niet onder spanning staat.

Voorbeeld

De onderstaande afbeelding laat een toepassingsvoorbeeld van rembesturing zien.

WAARSCHUWING! Zorg dat de apparatuur waarmee de omvormer voorzien van rembesturing is geïntegreerd, voldoet aan de voorschriften inzake persoonlijke veiligheid. Het is van belang te weten dat de frequentieomvormer (een volledige omvormermodule of basisomvormermodule zoals gedefinieerd in IEC 61800-2) niet wordt beschouwd als een veiligheidstoestel zoals omschreven in de Europese Machinerichtlijn en gerelateerde geharmoniseerde standaarden. De veiligheid van de apparatuur ten aanzien van personen mag derhalve niet zijn gebaseerd op een specifiek frequentieomvormer kenmerk (bijvoorbeeld de rembesturing), maar moet worden geïmplementeerd zoals omschreven in de specifieke voorschriften voor de toepassing.

De rembesturingslogica is geïntegreerd in het applicatieprogramma van de omvormer. De rembesturingshardware en bedrading moet door de gebruiker worden geïnstalleerd.
- Aan/uit-rembesturing via relaisuitgang RO1.
- Rembewaking via digitale ingang DIS (optioneel).
- Noodremschakelaar in de remstuurcircuit.
Tijdschema van de rembesturing

Het onderstaande tijdschema laat zien hoe de rembesturing werkt. Zie ook de statusmachine op de volgende pagina.

Startopdracht

Externe toerentalreferentie

Omwetter moduleert

Motor gemagnetiseerd

Opdracht rem lichten

Interne toerentalreferentie (werkelijke motortoerental)

Koppelreferentie

t_s Startkoppel bij remvrijgave (parameter 42.07 en 42.08)

t_{md} Vertraging in magnetisatie van de motor

t_{od} Vertraging in rem lichten (parameter 42.03)

n_{cs} Snelheid rembekrachtiging (parameter 42.05)

t_{cd} Vertraging rembekrachtiging (Parameter 42.04)
Statuswijzigingen

Vanuit elke status

1) (oplopende helling)

- NN: Statusnaam
- X/Y/Z: Statusuitgang/-acties

X = 1 Rem lichten. De relaisuitgang ingesteld op aan/uit-rembesturing wordt bekrachtigd.

Y = 1 Geforceerde start. De functie houdt de interne start aan totdat de rem is bekrachtigd ondanks de status van het externe startsignaal.

Z = 1 Nulhelling. Dwingt de gebruikte toerentalreferentie (intern) naar nul langs de helling.

Voorwaarden voor statuswijzigingen (symbool)

1) Rembesturing actief 0 -> 1 OF omzetter moduleert = 0
2) Motor gemagnetiseerd = 1 EN omvormer in bedrijf = 1
3) Remterugmelding = 1 EN 'rem gelicht'-vertraging verstrekken EN start = 1
4) Start = 0
5) Start = 0
6) Start = 1
7) Werkelijke toerental motor < Rembekrachtigingstoerental EN start = 0
8) Start = 1
9) Remterugmelding = 0 EN bekrachtigingsvertraging rem verstrekken = 1 EN start = 0
 Uitsluitend als parameter 42.02 ≠ OFF:
10) Remterugmelding = 0 EN 'rem gelicht'-vertraging verstrekken = 1
11) Remterugmelding = 0
12) Remterugmelding = 0
13) Remterugmelding = 1 EN 'rem gevallen'-vertraging verstrekken = 1
Gebruik van meerdere omvormers met Master/Follower

Bij de toepassing Master/Follower kan het systeem door verschillende omvormers worden bestuurd, waarbij de motorassen gekoppeld zijn. De master- en followeromvormers communiceren via een optische vezelverbinding. De onderstaande afbeeldingen illustreer twee basistoepassingen.

Instellingen en diagnostiek

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01</td>
<td>Relaisuitgang voor de rembesturing (ingesteld op REM BEST)</td>
</tr>
<tr>
<td>Groep 42 MECH REMBEST</td>
<td>Instellingen remfunctie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.01</td>
<td>Bit "nulhelling"</td>
</tr>
<tr>
<td>03.13</td>
<td>Status van de bit "rem gelicht/gevallen-opdracht"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waarschuwingen</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM BEVESTIG (FF74)</td>
<td>Onverwachte status van het rembevestigingssignaal</td>
</tr>
</tbody>
</table>

Gebruik van meerdere omvormers met Master/Follower

M/F-toepassing, Overzicht

- **Vast gekoppelde motorassen:**
 - Master met gestuurd toerental
 - Follower volgt de koppelreferentie van de master

- **Flexibel gekoppelde motorassen:**
 - Master met gestuurd toerental
 - Follower volgt de toerentalreferentie van de master

Programmamenmerken
Tornen

De tornfunctie wordt doorgaans gebruikt om een cyclische beweging van een machineonderdeel te sturen. Met één druktoets kan de omvormer tijdens de gehele cyclus worden bestuurd. Bij activering start de omvormer, accelerereert met een vooraf ingestelde snelheid naar een vooraf ingesteld toerental. Als de functie niet is geactiveerd, decelerereert de omvormer met een vooraf ingestelde snelheid naar nul toeren.

Onderstaande afbeelding en tabel beschrijven de werking van de omvormer. Ze laten ook zien hoe de omvormer overgaat naar normaal bedrijf (≠ tornen niet actief) als de startopdracht voor de omvormer wordt ingeschakeld. Jog cmd = Status van de torningang, Start cmd = Status van de startopdracht voor de omvormer.

De functie werkt binnen een 100 ms tijdscyclus.

<table>
<thead>
<tr>
<th>Fase</th>
<th>Tornopdracht</th>
<th>Startopdracht</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1</td>
<td>0</td>
<td>Omvormer accelerereert naar toortoerental langs de acceleratiehelling van de tornfunctie.</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>0</td>
<td>Omvormer draait bij het toortoerental.</td>
</tr>
<tr>
<td>3-4</td>
<td>0</td>
<td>0</td>
<td>Omvormer decelerereert naar nul toeren langs de deceleratiehelling van de tornfunctie.</td>
</tr>
<tr>
<td>4-5</td>
<td>0</td>
<td>0</td>
<td>Omvormer gestopt.</td>
</tr>
<tr>
<td>5-6</td>
<td>1</td>
<td>0</td>
<td>Omvormer accelerereert naar toortoerental langs de acceleratiehelling van de tornfunctie.</td>
</tr>
<tr>
<td>6-7</td>
<td>1</td>
<td>0</td>
<td>Omvormer draait bij het toortoerental.</td>
</tr>
<tr>
<td>7-8</td>
<td>x</td>
<td>1</td>
<td>Normaal bedrijf heft het tornen op. Omvormer accelerereert naar de toerentalreferentie langs de actieve acceleratiehelling.</td>
</tr>
<tr>
<td>8-9</td>
<td>x</td>
<td>1</td>
<td>Normaal bedrijf heft het tornen op. Omvormer volgt de toerentalreferentie.</td>
</tr>
<tr>
<td>9-10</td>
<td>0</td>
<td>0</td>
<td>Omvormer decelerereert naar nul toeren langs de actieve deceleratiehelling.</td>
</tr>
<tr>
<td>10-11</td>
<td>0</td>
<td>0</td>
<td>Omvormer gestopt.</td>
</tr>
<tr>
<td>11-12</td>
<td>x</td>
<td>1</td>
<td>Normaal bedrijf heft het tornen op. Omvormer accelerereert naar de toerentalreferentie langs de actieve acceleratiehelling.</td>
</tr>
<tr>
<td>12-13</td>
<td>x</td>
<td>1</td>
<td>Normaal bedrijf heft het tornen op. Omvormer volgt de toerentalreferentie.</td>
</tr>
<tr>
<td>13-14</td>
<td>1</td>
<td>0</td>
<td>Omvormer decelerereert naar toortoerental langs de deceleratiehelling van de tornfunctie.</td>
</tr>
<tr>
<td>14-15</td>
<td>1</td>
<td>0</td>
<td>Omvormer draait bij het toortoerental.</td>
</tr>
<tr>
<td>15-16</td>
<td>0</td>
<td>0</td>
<td>Omvormer decelerereert naar nul toeren langs de deceleratiehelling van de tornfunctie.</td>
</tr>
</tbody>
</table>

x = Status kan 1 of 0 zijn.
Opmerking: De tornfunctie werkt niet wanneer:

- een startopdracht voor de omvormer actief is of
- de omvormer onder lokale besturing staat (L zichtbaar op de eerste regel van de display op het bedieningspaneel).

Opmerking: Het tornertoerental heft de constante toerentallen op.

Opmerking: De tijdcoördinaat van de acceleratiehelling wordt tijdens tornen op nul gesteld.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.06</td>
<td>Ingang voor de aan/uit-besturing van de tornfunctie.</td>
</tr>
<tr>
<td>12.15</td>
<td>Tornertoerental.</td>
</tr>
<tr>
<td>21.10</td>
<td>Uitschakelen van de vertraging voor de IGBT-besturing van de omzetter. Een vertraging houdt modulering van de omzetter actief gedurende een korte periode van stilstand, zodat gelijkmatig opnieuw kan worden gestart.</td>
</tr>
<tr>
<td>22.04, 22.05</td>
<td>Acceleratie- en deceleratietijden gebruikt tijdens het tornen.</td>
</tr>
<tr>
<td>22.06</td>
<td>Tijdcoördinaat van de acceleratie- en deceleratiehellingen: wordt tijdens tornen op nul gesteld.</td>
</tr>
</tbody>
</table>

Gereduceerde Run-functie

De Gereduceerde Run-functie is beschikbaar voor parallel aangesloten omzetters. De Gereduceerde Run-functie maakt het mogelijk om het in bedrijf zijn te continueren met beperkte stroom als een omzetter module(s) buiten werking is. Als een van de modules defect is, dient deze verwijderd te worden. Het wijzigen van de parameter is nodig om het in bedrijf zijn voort te zetten met gereduceerde stroom (**95.03 INT CONFIG USER**). Zie voor instructies over het verwijderen en heraansluiten van een omzettermodule de betreffende hardwarehandleiding van de omvormer.

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.03 INT CONFIG USER</td>
<td>Aantal bestaande parallel aangesloten omzetters</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.01 INT kaart fout</td>
<td></td>
</tr>
<tr>
<td>Fouten</td>
<td>Aantal omvormermodules is niet gelijk aan het originele aantal omvormers.</td>
</tr>
</tbody>
</table>

Programmamenmerken
Belastingscurve gebruiker

De temperatuurstijging van de motor kan beperkt worden door de uitgangsstroom van de omvormer te begrenzen. De gebruiker kan een belastingscurve definiëren (uitgangsstroom als functie van de frequentie). De belastingscurve wordt gedefinieerd door acht punten door parameters 72.02...72.17. Als de belastingscurve overschreden wordt, wordt een fout / waarschuwing / stroom begrenzing geactiveerd.

![Belastingscurve gebruiker](image)

Overload

Overbelastingsbewaking kan op de belastingscurve van de gebruiker toegepast worden door de parameters 72.18 LOAD CURRENT LIMIT... 72.20 COOLING TIME in te stellen overeenkomstig de overbelastingswaarden opgegeven door de motorfabrikant.

De bewaking is gebaseerd op een integrator, ∫I²dt. Telkens wanneer de uitgangsstroom van de omvormer de belastingscurve van de gebruiker overschrijdt, wordt de integrator gestart. Wanneer de integrator de overbelastingslimiet gedefinieerd door parameters 72.18 en 72.19 bereikt heeft, reageert de omvormer zoals gedefinieerd door parameter 72.01 OVERLOAD FUNC. De uitgang van de integrator wordt op nul gesteld als de stroom continu onder de belastingscurve van de gebruiker blijft gedurende de koeltijd gedefinieerd door parameter 72.20 COOLING TIME.

Als de overbelastingstijd 72.19 LOAD THERMAL TIME ingesteld is op nul, is de uitgangsstroom van de omvormer begrensd op de gebruikers-belastingscurve.
Programmamenken

Instellingen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 72 BEL CURVE GEBR</td>
<td>Belastingscurve door gebruiker</td>
</tr>
</tbody>
</table>

Diagnostiek

<table>
<thead>
<tr>
<th>Werkelijke waarde</th>
<th>Aanvullende informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.20</td>
<td>Gemeten motorstroom als percentage van de stroom van de gebruikers-belastingscurve</td>
</tr>
</tbody>
</table>

Waarschuwingen

| GEKR L CURVE | Geïntegreerde motorstroom heeft belastingscurve overschreden. |

Fouten

| GEKR L CURVE | Geïntegreerde motorstroom heeft belastingscurve overschreden. |
Applicatiemacro's

Overzicht van de hoofdstukken

Dit hoofdstuk beschrijft het bedoelde gebruik, de werking en de standaard besturingsverbindingen van de standaard applicatiemacro's. In dit hoofdstuk wordt ook uitgelegd hoe een gebruikersmacro opgeslagen en weer opgeroepen kan worden.

Overzicht van de macro's

Applicatiemacro’s zijn voorgeprogrammeerde parametersets. Bij het opstarten van de omvormer kan de gebruiker een van de macro’s kiezen - de macro die het best past bij uw toepassing - via parameter 99.02, eventuele wijzigingen aanbrengen en het resultaat als een gebruikersmacro opslaan.

Er zijn vijf standaardmacro’s en twee gebruikersmacro’s. De tabel hieronder bevat een samenvatting van de macro’s en beschrijft geschikte toepassingen.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Geschikte toepassingen</th>
</tr>
</thead>
</table>
| Fabriek | Gewone toepassingen met toerenregeling, waarbij geen, een, twee of drie constante toerentallen worden gebruikt:
- Transportbanden
- Pompen en ventilatoren met toerenregeling
- Testbanken met vooraf ingestelde constante toerentallen |
| Hand/Auto | Toepassingen met toerenregeling. Er kan tussen twee externe besturingslocaties worden geschakeld. |
| PID-regeling| Toepassingen met procesregeling, bijvoorbeeld verschillende closed-loop regelsystemen zoals druk-, niveau- en volumestroomregeling. Bijvoorbeeld:
- boosterpompen van gemeentelijke watervoorzieningen
- niveauregelpompen in waterreservoirs
- boosterpompen van wijkverwarmingssystemen
- volumestroomregeling van materiaal op een transportband.
Het is tevens mogelijk om tussen proces- en toerenregeling te schakelen. |
| Koppelregeling | Toepassingen met koppelregeling. Het is mogelijk om tussen koppel- en toerenregeling te schakelen. |
| Volgordebesturing | Toepassingen met toerenregeling waarin de toerentalreferentie, zeven constante toerentallen en twee acceleratie-/deceleratiehellingen kunnen worden gebruikt. |
| Gebruiker | De gebruiker kan een aangepaste standaardmacro in het permanente geheugen opslaan, d.w.z. de parameterinstellingen, waaronder groep 99, en de resultaten van de motoridentificatie, en kan de gegevens later weer oproepen. Twee gebruikersmacro’s zijn essentieel wanneer geschakeld moet kunnen worden tussen twee verschillende motoren. |
Opmerking betreffende externe voeding

Externe +24 V voeding voor de RMIO-kaart wordt aanbevolen als

- de toepassing na aansluiting van de ingangsvoeding een snelle start vereist
- veldbuscommunicatie vereist als de ingangsvoeding is afgeschakeld.

De RMIO-kaart kan gevoed worden via een externe voedingsbron via aansluitklem X23 of X34 of via zowel X23 als X34. De interne voeding van aansluitklem X34 kan aangesloten blijven tijdens het gebruik van klem X23.

WAARSCHUWING! Als de RMIO-kaart via een externe voedingsbron via klem X34 wordt gevoed, dan moet het losse kabeluiteinde verwijderd van de klem op de RMIO-kaart fysiek worden vastgezet op een plaats waar geen contact met elektrische onderdelen mogelijk is. Van de kabel die van de klem verwijderd is, moeten de geleideruiteinden afzonderlijk worden geïsoleerd.

Parameterinstellingen

Stel bij het standaardbesturingsprogramma, parameter 16.09 CTRL BOARD SUPPLY in op EXTERNAL 24V als de RMIO-kaart gevoed wordt door een externe bron.
Alle omvormeropdrachten en referentie-instellingen kunt u opgeven via het bedieningspaneel of vanaf een externe besturingslocatie. De actieve besturingslocatie kunt u kiezen door middel van de toets **LOC REM** op het bedieningspaneel. De omvormer wordt gestuurd door het toerental.

Bij externe besturing is de besturingslocatie EXT1. Het referentiesignaal is aangesloten op analoog ingang AI1 en de start-/stop- en draairichtingssignalen op digitale ingangen DI1 en DI2. Standaard is de draairichting ingesteld op VOORUIT (parameter 10.03). DI2 bedient de draairichting pas als parameter 10.03 is gewijzigd naar VERZOEK.

Twee analoog signalen (toerental en stroom) en drie relaisuitgangssignalen (gereed, in bedrijf en geïnverteerde fout) zijn beschikbaar.

De standaard actuele gegevens op de display van het bedieningspaneel zijn **FREQUENTIE, STROOM en VERMOGEN**.
Standaardbesturingsaansluitingen

De onderstaande afbeelding geeft de externe aansluitingen van de macro Factory. De markeringen van standaard I/O-klemmen op de RMIO-kaart zijn aangegeven.

1) Werkt alleen als parameter 10.03 door de gebruiker naar VERZOEK is gezet.

2) De standaard VS-instellingen verschillen als volgt:
- DI1: Start (Puls: 0->1)
- DI2: Stop (Puls: 1->0)
- DI3: Vooruit/achteruit

3) 0 = hellingtijden volgens par. 22.02 en 22.03. 1 = hellingtijden volgens par. 22.04 en 22.05.

4) Zie parametergroep 12 CONSTANT TOEREN:
- INDIS: Bedrijf

5) Zie parameter 21.09.

6) Totale maximum stroom verdeeld over deze uitgang en optionele modules geïnstalleerd op de kaart.
Macro Hand/Auto

Start-/stop- en draairichtingsopdrachten en referentie-instellingen kunt u opgeven vanaf twee externe besturingslocaties, EXT1 (Hand) of EXT2 (Auto). De start-/stop-/draairichtingsopdrachten van EXT1 (Hand) zijn verbonden met de digitale ingangen DI1 en DI2 en het referentiesignaal is verbonden met de analoge ingang AI1. De start-/stop-/draairichtingsopdrachten van de EXT2 (Auto) zijn verbonden met de digitale ingangen DI5 en DI6 en het referentiesignaal is verbonden met de analoge ingang AI2. De keuze tussen EXT1 en EXT2 hangt af van de status van de digitale ingang DI3. De omvormer is toerengeregeld. Toerentalreferentie en start-/stop- en draairichtingsopdrachten kunt u ook via het toetsenbord van het bedieningspaneel invoeren. U kunt een constant toerental kiezen m.b.v. digitale ingang DI4.

Toerentalreferentie in autobesturing (EXT2) wordt gegeven als percentage van het maximumtoerental van de omvormer.

Twee analoge en drie relaisuitgangssignalen zijn beschikbaar op de klemmenstroken. De standaard actuele gegevens op de display van het bedieningspaneel zijn FREQUENTIE, STROOM en BEDIENPL.
Standaardbesturingsaansluitingen

De onderstaande afbeelding geeft de externe aansluitingen van de macro Hand/Auto. De markeringen van standaard I/O-klemmen op de RMIO-kaart zijn aangegeven.

1) Keuze tussen twee externe besturingslocaties, EXT1 en EXT2.

2) Zie parameter 21.09.

3) Totale maximum stroom verdeeld over deze uitgang en optionele modules geïnstalleerd op de kaart.

X20	1	VREF Referentiespanning -10 VDC
	2	GND
X21	1	VREF Referentiespanning 10 VDC, 1 kOhm ≤ R_L ≤ 10 kOhm
	2	GND
	3	AI1+ Toerentalreferentie (Handbesturing). 0(2) … 10 V, R_in > 200 kOhm
	4	AI1-
	5	AI2+ Toerentalreferentie (Autobesturing). 0(4) … 20 mA, R_in = 100 Ohm
	6	AI2-
	7	AI3+ Standaard, niet in gebruik. 0(4) … 20 mA, R_in = 100 Ohm.
	8	AI3-
	9	AO1+ Motortoeren 0(4) … 20 mA * 0 … nom. motortoerental, R_L ≤ 700 Ohm
	10	AO1-
	11	AO2+ Uitgangsstroom 0(4) … 20 mA * 0 … nom. motorstroom, R_L ≤ 700 Ohm
	12	AO2-

X22	1	DI1 Stop/start (Handbesturing)
	2	DI2 Vooruit/achteruit (Handbesturing)
	3	DI3 Keuze Hand-/Autobesturing 1)
	4	DI4 Constant toerental 4: Par. 12.05
	5	DI5 Vooruit/achteruit (Autobesturing)
	6	DI6 Stop/start (Autobesturing)
	7	+24 V +24 VDC, max. 100 mA
	8	+24 V
	9	DGND1 Digitale aarde
	10	DGND2 Digitale aarde
	11	DI IL Start interlock (0 = stop) 2)

| X23 | 1 | +24 V Hulpspanningsuitgang en ingang, niet geïsoleerd, 24 V DC, 250 mA 3) |
| | 2 | GND |

X25	1	RO11 Relaisuitgang 1
	2	RO12 Gereed
	3	RO13

X26	1	RO21 Relaisuitgang 2
	2	RO22 In bedrijf
	3	RO23

X27	1	RO31 Relaisuitgang 3
	2	RO32 Geïnverteerde fout
	3	RO33

Applicatiemacro's
Macro PID-regeling

De macro PID-regeling wordt gebruikt voor het regelen van procesvariabelen zoals druk of flow, door het toerental van de aangedreven motor te regelen.

Het procesreferentiesignaal is aangesloten op de analoge ingang AI1 en het procesterugkoppelsignaal op de analoge ingang AI2.

In plaats daarvan kunt u een directe toerentalreferentie bij de omvormer invoeren via analoge ingang AI1. Dan wordt de PID-regeling overgeslagen en regelt de omvormer niet langer de procesvariabele. De keuze tussen een directe toerentalregeling en de regeling van de procesvariabele gebeurt via digitale ingang DI3.

Twee analoge en drie relaisuitgangssignalen zijn beschikbaar op de klemmenstroken. De standaard actuele gegevens op de display van het bedieningspaneel zijn TOERENTAL, WERKWAARDE1 en REGELAFWIJKING.

Aansluitvoorbeeld, 24 tweedraadssensor VDC / 4...20 mA

![Diagram]

Opmerking: De sensor wordt gevoed door zijn stroomuitgang. Daarom moet het uitgangssignaal 4...20 mA zijn, en niet 0...20 mA.
Standaardbesturingsaansluitingen

De onderstaande afbeelding toont de externe aansluitingen van de macro PID-regeling. De markeringen van standaard I/O-klemmen op de RMIO-kaart zijn aangegeven.

1) Keuze tussen twee externe besturingslocaties, EXT1 en EXT2

2) Alleen gebruiken als de toerenregeling actief is (DI3 = 0)

4) Zie parameter 21.09.

5) De sensor moet op een voeding aangesloten zijn. Zie de instructies van de fabrikant. Een aansluitvoorbeeld voor een tweedraadssensor van 24 VDC / 4…20 mA sensor is op de vorige pagina weergegeven.

6) Totale maximum stroom verdeeld over deze uitgang en optionele modules geïnstalleerd op de kaart.

<table>
<thead>
<tr>
<th>X20</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF</td>
<td>Referentiespanning -10 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>1 kOhm < R<sub>L</sub> < 10 kOhm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X21</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF</td>
<td>Referentiespanning 10 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>1 kOhm < R<sub>L</sub> < 10 kOhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AI1+</td>
<td>Toerentalref. (toerenreg.) of procesref. (procesreg.). 0(2) … 10 V, R<sub>in</sub> > 200 kOhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AI1-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AI2+</td>
<td>Meting werkelijke proceswaarde. 0(4) … 20 mA, R<sub>in</sub> = 100 Ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AI2-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AI3+</td>
<td>Standaard, niet in gebruik. 0(4) … 20 mA, R<sub>in</sub> = 100 Ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AI3-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AO1+</td>
<td>Motortoeren 0(4) … 20 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AO1-</td>
<td>0 … nom. motorstroom, R<sub>L</sub> < 700 Ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AO2+</td>
<td>Uitgangsstroom 0(4) … 20 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AO2-</td>
<td>0 … nom. motorstroom, R<sub>L</sub> < 700 Ohm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X22</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Di1</td>
<td>Stop/start (toerenregeling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Di2</td>
<td>Standaard, niet in gebruik.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Di3</td>
<td>Keuze toeren-/procesregeling ¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Di4</td>
<td>Constant toerental 4: Par. 12.05 ²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Di5</td>
<td>Startvrijgave. ³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Di6</td>
<td>Stop/start (procesregeling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+24 V</td>
<td>+24 VDC, max. 100 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>+24 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DGND1</td>
<td>Digitale aarde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DGND2</td>
<td>Digitale aarde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Di IL</td>
<td>Start interlock (0 = stop) ⁴)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X23</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 V</td>
<td>Hulspanningsuitgang en -ingang, niet geïsoleerd, 24 V DC, 250 mA ⁶)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X25</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RO11</td>
<td>Relaisuitgang 1 Gereed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RO12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RO13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X26</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RO21</td>
<td>Relaisuitgang 2 In bedrijf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RO22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RO23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X27</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RO31</td>
<td>Relaisuitgang 3 Geïnverteerde fout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RO32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RO33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicatiemacro's
Macro Koppelregeling

De macro Koppelregeling wordt gebruikt in toepassingen die de regeling van het motorkoppel vereisen. Koppelreferentie wordt gegeven als een stroomsignaal via analoge ingang AI2. Standaard komt 0 mA overeen met 0 % en 20 mA met 100 % van het nominale motorkoppel. De opdrachten Start/Stop/Draairichting worden via de digitale ingangen DI1 en DI2 gegeven. Het startvrijgavesignaal is aangesloten op DI6.

Via de digitale ingang DI3 kan een toerenregeling in plaats van een koppelregeling worden gekozen. Ook kan de externe besturingslocatie worden gewijzigd naar lokale besturingslocatie (d.w.z. naar het bedieningspaneel) door op de toets LOC/REM te drukken. Het paneel regelt standaard het toerental. Als via het paneel het koppel moet worden geregeld, moet de waarde van parameter 11.01 worden gewijzigd in REF2 (%).

Twee analoge en drie relaisuitgangssignalen zijn beschikbaar op de klemmenstroken. De standaard actuele gegevens op de display van het bedieningspaneel zijn TOERENTAL, KOPPEL en BEDIENPL.
Standaardbesturingsaansluitingen

De onderstaande afbeelding geeft de externe aansluitingen van de macro Koppelregeling. De markeringen van standaard I/O-klemmen op de RMIO-kaart zijn aangegeven.

1) Keuze tussen twee externe besturingslocaties, EXT1 en EXT2

2) Alleen gebruiken als de toerenregeling actief is (DI3 = 0)

3) Open = Hellingtijd volgens par. 22.02 en 22.03. Gesloten = Hellingtijd volgens par. 22.04 en 22.05.

5) Zie parameter 21.09.

6) Totale maximum stroom verdeeld over deze uitgang en optionele modules geïnstalleerd op de kaart.

X20	1	VREF Referentiespanning -10 VDC
2	GND	1 kOhm ≤ R_L ≤ 10 kOhm
X21	1	VREF Referentiespanning 10 VDC
2	GND	1 kOhm ≤ R_L ≤ 10 kOhm
3	AI1+ Toerentalreferentie. 0(2) V ... 10 V, R_{in} > 200 kOhm	
4	AI1-	200 kOhm
5	AI2+ Koppelreferentie. 0(4) mA ... 20 mA, R_{in} = 100 kOhm	
6	AI2-	Ohm
7	AI3+ Standaard, niet in gebruik. 0(4) mA ... 20 mA, R_{in} = 100 kOhm	
8	AI3-	Standaard, niet in gebruik. 0(4) mA ... 20 mA, R_{in} = 100 kOhm
9	AO1+ Motortoeren 0(4) ... 20 mA @ 0 ... nom. motorstroom, R_L ≤ 700 Ohm	
10	AO1-	Motorstroom 0(4) ... 20 mA @ 0 ... nom. motorstroom, R_L ≤ 700 Ohm
11	AO2+ Uitgangsstroom 0(4) ... 20 mA @ 0 ... nom. motorstroom, R_L ≤ 700 Ohm	
12	AO2-	}

X22	1	Di1 Stop/Start
2	Di2 Vooruit/achteruit	
3	Di3 Keuze toeren-/koppelregeling 1)	
4	Di4 Constant toerental 4: Par. 12.05 2)	
5	Di5 Acceleratie & deceleratie keuze 3)	
6	Di6 Startvrijgave 4)	
7	+24 V	+24 VDC, max. 100 mA
8	+24 V	}

| X23 | 1 | +24 V Hulpspanningsuitgang en -ingang, niet geïsoleerd, 24 V DC, 250 mA 5) |
| 2 | GND | }

| X25 | 1 | RO11 Relaisuitgang 1 Gereed |
| 2 | RO12 | }
| 3 | RO13 | }

| X26 | 1 | RO21 Relaisuitgang 2 In bedrijf |
| 2 | RO22 | }
| 3 | RO23 | }

| X27 | 1 | RO31 Relaisuitgang 3 Geïnverteerde fout |
| 2 | RO32 | }
| 3 | RO33 | }

Applicatiemacro’s
Macro Volgordebesturing

Externe toerentalreferentie kan worden ingevoerd via analoge ingang AI1. De referentie is alleen actief wanneer alle digitale ingangen DI4 tot DI6 0 V DC zijn. Het geven van besturingsopdrachten en het instellen van de referentie is ook mogelijk vanaf het bedieningspaneel.

Twee analo ge en drie relaisuitgangssignalen zijn beschikbaar op de klemmenstroken. De standaardstopfunctie is helling. De standaard actuele gegevens op de display van het bedieningspaneel zijn FREQUENTIE, STROOM en VERMogen.

Werkingsschema

De onderstaande afbeelding laat een praktisch voorbeeld van de macro zien.
Standaardbesturingsaansluitingen

De onderstaande afbeelding geeft de externe aansluitingen van de macro Volgordebesturing. De markeringen van standaard I/O-klemmen op de RMIO-kaart zijn aangegeven.

1) Open = Hellingtijd volgens par. 22.02 en 22.03. Gesloten = Hellingtijd volgens par. 22.04 en 22.05.

2) Zie parametergroep 12

CONSTANT TOEREN:

<table>
<thead>
<tr>
<th>DI4</th>
<th>DI5</th>
<th>DI6</th>
<th>Bedrijf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Instellen via AI1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Toerental 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Toerental 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Toerental 3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Toerental 4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Toerental 5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Toerental 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Toerental 7</td>
</tr>
</tbody>
</table>

3) Zie parameter 21.09.

4) Totale maximum stroom verdeeld over deze uitgang en optionele modules geïnstalleerd op de kaart.

X20

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

X21

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>AI1+</td>
</tr>
<tr>
<td>4</td>
<td>AI1-</td>
</tr>
<tr>
<td>5</td>
<td>AI2+</td>
</tr>
<tr>
<td>6</td>
<td>AI2-</td>
</tr>
<tr>
<td>7</td>
<td>AO1+</td>
</tr>
<tr>
<td>8</td>
<td>AO1-</td>
</tr>
</tbody>
</table>

X22

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DI1</td>
</tr>
<tr>
<td>2</td>
<td>DI2</td>
</tr>
<tr>
<td>3</td>
<td>DI3</td>
</tr>
<tr>
<td>4</td>
<td>DI4</td>
</tr>
<tr>
<td>5</td>
<td>DI5</td>
</tr>
<tr>
<td>6</td>
<td>DI6</td>
</tr>
<tr>
<td>7</td>
<td>+24 V</td>
</tr>
<tr>
<td>8</td>
<td>+24 V</td>
</tr>
<tr>
<td>9</td>
<td>DGND1</td>
</tr>
<tr>
<td>10</td>
<td>DGND2</td>
</tr>
<tr>
<td>11</td>
<td>DI IL</td>
</tr>
</tbody>
</table>

X23

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 V</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

X25

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RO11</td>
</tr>
<tr>
<td>2</td>
<td>RO12</td>
</tr>
<tr>
<td>3</td>
<td>RO13</td>
</tr>
</tbody>
</table>

X26

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RO21</td>
</tr>
<tr>
<td>2</td>
<td>RO22</td>
</tr>
<tr>
<td>3</td>
<td>RO23</td>
</tr>
</tbody>
</table>

X27

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RO31</td>
</tr>
<tr>
<td>2</td>
<td>RO32</td>
</tr>
<tr>
<td>3</td>
<td>RO33</td>
</tr>
</tbody>
</table>

Applicatiemacro’s
Gebruikersmacro’s

Behalve de standaardapplicatiemacro’s kunt u ook twee gebruikersmacro’s maken. De gebruikersmacro maakt het mogelijk dat de gebruiker parameterinstellingen, inclusief groep 99, en de resultaten van de motoridentificatie, opslaat in het permanente geheugen en de gegevens in een later stadium weer oproept. De paneelreferentie wordt ook opgeslagen, als de macro wordt opgeslagen en geladen in locale besturingsmodus. De instelling van een externe besturingslocatie wordt opgeslagen in de gebruikersmacro, maar de instelling van een locale besturingslocatie wordt niet opgeslagen.

Gebruikersmacro 1 maken:

- Pas de parameters aan. Start de motoridentificatie als dat nog niet is gebeurd.
- Sla de parameterinstellingen en de resultaten van de motoridentificatie op door parameter 99.02 in G1 SCHRIJVEN te wijzigen (druk op ENTER). Het opslaan duurt 20 s tot 1 minuut.

Opmerking: Als het opslaan van de gebruikersmacro meerdere keren uitgevoerd wordt, loopt het geheugen van de omvormer vol en start de file-compressie. File-compressie kan tot 10 minuten duren. De macro zal verder opgeslagen worden na de file-compressie. (Dat deze bewerking bezig is, wordt aangegeven door knipperende puntjes op de laatste rij van het bedieningspaneel).

De gebruikersmacro oproepen:

- Wijzig parameter 99.02 in G 1 LEZEN.
- Druk op **ENTER** om de waarden in te lezen.

De gebruikersmacro kan ook worden gewijzigd via een digitale ingang (zie parameter 16.05).

Opmerking: Het inlezen van een gebruikersmacro herstelt ook de motorinstellingen in groep 99 OPSTARTGEGEVENS en de resultaten van de motoridentificatie. Controleer of de instellingen overeenkomen met de gebruikelijke motor.

Voorbeeld: De gebruiker kan de omvormer naar een andere motor schakelen zonder telkens eerst de parameters van de motor aan te hoeven passen en de motoridentificatie uit te voeren als er een andere motor wordt gekozen. De gebruiker hoeft slechts eenmaal de instellingen aan te passen en de motoridentificatie voor beide motoren uit te voeren en kan de gegevens vervolgens als twee gebruikersmacro’s opslaan. Als de andere motor wordt gekozen, hoeft alleen de betreffende gebruikersmacro te worden ingelezen en is de omvormer klaar voor gebruik.
Actuele signalen en parameters

Overzicht hoofdstuk

Dit hoofdstuk beschrijft de feitelijke signalen en parameters en geeft de equivalente veldbuswaarde voor elk signaal en elke parameter. Er zijn aanvullende gegevens opgenomen in het hoofdstuk *Aanvullende gegevens: actuele gegevens en parameters*.

Termen en afkortingen

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absoluut frequentiemaximum</td>
<td>Waarde van 20.08 of 20.07 als de absolute waarde van de onderlimiet groter is dan de bovenlimiet.</td>
</tr>
<tr>
<td>Absoluut toerentalmaximum</td>
<td>Waarde van parameter 20.02 of 20.01 als de absolute waarde van de onderlimiet groter is dan de bovenlimiet.</td>
</tr>
<tr>
<td>Actueel signaal</td>
<td>Signaal, gemeten of berekend door de omvormer. De gebruiker kan dit signaal monitoren. Geen gebruikersinstelling mogelijk.</td>
</tr>
<tr>
<td>FbEq</td>
<td>Veldbus-equivalent: De schaling tussen de waarde weergegeven op het paneel en het in de seriële communicatie gebruikte geheel getal.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Een door de gebruiker aanpasbare besturingsinstructie van de omvormer.</td>
</tr>
</tbody>
</table>
Actuele gegevens

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01</td>
<td>PROCES DATA</td>
<td>Basissignalen voor monitoren van de omvormer.</td>
<td></td>
</tr>
<tr>
<td>01.02</td>
<td>TOERENTAL</td>
<td>Berekende motortoerental in rpm. Tijdinstelling filter via parameter 34 PROCES DATA.</td>
<td></td>
</tr>
<tr>
<td>01.03</td>
<td>FREQUENTIE</td>
<td>Berekende uitgangsfrequentie van de omvormer.</td>
<td></td>
</tr>
<tr>
<td>01.04</td>
<td>STROOM</td>
<td>Gemeten motorstroom.</td>
<td>10 = 1 A</td>
</tr>
<tr>
<td>01.05</td>
<td>KOPPEL</td>
<td>Berekende motorkoppel. 100 is het nominale motorkoppel. Tijdinstelling filter door parameter 34.05.</td>
<td></td>
</tr>
<tr>
<td>01.06</td>
<td>VERMGEN</td>
<td>Motorvermogen. 100 is het nominaal vermogen.</td>
<td></td>
</tr>
<tr>
<td>01.07</td>
<td>DC BUS SPANNING</td>
<td>Gemeten spanning tussenring.</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>01.08</td>
<td>VOEDINGSSPANNING</td>
<td>Gemeten voedingsspanning.</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>01.09</td>
<td>UITGANGSSPANNING</td>
<td>Gemeten motorspanning.</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>01.10</td>
<td>ACS800 TEMP</td>
<td>Berekende IGBT-temperatuur.</td>
<td>10 = 1 %</td>
</tr>
<tr>
<td>01.11</td>
<td>EXTERNE REF 1</td>
<td>Externe referentie REF1 in rpm. (Hz als waarde van parameter 99.04 is ingesteld op SCALAR.)</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>01.12</td>
<td>EXTERNE REF 2</td>
<td>Externe referentie REF2. Afhankelijk van het gebruik ervan, is 100% maximum motortoerental, nominale motorkoppel of maximum procesreferentie.</td>
<td>0 = 0% 10000 = 100% 1)</td>
</tr>
<tr>
<td>01.13</td>
<td>BEDIENINGSPLAATS</td>
<td>De actieve bedieningslocatie. (1,2) LOCAL; (3) EXT1; (4) EXT2. Zie het onderdeel Lokale besturing t.o.v. externe besturing op pagina 45.</td>
<td></td>
</tr>
<tr>
<td>01.14</td>
<td>BEDR. URENTELLER</td>
<td>Teller voor verstrekken tijd. Actief als de besturingkaart is ingeschakeld.</td>
<td>1 = 1 uur</td>
</tr>
<tr>
<td>01.15</td>
<td>KILOWATTUUR</td>
<td>kWh-meter. Telt kWh uitgang omvormer gedurende werking (motorzijde - generatorzijde).</td>
<td>1 = 100 kWh</td>
</tr>
<tr>
<td>01.16</td>
<td>APPL BLOK UITGANG</td>
<td>Applicatie-blok-uitgangssignaal. Bijvoorbeeld de uitgang van de PID-regeling als de macro PID-regeling actief is.</td>
<td>0 = 0% 10000 = 100%</td>
</tr>
<tr>
<td>01.17</td>
<td>DI6-1 STATUS</td>
<td>Status van digitale ingangen. Voorbeeld: 000001 = DI1 is aan, DI2 tot DI6 zijn uit.</td>
<td></td>
</tr>
<tr>
<td>01.18</td>
<td>AI1 [V]</td>
<td>Waarde van analoge ingang AI1.</td>
<td>1 = 0,001 V</td>
</tr>
<tr>
<td>01.19</td>
<td>AI2 [mA]</td>
<td>Waarde van analoge ingang AI2.</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.20</td>
<td>AI3 [mA]</td>
<td>Waarde van analoge ingang AI3.</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.21</td>
<td>RELAIS 3-1 STATUS</td>
<td>Status van de relaisuitgangen. Voorbeeld: 001 = RO1 is bekrachtigd, RO2 en RO3 zijn ontkrachtigd.</td>
<td></td>
</tr>
<tr>
<td>01.22</td>
<td>AO1 [mA]</td>
<td>Waarde van analoge uitgang AO1.</td>
<td>1 = 0,001 mA</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.23</td>
<td>AO2 [mA]</td>
<td>Waarde van analoge uitgang AO2.</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.24</td>
<td>WERKWAARDE 1</td>
<td>Terugkoppelsignaal voor de PID-regeling. Alleen bijgewerkt als parameter 99.02 = PID-REGELING.</td>
<td>0 = 0% 10000 = 100%</td>
</tr>
<tr>
<td>01.25</td>
<td>WERKWAARDE 2</td>
<td>Terugkoppelsignaal voor de PID-regeling. Alleen bijgewerkt als parameter 99.02 = PID CTRL.</td>
<td>0 = 0% 10000 = 100%</td>
</tr>
<tr>
<td>01.26</td>
<td>REGELAFWIJKING</td>
<td>Afwijking van de PID-regeling, d.w.z. het verschil tussen de referentiewaarde en de feitelijke waarde. Alleen bijgewerkt als parameter 99.02 = PID CTRL.</td>
<td>-10000 = -100% 10000 = 100%</td>
</tr>
<tr>
<td>01.27</td>
<td>APPLICATIE MACRO</td>
<td>Actieve applicatiemacro (waarde van parameter 99.02). Zie 99.02.</td>
<td></td>
</tr>
<tr>
<td>01.28</td>
<td>EXT AO1 [mA]</td>
<td>Waarde van uitgang 1 van de analoge I/O-uitbreidingsmodule (optioneel).</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.29</td>
<td>EXT AO2 [mA]</td>
<td>Waarde van uitgang 2 van de analoge I/O-uitbreidingsmodule (optioneel).</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.30</td>
<td>PP 1 TEMP</td>
<td>Gemeten temperatuur van het koellichaam in omvormer nr 1.</td>
<td>1 = 1°C</td>
</tr>
<tr>
<td>01.31</td>
<td>PP 2 TEMP</td>
<td>Gemeten temperatuur van het koellichaam in omvormer nr 2 (alleen gebruikt in krachtige eenheden met parallelle omvormers).</td>
<td>1 = 1°C</td>
</tr>
<tr>
<td>01.32</td>
<td>PP 3 TEMP</td>
<td>Gemeten temperatuur van het koellichaam in omvormer nr 3 (alleen gebruikt in krachtige eenheden met parallelle omvormers).</td>
<td>1 = 1°C</td>
</tr>
<tr>
<td>01.33</td>
<td>PP 4 TEMP</td>
<td>Gemeten temperatuur van het koellichaam in omvormer nr 4 (alleen gebruikt in krachtige eenheden met parallelle omvormers).</td>
<td>1 = 1°C</td>
</tr>
<tr>
<td>01.34</td>
<td>ACTUELE GEGEVENS</td>
<td>Feitelijke waarde van de PID-regeling. Zie parameter 40.06.</td>
<td>0 = 0% 10000 = 100%</td>
</tr>
<tr>
<td>01.35</td>
<td>MOTOR 1 TEMP</td>
<td>Gemeten temperatuur van motor 1. Zie parameter 35.01.</td>
<td>1 = 1°C/ohm</td>
</tr>
<tr>
<td>01.36</td>
<td>MOTOR 2 TEMP</td>
<td>Gemeten temperatuur van motor 2. Zie parameter 35.04.</td>
<td>1 = 1°C/ohm</td>
</tr>
<tr>
<td>01.37</td>
<td>MOTTEMP SCHATTING</td>
<td>Geschatte motortemperatuur. Signaalwaarde wordt opgeslagen bij uitschakelen van de voeding.</td>
<td>1 = 1°C</td>
</tr>
<tr>
<td>01.38</td>
<td>AI5 [mA]</td>
<td>Waarde van analoge ingang AI5 gelezen van AI1 van de analoge I/O-uitbreidingsmodule (optioneel). Een spanningssignaal wordt ook weergegeven in mA (in plaats van V).</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.39</td>
<td>AI6 [mA]</td>
<td>Waarde van analoge ingang AI6 gelezen van AI2 van de analoge I/O-uitbreidingsmodule (optioneel). Een spanningssignaal wordt ook weergegeven in mA (in plaats van V).</td>
<td>1 = 0,001 mA</td>
</tr>
<tr>
<td>01.40</td>
<td>DI7-12 STATUS</td>
<td>Status van digitale ingangen DI7 tot DI12 gelezen van de digitale I/O-uitbreidingsmodule (optioneel). Bijvoorbeeld waarde 000001: DI7 is aan, DI8 tot DI12 zijn uit.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>01.41</td>
<td>EXT RO STATUS</td>
<td>Status van de relaisuitgangen op de digitale I/O-uitbreidingsmodules (optioneel). Bijvoorbeeld waarde 0000001: RO1 van module 1 is bekrachtigd. De overige relaisuitgangen zijn ontkrachtigd.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>01.42</td>
<td>PROC Snelheid REL</td>
<td>Werkelijke motortoerental als percentage van het absolute maximumtoerental. Als parameter 99.04 SCALAR is, dan is de waarde gelijk aan de relatieve feitelijke uitgangsfrequentie.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>01.43</td>
<td>MOTOR DRAAI-UREN</td>
<td>Bedrijfstdijsteller van de motor. De teller loopt als de omvormer moduleert. Kan worden gereset met parameter 34.06.</td>
<td>1 = 10 uur</td>
</tr>
<tr>
<td>01.44</td>
<td>VENT AANTID</td>
<td>Looptijd van de koelventilator van de omvormer. Opmerking: Resetten wordt aanbevolen bij vervanging van de ventilator. Neem voor meer informatie contact op met uw plaatselijke ABB vertegenwoordiger.</td>
<td>1 = 10 uur</td>
</tr>
<tr>
<td>01.45</td>
<td>CTRL BOARD TEMP</td>
<td>Temperatuur van de besturingskaart.</td>
<td>1 = 1°C</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

01.46 SAVED KWH
Energie bespaard in kWh vergeleken met rechtstreekse online motoraansluiting. Zie parametergroep 45 ENERGY OPT op pagina 172.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.46</td>
<td>SAVED KWH</td>
<td>Energie bespaard in kWh vergeleken met rechtstreekse online motoraansluiting.</td>
<td>1 = 100 kWh</td>
</tr>
</tbody>
</table>

01.47 SAVED GWH
Energie bespaard in GWh vergeleken met rechtstreekse online motoraansluiting.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.47</td>
<td>SAVED GWH</td>
<td>Energie bespaard in GWh vergeleken met rechtstreekse online motoraansluiting.</td>
<td>1 = 1 GWh</td>
</tr>
</tbody>
</table>

01.48 SAVED AMOUNT
Geldbesparing vergeleken met rechtstreekse online motoraansluiting. Deze waarde is een vermenigvuldiging van de parameters 01.46 SAVED KWH en 45.02 ENERGY TARIFF1. Zie parametergroep 45 ENERGY OPT op pagina 172.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.48</td>
<td>SAVED AMOUNT</td>
<td>Geldbesparing in kWh vergeleken met rechtstreekse online motoraansluiting.</td>
<td>1 = 100 cur</td>
</tr>
</tbody>
</table>

01.49 SAVED AMOUNT M
Geldbesparing in miljoenen vergeleken met rechtstreekse online motoraansluiting.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.49</td>
<td>SAVED AMOUNT M</td>
<td>Geldbesparing in miljoenen vergeleken met rechtstreekse online motoraansluiting.</td>
<td>1 = 1 Mcur</td>
</tr>
</tbody>
</table>

01.50 SAVED CO2
Beperking van CO2-uitstoot in kilogram vergeleken met rechtstreekse online motoraansluiting. Deze waarde wordt berekend door bespaarde energie in megawatt-uur te vermenigvuldigen met 500 kg/MWh. Zie parametergroep 45 ENERGY OPT op pagina 172.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.50</td>
<td>SAVED CO2</td>
<td>Beperking van CO2-uitstoot in kilogram vergeleken met rechtstreekse online motoraansluiting.</td>
<td>1 = 100 kg</td>
</tr>
</tbody>
</table>

01.51 SAVED CO2 KTON
Beperking van CO2-uitstoot in kiloton vergeleken met rechtstreekse online motoraansluiting.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.51</td>
<td>SAVED CO2 KTON</td>
<td>Beperking van CO2-uitstoot in kiloton vergeleken met rechtstreekse online motoraansluiting.</td>
<td>1 = 1 kton</td>
</tr>
</tbody>
</table>

02 ACTUELE GEGEVENS
Signalen voor het controleren van de toerental- en koppelreferenties.

02.01 TOERENTAL REF 2
Beperkte toerentalreferentie. 100% komt overeen met het absolute toerentalmaximum van de motor.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.01</td>
<td>TOERENTAL REF 2</td>
<td>Beperkte toerentalreferentie. 100% komt overeen met het absolute toerentalmaximum van de motor.</td>
<td>0 = 0% 20000 = 100% van abs. toerental-max. motor</td>
</tr>
</tbody>
</table>

02.02 TOERENTAL REF 3
Toerentalreferentiecurve. 100% komt overeen met het absolute toerentalmaximum van de motor.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.02</td>
<td>TOERENTAL REF 3</td>
<td>Toerentalreferentiecurve. 100% komt overeen met het absolute toerentalmaximum van de motor.</td>
<td>20000 = 100%</td>
</tr>
</tbody>
</table>

02.09 KOPPEL REF 2
Uitgang toerenregeling. 100% komt overeen met het nominale motorkoppel.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.09</td>
<td>KOPPEL REF 2</td>
<td>Uitgang toerenregeling. 100% komt overeen met het nominale motorkoppel.</td>
<td>0 = 0% 10000 = 100% van nom. motorkoppel</td>
</tr>
</tbody>
</table>

02.10 KOPPEL REF 3
Koppelreferentie. 100% komt overeen met het nominale motorkoppel.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.10</td>
<td>KOPPEL REF 3</td>
<td>Koppelreferentie. 100% komt overeen met het nominale motorkoppel.</td>
<td>10000 = 100%</td>
</tr>
</tbody>
</table>

02.13 KOPPEL GEBR REF
Koppelreferentie na frequentie-, spanning- en koppelbegrenzers. 100% komt overeen met het nominale motorkoppel.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.13</td>
<td>KOPPEL GEBR REF</td>
<td>Koppelreferentie na frequentie-, spanning- en koppelbegrenzers. 100% komt overeen met het nominale motorkoppel.</td>
<td>10000 = 100%</td>
</tr>
</tbody>
</table>

02.14 FLUX REF
Fluxreferentie als percentage.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.14</td>
<td>FLUX REF</td>
<td>Fluxreferentie als percentage.</td>
<td>10000 = 100%</td>
</tr>
</tbody>
</table>

02.17 GESCHAT TOERENTAL
Geschatte motortoerental. 100% komt overeen met het absolute toerentalmaximum van de motor.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.17</td>
<td>GESCHAT TOERENTAL</td>
<td>Geschatte motortoerental. 100% komt overeen met het absolute toerentalmaximum van de motor.</td>
<td>20000 = 100%</td>
</tr>
</tbody>
</table>

02.18 GEMETEN TOERENTAL
Gemeten werkelijke toerental (nul als geen pulsgever wordt gebruikt). 100% komt overeen met het absolute toerentalmaximum van de motor.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.18</td>
<td>GEMETEN TOERENTAL</td>
<td>Gemeten werkelijke toerental (nul als geen pulsgever wordt gebruikt). 100% komt overeen met het absolute toerentalmaximum van de motor.</td>
<td>20000 = 100%</td>
</tr>
</tbody>
</table>

02.19 MOTOR ACCELERATIE
Motor acceleratie berekend uit signaal 01.02 MOTOR SPEED.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.19</td>
<td>MOTOR ACCELERATIE</td>
<td>Motor acceleratie berekend uit signaal 01.02 MOTOR SPEED.</td>
<td>1 = 1 rpm/s.</td>
</tr>
</tbody>
</table>

02.20 GEBRUIKER STROOM
Gemeten motorstroom als percentage van de stroom van de gebruikers-belastingcurve. Stroom van de gebruikers-belastingcurve wordt gedefinieerd door parameters 72.02...72.09. Zie het onderdeel Belastingcurve gebruiker op pagina 87.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.20</td>
<td>GEBRUIKER STROOM</td>
<td>Gemeten motorstroom als percentage van de stroom van de gebruikers-belastingcurve. Stroom van de gebruikers-belastingcurve wordt gedefinieerd door parameters 72.02...72.09. Zie het onderdeel Belastingcurve gebruiker op pagina 87.</td>
<td>10 = 1%</td>
</tr>
</tbody>
</table>

03 ACTUELE GEGEVENS
Datawoorden voor het controleren van veldbuscommunicatie (elk gegeven is een 16-bits datawoord).

03.01 HOOFD CTRL WOORD
Een 16-bit datawoord. Zie het onderdeel 03.01 HOOFD CONTROLWOORD op pagina 224.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.01</td>
<td>HOOFD CTRL WOORD</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.01 HOOFD CONTROLWOORD op pagina 224.</td>
<td></td>
</tr>
</tbody>
</table>

03.02 HOOFD STATUSWOORD
Een 16-bit datawoord. Zie het onderdeel 03.02 HOOFD STATUSWOORD op pagina 225.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.02</td>
<td>HOOFD STATUSWOORD</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.02 HOOFD STATUSWOORD op pagina 225.</td>
<td></td>
</tr>
</tbody>
</table>

03.03 AUX STATUSWOORD
Een 16-bit datawoord. Zie het onderdeel 03.03 AUXILIARY STATUSWOORD op pagina 233.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.03</td>
<td>AUX STATUSWOORD</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.03 AUXILIARY STATUSWOORD op pagina 233.</td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>Naam/Waarde</td>
<td>Beschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>03.04</td>
<td>LIMIETWOORD 1</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.04 LIMIETWOORD 1 op pagina 234.</td>
<td></td>
</tr>
<tr>
<td>03.05</td>
<td>FOUTWOORD 1</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.05 FOUTWOORD 1 op pagina 234.</td>
<td></td>
</tr>
<tr>
<td>03.06</td>
<td>FOUTWOORD 2</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.06 FOUTWOORD 2 op pagina 235.</td>
<td></td>
</tr>
<tr>
<td>03.07</td>
<td>SYSTEEMFOUT</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.07 SYSTEEMFOUT op pagina 236.</td>
<td></td>
</tr>
<tr>
<td>03.08</td>
<td>ALARMWOORD 1</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.08 ALARMWOORD 1 op pagina 236.</td>
<td></td>
</tr>
<tr>
<td>03.09</td>
<td>ALARMWOORD 2</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.09 ALARMWOORD 2 op pagina 237.</td>
<td></td>
</tr>
<tr>
<td>03.11</td>
<td>FOLLOWER MCW</td>
<td>Een 16-bit datawoord. Zie voor de inhoud Master/Follower Application Guide [3AFE64590430 (Engels)].</td>
<td></td>
</tr>
<tr>
<td>03.13</td>
<td>AUX STATUSWOORD 3</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.13 AUX STATUSWOORD 3 op pagina 237.</td>
<td></td>
</tr>
<tr>
<td>03.14</td>
<td>AUX STATUSWOORD 4</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.14 AUX STATUSWOORD 4 op pagina 238.</td>
<td></td>
</tr>
<tr>
<td>03.15</td>
<td>FOUTWOORD 4</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.15 FOUTWOORD 4 op pagina 238.</td>
<td></td>
</tr>
<tr>
<td>03.16</td>
<td>ALARMWOORD 4</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.16 ALARMWOORD 4 op pagina 239.</td>
<td></td>
</tr>
<tr>
<td>03.17</td>
<td>FOUTWOORD 5</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.17 FOUTWOORD 5 op pagina 239.</td>
<td></td>
</tr>
<tr>
<td>03.18</td>
<td>ALARMWOORD 5</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.18 ALARMWOORD 5 op pagina 240.</td>
<td></td>
</tr>
<tr>
<td>03.19</td>
<td>INT INIT FOUT</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.19 INT INIT FOUT op pagina 240.</td>
<td></td>
</tr>
<tr>
<td>03.20</td>
<td>LAATSTE FOUT</td>
<td>Veldbuscode van de laatste fout. Zie hoofdstuk Foutopsporing voor de codes.</td>
<td></td>
</tr>
<tr>
<td>03.21</td>
<td>2.LAATSTE FOUT</td>
<td>Veldbuscode van de op twee na laatste fout.</td>
<td></td>
</tr>
<tr>
<td>03.22</td>
<td>3.LAATSTE FOUT</td>
<td>Veldbuscode van de op drie na laatste fout.</td>
<td></td>
</tr>
<tr>
<td>03.23</td>
<td>4.LAATSTE FOUT</td>
<td>Veldbuscode van de op vier na laatste fout.</td>
<td></td>
</tr>
<tr>
<td>03.24</td>
<td>5.LAATSTE FOUT</td>
<td>Veldbuscode van de op vijf na laatste fout.</td>
<td></td>
</tr>
<tr>
<td>03.25</td>
<td>LAATSTE WAARSCH</td>
<td>Veldbuscode van de laatste waarschuwing.</td>
<td></td>
</tr>
<tr>
<td>03.26</td>
<td>2.LAATSTE WAARSCH</td>
<td>Veldbuscode van de op twee na laatste waarschuwing.</td>
<td></td>
</tr>
<tr>
<td>03.27</td>
<td>3.LAATSTE WAARSCH</td>
<td>Veldbuscode van de op drie na laatste waarschuwing.</td>
<td></td>
</tr>
<tr>
<td>03.28</td>
<td>4.LAATSTE WAARSCH</td>
<td>Veldbuscode van de op vier na laatste waarschuwing.</td>
<td></td>
</tr>
<tr>
<td>03.29</td>
<td>5.LAATSTE WAARSCH</td>
<td>Veldbuscode van de op vijf na laatste waarschuwing.</td>
<td></td>
</tr>
<tr>
<td>03.30</td>
<td>LIMIETWOORD INVRT</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.30 LIMIETWOORD INVRT op pagina 241.</td>
<td></td>
</tr>
<tr>
<td>03.31</td>
<td>ALARMWOORD 6</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.31 ALARMWOORD 6 op pagina 241.</td>
<td></td>
</tr>
<tr>
<td>03.32</td>
<td>EXT IO STATUS</td>
<td>Status van noodstop en opvoermodules. Zie het onderdeel 03.32 EXT IO STATUS op pagina 242.</td>
<td></td>
</tr>
<tr>
<td>03.33</td>
<td>FOUTWOORD 6</td>
<td>Een 16-bit datawoord. Zie het onderdeel 03.33 FOUTWOORD 6 op pagina 242.</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Naam/Waarde</th>
<th>Beschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>ACTUELE GEGEVENS</td>
<td>Signalen voor parallel aangesloten omvormers</td>
<td>2)</td>
</tr>
<tr>
<td>04.01</td>
<td>FOUTE INT INFO</td>
<td>Een 16-bit datawoord. Zie het onderdeel 04.01 FOUTE INT INFO op pagina 243.</td>
<td></td>
</tr>
<tr>
<td>04.02</td>
<td>INT SC INFO</td>
<td>Een 16-bit datawoord. Zie het onderdeel 04.02 INT SC INFO op pagina 244.</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>ACTUELE GEGEVENS</td>
<td>Signalen voor het Adaptieve programma</td>
<td></td>
</tr>
<tr>
<td>09.01</td>
<td>AI1 GESCHAALD</td>
<td>Waarde van analoge ingang AI1 geschaald naar een waarde van geheel getal.</td>
<td>20000 = 10 V</td>
</tr>
<tr>
<td>09.02</td>
<td>AI2 GESCHAALD</td>
<td>Waarde van analoge ingang AI2 geschaald naar een waarde van geheel getal.</td>
<td>20000 = 20 mA</td>
</tr>
<tr>
<td>09.03</td>
<td>AI3 GESCHAALD</td>
<td>Waarde van analoge ingang AI3 geschaald naar een waarde van een geheel getal.</td>
<td>20000 = 20 mA</td>
</tr>
<tr>
<td>09.04</td>
<td>AI5 GESCHAALD</td>
<td>Waarde van analoge ingang AI5 geschaald naar een waarde van een geheel getal.</td>
<td>20000 = 20 mA</td>
</tr>
<tr>
<td>09.05</td>
<td>AI6 GESCHAALD</td>
<td>Waarde van analoge ingang AI6 geschaald naar een waarde van een geheel getal.</td>
<td>20000 = 20 mA</td>
</tr>
<tr>
<td>09.06</td>
<td>DS MCW</td>
<td>Controlwoord (CW) van de hoofddataset met referentiegegevens ontvangen van het masterstation via de veldbusinterface</td>
<td>0 ... 65535 (decimaal)</td>
</tr>
<tr>
<td>09.07</td>
<td>MASTER REF1</td>
<td>Referentie 1 (REF1) van de hoofddataset met referentiegegevens ontvangen van het masterstation via de veldbusinterface</td>
<td>-32768 ... 32767</td>
</tr>
<tr>
<td>09.08</td>
<td>MASTER REF2</td>
<td>Referentie 2 (REF2) van de hoofddataset met referentiegegevens ontvangen van het masterstation via de veldbusinterface</td>
<td>-32768 ... 32767</td>
</tr>
<tr>
<td>09.09</td>
<td>AUX DS VAL1</td>
<td>Waarde 1 van de hulpdataset, ontvangen van het masterstation via de veldbus-interface.</td>
<td>-32768 ... 32767</td>
</tr>
<tr>
<td>09.10</td>
<td>AUX DS VAL2</td>
<td>Waarde 2 van de hulpdataset, ontvangen van het masterstation via de veldbus-interface.</td>
<td>-32768 ... 32767</td>
</tr>
<tr>
<td>09.11</td>
<td>AUX DS VAL3</td>
<td>Waarde 3 van de hulpdataset, ontvangen van het masterstation via de veldbus-interface.</td>
<td>-32768 ... 32767</td>
</tr>
<tr>
<td>09.12</td>
<td>LCU WERKW SIGN1</td>
<td>Signaal van de ingangszijde van de omvormer geselecteerd door parameter 95.08. Een 16-bit datawoord.</td>
<td></td>
</tr>
<tr>
<td>09.13</td>
<td>LCU WERKW SIGN2</td>
<td>Signaal van de ingangszijde van de omvormer geselecteerd door parameter 95.09. Een 16-bit datawoord.</td>
<td></td>
</tr>
</tbody>
</table>

1) Percentage van het maximale motortoerental / nominale koppel / de maximale procesreferentie (afhankelijk van de geselecteerde ACS800-macro).

2) De inhoud van deze datawoorden wordt uiteengezet in het hoofdstuk _Besturing via een veldbus._
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>START/STOP/ DRAAIR</td>
<td>De bronnen voor externe start-, stop- en draairichtingsopdrachten</td>
<td></td>
</tr>
<tr>
<td>10.01</td>
<td>EXT1 STRT/STP/RIC</td>
<td>Definieert de aansluitingen en bron van de start-, stop- en draairichtingsopdrachten voor externe besturingslocatie 1 (EXT1).</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Geen bron van de start-, stop- en draairichtingsopdrachten.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Start en stop aangesloten op digitale ingang DI1. 0 = stop; 1 = start. Draairichting is vast volgens parameter 10.3 DIRECTION.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING! Na het resetten van een fout wordt de omvormer gestart als het startsignaal wordt ingeschakeld.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI1,2</td>
<td>Start en stop aangesloten op digitale ingang DI1. 0 = stop, 1 = start. Draairichting is aangesloten op digitale ingang DI2. 0 = vooruit, 1 = achteruit. Om de draairichting te regelen moet parameter 10.03 DIRECTION worden ingesteld op REQUEST.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING! Na het resetten van een fout wordt de omvormer gestart als het startsignaal wordt ingeschakeld.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI1P,2P</td>
<td>Pulsstart aangesloten op digitale ingang DI1. 0 -> 1: Start. Pulsstop aangesloten op digitale ingang DI2. 1 -> 0: Stop. Draairichting is vast volgens parameter 10.3 DIRECTION.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI1P,2P,3</td>
<td>Pulsstart aangesloten op digitale ingang DI1. 0 -> 1: Start. Pulsstop aangesloten op digitale ingang DI2. 1 -> 0: Stop. Draairichting is aangesloten op digitale ingang DI3. 0 = vooruit, 1 = achteruit. Om de draairichting te regelen moet parameter 10.03 DIRECTION worden ingesteld op REQUEST.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI1P,2P,3P</td>
<td>Pulsstart vooruit aangesloten op digitale ingang DI1. 0 -> 1: Start vooruit. Pulsstart achteruit aangesloten op digitale ingang DI2. 0 -> 1: Start achteruit. Pulsstop aangesloten op digitale ingang DI3. 1 -> "0": stop. Om de draairichting te regelen moet parameter 10.03 DIRECTION worden ingesteld op REQUEST.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie van DI1.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DI6,5</td>
<td>Zie selectie van DI1,2. DI6: Start/stop, DI5: richting.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PANEEL</td>
<td>Bedieningspaneel. Om de draairichting te regelen moet parameter 10.03 DIRECTION worden ingesteld op REQUEST.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>COMM.CW</td>
<td>Veldbus-controlwoord.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie van DI1.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DI7,8</td>
<td>Zie selectie van DI1,2. DI7: start/stop, DI8: richting.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DI7P,8P</td>
<td>Zie selectie van DI1P,2P.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>DI7P,8P,9</td>
<td>Zie selectie van DI1P,2P,3.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>DI7P,8P,9P</td>
<td>Zie selectie van DI1P,2P,3P.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>PARAM 10.04</td>
<td>Bron geselecteerd door 10.04</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D11 F D12 R</td>
<td>Start-, stop- en draairichtingsopdrachten via digitale ingangen D11 en D12.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>D11 D12 Bedrijf</td>
<td>Table</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Start vooruit</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Start achteruit</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Stop</td>
<td></td>
</tr>
</tbody>
</table>

Opmerking: Parameter 10.03 DIRECTION moet worden ingesteld op REQUEST.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Definieert de aansluitingen en bron van de start-, stop- en draairichtingsopdrachten voor externe besturingslocatie 2 (EXT2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.02</td>
<td>EXT1 STRT/STP/RIC</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NEE</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>2</td>
<td>DI1</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>3</td>
<td>DI1,2</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>4</td>
<td>DI1P,2P</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>5</td>
<td>DI1P,2P,3</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>6</td>
<td>DI1P,2P,3P</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>7</td>
<td>DI6</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>8</td>
<td>DI6,5</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>9</td>
<td>PANEEL</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>10</td>
<td>COMM.CW</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>11</td>
<td>DI7</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>12</td>
<td>DI7,8</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>13</td>
<td>DI7P,8P</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>14</td>
<td>DI7P,8P,9</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>15</td>
<td>DI7P,8P,9P</td>
<td>Zie parameter 10.01.</td>
</tr>
<tr>
<td>16</td>
<td>PARAM 10.05</td>
<td>Bron geselecteerd door 10.05.</td>
</tr>
<tr>
<td>17</td>
<td>D11 F D12 R</td>
<td>Zie parameter 10.01.</td>
</tr>
</tbody>
</table>

Parameterindex of een constante waarde:

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Definieert bron of constante voor waarde PAR 10.04 van parameter 10.01.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.04</td>
<td>EXT 1 STRT PTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 ...</td>
<td>Parameterindex of een constante waarde:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+255.255.31</td>
<td>- Parameterpointer: inversie-, groeps-, index- en bitvelden. Het bitgetal werkt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ C.-</td>
<td>uitsluitend voor blokken die booleaanse ingangen verwerken.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32768 ... C.32767</td>
<td>- Constante waarde: inversie- en constante velden. Inversieveld moet waarde</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C hebben om de constante-instelling te activeren.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Definieert bron of constante voor waarde PAR 10.05 van parameter 10.02.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.05</td>
<td>EXT 2 STRT PTR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 ...</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+255.255.31</td>
<td>het verschil.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ C.-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32768 ... C.32767</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Definieert het signaal waarmee de functie jogging wordt geactiveerd. De werking van jogging wordt uitgelegd in de sectie Toren op pagina 85.</th>
</tr>
</thead>
</table>

Toren op pagina 85.
10.07 NET CONTROL

Wanneer de veldbus actief is, wordt de selectie van parameter 10.01 opgeheven. Het veldbuscontrolwoord (behalve bit 11) wordt ingeschakeld als EXT1 als de actieve besturingslocatie wordt geselecteerd.

Opmerking: Alleen zichtbaar als het communicatieprofiel Generic Drive wordt geselecteerd (98.07).

Opmerking: De instelling wordt niet in het permanente geheugen opgeslagen (gaat terug naar nul als de voeding wordt uitgeschakeld).

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Zie selectie DI3.</td>
<td>Niet geselecteerd.</td>
<td>1</td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>2</td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>3</td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>4</td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>5</td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>6</td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>7</td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>8</td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>9</td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>10</td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>11</td>
</tr>
</tbody>
</table>

10.08 NET REFERENTIE

Wanneer de veldbus actief is, wordt de selectie van parameter 11.03 opgeheven. Veldbusreferentie REF1 is ingeschakeld als EXT1 als de actieve besturingslocatie wordt geselecteerd.

Opmerking: Alleen zichtbaar als het communicatieprofiel Generic Drive wordt geselecteerd (98.07).

Opmerking: De instelling wordt niet in het permanente geheugen opgeslagen (gaat terug naar nul als de voeding wordt uitgeschakeld).

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>1</td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>0</td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>1</td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>2</td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>3</td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>4</td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>5</td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>6</td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>7</td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>8</td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>9</td>
</tr>
<tr>
<td>DI13</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>10</td>
</tr>
<tr>
<td>DI14</td>
<td>Zie selectie DI3.</td>
<td>Digitale ingang DI3. 0 = Jogging is niet-actief. 1 = Jogging is actief.</td>
<td>11</td>
</tr>
</tbody>
</table>

10.09 SLS ACTIVE

Selecteert de bron voor de SLS (safely-limited speed, veilig beperkt toerental) opdracht.

Opmerking: Deze parameter is alleen beschikbaar in de AS7R firmware-versie.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>0</td>
</tr>
<tr>
<td>DI2</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>1</td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>2</td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>3</td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>4</td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>5</td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>6</td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>7</td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>8</td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>9</td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>10</td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI3.</td>
<td>De SLS-functie wordt geactiveerd door een neergaande helling van DI1, d.w.z. wanneer de waarde van DI1 0 wordt.</td>
<td>11</td>
</tr>
</tbody>
</table>
11 REFERENTIE KEUZE

Paneele-referentietype, selectie externe besturlingslocatie en bronnen en limieten van externe referenties

11.01 PANEELREF KEUZE

Selecteert het door het bedieningspaneel gegeven referentietype.

- **REF1 (rpm)**: Toerentalreferentie in rpm. (frequentiereferentie (Hz) als parameter 99.04 op SCALAR is ingesteld.)
- **REF2 (%)**: %-referentie. Het gebruik van REF2 is afhankelijk van de applicatiemacro. Als bijvoorbeeld de macro voor koppelregeling wordt geselecteerd, dan wordt REF2 de koppelreferentie.

11.02 EXT1/EXT2 KEUZE

Definieert de bron vanwaar de omvormer het gegeven leest waarmee een keuze wordt gemaakt tussen de twee externe besturingslocaties, EXT1 of EXT2.

- **DI1**: Digitale ingang DI1. 0 = EXT1, 1 = EXT2.
- **DI2**: Zie selectie DI1.
- **DI3**: Zie selectie DI1.
- **DI4**: Zie selectie DI1.
- **DI5**: Zie selectie DI1.
- **DI6**: Zie selectie DI1.
- **EXT1**: EXT1 actief. De bronnen van het besturingssignaal worden door parameter 10.01 en 11.03 gedefinieerd.
- **EXT2**: EXT2 actief. De bronnen van het besturingssignaal worden door parameter 10.02 en 11.06 gedefinieerd.
- **COMM.CW**: Veldbuscontrolwoord, bit 11.
- **DI7**: Zie selectie DI1.
- **DI8**: Zie selectie DI1.
- **DI9**: Zie selectie DI1.
- **DI10**: Zie selectie DI1.
- **DI11**: Zie selectie DI1.
- **DI12**: Zie selectie DI1.
- **PARAM 11.09**: Bron geselecteerd door parameter 11.09.

11.03 EXTERN REF1 KEUZE

Selecteert de gegevensbron voor externe referentie REF1

- **PANEEL**: Bedieningspaneel. De eerste regel op de display geeft de referentiewaarde.
- **AI1**: Analoge ingang AI1. **Opmerking:** Als het signaal bipolair is (±10 VDC), gebruik dan de selectie AI1 BIPOLAIR. (de selectie van AI1 negeert het negatieve signaalbereik.)
- **AI2**: Analoge ingang AI2.
- **AI3**: Analoge ingang AI3.
Actuele signalen en parameters

AI1/JOYST

Unipolaire analoge ingang AI1 als joystick. Het minimumingangssignaal laat de motor met de maximumreferentie achteruit draaien, de maximumingang met de maximumreferentie vooruit.

Opmerking: Parameter 10.03 moet de waarde REQUEST hebben.

WAARSCHUWING! De minimumreferentie voor de joystick moet hoger zijn dan 0.5 V. Stel parameter 13.01 in op 2 V of een waarde hoger dan 0.5 V en stel analoge detectieparameter 30.01 voor signaaluitval in op FAULT. De omvormer zal stoppen als het stuursignaal uitvalt.

AI2/JOYST

Zie selectie AI1/JOYST.

AI1+AI3

Som van analoge ingang AI1 en AI3

AI2+AI3

Som van analoge ingang AI2 en AI3

AI1-AI3

Verschil van analoge ingang AI1 en AI3

AI2-AI3

Verschil van analoge ingang AI2 en AI3

AI1*AI3

Product van analoge ingang AI1 en AI3

AI2*AI3

Product van analoge ingang AI2 en AI3

MIN(AI1,AI3)

Minimum van analoge ingang AI1 en AI3

MIN(AI2,AI3)

Minimum van analoge ingang AI2 en AI3

MAX(AI1,AI3)

Maximum van analoge ingang AI1 en AI3

MAX(AI2,AI3)

Maximum van analoge ingang AI2 en AI3

DI3U,4D(R)

DI3U,4D

DI5U,6D

Zie selectie DI3U,4D.

COMM. REF

Veldbusreferentie REF1

COM.REF1+AI1

Som van de veldbusreferentie REF1 en analoge ingang AI1

Index	**Naam/Keuze**	**Omschrijving**	**FbEq**
0 | AI1/JOYST | Unipolaire analoge ingang AI1 als joystick. Het minimumingangssignaal laat de motor met de maximumreferentie achteruit draaien, de maximumingang met de maximumreferentie vooruit. **Opmerking:** Parameter 10.03 moet de waarde REQUEST hebben. **WAARSCHUWING!** De minimumreferentie voor de joystick moet hoger zijn dan 0.5 V. Stel parameter 13.01 in op 2 V of een waarde hoger dan 0.5 V en stel analoge detectieparameter 30.01 voor signaaluitval in op FAULT. De omvormer zal stoppen als het stuursignaal uitvalt. | 5

Diagram van Toerentalreferentie (REF1)

- Par. 13.01 = 2 V, Par. 13.02 = 10 V

Opmerking: Als het signaal bipolair is (±10 VDC), gebruik dan de selectie AI1 BIPOAIR. De selectie van AI1/JOYST negeert het negatieve signaalbereik.

Index	**Naam/Keuze**	**Omschrijving**	**FbEq**
1 | AI1 | Toerentalreferentie (REF1) | 6
2 | AI1+AI3 | Som van analoge ingang AI1 en AI3 | 7
3 | AI2+AI3 | Som van analoge ingang AI2 en AI3 | 8
4 | AI1-AI3 | Verschil van analoge ingang AI1 en AI3 | 9
5 | AI2-AI3 | Verschil van analoge ingang AI2 en AI3 | 10
6 | AI1*AI3 | Product van analoge ingang AI1 en AI3 | 11
7 | AI2*AI3 | Product van analoge ingang AI2 en AI3 | 12
8 | MIN(AI1,AI3) | Minimum van analoge ingang AI1 en AI3 | 13
9 | MIN(AI2,AI3) | Minimum van analoge ingang AI2 en AI3 | 14
10 | MAX(AI1,AI3) | Maximum van analoge ingang AI1 en AI3 | 15
11 | MAX(AI2,AI3) | Maximum van analoge ingang AI2 en AI3 | 16
12 | DI3U,4D(R) | Digitale ingang 3: Referentieverhoging. Digital ingang DI4: Referentieverlaging. Door een stopopdracht of uitschakeling van de voeding wordt de referentie naar nul gereset. Parameter 22.04 definieert de snelheid waarop de referentie veranderd. | 17
13 | DI3U,4D | Digitale ingang 3: Referentieverhoging. Digital ingang DI4: Referentieverlaging. De toerentalreferentie wordt door het programma opgeslagen (niet gereset door een stopopdracht of uitschakeling van de voeding). Parameter 22.04 definieert de snelheid waarop de referentie veranderd. | 18
14 | DI5U,6D | Zie selectie DI3U,4D. | 19
15 | COMM. REF | Veldbusreferentie REF1 | 20
16 | COM.REF1+AI1 | Som van de veldbusreferentie REF1 en analoge ingang AI1 | 21

Artikelnummer: 113
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>COM.REF1*AI1</td>
<td>Product van de veldbusreferentie REF1 en analoge ingang AI1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>FAST COMM</td>
<td>Gelijk aan de selectie COM. REF, met uitzondering van het volgende: - kortere communicatiecyclus tijd bij overdracht van de referentie naar het kernstuurprogramma van de motor (6 ms -> 2 ms) - de draairichting kan niet worden geregeld via interfaces bepaald door parameter 10.01 of 10.02, noch via het bedieningspaneel. - parametergroep 25 KRITISCHE FREQ werkt niet</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als een van de volgende selecties waar is, dan werkt deze selectie niet. Besturing verloopt in plaats daarvan volgens COMM. REF. - parameter 99.02 is ingesteld op PID - parameter 99.04 is ingesteld op SCALAR - parameter 40.14 heeft de waarde PROPORTIONAL of DIRECT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COM.REF1+AI5</td>
<td>Zie selectie COM.REF1+AI1 (AI5 wordt gebruikt in plaats van AI1).</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>COM.REF1*AI5</td>
<td>Zie selectie COM.REF1*AI1 (AI5 wordt gebruikt in plaats van AI1).</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>AI5</td>
<td>Analoge ingang AI5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>AI6</td>
<td>Analoge ingang AI6</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>AI5/JOYST</td>
<td>Zie selectie AI1/JOYST.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>AI6/JOYST</td>
<td>Zie selectie AI1/JOYST.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>AI5+AI6</td>
<td>Som van analoge ingang AI5 en AI6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>AI5-AI6</td>
<td>Verschil van analoge ingang AI5 en AI6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>AI5*AI6</td>
<td>Product van analoge ingang AI5 en AI6</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>MIN(AI5, AI6)</td>
<td>Laagste van analoge ingang AI5 en AI6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>MAX(AI5, AI6)</td>
<td>Hoogste van analoge ingang AI5 en AI6</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>DI11U,12D(R)</td>
<td>Zie selectie DI3U,4D(R).</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>DI11U,12D</td>
<td>Zie selectie DI3U,4D.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>PARAM 11.10</td>
<td>Bron geselecteerd door 11.10.</td>
<td>37</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1</td>
<td>BIPOLAIR</td>
<td>Bipolaire analoge ingang AI1 (-10 ... 10 V). De onderstaande afbeelding illustreert het gebruik van de ingang als toerentalreferentie.</td>
<td>38</td>
</tr>
<tr>
<td>11.03</td>
<td>EXTERN REF1 MIN</td>
<td>Bepaalt de minimumwaarde voor externe referentie REF1 (absolute waarde). Komt met de minimuminstelling van het gebruikte bronsignaal overeen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instelbereik in rpm. (Hz als parameter 99.04 is ingesteld op SCALAR.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voorbeeld: Analoge ingang AI1 is ingesteld als de referentiebron (waarde van parameter 11.03 is AI1). De minimum- en maximumwaarde van de referentie corresponderen als volgt met de minimum- en maximum instelling van AI:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXT REF1 bereik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als de referentie afkomstig is van de veldbus, verschilt de schaling van die van een analoog signaal. Zie hoofdstuk Besturing via een veldbus voor aanvullende informatie.</td>
<td></td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1</td>
<td>BIPOLAIR</td>
<td>Bipolaire analoge ingang AI1 (-10 ... 10 V). De onderstaande afbeelding illustreert het gebruik van de ingang als toerentalreferentie.</td>
<td>38</td>
</tr>
<tr>
<td>11.03</td>
<td>EXTERN REF1 MIN</td>
<td>Bepaalt de minimumwaarde voor externe referentie REF1 (absolute waarde). Komt met de minimuminstelling van het gebruikte bronsignaal overeen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instelbereik in rpm. (Hz als parameter 99.04 is ingesteld op SCALAR.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voorbeeld: Analoge ingang AI1 is ingesteld als de referentiebron (waarde van parameter 11.03 is AI1). De minimum- en maximumwaarde van de referentie corresponderen als volgt met de minimum- en maximum instelling van AI:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXT REF1 bereik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als de referentie afkomstig is van de veldbus, verschilt de schaling van die van een analoog signaal. Zie hoofdstuk Besturing via een veldbus voor aanvullende informatie.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>11.05</td>
<td>EXTERN REF1 MAX</td>
<td>Definieert de maximumwaarde voor externe referentie REF1 (absolute waarde). Komt met de maximum instelling van het gebruikte bronsignaal overeen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 18000 rpm</td>
<td>Instelbereik. (Hz als waarde van parameter 99.04 is ingesteld op SCALAR.) Zie parameter 11.04.</td>
<td>1 … 18000</td>
</tr>
<tr>
<td>11.06</td>
<td>EXTERN REF2 KEUZE</td>
<td>Selecteert de signaalbron voor externe referentie REF2. REF2 is een - toerentalreferentie als percentage van het absolute toerentalmaximum als parameter 99.02 = FACTORY, HAND/AUTO of SEQ CTRL. - koppelreferentie als percentage van het nominale motorkoppel als parameter 99.02 = TORQUE. - procesreferentie als percentage van de maximum proceswaarde als parameter 99.02 = PID CTRL. - frequentiereferentie als percentage van de absolute maximumfrequentie als parameter 99.04 = SCALAR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI1</td>
<td>Zie parameter 11.03.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AI2</td>
<td>Zie parameter 11.03.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AI3</td>
<td>Zie parameter 11.03.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AI1/JOYST</td>
<td>Zie parameter 11.03.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>AI2/JOYST</td>
<td>Zie parameter 11.03.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AI1+AI3</td>
<td>Zie parameter 11.03.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>AI2+AI3</td>
<td>Zie parameter 11.03.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AI1-AI3</td>
<td>Zie parameter 11.03.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>AI2-AI3</td>
<td>Zie parameter 11.03.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>AI1*AI3</td>
<td>Zie parameter 11.03.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>AI2*AI3</td>
<td>Zie parameter 11.03.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>MIN(AI1,AI3)</td>
<td>Zie parameter 11.03.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>MIN(AI2,AI3)</td>
<td>Zie parameter 11.03.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>MAX(AI1,AI3)</td>
<td>Zie parameter 11.03.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MAX(AI2,AI3)</td>
<td>Zie parameter 11.03.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>DI3U,4D(R)</td>
<td>Zie parameter 11.03.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>DI3U,4D</td>
<td>Zie parameter 11.03.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>DI5U,6D</td>
<td>Zie parameter 11.03.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>COMM. REF</td>
<td>Zie parameter 11.03.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>COM.REF2+AI1</td>
<td>Zie parameter 11.03.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>COM.REF2*AI1</td>
<td>Zie parameter 11.03.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>FAST.COMM</td>
<td>Zie parameter 11.03.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>COM.REF2+AI5</td>
<td>Zie parameter 11.03.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>COM.REF2*AI5</td>
<td>Zie parameter 11.03.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>AI5</td>
<td>Zie parameter 11.03.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>AI6</td>
<td>Zie parameter 11.03.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>AI5/JOYST</td>
<td>Zie parameter 11.03.</td>
<td>28</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>AI6/JOYST</td>
<td>Zie parameter 11.03.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>AI5+AI6</td>
<td>Zie parameter 11.03.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>AI5-AI6</td>
<td>Zie parameter 11.03.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>AI5*AI6</td>
<td>Zie parameter 11.03.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>MIN(AI5, AI6)</td>
<td>Zie parameter 11.03.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>MAX(AI5, AI6)</td>
<td>Zie parameter 11.03.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>DI11U,12D(R)</td>
<td>Zie parameter 11.03.</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>DI11U,12D</td>
<td>Zie parameter 11.03.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>PARAM 11.11</td>
<td>Bron geselecteerd door 11.11.</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>AI1 BIPOAIR</td>
<td>Zie parameter 11.03.</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>11.07 EXTERN REF2 MIN</td>
<td>Definieert de minimumwaarde voor externe referentie REF2 (absolute waarde). Komt met de minimuminstelling van het gebruikte bronsignaal overeen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 100%</td>
<td>Instelbereik als percentage. Correspondeert als volgt met limieten van het bronsignaal: - Bron is een analoge ingang: zie voorbeeld bij parameter 11.04. - Bron is een seriële verbinding: zie het hoofdstuk Besturing via een veldbus.</td>
<td>0 … 10000</td>
</tr>
<tr>
<td></td>
<td>11.08 EXTERN REF2 MAX</td>
<td>Bepaalt de maximumwaarde voor externe referentie REF2 (absolute waarde). Komt met de maximuminstelling van het gebruikte bronsignaal overeen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 600%</td>
<td>Instelbereik. Komt als volgt met limieten van het bronsignaal overeen: - Bron is een analoge ingang: Zie parameter 11.04. - Bron is een seriële verbinding: Zie het hoofdstuk Besturing via een veldbus.</td>
<td>0 … 6000</td>
</tr>
<tr>
<td></td>
<td>11.09 EXT 1/2 KEUZE PTR</td>
<td>Definieert bron of constante voor waarde PAR 10.04 van parameter 11.02.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11.10 EXT 1 REF PTR</td>
<td>Definieert de bron of constante voor waarde PAR 11.10 van parameter 11.03.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11.11 EXT 2 REF PTR</td>
<td>Definieert de bron of constante voor waarde PAR 11.11 van parameter 11.06.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12.01 CNST TOERENKEUZE</td>
<td>Activeert de constante toerentallen of selecteert het activeringssignaal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Geen constant toerental in gebruik</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1(TOEREN1)</td>
<td>Toerental gedefinieerd door parameter 12.02 wordt geactiveerd via digitale ingang DI1. 1 = actief, 0 = niet actief.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2(TOEREN2)</td>
<td>Toerental gedefinieerd door parameter 12.03 wordt geactiveerd via digitale ingang DI2. 1 = actief, 0 = niet-actief.</td>
<td>3</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI3(TOEREN3)</td>
<td></td>
<td>Toerental gedefinieerd door parameter 12.04 wordt geactiveerd via digitale ingang DI3. 1 = actief, 0 = niet-actief.</td>
<td>4</td>
</tr>
<tr>
<td>DI4(TOEREN4)</td>
<td></td>
<td>Toerental gedefinieerd door parameter 12.05 wordt geactiveerd via digitale ingang DI4. 1 = actief, 0 = niet-actief.</td>
<td>5</td>
</tr>
<tr>
<td>DI5(TOEREN5)</td>
<td></td>
<td>Toerental gedefinieerd door parameter 12.06 wordt geactiveerd via digitale ingang DI5. 1 = actief, 0 = niet-actief.</td>
<td>6</td>
</tr>
<tr>
<td>DI6(TOEREN6)</td>
<td></td>
<td>Toerental gedefinieerd door parameter 12.07 wordt geactiveerd via digitale ingang DI6. 1 = actief, 0 = niet-actief.</td>
<td>7</td>
</tr>
<tr>
<td>DI1,2</td>
<td></td>
<td>Selectie van constant toerental via digitale ingang DI1 en DI2.</td>
<td>8</td>
</tr>
<tr>
<td>DI3,4,5,6</td>
<td></td>
<td>Selectie van constant toerental via digitale ingang DI3, 4, 5 en 6</td>
<td>12</td>
</tr>
<tr>
<td>DI1,2,3</td>
<td></td>
<td>Selectie van constant toerental via digitale ingang DI1, DI2 en DI3.</td>
<td>11</td>
</tr>
<tr>
<td>DI3,4,5,6</td>
<td></td>
<td>Selectie van constant toerental via digitale ingang DI3, 4, 5 en 6</td>
<td>14</td>
</tr>
<tr>
<td>DI1,2,3,4</td>
<td></td>
<td>Zie selectie DI1,2,3.</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DI1</th>
<th>DI2</th>
<th>DI3</th>
<th>Constant toerental in gebruik</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Geen constant toerental</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.02</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.03</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.04</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.06</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.07</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DI1</th>
<th>DI2</th>
<th>DI3</th>
<th>DI4</th>
<th>Constant toerental in gebruik</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Geen constant toerental</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.02</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.03</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.04</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.06</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.07</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Toerental gedefinieerd door parameter 12.08</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.09</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.13</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.14</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Toerental gedefinieerd door parameter 12.16</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI7(TOEREN1)</td>
<td>Toerental gedefinieerd door parameter 12.02 wordt geactiveerd via digitale ingang DI7. 1 = actief, 0 = niet-actief.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>DI8(TOEREN2)</td>
<td>Toerental gedefinieerd door parameter 12.03 wordt geactiveerd via digitale ingang DI8. 1 = actief, 0 = niet-actief.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>DI9(TOEREN3)</td>
<td>Toerental gedefinieerd door parameter 12.04 wordt geactiveerd via digitale ingang DI9. 1 = actief, 0 = niet-actief.</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>DI10(TOEREN4)</td>
<td>Toerental gedefinieerd door parameter 12.05 wordt geactiveerd via digitale ingang DI10. 1 = actief, 0 = niet-actief.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>DI11(TOEREN5)</td>
<td>Toerental gedefinieerd door parameter 12.06 wordt geactiveerd via digitale ingang DI11. 1 = actief, 0 = niet-actief.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>DI12 (TOEREN6)</td>
<td>Toerental gedefinieerd door parameter 12.07 wordt geactiveerd via digitale ingang DI12. 1 = actief, 0 = niet-actief.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>DI7,8</td>
<td>Zie selectie DI1,2.2</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>DI9,10</td>
<td>Zie selectie DI1,2.2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>DI11,12</td>
<td>Zie selectie DI1,2.2</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>12.02 CNST TOERENTAL 1</td>
<td>Definieert toerental 1. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.03 CNST TOERENTAL 2</td>
<td>Definieert toerental 2. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.04 CNST TOERENTAL 3</td>
<td>Definieert toerental 3. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.05 CNST TOERENTAL 4</td>
<td>Definieert toerental 4. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.06 CNST TOERENTAL 5</td>
<td>Definieert toerental 5. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.07 CNST TOERENTAL 6</td>
<td>Definieert toerental 6. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.08 CNST TOERENTAL 7</td>
<td>Definieert toerental 7. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.09 CNST TOERENTAL 8</td>
<td>Definieert toerental 8. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.10 CNST TOERENTAL 9</td>
<td>Definieert toerental 9. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.11 CNST TOERENTAL 10</td>
<td>Definieert toerental 10. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
<tr>
<td>12.12 CNST TOERENTAL 11</td>
<td>Definieert toerental 11. Absolute waarde. Omvat geen draairichtingsinformatie.</td>
<td>0 … 18000 rpm</td>
<td>Instelbereik</td>
</tr>
</tbody>
</table>
12.14 CNST TOERENTAL 13

-18000 ... 18000 rpm Instelbereik -18000 ... 18000 rpm

12.15 CNST TOERENTAL 14

0 ... 18000 rpm Instelbereik 0 ... 18000 rpm

12.16 CNST TOERENTAL 15
Definieert toerental 15 of fouttoerental. Het programme overweegt het teken als door parameter 30.01 en 30.02 een fouttoerental wordt gebruikt.

-18000 ... 18000 rpm Instelbereik -18000 ... 18000 rpm

13 ANALOGE INGANGEN
Verwerking van het analoge ingangssignaal. Zie het onderdeel *Programmeerbare analoge ingangen* op pagina 52.

13.01 MINIMUM AI1
Definieert de minimumwaarde van analoge ingang AI1. Indien gebruikt als referentie, komt de waarde met de minimum instelling van de referentie overeen. **Voorbeeld:** Als AI1 als bron voor externe referentie REF1 wordt geselecteerd, dan komt deze waarde overeen met de waarde van parameter 11.04.

- 0 V Nul Volt. **Opmerking:** Het programma kan geen uitval van een analoog ingangssignaal detecteren. 1
- 2 V Twee Volt 2
- TUNE-WAARDE De waarde gemeten door de afstemmingsfunctie. Zie de selectie TUNE. 3
- TUNE Activeert de afstemmingsfunctie. Procedure: - Sluit het minimumsignaal aan op de ingang. - Stel de parameter in op TUNE. **Opmerking:** Het afleesbereik bij het afstemmen is 0 ... 10 V. 4

13.02 MAXIMUM AI1
Definieert de maximumwaarde van analoge ingang AI1. Wanneer de waarde als een referentie wordt gebruikt, correspondeert deze met de maximuminstelling van de referentie. **Voorbeeld:** Als AI1 als bron voor externe referentie REF1 wordt geselecteerd, dan komt deze waarde overeen met de waarde van parameter 11.05.

- 10 V Tien Volt (DC). 1
- TUNE-WAARDE De waarde gemeten door de afstemmingsfunctie. Zie de selectie TUNE. 2
- TUNE Activeert de afstemmingsfunctie. Procedure: - Sluit het maximumsignaal aan op de ingang. - Stel de parameter in op TUNE. **Opmerking:** Het afleesbereik van de afstemmingsfunctie is 0 ... 10 V. 3
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.03</td>
<td>SCHALFACTOR AI1</td>
<td>Schaalt analoge ingang AI1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voorbeeld: Het effect op toerentalreferentie REF1 als:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- REF1 bronselectie (parameter 11.03) = AI1 + AI3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- REF1 maximumwaarde-instelling (parameter 11.05) = 1500 rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Feitelijke waarde van AI1 = 4 V (40% van de volledige schaalwaarde)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Feitelijke waarde van AI3 = 12 mA (60% van de volledige schaalwaarde)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Schaalfactor voor AI1 = 100%, Schaalfactor voor AI3 = 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.04</td>
<td>FILTERTIJD AI1</td>
<td>Definieert de filtertijdconstante voor analoge ingang AI1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Het signaal wordt ook gefilterd via de signaalinterface-hardware (tijdconstante 10 ms). Dit kan niet met een parameter worden gewijzigd.</td>
<td></td>
</tr>
<tr>
<td>13.05</td>
<td>INVERTEREN AI1</td>
<td>Activeert/deactiveert de inversie van analoge ingang AI1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Geen inversie</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>Inversie actief. De maximumwaarde van het analoge ingangssignaal komt overeen met de minimumreferentie en omgekeerd.</td>
<td>65535</td>
</tr>
<tr>
<td>13.06</td>
<td>MINIMUM AI2</td>
<td>Zie parameter 13.01.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 mA</td>
<td>Zie parameter 13.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4 mA</td>
<td>Zie parameter 13.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TUNE</td>
<td>Zie parameter 13.01.</td>
<td>4</td>
</tr>
<tr>
<td>13.07</td>
<td>MAXIMUM AI2</td>
<td>Zie parameter 13.02.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 mA</td>
<td>Zie parameter 13.02.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.02.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TUNE</td>
<td>Zie parameter 13.02.</td>
<td>3</td>
</tr>
</tbody>
</table>

Grafiek:

![Filtering graph](image)
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.08</td>
<td>SCHAALFACTOR AI2</td>
<td>Zie parameter 13.03.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 1000%</td>
<td>Zie parameter 13.03.</td>
<td>0 … 32767</td>
</tr>
<tr>
<td>13.09</td>
<td>FILTERTIJD AI2</td>
<td>Zie parameter 13.04.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,00 … 10,00 s</td>
<td>Zie parameter 13.04.</td>
<td>0 … 1000</td>
</tr>
<tr>
<td>13.10</td>
<td>INVERT AI2</td>
<td>Zie parameter 13.05.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 13.05.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>Zie parameter 13.05.</td>
<td>65535</td>
</tr>
<tr>
<td>13.11</td>
<td>MINIMUM AI3</td>
<td>Zie parameter 13.01.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 mA</td>
<td>Zie parameter 13.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4 mA</td>
<td>Zie parameter 13.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TUNE</td>
<td>Zie parameter 13.01.</td>
<td>4</td>
</tr>
<tr>
<td>13.12</td>
<td>MAXIMUM AI3</td>
<td>Zie parameter 13.02.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 mA</td>
<td>Zie parameter 13.02.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.02.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TUNE</td>
<td>Zie parameter 13.02.</td>
<td>3</td>
</tr>
<tr>
<td>13.13</td>
<td>SCHAALFACTOR AI3</td>
<td>Zie parameter 13.03.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 1000%</td>
<td>Zie parameter 13.03.</td>
<td>0 … 32767</td>
</tr>
<tr>
<td>13.14</td>
<td>FILTERTIJD AI3</td>
<td>Zie parameter 13.04.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,00 … 10,00 s</td>
<td>Zie parameter 13.04.</td>
<td>0 … 1000</td>
</tr>
<tr>
<td>13.15</td>
<td>INVERTEREN AI3</td>
<td>Zie parameter 13.05.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 13.05.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>Zie parameter 13.05.</td>
<td>65535</td>
</tr>
<tr>
<td>13.16</td>
<td>MINIMUM AI5</td>
<td>Zie parameter 13.01.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opmerking: Als RAIO-01 gebruikt wordt met spannings-ingangssignaal, dan komt 20 mA overeen met 10 V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 mA</td>
<td>Zie parameter 13.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4 mA</td>
<td>Zie parameter 13.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TUNE</td>
<td>Zie parameter 13.01.</td>
<td>4</td>
</tr>
<tr>
<td>13.17</td>
<td>MAXIMUM AI5</td>
<td>Zie parameter 13.02.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opmerking: Als RAIO-01 gebruikt wordt met spannings-ingangssignaal, dan komt 20 mA overeen met 10 V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 mA</td>
<td>Zie parameter 13.02.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.02.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TUNE</td>
<td>Zie parameter 13.02.</td>
<td>3</td>
</tr>
<tr>
<td>13.18</td>
<td>SCHAALFACTOR AI5</td>
<td>Zie parameter 13.03.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 1000%</td>
<td>Zie parameter 13.03.</td>
<td>0 … 32767</td>
</tr>
<tr>
<td>13.19</td>
<td>FILTERTIJD AI5</td>
<td>Zie parameter 13.04.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,00 … 10,00 s</td>
<td>Zie parameter 13.04.</td>
<td>0 … 1000</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
13.20 Actuele signalen en parameters

13.20 INVERTEREN AI5

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Zie parameter 13.05.</td>
<td>0</td>
</tr>
<tr>
<td>JA</td>
<td>Zie parameter 13.05.</td>
<td>65535</td>
</tr>
</tbody>
</table>

13.21 MINIMUM AI6

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mA</td>
<td>Zie parameter 13.01.</td>
<td>1</td>
</tr>
<tr>
<td>4 mA</td>
<td>Zie parameter 13.01.</td>
<td>2</td>
</tr>
<tr>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.01.</td>
<td>3</td>
</tr>
<tr>
<td>TUNE</td>
<td>Zie parameter 13.01.</td>
<td>4</td>
</tr>
</tbody>
</table>

13.22 MAXIMUM AI6

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mA</td>
<td>Zie parameter 13.02.</td>
<td>1</td>
</tr>
<tr>
<td>TUNE-WAARDE</td>
<td>Zie parameter 13.02.</td>
<td>2</td>
</tr>
<tr>
<td>TUNE</td>
<td>Zie parameter 13.02.</td>
<td>3</td>
</tr>
</tbody>
</table>

13.23 Schaalfactor AI6

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 … 1000%</td>
<td>Zie parameter 13.03.</td>
<td>0 ... 32767</td>
</tr>
</tbody>
</table>

13.24 Filtrertijd AI6

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 … 10,00 s</td>
<td>Zie parameter 13.04.</td>
<td>0 ... 1000</td>
</tr>
</tbody>
</table>

14 RELAISUITGANGEN

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Statusinformatie</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Neutraal</td>
<td>Zie parameter 13.05.</td>
<td>0</td>
</tr>
<tr>
<td>GEREED</td>
<td>Bereid voor bedrijf</td>
<td>Startvrijgavesignaal actief, geen fout aanwezig.</td>
<td>2</td>
</tr>
<tr>
<td>IN BEDRIJF</td>
<td>In bedrijf: Startsignaal aan, Startvrijgavesignaal aan, geen actieve fout.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FOUT</td>
<td>Fout</td>
<td>Zie parameter 30.04.</td>
<td>8</td>
</tr>
<tr>
<td>FOUT(-1)</td>
<td>Geïnverteerde fout, Relais wordt door een fouttrip ontkrachtigd.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>FOUT(RST)</td>
<td>Fout. Automatische reset na automatische resetvertraging. Zie parameter 31 AUTOMATISCHE RESET.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BLOKK WAARS</td>
<td>Waarschuwing bij de blokkeerbewakingsfunctie. Zie parameter 30.10.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>BLOKK FOUT</td>
<td>Activering van de blokkeerbewakingsfunctie. Zie parameter 30.10.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>M-TEMP WAARS</td>
<td>Motortemperatuur heeft waarschuwing. Zie parameter 30.04.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>M-TEMP FOUT</td>
<td>Motortemperatuur heeft uitschakeling. Zie parameter 30.04.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ACSTEMP WAAR</td>
<td>Waarschuwing door temperatuurbewakingsfunctie van de omvormer. De waarschuwingslimiet hangt af van het gebruikte type omvormer.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>ACSTEMP FOUT</td>
<td>Uitschakeling door temperatuurbewakingsfunctie van de omvormer. Uitschakellimiet is 100%.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>124</td>
<td>FOUT/WAARSCH</td>
<td>Fout of waarschuwing actief</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>WAARSCHUWING</td>
<td>Waarschuwing actief</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>ACHTERUIT</td>
<td>Motor draait achteruit.</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>EXT BESTURING</td>
<td>Omvormer staat onder externe besturing.</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>REF 2 ACTIEF</td>
<td>Externe referentie REF 2 is in gebruik.</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>CONST TOEREN</td>
<td>Constant toerental in gebruik. Zie parametergroep 12 CONSTANT TOEREN.</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>DC OVERSPANN</td>
<td>DC-spanning van de tussenkring ligt boven de overspanningslimiet.</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>DC ONDERSPANN</td>
<td>DC-spanning van de tussenkring ligt onder de onderspanningslimiet.</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>TOERENT1 LIM</td>
<td>Motortoerental heeft bewakingslimiet 1 bereikt. Zie parameter 32.01 en 32.02.</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>TOERENT2 LIM</td>
<td>Motortoerental heeft bewakingslimiet 2 bereikt. Zie parameters 32.03 en 32.04.</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>STROOMLIMIET</td>
<td>Motorstroom heeft bewakingslimiet bereikt. Zie parameters 32.05 en 32.06.</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>REF1 LIMIET</td>
<td>Externe referentie REF1 heeft bewakingslimiet bereikt. Zie parameters 32.11 en 32.12.</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>REF1 LIMIET</td>
<td>Externe referentie REF2 heeft bewakingslimiet bereikt. Zie parameters 32.13 en 32.14.</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>KOPPEL1 LIM</td>
<td>Motorkoppel heeft bewakingslimiet 1 bereikt. Zie parameter 32.07 en 32.08.</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>KOPPEL1 LIM</td>
<td>Motorkoppel heeft bewakingslimiet 2 bereikt. Zie parameters 32.09 en 32.10.</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>GESTART</td>
<td>De omvormer heeft startopdracht ontvangen.</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>GEEN REF</td>
<td>De omvormer heeft geen referentie.</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>OP SNELHEID</td>
<td>De feitelijke waarde heeft de referentiewaarde bereikt. Bij toerenregeling is de toerentalfout minder dan of gelijk aan 10% van het nominale toerental.</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>WERKW1 LIM</td>
<td>Variable ACT1 van de PID-regeling heeft de bewakingslimiet bereikt. Zie parameters 32.15 en 32.16.</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>WERKW1 LIM</td>
<td>Variable ACT2 van de PID-regeling heeft de bewakingslimiet bereikt. Zie parameters 32.17 en 32.18.</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>COMM.REF3(13)</td>
<td>Het relais wordt gestuurd door veldbusreferentie REF3. Zie het hoofdstuk Besturing via een veldbus.</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>PARAM 14.16</td>
<td>Bron geselecteerd door parameter 14.16.</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>MECH REMBEST</td>
<td>Aan/uit-regeling van een mechanische rem. Zie parametergroep 42 MECH REMBEST en de sectie Besturing van een mechanische rem op pagina 81.</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>REMCH KORTSL</td>
<td>Omvormer uitgeschakeld vanwege een remchopperfout. Zie het hoofdstuk Futopsporing.</td>
<td>36</td>
</tr>
</tbody>
</table>

14.02 RELAIS RO2 | Selecteert de omvormerstatus die moet worden aangegeven via relaisuitgang RO2. Het relais wordt bekrachtigd als de status aan de instelling voldoet. | 14.02 |

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEE</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>GEREED</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FOUT(-1)</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>FOUT(RST)</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>BLOKK WAARSC</td>
<td>Zie parameter 14.01.</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>BLOKK FOUT</td>
<td>Zie parameter 14.01.</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>M-TEMP WAARS</td>
<td>Zie parameter 14.01.</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>M-TEMP FOUT</td>
<td>Zie parameter 14.01.</td>
<td>10</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>ACSTEMP WAAR</td>
<td>Zie parameter 14.01.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>ACSTEMP FOUT</td>
<td>Zie parameter 14.01.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>FOUT/WAARSCH</td>
<td>Zie parameter 14.01.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>ACHTERUIT</td>
<td>Zie parameter 14.01.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>EXT BESTURING</td>
<td>Zie parameter 14.01.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CONST TOEREN</td>
<td>Zie parameter 14.01.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>DC OVERSPANN</td>
<td>Zie parameter 14.01.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>DC ONDERSPANN</td>
<td>Zie parameter 14.01.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOERENT1 LIM</td>
<td>Zie parameter 14.01.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>TOERENT1 LIM</td>
<td>Zie parameter 14.01.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>STROOMLIMIET</td>
<td>Zie parameter 14.01.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>REF1 LIMIET</td>
<td>Zie parameter 14.01.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>REF2 LIMIET</td>
<td>Zie parameter 14.01.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>KOPPEL1 LIM</td>
<td>Zie parameter 14.01.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>KOPPEL2 LIM</td>
<td>Zie parameter 14.01.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>GESTART</td>
<td>Zie parameter 14.01.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>GEEN REF</td>
<td>Zie parameter 14.01.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>OP SNELHEID</td>
<td>Zie parameter 14.01.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>WERKW1 LIM</td>
<td>Zie parameter 14.01.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>WERKW2 LIM</td>
<td>Zie parameter 14.01.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>COMM. REF3(14)</td>
<td>Zie parameter 14.01.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>PARAM 14.17</td>
<td>Bron geselecteerd door parameter 14.17.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>MECH REMBEST</td>
<td>Zie parameter 14.01.</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>REMCH KORTSL</td>
<td>Zie parameter 14.01.</td>
<td>36</td>
</tr>
<tr>
<td>14.03</td>
<td>RELAIS RO3</td>
<td>Selecteert de omvormerstatus die moet worden aangegeven via relaisuitgang RO3. Het relais wordt bekrachtigd als de status aan de instelling voldoet.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GEREED</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>FOUT(-1)</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>FOUT(RST)</td>
<td>Zie parameter 14.01.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>BLOKK WAARSC</td>
<td>Zie parameter 14.01.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>BLOKK FOUT</td>
<td>Zie parameter 14.01.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>M-TEMP WAARS</td>
<td>Zie parameter 14.01.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>M-TEMP FOUT</td>
<td>Zie parameter 14.01.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>ACSTEMP WAAR</td>
<td>Zie parameter 14.01.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>ACSTEMP FOUT</td>
<td>Zie parameter 14.01.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>FOUT/WAARSCH</td>
<td>Zie parameter 14.01.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>14</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACHTERUIT</td>
<td>Zie parameter 14.01.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>EXT BESTURING</td>
<td>Zie parameter 14.01.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CONST TOEREN</td>
<td>Zie parameter 14.01.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>DC OVERSPANN</td>
<td>Zie parameter 14.01.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>DC ONDERSPANN</td>
<td>Zie parameter 14.01.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOERENT1 LIM</td>
<td>Zie parameter 14.01.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>TOERENT2 LIM</td>
<td>Zie parameter 14.01.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>STROOMLIMIET</td>
<td>Zie parameter 14.01.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>REF1 LIMIET</td>
<td>Zie parameter 14.01.</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>REF2 LIMIET</td>
<td>Zie parameter 14.01.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>KOPPEL1 LIM</td>
<td>Zie parameter 14.01.</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>KOPPEL2 LIM</td>
<td>Zie parameter 14.01.</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>GESTART</td>
<td>Zie parameter 14.01.</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>GEEN REF</td>
<td>Zie parameter 14.01.</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>OP SNEELHEID</td>
<td>Zie parameter 14.01.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>MAGN GEREED</td>
<td>De motor wordt gemagnetiseerd en is gereed om het nominale koppel te leveren (de nominale magnetisering van de motor is bereikt).</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>G2 ACTIEF</td>
<td>Gebruikersmacro 2 is in gebruik.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>COMM. REF3(15)</td>
<td>Zie parameter 14.01.</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>PARAM 14.18</td>
<td>Bron geselecteerd door parameter 14.18.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>MECH REMBEST</td>
<td>Zie parameter 14.01.</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>REMCH KORTSL</td>
<td>Zie parameter 14.01.</td>
<td>36</td>
</tr>
<tr>
<td>14.04</td>
<td>RO1 AANVERTRAGING</td>
<td>Definieert de inschakelvertraging voor relais RO1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 … 3600,0 s</td>
<td>Inselbereik. De onderstaande afbeelding illustreert de inschakel- (aan) en uitschakelvertragingen (uit) voor relaisuitgang RO1.</td>
<td>0 … 36000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.05</td>
<td>RO1 UITVERTRAGING</td>
<td>Definieert de uitschakelvertraging voor relais RO1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 … 3600,0 s</td>
<td>Zie parameter 14.04.</td>
<td>0 … 36000</td>
</tr>
<tr>
<td>14.06</td>
<td>RO2 AANVERTRAGING</td>
<td>Definieert de inschakelvertraging voor relaisuitgang RO2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 … 3600,0 s</td>
<td>Zie parameter 14.04.</td>
<td>0 … 36000</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>14.07</td>
<td>RO2</td>
<td>UITVERTRAGING</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.08</td>
<td>RO3</td>
<td>AANVERTRAGING</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.09</td>
<td>RO3</td>
<td>UITVERTRAGING</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.10</td>
<td>DIO MOD1 RO1</td>
<td>Selecteert de omvormerstatus die wordt aangegeven via relaisuitgang RO1 van de digitale I/O uitbreidingsmodule 1 (optioneel, zie parameter 98.03).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEREEDE</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OP SNELHEID</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td>14.11</td>
<td>DIO MOD1 RO2</td>
<td>Selecteert de omvormerstatus die wordt aangegeven via relaisuitgang RO2 van de digitale I/O uitbreidingsmodule 1 (optioneel, zie parameter 98.03).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEREEDE</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OP SNELHEID</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PARAM 14.20</td>
<td>Bron geselecteerd door parameter 14.20.</td>
<td>7</td>
</tr>
<tr>
<td>14.12</td>
<td>DIO MOD2 RO1</td>
<td>Selecteert de omvormerstatus die wordt aangegeven via relaisuitgang RO1 van de digitale I/O uitbreidingsmodule 2 (optioneel, zie parameter 98.04).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEREEDE</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OP SNELHEID</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PARAM 14.21</td>
<td>Bron geselecteerd door parameter 14.21.</td>
<td>7</td>
</tr>
<tr>
<td>14.13</td>
<td>DIO MOD2 RO2</td>
<td>Keuze van de omvormerstatus die wordt aangegeven via relaisuitgang RO2 van de digitale I/O uitbreidingsmodule 2 (optioneel, zie parameter 98.04).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEREEDE</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OP SNELHEID</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.14</td>
<td>DIO MOD3 RO1</td>
<td>Keuze van de omvormerstatus die wordt aangegeven via relaisuitgang RO1 van de digitale I/O uitbreidingsmodule 3 (optioneel, zie parameter 98.05).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>GEREED</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OP Snelheid</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td>14.23</td>
<td>DIO MOD3 RO2</td>
<td>Selecteert de omvormerstatus die wordt aangegeven via relaisuitgang RO2 van de digitale I/O uitbreidingsmodule 3 (optioneel, zie parameter 98.05).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>GEREED</td>
<td>Zie parameter 14.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IN BEDRIJF</td>
<td>Zie parameter 14.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Zie parameter 14.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Zie parameter 14.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>REF 2 ACTIEF</td>
<td>Zie parameter 14.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>OP Snelheid</td>
<td>Zie parameter 14.01.</td>
<td>6</td>
</tr>
<tr>
<td>14.24</td>
<td>DIO MOD3 RO3</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO MOD3 RO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO MOD3 RO5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO MOD3 RO6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIO MOD3 RO7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.16</td>
<td>RO PTR1</td>
<td>Definieert de bron of constante voor waarde PAR 14.16 van parameter 14.01.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.17</td>
<td>RO PTR2</td>
<td>Definieert bron of constante voor waarde PAR 14.17 van parameter 14.02.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.18</td>
<td>RO PTR3</td>
<td>Definieert bron of constante voor waarde PAR 14.18 van parameter 14.03.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.19</td>
<td>RO PTR4</td>
<td>Definieert de bron of constante voor waarde PAR 14.19 van parameter 14.10.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.20</td>
<td>RO PTR5</td>
<td>Definieert bron of constante voor waarde PAR 14.20 van parameter 14.11.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.21</td>
<td>RO PTR6</td>
<td>Definieert de bron of constante voor waarde PAR 14.21 van parameter 14.12.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.22</td>
<td>RO PTR7</td>
<td>Definieert de bron of constante voor waarde PAR 14.22 van parameter 14.13.</td>
<td>-</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.23</td>
<td>RO PTR8</td>
<td>Definieert de bron of constante voor waarde PAR 14.23 van parameter 14.14.</td>
<td>-</td>
</tr>
<tr>
<td>14.24</td>
<td>RO PTR9</td>
<td>Definieert de bron of constante voor waarde PAR 14.24 van parameter 14.15.</td>
<td>-</td>
</tr>
</tbody>
</table>

15 ANALOGUE UITGANGEN
Selectie van de feitelijke gegevens die moeten worden aangegeven via de analoge uitgangen. Verwerking van uitgangssignalen. Zie het onderdeel `Programmeerbare analoge uitgangen` op pagina 53.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.01</td>
<td>ANALOGE UITGANG1</td>
<td>Sluit een omvormersignaal aan op analoge uitgang AO1.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td></td>
<td>Niet in gebruik</td>
<td>1</td>
</tr>
<tr>
<td>PROCES DATA</td>
<td>Waarde van een door de gebruiker gedefinieerde proceshoeveelheid afgeleid van het motortoerental. Zie parametergroep 34 PROCES DATA voor selectie van de schaalafactor en eenheid (%; m/s; rpm). De update-interval is 100 ms.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TOERENTAL</td>
<td>Motortoerental (signaal 01.02 SPEED). 20 mA = Nominale motortoerental. De update-interval is 24 ms. De waarde wordt gefilterd met de filtertijdconstante gedefinieerd door parameter 34.04 MOTOR SP FILT TIM.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FREQUENTIE</td>
<td>Uitgangsfrequentie. 20 mA = nominale motorfrequentie. De update-interval is 24 ms.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>STROOM</td>
<td>Uitgangsstroom. 20 mA = nominale motorstroom. Het update-interval is 24 ms.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>KOPPEL</td>
<td>Motorkoppel. 20 mA = 100% van de nominale waarde van de motor. De update-interval is 24 ms.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>VERMоген</td>
<td>Motorvermogen. 20 mA = 100% van de nominale waarde van de motor. Het update-interval is 100 ms.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DC BUS SPANN</td>
<td>DC-busspanning. 20 mA = 100% van de referentiewaarde. De referentiewaarde is 540 VDC. (= 1.35 · 400 V) voor een nominale voedingsspanning van 380 ...415 VAC en 675 VDC (= 1,35 · 500 V) voor een nominale voedingsspanning van 380 ...500 VAC. De update-interval is 24 ms.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>UITG. SPANN</td>
<td>Motorspanning. 20 mA = nominale motorspanning. Het update-interval is 100 ms.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>APPL. UITG</td>
<td>De referentie die wordt gegeven als uitgangswaarde van de applicatie. Als bijvoorbeeld de macro PID-regeling in gebruik is, is dit de uitgang van de PID-regeling. Het update-interval is 24 ms.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>REFERENTIE</td>
<td>Actieve referentie die de omvormer momenteel volgt. 20 mA = 100 % van de actieve referentie. Het update-interval is 24 ms.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>REGELAFW</td>
<td>Het verschil tussen de referentie en de feitelijke waarde van de PID-regeling. 0/4 mA = -100%, 10/12 mA = 0%, 20 mA = 100%. Het update-interval is 24 ms.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>WERKWAARDE 1</td>
<td>Waarde van de variable WERKW1 gebruikt in de PID-regeling. 20 mA = waarde van parameter 40.10. Het update-interval is 24 ms.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>WERKWAARDE 2</td>
<td>Waarde van de variable ACT2 gebruikt in de PID-regeling. 20 mA = waarde van parameter 40.12. Het update-interval is 24 ms.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>COMM.REF4</td>
<td>De waarde wordt van veldbusreferentie REF4 gelezen. Zie het hoofdstuk <code>Besturing via een veldbus</code></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
M1 TEMP MEET

Analoge uitgang is een huidige bron in de meetkring voor motortemperatuur. Afhankelijk van het sensortype is de uitgang 9,1 mA (Pt 100) of 1,6 mA (PTC). Voor aanvullende informatie, zie parameter 35.01 en de sectie *Meting van de motortemperatuur via de standaard I/O* op pagina 77.

Opmerking: De instellingen van parameter 15.02 tot 15.05 zijn ongeldig.

PARAM 15.11

Bron geselecteerd door 15.11

15.02 INVERTEREN AO1

Zet het AO1-singaal van de analoge uitgang om. Het analoge signaal is minimaal als het aangegeven omvormersingaal maximaal is, en omgekeerd.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 TEMP MEET</td>
<td>Analoge uitgang is een huidige bron in de meetkring voor motortemperatuur. Afhankelijk van het sensortype is de uitgang 9,1 mA (Pt 100) of 1,6 mA (PTC). Voor aanvullende informatie, zie parameter 35.01 en de sectie Meting van de motortemperatuur via de standaard I/O op pagina 77. Opmerking: De instellingen van parameter 15.02 tot 15.05 zijn ongeldig.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>PARAM 15.11</td>
<td>Bron geselecteerd door 15.11</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>15.02 INVERTEREN AO1</td>
<td>Zet het AO1-singaal van de analoge uitgang om. Het analoge signaal is minimaal als het aangegeven omvormersingaal maximaal is, en omgekeerd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Inversie uit</td>
<td>6535</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Inversie aan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15.03 MINIMUM AO1</td>
<td>Definieert de minimumwaarde van het analoge uitgangssingaal AO1.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0 mA</td>
<td>Nul mA</td>
<td>0 ... 1000</td>
<td></td>
</tr>
<tr>
<td>4 mA</td>
<td>Vier mA</td>
<td>0 ... 10000</td>
<td></td>
</tr>
<tr>
<td>15.04 FILTERTIJD AO1</td>
<td>Definieert de filtertijdconstante voor analoge uitgang AO1.</td>
<td>10 ... 10000</td>
<td></td>
</tr>
<tr>
<td>0,00 ... 10,00 s</td>
<td>Filtertijdconstante</td>
<td>0 ... 1000</td>
<td></td>
</tr>
</tbody>
</table>

Opmerking: Zelfs als u de minimumwaarde 0 s kiest, wordt het signaal nog steeds gefilterd met een tijdsconstante van 10 ms vanwege de signaalinterface-hardware. Dit kan door geen van de parameters worden veranderd.

15.05 SCHAAFACTOR AO1

Schaalfactor voor het signaal van de analoge uitgang AO1.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ... 1000%</td>
<td>Schaalfactor. Als de waarde 100% is is, komt de referentiewaarde van het omvormersingaal overeen met 20 mA. Voorbeeld: De nominale motorstroom is 7,5 A en de gemeten maximumstroom bij maximale belasting is 5 A. De motorstroom 0 tot 5 A moeten worden gelezen als een 0 tot 20 mA analoog signaal via AO1. Dit vereist de volgende instellingen: 1. AO1 is ingesteld op CURRENT met parameter 15.01. 2. AO1 minimum is ingesteld op 0 mA met parameter 15.03. 3. De gemeten maximummotorstroom wordt geschaald overeenkomstig het 20 mA analoge uitgangssingaal door de schaalfactor (k) in te stellen op 150%. De waarde wordt als volgt gedefinieerd: de referentiewaarde van het uitgangssingaal CURRENT is de nominale motorstroom, d.w.z 7,5 A (zie parameter 15.01). Om de gemeten maximummotorstroom in overeenstemming te brengen met 20 mA, moet deze geschaald worden tot de referentiewaarde voordat hij wordt geconverteerd naar een analoog uitgangssingaal. Vergelijking: [k \cdot 5 \text{ A} = 7,5 \text{ A} \Rightarrow k = 1,5 = 150%]</td>
<td>100 ... 10000</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 15.01.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCES DATA</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TOERENTAL</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>FREQUENTIE</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>STROOM</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>KOPPEL</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>VERMOGEN</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>DC BUS SPANN</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UITG. SPANN</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>APPL. UITG</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>REFERENTIE</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>REGELAFW</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>WERKWAARDE 1</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>WERKWAARDE 2</td>
<td>Zie parameter 15.01.</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>COMM.REF5</td>
<td>De waarde wordt van veldbusreferentie REF5 gelezen. Zie het hoofdstuk Besturing via een veldbus.</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>PARAM 15.12</td>
<td>Bron geselecteerd door 15.12</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>INVERTEREN AO2</td>
<td>Zie parameter 15.02.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 15.02.</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>JA</td>
<td>Zie parameter 15.02.</td>
<td></td>
<td>65535</td>
</tr>
<tr>
<td>MINIMUM AO2</td>
<td>Zie parameter 15.03.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mA</td>
<td>Zie parameter 15.03.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4 mA</td>
<td>Zie parameter 15.03.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>FILTERTIJD AO2</td>
<td>Zie parameter 15.04.</td>
<td></td>
<td>0 ... 1000</td>
</tr>
<tr>
<td>0,00 ... 10,00 s</td>
<td>Zie parameter 15.04.</td>
<td></td>
<td>100 ... 10000</td>
</tr>
<tr>
<td>SCHAALFACTOR AO2</td>
<td>Zie parameter 15.05.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ... 1000%</td>
<td>Zie parameter 15.05.</td>
<td></td>
<td>100 ... 10000</td>
</tr>
<tr>
<td>AO1 PTR</td>
<td>Definieert de bron of constante voor waarde PAR 15.11 van parameter 15.01.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-255.255.31 ... +255.255.31 / C.-32768 ... C.32767</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td></td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>AO2 PTR</td>
<td>Definieert de bron of constante voor waarde PAR 15.12 van parameter 15.06.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-255.255.31 ... +255.255.31 / C.-32768 ... C.32767</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td></td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

16 STUURINGANGEN

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA</td>
<td>Startvrijgavesignaal is actief.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>Extern signaal vereist via digitale ingang DI1. 1 = startvrijgave.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>COMM.CW</td>
<td>Extern signaal vereist via veldbuscontrolwoord (3-bit).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>PARAM 16.08</td>
<td>Bron geselecteerd door parameter 16.08.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16.02</td>
<td>PARAMETER SLOT</td>
<td>Selecteer de status van het parameterslot. Het slot voorkomt parameterwijzigingen.</td>
<td></td>
</tr>
<tr>
<td>OPEN</td>
<td>Het slot is open. Parameterwaarden kunnen worden gewijzigd.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OP SLOT</td>
<td>Gesloten Parameterwaarden kunnen niet via het bedieningspaneel worden gewijzigd. Het slot kan worden geopend door invoer van een geldige code bij parameter 16.03.</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>16.03</td>
<td>TOEGANGSCODE</td>
<td>Selecteer de toegangscode voor het parameterslot (zie parameter 16.02).</td>
<td></td>
</tr>
<tr>
<td>0 … 30000</td>
<td>Instelling 358 opent het slot. De waarde wordt automatisch naar 0 omgezet.</td>
<td>0 … 30000</td>
<td></td>
</tr>
<tr>
<td>16.04</td>
<td>FOUTRESET KEUZE</td>
<td>Selecteer de bron voor het foutresetsignaal. Het signaal voert na een fouttrip een reset uit op de omvormer als de oorzaak van de fout niet meer bestaat</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Foutreset uitsluitend via toetsenbord van het bedieningspaneel (RESET-toets).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Reset via digitale ingang DI1 of via het bedieningspaneel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Als de omvormer onder externe besturing is: Reset door positieve flank op DI1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Als de omvormer onder lokale besturing is: Reset via RESET-toets van het bedieningspaneel.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>COMM.CW</td>
<td>Reset via het veldbuscontrolwoord (7-bit), of via RESET-toets van het bedieningspaneel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opmerking: Reset via het veldbuscontrolwoord (7-bit) wordt automatisch mogelijk gemaakt en is onafhankelijk van de instelling van parameter 16.04 als parameter 10.01 of 10.02 ingesteld is op COMM.CW.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>BIJ STOP</td>
<td>Reset samen met het stopsignaal ontvangen via de digital ingang of via RESET-toets van het bedieningspaneel.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>PARAM 16.11</td>
<td>Bron geselecteerd door parameter 16.11.</td>
<td>16</td>
</tr>
<tr>
<td>16.05</td>
<td>G IO LEZEN</td>
<td>Maakt het veranderen van gebruikersmacro’s via een digitale ingang mogelijk. Zie parameter 99.02. De verandering is uitsluitend toegestaan als de omvormer is gestopt. De omvormer zal tijdens de wijziging niet starten. Opmerking: Sla de gebruikersmacro na wijziging van een parameterinstelling of uitvoering van de motoridentificatie altijd opnieuw op via parameter 99.02. De laatste, door de gebruiker opgeslagen instellingen worden geladen wanneer de voeding wordt uitgeschakeld en weer ingeschakeld of als de macro wordt veranderd. Als de parameter niet opgeslagen veranderingen gaan verloren. Opmerking: De waarde van deze parameter is niet opgenomen in de gebruikersmacro. Wanneer een instelling is gemaakt, blijft het behouden ondanks de verandering aan de gebruikersmacro. Opmerking: Selectie van Gebruikersmacro 2 kan worden bewaakt via relaisuitgang RO3. Zie parameter 14.03 voor aanvullende informatie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Verandering van gebruikersmacro via een digitale ingang is niet mogelijk.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Negatieve flank van digitale ingang DI1: Gebruikersmacro 1 wordt voor gebruik geladen. Positieve flank van digitale ingang DI1: Gebruikersmacro 2 wordt voor gebruik geladen.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td>13</td>
</tr>
<tr>
<td>16.06</td>
<td>PANEEL SLOT</td>
<td>Schakelt de lokale besturing uit (LOC/REM-toets van het bedieningspaneel). WAARSCHUWING! Zorg voor het activeren dat het bedieningspaneel niet nodig is voor het stoppen van de omvormer!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>Lokale besturing toegestaan.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>Lokale besturing uitgeschakeld.</td>
<td>65535</td>
</tr>
<tr>
<td>16.07</td>
<td>PARAMETER OPSLAAN</td>
<td>Slaat de geldige parameterwaarden op in het permanente geheugen. Opmerking: Een nieuwe parameterwaarde van een standaardmacro wordt automatisch opgeslagen als die via het paneel wordt gewijzigd, maar niet als dat gebeurt via een veldbusaansluiting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEDAAN</td>
<td>Opslag voltooid</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OPSLAAN..</td>
<td>Bezig met opslaan</td>
<td>1</td>
</tr>
<tr>
<td>16.08</td>
<td>STARTVRIJGAVE PTR</td>
<td>Definieert de bron of constante voor waarde PAR 16.08 van parameter 16.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31…</td>
<td>Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>-</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.09</td>
<td>CTRL BOARD VOED</td>
<td>Definieert de voedingsbron van de besturingskaart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Bij gebruik van een externe voedingsbron terwijl deze parameter de waarde INTERNAL heeft, zal de omvormer bij de afschakeling van de voeding uitschakelen wegens een fout.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERNE 24V</td>
<td>Intern (standaard).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EXTERNE 24V</td>
<td>Extern. De besturingskaart wordt gevoed door een externe bron.</td>
<td>2</td>
</tr>
<tr>
<td>16.10</td>
<td>ASSISTENT KEUZE</td>
<td>Schakelt de Start-up Assistent in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>Assistent uitgeschakeld.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>Assistent ingeschakeld.</td>
<td>65535</td>
</tr>
<tr>
<td>16.11</td>
<td>FOUT RESET PTR</td>
<td>Definieert de bron of constante voor selectie PARAM 16.11 van parameter 16.04.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Parameterindex of een constante. Zie parameter 10.04 voor informatie over het verschil.</td>
<td></td>
</tr>
<tr>
<td>16.12</td>
<td>RESET COUNTER</td>
<td>Voert reset uit bij de teller voor de actieve tijd van de koelventilator of de kWh-teller.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Geen reset.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>VENT AANTIJD</td>
<td>Reset de bedrijfstijd-teller van de koelventilator in de omvormer die wordt aangegeven door 01.44 FAN ON-TIME.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>kWh</td>
<td>Reset kWh-meter. Zie parameter 01.15 KILOWATT HOURS.</td>
<td>2</td>
</tr>
</tbody>
</table>

20 LIMIETEN

Bedrijfslimieten van de omvormer. Zie ook de sectie *Afregeling van de toerenregelaar* op pagina 63.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01</td>
<td>MINIMUM TOERENTAL</td>
<td>Definieert het toegestane minimumtoerental. Deze limiet kan niet worden ingesteld als parameter 99.04 = SCALAR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: De limiet is gekoppeld aan de instelling van het nominale motortoerental d.w.z. parameter 99.08. Als 99.08 wordt gewijzigd, zal de standaard toerentallimiet ook veranderen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als de waarde positief is, kan de motor niet achteruitdraaien.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-18000 / (aantal poolparen) ... par. 20.02 rpm</td>
<td>Minimum toerentallimiet</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>20.02</td>
<td>MAXIMUM TOERENTAL</td>
<td>Definieert het toegestane maximumtoerental. De waarde kan niet worden ingesteld als parameter 99.04 = SCALAR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: De limiet is gekoppeld aan de instelling van het nominale motortoerental d.w.z. parameter 99.08. Als 99.08 wordt gewijzigd, zal de standaard toerentallimiet ook veranderen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 20.01 ... 18000 / (aantal poolparen) rpm</td>
<td>Maximum toerentallimiet</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>20.03</td>
<td>MAXIMUM STROOM</td>
<td>Definieert de toegestane maximum motorstroom.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 ... x.x A</td>
<td>Stroomlimiet</td>
<td></td>
</tr>
<tr>
<td>20.04</td>
<td>MAXIMUM KOPPEL</td>
<td>Definieert het toegestane maximumkoppel 1 voor de omvormer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 ... 600,0%</td>
<td>Waarde van de limiet in percentage van het nominale motorkoppel.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>20.05</td>
<td>OVERSPANNINGS-REG</td>
<td>Activeert of deactiveert de overspanningsregeling van de DC-tussenkring.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door het snel afremmen van een zeer trage last bereikt de DC-tussenkring de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>overspanningslimiet. Om te voorkomen dat de DC-spanning de limiet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>overschrijdt, vermindert de overspanningsregeling automatisch het remkoppel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als een remchopper en een remweerstand zijn aangesloten op</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>de omvormer, moet de parameter op UIT (keuze NEE) zijn ingesteld om de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chopper probleemoos te laten werken.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>Overspanningsregeling niet actief.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>Overspanningsregeling actief.</td>
<td>65535</td>
</tr>
<tr>
<td>20.06</td>
<td>ONDERSPANNINGS-REG</td>
<td>Activeert of deactiveert de onderspanningsregeling van de DC-tussenkring.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Als de DC-tussenkringspanning daalt als gevolg van een onderbreking in de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>voeding, verlaagt de onderspanningsregeling het motortoerental om ervoor te</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>zorgen dat de DC-tussenkring boven de onderste limiet blijft. Door het</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>toerental van de motor te verlagen, ontstaat door de traagheid van de last</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>terugvoeding naar de omvormer, waardoor de DC-tussenkring geladen blijft en</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>uitschakeling door onderspanning wordt voorkomen totdat de motor tot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stilstand uitloopt. Dit leidt tot een grotere ongevoeligheid in systemen met</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>een hoge massatraagheid, zoals een centrifuge of ventilator.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>Onderspanningsregeling niet-actief.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>Onderspanningsregeling actief.</td>
<td>65535</td>
</tr>
<tr>
<td>20.07</td>
<td>MINIMUM FREQ</td>
<td>Definieert de onderlimiet voor de uitgangsfrequentie van de omvormer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>De limiet kan uitsluitend worden ingesteld als parameter 99.04 = SCALAR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als de waarde positief is, kan de motor niet achteruitdraaien.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-300,00 … 50 Hz</td>
<td>Minimum frequentielimiet.</td>
<td>-30000 ... 5000</td>
</tr>
<tr>
<td>20.08</td>
<td>MAXIMUM FREQ</td>
<td>Definieert de bovenlimiet voor de uitgangsfrequentie van de omvormer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>De limiet kan uitsluitend worden ingesteld als parameter 99.04= SCALAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-50 … 300,00 Hz</td>
<td>Maximum frequentielimiet</td>
<td>-5000 ... 30000</td>
</tr>
<tr>
<td>20.11</td>
<td>P MOTOR LIMIET</td>
<td>Definieert het toegestane maximumvermogen dat door de omvormer aan de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>motor wordt gevoed.</td>
<td>0 ... 60000</td>
</tr>
<tr>
<td></td>
<td>0 … 600%</td>
<td>Vermogenslimiet als percentage van het nominale motorvermogen.</td>
<td></td>
</tr>
<tr>
<td>20.12</td>
<td>P GENERAT LIMIET</td>
<td>Definieert het toegestane maximumvermogen dat door de motor aan de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>omvormer wordt gevoed.</td>
<td>0 ... 60000</td>
</tr>
<tr>
<td></td>
<td>-600 … 0%</td>
<td>Vermogenslimiet als percentage van het nominale motorvermogen.</td>
<td></td>
</tr>
<tr>
<td>20.13</td>
<td>MIN KOPPELKEUZE</td>
<td>Selecteert het toegestane minimumkoppeling voor de omvormer. De update-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>interval is 100 ms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN LIM1</td>
<td>Waarde van parameter 20.15.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Digitale ingang DI1. 0: Waarde van parameter 20.15. 1: Waarde van parameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.16.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>10</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Analoge ingang AI1. Zie parameter 20.20 voor hoe het signaal wordt omgezet in een koppellimiet.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>AI2</td>
<td>Zie selectie AI1.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>AI3</td>
<td>Zie selectie AI1.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>AI5</td>
<td>Zie selectie AI1.</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>AI6</td>
<td>Zie selectie AI1.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>PARAM 20.18</td>
<td>Limiet gegeven door 20.18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>NEG MAX KOPP</td>
<td>Omgezette limiet van maximumkoppel gedefinieerd door parameter 20.14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>20.14 MAX KOPPELKEUGE</td>
<td>Definieert de limiet van de maximumkoppel voor de omvormer. De update-interval is 100 ms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX LIM1</td>
<td>Waarde van parameter 20.04.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Digitale ingang DI1. 0: Waarde van parameter 20.04. 1: Waarde van parameter 20.17.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Analoge ingang AI1. Zie parameter 20.20 voor hoe het signaal wordt omgezet in een koppellimiet.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>AI2</td>
<td>Zie selectie AI1.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>AI3</td>
<td>Zie selectie AI1.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>AI5</td>
<td>Zie selectie AI1.</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>AI6</td>
<td>Zie selectie AI1.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>PARAM 20.19</td>
<td>Limiet gegeven door 20.18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20.15 KOPPEL MIN LIM1</td>
<td>Definieert de limiet van de minimumkoppel 1 voor de omvormer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-600,0 … 0,0%</td>
<td>Waarde van de limiet in percentage van het nominale motorkoppel</td>
<td>-60000 … 0</td>
<td></td>
</tr>
<tr>
<td>20.16 KOPPEL MIN LIM2</td>
<td>Definieert de limiet van de minimumkoppel 2 voor de omvormer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-600,0 … 0,0%</td>
<td>Waarde van de limiet in percentage van het nominale motorkoppel</td>
<td>-60000 … 0</td>
<td></td>
</tr>
<tr>
<td>20.17 KOPPEL MAX LIM2</td>
<td>Definieert de limiet van de maximumkoppel 2 voor de omvormer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 … 600,0%</td>
<td>Waarde van de limiet in percentage van de nominale motorkoppel</td>
<td>0 … 60000</td>
<td></td>
</tr>
<tr>
<td>20.18 KOPPEL MIN PTR</td>
<td>Definieert de bron of constante voor waarde PAR 20.18 van parameter 20.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>-255.255.31 ... +255.255.31 / C.-32768 ... C.32767</td>
<td>Parameterindex of een constante waarde.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.19</td>
<td>KOPPEL MAX PTR</td>
<td>Definieert de bron of constante voor waarde PAR 20.19 van parameter 20.14</td>
<td></td>
</tr>
<tr>
<td>-255.255.31 ... +255.255.31 / C.-32768 ... C.32767</td>
<td>Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil. FbEq voor de waarde van het koppel is 100 = 1%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.20</td>
<td>MIN AI SCALE</td>
<td>Definieert hoe een analoog signaal (mA of V) wordt omgezet in een toegestaan minimum- of maximumkoppel (%). De afbeelding hieronder illustreert de omzetting, als analoige ingang AI1 is ingesteld als bron voor de koppellimiet door parameter 20.13 of 20.14.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.01</td>
<td>Minimuminstelling voor AI1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.02</td>
<td>Maximuminstelling voor AI1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.20</td>
<td>Minimumkoppel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.21</td>
<td>Maximumkoppel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 ... 600,0%</td>
<td>%-waarde die overeenkomt met de minimuminstelling van de analoige ingang</td>
<td></td>
<td>100 = 1%</td>
</tr>
<tr>
<td>20.21</td>
<td>MAX AI SCALE</td>
<td>Zie parameter 20.20.</td>
<td></td>
</tr>
<tr>
<td>0,0 ... 600,0%</td>
<td>%-waarde die overeenkomt met de maximuminstelling van de analoige ingang</td>
<td></td>
<td>100 = 1%</td>
</tr>
<tr>
<td>20.22</td>
<td>SLS SPEED LIMIT</td>
<td>Definieert de veilig beperkte toerentallimiet (SLS). Wanneer de SLS-functie geactiveerd is, worden de toerentallimieten langs een helling naar 20.22 SLS SPEED LIMIT geleid. Het toerental van de deceleratie naar SLS wordt gedefinieerd door parameter 22.11 en de acceleratie van SLS naar het oorspronkelijke toerental wordt gedefinieerd door parameter 22.10. Opmerking: Deze parameter is alleen beschikbaar in de AS7R firmware-versie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0...9000 rpm (0…4 keer sync toerental)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>START/STOP</td>
<td>Start- en stopmodi van de motor.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>START FUNCTIE</td>
<td>Selecteer de startmetode voor de motor. Zie ook de sectie Automatische start op pagina 57.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUTOMATISCH</td>
<td>De automatische start garandeert in de meeste gevallen een optimale start van de motor. Het omvat onder andere een vliegende-startfunctie (op een roterende machine) en de automatische herstart (gestopte motor kan direct worden herstart zonder te hoeven wachten op het verdwijnen van de motorflux). De motorbesturing van de omvormer identificeert de flux alsmede de mechanische staat van de motor en start de motor onmiddellijk onder alle omstandigheden. Opmerking: Als parameter 99.04 = SCALAR, is standaard geen vliegende start of automatische herstart mogelijk. De vliegende-startfunctie moet afzonderlijk worden geactiveerd door parameter 21.08.</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC MAGN</td>
<td>DC-magnetisering mag worden geselecteerd als een hoog startkoppel nodig is. De omvormer magnetiseert de motor voordat deze wordt gestart. Deze voormagnetiseringstijd wordt automatisch bepaald en ligt, afhankelijk van de grootte van de motor, meestal tussen 200 ms en 2 s. DC MAGN garandeert het hoogst mogelijke startkoppel. Opmerking: Op een draaiende machine kan niet worden gestart als DC-magnetisering is geselecteerd. Opmerking: DC-magnetisering kan niet worden ingesteld als parameter 99.04 = SCALAR.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNST DC MAGN</td>
<td>Als constante voormagnetisering wordt vereist, moet constante DC-magnetisering worden geselecteerd in plaats van DC-magnetisering (d.w.z. als de motor start, moet dit samenvallen met een mechanische remwrijf). Deze selectie garandeert ook de hoogst mogelijke startkoppel als de voormagnetiseringstijd lang genoeg is ingesteld. De voormagnetiseringstijd wordt bepaald door parameter 21.02. Opmerking: Op een draaiende machine kan niet worden gestart als DC-magnetisering is ingesteld. Opmerking: DC-magnetisering kan niet worden ingesteld als parameter 99.04 = SCALAR. WAARSCHUWING! De omvormer zal na verloop van de ingestelde magnetiseringstijd starten, ook al is magnetisering van de motor niet voltooid. Bij toepassingen waarin een maximaal startkoppel essentieel is, moet de constante magnetiseringstijd lang genoeg zijn om volledige magnetisering en een maximaal koppel te genereren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.02</td>
<td>CONST MAGN TIJD</td>
<td>Definieert de magnetiseringsstijd in de constante-magnetiseringsmodus. Zie parameter 21.01. Na de startopdracht zal de omvormer automatisch de motor voormagnetiseren gedurende de ingestelde tijd.</td>
<td></td>
</tr>
<tr>
<td>30,0 … 10000,0 ms</td>
<td>Magnetisatietijd. Om volledige magnetisering te waarborgen moet de ingestelde waarde hetzelfde of hoger zijn dan de rotortijdsconstante. Als deze niet bekend is, gebruik dan de vuisregel uit onderstaande tabel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominaal motorvermogen</td>
<td>Constante magnetiseringstijd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10 kW</td>
<td>≥ 100 tot 200 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 tot 200 kW</td>
<td>≥ 200 tot 1000 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 tot 1000 kW</td>
<td>≥ 1000 tot 2000 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.03</td>
<td>STOP FUNCTIE</td>
<td>Selecteer de stopfunctie van de motor.</td>
<td></td>
</tr>
<tr>
<td>UITLOOP</td>
<td>Stoopt door de voedingsspanning naar de motor uit te schakelen. De motor loopt uit tot stilstand. WAARSCHUWING! Als de regelfunctie voor een mechanische rem is ingeschakeld, gebruikt het applicatieprogramma een hellingstop, ondanks het feit dat COAST is geselecteerd (zie parametergroep 42 MECH REMBEST).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP</td>
<td>Stop langs een helling. Zie parametergroep 22 ACCEL/DECEL.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
21.04 DC HOUDFUNCTIE

Activateert/deactiveert de DC hold-functie. DC Hold is niet mogelijk als parameter 99.04 = SCALAR.

Wanneer zowel de referentie als het toerental onder de waarde van parameter 21.05 komen, stopt de omvormer met het opwekken van een sinusvormige stroom en gaat DC in de motor injecteren. De stroom wordt ingesteld door parameter 21.06. Wanneer het referentietoerental boven parameter 21.05 komt, worden de normale omvormerfuncties hervat.

Opmerking: DC Hold heeft geen effect als het startsignaal is uitgeschakeld.

Opmerking: Het injecteren van DC-stroom in de motor leidt tot opwarming van de motor. In toepassingen waarbij lange tijden voor DC Hold vereist zijn, moeten extern geventileerde motoren worden gebruikt. Als de periode voor DC Hold lang is, kan DC Houd niet voorkomen dat de motoras draait als een constante belasting is aangesloten op de motor.

Zie het onderdeel DC Houd op pagina 60.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td></td>
<td>65535</td>
</tr>
<tr>
<td>0 … 3000 rpm</td>
<td>Toerental in rpm</td>
<td></td>
<td>0 … 3000</td>
</tr>
<tr>
<td>21.06</td>
<td>DC HoudSTROOM</td>
<td>Bepaalt de DC Houd-stroom. Zie parameter 21.04.</td>
<td></td>
</tr>
<tr>
<td>0 … 100%</td>
<td>Stroom als percentage van de nominale motorstroom.</td>
<td></td>
<td>0 … 100</td>
</tr>
<tr>
<td>21.07</td>
<td>STRTvrjgave FUNC</td>
<td>Selecteert de stopmodus die wordt toegepast als het startvrijgavesignaal is uitgeschakeld. Het startvrijgavesignaal wordt geactiveerd door parameter 16.01.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: De instelling heft de normale stopmodusinstelling op (parameter 21.03) wanneer het startvrijgavesignaal is uitgeschakeld.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAARSCHUWING: De omvormer start opnieuw nadat het startvrijgavesignaal is hersteld (als het startsignaal actief is).</td>
<td></td>
</tr>
<tr>
<td>2.07</td>
<td>HELLINGSTOP</td>
<td>Het applicatieprogramma stopt de omvormer langs de deceleratiehelling gedefinieerd in groep 22 ACCEL/DECEL.</td>
<td>1</td>
</tr>
<tr>
<td>2.07</td>
<td>UITLOOPSTOP</td>
<td>Het applicatieprogramma stopt de omvormer door de voedingsspanning naar de motor uit te schakelen (de IGBT’s van de omzetter zijn geblokkeerd). De motor draait vrij bij nul toeren.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAARSCHUWING: Als de regelfunctie voor een mechanische rem actief is, gebruikt het applicatieprogramma een hellingstop, ook al is COAST STOP gekozen (zie parametergroep 42 MECH REMBEST).</td>
<td></td>
</tr>
</tbody>
</table>
UIT2 STOP Het applicatieprogramma stopt de omvormer door de voedingsspanning naar de motor uit te schakelen (de IGBT’s van de omzetter zijn geblokkeerd). De motor draait vrij bij nul toeren. De omvormer herstart uitsluitend wanneer het startvrijgavesignaal en het startsignaal is ingeschakeld (het programma ontvangt de positieve flank van het startsignaal).

UIT3 STOP Het applicatieprogramma stopt de omvormer langs de helling gedefinieerd door parameter 22.07. De omvormer herstart uitsluitend wanneer het startvrijgavesignaal en het startsignaal is ingeschakeld (het programma ontvangt de positieve flank van het startsignaal).

NEE Niet actief

JA Actief 65535

21.09 START INTRL FUNC Definieert hoe de ingang van de startvergrendeling op de RMIO-kaart de werking van de omvormer beïnvloedt.

UIT2 STOP Omvormer in werking: 1 = Normale werking. 0 = Stop door uitlopen tot stilstand.
Omvormer gestopt: 1 = Start toegestaan. 0 = Start niet toegestaan.
Opnieuw starten na UIT2 STOP: Ingang is terug op 1 en de omvormer ontvangt de positieve flank van het startsignaal.

UIT3 STOP Omvormer in werking: 1 = Normale werking. 0 = Stop langs helling. De hellingtijd wordt gedefinieerd door parameter 22.07 NOODSTOP.
Omvormer gestopt: 1 = Start toegestaan. 0 = Start niet toegestaan.
Opnieuw starten na UIT3 STOP: Startvergrendelingsingang = 1 en de omvormer ontvangt de positieve flank van het startsignaal.

21.10 NULTOEREN VERTRAG Definieert de vertraging van de vertragingsfunctie nul toeren. De functie is nuttig in toepassingen waarbij een soepele en snelle herstart essentieel is. Tijdens de vertraging kent de omvormer de rotorpositie nauwkeurig.

Geen stilstandvertraging

De omvormer ontvangt een stopopdracht en decelereert langs een helling. Wanneer het werkelijk toerental van de motor onder een interne limiet (Stilstand genoemd) komt, wordt de toerentalregelaar uitgeschakeld. De modulatie van de omvormer wordt gestopt en de motor loopt uit tot stilstand.

Met stilstandvertraging

De omvormer ontvangt een stopopdracht en decelereert langs een helling. Als het werkelijke toerental van de motor onder een interne limiet komt (zogenaamde Nul toeren), wordt de 'nul toeren'-vertragingsfunctie geactiveerd. Tijdens de vertraging houdt de functie de toerentalregelaar onder spanning: de omzetter moduleert, de motor wordt gemagnetiseerd en de omvormer is gereed voor een snelle herstart.

Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIT2 STOP</td>
<td>Het applicatieprogramma stopt de omvormer door de voedingsspanning naar de motor uit te schakelen (de IGBT’s van de omzetter zijn geblokkeerd). De motor draait vrij bij nul toeren. De omvormer herstart uitsluitend wanneer het startvrijgavesignaal en het startsignaal is ingeschakeld (het programma ontvangt de positieve flank van het startsignaal).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UIT3 STOP</td>
<td>Het applicatieprogramma stopt de omvormer langs de helling gedefinieerd door parameter 22.07. De omvormer herstart uitsluitend wanneer het startvrijgavesignaal en het startsignaal is ingeschakeld (het programma ontvangt de positieve flank van het startsignaal).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>21.09 START INTRL FUNC</td>
<td>Definieert hoe de ingang van de startvergrendeling op de RMIO-kaart de werking van de omvormer beïnvloedt.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UIT2 STOP</td>
<td>Omvormer in werking: 1 = Normale werking. 0 = Stop door uitlopen tot stilstand. Omvormer gestopt: 1 = Start toegestaan. 0 = Start niet toegestaan. Opnieuw starten na UIT2 STOP: Ingang is terug op 1 en de omvormer ontvangt de positieve flank van het startsignaal.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UIT3 STOP</td>
<td>Omvormer in werking: 1 = Normale werking. 0 = Stop langs helling. De hellingtijd wordt gedefinieerd door parameter 22.07 NOODSTOP. Omvormer gestopt: 1 = Start toegestaan. 0 = Start niet toegestaan. Opnieuw starten na UIT3 STOP: Startvergrendelingsingang = 1 en de omvormer ontvangt de positieve flank van het startsignaal.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21.10 NULTOEREN VERTRAG</td>
<td>Definieert de vertraging van de vertragingsfunctie nul toeren. De functie is nuttig in toepassingen waarbij een soepele en snelle herstart essentieel is. Tijdens de vertraging kent de omvormer de rotorpositie nauwkeurig.</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 ... 60,0 s</td>
<td>Vertragingstijd</td>
<td></td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

22 ACCEL/DECEL

<table>
<thead>
<tr>
<th>22.01 ACC/DEC KEUZE</th>
<th>Selecteert het actieve acceleratie-/deceleratietijdenpaar.</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC/DEC 1</td>
<td>Acceleratietijd 1 en deceleratietijd 1 worden gebruikt. Zie parameters 22.02 en 22.03.</td>
<td>2</td>
</tr>
<tr>
<td>ACC/DEC 2</td>
<td>Acceleratietijd 2 en deceleratietijd 2 worden gebruikt. Zie parameters 22.04 en 22.05.</td>
<td>3</td>
</tr>
<tr>
<td>DI1</td>
<td>Selectie van acceleratie-/deceleratietijdenpaar via digitale ingang DI1. 0 = acceleratietijd 1 en deceleratietijd 1 worden gebruikt, 1 = acceleratietijd 2 en deceleratietijd 2 worden gebruikt.</td>
<td>4</td>
</tr>
<tr>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>5</td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>6</td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>7</td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>8</td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>9</td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>10</td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>11</td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>12</td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>13</td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>14</td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td></td>
</tr>
<tr>
<td>PAR 22.08&09</td>
<td>Acceleratie en deceleratietijden gegeven door parameter 22.08 en 22.09</td>
<td>15</td>
</tr>
</tbody>
</table>

22.02 ACCELER TIJD 1

Definieert acceleratietijd 1, d.w.z. de tijd vereist om van 0 toeren naar het maximumtoerental te gaan.
- Als de toerentalreferentie sneller toeneemt dan de ingestelde acceleratie, zal het motortoerental de acceleratie volgen.
- Als de toerentalreferentie langzamer toeneemt dan de ingestelde versnelling, zal het motortoerental het referentiesignaal volgen.
- Als de acceleratietijd te kort ingesteld is, zal de omvormer de acceleratie automatisch voortzetten om zo de bedrijfslimieten van de omvormer niet te overschrijden.

0,00 ... 1800,00 s | Acceleratietijd | 0 ... 18000 |

22.03 DECELER TIJD 1

Definieert deceleratietijd 1, d.w.z. de tijd vereist om van het maximumtoerental (zie parameter 20.02) naar nul toeren te gaan.
- Als de toerentalreferentie langzamer afneemt dan de ingestelde deceleratie, zal het motortoerental het referentiesignaal volgen.
- Als de referentie sneller verandert dan de ingestelde deceleratie, zal het motortoerental de deceleratie volgen.
- Als de deceleratietijd te kort ingesteld is, zal de omvormer de deceleratie automatisch voortzetten om zo de bedrijfslimieten van de omvormer niet te overschrijden. Als er enige twijfel mocht zijn over een te korte tijdsduur van de deceleratietijd, moet u controleren of de DC-overspanningsregeling is ingeschakeld (parameter 20.05).

Opmerking: Als een korte deceleratietijd essentieel is voor een toepassing met hoge massatraagheid, dan moet de omvormer met een elektrische remoptie worden uitgerust bv. een remchopper en een remweerstand.
22.04 ACCELER TIJD 2
Zie parameter 22.02.
0,00 … 1800,00 s

22.05 DECELTIJD 2
Zie parameter 22.03.
0,00 … 1800,00 s

22.06 ACC/DEC CURVE
Selecteert de vorm van de acceleratie-/deceleratiehelling.
Zie ook de sectie Torens op pagina 85.
0,00 … 1000,00 s
0,00 s: Lineaire helling. Geschikt voor gelijkmatige acceleratie of deceleratie en voor langzame hellingen.
0,01 … 1000,00 s: S-vormige helling. S-vormige hellingen zijn bijzonder geschikt voor transportbanden met een breekbare last of andere toepassingen waarbij een verandering van de snelheid geleidelijk moet verlopen. De S-vormige helling bestaat uit twee symmetrische curven aan beide uithanden van de helling met daartussen een lineair gedeelte.

22.07 NOODSTOP DEC.TIJD
Definieert de tijd waarbinnen de omvormer wordt gestopt als
- de omvormer een noodstopdracht ontvangt of
- het startvrijgavesignaal wordt uitgeschakeld en de startvrijgavefunctie de waarde UIT3 heeft (zie parameter 21.07).
De noodstopdracht kan worden gegeven via een veldbus of een noodstopmodule (optioneel). Neem contact op met de plaatselijke ABB-vertegenwoordiger voor aanvullende informatie over de optiemodule en de bijbehorende instellingen van het standaard-besturingsprogramma.
0,00 … 2000,00 s

22.08 ACC PTR
Definieert de bron of constante voor waarde PAR 22.08&09 van parameter 22.01.
-255.255.31 … +255.255.31 / C.-32768 … C.32767
Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil.
100 = 1 s

22.09 DEC PTR
Definieert de bron of constante voor waarde PAR 22.08&09 van parameter 22.01.
-255.255.31 … +255.255.31 / C.-32768 … C.32767
Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil.
100 = 1 s
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.10</td>
<td>SLS ACCELER TIME</td>
<td>Definieert de tijd die nodig is om de toerentallimieten langs een helling te laten toenemen van het veilig-beperkte toerental gedefinieerd door parameter 20.22 naar de toerentallimieten gedefinieerd door parameters 20.01 MINIMUM TOERENTAL en 20.02 MAXIMUM TOERENTAL wanneer de SLS-functie gedeactiveerd is. Opmerking: Deze parameter is alleen beschikbaar in de AS7R firmware-versie.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1800 s Toerental hellingtijd.</td>
<td></td>
</tr>
<tr>
<td>22.11</td>
<td>SLS DECELER TIME</td>
<td>Definieert de tijd die nodig is om de toerentallimieten langs een helling te laten afnemen van de waarde gedefinieerd door parameters 20.01 MINIMUM TOERENTAL en 20.02 MAXIMUM TOERENTAL naar het veilig-beperkte toerental gedefinieerd door parameter 20.22 wanneer de SLS-functie geactiveerd is. Als het toerental al lager is dan het veilig beperkte toerental, verandert het toerental niet. Opmerking: Deze parameter is alleen beschikbaar in de AS7R firmware-versie.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1800 s Toerental hellingtijd.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TOERENREGELAAR</td>
<td>Variabelen van de toerenregeling. De parameters zijn onzichtbaar als parameter 99.04 = SCALAR. Zie het onderdeel Afregeling van de toerenregelaar op pagina 63.</td>
<td></td>
</tr>
<tr>
<td>23.01</td>
<td>VERSTERKING</td>
<td>Definieert een relatieve versterking van de toerenregeling. Een grote versterking kan oscillatie in het toerental veroorzaken. De onderstaande afbeelding laat de toerenregelingsuitgang zien na een foutstap waarbij de fout constant blijft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controller uitgang = $K_p \cdot e$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foutwaarde</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uitgang controller</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$e = \text{Foutwaarde}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Versterking</td>
<td>0,0 ... 250,0</td>
<td>0 ... 25000</td>
</tr>
</tbody>
</table>

Diagram

![Diagram](image-url)
23.02 INTEGRATIE TIJD
Definieert de integratietijd van de toerenregeling. De integratietijd voor de toerenregeling bepaalt de snelheid waarmee de uitgang verandert als de foutwaarde constant is. Hoe korter de integratietijd, des te sneller de constante foutwaarde wordt gecorrigeerd. Door een te korte integratietijd wordt de regeling instabiel.
Onderstaande afbeelding toont de toerenregelinguitgang nadat een constante fout is opgetreden.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.02</td>
<td>INTEGRATIE TIJD</td>
<td>Definieert de integratietijd van de toerenregeling. De integratietijd voor de toerenregeling bepaalt de snelheid waarmee de uitgang verandert als de foutwaarde constant is. Hoe korter de integratietijd, des te sneller de constante foutwaarde wordt gecorrigeerd. Door een te korte integratietijd wordt de regeling instabiel. Onderstaande afbeelding toont de toerenregelinguitgang nadat een constante fout is opgetreden.</td>
<td></td>
</tr>
</tbody>
</table>

0,01 ... 999,97 s Integratietijd 10 ... 999970

23.03 DIFFERENTIATIJEU TIDE
Definieert de differentiatie de toerenregeling. Differentiëren verhoogt de regelinguitgang als de foutwaarde verandert. Hoe langer de differentiatietijd, des te meer wordt de regelinguitgang verhoogd tijdens een verandering. Als de differentiatietijd op nul wordt gesteld, werkt de regeling als een PI-regeling, anders als een PID-regeling.
Door de differentiatie reageert de regeling meer op verstoringen.
Opmerking: Het wijzigen van deze parameter wordt alleen aanbevolen als een pulsgever wordt gebruikt.
Onderstaande afbeelding toont de toerenregelinguitgang nadat een constante fout is opgetreden.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.03</td>
<td>DIFFERENTIATIJEU TIDE</td>
<td>Definieert de differentiatie de toerenregeling. Differentiëren verhoogt de regelinguitgang als de foutwaarde verandert. Hoe langer de differentiatietijd, des te meer wordt de regelinguitgang verhoogd tijdens een verandering. Als de differentiatietijd op nul wordt gesteld, werkt de regeling als een PI-regeling, anders als een PID-regeling. Door de differentiatie reageert de regeling meer op verstoringen. Opmerking: Het wijzigen van deze parameter wordt alleen aanbevolen als een pulsgever wordt gebruikt. Onderstaande afbeelding toont de toerenregelinguitgang nadat een constante fout is opgetreden.</td>
<td></td>
</tr>
</tbody>
</table>

0,0 ... 9999,8 ms Waarde differentiatietijd. 1 = 1 ms
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.04</td>
<td>ACC COMPENSATIE</td>
<td>Definieert de differentiatietijd voor compensatie van de acceleratie/(deceleratie). Om massa-traagheid tijdens acceleratie te compenseren wordt de differentiatie van de referentie toegevoegd aan de uitgang van de toerenregeling. Het principe van een differentiatie wordt beschreven voor parameter 23.03. Opmerking: Als algemene regel kunt u deze parameter op een waarde van 50 tot 100% van de som van de mechanische tijdconstanten van de motor en de aangedreven machine instellen. (De toerenregeling Autotune N-Regel doet dit automatisch, zie parameter 23.06.) De onderstaande afbeelding laat de toerentalresponsen zien als een hoge massatraagheid wordt versneld langs een helling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geen acceleratiecompensatie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acceleratiecompensatie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.05</td>
<td>ACC COMPENSATION</td>
<td>Definieert de slipversterking van de slipversterkingsregeling van de motor. 100 % betekent volledige slipcompensatie. 0 % betekent geen slipcompensatie. De standaardwaarde is 100%. Ondanks een volledige compensatie kunnen andere waarden worden gebruikt als er een statische toerentalafwijking wordt ontdekt. Voorbeeld: Een constant toerental van 1000 rpm wordt aan de omvormer doorgegeven. Ondanks een vollendige slipcompensatie (SLIP VERSTERKING = 100%) geeft een handmatige meting met een tachometer op de motoras een toerental van 998 rpm. De statische toerentalfout is dus 1000 rpm - 998 rpm = 2 rpm. Om de fout te compenseren moet de slipversterking worden verhoogd. Bij een versterking van 106 % is er geen statische snelheidsfout meer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.06</td>
<td>AUTOTUNE N-REGEL</td>
<td>Start automatische tuning van de toerenregeling. Instructies: - Laat de motor op een constant toerental van 20 tot 40% van het nominale toerental draaien. - Wijzig de autotune-parameter 23.06 naar JA. Opmerking: De motorbelasting moet op de motor zijn aangesloten.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td></td>
<td>Geen automatische fijn afstemming.</td>
<td>0</td>
</tr>
<tr>
<td>JA</td>
<td></td>
<td>Actieveert automatische fijn afstemming van de toerenregeling. Gaat automatische terug naar NEE.</td>
<td>65535</td>
</tr>
<tr>
<td>23.07</td>
<td>SP ACT FILT TIJD</td>
<td>Definieert de tijdconstante van het actueel-toerentalfilter, d.w.z. de tijd waarin het actuele toerental 63% van het nominale toerental bereikt heeft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>Differentiatietijd</td>
<td></td>
<td>0 ... 9999</td>
</tr>
<tr>
<td>0,0</td>
<td>Slipversterking.</td>
<td></td>
<td>0 ... 400</td>
</tr>
<tr>
<td>0 ... 1000000 ms</td>
<td>Tijdconstante</td>
<td></td>
<td>1 = 1 ms</td>
</tr>
</tbody>
</table>
24 TORQUE CTRL

Variabelen van de koppelregeling. Alleen zichtbaar als parameter 99.02 = T CNTRL en parameter 99.04 = DTC.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.01</td>
<td>KOPPELOBOUW TIJD</td>
<td>Definieert de opbouwtijd van de koppelreferentie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijd waarin de referentie van nul tot het nominale motorkoppel toeneemt.</td>
<td>0 ... 12000</td>
</tr>
<tr>
<td>24.02</td>
<td>KOPPELAFBOUW TIJD</td>
<td>Definieert de afbouwtijd van de koppelreferentie.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijd waarin de referentie van nul tot het nominale motorkoppel toeneemt.</td>
<td>0 ... 12000</td>
</tr>
</tbody>
</table>

25 KRITISCHE FREQ

Toerentalbanden waarbij de omvormer niet in bedrijf mag zijn. Zie het onderdeel Kritische toeren op pagina 62.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.01</td>
<td>KRIT. TOER KEUZE</td>
<td>Activeert of deactiveert de functie kritische snelheidsfuncties.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voorbeeld: Een ventilator trilt binnen het bereik van 540 tot 699 rpm en 1380 tot 1560 rpm. Om de omvormer de vibratie-frequentiebereiken te laten overslaan:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- activeer de functie kritische snelheden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- stel de kritische-snelheidsbereiken in zoals in onderstaande figuur.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor toerental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toerentalreferentie omvormer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(rpm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Par. 25.02 = 540 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Par. 25.03 = 690 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Par. 25.04 = 1380 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Par. 25.05 = 1590 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als parameter 99.02 = PID CTRL, worden de kritische snelheden niet gebruikt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UIT</td>
<td>Niet actief</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAN</td>
<td>Actief.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>25.02</td>
<td>KRIT TOEREN1 LAAG</td>
<td>Definieert de onderlimiet voor het kritische snelheidsbereik 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onderlimiet. De waarde kan niet boven het maximum liggen (parameter 25.03).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als parameter 99.04 = SCALAR, is de eenheid Hz.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 18000 rpm</td>
<td>0 ... 18000</td>
</tr>
<tr>
<td>25.03</td>
<td>KRIT TOEREN1 HOOG</td>
<td>Definieert de bovenlimiet voor het kritische snelheidsbereik 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovenlimiet. De waarde kan niet onder het minimum liggen (parameter 25.02).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Als parameter 99.04 = SCALAR, is de eenheid Hz.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 18000 rpm</td>
<td>0 ... 18000</td>
</tr>
<tr>
<td>25.04</td>
<td>KRIT TOEREN2 LAAG</td>
<td>Zie parameter 25.02.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 18000 rpm</td>
<td>0 ... 18000</td>
</tr>
<tr>
<td>25.05</td>
<td>KRIT TOEREN2 HOOG</td>
<td>Zie parameter 25.03.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 18000 rpm</td>
<td>0 ... 18000</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
26 MOTORBESTURING

26.01 FLUX-OPTIMALISATIE

Activeert/deactiveert de functie fluxoptimalisatie. Zie het onderdeel *Fluxoptimalisatie* op pagina 61.

Opmerking: De functie kan niet worden gebruikt als parameter 99.04 = SCALAR.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.01</td>
<td>FLUX-OPTIMALISATIE</td>
<td>Activeert/deactiveert de functie fluxoptimalisatie. Zie het onderdeel Fluxoptimalisatie op pagina 61.</td>
<td></td>
</tr>
</tbody>
</table>

NEE

Niet actief

<table>
<thead>
<tr>
<th>NEE</th>
<th>0</th>
</tr>
</thead>
</table>

JA

Actief

<table>
<thead>
<tr>
<th>JA</th>
<th>65535</th>
</tr>
</thead>
</table>

26.02 FLUX REMMEN

Activeert/deactiveert de functie fluxremmen.

Opmerking: De functie kan niet worden gebruikt als parameter 99.04 = SCALAR. Zie het onderdeel *Fluxremmen* op pagina 60.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.02</td>
<td>FLUX REMMEN</td>
<td>Activeert/deactiveert de functie fluxremmen.</td>
<td></td>
</tr>
</tbody>
</table>

NEE

Niet actief

<table>
<thead>
<tr>
<th>NEE</th>
<th>0</th>
</tr>
</thead>
</table>

JA

Actief

<table>
<thead>
<tr>
<th>JA</th>
<th>65535</th>
</tr>
</thead>
</table>

26.03 IR-COMPENSATIE

Definieert de relatieve uitgangsspanningversterking bij nul toeren (IR-compensatie). De functie is nuttig bij toepassingen die een hoog startkoppel vereisen, maar DTC-motorbesturing is niet mogelijk. De onderstaande afbeelding illustreert IR-compensatie. Zie het onderdeel *IR-compensatie bij scalarbesturing* op pagina 65.

Opmerking: De functie kan uitsluitend worden gebruikt als parameter 99.04 SCALAR is.

![IR-compensatie diagram](image)

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.03</td>
<td>IR-COMPENSATIE</td>
<td>Definieert de relatieve uitgangsspanningversterking bij nul toeren (IR-compensatie). De functie is nuttig bij toepassingen die een hoog startkoppel vereisen, maar DTC-motorbesturing is niet mogelijk. De onderstaande afbeelding illustreert IR-compensatie. Zie het onderdeel IR-compensatie bij scalarbesturing op pagina 65.</td>
<td></td>
</tr>
</tbody>
</table>

NEE

Spanningsversterking bij nul toeren als percentage van de nominale motorspanning

<table>
<thead>
<tr>
<th>NEE</th>
<th>0 … 30%</th>
</tr>
</thead>
</table>

JA

Spanningsversterking bij nul toeren als percentage van de nominale motorspanning

<table>
<thead>
<tr>
<th>JA</th>
<th>0 … 3000</th>
</tr>
</thead>
</table>

Actuele signalen en parameters
26.04 IR STEP-UP FREQ

De frequentie waarbij de step-up IR-compensatie de IR-compensatie bereikt die in scalarbesturing (26.03 IR-COMPENSATIE) gebruikt wordt.

Een spanningversterking wordt gebruikt in step-up applicaties om een hoger startkoppel te bereiken. Omdat er geen spanning naar de transformator gevoerd kan worden bij 0 Hz, wordt er speciale IR-compensatie gebruikt bij step-up applicaties. Volledige IR-compensatie begint ongeveer bij de slip-frequentie. De onderstaande afbeelding illustreert de step-up IR compensatie.

Zie voor meer informatie *Sine Filters User’s Manual for ACS800 Drives [3AF68389178 (Engels)].*

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.04</td>
<td>IR STEP-UP FREQ</td>
<td>Definieert de frequentie waarbij de step-up IR-compensatie de IR compensatie bereikt die in scalarbesturing (26.03 IR-COMPENSATIE) gebruikt wordt. Een spanningversterking wordt gebruikt in step-up applicaties om een hoger startkoppel te bereiken. Omdat er geen spanning naar de transformator gevoerd kan worden bij 0 Hz, wordt er speciale IR-compensatie gebruikt bij step-up applicaties. Volledige IR-compensatie begint ongeveer bij de slipfrequentie. De onderstaande afbeelding illustreert de step-up IR compensatie.</td>
<td>100 = 1</td>
</tr>
<tr>
<td>26.05</td>
<td>HEX VELDVERZW</td>
<td>Selecteert of de motorflux wordt gestuurd langs een cirkelvormig of hexagonaal patroon in het veldverzwakkingsgebied van het frequentiebereik (boven 50/60 Hz). Zie het onderdeel Hexagonale motorflux op pagina 66.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>De rotterende fluxvector volgt een cirkelvormig patroon. Optimale selectie bij de meeste toepassingen: minimale verliezen bij constante belasting. Een onmiddellijk maximumkoppel is in het veldverzwakkingsgebied van het toerental niet beschikbaar.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>Motorflux volgt een cirkelvormig patroon onder het veldverzwakkingspunt (doorgaans 50 of 60 Hz) en een hexagonaal patroon in het veldverzwakkingsgebied. Optimale selectie bij toepassingen die een onmiddellijk maximumkoppel vereisen in het veldverzwakkingsgebied van het toerental. De verliezen bij constant bedrijf zijn hoger dan in geval van de selectie NEE.</td>
<td>65535</td>
</tr>
<tr>
<td>26.06</td>
<td>FLUX REF PTR</td>
<td>Selecteer de bron voor de fluxreferentie of stelt de fluxreferentiewaarde in.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255,255,31 ... +255,255,31 / C.- 32768 ... C.32767</td>
<td>Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil. Het bereik van de flux is 25 … 140%. Met constante waarde instellingen 100% = C.10000. Normaal gesproken is het niet nodig deze waarde te veranderen.</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
26.07 FLYSTART CUR REF [%]
Definieert de stroomreferentie die bij vliegende start gebruikt wordt (start bij een draaiende motor) wanneer er geen puls-encoder gebruikt wordt. Als vliegende start mislukt (d.w.z. de omvormer kan het motortoerental 01.02 SPEED niet vinden), controleer de signalen 01.02 SPEED en 01.04 CURRENT met de DriveWindow PC tool en verhoud de referentie in stappen van 5% totdat de vliegende-start functie met succes wordt uitgevoerd (d.w.z. de omvormer kan 01.02 SPEED vinden). Zie ook parameter 26.08 FLYSTART INIT DLY.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.07</td>
<td>FLYSTART CUR REF [%]</td>
<td>Definieert de stroomreferentie die bij vliegende start gebruikt wordt (start bij een draaiende motor) wanneer er geen puls-encoder gebruikt wordt. Als vliegende start mislukt (d.w.z. de omvormer kan het motortoerental 01.02 SPEED niet vinden), controleer de signalen 01.02 SPEED en 01.04 CURRENT met de DriveWindow PC tool en verhoud de referentie in stappen van 5% totdat de vliegende-start functie met succes wordt uitgevoerd (d.w.z. de omvormer kan 01.02 SPEED vinden). Zie ook parameter 26.08 FLYSTART INIT DLY.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.08</td>
<td>FLYSTART INIT DLY</td>
<td>Definieert samen met de motorkarakteristieken de vertraging voordat de toerentalwaarde, geschat bij het begin van de vliegende start, verbonden wordt met de hellinguitgang van de toerentalreferentie. Verleng de vertraging als de motor in de verkeerde richting begint te draaien of als de motor begint te draaien met de verkeerde toerentalreferentie. Zie ook parameter 26.07 FLYSTART CUR REF [%].</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.09</td>
<td>FS METHOD</td>
<td>Activeert de fluxcorrectie bij lage frequenties, < 3 Hz, wanneer het koppel groter is dan 30%. Effectief in de motor- en generatormodus.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.01</td>
<td>REMCHOPPER BEST</td>
<td>Activeert de remchopperbesturing. Opmerking: Als er een externe chopper (bijv. NBRA-xxx) gebruikt wordt, moet de parameter worden uitgeschakeld.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.02</td>
<td>REM OVERBEL FUNCT</td>
<td>Activeert de overbelastingsbeveiliging van de remweerstand. De door de gebruiker aanpasbare variabelen zijn parameters 27.04 en 27.05.</td>
<td>65535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.03</td>
<td>REMWEERSTAND</td>
<td>Definieert de weerstandwaarde van de remweerstand. De waarde wordt gebruikt bij de remchopper beveiliging.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.04</td>
<td>REM THERM T CONST</td>
<td>Definieert de thermische tijdconstante van de remweerstand. De waarde wordt gebruikt bij de overbelastingsbeveiliging. Zie parameter 27.02.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.05</td>
<td>MAX CONT REM VERM</td>
<td>Definieert het maximale continue remvermogen dat de weerstandstemperatuur tot het toegestane maximum laat stijgen. De waarde wordt gebruikt bij de overbelastingsbeveiliging. Zie parameter 27.02.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.06</td>
<td>BC CTRL MODE</td>
<td>Selecteert de besturingsmodus van de remchopper.</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

30 FOUT FUNCTIES

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.01</td>
<td>AI<MIN FUNCTIE</td>
<td>Selecteert hoe de omvormer moet reageren wanneer een analoog ingangssignaal onder de ingestelde onderlimiet komt</td>
<td>65535</td>
</tr>
<tr>
<td>FOUT</td>
<td>De omvormer stopt op een foutmelding en de motor loopt uit tot stilstand.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CNST TOER 15</td>
<td>De omvormer geeft een waarschuwing AI < MIN FUNC (8110) en stelt het toerental in op de waarde bepaald door parameter 12.16.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LAATSTE REF</td>
<td>De omvormer geeft een waarschuwing AI < MIN FUNC (8110) en blokkeert het toerental op het niveau waarop de omvormer het laatst draaide. Het toerental wordt bepaald door het gemiddelde toerental gedurende de laatste 10 seconden.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>30.02</td>
<td>PANEELUITVAL</td>
<td>Selecteert hoe de omvormer moet reageren op verbreking van de paneelcommunicatie.</td>
<td></td>
</tr>
<tr>
<td>FOUT</td>
<td>De omvormer stopt op een foutmelding en de motor loopt uit tot stilstand.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CNST TOER 15</td>
<td>De omvormer geeft een waarschuwing en stelt het toerental in op de waarde bepaald door parameter 12.16.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LAATSTE REF</td>
<td>De omvormer geeft een waarschuwing en blokkeert het toerental op het niveau waarop de omvormer het laatst draaide. Het toerental wordt bepaald door het gemiddelde toerental gedurende de laatste 10 seconden.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>30.03</td>
<td>EXTERNE FOUT</td>
<td>Selecteert een interface voor een extern foutsignaal. Zie het onderdeel Externe fout op pagina 66.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI1</td>
<td>Extern foutsignaal wordt gegeven via digitale ingang DI1. 0: Uitschakeling op een fout. Motor loopt uit tot stilstand. 1: Geen externe fout.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>30.04</td>
<td>MOTOR THERM BEV.</td>
<td>Selecteert hoe de omvormer moet reageren wanneer overtemperatuur van de motor wordt gedetecteerd door de functie bepaald door parameter 30.05. Zie het onderdeel Thermische motorbeveiliging op pagina 67.</td>
<td></td>
</tr>
<tr>
<td>FOUT</td>
<td>De omvormer geeft een waarschuwing wanneer de temperatuur het waarschuwingsniveau (95% van de toegestane maximumwaarde) overschijdt. De omvormer schakelt uit op een fout wanneer de temperatuur het foutniveau (100% van de toegestane maximumwaarde) overschrijdt.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>De omvormer geeft een waarschuwing wanneer de temperatuur het waarschuwingsniveau (95% van de toegestane maximumwaarde) overschrijdt.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>30.05</td>
<td>MOTOR BEV. MODEL</td>
<td>Selecteert de thermische motorbeveiliging. Wanneer overtemperatuur van de motor wordt gedetecteerd, reageert de omvormer volgens parameter 30.04.</td>
<td></td>
</tr>
<tr>
<td>DTC</td>
<td>De beveiliging is gebaseerd op een berekend thermisch motormodel. Bij de berekening worden de volgende aannamen gemaakt: - De motor is op de geschatte temperatuur (waarde van 01.37 MOTOR TEMP EST opgeslagen bij uitschakeling van de voeding) wanneer de voeding van de omvormer ingeschakeld wordt. Wanneer de voeding voor de eerste keer ingeschakeld wordt, verkeert de motor in de omgevingstemperatuur (30°C). - De motortemperatuur neemt toe als de motor in het gebied boven de belastingscurve werkt. - De motortemperatuur neemt af als de motor in het gebied onder de curve werkt. Dit is alleen van toepassing als de motor oververhit is. - De thermische tijdconstante van de motor is een benaderde waarde voor een standaard zelfventilerende kooiankermotor. Het is mogelijk het model af te stemmen door parameter 30.07. Opmerking: Het model kan niet worden gebruikt bij motoren met een hoog vermogen (parameter 99.06 hoger dan 800 A).</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

WAARSCHUWING! Het model beschermt de motor niet als de koeling afneemt als gevolg van vuil en stof.
De beveiliging is gebaseerd op een door de gebruiker bepaald thermisch model en de volgende aannamen:

- De motor is op de geschatte temperatuur (waarde van 01.37 MOTOR TEMP EST opgeslagen bij uitschakeling van de voeding) wanneer de voeding van de omvormer ingeschakeld wordt. Wanneer de voeding voor de eerste keer ingeschakeld wordt, verkeert de motor in de omgevingstemperatuur (30°C).

- De motortemperatuur neemt toe als de motor in het gebied boven de belastingscurve werkt.

- De motortemperatuur neemt af als de motor in het gebied onder de curve werkt. Dit is alleen van toepassing als de motor oververhit is.

Het door de gebruiker bepaalde thermische model gebruikt de thermische tijdconstante van de motor (parameter 30.06) en de belastingscurve van de motor (parameter 30.07, 30.08 en 30.09). Doorgaans is afregeling door de gebruiker alleen nodig als de omgevingstemperatuur afwijkt van de normale voor de motor gespecificeerde bedrijfstemperatuur.

WAARSCHUWING! Het model beschermt de motor niet als de koeling afneemt als gevolg van vuil en stof.
Actuele signalen en parameters

TEMP SENSOR

De thermische beveiliging van de motor wordt geactiveerd via digitale ingang DI6. Deze beveiliging vereist een motorthermistor of verbreekcontact van een thermistorrelais, aangesloten op digitale ingang DI6. De omvormer leest de DI6 statussen als volgt:

<table>
<thead>
<tr>
<th>DI6 status (thermistorweerstand)</th>
<th>Temperatuur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0 … 1,5 kOhm)</td>
<td>Normaal</td>
</tr>
<tr>
<td>0 (4 kOhm of hoger)</td>
<td>Overtemperatuur</td>
</tr>
</tbody>
</table>

WAARSCHUWING! Volgens IEC 664 is voor de aansluiting van de thermistor op de digitale ingang dubbele of versterkte isolatie tussen stroomvoerende delen van de motor en de thermistor vereist. Versterkte isolatie geeft een vrije ruimte en kruipafstand van 8mm (met 400/500 VAC systemen). Als de thermistoraansluiting niet aan de vereisten voldoet, moeten de andere I/O-klemmen van de omvormer worden geïsoleerd of moet een thermistorrelais worden gebruikt om de thermistor van de digitale ingang te isoleren.

WAARSCHUWING! Digitale ingang DI6 mag voor een ander gebruik worden geselecteerd. Deze instellingen moeten worden gewijzigd alvorens TEMP SENSOR te kiezen. Met andere woorden, zorg dat digitale ingang DI6 niet door enig andere parameter wordt geselecteerd.

De onderstaande afbeelding laat alternatieve thermistorverbindingen zien. Aan de motorzijde moet de kabelafscherming worden geaard via een condensator van 10nF. Als dit niet mogelijk is, mag het scherm niet worden aangesloten.

Alternatief 1

![Alternatief 1 diagram](image1)

Alternatief 2

![Alternatief 2 diagram](image2)

Opmerking: Als de nominale stroom van de motor hoger is dan 800 A, wordt het door de gebruiker gedefinieerde thermische motormodel gebruikt in plaats van het berekende model en moet de gebruiker de parameters 30.06, 30.07, 30.08 en 30.09 definiëren.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEMP SENSOR</td>
<td>De thermische beveiliging van de motor wordt geactiveerd via digitale ingang DI6. Deze beveiliging vereist een motorthermistor of verbreekcontact van een thermistorrelais, aangesloten op digitale ingang DI6. De omvormer leest de DI6 statussen als volgt:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI6 status (thermistorweerstand)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 (0 … 1,5 kOhm)</td>
<td>Normaal</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0 (4 kOhm of hoger)</td>
<td>Overtemperatuur</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>30.06</td>
<td>M-THERMISCHE TIJD</td>
<td>Definieert de thermische tijdconstante voor het door de gebruiker bepaalde thermische model (zie de selectie USER MODE van parameter 30.05).</td>
<td></td>
</tr>
<tr>
<td>30.07</td>
<td>M-BELASTING CURVE</td>
<td>Definieert de belastingscurve samen met parameter 30.08 en 30.09. De belastingscurve wordt gebruikt in het door de gebruiker gedefinieerde thermische model (zie de keuze USER MODE van parameter 30.05).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256,0 … 9999,8 s</td>
<td>Tijdconstante</td>
<td>256 … 9999</td>
</tr>
<tr>
<td>30.08</td>
<td>STILSTANDSLAST</td>
<td>Definieert de belastingscurve samen met parameter 30.07 en 30.09.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50,0 … 150,0%</td>
<td>Toegestane continue motorbelasting als percentage van de nominale motorstroom.</td>
<td>50 … 150</td>
</tr>
<tr>
<td>30.09</td>
<td>KNIKPUNT</td>
<td>Definieert de belastingscurve samen met parameter 30.07 en 30.08.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,0 … 300,0 Hz</td>
<td>Uitgangsfrequentie van de omvormer bij 100% belasting</td>
<td>100 … 30000</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
</table>
| 30.10 | BLOKK. FUNCTIE | Bepaalt de werking van de omvormer bij motorstilstand. De beveiliging wordt geactiveerd als:
- de omvormer op de blokkeerlimiet is (gedefinieerd door parameters 20.03, 20.13 en 20.14)
- de uitgangsfrequentie onder het niveau ingesteld door parameter 30.11 komt en
- de bovenstaande toestand langer geldig is geweest dan de tijdsperiode ingesteld door parameter 30.12.
Opmerking: De blokkeerlimiet wordt begrensd door de interne stroomlimiet 03.04TORQ_INV_CUR_LIM.
Zie het onderdeel Stall Protection op pagina 68. | |
| | FOUT | De omvormer stopt op een foutmelding. | 1 |
| | WAARSCHUWING | De omvormer geeft een waarschuwing. De indicatie verdwijnt binnen de helft van de tijd ingestelde parameter 30.12. | 2 |
| | NEE | De beveiliging is niet actief. | 3 |
| 30.11 | BLOKK. FREQ. HOOG | Definieert de frequentielimiet voor de blokkeerfunctie. Zie parameter 30.10. | |
| 0,5 ... 50,0 Hz | Blokkeerfrequentie | | |
| 30.12 | BLOKK. TIJD | Definieert de tijdsduur voor de blokkeerfunctie. Zie parameter 30.10. | |
| 10,00 ... 400,00 s | Blokkeertijd | | |
| 30.13 | ONDERBELAST FUNC | Selecteert hoe de omvormer bij onderbelasting reageert. De beveiliging wordt geactiveerd als:
- Het motorkoppel onder de belastingscurve valt zoals geselecteerd door parameter 30.15,
- de uitgangsfrequentie hoger is dan 10% van de nominale motorfrequentie en
- de bovenstaande toestand langer heeft bestaan dan de tijdsperiode ingesteld door parameter 30.14.
Zie het onderdeel Onderbelastingbeveiliging op pagina 68. | |
| | NEE | De beveiliging is niet actief. | 1 |
| | WAARSCHUWING | De omvormer geeft een waarschuwing. | 2 |
| | FOUT | De omvormer stopt op een foutmelding. | 3 |
| 0 ... 600 s | Onderbelastingstijd | | |
Actuele signalen en parameters

30.15 ONDERBELAST CURVE

Selecteert de belastingscurve voor de onderbelastingsfunctie. Zie parameter 30.13.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...5</td>
<td></td>
<td>Nummer van de belastingscurve</td>
<td>1...5</td>
</tr>
</tbody>
</table>

30.16 MOTORFASE VERLIES

Activeert de bewakingsfunctie voor motorfaseverlies. Zie het onderdeel *Motorfaseverlies* op pagina 68.

| NEE | Niet actief | 0 |
| FOUT | Actief. De omvormer stopt op een foutmelding. | 65535 |

30.17 AARDFOUT

Selecteert hoe de omvormer reageert als er een aardfout wordt gedetecteerd in de motor of motorkabel. Zie het onderdeel *Aardfoutbeveiliging* op pagina 69.

Opmerking: Met parallel geschakelde R8i omvormermodules (ACS800 multidrive en grote ACS800-07 eenheden) is alleen de selectie FAULT geldig.

| WAARSCHUWING | De omvormer geeft een waarschuwing. | 0 |
| FOUT | De omvormer stopt op een foutmelding. | 65535 |

30.18 COMM FOUT FUNC

Selecteert hoe de omvormer reageert bij het wegvallen van de veldbuscommunicatie, d.w.z. als de omvormer noch de hoofddataset, noch de auxdataset met referentiegegevens ontvangt. De vertragingstijden worden gegeven door parameter 30.19 en 30.21.

| FOUT | De beveiliging is actief. De omvormer stopt op een foutmelding en de motor loopt uit tot stilstand. | 1 |
| NEE | De beveiliging is niet actief. | 2 |

CNST TOER 15

De beveiliging is actief. De omvormer geeft een waarschuwing en stelt het toerental in op de waarde bepaald door parameter 12.16.

WAARSCHUWING! Zorg dat het veilig is om het bedrijf voort te zetten in geval de communicatie wordt verbroken.

LAATSTE REF

De beveiliging is actief. De omvormer geeft een waarschuwing en blokkeert het toerental op de waarde waarop de omvormer het laatst draaide. Het toerental wordt bepaald door het gemiddelde toerental gedurende de laatste 10 seconden.

WAARSCHUWING! Zorg dat het veilig is om het bedrijf voort te zetten in geval de communicatie wordt verbroken.

Index Naam/Keuze

- 100
- 80
- 60
- 40
- 20
- 0

- 2,4 * ƒN

Omschrijving

<table>
<thead>
<tr>
<th>T_M/T_N (%)</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

FbEq

- 3
- 2
- 2
- 5
- 4

T_M = Motorkoppel
T_N = Nominaal motorkoppel
f_N = Nominale motorfrequentie

<table>
<thead>
<tr>
<th>T_M</th>
<th>T_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

Opmerking: Met parallel geschakelde R8i omvormermodules (ACS800 multidrive en grote ACS800-07 eenheden) is alleen de selectie FAULT geldig.

Waarschuwing: Zorg dat het veilig is om het bedrijf voort te zetten in geval de communicatie wordt verbroken.

Opmerking: Zorg dat het veilig is om het bedrijf voort te zetten in geval de communicatie wordt verbroken.
30.19 COMM FOUT -TIJDVER

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.19</td>
<td>DEF.VER.</td>
<td>Definieert de vertragingstijd voor de bewaking van de hoofddataset met referentiegegevens. Zie parameter 30.18.</td>
<td></td>
</tr>
</tbody>
</table>

0,1 ... 60,0 s Tijdsvertraging 10 ... 6000

30.20 COMM FOUT RO/AO

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
</table>

NUL Relaisuitgang is ontkrachtigd. Analoge uitgang is ingesteld op nul. 0

LTSTE WAARDE De relaisuitgang behoudt de laatste status van voor het uitvallen van de communicatie. De analoge uitgang geeft de laatste waarde van voor het uitvallen van de communicatie. WAARSCHUWING! Nadat de communicatie is hersteld, begint onmiddellijk het updaten van de relais- en analogue uitgangen, zonder resetten van de foutmelding. 65535

30.21 AUX REF DS T-OUT

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.21</td>
<td>AUX REF DS T-OUT</td>
<td>Definieert de vertragingstijd voor bewaking van de auxdataset met referentiegegevens. Zie parameter 30.18. De omvormer activeert de bewaking automatisch 60 seconden na inschakeling van de voedingsspanning als de waarde afwijkt van nul.</td>
<td></td>
</tr>
</tbody>
</table>

Opmerking: De vertragingstijd is ook van toepassing op de functie gedefinieerd door parameter 30.20.

0,0 ... 60,0 s Tijdvertraging. 0,0 s = de functie is niet actief. 0 ... 6000

30.22 IO CONFIG FUNC

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.22</td>
<td>IO CONFIG FUNC</td>
<td>Bepaalt de werking van de omvormer als een optioneel ingangs- of uitgangs- kanaal wordt geselecteerd als een signaalinterface, terwijl de communicatie naar de betreffende analoge of digitale I/O-uitbreidingsmodule niet overeenkomstig is ingesteld in parametergroep 98 OPTIEMODULES. Voorbeeld: De bewakingsfunctie wordt geactiveerd als parameter 16.01 is ingesteld op DI7, maar 98.03 is ingesteld op NO.</td>
<td></td>
</tr>
</tbody>
</table>

nee Niet actief. 1

waarschuwing Actief. De omvormer geeft een waarschuwing. 2

30.23 LIMIET WAARSCH

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.23</td>
<td>LIMIET WAARSCH</td>
<td>Activeert/deactiveert de limiet-alarmen INV CUR LIM, DC BUS LIM, MOT CUR LIM, MOT TORQ LIM en/of MOT POW LIM. Voor aanvullende informatie, zie het hoofdstuk Foutopsporing.</td>
<td></td>
</tr>
</tbody>
</table>

0...255 Waarde in decimalen. Standaard zijn er geen alarmen actief, d.w.z. parameterwaarde is 0.

bit 0 INV_CUR_LIM_IND
bit 1 DC_VOLT_LIM_IND
bit 2 MOT_CUR_LIM_IND
bit 3 MOT_TORQ_LIM_IND
bit 4 MOT_POW_LIM_IND

Voorbeeld: Wanneer de parameterwaarde ingesteld is op 3 (de waarden van bit 0 en 1 zijn 1), zijn de alarmen INV STR LIM en DC BUS LIM actief.

31 AUTOMATISCHE RESET

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>AUTOMATISCHE RES</td>
<td>Automatisch resetten van fouten. Automatische reset is uitsluitend mogelijk voor bepaalde typen fouten en als automatische resetfunctie voor dat fouttype wordt geactiveerd. Automatische reset is niet actief als de omvormer onder lokale besturing staat (L zichtbaar op de eerste regel van de display van het bedieningspaneel). Zie het onderdeel Automatische resets op pagina 72.</td>
<td></td>
</tr>
</tbody>
</table>

31.01 AANTAL POGINGEN

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.01</td>
<td>AANTAL POGINGEN</td>
<td>Definieert het aantal automatische reset-pogingen binnen de tijd die wordt gedefinieerd door parameter 31.02.</td>
<td></td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 5</td>
<td>Aantal automatische reset-pogingen</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31.02</td>
<td>HERSTARTTIJD</td>
<td>Definieert de tijdsperiode voor de automatische fout-reset-functie. Zie parameter 31.01.</td>
<td>100 ... 18000</td>
</tr>
<tr>
<td>1.0 ... 180,0 s</td>
<td>Toegestane resettijd</td>
<td>0 ... 300</td>
<td></td>
</tr>
<tr>
<td>31.03</td>
<td>VERTRAGINGSTIJD</td>
<td>Definieert de tijd gedurende welke de omvormer wacht nadat een fout optreedt, voordat een automatische reset wordt uitgevoerd. Zie parameter 31.01.</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 3.0 s</td>
<td>Vertraging bij reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.04</td>
<td>OVERSTROOM</td>
<td>Activeert/deactiveert de automatische reset voor een overstroomfout.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>31.05</td>
<td>OVERSPANNING</td>
<td>Activeert/deactiveert de automatische reset voor een overspanningsfout in de tussenkring.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>31.06</td>
<td>ONDERSPANNING</td>
<td>Activeert/deactiveert de automatische reset voor een onderspanningsfout in de tussenkring.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>31.07</td>
<td>AI SIGNAAL<MIN</td>
<td>Activeert/deactiveert de automatische reset voor de fout AI SIGNAAL<MIN (analoog ingangssignaal onder het toegestane minimumniveau).</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING!</td>
<td>De omvormer kan opnieuw starten, zelfs na een lange stop als het analoge ingangssignaal wordt hersteld. Zorg ervoor dat het gebruik van deze functie geen gevaar oplevert.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.08</td>
<td>LINE CONV</td>
<td>Activeert/deactiveert de automatische reset voor de fout INGANGSBRUG (FF51) (fout aan de liijnzijde van de omvormer).</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>32 BEWAKING</td>
<td>Bewakingslimieten. Er kan een relaisuitgang worden gebruikt om aan te geven wanneer een waarde boven of onder de limiet zit. Zie het onderdeel Bewaking op pagina 72.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.01</td>
<td>TOEREN 1 FUNCTIE</td>
<td>Activeert/deactiveert de toerentalbewakingsfunctie en kiest het type bewakingslimiet.</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Bewaking niet in gebruik.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LAAG LIMIET</td>
<td>Bewaking wordt geactiveerd als de waarde onder de limiet komt.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HOOG LIMIET</td>
<td>Bewaking wordt geactiveerd als de waarde boven de limiet komt.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

ABS LAAG LIM
- Bewaking wordt geactiveerd als de waarde onder de ingestelde limiet komt. De limiet wordt in beide draairichtingen bewaakt, vooruit en achteruit. De onderstaande afbeelding geeft het principe weer.

![Abs Laag Lim](image)

32.02 TOEREN 1 LIMIET
- Zie parameter 32.01.
- Waarde van de limiet: -18000 … 18000 rpm

32.03 TOEREN 2 FUNCTIE
- Zie parameter 32.01.

32.04 TOEREN 2 LIMIET
- Zie parameter 32.01.
- Waarde van de limiet: -18000 … 18000 rpm

32.05 STROOMFUNCTIE
- Activeert/deactiveert de bewakingsfunctie voor de motorstroom en kiest het type bewakingslimiet.

32.06 STROOMLIMIET
- Definieert de motorstroombewakingslimiet (zie parameter 32.05).
- Waarde van de limiet: 0 … 1000 A

32.07 KOPPEL 1 FUNCTIE
- Activeert/deactiveert de bewakingsfunctie voor het motorkoppel en kiest het type bewakingslimiet.

32.08 KOPPEL 1 LIMIET
- Definieert de limiet voor de motorstroombewaking (zie parameter 32.07).
- Waarde van de limiet als percentage van het nominale motorkoppel: -6000 … 6000

32.09 KOPPEL 2 FUNCTIE
- Activeert/deactiveert de bewakingsfunctie voor het motorkoppel en kiest het type bewakingslimiet.

32.10 KOPPEL 2 LIMIET
- Definieert de limiet de motorstroombewaking (zie parameter 32.09).
- Waarde van de limiet als percentage van het nominale motorkoppel: -6000 … 6000

32.11 REF1 FUNCTIE
- Activeert/deactiveert de bewakingsfunctie voor externe referentie REF1 en kiest het type bewakingslimiet.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS LAAG LIM</td>
<td>Bewaking wordt geactiveerd als de waarde onder de ingestelde limiet komt. De limiet wordt in beide draairichtingen bewaakt, vooruit en achteruit. De onderstaande afbeelding geeft het principe weer.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>32.02</td>
<td>TOEREN 1 LIMIET</td>
<td>Definieert toerentalbewakingslimiet. Zie parameter 32.01.</td>
<td>-18000 … 18000</td>
</tr>
<tr>
<td>32.03</td>
<td>TOEREN 2 FUNCTIE</td>
<td>Zie parameter 32.01.</td>
<td>1</td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>32.04</td>
<td>TOEREN 2 LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>-18000 … 18000</td>
</tr>
<tr>
<td>32.05</td>
<td>STROOMFUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor de motorstroom en kiest het type bewakingslimiet.</td>
<td>1</td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32.06</td>
<td>STROOMLIMIET</td>
<td>Definieert de motorstroombewakingslimiet (zie parameter 32.05).</td>
<td>0 … 1000</td>
</tr>
<tr>
<td>32.07</td>
<td>KOPPEL 1 FUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor het motorkoppel en kiest het type bewakingslimiet.</td>
<td>1</td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>32.08</td>
<td>KOPPEL 1 LIMIET</td>
<td>Definieert de limiet voor de motorstroombewaking (zie parameter 32.07).</td>
<td>-6000 … 6000</td>
</tr>
<tr>
<td>-600 … 600%</td>
<td>Waarde van de limiet als percentage van het nominale motorkoppel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.09</td>
<td>KOPPEL 2 FUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor het motorkoppel en kiest het type bewakingslimiet.</td>
<td>1</td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>32.10</td>
<td>KOPPEL 2 LIMIET</td>
<td>Definieert de limiet de motorstroombewaking (zie parameter 32.09).</td>
<td>-6000 … 6000</td>
</tr>
<tr>
<td>-600 … 600%</td>
<td>Waarde van de limiet als percentage van het nominale motorkoppel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.11</td>
<td>REF1 FUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor externe referentie REF1 en kiest het type bewakingslimiet.</td>
<td>1</td>
</tr>
<tr>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
</tr>
<tr>
<td>32.12</td>
<td>REF1 LIMIET</td>
<td>Definieert de limiet voor REF1-bewaking (zie parameter 32.11).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 18000 rpm</td>
<td>Waarde van de limiet</td>
<td>0 ... 18000</td>
</tr>
<tr>
<td>32.13</td>
<td>REF2 FUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor externe referentie REF2 en kiest het type bewakingslimiet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
</tr>
<tr>
<td>32.14</td>
<td>REF2 LIMIET</td>
<td>Definieert de limiet voor REF2-bewaking (zie parameter 32.13).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 600%</td>
<td>Waarde van de limiet</td>
<td>0 ... 6000</td>
</tr>
<tr>
<td>32.15</td>
<td>WERKW 1 FUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor de variabele ACT1 van de PID-regeling en selecteert het type bewakingslimiet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
</tr>
<tr>
<td>32.16</td>
<td>WERKW 1 LIMIET</td>
<td>Definieert de limiet voor ACT1-bewaking (zie parameter 32.15).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 200%</td>
<td>Waarde van de limiet</td>
<td>0 ... 2000</td>
</tr>
<tr>
<td>32.17</td>
<td>WERKW 2 FUNCTIE</td>
<td>Activeert/deactiveert de bewakingsfunctie voor de variabele ACT2 van de PID-regeling en selecteert het type bewakingslimiet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 32.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LAAG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOOG LIMIET</td>
<td>Zie parameter 32.01.</td>
<td>3</td>
</tr>
<tr>
<td>32.18</td>
<td>WERKW 2 LIMIET</td>
<td>Definieert de limiet voor ACT2-bewaking (zie parameter 32.17).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 200%</td>
<td>Waarde van de limiet</td>
<td>0 ... 2000</td>
</tr>
</tbody>
</table>

33 INFORMATIE

Programmaversies, testdatum

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.01</td>
<td>SW. VERSIE</td>
<td>Geeft het type en de versie weer van het firmware-pakket in de omvormer. Opmerking: Parameterinstelling kan door de gebruiker niet gewijzigd worden.</td>
</tr>
</tbody>
</table>

Decoderingsssleutel:

\[\text{ASxxxxxyy} \]

- **Productserie:**
 - A = ACS800
- **Product:**
 - S = ACS800-standaard
- **Firmwareversie:**
 - 7xyy = versie 7.xyy

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.02</td>
<td>APPL SW. VERSIE</td>
<td>Geeft het type en de versie weer van het applicatieprogramma. Opmerking: Parameterinstelling kan door de gebruiker niet gewijzigd worden.</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Decoderingsleutel:

- **Productserie**
 - A = ACS800
- **Product**
- **Firmwaretype**
 - A = Applicatieprogramma
- **Firmwareversie**
 - 7xyx = versie 7.xyx

Testdatum

Geef de testdatum weer.

Opmerking: Parameterinstelling kan door de gebruiker niet gewijzigd worden.

Datumwaarde in het formaat DDMMJJ (dag, maand, jaar)

Board type

Toont het type besturingskaart. **Opmerking:** RMIO-1x kaarten hebben een ander soort FLASH-geheugenchips dan RMIO-0x. Alleen software-versie ASXR7300 of later zal werken met de RMIO-1x kaarten.

PROCES DATA

- gebruikersvariabele en eenheid
- filtering voor de feitelijke signalen toerental en koppel
- reset van de bedrijfsurenteller

Schaling

Schaalt de geselecteerde omvormervariabele in een door de gebruiker bepaalde variabele, welke wordt opgeslagen in een feitelijk signaal 01.01. Het onderstaande blokschema illustreert het gebruik van de parameters die feitelijk signaal 01.01 definieert.

Eenheid

Selecteer de eenheid voor de procesvariabele. Zie parameter 34.01.

- **NEE** = Geen eenheid geselecteerd.
- **rpm** = omwentelingen per minuut
- **%** = procent
- **m/s** = meter per seconde
- **A** = ampère
- **V** = Volt
- **Hz** = hertz

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00</td>
<td>Schoalfactor</td>
<td>0…100000,00%</td>
<td>0…10000</td>
</tr>
<tr>
<td>01.01</td>
<td>Eenheid voor feitelijk signaal 01.01</td>
<td>34.02</td>
<td>34.01</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Index Naam/Keuze Omschrijving FbEq

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>seconde</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>h</td>
<td>uur</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>kh</td>
<td>kilo-uur</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>celsius</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>ft</td>
<td>pond per voet</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>mA</td>
<td>milliampère</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowattuur</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>F</td>
<td>fahrenheit</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>pk</td>
<td>paardenkracht</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>MWh</td>
<td>megawattuur</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>m3h</td>
<td>kubieke meter per uur</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>l/s</td>
<td>liter per seconde</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>bar</td>
<td>bar</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>GPM</td>
<td>gallons per minuut</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>PSI</td>
<td>pounds per square inch</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>CFM</td>
<td>kubieke voet per minuut</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>ft</td>
<td>voet</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>MGD</td>
<td>miljoen gallons per dag</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>iHg</td>
<td>inches kwik</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>FPM</td>
<td>voet per minuut</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>lbs</td>
<td>pound</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

34.03 PROCES DATA KEUZE

Selecteert de omvormervariabele die geschaald moet worden naar de gewenste procesvariabele. Zie parameter 34.01.

<table>
<thead>
<tr>
<th>0 ... 9999</th>
<th>Parameterindex</th>
</tr>
</thead>
</table>

34.04 MOT TOERENFILTERT

Definieert de filtertijdconstante voor het feitelijke signaal 01.02 SPEED. De tijdconstante heeft een invloed op alle functies waarin het gegeven SPEED wordt gebruikt.

De feitelijke waarde van het toerental wordt bijvoorbeeld gebruikt bij toerentalbewaking (parametergroep 32 BEWAKING), als een analoge uitgangswaarde (groep 15 ANALOGE UITGANGEN) of als een werkelijke waarde die op het display van het bedieningspaneel of op het PC-scherm wordt getoond.
34.05 KOPPEL FILTERTIJD

Definieert de filtertijdconstante voor de feitelijk signaalkoppel (feitelijk signaal 01.05). Heeft tevens invloed op de koppelbewaking (parameter 32.07 en 32.09) en het koppel gelezen via een analoge uitgang.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
</table>
| 0 … 20000 ms | Filterdurende | O = I ⋅ (1 - e⁻ᵗ/Ｔ)
| | Tijdconstante | I = filteringang (trap)
| | Ongefilterd signaal | O = filteruitgang
| | Gekke signal | t = tijd
| | T = filterdurende Zeitconstante | | 0 … 20000 |

34.06 RESET M-UREN

Reset van de bedrijfsurenteller van de motor (feitelijk signaal 01.43).

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEE</td>
<td>Geen reset.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>Reset. De teller start opnieuw vanaf nul.</td>
<td>65535</td>
</tr>
</tbody>
</table>

35 MOT TEMP METING

Motortemperatuurmeting. Voor de functiebeschrijving, zie de secties *Meting van de motortemperatuur via de standaard I/O* op pagina 77 en *Meting van de motortemperatuur via de analoge I/O-uitbreiding* op pagina 79.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
</table>
| 35.01 | M1 TEMP AI1 KEUZE | Activeert de meetfunctie voor de temperatuur van motor 1 en selecteert het sensortype.
| | Opmerking: | Indien een optionele analoge I/O Uitbreidingsmodule RAIO gebruikt wordt voor de temperatuurmeting en 35.01 MOT 1 TEMP AI1 SEL en/ of 35.04 MOT 2 TEMP AI2 SEL zijn ingesteld op 1xPT100, dan dient het ingangssignaal-bereik van de analoge uitbreidingsmodule ingesteld worden op 0…2 V (in plaats van 0…10 V) via DIP switches. | |
| | NIET GEBRUIKT | De functie is niet actief. | 1 |
| | 1xPT100 | De functie is actief. De temperatuur wordt gemeten met één Pt 100-sensor.
| | | Analogie uitgang AO1 voert een constante stroom door de sensor. De sensorweerstand neemt toe naarmate de motortemperatuur stijgt, evenals de spanning op de sensor. De temperatuurmeetfunctie leest de spanning uit via analoge ingang AI1 en zet deze om in graden Celsius. | 2 |
| | 2XPT100 | De functie is actief. De temperatuur wordt gemeten met twee Pt 100-
| | | sensoren. Zie selectie 1xPT100. | 3 |
| | 3XPT100 | De functie is actief. De temperatuur wordt gemeten met drie Pt 100-sensoren.
| | | Zie selectie 1xPT100. | 4 |

Actuele signalen en parameters
De functie is actief. De temperatuur wordt bewaakt met een tot drie PTC-sensoren of een tot drie KTY84-1xx silicium temperatuursensoren. Analoge uitgang AO1 voert een constante stroom door de sensor(en). De sensorweerstand neemt sterk toe naarmate de motortemperatuur boven de PTC-referentietemperatuur (T_{ref}) stijgt, evenals de spanning op de weerstand. De temperatuurmeetfunctie leest de spanning via analoge ingang AI1 en zet deze om in Ohm. De onderstaande afbeelding laat gebruikelijke PTC-sensorweerstandswaarden zien als functie van de bedrijfstemperatuur van de motor.

<table>
<thead>
<tr>
<th>Temperatuur</th>
<th>Weerstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaal</td>
<td>0 … 1.5 kohm</td>
</tr>
<tr>
<td>Te hoog</td>
<td>> 4 kohm</td>
</tr>
</tbody>
</table>

35.02 MOT 1 TEMP ALM L
Definieert de alarmlimiet voor de temperatuurmeting van motor 1. De alarmindicatie wordt weergegeven als de limiet wordt overschreden.

-10 … 5000 ohm/°C (PTC/Pt100)
Limiet in °C of Ohm. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100. Ohm: parameter 35.01 is 1…3 PTC.

35.03 MOT 1 TEMP FT L
Definieert de uitschakellimiet voor de temperatuurmeting van motor 1. De foutindicatie wordt weergegeven wanneer de limiet wordt overschreden.

-10 … 5000 ohm/°C (PTC/Pt100)
Limiet in °C of Ohm. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100. Ohm: parameter 35.01 is 1…3 PTC.

35.04 MOT 2 TEMP AI2 SEL
Activeert de meetfunctie voor de temperatuur van motor 2 en bepaalt het sensortype. Er kunnen alleen twee motoren worden beschermd door gebruik van een optionele analoge uitbreidingsmodule. Parameter 98.12 moet worden geactiveerd.

Opmerking: Als 98.12 wordt geactiveerd, wordt de analoge I/O-uitbreidingsmodule ook gebruikt voor de temperatuurmeting van motor 1 (de standaard I/O-klemmen worden niet gebruikt).

Opmerking: Als een optionele analoge I/O Uitbreidingsmodule RAIO gebruikt wordt voor de temperatuurmeting en 35.01 MOT 1 TEMP AI1 SEL en/of 35.04 MOT 2 TEMP AI2 SEL zijn ingesteld op 1xPT100, dan dient het ingangssignaal-bereik van de analoge uitbreidingsmodule ingesteld worden op 0…2 V (in plaats van 0…10 V) via DIP switches.

NIET GEBRUIKT
Zie 35.01.
1xPT100
Zie 35.01.
2XPT100
Zie 35.01.
3XPT100
Zie 35.01.
1…3 PTC
Zie 35.01.

35.05 MOT 2 TEMP ALM L
Definieert de alarmlimiet voor de functie temperatuurmeting van motor 2. De alarmindicatie wordt weergegeven wanneer de limiet wordt overschreden.
Actuele signalen en parameters

165

-10 … 5000 ohm/°C

(ZPTC/Pt100)

Zie 35.02.

35.06 MOT 2 TEMP FLT L

Definieert de alarmlimiet voor de functie temperatuurmeting voor motor 2. De foutindicatie wordt weergegeven wanneer de limiet overschreden wordt.

-10 … 5000 ohm/°C

(ZPTC/Pt100)

Zie 35.03.

35.07 MOT MOD COMPENSAT

Selecteert of de gemeten temperatuur van motor 1 wordt gebruikt in de motormodelcompensatie.

NEE

De functie is niet actief.

JA

De temperatuur wordt gebruikt in de motormodelcompensatie.

Opmerking: De selectie is alleen effectief bij gebruik van Pt 100 sensor(en).

YES PAR35.08

Motortemperatuur is overgebracht van het automatiseringssysteem naar de omvormer.

35.08 MOT MOD COMP PTR

De bron voor de feedback van de motortemperatuur als parameter 35.07 is ingesteld op waarde YES PAR35.08.

-255.255.31 ...

+255.255.31 / C. -32768 ...

C.32767

Parameterindex of een constante waarde.

Voorbeeld: Verbindings-pointer via 85.01 CONSTANT1:

35.08 MOT MOD COMP PTR = +.085.001.00.

40 PID REGELING

- **PID-regeling** ([99.02 = PID CTRL])
- trimmen van toerental- of koppelreferentie ([99.02 is niet PID CTRL])
- slaapfunctie voor de PID-regeling ([99.02 = PID CTRL])

Zie de sectie Proces PID regeling op pagina 74 voor meer informatie.

40.01 PID VERSTERKING

Definieert de versterking van de PID-regeling.

0,1 … 100,0

Versterkingswaarde. De onderstaande tabel geeft een paar voorbeeldinstellingen voor de versterking samen met de resulterende toerentalwijzigingen wanneer

- een foutwaarde van 10% of 50% op de regeling wordt aangesloten (fout = procesreferentie - werkelijke proceswaarde).
- het maximumtoerental van de motor gelijk is aan 1500 rpm (parameter 20.02)

<table>
<thead>
<tr>
<th>PID-versterking</th>
<th>Toerentalwijziging: fout van 10%</th>
<th>Toerentalwijziging: fout van 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>75 rpm</td>
<td>375 rpm</td>
</tr>
<tr>
<td>1.0</td>
<td>150 rpm</td>
<td>750 rpm</td>
</tr>
<tr>
<td>3.0</td>
<td>450 rpm</td>
<td>1500 rpm (beperkt)</td>
</tr>
</tbody>
</table>

40.02 PID INTEGR. TIJD

Definieert de integratietijd van de PID-regeling.

Versterkingswaarde: De onderstaande tabel geeft een paar voorbeeldinstellingen voor de versterking samen met de resulterende toerentalwijzigingen wanneer

<table>
<thead>
<tr>
<th>Integratietijd</th>
<th>0.02 … 320,00 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 … 32000</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.03</td>
<td>PID DIFF. TIJD</td>
<td>Definieert de differentiatietijd van de PID-regeling. De afgeleide bij de regelinguitgang wordt berekend op basis van twee opeenvolgende foutwaarden ((E_{K-1} \text{ en } E_K)) aan de hand van de volgende formule: [\text{PID DIFF} \cdot \frac{E_K - E_{K-1}}{T_S},] waarin (T_S =) 12 ms voorbeeldtijd. (E =) fout = procesreferentie - feitelijke proceswaarde.</td>
<td>0,00 ... 10,00 s Differentiatietijd. 0 ... 1000</td>
</tr>
</tbody>
</table>

| 40.04 | PID DIFF. FILTER | Definieert de tijdsconstante van het 1-polige filter gebruikt om de afgeleide van de PID-regeling te vereffenen. | 0,04 ... 10,00 s Filtertijdconstante. 4 ... 1000 |

| 40.05 | INVERTEREN | Zet de fout ombij de PID-regelingingang (fout = procesreferentie - feitelijke proceswaarde). | NEE Geen inversie 0 JA Inversie 65535 |

| 40.06 | WERKW KEUZE | Selecteert de feitelijke proceswaarde voor de PID-regeling: De bronnen van de variabelen ACT1 en ACT2 worden verder gedefinieerd door parameter 40.07 en 40.08. | WERKW1 WERKW1 1 WERKW1 - WW2 Verschil van WERKW1 en WERKW2 2 WERKW1 + WW2 Som van WERKW1 en WERKW2 3 WERKW1 * WW2 Product van WERKW1 en WERKW2 4 WERKW1/WW2 Quotient van WERKW1 en WERKW2 5 MIN(W1,W2) Selecteert de kleinste waarde van WERKW1 en WERKW2 6 MAX(W1,W2) Selecteert de grootste waarde van WERKW1 en WERKW2 7 WRTL(W1 - A2) De wortel van het verschil van WERKW1 en WERKW2 8 WRTL1 + WRTL2 De som van de wortel van WERKW1 en de wortel van WERKW2 9 |

<p>| 40.07 | WERKW1 KEUZE | Selecteert de bron voor variabele WERKW1. Zie parameter 40.06. | AI1 Analoge ingang AI1 1 AI2 Analoge ingang AI2 2 AI3 Analoge ingang AI3 3 AI5 Analoge ingang AI5 4 |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI6</td>
<td>Analoge ingang AI6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>PARAM 40.25</td>
<td>Bron geselecteerd door parameter 40.25.</td>
<td>6</td>
</tr>
<tr>
<td>40.08</td>
<td>WERKW2 KEUZE</td>
<td>Selecteert de bron voor variabele WERKW2. Zie parameter 40.06.</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Analoge ingang AI1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AI2</td>
<td>Analoge ingang AI2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AI3</td>
<td>Analoge ingang AI3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AI5</td>
<td>Analoge ingang AI5</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>AI6</td>
<td>Analoge ingang AI6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>40.09</td>
<td>WERKW1 MINIMUM</td>
<td>Definieert de minimumwaarde van variable WERKW1 als een analoge ingang als bron voor WERKW1 is geselecteerd. Zie parameter 40.07. De minimum- en maximuminstellingen (40.10) van WERKW1 bepalen hoe het spannings-/stroomsignaal ontvangen van het meetinstrument wordt omgezet in een procentwaarde gebruikt door de PID-regeling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimumwaarde als percentage van het ingestelde analoge ingangsbereik. De onderstaande formule laat zien hoe de waarde wordt berekend als analoge ingang AI1 wordt gebruikt als een variabele ACT1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{WERKW1 MINIMUM} = \frac{\text{AI1min} - 13.01}{13.02 - 13.01} \cdot 100%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AI1min De spanningswaarde ontvangen van het meetinstrument wanneer de gemeten werkelijke proceswaarde zich op het gewenste minimum bevindt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.01</td>
<td>AI1 minimum (parameterinstelling)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.02</td>
<td>AI1 maximum (parameterinstelling)</td>
<td></td>
</tr>
<tr>
<td>40.10</td>
<td>WERKW1 MAXIMUM</td>
<td>Definieert de maximumwaarde van variable WERKW1 als een analoge ingang als bron voor WERKW1 is gekozen. Zie parameter 40.07. De minimum- (40.09) en maximuminstellingen van WERKW1 definiëren hoe het spannings-/stroomsignaal ontvangen van het meetinstrument wordt omgezet in een procentwaarde gebruikt door de PID-regeling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximumwaarde als percentage van het ingestelde analoge ingangsbereik. De onderstaande formule laat zien hoe de waarde wordt berekend als analoge ingang AI1 wordt gebruikt als een variabele WERKW1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{WERKW1 MAXIMUM} = \frac{\text{AI1max} - 13.01}{13.02 - 13.01} \cdot 100%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AI1max De spanningswaarde ontvangen van het meetinstrument wanneer de gemeten feitelijke proceswaarde zich op het gewenste maximum niveau bevindt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.01</td>
<td>AI1 minimum (parameterinstelling)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.02</td>
<td>AI1 maximum (parameterinstelling)</td>
<td></td>
</tr>
<tr>
<td>40.11</td>
<td>WERKW2 MINIMUM</td>
<td>Zie parameter 40.09.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1000 … 1000%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zie parameter 40.09.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10000 … 10000</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.12</td>
<td>WERKW2 MAXIMUM</td>
<td>Zie parameter 40.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1000 … 1000%</td>
<td>Zie parameter 40.10.</td>
<td>-10000 … 10000</td>
</tr>
<tr>
<td>40.13</td>
<td>PID INTEGRATOR</td>
<td>Activeert de integratie van de PID-regeling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>Niet actief</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>Actief</td>
<td>2</td>
</tr>
<tr>
<td>40.14</td>
<td>TRIM MODE</td>
<td>Activeert de trimfunctie en selecteert tussen direct en proportioneel trimmen. Met de trimfunctie is het mogelijk om een correctiefactor aan de omvormerreferentie toe te voegen. Zie het onderdeel Reference trimming op pagina 50. Voorbeeld: Een transportband met toerenregeling waarbij ook met de bandspanning rekening moet worden gehouden: De toerentalreferentie wordt enigszins aangepast (trimmen) afhankelijk van de gemeten bandspanning. Niet zichtbaar als parameter 99.02 = PID REGELING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>De trimfunctie is niet actief.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PROPORTIONAL</td>
<td>De trimfunctie is actief. De trimfactor is relatief ten opzichte van de externe %-referentie (REF2). Zie parameter 11.06.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DIRECT</td>
<td>De trimfunctie is actief. De trimfactor is relatief ten opzichte van een vaste maximumlimiet gebruikt in de referentieregellus (maximumtoerental, -frequentie of -koppel).</td>
<td>3</td>
</tr>
<tr>
<td>40.15</td>
<td>TRIM REF KEUZE</td>
<td>Selecteert de signaalbron voor de trimreferentie. Niet zichtbaar als parameter 99.02 = PID REGELING. Voorbeeld: AI5 als een trimreferentie sCIAI5 Trimmeren referentie maxAI5 -maxAI5 minAI5 -minAI5 sCIAI5 Analoge ingangssignaal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AI1</td>
<td>Analoge ingang AI1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AI2</td>
<td>Analoge ingang AI2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AI3</td>
<td>Analoge ingang AI3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AI5</td>
<td>Analoge ingang AI5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AI6</td>
<td>Analoge ingang AI5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>PAR 40.16</td>
<td>Waarde van parameter 40.16 wordt gebruikt als de trimreferentie.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PAR 40.28</td>
<td>Waarde van parameter 40.28 wordt gebruikt als de trimreferentie.</td>
<td>7</td>
</tr>
<tr>
<td>40.16</td>
<td>TRIM REFERENTIE</td>
<td>Definieert de trimreferentiewaarde als parameter 40.15 de waarde PAR 40.16 heeft geselecteerd. Niet zichtbaar als parameter 99.02 = PID REGELING.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>40.17</td>
<td>TRIM INSTELGEBIED</td>
<td>Definieert de vermenigvuldigingsfactor voor de PID-regelinguitgang gebruikt als trimfactor. Niet zichtbaar als parameter 99.02 = PID REGELING.</td>
<td>-10000 ... 10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-100,0 ... 100,0% Vermenigvuldigingsfactor</td>
<td>-10000 ... 10000</td>
</tr>
<tr>
<td>40.18</td>
<td>TRIM KEUZE</td>
<td>Selecteert of de trimfunctie wordt gebruikt voor correctie van de toerental- of koppelreferentie. Niet zichtbaar als parameter 99.02 = PID REGELING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOEREN TRIM</td>
<td>Correctie van de toerentalreferentie</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KOPPEL TRIM</td>
<td>Correctie van de koppelreferentie</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DIRECT TOER</td>
<td>Correctie van de toerentalreferentie. Trimreferentie wordt aan de toerentalreferentie toegevoegd na helling-berekeningen. Trimmen is niet effectief tijdens hellingstop, noodstop of bij toerental gedefinieerd door parameter 30.18 in een veldbuscommunicatie-storing.</td>
<td>3</td>
</tr>
<tr>
<td>40.19</td>
<td>WERK-FILTERTIJD</td>
<td>Definieert de tijdsconstante voor het filter via welk de feitelijke signalen worden verbonden aan de PID-regeling.</td>
<td>4 ... 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,04 ... 10,00 s Filtertijdconstante.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O = I \cdot (1 - e^{-t/T})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I = filteringang (trap)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>O = filteruitgang</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>t = tijd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T = filtertijdconstante</td>
<td></td>
</tr>
<tr>
<td>40.20</td>
<td>SLAAPKEUZE</td>
<td>Activeert de slaapfunctie en selecteert de bron voor de activeringsingang. Alleen zichtbaar als parameter 99.02 = PID REGELING. Zie het onderdeel Slaapfunctie van de PID-regeling op pagina 75.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UIT</td>
<td>Niet actief</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>INTERNAL</td>
<td>Automatische activering/deactivering zoals door parameter 40.21 en 40.23 gedefinieerd.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>Activering/deactivering van de functie via digitale ingang DI1. Activering: Digitale ingang DI1 = 1. Deactivering: DI1 = 0. De interne slaapcriteria ingesteld door parameter 40.21 en 40.23 werken niet effectief. De start- en stopvertragingen voor de slaapfunctie zijn effectief (parameter 40.22 en 40.24).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>Zie selectie DI1.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>Zie selectie DI1.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>Zie selectie DI1.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>Zie selectie DI1.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>Zie selectie DI1.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DI7</td>
<td>Zie selectie DI1.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>DI8</td>
<td>Zie selectie DI1.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DI9</td>
<td>Zie selectie DI1.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>DI10</td>
<td>Zie selectie DI1.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>DI11</td>
<td>Zie selectie DI1.</td>
<td>13</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI1.</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>40.21</td>
<td>SLAAP NIVO</td>
<td>Definieert de startlimiet voor de slaapfunctie. Als het motortoerental langer beneden een ingestelde waarde (40.21) blijft dan de slaapvertragingsduur (40.22), gaat de omvormer naar de slaapmodus: de motor wordt gestopt en het bedieningspaneel geeft de waarschuwingssmelding “SLAAP MODE”. Alleen zichtbaar als parameter 99.02 = PID REGELING.</td>
<td>0 ... 7200</td>
</tr>
<tr>
<td></td>
<td>0,0 … 7200,0 rpm</td>
<td>Startniveau slaapfunctie</td>
<td></td>
</tr>
<tr>
<td>40.22</td>
<td>SLAAP VERTRAGING</td>
<td>Definieert de startvertraging van de slaapfunctie. Zie parameter 40.21. Als het motortoerental beneden het slaapniveau daalt, start de teller. Alleen zichtbaar als parameter 99.02 = PID REGELING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 … 3600,0 s</td>
<td>Startvertraging van de slaapfunctie</td>
<td>0 ... 36000</td>
</tr>
<tr>
<td>40.23</td>
<td>WEK NIVO</td>
<td>Definieert de weklimiet voor de slaapfunctie. De omvormer wordt gewekt als de feitelijke proceswaarde langer onder een ingestelde waarde (40.23) blijft dan de wekvertragingsduur (40.24). Alleen zichtbaar als parameter 99.02 = PID REGELING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 … 100,0%</td>
<td>Het wekniveau als percentage van de feitelijke proceswaarde.</td>
<td>0 ... 10000</td>
</tr>
<tr>
<td>40.24</td>
<td>WEK VERTRAGING</td>
<td>Definieert de wekvertraging van de slaapfunctie. Zie parameter 40.23. Wanneer de feitelijke proceswaarde beneden het wekniveau daalt, start de wekteller. Alleen zichtbaar als parameter 99.02 = PID REGELING.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 … 3600,0 s</td>
<td>Wekvertraging</td>
<td>0 ... 36000</td>
</tr>
<tr>
<td>40.25</td>
<td>WERKWI1 PTR</td>
<td>Definieert de bron of constante voor waarde PAR 15.12 van parameter 40.07.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 ... +255.255.31 / C.-32768 ... C.32767</td>
<td>Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil.</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>40.26</td>
<td>PID MINIMUM</td>
<td>Definieert de minimumlimiet voor de PID-regelinguitgang. Door gebruik van de minimum- en maximumlimieten is het mogelijk om de werking te beperken tot een bepaald toerentalbereik. Voorbeeld: De PID-regeling wordt beperkt tot de voorwaartse draairichting van de motor door instelling van de PID-minimumlimiet op 0% en de maximumlimiet op 100%.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100 … 100%</td>
<td>Limiet als percentage van het absolute maximumtoerental van de motor.</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>40.27</td>
<td>PID MAXIMUM</td>
<td>Definieert de maximumlimiet voor de PID-regelinguitgang. Door gebruik van de minimum- en maximumlimieten is het mogelijk om de werking te beperken tot een bepaald toerentalbereik. Zie parameter 40.26.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-100 … 100%</td>
<td>Limiet als percentage van het absolute maximumtoerental van de motor.</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>40.28</td>
<td>TRIM REF PTR</td>
<td>Definieert de trim-referentiewaarde wanneer parameter 40.15 ingesteld is op de waarde PAR 40.28.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-255.255.31 ... +255.255.31 / C.-32768 ... C.32767</td>
<td>Parameterindex of een constante waarde: Parameterpointer: inversie-, groeps-, index- en bitvelden. Het bitgetal werkt uitsluitend voor blokken die booleaanse ingangen verwerken. Constante waarde: inversie- en constante velden. Inverseveld moet waarde C hebben om de constante-instelling te activeren.</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 MECH REMBEST</td>
<td>Mechanische-rembesturing. De functie werkt binnen een 100 ms tijdscyclus. Voor een beschrijving van de functie zie de sectie Besturing van een mechanische rem op pagina 81.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.01 MECH REMBEST</td>
<td>Activeert de functie rembesturing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIT</td>
<td>Niet actief</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AAN</td>
<td>Actief</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>42.02 REM TERUGMELDING</td>
<td>Activeert de externe aan/uit-rembewaking en bepaalt de bron van het signaal. Gebruik van het externe aan/uit-rembewakingssignaal is optioneel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIT</td>
<td>Niet actief</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>Actief. Digitale ingang DI5 is de signaalbron. DI5 = 1: de rem is open. DI5 = 0: de rem is dicht.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>Zie selectie DI5.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI11</td>
<td>Zie selectie DI5.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI12</td>
<td>Zie selectie DI5.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>42.03 REM OPEN VERTR</td>
<td>Definieert de remvertraging-open (= de vertraging tussen de interne rem-openopdracht en de vrijgave van de besturing van het motortoerental). De vertragingsteller start zodra de omvormer de motor heeft gemagnetiseerd en het motorkoppel heeft opgevoerd tot het niveau nodig voor het loslaten van de rem (parameter 42.07 en 42.08). Gelijktijdig met het starten van de teller activeert de remfunctie de relaisuitgang voor de rembesturing, en de rem begint los te laten.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 … 5,0 s</td>
<td>Vertragingstijd. Stel de vertragingstijd in op dezelfde waarde als de mechanische rem-openvertraging gespecificeerd door de remfabrikant.</td>
<td>0 … 500</td>
<td></td>
</tr>
<tr>
<td>42.04 REM DICHT VERTR</td>
<td>Definieert de remvertraging dicht. De vertragingsteller start zodra het feitelijke toerental van de motor beneden het ingestelde niveau (parameter 42.05) is gedaald nadat de omvormer een stopopdracht heeft ontvangen. Gelijktijdig met het starten van de teller activeert de remfunctie de relaisuitgang voor de rembesturing, en begint bekrachtiging van de rem. Tijdens de vertraging houdt de remfunctie de motor in bedrijf om te voorkomen dat het toerental onder nul daalt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 … 60,0 s</td>
<td>Vertragingstijd. Stel de vertragingstijd in op dezelfde waarde als de mechanische rem-dichtvertraging (= vertragingstijd bij de rembekrachtiging) gespecificeerd door de remfabrikant.</td>
<td>0 … 6000</td>
<td></td>
</tr>
<tr>
<td>42.05 ABS REMDICHT SNLH</td>
<td>Definieert het toerental waarbij de rem wordt gesloten. Zie parameter 42.04.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 … 1000 rpm</td>
<td>Toerental (een absolute waarde)</td>
<td>0 …100000</td>
<td></td>
</tr>
<tr>
<td>42.06 REM FOUTFUNCTIE</td>
<td>Definieert de werking van de omvormer als de status van het optionele externe remterugmeldsignaal niet overeenkomt met de status die door de rembesturingsfunctie wordt verwacht.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOUT</td>
<td>De omvormer stopt bij een fout: foutindicatie en omvormer stopt de motor.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>De omvormer geeft een waarschuwing.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>42.07 STRTKOPELL REF KEU</td>
<td>Selecteert de bron voor de startkoppelreferentie van de motor die wordt toegepast bij het vrijgeven van de rem. De waarde wordt gelezen als percentage van het nominale motorkoppel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Geen bron gekozen. Dit is de standaardwaarde.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AI1</td>
<td>Analoge ingang AI1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AI2</td>
<td>Analoge ingang AI2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AI3</td>
<td>Analoge ingang AI3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI5</td>
<td>Analoge ingang AI5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>AI6</td>
<td>Analoge ingang AI6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PAR 42.08</td>
<td>Gedefinieerd door parameter 42.08.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>GEHEUGEN</td>
<td>Het motorkoppel opgeslagen bij de vorige rembekrachtigingsopdracht.</td>
<td>8</td>
</tr>
<tr>
<td>42.08</td>
<td>STARTKOPPEL REF</td>
<td>Definieert het startkoppel van de motor bij de remvrijgave als parameter 42.07 de waarde PAR 40.28 heeft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-300 ... 300%</td>
<td>Koppelwaarde als percentage van het nominale motorkoppel</td>
<td>-30000 ... 30000</td>
</tr>
<tr>
<td>42.09</td>
<td>EXTEND RUN TIJD</td>
<td>Definieert de verlengde looptijd voor de rembesturingsfunctie bij het stoppen. Tijdens de vertraging wordt de motor in gemagnetiseerde staat gehouden, gereed voor een onmiddellijke herstart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0 ... 60,0 s</td>
<td>0,0 s = Normale stoproutine van de rembesturingsfunctie: de magnetisering van de motor wordt uitgeschakeld nadat de rembekrachtigingsvertraging is verstreken. 0,1 ... 60,0 s = Uitgebreide stoproutine van de rembesturingsfunctie: de magnetisering van de motor wordt uitgeschakeld nadat de rembekrachtigingsvertraging en de verlengde looptijd zijn verstreken. Tijdens de verlengde looptijd wordt een koppelreferentie van nul toegepast en is de motor gereed voor een onmiddellijke herstart.</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

![Diagram](https://via.placeholder.com/150)

42.10 LAAG REF REM HOUĐ

Activeert een rem-houdfunctie en bepaalt de houdvertraging hiervoor. De functie stabiliseert de werking van de rembesturing wanneer de motor nabij nul toeren draait en er geen gemeten toerentalterugkoppeling beschikbaar is (pulsgever).

| 0,0 ... 60,0 s | 0,0 s = niet actief. 0,1 s ... 60,0 s = actief. Als de absolute waarde van de motortoerental-referentie onder de rembekrachtigingsnelheid komt: - start de houd-vertragingsteller van de remfunctie. - wordt de rem bekrachtigd volgens de normale stoproutine van de rembesturing. Tijdens de vertraging houdt de functie de rem bekrachtigd ondanks de waarde van de toerentalreferentie en van de startopdracht. Nadat de ingestelde vertraging is verstreken, wordt normaal bedrijf hervat. | 100 = 1 s |

45 ENERGY OPT

Instellingen voor energie-optimalisatie

<table>
<thead>
<tr>
<th>45.02 ENERGY TARIFF1</th>
<th>Energieprijs per kWh. Ter referentie gebruikt bij het berekenen van besparingen. Zie de parameters 01.46 SAVED KWH, 01.48 SAVED AMOUNT en 01.50 SAVED CO2.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0000...1024.0000</td>
<td>Energieprijs per kWh.</td>
<td>1 = 0,001</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.06</td>
<td>E TARIFF UNIT</td>
<td>Geeft de valuta aan welke bij het berekenen van de besparingen wordt gebruikt.</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>De valuta wordt bepaald door de instelling van parameter 99.01 Language.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EUR</td>
<td>Euro</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>USD</td>
<td>US dollar</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>45.08</td>
<td>PUMP REF POWER</td>
<td>Popmvermogen bij rechtstreeks aansluiting op de toevoer. Ter referentie gebruikt bij het berekenen van energiebesparingen. Zie de parameters 01.46 SAVED KWH, 01.48 SAVED AMOUNT en 01.50 SAVED CO2.</td>
<td></td>
</tr>
<tr>
<td>0 ... 950%</td>
<td>Pomvermogen als percentage van het nominale motorvermogen. Opmerking: De maximale waarde is afhankelijk van de motor en wordt berekend bij het inschakelen of als het motorvermogen verandert.</td>
<td>1000 = 100%</td>
<td></td>
</tr>
<tr>
<td>45.09</td>
<td>ENERGY RESET</td>
<td>Reset van de energietellers 01.46 SAVED KWH, 01.47 SAVED GWH, 01.48 SAVED AMOUNT, 01.49 SAVED AMOUNT M, 01.50 SAVED CO2 en 01.51 SAVED CO2 KTON.</td>
<td></td>
</tr>
<tr>
<td>GEDAAN</td>
<td>Reset niet aangevraagd (normale handeling).</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td>Energietellers resetten. De waarde keert automatisch terug naar DONE.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

50 ENCODER MODULE

Coderingsaansluiting. Alleen zichtbaar als een pulsgevermodule (optioneel) is geïnstalleerd en is geactiveerd door parameter 98.01. De instellingen blijven hetzelfde, zelfs als van applicatiemacro wordt gewisseld.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.01</td>
<td>PULSE AANTAL</td>
<td>Geeft het aantal pulsen per omwenteling.</td>
<td></td>
</tr>
<tr>
<td>0 ... 29999 ppr</td>
<td>Pulsant in pulsen per omwenteling van as (ppr).</td>
<td>0 ... 29999</td>
<td></td>
</tr>
<tr>
<td>50.02</td>
<td>TOEREN MEET MODE</td>
<td>Definieert hoe de coderingspulsen worden berekend.</td>
<td></td>
</tr>
<tr>
<td>A (\neq) B DIR</td>
<td>Kanaal A: positieve flanken berekend voor toerental. Kanaal B: richting.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A (\neq) -</td>
<td>Kanaal A: positieve en negatieve flanken berekend voor toerental. Kanaal B: niet in gebruik.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A (\neq) B DIR</td>
<td>Kanaal A: positieve en negatieve flanken berekend voor toerental. Kanaal B: richting.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A (\neq) B (\neq)</td>
<td>Alle flanken van de signalen worden berekend.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>50.03</td>
<td>PULSGEVER FOUT</td>
<td>Definieert de werking van de omvormer als er een fout optreedt in de communicatie tussen de pulsgever en de pulsgever-interfacemodule of tussen de module en de omvormer. De coderingsbewakingsfunctie wordt geactiveerd als een van de volgende condities geldig is: -Het verschil tussen het geschatte toerental en het gemeten toerental bedraagt meer dan 20% van het nominale motortoerental. - Er worden geen pulsen van de pulsgever ontvangen binnen de gedefinieerde tijd (zie parameter 50.04) en het motorkoppel heeft de maximale toegestane waarde.</td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>De omvormer geeft een waarschuwingssignal.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FOUT</td>
<td>De omvormer geeft een foutmelding en stopt de motor</td>
<td>65535</td>
<td></td>
</tr>
<tr>
<td>50.04</td>
<td>ENCODER-VERTRAGING</td>
<td>Definieert de vertragingstijd voor de pulsgeverbewakingsfunctie (zie parameter 50.03).</td>
<td></td>
</tr>
<tr>
<td>0 ... 50000 ms</td>
<td>Tijdsvertraging</td>
<td>0 ... 50000</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.05</td>
<td>ENCODER DDCS CHANNEL</td>
<td>Definieert het optische-vezelkanaal van de besturingskaart waaruit het standaardapplicatieprogramma de signalen leest die komen van de pulsgever-interfacemodule. De instelling is uitsluitend geldig als de module is aangesloten op de omvormer via de DDCS-verbinding (d.w.z. niet het optieslot van de omvormer).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHANNEL 1</td>
<td>Signaals via kanaal 1 (CH1). De pulsgever-interfacemodule moet zijn aangesloten op CH1 in plaats van CH2 bij toepassingen waarin CH2 is gereserveerd door een masterstation (bv. een master-/followerapplicatie). Zie ook parameter 70.03.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHANNEL 2</td>
<td>Signaals via kanaal 2 (CH2). Is in de meeste gevallen te gebruiken.</td>
<td>2</td>
</tr>
<tr>
<td>50.06</td>
<td>SPEED FB SEL</td>
<td>Definieert de toerentalterugkoppelwaarde gebruikt bij de besturing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERNAL</td>
<td>Berekenende toerentalschatting</td>
<td>65535</td>
</tr>
<tr>
<td></td>
<td>ENCODER</td>
<td>Feitelijke toerental gemeten met een encoder</td>
<td></td>
</tr>
<tr>
<td>50.07</td>
<td>ENC CABLE CHECK</td>
<td>Selecteert de omvormerwerking wanneer het encodersignaal kwijt is.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: Controle is alleen voor RTAC-03. Zie voor meer informatie RTAC-03 Pulse Encoder Interface Module User’s Manual [3AFE68650500 (Engels)].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Geen actie</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>WAARSCHUWING</td>
<td>Omvormer genereert waarschuwing ENC CABLE.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FOUT</td>
<td>Omvormer schakelt uit op fout ENC CABLE.</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>COMM MOD DATA</td>
<td>Deze parameters zijn alleen zichtbaar en mogen alleen worden aangepast wanneer een veldbusadaptermodule (optioneel) is geïnstalleerd en met parameter 98.02 is geactiveerd. Voor details over de parameters, zie de handleiding van de veldbusmodule en het hoofdstuk Besturing via een veldbus. Deze parameterinstellingen blijven ongewijzigd, zelfs als van macro wordt gewisseld.</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>STANDAARD MODBUS</td>
<td>De instellingen voor de standaard Modbusverbinding. Zie het hoofdstuk Besturing via een veldbus.</td>
<td></td>
</tr>
<tr>
<td>52.01</td>
<td>STATIONNUMMER</td>
<td>Definieert het adres van het apparaat. Twee eenheden met hetzelfde adres mogen niet gelijktijdig on-line zijn.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 … 247</td>
<td>Adres</td>
<td>1 = 1</td>
</tr>
<tr>
<td>52.02</td>
<td>BAUDRATE</td>
<td>Definieert de overdrachtsnelheid van de verbinding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>600 bit/s</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1200 bit/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>2400 bit/s</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4800</td>
<td>4800 bit/s</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9600</td>
<td>9600 bit/s</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>19200</td>
<td>19200 bit/s</td>
<td>6</td>
</tr>
<tr>
<td>52.03</td>
<td>PARITEIT</td>
<td>Definieert het gebruik van pariteits- en stopbit(s). Alle stations die on-line zijn moeten dezelfde instelling hebben.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NONE1STOPBIT</td>
<td>Geen pariteitsbit, één stopbit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NONE2STOPBIT</td>
<td>Geen pariteitsbit, twee stopbits</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ONEVEN</td>
<td>Oneven pariteitsindicatiebit, één stopbit</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EVEN</td>
<td>Even pariteitsindicatiebit, één stopbit</td>
<td>4</td>
</tr>
</tbody>
</table>
60 MASTER/FOLLOWER

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>MASTER/FOLLOWER</td>
<td>Master/Follower-toepassing. Voor meer informatie, zie de sectie Gebruik van meerdere omvormers met Master/Follower op pagina 84 en de afzonderlijke handleiding Master/Follower Application Guide [3AFE64590430 (Engels)].</td>
<td></td>
</tr>
<tr>
<td>60.01</td>
<td>MASTER LINK MODE</td>
<td>Definieert de rol van de omvormer in de Master/Follower-verbinding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opmerking: Er zijn geen twee masterstations online toegestaan. Als een Follower-omvormer gewijzigd wordt in een Master-omvormer (of vice versa) door deze parameter, moet van de RMIO-kaart opnieuw de spanning ingeschakeld worden, anders werkt de M/F-verbinding niet goed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIET GEBRUIKT</td>
<td>De Master/Follower-verbinding is not actief.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MASTER</td>
<td>Master-omvormer</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FOLLOWER</td>
<td>Follower-omvormer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STANDBY</td>
<td>De Follower-omvormer leest de stuursignalen uit via de veldbusinterface, niet zoals gebruikelijk via de Master/Follower-verbinding.</td>
<td>4</td>
</tr>
<tr>
<td>60.02</td>
<td>KOPPEL SELECTOR</td>
<td>Selecteert de referentie voor gebruik in de motorkoppelregeling. Deze waarde hoeft doorgaans uitsluitend in de Follower-station(s) te worden gewijzigd. De parameter is alleen zichtbaar als parameter 99.02 = T CTRL. Externe besturingslocatie 2 (EXT2) moet actief zijn om de koppelselector in te kunnen schakelen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUL</td>
<td>Deze selectie dwingt de uitgang van de koppelselector naar nul te gaan.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TOERENTAL</td>
<td>De uitgangswaarde van de toerenregeling van de Follower wordt als referentie voor de motorkoppelbesturing gebruikt. De omvormer wordt gestuurd door het toerental. SPEED kan zowel in de Follower als de Master worden gebruikt als - de motorassen van de Master en Follower zijn flexibel verbonden. (Een klein snelheidsverschil tussen Master en Follower is mogelijk en toegestaan.) - drooping wordt toegepast (zie parameter 60.06).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KOPPEL</td>
<td>De omvormer wordt door het koppel gestuurd. Deze optie wordt in de Follower(s) gebruikt als de motorassen van de Master en Follower een vaste koppeling hebben via overbrenging, een keten of andere wijze van mechanische krachtoverbrenging en geen verschil in toerental tussen de omvormers mogelijk of toegestaan is. Opmerking: Als TORQUE wordt geselecteerd, zal de omvormer de toerentalvariatie niet beperken zolang het toerental binnen de limieten ligt die zijn gedefinieerd door parameter 20.01 en 20.02. Vaak is een nauwkeuriger toerentalbewaking vereist. In dergelijke gevallen wordt de optie ADD in plaats van TORQUE gebruikt.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>De koppelselector vergelijkt de koppelreferentie en de uitgangswaarde van de toerenregeling, waarna de kleinste van de twee als referentie voor de motorkoppelbesturing wordt gebruikt. MINIMUM wordt uitsluitend in specifieke gevallen gekozen.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>De koppelselector vergelijkt de koppelreferentie en de uitgangswaarde van de toerenregeling, waarna de grootste van de twee als referentie voor de motorkoppelbesturing wordt gebruikt. MAXIMUM wordt uitsluitend in specifieke gevallen gekozen.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ADD</td>
<td>De koppelselector sommeert de koppelreferentie en de uitgangswaarde van de toerenregeling. Binnen het normale werkbereik is de omvormer koppelgestuurd. De optie ADD, samen met de windowbesturing, vormt een toerentalbewakingsfunctie voor een koppelgestuurde Follower-omvormer. Zie parameter 60.03.</td>
<td>6</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.03</td>
<td>WINDOW KEUZE</td>
<td>Activeert de windowbesturing. De windowbesturing, samen met de keuze ADD bij parameter 60.02, vormt een toerentalbewakingsfunctie voor een koppelgestuurde omvormer. De parameter is alleen zichtbaar als parameter 99.02 = T CTRL. Externe bedieningslokatie 2 (EXT2) moet actief zijn om windowbesturing in te kunnen schakelen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAN</td>
<td>NEE: Niet actief 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JA: Windowbesturing is actief. De optie YES wordt gebruikt als parameter 60.02 gelijk is aan ADD. De windowbesturing bewaakt de waarde van de toerentalafwijking (toerentalreferentie - werkelijke toerental). Binnen het normale werkbereik houdt de windowbesturing de ingang van de toerenregeling op nul. De toerenregeling komt uitsluitend in actie als: - de toerentalafwijking groter is dan de waarde van parameter 60.04 of - de absolute waarde van de negatieve toerentalafwijking groter is dan de waarde van parameter 60.05. Als de toerentalafwijking buiten de window komt, wordt het overschrijdende deel van de afwijking verbonden met de toerenregeling. De toerenregeling produceert een referentieterm relatief ten opzichte van de ingang en versterking van de toerenregeling (parameter 23.01) en deze term wordt door de koppelselector toegevoegd aan de koppelreferentie. Het resultaat wordt als interne koppelreferentie voor de omvormer gebruikt. Voorbeeld: Bij verlies van belasting wordt de interne koppelreferentie van de omvormer verminderd om een overmatige toename in het motortoerental te voorkomen. Als de windowbesturing niet actief zou zijn, dan zou het motortoerental stijgen tot aan de toerentallimiet van de omvormer.</td>
<td>65535</td>
</tr>
<tr>
<td>60.04</td>
<td>WINDW BREDTE</td>
<td>Definieert de breedte van de bewakingswindow boven de toerentalreferentie. Zie parameter 60.03. De parameter is alleen zichtbaar als parameter 99.02 = T CTRL.</td>
<td></td>
</tr>
<tr>
<td>POS</td>
<td></td>
<td>0 … 1500 rpm Positieve windowbreedte</td>
<td>0…20000</td>
</tr>
<tr>
<td>60.05</td>
<td>WINDW BREDTE</td>
<td>Definieert de breedte van de bewakingswindow onder de toerentalreferentie. Zie parameter 60.03. De parameter is alleen zichtbaar als parameter 99.02 = T CTRL.</td>
<td></td>
</tr>
<tr>
<td>NEG</td>
<td></td>
<td>0 … 1500 rpm Negatieve windowbreedte</td>
<td>0…20000</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.06</td>
<td>DROOPRATE</td>
<td>Definieert de drooprate. Deze parameterwaarde behoeft uitsluitend te worden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gewijzigd als zowel de Master en de Follower toerentalgestuurd zijn:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Externe bedieningsplaats 1 (EXT1) is gekozen (zie parameter 11.02 of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Externe bedieningsplaats 2 (EXT2) is gekozen (zie parameter 11.02) en</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>parameter 60.02 is ingesteld op SPEED.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>De drooprate moet voor zowel de Master als de Follower worden ingesteld.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>De juiste drooprate voor een proces moet in de praktijk van geval tot geval</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>worden vastgesteld.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drooping voorkomt een conflict tussen de Master en de Follower door een</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>klein verschil in toerental toe te staan. Drooping laat een kleine afname</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in het toerental van de omvormer toe naarmate de belasting van de omvormer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>toeneemt. De afname van het feitelijke toerental op een bepaald punt in het</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bedrijf is afhankelijk van de drooprate-instelling en de belasting van de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>omvormer (= koppelreferentie / uitgang toerenregeling). Bij een</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>uitgangswaarde van de toerenregeling van 100% ligt drooping op het nominale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>niveau, d.w.z. gelijk aan de waarde van DROOP RATE. Drooping neemt lineair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>af naar null parallel aan de afnemende belasting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afname toerental=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uitgang toerenregeling - Drooping - Nominaal toerental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voorbeeld: Uitgang toerenregelaar is 50%, DROOPRATE is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1%, nominaal toerental van de omvormer is 1500 rpm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afname toerental = 0,50 · 0,01 · 1500 rpm = 7,5 rpm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.07</td>
<td>MASTER SIGNAAL 2</td>
<td>Selecteert het gegeven dat door de Master naar de Follower(s) wordt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gezonden als Referentie 1 (toerentalreferentie).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000 ... 9999 Parameterindex</td>
<td>0000 ... 9999</td>
</tr>
<tr>
<td>60.08</td>
<td>MASTER SIGNAAL 3</td>
<td>Selecteert het gegeven dat door de Master naar de Follower(s) wordt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gezonden als Referentie 2 (koppelreferentie).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000 ... 9999 Parameterindex</td>
<td>0000 ... 9999</td>
</tr>
</tbody>
</table>

70 DDCS BESTURING

Instellingen van de optische-vezelkanalen 0, 1 en 3.

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.01</td>
<td>CHANNEL 0 ADDR</td>
<td>Definieert het knooppuntadres voor CH 0. Er mogen niet twee knooppunten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>met hetzelfde adres tegelijkertijd online zijn. De instelling dient te</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>worden gewijzigd wanneer een masterstation verbonden is met CH 0 en niet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>automatisch het adres van de slave wijzigt. Voorbeelden van dergelijke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>masters zijn een ABB Advant-regeling of een andere omvormer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ... 125 Adres.</td>
<td>1 ... 125</td>
</tr>
<tr>
<td>70.02</td>
<td>CHANNEL 3 ADDR</td>
<td>Knooppuntadres voor kanaal 3. Er mogen niet twee knooppunten met</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hetzelfde adres tegelijkertijd online zijn. In principe dient de instelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>te worden gewijzigd wanneer de omvormer wordt aangesloten op een ring die</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bestaat uit meerdere omvormers en een PC waarop het DriveWindow programma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>draait.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ... 254 Adres.</td>
<td>1 ... 254</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.03</td>
<td>CH1 BAUDRATE</td>
<td>De communicatiesnelheid van optische-vezel-CH 1. De instelling moet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>normaal gesproken alleen worden aangepast als de pulsgeneratormodule is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>verbonden met CH 1 in plaats van CH 2. De snelheid moet dan worden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gewijzigd in 4 Mbit/s. Zie ook parameter 50.05.</td>
<td></td>
</tr>
<tr>
<td>70.04</td>
<td>CH0 DDCS HW CONN</td>
<td>Selecteert de topologie van de kanaal 0-verbinding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RING</td>
<td>Apparatuur is aangesloten in een ring.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>STER</td>
<td>Apparatuur is aangesloten in een ster.</td>
<td>65535</td>
</tr>
<tr>
<td>70.05</td>
<td>CH2 HW CONNECTION</td>
<td>Keuze van de topologie van de DDCS kanaal CH2-verbinding.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 = RING</td>
<td>Apparatuur is aangesloten in een ring. Doorsturen van berichten is</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 = STER</td>
<td>vrijgegeven.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apparatuur is aangesloten in een ster. Verzenden van berichten is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geblokkeerd. Deze selectie wordt gebruikt bij NDBU circuits.</td>
<td></td>
</tr>
</tbody>
</table>

72 BEL CURVE GEBR

Zie het onderdeel *Belastingscurve gebruiker* op pagina 87.

<p>| 72.01 | OVERBEL FUNCTIE | Activeert de gebruikers-belastingscurve en bepaalt hoe de omvormer reageert | |
| | | op het overschrijden van de gebruikers-belastingscurve. | |
| | NEE | Gebruikers-belastingscurve is inactief. | 0 |
| | WAARSCHUWING | De omvormer geeft een waarschuwing GEBR L CURVE. De uitgangsstroom | 1 |
| | | van de omvormer wordt niet begrensd. | |
| | FOUT | De omvormer stopt op een foutmelding GEBR L CURVE. | 2 |
| | LIMIET | Uitgangsstroom van de omvormer is begrensd op I<sub>user curve</sub>. | 3 |
| | LIMIET / WAARSCHUWING | Uitgangsstroom van de omvormer is begrensd op I<sub>user curve</sub> en | 4 |
| | | de omvormer generateert een waarschuwing GEBR L CURVE. | |
| 72.02 | BELASTING STROOM1 | Definieert het eerste stroompunt van de belastingscurve bij de frequentie | |
| | 0...800% | gedefinieerd door par. 72.10 BELASTING FREQ 1. | 1 |
| 72.03 | BELASTING STROOM 2 | Definieert het tweede stroompunt van de belastingscurve bij de frequentie | |
| | 0...800% | gedefinieerd door par. 72.11 BELASTING FREQ 2. | 1 |
| 72.04 | BELASTING STROOM 3 | Definieert het derde stroompunt van de belastingscurve bij de frequentie | |
| | 0...800% | gedefinieerd door par. 72.12 BELASTING FREQ 3. | 1 |
| 72.05 | BELASTING STROOM 4 | Definieert het vierde stroompunt van de belastingscurve bij de frequentie | |
| | 0...800% | gedefinieerd door par. 72.13 BELASTING FREQ 4. | 1 |
| 72.06 | BELASTING STROOM 5 | Definieert het vijfde stroompunt van de belastingscurve bij de frequentie | |
| | 0...800% | gedefinieerd door par. 72.14 BELASTING FREQ 5. | 1 |
| 72.07 | BELASTING STROOM 6 | Definieert het zesde stroompunt van de belastingscurve bij de frequentie | |
| | 0...800% | gedefinieerd door par. 72.15 BELASTING FREQ 6. | 1 |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.08</td>
<td>BELASTING STROOM 7</td>
<td>Definieert het zevende stroompunt van de belastingsscurve bij de frequentie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...800%</td>
<td>gedefinieerd door par. 72.16 BELASTING FREQ 7.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>72.09</td>
<td>BELASTING STROOM 8</td>
<td>Definieert het achtste stroompunt van de belastingsscurve bij de frequentie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...800%</td>
<td>gedefinieerd door par. 72.17 BELASTING FREQ 8.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>72.10</td>
<td>BELASTING FREQ 1</td>
<td>Definieert het eerste frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0... par. 72.11 %</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td>72.11</td>
<td>BELASTING FREQ 2</td>
<td>Definieert het tweede frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.10...</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>par. 72.12 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.12</td>
<td>BELASTING FREQ 3</td>
<td>Bepaalt het derde frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.11...</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>par. 72.13 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.13</td>
<td>BELASTING FREQ 4</td>
<td>Bepaalt het vierde frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.12...</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>par. 72.14 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.14</td>
<td>BELASTING FREQ 5</td>
<td>Bepaalt het vijfde frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.13...</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>par. 72.15 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.15</td>
<td>BELASTING FREQ 6</td>
<td>Bepaalt het zesde frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.14...</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>par. 72.16 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.16</td>
<td>BELASTING FREQ 7</td>
<td>Bepaalt het zevende frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.15...</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>par. 72.17 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.17</td>
<td>BELASTING FREQ 8</td>
<td>Definieert het achtste frequentiepunt van de belastingsscurve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>par. 72.16...600%</td>
<td>Waarde in procenten van de nominale motorfrequentie</td>
<td>1 = 1</td>
</tr>
<tr>
<td>72.18</td>
<td>BEL STROOMLIMIET</td>
<td>Definieert de overbelastingsstroom. Waarde wordt gebruikt door de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>overbelastings-integrator ((\int I^2 dt)).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Als de continue motorbelastings-capaciteit (d.w.z. de gedefinieerde</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gebruikers-belastingscurve) niet 100% is bij nominale frequentie, bereken</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dan de overbelastingsstroom gebruikmakend van de volgende vergelijking:</td>
<td></td>
</tr>
</tbody>
</table>
| | | \[
| | | \text{72.18 LOAD CURRENT LIMIT} = \sqrt{I_{\text{overload}}^2 - I_{\text{user curve}}^2 + 100^2} \]
| | | waarbij \(I_{\text{overload}}\) de motor-overbelasting is en \(I_{\text{user curve}}\) de stroom is | |
| | | gedefinieerd door de gebruikers-belastingscurve bij nominale frequentie. | |
| | | Gebruikers-belastingscurve is gedefinieerd door parameters 72.02...72.17. | |
| | | **Voorbeeld**: Motor-overbelastingscapaciteit is 150% van de nominale stroom| |
| | | gedurende 10 s / 10 min en de continue belastingscapaciteit is 80% bij de | |
| | | nominale frequentie: | |
| | | \[
| | | \text{72.18 LOAD CURRENT LIMIT} = \sqrt{150^2 - 80^2 + 100^2} = 162\% \]
| | | \[
| | | 72.19 LOAD THERMAL TIME = 10 s \]
| | | \[
| | | 72.20 LOAD COOLING TIME = 590 s \]

Actuele signalen en parameters
72.19 BEL THERM TIJD

Definieert de overbelastingstijd. Waarde wordt gebruikt door de overbelasting-integrator \(\int I^2 dt\). Zie het voorbeeld bij par. 72.18 BEL STROOMLIMIET.

\[0,0...9999,9 \text{ s}
\]

Tijd. Als de waarde ingesteld is op nul, dan is de uitgangsstrom van de omvormer begrensd tot de gebruikers-belastingcurve gedefinieerd door parameters 72.02...72.17.

72.20 BEL AFKOELTIJD

Definieert de koeltijd. De uitgang van de overbelasting-integrator wordt op nul gesteld als de stroom continu beneden de gebruikers-belastingcurve voor de gedefinieerde koeltijd blijft. Zie het voorbeeld bij par. 72.18 BEL STROOMLIMIET.

\[0...9999 \text{ s}
\]

Tijd

83 ADAPT PROG CTRL

Besturing van de uitvoering van het Adaptieve programma. Voor meer informatie zie de Adaptive Program Application Guide [3AFE64527274 (Engels)].

83.01 ADAPT PROG CMD

Selecteert de werkkingsmodus van het Adaptieve programma.

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP</td>
<td>Stop. Het programma kan niet worden bewerkt.</td>
<td>1</td>
</tr>
<tr>
<td>RUN</td>
<td>Uitvoeren. Het programma kan niet worden bewerkt.</td>
<td>2</td>
</tr>
<tr>
<td>EDIT</td>
<td>Stoppen en naar bewerkingsmodus. Programma kan worden bewerkt.</td>
<td>3</td>
</tr>
</tbody>
</table>

83.02 EDIT COMMAND

Selecteert de opdracht om het blok te plaatsen in de locatie gedefinieerd door parameter 83.03. Het programma moet zich in bewerkingsmodus bevinden (zie parameter 83.01).

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Startwaarde. De waarde gaat automatisch terug naar NO nadat een bewerkingsopdracht is uitgevoerd.</td>
<td>1</td>
</tr>
<tr>
<td>VERSCHUIF</td>
<td>Verschuift het blok naar de locatie gedefinieerd door parameter 83.03 en verschuift de daaropvolgende blokken een locatie verder. Vervolgens kan een nieuw blok in de vrijgemaakte locatie worden geplaatst door op de gebruikelijke wijze de blokparameterset te programmeren. Voorbeeld: Er moet een nieuw blok worden geplaatst tussen het huidige bloknummer 4 (parameter 84.20 … 84.25) en 5 (parameter 84.25 … 84.29). U doet dit door: - het programma in bewerkingsmodus te zetten met parameter 83.01. - locatienummer 5 te selecteren als de gewenste locatie voor het nieuwe blok met parameter 83.03. - het blok in locatienummer 5 en alle daaropvolgende blokken één locatie te verschuiven met parameter 83.02. (kies PUSH) - het vrijgemaakte locatienummer 5 met parameter 84.25 tot 84.29 op de gebruikelijke wijze te programmeren.</td>
<td>2</td>
</tr>
<tr>
<td>DELETE</td>
<td>Verwijdt het blok in de locatie gedefinieerd door parameter 83.03 en verschuift de daaropvolgende blokken één locatie terug.</td>
<td>3</td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
</table>
| PROTECT | Activeren van de beveiliging van het Adaptieve programma. Activeer als volgt:
- Zorg dat de werkinsmodus van het Adaptieve Programma START of STOP is (parameter 83.01).
- Stel de toegangscode in (parameter 83.05).
- Wijzig parameter 83.02 naar PROTECT.
Bij activering:
- Alle parameters in groep 84 met uitzondering van de blokuitgangsparameters zijn onzichtbaar (beveiligd tegen lezen).
- Het is niet mogelijk om het programma naar bewerkinsmodus te schakelen (parameter 83.01).
- Parameter 83.05 is ingesteld op 0. | 4 |
| UNPROTECT | Deactiveren van de beveiliging van het Adaptieve programma. Deactiveer als volgt:
- Zorg dat de werkinsmodus van het Adaptieve Programma START of STOP is (parameter 83.01).
- Stel de toegangscode in (parameter 83.05).
- Wijzig parameter 83.02 naar UNPROTECT.
Opmerking: Als de toegangscode zoek is, is het mogelijk om de beveiliging te resetten door de instelling van de applicatiemacro te wijzigen (parameter 99.02). | 5 |
| 83.03 | EDIT BLOK | Definieert het bloklocatienummer voor de opdracht die door parameter 83.02 is geselecteerd. | |
| 1 ... 15 | Bloklocatienummer. | 1 = 1 | 1 |
| 83.04 | TIMELEVEL KEUZE | Selecteer de cyclustijd voor uitvoering van het Adaptieve programma. De instelling geldt voor alle blokken. | |
| 12 ms | 12 milliseconden | 1 | 1 |
| 100 ms | 100 milliseconden | 2 | 2 |
| 1000 ms | 1000 milliseconden | 3 | 3 |
| 83.05 | PASSCODE | Stelt de toegangscode in voor de beveiliging van het Adaptieve programma. De toegangscode is nodig voor het activeren/deactiveren van de beveiliging. Zie parameter 83.02. | |
| 0 ... | Toegangscode. De instelling gaat terug naar 0 nadat de beveiliging is geactiveerd/gedeactiveerd. Opmerking: Noteer bij de activering de toegangscode en bewaar hem op een veilige plaats. | |
84 ADAPTIVE PROGRAM

- Keuze van de functieblokken en hun ingangsaansluitingen.
- Diagnostiek

Voor meer informatie zie de *Adaptive Program Application Guide* [3AFE64527274 (Engels)].

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.01</td>
<td>STATUS</td>
<td>Laat de waarde van het statuswoord van het Adaptieve programma zien. De onderstaande tabel geeft de verschillende bitstatussen en de corresponderende waarden op het bedieningspaneel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit</td>
<td>Display</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Gestoopt</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>In bedrijf</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Storing aanwezig</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Bezig met bewerken</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>Bezig met controle</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Bezig met verschuiven</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>Popping</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>Initialisatie</td>
<td></td>
</tr>
</tbody>
</table>

84.02 FAULTED PAR: Geeft de foutieve parameter in het Adaptieve programma aan.

84.05 BLOK 1: Selecteert het functieblok voor blokparameterset 1. Voor aanvullende informatie zie de *Adaptive Program Application Guide* [3AFE64527274 (Engels)].

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Index</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BITWISE</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUNT</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPOT</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVENT</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILTER</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASK-SET</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULDIV</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI-BAL</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI BIPOLAR</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMP</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWITCH-B</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWITCH-I</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOFF</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TON</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XOR</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>84.06</td>
<td>INGANG 1</td>
<td>Selecteert de bron voor ingang I1 van blokparameterset 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84.07 INGANG 2</td>
<td>Zie parameter 84.06.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>84.08 INGANG 3</td>
<td>Zie parameter 84.06.</td>
<td></td>
</tr>
<tr>
<td>84.09</td>
<td>UITGANG</td>
<td>Opslag en weergave van de uitgang van blokparameterset 1.</td>
<td></td>
</tr>
<tr>
<td>84.79</td>
<td>UITGANG</td>
<td>Opslag van de uitgang van blokparameterset 15.</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>GEBR CONSTANTEN</td>
<td>Opslag van de constanten en meldingen van het Adaptieve programma. Voor aanvullende informatie zie de Adaptive Program Application Guide [3AFE64527274 (Engels)].</td>
<td></td>
</tr>
<tr>
<td>85.01</td>
<td>CONSTANTE1</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.02</td>
<td>CONSTANTE2</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.03</td>
<td>CONSTANTE3</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.04</td>
<td>CONSTANTE4</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.05</td>
<td>CONSTANTE5</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.06</td>
<td>CONSTANTE6</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.07</td>
<td>CONSTANTE7</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>85.08</td>
<td>CONSTANTE8</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607</td>
<td>Geheel getal.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Voorbeeld: De status van digitale ingang DI2 wordt als volgt verbonden met ingang 1:
- Stel de parameter voor bronselectie (84.06) in op +01.17.01. (het softwareprogramma bewaart de status van digitale ingang DI2 in bit 1 van actueel gegeven 01.17.)
- Zet de waarde om door het teken van de pointerwaarde (-01.17.01.) te wijzigen.
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.09</td>
<td>CONSTANTE9</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607 Geheel getal.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>85.10</td>
<td>CONSTANTE10</td>
<td>Stelt constante in voor het Adaptieve programma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8388608 tot 8388607 Geheel getal.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>85.11</td>
<td>STRING1</td>
<td>Opslag van een bericht voor gebruik in het Adaptieve programma (EVENT-blok).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BERICHT 1</td>
<td>Bericht</td>
<td></td>
</tr>
<tr>
<td>85.12</td>
<td>STRING2</td>
<td>Opslag van een bericht voor gebruik in het Adaptieve programma (EVENT-blok).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BERICHT 2</td>
<td>Bericht</td>
<td></td>
</tr>
<tr>
<td>85.13</td>
<td>STRING3</td>
<td>Opslag van een bericht voor gebruik in het Adaptieve programma (EVENT-blok).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BERICHT 3</td>
<td>Bericht</td>
<td></td>
</tr>
<tr>
<td>85.14</td>
<td>STRING4</td>
<td>Opslag van een bericht voor gebruik in het Adaptieve programma (EVENT-blok).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BERICHT 4</td>
<td>Bericht</td>
<td></td>
</tr>
<tr>
<td>85.15</td>
<td>STRING5</td>
<td>Opslag van een bericht voor gebruik in het Adaptieve programma (EVENT-blok).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BERICHT 5</td>
<td>Bericht</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>D SET REC ADDR</td>
<td>- Adressen waarnaar de ontvangen veldbus-datasets worden weggeschreven.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nummers van de hoofd- en auxdatasets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>De parameters zijn alleen zichtbaar als de veldbuscommunicatie is geactiveerd door parameter 98.02. Voor aanvullende informatie, zie het hoofdstuk Besturing via een veldbus.</td>
<td></td>
</tr>
<tr>
<td>90.01</td>
<td>AUX DS REF3</td>
<td>Selecteert het adres waarin de waarde van veldbusreferentie REF3 wordt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geschreven.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 8999</td>
<td>Parameterindex</td>
<td></td>
</tr>
<tr>
<td>90.02</td>
<td>AUX DS REF4</td>
<td>Selecteert het adres waarin de waarde van veldbusreferentie REF4 wordt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geschreven.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 8999</td>
<td>Parameterindex</td>
<td></td>
</tr>
<tr>
<td>90.03</td>
<td>AUX DS REF5</td>
<td>Selecteert het adres waarin de waarde van veldbusreferentie REF5 wordt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geschreven.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 … 8999</td>
<td>Parameterindex</td>
<td></td>
</tr>
<tr>
<td>90.04</td>
<td>MAIN DS SOURCE</td>
<td>Definieert de gegevensset waaruit de omvormer het controlwoord, referentie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REF1 en referentie REF2 leest.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 … 255</td>
<td>Datasetnummer</td>
<td></td>
</tr>
<tr>
<td>90.05</td>
<td>AUX DS SOURCE</td>
<td>Definieert de gegevensset waaruit de omvormer referentie REF3, REF4 en</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REF5 leest.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 … 255</td>
<td>Datasetnummer</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>D SET TR ADDR</td>
<td>Hoofd- en auxdatasets die de omvormer naar het veldbusmasterstation stuurt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>De parameters zijn alleen zichtbaar als de veldbuscommunicatie is geactiveerd door parameter 98.02. Voor aanvullende informatie, zie het hoofdstuk Besturing via een veldbus.</td>
<td></td>
</tr>
<tr>
<td>92.01</td>
<td>MAIN DS STATUS</td>
<td>Slaat het adres op waaruit het hoofdstatuswoord wordt gelezen. Vaste waarde,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WORD</td>
<td>niet zichtbaar.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>302 (fixed)</td>
<td>Parameterindex</td>
<td></td>
</tr>
</tbody>
</table>
Index | Naam/Keuze | Omschrijving | FbEq
---|---|---|---
92.02 | MAIN DS ACT1 | Selecteert het adres waaruit feitelijk signaal 1 naar de hoofddataset wordt gelezen. |
| 0 … 9999 | Parameterindex |
92.03 | MAIN DS ACT2 | Selecteert het adres waaruit feitelijk signaal 2 naar de hoofddataset wordt gelezen. |
| 0 … 9999 | Parameterindex |
92.04 | AUX DS ACT3 | Selecteert het adres waaruit feitelijk signaal 3 naar de hulp-gegevensset wordt gelezen. |
| 0 … 9999 | Parameterindex |
92.05 | AUX DS ACT4 | Selecteert het adres waaruit het feitelijk signaal 4 naar de hulp-gegevensset wordt gelezen. |
| 0 … 9999 | Parameterindex |
92.06 | AUX DS ACT5 | Selecteert het adres waaruit het feitelijk signaal 5 naar de hulp-gegevensset wordt gelezen. |
| 0 … 9999 | Parameterindex |
92.07 | MSW B10 PTR | Selecteert het adres waarvan bit 10 van het 03.02 Hoofd-Statuswoord gelezen wordt. |
| -255.255.31 … +255.255.31 / C.-32768 … C.32767 | Parameterindex of een constante waarde:
92.08 | MSW B13 PTR | Selecteert het adres waarvan bit 13 van het 03.02 Hoofd-Statuswoord gelezen wordt. |
| -255.255.31 … +255.255.31 / C.-32768 … C.32767 | Parameterindex of een constante waarde:
92.09 | MSW B14 PTR | Kiest het adres waarvan bit 14 van het 03.02 Hoofd-Statuswoord gelezen wordt. |
| -255.255.31 … +255.255.31 / C.-32768 … C.32767 | Parameterindex of een constante waarde:

95 HARDWARE SPECIF

Besturing ventilatortoerental, toepassing sinusfilter etc.

Index	Naam/Keuze	Omschrijving	FbEq
95.01	FAN SPD CTRL MODE	Selecteert de toerentalregeling van de optionele koelventilator van de omzetter.	
CONST 50 Hz	Ventilator loopt met een constante frequentie van 50 Hz wanneer deze ingeschakeld is.	0	
RUN/STOP	Omvormer gestopt: Ventilator loopt met constante frequentie van 10 Hz. Omvormer loopt: Ventilator loopt met constante frequentie van 50 Hz.	1	
CONTROLLED	Het toerental van de ventilator wordt bepaald uit IGBT temperatuur vs. toerentalcurve van de ventilator.	2	
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.02</td>
<td>FUSE SWITCH CTRL</td>
<td>Actieve de monitor-functie van de DC schakelaar van de omvormer (schakelveiligheid). Het controlleren moet actief zijn wanneer de Schakelveiligheid Stuurkaart (Switch Fuse Control Board, ASFC) in gebruik is en aangesloten op de AINT-kaart van de omvormer, d.w.z. bij alle omvormers met frame R8i voorzien van de DC-schakelaar. De functie moet niet-actief zijn in eenheden die de ASFC-kaart met DC-schakelaar niet gebruiken, d.w.z. bij omvormers met frame R2i…R7i en alle enkelvoudige omvormers die geen DC-schakelaar hebben. De standaardinstelling (ON of OFF) is voor elke eenheid volgens fabrieksstandaard ingesteld. ACS800 IGBT pulsen worden altijd geblokkeerd wanneer het programma detecteert dat de DC-schakelaar geopend wordt of de omvormer aan het opladen is (bij het inschakelen van de voeding). Het applicatieprogramma genereert het alarm INV DISABLED als de DC-schakelaar geopend wordt wanneer de omvormer gestopt wordt. De omvormer schakelt uit door fout INV DISABLED als de DC-schakelaar geoped wordt wanneer de omvormer in bedrijf is.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF Niet actief</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAN Actief</td>
<td>1</td>
</tr>
</tbody>
</table>

| 95.03 | INT CONFIG USER | Aantal parallel-aangesloten uitgangs-modules. Activeert de Reduced Run functie. Zie het onderdeel Gereduceerde Run-functie op pagina 86. | |
| | | 1...12 Aantal parallel-aangesloten uitgangs-modules. | |

95.04	EX/SIN VERZOEK	Activeert het sinusfilter of Ex-motor toepassing.	
		NEE Niet actief	1
		EX Ex-motor toepassing. Gebruikt bij motoren die voldoen aan de ATEX richtlijn.	2
		SIN Toepassing sinusfilter. Zie de Sine Filters User’s Manual for ACS800 Drives [3AFE68389178 (Engels)].	3
		EX&SIN Toepassing van EX-motor en sinusfilter. Zie de Sine Filters User’s Manual for ACS800 Drives [3AFE68389178 (Engels)]. Opmeking: Deze selectie wordt niet ondersteund vanaf firmware-versie AST7R7363 en later.	4

95.05	ENA INC SW FREQ	Activeert de begrenzing van de minimum schakelfrequentie voor Ex-motor toepassingen. Parameter is zichtbaar als parameter 95.04 EX/SIN REQUEST ingesteld is op EX.	
		NEE Niet actief	0
		JA Actief. Minimum schakelfrequentie-limiet is ingesteld op 2 kHz. Gebruikt bij motoren met een ATEX certificatie gebaseerd op minimum schakelfrequentie van 2 kHz.	1
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
</table>
| 95.06 | LCU Q PW REF | Definieert de referentiewaarde voor de reactief vermogen generatie aan de ingangszijde van de omvormer (d.w.z. IGBT voedingsunit). De ingangszijde van de omvormer kan reactief vermogen leveren aan het voedingsnetwerk. Deze referentie is geschreven naar parameter 24.02 Q POWER REF2 van de ingangszijde van de omvormerunit. Zie voor meer informatie IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (Engels)]. **Voorbeeld 1:** Wanneer parameter 24.03 Q POWER REF2 SEL ingesteld is op PERCENT, dan is de waarde 10000 van parameter 24.02 Q POWER REF2 gelijk aan de waarde 100% van parameter 24.01 Q POWER REF (d.w.z. 100% van het nominale vermogen van de omvormer gegeven in het signaal 04.06 CONV NOM POWER). **Voorbeeld 2:** Wanneer parameter 24.03 Q POWER REF2 SEL ingesteld is op kVAr, dan is de waarde 1000 van parameter 24.02 Q POWER REF2 gelijk aan de waarde van parameter 24.01 Q POWER REF berekend met de volgende vergelijking: 100 · (1000 kVAr gedeeld door het nominale vermogen van de omvormer in kVAr)%. **Voorbeeld 3:** Wanneer parameter 24.03 Q POWER REF2 SEL ingesteld is op PHI, dan is de waarde 3000 van parameter 24.02 Q POWER REF2 ongeveer gelijk aan de waarde van parameter 24.01 Q POWER REF berekend met de volgende vergelijking: \[
\cos(30°) = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}}
\]
Positieve referentie 30° betekent capacitive belasting
Negatieve referentie 30° betekent inductive belasting
\(P = \text{waarde van signaal 01.09 POWER}\)
De waarden van parameter 24.03 worden geconverteerd naar graden door het applicatieprogramma van de ingangszijde van de omvormer: -3000...30000° = -30°...30°. De waarde -10000/10000 is gelijk aan -30°/30°, daar het bereik beperkt is tot -10000...10000

<table>
<thead>
<tr>
<th>Referentiewaarde.</th>
<th>Zie par.beschrijving</th>
</tr>
</thead>
</table>

| 95.07 | LCU DC REF | Definieert de DC-spanningsreferentie van de tussenkring voor de ingangszijde van de omvormer (d.w.z. IGBT voedingsunit). Deze referentie is naar parameter 23.01 DC VOLT REF van de ingangszijde van de omvormer geschreven. Zie voor meer informatie IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (Engels)]. |

<table>
<thead>
<tr>
<th>0...1100 V</th>
<th>Spanning</th>
<th>1 = 1 V</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>95.08</th>
<th>LCU PAR1 SEL</th>
<th>Selecteert het adres van de ingangszijde omvormer waarvan het feitelijke signaal 09.12 LCU ACT SIGNAL1 gelezen wordt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...9999</td>
<td>Parameter-index van de ingangszijde omvormer Standaardwaarde 106 = ingangszijde omvormer parameter 01.06 LINE CURRENT. Zie voor meer informatie IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (Engels)].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>95.09</th>
<th>LCU PAR2 SEL</th>
<th>Selecteert het adres van de ingangszijde omvormer waarvan het feitelijke signaal 09.13 LCU ACT SIGNAL1 gelezen wordt.</th>
</tr>
</thead>
</table>
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…9999</td>
<td></td>
<td>Parameter-index van de ingangszijde omvormer. Standaardwaarde 110 = ingangszijde omvormer parameter 01.10 DC VOLTAGE. Zie voor meer informatie IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (Engels)].</td>
<td>0…9999</td>
</tr>
<tr>
<td>95.10</td>
<td>TEMP INV AMBIENT</td>
<td>Definieert de omgevingstemperatuur voor de Uitgebreide controlefunctie van de omvormertemperatuur. Zie Uitgebreide monitoring van de omvormertemperatuur voor ACS800, frames R7 en R8 op pagina 70. Opmerking: Als de omgevingstemperatuur 40°C overschreidt, vermindert de belasingscapaciteit van de omvormer. Zie de derating instructies in de betreffende hardware handleiding.</td>
<td></td>
</tr>
<tr>
<td>20…50°C</td>
<td></td>
<td>Temperatuur</td>
<td>10 = 1°C</td>
</tr>
<tr>
<td>95.11</td>
<td>SUPPLY CTRL MODE</td>
<td>Activeert/deactiveert de besturing en data transfer van de ingangszijde van de omvormerunit (LSU) door inverter unit (INU). De parameter 98.02 COMM.MODULE in LSU moet de waarde INU COM LIM hebben.</td>
<td></td>
</tr>
<tr>
<td>GEEN</td>
<td></td>
<td>Besturing van de ingangszijde omvormer gedeactiveerd.</td>
<td>0</td>
</tr>
<tr>
<td>LINE CONV</td>
<td></td>
<td>Beperkte besturing vanaf DDCS kanaal CH1 van de inverter RMIO-kaart.</td>
<td>65535</td>
</tr>
</tbody>
</table>

RMIO-kaart van inverter

Dataset 121 (CH1)
- RMIO 95.09 LCU PAR2 SEL
- 95.08 LCU PAR1 SEL

Dataset 122 (CH1)
- 95.12 LCU WERK SIGN1
- 95.13 LCU WERK SIGN2

Dataset 123 (CH1)
- 95.05 LCU PART1 SEL
- 95.06 LCU DC REF

RMIO-kaart aan ingangszijde omvormer

Dataset 121 (CH0)
- RMIO 95.07 LCU DC REF

Dataset 122 (CH0)
- 95.12 LCU WERK SIGN1
- 95.13 LCU WERK SIGN2

Dataset 123 (CH0)
- 95.05 LCU PART1 SEL

98.02 COMM. MODULE = INVERTER
- MCW (vast)
- Q-REF (vast)
- DC-REF (vast)

24.02 24.03 Q POWER REF2 SEL
- DC VOLT REF
- PARAM 24.01
 - PARAM 23.01
 - PARAM 20.02
 - PARAM 19.01

Dataset 123 (CH1)

11.02 Q REF SELECT
- PARAM 24.01
 - PARAM 23.01
 - PARAM 20.02
 - PARAM 19.01

95.12 LCU RUN PTR
Selectie van startopdracht voor ingangszijde omvormer. Wanneer 95.11 SUPPLY CTRL MODE ingesteld is op LINE CONV, kan het starten van modulatie vrijelijk toegewezen worden aan een parameter of signaal door gebruik van een bit pointer. **Opmerking:** Deze parameter is alleen beschikbaar in de AS7R firmware-versie.

-255.255.31…+255.255.31 / C.-32768…C.32767
Parameterindex of een constante waarde:
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>EXTERNAL AO</td>
<td>Selectie en verwerking van het uitgangssignaal voor de analoge uitbreidingsmodule (optioneel). De parameters zijn alleen zichtbaar wanneer de module is geïnstalleerd en is geactiveerd met parameter 98.06.</td>
<td></td>
</tr>
<tr>
<td>96.01</td>
<td>EXT AO1</td>
<td>Selecteert het signaal aangesloten op analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Zie parameter 15.01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PROCES DATA</td>
<td>Zie parameter 15.01.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOERENTAL</td>
<td>Zie parameter 15.01.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FREQUENTIE</td>
<td>Zie parameter 15.01.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STROOM</td>
<td>Zie parameter 15.01.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>KOPPEL</td>
<td>Zie parameter 15.01.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>VERMOGEN</td>
<td>Zie parameter 15.01.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DC BUS SPANN</td>
<td>Zie parameter 15.01.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>UITG. SPANN</td>
<td>Zie parameter 15.01.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>APPL. UITG</td>
<td>Zie parameter 15.01.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>REFERENTIE</td>
<td>Zie parameter 15.01.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>REGELAFW</td>
<td>Zie parameter 15.01.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>WERKWAARDE 1</td>
<td>Zie parameter 15.01.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>WERKWAARDE 2</td>
<td>Zie parameter 15.01.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>COM.REF4</td>
<td>Zie parameter 15.01.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>PARAM 96.11</td>
<td>Bron geselecteerd door parameter 96.11.</td>
<td>16</td>
</tr>
<tr>
<td>96.02</td>
<td>INVERT EXT AO1</td>
<td>ACTIVEert de inversie van analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>Actief. Het analoog signaal heeft een minimumwaarde wanneer het aangegeven omvormersignaal een maximumwaarde heeft, en omgekeerd.</td>
<td>65535</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.03</td>
<td>MINIMUM EXT AO1</td>
<td>Definieert de minimumwaarde voor analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opmerking: De instelling 10 mA of 12 mA stelt in werkelijkheid niet het AO1-minimum in maar verbindt 10/12 mA met de actuele-gegevenswaarde nul.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voorbeeld: Het motortoerental wordt gelezen via de analoge uitgang.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Het nominale motortoerental is 1000 rpm (parameter 99.08).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 96.02 is NO.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 96.05 is 100%.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onderstaande afbeelding geeft de analoge uitgangswaarde als functie van het toerental.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.04</td>
<td>FILTER EXT AO1</td>
<td>Definieert de filtertijdconstante voor analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule. Zie parameter 15.04.</td>
<td></td>
</tr>
<tr>
<td>96.05</td>
<td>SCHAL EXT AO1</td>
<td>Definieert de schaalfactor voor analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule. Zie parameter 15.05.</td>
<td></td>
</tr>
<tr>
<td>96.06</td>
<td>EXT AO2</td>
<td>Selecteert het signaal aangesloten op analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.03</td>
<td>MINIMUM EXT AO1</td>
<td>Definieert de minimumwaarde voor analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule.</td>
<td></td>
</tr>
<tr>
<td>96.04</td>
<td>FILTER EXT AO1</td>
<td>Definieert de filtertijdconstante voor analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule. Zie parameter 15.04.</td>
<td></td>
</tr>
<tr>
<td>96.05</td>
<td>SCHAL EXT AO1</td>
<td>Definieert de schaalfactor voor analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule. Zie parameter 15.05.</td>
<td></td>
</tr>
<tr>
<td>96.06</td>
<td>EXT AO2</td>
<td>Selecteert het signaal aangesloten op analoge uitgang AO1 van de analoge I/O-uitbreidingsmodule.</td>
<td></td>
</tr>
</tbody>
</table>
96.07 INVERT EXT AO2

Activeert de inversie van analoog uitgang AO2 van de analoge I/O-uitbreidingsmodule. Het analoog signaal heeft een minimumwaarde wanneer het aangegeven omvormersignaal een maximumwaarde heeft, en omgekeerd.

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>0</td>
</tr>
<tr>
<td>JA</td>
<td>Actief</td>
<td>65535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>MINIMUM EXT AO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mA</td>
<td>0 mA</td>
</tr>
<tr>
<td>4 mA</td>
<td>4 mA</td>
</tr>
<tr>
<td>10 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>12 mA</td>
<td>12 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>FILTER EXT AO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 s</td>
<td>0,00 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>SCHAAAL EXT AO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 … 1000%</td>
<td>Schaalfactor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>EXT AO1 PTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>EXT AO2 PTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Parameterindex of een constante waarde. Zie parameter 10.04 voor informatie over het verschil.</td>
</tr>
</tbody>
</table>

98 OPTIEMODULES

Activering van de optiemodules. De parameterinstellingen blijven ongewijzigd, ook al wordt van applicatiemacro gewisseld (parameter 99.02).

<table>
<thead>
<tr>
<th>Index</th>
<th>ENCODER MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTAC</td>
<td>Communicatie actief. Moduletype: NTAC-module. Aansluitinterface: DDCS-optische-vezelverbinding. Opmerking: Module-knooppuntnummer moet worden ingesteld op 16. Voor aanwijzingen, zie de NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Startup Guide [3AFY58919730 (Engels)].</td>
</tr>
</tbody>
</table>

98.01 ENCODER MODULE

Activeert de communicatie naar de optionele pulsgevermodule. Zie ook parametertype **50 ENCODER MODULE**.

<table>
<thead>
<tr>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td>1</td>
</tr>
<tr>
<td>RTAC-SLOT1</td>
<td>Communicatie actief. Moduletype: RTAC. Aansluitinterface: Optieslot 1 van de omvormer.</td>
<td>2</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>RTAC-SLOT2</td>
<td>Communicatie actief. Modulementype: RTAC. Aansluitinterface: Optieslot 2 van de omvormer.</td>
</tr>
<tr>
<td></td>
<td>RRIA-SLOT1</td>
<td>Communicatie actief. Modulementype: RRIA. Aansluitinterface: optieslot 1 van de omvormer.</td>
</tr>
<tr>
<td></td>
<td>RRIA-SLOT2</td>
<td>Communicatie actief. Modulementype: RRIA. Aansluitinterface: optieslot 2 van de omvormer.</td>
</tr>
<tr>
<td></td>
<td>RTAC03-SLOT1</td>
<td>Communicatie actief. Modulementype: RTAC-03. Aansluitinterface: Optieslot 1 van de omvormer.</td>
</tr>
<tr>
<td>98.02</td>
<td>COMM. MODULE LINK</td>
<td>Activeert de externe seriële communicatie en kiest de interface. Zie het hoofdstuk Besturing via een veldbus.</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>Geen communicatie</td>
</tr>
<tr>
<td></td>
<td>FIELDBUS</td>
<td>De omvormer communiceert via een Rxxx type veldbusadapter in optieslot 1 of via een Nxxx type veldbusadapter aangesloten op kanaal CH0 van de RMIO-kaart. Zie ook parametergroep 51 COMM MOD DATA.</td>
</tr>
<tr>
<td></td>
<td>ADVANT</td>
<td>De omvormer communiceert via een ABB Advant OCS-systeem via CH0 op de RDCO-kaart (optioneel). Zie ook parametergroep 70 DDCS BESTURING.</td>
</tr>
<tr>
<td></td>
<td>STD MODBUS</td>
<td>De omvormer communiceert met een Modbusregeling via de Modbusadapter-module (RMBA) in optieslot 1 van de omvormer. Zie ook parameter 52 STANDAARD MODBUS.</td>
</tr>
<tr>
<td></td>
<td>CUSTOMISED</td>
<td>De omvormer communiceert via een door de klant bepaalde verbinding. De stuursignaalbronnen worden bepaald door parameter 90.04 en 90.05.</td>
</tr>
<tr>
<td>98.03</td>
<td>DI/O EXT MODULE 1</td>
<td>Activeert de communicatie naar digitale I/O-uitbreidingsmodule 1 (optioneel) en bepaalt het type en de aansluitinterface van de module. Module-ingangen: zie parameter 98.09 voor het gebruik van de ingangen in het applicatieprogramma van de omvormer. Module-uitgangen: zie parameter 14.10 en 14.11 voor de keuze van de omvormerstatussen aangegeven via de relaisuitgangen.</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDIO</td>
<td>Communicatie actief. Moduletype: NDIO-module. Aansluitinterface: DDCS-optische vezelverbinding. Opmerking: Module-knooppuntnummer moet worden ingesteld op 2. Voor aanwijzingen, zie de NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (Engels)].</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>RDIO-SLOT1</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optieslot 1 van de omvormer.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RDIO-SLOT2</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optieslot 2 van de omvormer.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RDIO-DDCS</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optionele I/O-module-adapter (AIMA) die via een DDCS-optische vezelverbinding met de omvormer communiceert.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NDIO</td>
<td>Communicatie actief. Moduletype: NDIO-module. Aansluitinterface: DDCS-optische vezelverbinding. Opmerking: Module-knooppuntnummer moet worden ingesteld op 3. Voor aanwijzingen, zie de NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (Engels)].</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>RDIO-SLOT1</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optieslot 1 van de omvormer.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RDIO-SLOT2</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optieslot 2 van de omvormer.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RDIO-DDCS</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optionele I/O-module-adapter (AIMA) die via een DDCS-optische vezelverbinding met de omvormer communiceert.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NDIO</td>
<td>Communicatie actief. Moduletype: NDIO-module. Aansluitinterface: DDCS-optische vezelverbinding. Opmerking: Module-knooppuntnummer moet worden ingesteld op 4. Voor aanwijzingen, zie de NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (Engels)].</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NEE</td>
<td>Niet actief</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>RDIO-SLOT1</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optieslot 1 van de omvormer.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RDIO-SLOT2</td>
<td>Communicatie actief. Moduletype: RDIO. Aansluitinterface: Optieslot 2 van de omvormer.</td>
<td>4</td>
</tr>
</tbody>
</table>
| 98.06 | EXT AI/O MODULE | Activeert de communicatie naar de analoge I/O-uitbreidingsmodule (optioneel) en bepaalt het type en de aansluitinterface van de module. Module-ingangen:
- Waarden AI5 en AI6 in het applicatieprogramma van de omvormer zijn aangesloten op module-ingangen 1 en 2.
- Zie parameter 98.13 en 98.14 voor definities van het signaaltipe.
Module-uitgangen:
- Zie parameter 96.01 en 96.06 voor de keuze van de omvormerstatussen aangegeven via module-uitgangen 1 en 2. | |
<p>| | NAIO | Communicatie actief. Moduletype: NAIO-module. Aansluitinterface: DDCS-optische-vezelverbinding. Opmerking: Module-knooppuntnummer moet worden ingesteld op 5. Voor aanwijzingen, zie de NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (Engels)]. | 1 |
| | NEE | Communicatie niet actief | 2 |
| | RAIO-SLOT1 | Communicatie actief. Moduletype: RAIO. Aansluitinterface: Optieslot 1 van de omvormer. | 3 |
| | RAIO-SLOT2 | Communicatie actief. Moduletype: RAIO. Aansluitinterface: Optieslot 2 van de omvormer. | 4 |
| 98.07 | COMM PROFIEL | Definieert het profiel waarop de communicatie met de veldbus of met een andere omvormer is gebaseerd. Alleen zichtbaar als de veldbuscommunicatie is geactiveerd met parameter 98.02. | |
| | ABB DRIVES | ABB Drives-profiel | 1 |
| | UNIVERSEEL | Universeel omvormerprofiel. Doorgaans gebruikt bij veldbusmodules met typecodering Rxxy (geïnstalleerd in het optieslot van de omvormer). | 2 |
| | CSA 2.8/3.0 | Communicatieprofiel gebruikt door applicatieprogramma, versie 2.8 en 3.0. | 3 |
| 98.09 | DI/O EXT1 DI FUNC | Definieert de naamgeving van de ingangen van digitale I/O-uitbreidingsmodule 25,40 mm the applicatieprogramma van de omvormer. Zie parameter 98.03. | |
| | DI7,8 | DI1 en DI2 van de module breiden het aantal ingangen uit. De module-ingangen worden DI7 en DI8 genoemd. | 1 |
| | REPL DI1,2 | DI1 en DI2 van de module vervangen de standaardingangen DI1 en DI2. De ingangen worden DI1 en DI2 genoemd. | 2 |
| | DI7,8,9 | DI1, DI2 en DI3 van de module breiden het aantal ingangen uit. De module-ingangen worden DI7, DI8 en DI9 genoemd. | 3 |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPL DI1,2,3</td>
<td>DI1, DI2 en DI3 van de module vervangen de standaardingangen DI1, DI2 en DI3. De ingangen worden DI1, DI2 en DI3 genoemd.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>98.10</td>
<td>DI/O EXT2 DI FUNC</td>
<td>Definieert de naamgeving van de ingangen van digitale I/O-uitbreidingsmodule 2 in het applicatieprogramma van de omvormer. Zie parameter 98.04.</td>
<td></td>
</tr>
<tr>
<td>DI9,10</td>
<td>DI1 en DI2 van de module breiden het aantal ingangen uit. De module-ingangen worden DI9 en DI10 genoemd.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>REPL DI3,4</td>
<td>DI1 en DI2 van de module vervangen de standaardingangen DI3 en DI4. De ingangen worden DI3 en DI4 genoemd.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI10,11,12</td>
<td>DI1, DI2 en DI3 van de module breiden het aantal ingangen uit. De module-ingangen worden DI10, DI11 en DI12 genoemd.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>REPL DI4,5,6</td>
<td>DI1, DI2 en DI3 van de module vervangen de standaardingangen DI1, DI2 en DI3. De ingangen worden DI4, DI5 en DI6 genoemd.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>98.11</td>
<td>DI/O EXT3 DI FUNC</td>
<td>Bepaalt de naamgeving van de ingangen van digitale I/O-uitbreidingsmodule 3 in het applicatieprogramma van de omvormer. Zie parameter 98.05.</td>
<td></td>
</tr>
<tr>
<td>DI11,12</td>
<td>DI1 en DI2 van de module breiden het aantal ingangen uit. De module-ingangen worden DI11 en DI12 genoemd.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>REPL DI5,6</td>
<td>DI1 en DI2 van de module vervangen de standaardingangen DI5 en DI6. De ingangen worden DI5 en DI6 genoemd.</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Actuele signalen en parameters

AI/O MOTOR TEMP

Actueel signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.12</td>
<td>AI/O MOTOR TEMP</td>
<td>Actieve communicatie naar de analoge I/O-uitbreidingsmodule en reserveert de module voor gebruik door de meetfunctie voor motortemperatuur. De parameter bepaalt ook het type en de aansluitinterface van de module. Voor aanvullende informatie over de temperatuurmeetfunctie, zie parametergroep 35 MOT TEMP METING en de sectie Meting van de motortemperatuur via de analoge I/O-uitbreiding op pagina 79. Het gebruik van de analoge ingangen (AI) en uitgangen (AO) van de module wordt in de onderstaande tabel aangegeven.</td>
<td></td>
</tr>
</tbody>
</table>

Meting van de temperatuur van motor 1

- **AO1**: Voedt een constante stroom naar de temperatuursensor van motor 1. De stroomwaarde is afhankelijk van de instelling van parameter 35.01:
 - AO1 is 9,1 mA met de selectie 1xPT100
 - AO1 is 1,6 mA met de selectie 1...3 PTC
- **AI1**: Meet de spanning over de temperatuursensor van motor 1.

Meting van de temperatuur van motor 2

- **AO2**: Voedt een constante stroom naar de temperatuursensor van motor 2. De stroomwaarde is afhankelijk van de instelling van parameter 35.04:
 - AO2 is 9,1 mA met de selectie 1xPT100
 - AO2 is 1,6 mA met de selectie 1...3 PTC
- **AI2**: Meet de spanning over de temperatuursensor van motor 2.

Zorg, voordat de omvormerparameters worden ingesteld, dat de instellingen van de modulehardware geschikt zijn voor meting van de motortemperatuur:
1. Het module-knooppuntnummer is 9.
2. De gekozen typen ingangssignaal zijn als volgt:
 - voor één Pt 100-sensormeting, bereik instellen op 0 ... 2 V.
 - voor 2 tot 3 Pt 100-sensoren of een tot drie PTC-sensoren, bereik instellen op 0 ... 10 V.
3. De geselecteerde bedrijfsmodus is unipolar.

NAIO

Opmerking: Modulehardware instellen zoals hierboven beschreven. Voor instructies, zie de *NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide* [3AFY58919730 (Engels)].

NEE

Niet actief

RAIO-SLOT1

Opmerking: Modulehardware instellen zoals hierboven beschreven. Geen knooppuntnummer vereist. Voor aanwijzingen, zie de *RAIO Module User’s Manual* [3AFE64484567 (Engels)].

RAIO-SLOT2

Opmerking: Modulehardware instellen zoals hierboven beschreven. Geen knooppuntnummer vereist. Voor aanwijzingen, zie de *RAIO Module User’s Manual* [3AFE64484567 (Engels)].
Actuele signalen en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.13</td>
<td>A/I EXT AI1 FUNC</td>
<td>Bepaalt het signaaltype voor ingang 1 van de analoge I/O-uitbreidingsmodule (AI5 in het applicatieprogramma van de omvormer). De instelling moet overeenkomen met het signaal aangesloten op de module. Opmerking: De communicatie moet worden geactiveerd met parameter 98.06.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIPOLAR AI5</td>
<td>Unipolair</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BIPOLAR AI5</td>
<td>Bipolair</td>
<td>2</td>
</tr>
<tr>
<td>98.14</td>
<td>A/I EXT AI2 FUNC</td>
<td>Definieert het signaaltype voor ingang 2 van de analoge I/O-uitbreidingsmodule (AI6 in het applicatieprogramma van de omvormer). De instelling moet overeenkomen met het signaal aangesloten op de module. Opmerking: De communicatie moet worden geactiveerd met parameter 98.06.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIPOLAR AI6</td>
<td>Unipolair</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BIPOLAR AI6</td>
<td>Bipolair</td>
<td>2</td>
</tr>
<tr>
<td>98.16</td>
<td>SIN FILT SUPERV</td>
<td>Activeert de communicatie naar de digitale I/O-uitbreidingsmodule en reserveert de module voor gebruik door de meetfunctie voor sinusfilter-temperatuur. Parameter is zichtbaar als parameter 95.04 ingesteld is op SIN of EX&SIN. Parameterwaarde wordt automatisch op NO gesteld wanneer de waarde van parameter 95.04 veranderd wordt. Opmerking: Deze parameter wordt alleen bij speciale toepassingen gebruikt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NDIO</td>
<td>Moduletype: NDIO-module. Aansluitinterface: DDCS-optische-vezelverbinding. Opmerking: Module-knooppuntnummer moet worden ingesteld op 8. Voor aanwijzingen, zie de NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Bewaking uitgeschakeld.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>RDIO-SLOT1</td>
<td>Moduletype: RDIO. Aansluitinterface: Optieslot 1 van de omvormer.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RDIO-SLOT2</td>
<td>Moduletype: RDIO. Aansluitinterface: Optieslot 2 van de omvormer.</td>
<td>4</td>
</tr>
</tbody>
</table>

99 OPSTARTGEGEVENS

Taalselectie. Definitie van de motor set-up gegevens.

<table>
<thead>
<tr>
<th>99.01</th>
<th>TAAL</th>
<th>Selecteert de weergavetaal.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGLISH</td>
<td>Brits Engels</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENGLISH(AM)</td>
<td>Amerikaans Engels. Wanneer geselecteerd, wordt de vermogenenheid HP in plaats van kW gebruikt.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DEUTSCH</td>
<td>Duits</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ITALIANO</td>
<td>Italiaans</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ESPANOL</td>
<td>Spaans</td>
<td>4</td>
</tr>
</tbody>
</table>

Actuele signalen en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Omschrijving</th>
<th>FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.02</td>
<td>APPLICATIE MACRO</td>
<td>Kiest de applicatiemacro. Zie hoofdstuk Applicatiemacro’s voor aanvullende informatie.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Opmerking: Als u de standaardparameterwaarden van een macro wijzigt, zijn de nieuwe waarden onmiddellijk geldig en blijven geldig bij in- en uitschakelen van de omvormer. Er is echter nog een back-up van de standaardparameter-instellingen (fabrieksinstellingen) van elke standaardmacro beschikbaar. Zie parameter 99.03.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FABRIEK</td>
<td>Fabrieksmacro voor basistoepassingen</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HAND/AUTO</td>
<td>Er zijn twee besturingen op de omvormer aangesloten:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- apparaat 1 communiceert via de interface bepaalt door externe besturingslocatie EXT1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- apparaat 2 communiceert via de interface bepaalt door externe besturingslocatie EXT2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- EXT1 of EXT2 zijn niet tegelijk actief. Schakelen via een digitale ingang.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PID-REGELING</td>
<td>PID-regeling. Voor toepassingen waarbij de omvormer een proceswaarde stuurt. Bijvoorbeeld drukregeling als de omvormer een aanjaagpomp aandrijft. De gemeten druk en de drukreferentie zijn aangesloten op de omvormer. Zie de onderdelen Proces PID regeling op pagina 74 en Slaapfunctie van de PID-regeling op pagina 75.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KOPPELREGEL</td>
<td>Macro voor koppelregeling</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>VOLGORDE BST</td>
<td>Macro voor volgordebesturing. Voor toepassingen die frequent een vooraf ingesteld toerentalpatroon doorlopen (constante toerentallen en acceleratie-deceleratiehellingen).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>G1 SCHRIJVEN</td>
<td>Gebruikersmacro 1 geladen voor gebruik. Controleer vóór het laden of de opgeslagen parameterinstellingen en het motormodel geschikt zijn voor de toepassing.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>G1 LEZEN</td>
<td>Opslaan Gebruikersmacro 1. Slaat de huidige parameterinstellingen en het motormodel op. Opmerking: Er zijn parameters die niet in de macro’s zijn opgenomen. Zie parameter 99.03.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>G1 SCHRIJVEN</td>
<td>Gebruikersmacro 2 geladen voor gebruik. Controleer vóór het laden of de opgeslagen parameterinstellingen en het motormodel geschikt zijn voor de toepassing.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>G1 LEZEN</td>
<td>Opslaan Gebruikersmacro 2. Slaat de huidige parameterinstellingen en het motormodel op. Opmerking: Er zijn parameters die niet in de macro’s zijn opgenomen. Zie parameter 99.03.</td>
<td>9</td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>99.03</td>
<td>HERSTEL MACRO</td>
<td>Herstelt de oorspronkelijke instellingen van de actieve applicatiemacro (99.02). - Als een standaardmacro (FABRIEK, ..., volgorde besturing) actief is, worden de parameterwaarden hersteld naar de standaardinstellingen (fabrieksinstellingen). Uitzonderingen: de parameterinstellingen in parameter-groep 99 blijven ongewijzigd. Het motormodel blijft ongewijzigd. - Als gebruikersmacro 1 of 2 actief is, worden de parameterwaarden hersteld naar de laatst opgeslagen waarden. Daarnaast wordt het laatst opgeslagen motormodel hersteld. Uitzonderingen: de instellingen van parameter 16.05 en 99.02 blijven ongewijzigd. Opmerking: Bij wisseling van macro worden de parameterinstellingen en het motorvolgens dezelfde regels hersteld.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEE</td>
<td>Geen actie</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JA</td>
<td>Herstel</td>
<td>65535</td>
</tr>
<tr>
<td>99.04</td>
<td>MOTOR CTRL MODE</td>
<td>Selecteert de motorbesturingsmodus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTC</td>
<td>De modus Direct Torque Control is geschikt voor de meeste toepassingen. 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCALAR</td>
<td>Scalar-besturing is geschikt voor speciale gevallen waarin DTC niet kan worden toegepast. Scalar-besturing wordt aanbevolen: - voor omvormers aangesloten op een variabel aantal motoren - wanneer de nominale motorstroom minder is dan 1/6 van de nominale uitgangsstroom van de omvormer (omzetter) - wanneer de omvormer voor testdoeleinden zonder aangesloten motor wordt gebruikt. Opmerking: De uitmuntende nauwkeurigheid van DTC-motorbesturing kan niet worden bereikt met scalar-besturing. De verschillen tussen DTC- en scalar-besturing worden in deze handleiding op de relevante plaatsen in de lijst van parameters aangegeven. Er zijn een aantal standaardfuncties die zijn uitgeschakeld bij scalar-besturing: Motoridentificatierun (groep 99 OPSTARTGEAVOENS), Toerentallimieten (groep 20 LIMIETEN), Koppellimiet (groep 20 LIMIETEN), DC Houd (groep 21 START/STOP), DC-magnetisering (groep 21 START/STOP), Afstemmen toerentalregelaar (groep 23 TOERENREGELAAR), Koppelregeling (groep 24 TORQUE CTRL), Fluxoptimalisering (groep 26 MOTORBESTURING), Flux remmen (groep 26 MOTORBESTURING), Onderbelastingsfunctie (groep 30 FOUT FUNCTIES), Beveiliging tegen uitval van motorfasen (groep 30 FOUT FUNCTIES), Beveiliging tegen motorstilstand (groep 30 FOUT FUNCTIES). Zie de sectie Scalarbesturing op pagina 65 voor meer informatie.</td>
<td>65535</td>
</tr>
<tr>
<td>99.05</td>
<td>M NOM SPANNING</td>
<td>Bepaalt de nominale motorspanning. Moet gelijk zijn aan de waarde op het motortypeplaatje.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2 ... 2 · UN</td>
<td>Spanning. Het toegestane bereik is 1/2 ... 2 · U_N van de omvormer. Opmerking: De spanning op de motor-isolatie is altijd afhankelijk van de voedingsspanning van de omvormer. Dit is ook van toepassing in het geval dat de nominale motorspanning lager is dan de nominale spanning van de omvormer en de voeding van de omvormer. 1 = 1 V</td>
<td></td>
</tr>
<tr>
<td>99.06</td>
<td>M NOM STROOM</td>
<td>Bepaalt de nominale motorstroom. Moet gelijk zijn aan de waarde op het motortypeplaatje. Geef de totale stroom van de motoren op als meerdere motoren met de omzetter zijn verbonden. Opmerking: Voor het correct draaien van de motor mag de magnetisieringsstroom van de motor niet meer bedragen dan 90 procent van de nominale stroom van de omzetter.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>0 … 2 · I_{2nd}</td>
<td>Toegestaan bereik: circa 1/6 · 2 · I_{2nd} van de ACS800 (parameter 99.04 = \textit{DTC}). Toegestaan bereik: circa 0 … 2 · I_{2nd} van de ACS800 (parameter 99.04 = \textit{SCALAR}).</td>
<td>1 = 0.1 A</td>
<td></td>
</tr>
<tr>
<td>99.07</td>
<td>M NOM FREQ</td>
<td>Definieert de nominale motorfrequentie.</td>
<td></td>
</tr>
<tr>
<td>8 … 300 Hz</td>
<td>Nominale frequentie (doorgaans 50 of 60 Hz)</td>
<td>800 … 30000</td>
<td></td>
</tr>
<tr>
<td>99.08</td>
<td>M NOM TOERENTAL</td>
<td>Definieert het nominale motortoerental. Moet gelijk zijn aan de waarde op het motortypeplaatje. Het synchrone motortoerental of een andere benaderde waarde is onvoldoende! Opmerking: Als de waarde van parameter 99.08 is gewijzigd, veranderen de toerentallimieten in parametergroep 20 \textit{LIMIETEN} ook automatisch.</td>
<td>1 … 18000</td>
</tr>
<tr>
<td>1 … 18000 rpm</td>
<td>Nominaal motortoerental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.09</td>
<td>M NOM VERMOCEN</td>
<td>Definieert het nominale motorvermogen. Moet gelijk zijn aan de waarde op de motortypeplaatje. Geef de totale stroom van de motoren op als meerdere motoren met de omzetter zijn verbonden.</td>
<td>0 … 90000</td>
</tr>
<tr>
<td>0 … 90000 kW</td>
<td>Nominaal motorvermogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.10</td>
<td>MOTOR IDENT. RUN</td>
<td>Selecteert het type motoridentificatie. Tijdens de identificatie, zal de omvormer de karakteristieken van de motor vaststellen voor een optimale motorbesturing. De motoridentificatieprocedure wordt beschreven in het hoofdstuk \textit{Opstarten en besturing via de I/O}. Opmerking: De identificatie (STANDARD of REDUCED) moet worden geselecteerd als: - het bedrijfs punt dicht bij nul toeren ligt, en/of - gedraaid wordt in een koppelbereik boven het nominale motorkoppel binnen een breed toerentalbereik, terwijl geen terugkoppeling van het gemeten toerental vereist is. Opmerking: De identificatie (STANDARD of REDUCED) kan niet worden uitgevoerd als parameter 99.04 = \textit{SCALAR}. Zie het onderdeel \textit{Motoridentificatie} op pagina 56.</td>
<td>1</td>
</tr>
<tr>
<td>ID MAGN</td>
<td>Geen identificatie. Het motormodel wordt berekend bij de eerste start door de motor gedurende 20 tot 60 s bij nul toeren te magnetiseren. Dit kan bij de meeste toepassingen worden geselecteerd.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>STANDAARD</td>
<td>Standaardidentificatie. Garandeert de hoogste nauwkeurigheid in de besturing. De identificatie duurt ongeveer een minuut. Opmerking: De motor moet losgekoppeld zijn van aangedreven apparatuur. Opmerking: Controleer de draaiarichting van de motor alvorens de identificatie te beginnen. De motor draait tijdens de identificatie vooruit. WAARSCHUWING! De motor zal draaien bij ongeveer 50…80% van het nominale toerental tijdens de identificatie. ZOR<br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>Omschrijving</td>
<td>FbEq</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>---</td>
<td>------</td>
</tr>
</tbody>
</table>
| | GEREDUCEERD | Gereduceerde identificatierun. Moet worden geselecteerd in plaats van de standaardidentificatie:
- als de mechanische verliezen hoger zijn dan 20% (d.w.z. de motor kan niet worden losgekoppeld van de aangedreven apparatuur)
- als fluxreductie niet is toegestaan terwijl de motor draait (d.w.z. in geval van een motor met een integrale rem gevoed vanaf de motorklemmen).
Opmerking: Controleer de draairichting van de motor alvorens de identificatie te beginnen. De motor draait tijdens de identificatie vooruit.
WAARSCHUWING! De motor zal draaien bij ongeveer 50...80% van het nominale toerental tijdens de identificatie. ZORG DAT HET VEILIG IS OM DE MOTOR TE LATEN DRAAIEN ALVORENS DE IDENTIFICATIERUN UIT TE VOEREN! | 3 |
| 99.11 | DEVICE NAAM | Definieert de naam van de omvormer of toepassing. De naam is zichtbaar op de display van het bedieningspaneel in de omvormerselektiemodus.
Opmerking: De naam kan alleen worden ingetypt met behulp van een computer van de omvormer. | |
Besturing via een veldbus

Overzicht

Dit hoofdstuk beschrijft hoe de omvormer kan worden gestuurd door externe apparatuur via een communicatienetwerk.

Systeemoverzicht

De omvormer kan worden aangesloten op een extern besturingssysteem – doorgaans een veldbus – via een adaptermodule. De omvormer kan ingesteld worden zodat hij alle besturingsinformatie ontvangt via de externe besturingsinterface, of de besturing kan verdeeld worden tussen de externe besturingsinterface en andere beschikbare bronnen, zoals bijvoorbeeld digitale en analoge ingangen. Het volgende schema toont de besturings-interfaces en I/O-aansluitingen van de omvormer.

Veldbus

Overig

apparaten

Veldbus

besturing

Slot 1 of 2

Veldbusadapter

Rxxx

Slot 1

RMBA-01 adapter

std. Modbus LINK

Slot 1 of 2

RDCO comm. module

CH1

(DDCS)

AIMA-01 I/O

adaptermodule

CH0

(DDCS)

Veldbusadapter

Nxxx

of

Rxxx

(*

Ofwel een Rxxx

ofwel

Nxxx, en een RMBA-01 adapter kunnen op de omvormer aangesloten

Besturingsinformatie (acyclisch)

Proces-I/O (cyclisch)

Datastroom

Controlwoord (CW)

Referenties

Statuswoord (SW)

Actuele gegevens

Parameter R/W verzoeken/antwoorden

(* Ofwel een Rxxx ofwel Nxxx, en een RMBA-01 adapter kunnen op de omvormer aangesloten)
Redundante veldbusbesturing

Het is mogelijk om twee veldbussen op de omvormer aan te sluiten met de volgende adapterconfiguratie:

• Type Rxxx veldbusadaptermodule (niet RMBA-01) is geïnstalleerd in omvormerslot 1.

• RMBA-01 Modbusadaptermodule is geïnstalleerd in omvormerslot 2.

De besturing (d.w.z. de hoofddataset met referentiegegevens, zie de sectie De veldbusbesturingsinterface op pagina 215) wordt geactiveerd door parameter 98.02 in te stellen op FIELDBUS of STD MODBUS.

In het geval dat er een communicatieprobleem is met de ene veldbus, kan de besturing overgeschakeld worden naar de andere veldbus. Het schakelen tussen de bussen kan gestuurd worden met bv. adaptieve programmering. Parameters en signalen kunnen door beide veldbussen gelezen worden, maar tegelijkertijd cyclisch schrijven naar dezelfde parameter is verboden.
Communicatie-instelling via een veldbusadaptermodule

Er zijn veldbusadapters voor verschillende communicatieprotocollen beschikbaar (bv. PROFIBUS® en Modbus®). Rxxx-types veldbusadaptermodules worden gemonteerd in uitbreidingsslots 1 van de omvormer. Nxxx-types veldbusadaptermodules worden aangesloten op kanaal CH0 van de RDCO-module.

Opmerking: Voor aanwijzingen voor het instellen van een RMBA-01-module, zie het onderdeel Besturing via de standaard Modbusverbinding op pagina 207.

Voordat de omvormer kan worden geconfigureerd voor veldbusbesturing moet de adaptermodule mechanisch en elektrisch worden geïnstalleerd volgens de aanwijzingen in de hardwarehandleiding van de omvormer en van de module.

In de volgende tabel is de lijst met parameters weergegeven die gedefinieerd moeten worden bij het opzetten van de communicatie via een veldbusadapter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mogelijke instellingen</th>
<th>Instelling voor veldbusbesturing</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIALISATIE VAN DE COMMUNICATIE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.02</td>
<td>NEE FIELD BUS ADVANT STAND. MODBUS CUSTOMISED</td>
<td>FIELD BUS</td>
<td>Initialiseert communicatie tussen de omvormer en de veldbusadaptermodule. Activeert de configuratieparameters (groep 51) van de module.</td>
</tr>
<tr>
<td></td>
<td>ABB DRIVES UNIVERSEEL CSA 2.8/3.0</td>
<td>ABB DRIVES</td>
<td>Keuze van het communicatieprofiel dat de omvormer gebruikt. Zie het onderdeel Communicatieprofielen op pagina 223.</td>
</tr>
</tbody>
</table>

| **CONFIGURATIE VAN DE ADAPTERMODULE** |
| 51.01 MODULETYPE | – | – | Geeft het type veldbusadaptermodule weer. |
| 51.02 (VELDBUS-PARAMETER 2) | Deze parameters zijn specifiek voor de adaptermodule. Voor aanvullende informatie, zie de modulehandleiding. Vergeet niet dat deze parameters niet noodzakelijk allemaal zichtbaar zijn. |
| 51.26 (VELDBUS-PARAMETER 26) |
| 51.27 FBA PAR REFRESH* | (0) DONE; (1) REFRESHING .. | – | Valideert eventueel gewijzigde parameterinstellingen van de adaptermoduleconfiguratie. Na verversing gaat de waarde automaties terug naar DONE. |
Nadat de moduleconfiguratieparameters in groep 51 zijn ingesteld, moeten de besturingsparameters van de omvormer (sectie Besturingsparameters omvormer op pagina 211) worden gecontroleerd en, waar nodig, aangepast.

De volgende keer dat de omvormer wordt aangeschakeld, of als parameter 51.27 wordt geactiveerd, zullen de nieuwe instellingen invloed hebben.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mogelijke instellingen</th>
<th>Instelling voor veldbusbesturing</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.28 FBA CPI FW REV*</td>
<td>xyz (binair gecodeerde decimaalwaarde)</td>
<td>–</td>
<td>Geeft de vereiste CPI-firmware revisie van de veldbusadapter weer zoals bepaald in het configuratiebestand dat in het geheugen van de omvormer is opgeslagen. De CPI firmware versie van de veldbusadapter (zie par. 51.32) dient dezelfde of een latere CPI versie te bevatten om compatibel te zijn. x = getal voor grote revisies; y = getal voor kleine revisies; z = correctiegetal. Voorbeeld: 107 = revisie 1.07.</td>
</tr>
<tr>
<td>51.29 FBA CONFIG ID*</td>
<td>xyz (binair gecodeerde decimaalwaarde)</td>
<td>–</td>
<td>Geeft de bestandsidentificatie van de configuratie van de veldbusadaptermodule weer die is opgeslagen in het geheugen van de omvormer. Deze informatie van het applicatieprogramma van de omvormer.</td>
</tr>
<tr>
<td>51.30 FBA CONFIG REV*</td>
<td>xyz (binair gecodeerde decimaalwaarde)</td>
<td>–</td>
<td>Geeft de revisie van het configuratiebestand van de veldbusadaptermodule weer die is opgeslagen in het geheugen van de omvormer. x = getal voor grote revisies; y = getal voor kleine revisies; z = correctiegetal. Voorbeeld: 1 = revisie 0.01.</td>
</tr>
<tr>
<td>51.31 FBA STATUS*</td>
<td>(0) IDLE (1) EXEC. INIT (2) TIME OUT (3) CONFIG ERROR (4) OFF-LINE (5) ON-LINE (6) RESET</td>
<td>–</td>
<td>Geeft de status van de adaptermodule weer. IDLE = Adapter is niet geconfigureerd. EXEC. INIT = Adapter initialiseert. TIME OUT = Communicatie tussen de adapter en de omvormer is onderbroken CONFIG ERROR = Fout in de adapterconfiguratie. De code voor een grote of kleine revisie van het CPI-programma in de omvormer is niet de revisie die de module vereist (zie par. 51.32) of het uploaden van de configuratiefile is meer dan vijf keer mislukt. OFF-LINE = Adapter is offline. ON-LINE = Adapter is online. RESET = Adapter voert een hardwarereset uit.</td>
</tr>
<tr>
<td>51.32 FBA CPI FW REV*</td>
<td>–</td>
<td>–</td>
<td>Geeft de CPI-programmarevisie van de module in slot 1 weer. x = getal voor grote revisies; y = getal voor kleine revisies; z = correctiegetal. Voorbeeld: 107 = revisie 1.07.</td>
</tr>
<tr>
<td>51.33 FBA APPL FW REV*</td>
<td>–</td>
<td>–</td>
<td>Geeft de revisie van het applicatieprogramma van de omvormer in slot 2 weer. x = getal voor grote revisies; y = getal voor kleine revisies; z = correctiegetal. Voorbeeld: 107 = revisie 1.07.</td>
</tr>
</tbody>
</table>

*Parameters 51.27 tot 51.33 zijn alleen zichtbaar als een veldbusadapter van het type Rxxx is geïnstalleerd.
Besturing via de standaard Modbusverbinding

Een RMBA-01 Modbusadapter geïnstalleerd in slot 1 of 2 van de omvormer vormt een interface, de zogenaamde standaard Modbusverbinding. De standaard Modbusverbinding kan worden gebruikt voor externe besturing van de omvormer via Modbusbesturing (uitsluitend RTU-protocol).

Voordat de omvormer kan worden geconfigureerd voor Modbusbesturing moet de adaptermodule mechanisch en elektrisch worden geïnstalleerd volgens de aanwijzingen in de hardwarehandleiding van de omvormer en van de module.

In de volgende tabel is de lijst met parameters weergegeven die gedefinieerd moeten worden bij het opzetten van de communicatie via de standaard Modbusverbinding.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mogelijke instellingen</th>
<th>Instelling voor besturing via standaard Modbusverbinding</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.02</td>
<td>NEE VELDBUS ADVANT STD MODBUS CUSTOMISED</td>
<td>STD MODBUS</td>
<td>Initialiseert de communicatie tussen de omvormer (standaard Modbusverbinding) en de Modbusbesturing. Activeert communicatieparameters in groep 52.</td>
</tr>
<tr>
<td>98.07</td>
<td>ABB DRIVES UNIVERSEEL CSA 2.8/3.0</td>
<td>ABB DRIVES</td>
<td>Keuze van het communicatieprofiel dat de omvormer gebruikt. Zie het onderdeel Communicatieprofielen op pagina 223.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mogelijke instellingen</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.01</td>
<td>1 tot 247</td>
<td>Specificeert het stationnummer van de omvormer op de standaard Modbusverbinding.</td>
</tr>
<tr>
<td>52.02</td>
<td>600 1200 2400 4800 9600 19200</td>
<td>Bepaalt de communicatiesnelheid van de standaard Modbusverbinding.</td>
</tr>
<tr>
<td>52.03</td>
<td>ODD EVEN NONE 1 STOPBIT NONE 2 STOPBIT</td>
<td>Keuze van de pariteitsinstelling van de standaard Modbusverbinding.</td>
</tr>
</tbody>
</table>

Nadat de moduleconfiguratieparameters in groep 52 zijn ingesteld, moeten de besturingsparameters van de omvormer (sectie *Besturingsparameters omvormer* op pagina 211) worden gecontroleerd en, waar nodig, aangepast.
Adresseren van de Modbus

In het geheugen van de Modbusbesturing worden het controlwoord, statuswoord, de referenties en de actuele gegevens als volgt ondergebracht:

<table>
<thead>
<tr>
<th>Gegevens van veldbusbesturing naar omvormer</th>
<th>Gegevens van omvormer naar veldbusbesturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adres</td>
<td>Inhoud</td>
</tr>
<tr>
<td>40001</td>
<td>Controlwoord</td>
</tr>
<tr>
<td>40002</td>
<td>Referentie 1</td>
</tr>
<tr>
<td>40003</td>
<td>Referentie 2</td>
</tr>
<tr>
<td>40007</td>
<td>Referentie 3</td>
</tr>
<tr>
<td>40008</td>
<td>Referentie 4</td>
</tr>
<tr>
<td>40009</td>
<td>Referentie 5</td>
</tr>
</tbody>
</table>

Aanvullende informatie over Modbuscommunicatie is te vinden op de website van Modicon: http://www.modicon.com.
Instellen van communicatie via Advant controller

De Advant controller wordt via de DDCS-verbinding aangesloten op kanaal CH0 van de RDCO-module.

- **AC 800M Advant Controller**

 DriveBus-verbinding: CI858 DriveBus Communication Interface vereist. Zie CI858 DriveBus Communication Interface User’s Manual, [3AFE 68237432 (Engels)].

 Optische ModuleBus-verbinding: TB811 (5 MBd) of TB810 (10 MBd) Optical ModuleBus Port Interface vereist. Zie het onderdeel *Optische ModuleBus-verbindingen* hieronder.

- **AC 80 Advant Controller**

 Optische ModuleBus-verbinding: TB811 (5 MBd) of TB810 (10 MBd) Optical ModuleBus Port Interface vereist. Zie het onderdeel *Optische ModuleBus-verbindingen* hieronder.

- **CI810A Fieldbus Communication Interface (FCI)**

 Optische ModuleBus-verbindingen

 TB811 (5 MBd) of TB810 (10 MBd) Optical ModuleBus Port Interface vereist.

 De TB811 Optical ModuleBus Port Interface is voorzien van 5 MBd optische onderdelen, terwijl de TB810 voorzien is van 10 MBd onderdelen. Alle optische onderdelen van een optische vezelverbinding moeten van hetzelfde type zijn, aangezien 5 MBd onderdelen niet compatibel zijn met 10 MBd onderdelen. De keuze tussen TB810 en TB811 is afhankelijk van de aangesloten apparatuur. Bij de RDCO Communication Option Module wordt de interface als volgt gekozen:

<table>
<thead>
<tr>
<th>Mogelijke ModuleBus-poort interface</th>
<th>DDCS Communicatie-optiemodule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RDCO-01</td>
</tr>
<tr>
<td>TB811</td>
<td></td>
</tr>
<tr>
<td>TB810</td>
<td>×</td>
</tr>
</tbody>
</table>

Als de branching unit NDBU-85/95 wordt gebruikt met CI810A, dan moet de TB810 Optical ModuleBus Port Interface gebruikt worden.
In de volgende tabel zijn de parameters gegeven die gedefinieerd moeten worden bij het instellen van de communicatie tussen de omvormer en de Advant controller.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mogelijke instellingen</th>
<th>Instelling voor besturing via CH0</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIALISATIE VAN DE COMMUNICATIE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.02</td>
<td>NEE VELDBUS ADVANT STD MODBUS CUSTOMISED</td>
<td>ADVANT</td>
<td>Initialiseert de communicatie tussen de omvormer (optische vezelkanaal CH0) en Advant controller. De transmissiesnelheid is 4 Mbit/s.</td>
</tr>
<tr>
<td>98.07</td>
<td>ABB DRIVES UNIVERSEEL CSA 2.8/3.0</td>
<td>ABB DRIVES</td>
<td>Keuze van het communicatieprofiel dat de omvormer gebruikt. Zie het onderdeel Communicatieprofielen op pagina 223.</td>
</tr>
</tbody>
</table>
| 70.01 | 0-254 | AC 800M ModuleBus \(\equiv 1..125 \)
AC 80 ModuleBus \(\equiv 17-125 \)
FCI (CI810A) \(\equiv 17-125 \) | Bepaalt het node adres voor DDCS kanaal CH0. |
| 70.04 | RING STER | | Keuze van de topologie van de kanaal CH0 verbinding. |

Nadat de parameters voor initialisatie van de communicatie zijn ingesteld, moeten de besturingsparameters van de omvormer (sectie Besturingsparameters omvormer op pagina 211) gecontroleerd en, waar nodig, aangepast worden.

In een Optical ModuleBus-aansluiting wordt het adres van kanaal 0 (parameter 70.01) als volgt berekend uit de waarde van de POSITION-terminal in het betreffende database-element (voor de AC 80, DRISTD):

1. Vermenigvuldig de honderdtallen van de waarde van POSITION met 16.
2. Voeg de tientallen en eenheden van de waarde van POSITION toe aan het resultaat.

Als de POSITION-terminal van het DRISTD database-element bijvoorbeeld de waarde 110 heeft (de tiende omvormer op de Optical ModuleBus-kring), dan moet parameter 70.01 worden ingesteld op \(16 \times 1 + 10 = 26 \).
Besturingsparameters omvormer

Nadat de veldbuscommunicatie is ingesteld, moeten de besturingsparameters van de omvormer, opgegeven in de tabel hieronder, worden gecontroleerd en, waar nodig, aangepast.

De kolom **Instelling voor veldbusbesturing** geeft de waarde die moet worden gebruikt als de veldbusinterface de gewenste bron of bestemming voor dat bepaalde signaal is. De kolom **Functie/informatie** bevat een beschrijving van de parameter.

De veldbussignaalroutes en de samenstelling van de berichten worden later besproken in de sectie *De veldbusbesturingsinterface* op pagina 215.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instelling voor veldbusbesturing</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEUZE BRON BESTURINGSCOMMANDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.01</td>
<td>COMM.CW</td>
<td>Activeert het controlwoord van de veldbus (behalve bit 11 van 03.01 Main Control Word) als EXT1 als de actieve besturingslocatie is gekozen. Zie ook par. 10.07.</td>
</tr>
<tr>
<td>10.02</td>
<td>COMM.CW</td>
<td>Activeert het controlwoord van de veldbus (behalve bit 11 van 03.01 Main Control Word) als EXT2 als de actieve besturingslocatie is gekozen.</td>
</tr>
<tr>
<td>10.03</td>
<td>VOORUIT ACHTERUIT of VERZOEK</td>
<td>Activeert regeling van de draairichting zoals gedefinieerd door parameter 10.01 en 10.02. De regeling van de draairichting wordt uiteengezet onder Referentiebeheer op pagina 217.</td>
</tr>
</tbody>
</table>
| 10.07 | 0 of 1 | Instelling op waarde 1 heft de instelling van par. 10.01 op, zodat het controlwoord van de veldbus (behalve bit 11 van 03.01 Main Control Word) is activeerd als EXT1 als de actieve besturingslocatie is gekozen.
Opmerking 1: Alleen zichtbaar wanneer het Generic Drive communicatieprofiel is gekozen (zie par. 98.07).
Opmerking 2: De instelling wordt niet opgeslagen in het permanente geheugen. |
| 10.08 | 0 of 1 | Instelling op waarde 1 heft de instelling van par. 11.03 op, zodat veldbusreferentie REF1 wordt gebruikt als EXT1 als de actieve besturingslocatie is gekozen.
Opmerking 1: Alleen zichtbaar wanneer het Generic Drive communicatieprofiel is gekozen (zie par. 98.07).
Opmerking 2: De instelling wordt niet opgeslagen in het permanente geheugen. |
| 11.02 | COMM.CW | Activeert EXT1/EXT2 keuze door veldbus controlwoord bit 11 EXT CTRL LOC. |
| 11.03 | COMM.REF1 FAST COMM COM.REF1+AI1 COM.REF1+AI5 COM.REF1*AI1 of COM.REF1*AI5 | Veldbusreferentie REF1 wordt gebruikt wanneer EXT1 is gekozen als besturingslocatie. Zie onder Referenties op pagina 216 voor informatie over mogelijke instellingen. |
Besturing via een veldbus

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instelling voor veldbusbesturing</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.06</td>
<td>COMM.REF2 FAST COMM COM.REF2+AI1 COM.REF2+AI5 COM.REF2AI1 of COM.REF2AI5</td>
<td>Veldbusreferentie REF2 wordt gebruikt wanneer EXT2 is gekozen als besturingslocatie. Zie onder Referenties op pagina 216 voor informatie over mogelijke instellingen.</td>
</tr>
</tbody>
</table>

KEUZE BRON UITGANGSSIGNAAL

14.01	COM.REF3	Activeert relaisuitgang RO1 besturing door veldbusreferentie REF3 bit 13.
14.02	COM.REF3	Activeert relaisuitgang RO2 besturing door veldbusreferentie REF3 bit 14.
14.03	COM.REF3	Activeert relaisuitgang RO3 besturing door veldbusreferentie REF3 bit 15.
15.01	COMM.REF4	Stuurt de inhoud van veldbusreferentie REF4 naar analoge uitgang AO1. **Schaal:** 20000 = 20 mA
15.06	COMM.REF5	Stuurt de inhoud van veldbusreferentie REF5 naar analoge uitgang AO2. **Schaal:** 20000 = 20 mA

STUURINGANGEN SYSTEEM

16.01	COMM.CW	Activeert besturing van het signaal Startvrijgave via bit 3 van veldbus Main Control Word 03.01. **Opmerking:** Moet ingesteld zijn op JA als het Generic Drive communicatieprofiel is gekozen (zie par.98.07).
16.04	COMM.CW	Activeert foutreset via bit 7 van veldbus 03.01 Main Control Word bit 7. **Opmerking:** Reset via het veldbus controlwoord (7-bit) wordt automatisch mogelijk gemaakt en is onafhankelijk van de instelling van parameter 16.04 als parameter 10.01 of 10.02 ingesteld is op COMM.CW.
16.07	GEDAAN; OPSLAAN	Slaat wijzigingen in parameterwaarden op (inclusief die gemaakt via veldbusbesturing) in het permanente geheugen.

FOUTFUNCTIES COMMUNICATIE

30.18	FOUT NEE CNST TOEREN 1 LAATSTE REF	Bepaalt de werking van de omvormer als de veldbuscommunicatie uitvalt. **Opmerking:** Detectie van de communicatie-uitval is gebaseerd op het controleren van de ontvangen hoofd- en auxdatasets met referentiegegevens (de bronnen waarvoor wordt gekozen met parameter 90.04 en 90.05).
30.19	0,1 … 60,0 s	Bepaalt de tijd tussen verlies van de hoofddataset met referentiegegevens en de werking gekozen via parameter 30.18.
30.20	ZERO LAST VALUE	Bepaalt de status waarin relaisuitgangen RO1 tot RO3 en analoge uitgangen AO1 en AO2 worden gelaten na verlies van de auxdataset met referentiegegevens.
30.21	0,0 … 60,0 s	Bepaalt de tijd tussen verlies van de auxdataset met referentiegegevens en de werking gekozen via parameter 30.18. **Opmerking:** Deze bewakingsfunctie wordt geïnactiveerd als parameters 90.01, 90.02 en 90.03 op 0 worden gesteld.

Besturing via een veldbus
DOELKEUZE VELDBUSREFERENTIE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instelling voor veldbusbesturing</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.01</td>
<td>0 … 8999</td>
<td>Bepaalt de omvormerparameter waarnaar de waarde van veldbusreferentie REF3 wordt weggeschreven. Formaat: xxxy, xx = parametergroep (10 tot en met 89), yy = parameterindex. Bv. 3001 = parameter 30.01.</td>
</tr>
<tr>
<td>90.02</td>
<td>0 … 8999</td>
<td>Definieert de omvormerparameter waarnaar de waarde van veldbusreferentie REF4 wordt weggeschreven. Formaat: zie parameter 90.01.</td>
</tr>
<tr>
<td>90.03</td>
<td>0 … 8999</td>
<td>Definieert de omvormerparameter waarnaar de waarde van veldbusreferentie REF5 wordt weggeschreven. Formaat: zie parameter 90.01.</td>
</tr>
<tr>
<td>90.04</td>
<td>1 (veldbusbesturing) of 81 (standaard Modbusbesturing)</td>
<td>Als 98.02 is ingesteld op CUSTOMISED, dan kiest deze parameter de bron van waaruit de omvormer de hoofddataset met referentiegegevens uitleest (het veldbuscontrolwoord, veldbusreferentie REF1 en veldbusreferentie REF2).</td>
</tr>
<tr>
<td>90.05</td>
<td>3 (Fieldbus Control) of 83 (Standard Modbus Control)</td>
<td>Als 98.02 is ingesteld op CUSTOMISED, dan kiest deze parameter de bron van waaruit de omvormer de auxdataset met referentiegegevens uitleest (veldbusreferenties REF3, REF4 en REF5).</td>
</tr>
</tbody>
</table>

KEUZE VAN ACTUELE GEGEVENS VOOR DE VELDBUS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instelling voor veldbusbesturing</th>
<th>Functie/informatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.01</td>
<td>302 (vast)</td>
<td>Het statuswoord wordt verzonden als het eerste woord van de hoofddataset met actuele gegevens.</td>
</tr>
<tr>
<td>92.02</td>
<td>0 … 9999</td>
<td>Keuze van het actuele gegeven of de parameterwaarde die moet worden verzonden als het tweede woord (WERKW1) van de hoofddataset met actuele gegevens. Formaat: (x)xxxy, waarbij (x)x = actuele gegevensgroep of parametergroep, yy = actueel gegeven of parameterindex. Bv. 103 = actueel gegeven 1.03 FREQUENTIE; 2202 = parameter 22.02 ACCELER Tijd 1. Opmerking: Als het Generic Drive communicatieprofiel actief is (par. 98.07 = GENERIC), ligt deze parameter vast op 102 (actueel gegeven 1.02 TOERENTAL – bij DTC-motorbesturing) of 103 (1.03 FREQUENTIE – bij Scalarbesturing).</td>
</tr>
<tr>
<td>92.03</td>
<td>0 … 9999</td>
<td>Keuze van het actuele gegeven of de parameterwaarde die moet worden verzonden als het derde woord (WERKW2) van de hoofddataset met actuele gegevens. Formaat: zie parameter 92.02.</td>
</tr>
<tr>
<td>92.04</td>
<td>0 … 9999</td>
<td>Keuze van het actuele gegeven of de parameterwaarde die moet worden verzonden als het eerste woord (WERKW3) van de auxdataset met actuele gegevens. Formaat: zie parameter 92.02.</td>
</tr>
<tr>
<td>92.05</td>
<td>0 … 9999</td>
<td>Keuze van het actuele gegeven of de parameterwaarde die moet worden verzonden als het tweede woord (WERKW4) van de auxdataset met actuele gegevens. Formaat: zie parameter 92.02.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Instelling voor veldbusbesturing</td>
<td>Functie/informatie</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>92.06</td>
<td>0 … 9999</td>
<td>Keuze van het actuele gegeven of de parameterwaarde die moet worden verzonden als het derde woord (WERKW5) van de auxdataset met actuele gegevens. Formaat: zie parameter 92.02.</td>
</tr>
<tr>
<td>92.07</td>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Kiest het adres waarvan bit 10 van het 03.02 Hoofd-Statuswoord gelezen wordt.</td>
</tr>
<tr>
<td>92.08</td>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Kiest het adres waarvan bit 13 van het 03.02 Hoofd-Statuswoord gelezen wordt.</td>
</tr>
<tr>
<td>92.09</td>
<td>-255.255.31 … +255.255.31 / C.-32768 … C.32767</td>
<td>Kiest het adres waarvan bit 14 van het 03.02 Hoofd-Statuswoord gelezen wordt.</td>
</tr>
</tbody>
</table>
De veldbusbesturingsinterface

De communicatie tussen een veldbussysteem en de omvormer maakt gebruik van data sets. Een dataset (afgekort als DS) bestaat uit drie 16-bit woorden, zogenaamde datawoorden (DW). Het standaardbesturingsprogramma ondersteunt het gebruik van vier datasets, twee in elke richting.

Naar de twee datasets voor besturing van de omvormer wordt verwezen als de hoofddataset en de auxdataset met referentiegegevens. De bronnen van waaruit de omvormer de hoofddataset en de auxdataset met referentiegegevens uitleest, worden bepaald door, respectievelijk, parameter 90.04 en 90.05. De inhoud van de hoofddataset met referentiegegevens ligt vast. De inhoud van de auxdataset met referentiegegevens kan worden gekozen met behulp van parameter 90.01, 90.02 en 90.03.

Naar de twee datasets die de actuele gegevens van de omvormer bevatten wordt verwezen als de hoofddataset en auxdataset met actuele gegevens. De inhoud van de twee datasets kan gedeeltelijk worden gekozen met behulp van de parameters in groep 92.

<table>
<thead>
<tr>
<th>*Index</th>
<th>Hoofddataset met referenties DS1</th>
<th></th>
<th>*Index</th>
<th>Hoofddataset met actuele gegevens DS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1ste woord Controlwoord</td>
<td>(Vast)</td>
<td>4</td>
<td>1ste woord Statuswoord</td>
</tr>
<tr>
<td>2</td>
<td>2de woord Referentie 1</td>
<td>(Vast)</td>
<td>5</td>
<td>2de woord Werkelijk 1</td>
</tr>
<tr>
<td>3</td>
<td>3de woord Referentie 2</td>
<td>(Vast)</td>
<td>6</td>
<td>3de woord Werkelijk 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*Index</th>
<th>Hulpdataset met referenties DS3</th>
<th></th>
<th>*Index</th>
<th>Hulpdataset met actuele gegevens DS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1ste woord Referentie 3</td>
<td>Par. 90.01</td>
<td>10</td>
<td>1ste woord Werkelijk 3</td>
</tr>
<tr>
<td>8</td>
<td>2de woord Referentie 4</td>
<td>Par. 90.02</td>
<td>11</td>
<td>2de woord Werkelijk 4</td>
</tr>
<tr>
<td>9</td>
<td>3de woord Referentie 5</td>
<td>Par. 90.03</td>
<td>12</td>
<td>3de woord Werkelijk 5</td>
</tr>
</tbody>
</table>

*Het indexnummer is vereist wanneer de toewijzing van een datawoord voor verwerking van gegevens wordt gedefinieerd via de veldbusparameters in groep 51. Deze functie is afhankelijk van het type veldbusadapter.

**Als het Generic Drive communicatieprofiel actief is, ligt Werkwaarde 1 vast op actueel gegeven 01.02 TOERENTAL (bij DTC-motorbesturing) of 01.03 FREQUENTIE (bij Scalarbesturing).

De ververstijd voor de Main Reference en Main Actual Signal datasets bedraagt 6 milliseconden; voor de Auxiliary Reference en Auxiliary Actual Signal datasets is dit 100 milliseconden.

Besturing via een veldbus
Het controlwoord en het statuswoord

Het Controlwoord (CW) is het belangrijkste middel voor het besturen van een omvormer vanuit een veldbussysteem. Het werkt wanneer de huidige besturingslocatie (EXT1 of EXT2; zie parameter 10.1 en 10.2) is ingesteld op COMM.CW of als par. 10.07 is ingesteld op 1 (uitsluitend met het Generic Drive communicatieprofiel).

Het controlwoord wordt door de veldbusbesturing naar de omvormer gestuurd. De omvormer verandert van status volgens de in bitcode opgemaakte instructies van het controlwoord.

Het Statuswoord (SW) is een woord dat informatie bevat over de status en wordt door de omvormer naar de veldbusbesturing gestuurd.

Zie bij Communicatieprofielen op pagina 223 voor informatie over de samenstelling van het controlwoord en statuswoord.

Referenties

Referenties (REF) zijn 16-bit integers voorzien van een teken. Een negatieve referentie (die een tegengestelde draairichting aangeeft) wordt gevormd door het twee-complement te berekenen van de corresponderende positieve referentiewaarde.

Veldbusreferentie, -keuze en -correctie

Selecteer de veldbusreferentie (COM.REF in de context van de signaalkeuze) door een Reference selectieparameter te zetten – 11.03 of 11.06 – op COMM.REFx, FAST COMM, COM.REFx+AI1, COM.REFx+AI5, COM.REFx*AI1 of COM.REFx*AI5. (Met het Generic Drive communicatieprofiel kunt u de verwijzing ook selecteren als par. 10.08 is ingesteld op 1.) De laatste vier selecties maken de correctie van de veldbusreferentie met analoge ingangen mogelijk zoals hieronder afgebeeld. (Een optionele RAIO-01 Analogue I/O Extension Module is nodig voor het gebruik van Analogue input AI5).

COMM.REF1 (in 11.03) of COMM.REF2 (in 11.06)
De veldbusreferentie wordt zonder correctie doorgestuurd.

FAST COMM
De veldbusreferentie wordt zonder correctie doorgestuurd. De referentie wordt om de 2 milliseconden uitgelezen als aan een van de twee volgende voorwaarden wordt voldaan:

- De besturingslocatie is **EXT1**, par. 99.04 MOTOR CTRL MODE is **DTC** en par. 40.14 TRIM MODE is **UIT**
- De besturingslocatie is **EXT2**, par. 99.04 MOTOR CTRL MODE is **DTC**, par. 40.14 TRIM MODE is **UIT** en een koppelreferentie in gebruik is.

In alle andere gevallen wordt de veldbusreferentie om de 6 milliseconden uitgelezen.

Opmerking: De keuze FAST COMM schakelt de functie Kritische toeren uit.
Besturing via een veldbus

COM.REF1+AI1; COM.REF1+AI5; COM.REF1*AI1; COM.REF1*AI5 (in 11.03)
COM.REF2+AI1; COM.REF2+AI5; COM.REF2*AI1; COM.REF2*AI5 (in 11.06)

Deze keuzes maken als volgt correctie van de veldbusreferentie mogelijk:

<table>
<thead>
<tr>
<th>Parameterinstelling</th>
<th>Effect van AI1/AI5 ingangsspanning op veldbusreferentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM.REFx+AI1</td>
<td>Veldbusreferentie correctiecoëfficient</td>
</tr>
<tr>
<td>COM.REFx+AI5</td>
<td>(100 × 0.5 × [par. 13.03])%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>(100 – 0.5 × [par. 13.03])%</td>
</tr>
<tr>
<td></td>
<td>5 V 10 V Spanning</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>

Referentiebeheer

Het sturen van de draairichting wordt voor elke besturingslocatie (EXT1 en EXT2) geconfigureerd met behulp van de parameters in groep 10. Veldbusreferenties zijn bipolair, d.w.z. ze kunnen negatief of positief zijn. De volgende diagrammen laten zien hoe parameters uit groep 10 en het teken van de veldbusreferentie samen de referentie REF1/REF2 produceren.

Opmerkingen:

- Bij het ABB Drives communicatieprofiel wordt 100% referentie bepaald door parameter 11.05 (REF1) en 11.08 (REF2).
- Bij het Generic Drives communicatieprofiel wordt 100% referentie bepaald door parameter 99.08 bij DTC-motorbesturing (REF1) of 99.07 in scalar besturingsmodus (REF1), en door parameter 11.08 (REF2).
- De externe referentieschaalparameters 11.04 en 11.07 zijn tevens actief.

Voor informatie over het schalen van de veldbusreferentie, zie de sectie Schaling van de veldbusreferentie op pagina 227 (voor het ABB Drives profiel) of Schaling van de veldbusreferentie op pagina 230 (voor het Generic Drive profiel).
Besturing via een veldbus

Actuele waarden

Werkelijke waarden (ACT) zijn 16-bit woorden die informatie bevatten over bepaalde werkingen van de omvormer. De te controleren functies worden gekozen met de parameters in groep 92. De schaling van de integers die als werkelijke waarde naar

*De draairichting wordt bepaald door het teken van COM.REF als par. 10.01/10.02 EXTx STRT/STP/RIC is ingesteld op COMM.CW OF par. 11.03/11.06 EXTERN REFx KEUZE is ingesteld op FAST COMM.
Besturing via een veldbus

Blokgdiagram: Ingang besturingsgegevens vanuit de veldbus bij gebruik van een veldbusadapter van het type Rxxx

Veldbus Adapter Slot1

Woord 1 ... n **

Woord 1 (controlwoord)
Woord 2 (toerental/freq.ref.*)
Woord 3
...
Woord n

DATA SET TABEL

30.18 COMM FOUT FUNC
30.19 MAIN REF DS T-OUT

NEE VELD-BUS
ADVANT
STD
MODBUS
AANGE-PAST

DS 1
2
98.02

10.01
COMM.CW*

10.02
COMM.REF*

11.03
COMM.REF*

11.06
COMM.REF*

11.02
COMM.CW*

98.02

98.02

* Afhankelijk van de gekozen motorbesturingsmodus (parameter 99.04).
** Zie de gebruikershandleiding van de veldbusadapter voor aanvullende informatie.
Besturing via een veldbus

TABEL ACTUELE PARAMETER TABEL

1.01
1.02
...
3.99
...
10.01
...
99.99

HOOFD ACTUEEL GEGEVEN DATA SET

STATUSWOORD*
ACT1**
ACT2

HULP ACTUEEL GEGEVEN DATA SET

ACT3
ACT4
ACT5

DATA SET TABEL

DS 1
DS 2
DS 3
DS 4
...
DS 33
...

Veldbusspecifieke keuzeparameters in groep 51 *

Adressen voor woord 3 … n in format xxyy

<table>
<thead>
<tr>
<th>xx</th>
<th>Adres</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>yy = woordnr. in de dataset tabel</td>
</tr>
<tr>
<td>01 ...</td>
<td>xx = parametergroep</td>
</tr>
<tr>
<td>99</td>
<td>yy = parameterindex in de parametertabel</td>
</tr>
</tbody>
</table>

* Vastgelegd op 03.02 MAIN STATUS WORD (de bits 10, 13 en 14 zijn programmeerbaar).
** Vastgelegd op 01.02 SPEED (DTG control) of 01.03 FREQUENCY (Scalar control) bij gebruik van het Generic Drive communicatieprofiel.
*** Zie de gebruikershandleiding van de veldbusadapter voor aanvullende informatie.

Blokdiaagram: Keuze van werkelijke waarde voor de veldbus bij gebruik van een veldbusadapter van het type Rxxx
Blokbdiagram: Ingang besturingsgegevens vanuit de veldbus bij gebruik van een veldbusadapter van het type Nxxx
Blokdiagram: Keuze van werkelijke waarde voor de veldbus bij gebruik van een veldbusadapter van het type Rxxx

Besturing via een veldbus

<table>
<thead>
<tr>
<th>TABEL ACTUELE PARAMETER TABEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>10.01</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>99.99</td>
<td></td>
</tr>
</tbody>
</table>

HOOFD ACTUEEL GEGEVEN DATA SET

STATUSWOORD*	
ACT1**	
ACT2	

HULP ACTUEEL GEGEVEN DATA SET

ACT3	
ACT4	
ACT5	

DATA SET TABEL

DS 1	
DS 2	
DS 3	
DS 4	
...	
DS 81	
DS 82	
DS 83	
...	

Veldbus Adapter (CH0)

- 3 woorden (6 bytes)

Standaard Modbus Verbinding

- 40004
- 40005
- 40006

Modbus Regeling

- 40010
- 40011
- 40012

* Vastgelegd op 03.02 MAIN STATUS WORD (de bits 10, 13 en 14 zijn programmeerbaar).

** Vastgelegd op 01.02 SPEED (DTC motor control) of 0103 FREQUENCY (Scalar control) bij gebruik van het Generic Drive communicatieprofiel.
Communicatieprofielen

De ACS800 ondersteunt drie communicatieprofielen:

- ABB Drives communicatieprofiel
- Generic Drive communicatieprofiel.
- CSA 2.8/3.0 communicatieprofiel

Het ABB Drives communicatieprofiel moet worden gekozen bij gebruik van veldbusadaptermodules van het type Nxxx en wanneer een fabrikantsspecifieke modus wordt gekozen (via de PLC) met veldbusadaptermodules van het type Rxxx.

Het Generic Drive profiel wordt uitsluitend ondersteund door veldbusadaptermodules van het type Rxxx.

Het CSA 2.8/3.0 communicatieprofiel kan worden gekozen voor achterwaartse compatibiliteit met versie 2.8 en 3.0 van het applicatieprogramma. Dit maakt het onnodig om de PLC opnieuw te programmeren wanneer omvormers met bovengenoemde programmaversies worden vervangen.

ABB Drives communicatieprofiel

Het ABB Drives communicatieprofiel is actief als parameter 98.07 is ingesteld op ABB DRIVES. Het Control Word, Status Word en de referentieschaling voor het profiel worden hieronder beschreven.

Het ABB Drives communicatieprofiel kan worden gebruikt via zowel EXT1 als EXT2. De controlwoordopdrachten gelden als par. 10.01 of 10.02 (afhankelijk van welke besturingslocatie actief is) is ingesteld op COMM.CW.
03.01 HOOFD CONTROLWOORD

De tekst in vette hoofdletters verwijst naar de statuswaarden in [Figure 1](#).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Waarde</th>
<th>Invoeren van STATUS/Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF1 CONTROL</td>
<td>1</td>
<td>Voer READY TO OPERATE in. Stop langs de momenteel actieve deceleratiehelling (22.03/22.05). Voer OFF1 ACTIVE in; ga verder naar READY TO SWITCH ON, tenzij andere tussentijdse blokkeringen (OFF2, OFF3) actief zijn.</td>
</tr>
<tr>
<td>1</td>
<td>OFF2 CONTROL</td>
<td>1</td>
<td>Voer OFF2 ACTIVE in; ga verder naar SWITCH-ON INHIBITED. Bedrijf voortzetten (OFF2 niet actief). Noodgeval OFF, stoppen via uitoop.</td>
</tr>
<tr>
<td>2</td>
<td>OFF3 CONTROL</td>
<td>1</td>
<td>Voer OFF3 ACTIVE in; ga verder naar SWITCH-ON INHIBITED. Bedrijf voortzetten (OFF3 niet actief). Noodstop, stop binnen tijd bepaald door par. 22.07. Voer OFF3 ACTIVE in; ga verder naar SWITCH-ON INHIBITED. Waarschuwing: Zorg dat motor en aangedreven machine met deze stopmodus kunnen worden gestopt.</td>
</tr>
<tr>
<td>3</td>
<td>INHIBIT_ OPERATION</td>
<td>1</td>
<td>Voer OPERATION ENABLED in. (Opmerking: Het startvrijgavesignaal moet actief zijn; zie parameter 16.01. Als par. 16.01 is ingesteld op COMM. CW, activeert deze bit ook het startvrijgavesignaal.) Werkung geblokkeerd. Voer OPERATION INHIBITED in.</td>
</tr>
<tr>
<td>5</td>
<td>RAMP_HOLD</td>
<td>1</td>
<td>Naar hellingfunctie. Voer RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED in. Stop hellingfunctie (uitgang hellingfunctiegenerator wordt vastgehouden).</td>
</tr>
<tr>
<td>6</td>
<td>RAMP_IN_ ZERO</td>
<td>1</td>
<td>Normaal bedrijf. Voer OPERATING in. Dwingt ingang Hellingfunctiegenerator naar nul.</td>
</tr>
<tr>
<td>7</td>
<td>RESET</td>
<td>0 ⇒ 1</td>
<td>Foutreset als een fout actief is. Voer SWITCH-ON INHIBITED in. Normaal bedrijf voortzetten.</td>
</tr>
<tr>
<td>8</td>
<td>INCHING_1</td>
<td>1</td>
<td>Niet in gebruik. 1 ⇒ 0 Niet in gebruik.</td>
</tr>
<tr>
<td>9</td>
<td>INCHING_2</td>
<td>1</td>
<td>Niet in gebruik. 1 ⇒ 0 Niet in gebruik.</td>
</tr>
<tr>
<td>10</td>
<td>REMOTE_CMD</td>
<td>1</td>
<td>Veldbusbesturing ingeschakeld. Controlwoord <> 0 of Referentie <> 0: Handhaaf laatste controlwoord en referentie. Controlwoord = 0 en Referentie = 0: Veldbusbesturing actief. Referentie en deceleratie-/acceleratiehelling zijn vergrendeld.</td>
</tr>
<tr>
<td>11</td>
<td>EXT CTRL LOC</td>
<td>1</td>
<td>Kies externe besturingslocatie EXT2. Van kracht als par. 11.02 is ingesteld op COMM.CW. Kies externe besturingslocatie EXT1. Van kracht als par. 11.02 is ingesteld op COMM.CW.</td>
</tr>
<tr>
<td>12</td>
<td>...</td>
<td></td>
<td>Gereserveerd</td>
</tr>
</tbody>
</table>

Besturing via een veldbus
03.02 HOOFD STATUSWOORD
De tekst in vette hoofdletters verwijst naar de statuswaarden in Figure 1.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Waarde</th>
<th>STATE/Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 RDY_ON</td>
<td>1</td>
<td>READY TO SWITCH ON.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>NOT READY TO SWITCH ON.</td>
<td></td>
</tr>
<tr>
<td>1 RDY_RUN</td>
<td>1</td>
<td>READY TO OPERATE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>OFF1 ACTIVE.</td>
<td></td>
</tr>
<tr>
<td>2 RDY_REF</td>
<td>1</td>
<td>OPERATION ENABLED.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>OPERATION INHIBITED.</td>
<td></td>
</tr>
<tr>
<td>3 TRIPPED</td>
<td>1</td>
<td>FAULT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Geen fout.</td>
<td></td>
</tr>
<tr>
<td>4 OFF_2_STA</td>
<td>1</td>
<td>OFF2 niet actief.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>OFF2 ACTIVE.</td>
<td></td>
</tr>
<tr>
<td>5 OFF_3_STA</td>
<td>1</td>
<td>OFF3 niet actief.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>OFF3 ACTIVE.</td>
<td></td>
</tr>
<tr>
<td>6 SWC_ON_INHIB</td>
<td>1</td>
<td>SWITCH-ON INHIBITED.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ALARM</td>
<td>1</td>
<td>Waarschuwing/alarm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Geen waarschuwing/alarm.</td>
<td></td>
</tr>
<tr>
<td>8 AT_SETPOINT</td>
<td>1</td>
<td>OPERATING. Werkelijke waarde is gelijk aan referentiewaarde (= binnen tolerantiegrenzen, d.w.z. bij toerentalbesturing is de toerentalafwijking kleiner dan of gelijk aan 10% van het nominale motortoerental).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Werkelijke waarde verschilt van referentiewaarde (= buiten tolerantiegrenzen).</td>
<td></td>
</tr>
<tr>
<td>9 REMOTE</td>
<td>1</td>
<td>Bedieningsplaats omvormer: REMOTE (EXT1 of EXT2).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Bedieningsplaats omvormer: LOCAL.</td>
<td></td>
</tr>
<tr>
<td>10 ABOVE_LIMIT</td>
<td>1</td>
<td>Bit wordt gelezen van het adres bepaald door parameter 92.07 MSW B10 PTR. De standaardwaarde is signaal 03.14 bit 9 ABOVE_LIMIT: Werkelijke frequentie- of toerentalwaarde is gelijk aan of groter dan de bewakingslimiet (par. 32.02).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Werkelijke frequentie- of toerentalwaarde binnen de bewakingslimiet.</td>
<td></td>
</tr>
<tr>
<td>11 EXT_CTRL_LOC</td>
<td>1</td>
<td>Externe besturingslocatie EXT2 gekozen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Externe besturingslocatie EXT1 gekozen.</td>
<td></td>
</tr>
<tr>
<td>12 EXT RUN ENABLE</td>
<td>1</td>
<td>Extern startvrijgavesignaal ontvangen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Geen extern startvrijgavesignaal ontvangen.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Besturing via een veldbus
Besturing via een veldbus

Figure 1 Machinestatus voor het ABB Drives communicatieprofiel.
Schaling van de veldbusreferentie

Als het ABB Drives communicatieprofiel actief is, worden veldbusreferentie REF1 en REF2 geschaald zoals weergegeven in onderstaande tabel.

Opmerking: Eventuele correctie van de referentie (zie boven) wordt voorafgaand aan schaling toegepast. Zie het onderdeel *Referenties* op pagina 216.

<table>
<thead>
<tr>
<th>Ref. nr.</th>
<th>Applicatie-macro in gebruik (par. 99.02)</th>
<th>Bereik</th>
<th>Referentie type</th>
<th>Schaling</th>
<th>Opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF1</td>
<td>(elk)</td>
<td>-32768 ... 32767</td>
<td>Toerental of frequentie (zonder FAST COMM)</td>
<td>-20000 = [par. 11.05] -1 = [par. 11.07] 0 = [par. 11.04] 20000 = [par. 11.05]</td>
<td>Uiteindelijke referentie beperkt door 20.01/20.02 [toerental] of 20.07/20.08 [frequentie].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toerental of frequentie met FAST COMM</td>
<td>-20000 = [par. 11.05] 0 = 0 20000 = [par. 11.05]</td>
<td>Uiteindelijke referentie beperkt door 20.01/20.02 [toerental] of 20.07/20.08 [frequentie].</td>
</tr>
<tr>
<td>REF2</td>
<td>FACTORY, HAND/AUTO, of SEQ CTRL</td>
<td>-32768 ... 32767</td>
<td>Toerental of frequentie (zonder FAST COMM)</td>
<td>-20000 = [par. 11.08] -1 = [par. 11.07] 0 = [par. 11.07] 20000 = [par. 11.08]</td>
<td>Uiteindelijke referentie beperkt door 20.01/20.02 [toerental] of 20.07/20.08 [frequentie].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toerental of frequentie met FAST COMM</td>
<td>-20000 = [par. 11.08] 0 = 0 20000 = [par. 11.08]</td>
<td>Uiteindelijke referentie beperkt door 20.01/20.02 [toerental] of 20.07/20.08 [frequentie].</td>
</tr>
<tr>
<td>T CTRL of M/F (optioneel)</td>
<td>-32768 ... 32767</td>
<td>Koppel (zonder FAST COMM)</td>
<td>-10000 = [par. 11.08] -1 = [par. 11.07] 0 = [par. 11.07] 10000 = [par. 11.08]</td>
<td>Uiteindelijke referentie beperkt door par. 20.04.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Koppel met FAST COMM</td>
<td>-10000 = [par. 11.08] 0 = 0 10000 = [par. 11.08]</td>
<td>Uiteindelijke referentie beperkt door par. 20.04.</td>
</tr>
<tr>
<td>PID</td>
<td>REGELING</td>
<td>-32768 ... 32767</td>
<td>PID Reference (zonder FAST COMM)</td>
<td>-10000 = [par. 11.08] -1 = [par. 11.07] 0 = [par. 11.07] 10000 = [par. 11.08]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PID Reference met FAST COMM</td>
<td>-10000 = [par. 11.08] 0 = 0 10000 = [par. 11.08]</td>
<td></td>
</tr>
</tbody>
</table>
Generic Drive communicatieprofiel

Het Generic Drive communicatieprofiel is actief als parameter 98.07 is ingesteld op GENERIC. Het Generic Drive profiel vertegenwoordigt uitsluitend het machineprofiel voor omvormers – uitsluitend toerenregeling – zoals bepaald door specifieke veldbusstandaarden zoals PROFIDRIVE voor PROFIBUS, AC/DC Drive voor DeviceNet™, Drives en Motion Control voor CANopen®, enz. Elk machineprofiel geeft zijn eigen control- en statuswoorden en schaling van referenties en werkelijke waarden op. De profielen bepalen tevens op gestandaardiseerde wijze de verplichte diensten die worden overgedragen op de applicatie-interface van de omvormer.

Het Generic Drive communicatieprofiel kan zowel via EXT1 als EXT2* gebruikt worden. Voor een goed functioneren van het Generic Drive profiel is het noodzakelijk dat controlwoordopdrachten worden geactiveerd door instelling van parameter 10.01 of 10.02 (afhankelijk van welke besturingslocatie actief is) op COMM.CW (of par. 10.07 op 1) en door instelling van parameter 16.01 op YES.

*Voor leverancierspecifieke ondersteuning van EXT2 referentie, zie de betreffende veldbus handleiding.

Opmerking: Het Generic Drive communicatieprofiel is uitsluitend beschikbaar met veldbusadaptermodules van het type Rxxx.
Omvormeropdrachten ondersteund door het Generic Drive communicatieprofiel

<table>
<thead>
<tr>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP</td>
<td>De omvormer decelereert de motor naar nul toeren overeenkomstig de deceleratiehelling die actief is (parameter 22.03 of 22.05).</td>
</tr>
<tr>
<td>START</td>
<td>De omvormer accelerert naar de ingestelde referentiewaarde overeenkomstig de acceleratiehelling die actief is (par. 22.02 of 22.04). De draairichting wordt bepaald door het teken van de referentiewaarde en de instelling van par. 10.03.</td>
</tr>
<tr>
<td>UITLOOPSTOP</td>
<td>De omvormer stopt met uitloop, d.w.z. de omvormer stopt met moduleren. Deze opdracht kan echter worden opgeheven door de rembesturingsfunctie, die de motor dwingt te decelereren naar nul toeren langs de deceleratiehelling die actief is. Wanneer de rembesturingsfunctie actief is, laten de opdrachten UITloopSTOP en Nood-UITloopSTOP (OFF2), gegeven na de Nood-hellingstop (OFF3), de omvormer uitlopen tot stilstand.</td>
</tr>
<tr>
<td>QUICK STOP</td>
<td>De omvormer decelereert de motor naar nul toeren binnen de deceleratietijd bepaald door par. 22.07 voor een noodstop.</td>
</tr>
<tr>
<td>CURRENT LIMIT STOP (CLS)</td>
<td>De omvormer decelereert de motor naar nul toeren overeenkomstig de ingestelde stroomlimiet (par. 20.03) of koppellimiet (20.04), afhankelijk van welke het eerst wordt bereikt. Dezelfde procedure geldt in geval van een spanningslimietstop (VLS).</td>
</tr>
</tbody>
</table>
| INCHING1 | Als deze opdracht actief is, accelerert de omvormer de motor tot CNST TOEREN 12 (bepaald door par. 12.13). Na verwijdering van de opdracht decelereert de omvormer de motor naar nul toeren.
Opmerking: De toerentalreferentiehellingen gelden niet. De wijzigingssnelheid van het toerental wordt uitsluitend beperkt door de stroom- of koppellimiet van de omvormer.
Opmerking: Inching 1 heeft voorrang op Inching 2.
Opmerking: Werkt niet bij Scalarbesturing. |
| INCHING2 | Als deze opdracht actief is, accelerert de omvormer de motor tot CNST TOEREN 13 (bepaald door par. 12.14). Na verwijdering van de opdracht decelereert de omvormer de motor naar nul toeren.
Opmerking: De toerentalreferentiehellingen gelden niet. De wijzigingssnelheid van het toerental wordt uitsluitend beperkt door de stroom- of koppellimiet van de omvormer.
Opmerking: Inching 1 heeft voorrang op Inching 2.
Opmerking: Werkt niet bij Scalarbesturing. |
| RAMP OUT ZERO | Indien actief, wordt de uitgang van de referentiefunctiegenerator naar nul gedwongen. |
| RAMP HOLD | Indien actief, wordt de uitgang van de referentiefunctiegenerator bevoren. |
| FORCED TRIP | Schakelt de omvormer uit. De omvormer geeft de fout "FORCED TRIP" weer. |
| RESET | Resetten van een actieve fout. |
Schaling van de veldbusreferentie

Als het Generic Drive communicatieprofiel actief is, wordt de toerentalreferentiewaarde ontvangen van de veldbus en de werkelijke toerentalwaarde ontvangen van de omvormer geschaald zoals weergegeven in onderstaande tabel.

Opmerking: Eventuele correctie van de referentie (zie de sectie Referenties op pagina 216) wordt voorafgaand aan schaling toegepast.

<table>
<thead>
<tr>
<th>Ref. nr.</th>
<th>Applicatie-macro in gebruik (par. 99.02)</th>
<th>Bereik</th>
<th>Referentietype</th>
<th>Schaling toerentalreferentie</th>
<th>Schaling werkelijk toerental*</th>
<th>Opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF1</td>
<td>(elk)</td>
<td>-32768...32767</td>
<td>Toerental of frequentie</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td></td>
</tr>
<tr>
<td>REF2</td>
<td>FACTORY, HAND/AUT of SEQ CTRL</td>
<td>-32768...32767</td>
<td>Toerental of frequentie (zonder FAST COMM)</td>
<td>-20000 = -[par. 11.08] -1 = [par. 11.07] 0 = [par. 11.07] 20000 = [par. 11.08]</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td>Uiteindelijke referentie beperkt door 20.01/20.02 [toerental] of 20.07/20.08 [frequentie]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toerental of frequentie met FAST COMM</td>
<td>-20000 = -[par. 11.08] 0 = 0 20000 = [par. 11.08]</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td>Uiteindelijke referentie beperkt door 20.01/20.02 [toerental] of 20.07/20.08 [frequentie]</td>
</tr>
<tr>
<td>T CTRL of M/F (optioneel)</td>
<td>-32768...32767</td>
<td>Koppel (zonder FAST COMM)</td>
<td>-10000 = -[par. 11.08] -1 = [par. 11.07] 0 = [par. 11.07] 10000 = [par. 11.08]</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td>Uiteindelijke referentie beperkt door par. 20.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Koppel met FAST COMM</td>
<td>-10000 = -[par. 11.08] 0 = 0 10000 = [par. 11.08]</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td>Uiteindelijke referentie beperkt door par. 20.04</td>
</tr>
<tr>
<td>PID REGELING</td>
<td>-32768...32767</td>
<td>PID Reference (zonder FAST COMM)</td>
<td>-10000 = -[par. 11.08] -1 = [par. 11.07] 0 = [par. 11.07] 10000 = [par. 11.08]</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PID Reference met FAST COMM</td>
<td>-10000 = -[par. 11.08] 0 = 0 10000 = [par. 11.08]</td>
<td>0 = 0 20000 = [par. 99.08 (DTC) / 99.07 (scalar)]**</td>
<td></td>
</tr>
</tbody>
</table>

* Bij DTC kan de filtertijd van de werkelijke toerentalwaarde aangepast worden met gebruikmaking van parameter 34.04.

** Opmerking: De maximale referentiewaarde is 163% (d.w.z. 163% = 1.63 • waarde van parameter 99.08/99.07).
CSA 2.8/3.0 communicatieprofiel

Het CSA 2.8/3.0 communicatieprofiel is actief als parameter 98.07 is ingesteld op CSA 2.8/3.0. Het controlwoord en statuswoord voor het profiel worden hieronder beschreven.

.CONTROL WOORD voor het CSA 2.8/3.0 communicatieprofiel

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Waarde</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gereserveerd</td>
<td>1</td>
<td>Geactiveerd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Uitlopen tot stilstand</td>
</tr>
<tr>
<td>1</td>
<td>ENABLE</td>
<td>1</td>
<td>Start.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Stop overeenkomstig parameter 21.03 STOP FUNCTION.</td>
</tr>
<tr>
<td>2</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>START/STOP</td>
<td>0 => 1</td>
<td>Omvormerfout resetten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CNTRL_MODE</td>
<td>1</td>
<td>Besturingsmodus 2 kiezen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Besturingsmodus 1 kiezen.</td>
</tr>
<tr>
<td>6</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RESET_FAULT</td>
<td>0 => 1</td>
<td>Omvormerfout resetten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ... 15</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STATUS WOORD voor het CSA 2.8/3.0 communicatieprofiel

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Waarde</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>READY</td>
<td>1</td>
<td>Gereed om te starten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Initialisatie of initialisatiefout</td>
</tr>
<tr>
<td>1</td>
<td>ENABLE</td>
<td>1</td>
<td>Geactiveerd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Uitlopen tot stilstand</td>
</tr>
<tr>
<td>2</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RUNNING</td>
<td>1</td>
<td>In bedrijf met gekozen referentiewaarde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Tot stilstand gekomen</td>
</tr>
<tr>
<td>4</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>REMOTE</td>
<td>1</td>
<td>Omvormer in externe besturingsmodus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Omvormer in lokale besturingsmodus</td>
</tr>
<tr>
<td>6</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AT_SETPOINT</td>
<td>1</td>
<td>Omvormer heeft referentiewaarde bereikt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Omvormer heeft referentiewaarde niet bereikt</td>
</tr>
<tr>
<td>8</td>
<td>FAULTED</td>
<td>1</td>
<td>Er is een fout actief</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Geen actieve fouten</td>
</tr>
<tr>
<td>9</td>
<td>WARNING</td>
<td>1</td>
<td>Er is een waarschuwing actief</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Geen waarschuwingen actief</td>
</tr>
<tr>
<td>10</td>
<td>LIMIT</td>
<td>1</td>
<td>Omvormer heeft een limiet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Omvormer heeft geen limiet</td>
</tr>
<tr>
<td>11..15</td>
<td>Gereserveerd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De referentie en de werkelijke schaling is gelijk aan die van het ABB Drives profiel.
Diverse status-, fout-, alarm- en limietwoorden

03.03 AUXILIARY STATUS WORD

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OUT OF WINDOW</td>
<td>Toerentalverschil valt buiten de window (bij toerensregeling)*.</td>
</tr>
<tr>
<td>2</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MAGNETIZED</td>
<td>Flux is opgebouwd in de motor.</td>
</tr>
<tr>
<td>4</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SYNC RDY</td>
<td>Positieteller gesynchroniseerd.</td>
</tr>
<tr>
<td>6</td>
<td>1 START NOT DONE</td>
<td>De omvormer is niet gestart na wijziging van de motorparameters in groep 99.</td>
</tr>
<tr>
<td>7</td>
<td>IDENTIF RUN DONE</td>
<td>Motoridentificatierun met succes voltooid.</td>
</tr>
<tr>
<td>8</td>
<td>START INHIBITION</td>
<td>Safe torque off functie of Preventie van onverwacht opstarten is actief.</td>
</tr>
<tr>
<td>9</td>
<td>LIMITING</td>
<td>Besturing op een limiet. Zie actueel gegeven 3.04 LIMIT WORD 1 hieronder.</td>
</tr>
<tr>
<td>10</td>
<td>TORQ CONTROL</td>
<td>Koppelreferentie wordt gevolgd*.</td>
</tr>
<tr>
<td>11</td>
<td>ZERO SPEED</td>
<td>Absolute waarde van werkelijk toerental van de motor ligt onder de stilstandslimiet (4% van synchroon toerental).</td>
</tr>
<tr>
<td>12</td>
<td>INTERNAL SPEED FB</td>
<td>Interne toerentalterugkoppeling wordt gevolgd.</td>
</tr>
<tr>
<td>13</td>
<td>M/F COMM ERR</td>
<td>Communicatiefout in de master-/followerverbinding (op CH2) *.</td>
</tr>
<tr>
<td>14 … 15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

*Zie de Master/Follower Application Guide [3AFY58962180 (Engels)].
03.04 LIMIET WOORD 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Actieve Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TORQ MOTOR LIM</td>
<td>Pull-out limit</td>
</tr>
<tr>
<td>1</td>
<td>SPD_TOR_MIN_LIM</td>
<td>Toerenregeling min. koppellimiet</td>
</tr>
<tr>
<td>2</td>
<td>SPD_TOR_MAX_LIM</td>
<td>Toerenregeling max. koppellimiet</td>
</tr>
<tr>
<td>3</td>
<td>TORQ_USER_CUR_LIM</td>
<td>Stroomlimiet gebruiker.</td>
</tr>
<tr>
<td>4</td>
<td>TORQ_INV_CUR_LIM</td>
<td>Interne stroomlimiet.</td>
</tr>
<tr>
<td>5</td>
<td>TORQ_MIN_LIM</td>
<td>Willekeurige min. koppellimiet</td>
</tr>
<tr>
<td>6</td>
<td>TORQ_MAX_LIM</td>
<td>Willekeurige max. koppellimiet</td>
</tr>
<tr>
<td>7</td>
<td>TREF_TORQ_MIN_LIM</td>
<td>Min. limiet koppelreferentie.</td>
</tr>
<tr>
<td>8</td>
<td>TREF_TORQ_MAX_LIM</td>
<td>Max. limiet koppelreferentie.</td>
</tr>
<tr>
<td>9</td>
<td>FLUX_MIN_LIM</td>
<td>Min. limiet fluxreferentie.</td>
</tr>
<tr>
<td>10</td>
<td>FREQ_MIN_LIMIT</td>
<td>Min. limiet toerental/frequentie.</td>
</tr>
<tr>
<td>11</td>
<td>FREQ_MAX_LIMIT</td>
<td>Max. limiet toerental/frequentie.</td>
</tr>
<tr>
<td>12</td>
<td>DC_UNDERVOLT</td>
<td>DC-onderspanningslimiet.</td>
</tr>
<tr>
<td>13</td>
<td>DC_OVERVOLT</td>
<td>DC-overspanningslimiet.</td>
</tr>
<tr>
<td>14</td>
<td>TORQUE LIMIT</td>
<td>Willekeurige koppellimiet.</td>
</tr>
<tr>
<td>15</td>
<td>FREQ_LIMIT</td>
<td>Willekeurige limiet toerental/frequentie.</td>
</tr>
</tbody>
</table>

03.05 FOUTWOORD 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>KORTSLUITING</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>1</td>
<td>OVERSTROOM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DC OVERSPANN</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ACS800 TEMP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AARDFOUT</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>THERMISTOR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MOTOR TEMP</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SYSTEM_FAULT</td>
<td>Er wordt een fout aangegeven door het systeemfoutwoord (Actual Signal 3.07).</td>
</tr>
<tr>
<td>8</td>
<td>ONDERBELAST</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>9</td>
<td>OVERFREQ</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>... 15</td>
<td>Gereserveerd</td>
</tr>
</tbody>
</table>

Besturing via een veldbus
03.06 FOUTWOORD 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NETFASE</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>1</td>
<td>GEEN M-DATA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DC ONDERSPANN</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>STARTVRIJGAVE</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>5</td>
<td>ENCODER ERR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I/O COMM</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CTRL B TEMP</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EXTERNE FOUT</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>OVER SWFREQ</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AI < MIN FUNC</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PPCC LINK</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>COMM MODULE</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PANEELUITVAL</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>MOTORBLOKK</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>MOTORFASE</td>
<td></td>
</tr>
</tbody>
</table>
03.07 SYSTEEMFOUTWOORD

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FLT (F1_7)</td>
<td>Bestandsfout standaardfabrieksparameter.</td>
</tr>
<tr>
<td>1</td>
<td>USER MACRO</td>
<td>Bestandsfout gebruikersmacro.</td>
</tr>
<tr>
<td>2</td>
<td>FLT (F1_4)</td>
<td>Werkingsfout FPROM</td>
</tr>
<tr>
<td>3</td>
<td>FLT (F1_5)</td>
<td>Datefout FPROM.</td>
</tr>
<tr>
<td>4</td>
<td>FLT (F2_12)</td>
<td>Interne overflow tijdsniveau 2</td>
</tr>
<tr>
<td>5</td>
<td>FLT (F2_13)</td>
<td>Interne overflow tijdsniveau 3</td>
</tr>
<tr>
<td>6</td>
<td>FLT (F2_14)</td>
<td>Interne overflow tijdsniveau 4</td>
</tr>
<tr>
<td>7</td>
<td>FLT (F2_15)</td>
<td>Interne overflow tijdsniveau 5.</td>
</tr>
<tr>
<td>8</td>
<td>FLT (F2_16)</td>
<td>Overflow statusmachine.</td>
</tr>
<tr>
<td>9</td>
<td>FLT (F2_17)</td>
<td>Uitvoeringsfout applicatieprogramma.</td>
</tr>
<tr>
<td>10</td>
<td>FLT (F2_18)</td>
<td>Uitvoeringsfout applicatieprogramma.</td>
</tr>
<tr>
<td>11</td>
<td>FLT (F2_19)</td>
<td>Ongeldige instructie.</td>
</tr>
<tr>
<td>12</td>
<td>FLT (F2_3)</td>
<td>Overflow registerstack.</td>
</tr>
<tr>
<td>13</td>
<td>FLT (F2_1)</td>
<td>Overflow systeemstack.</td>
</tr>
<tr>
<td>14</td>
<td>FLT (F2_0)</td>
<td>Underflow systeemstack.</td>
</tr>
<tr>
<td>15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

03.08 ALARMWOORD 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>START INHIBIT</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>1</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>THERMISTOR</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>3</td>
<td>MOTOR TEMP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ACS800 TEMP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ENCODER ERR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T MEET ALARM</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>… 11</td>
<td>Gereserveerd</td>
</tr>
<tr>
<td>12</td>
<td>COMM MODULE</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>13</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AARDFOUT</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>
03.09 ALARMWOORD 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ONDERBELAST</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ENCODER</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>5, 6</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>VOEDINGSUITVAL (FFA0)</td>
<td>Fout bij herstellen VOEDINGSUITVAL.DDF.</td>
</tr>
<tr>
<td>8</td>
<td>ALM (OS_17)</td>
<td>Fout bij herstellen POWERDOWN.DDF.</td>
</tr>
<tr>
<td>9</td>
<td>MOTORBLOKK</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>10</td>
<td>AI < MIN FUNC</td>
<td></td>
</tr>
<tr>
<td>11, 12</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PANEELUITVAL</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>14, 15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

03.13 AUX STATUSWOORD 3

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ACHTERUIT</td>
<td>Motor draait achteruit.</td>
</tr>
<tr>
<td>1</td>
<td>EXT BESTURING</td>
<td>Externe besturing is actief.</td>
</tr>
<tr>
<td>2</td>
<td>REF 2 ACTIEF</td>
<td>Er is referentie 2 gekozen.</td>
</tr>
<tr>
<td>3</td>
<td>CONST TOEREN</td>
<td>Er is constant toerental (1…15) gekozen.</td>
</tr>
<tr>
<td>4</td>
<td>GESTART</td>
<td>De omvormer heeft een startopdracht ontvangen.</td>
</tr>
<tr>
<td>5</td>
<td>G2 ACTIEF</td>
<td>Gebruikersmacro 2 is geladen.</td>
</tr>
<tr>
<td>6</td>
<td>OPEN BRAKE</td>
<td>Opdracht Open Brake is ON. Zie groep 42 MECH REMBEST.</td>
</tr>
<tr>
<td>7</td>
<td>GEEN REF</td>
<td>De referentie is uitgevallen.</td>
</tr>
<tr>
<td>8</td>
<td>STOP DI STATUS</td>
<td>De status van de vergrendelingsingang op de RMIO-kaart.</td>
</tr>
<tr>
<td>9</td>
<td>GEREED</td>
<td>Gereed voor bedrijf: Startvrijgave aan, geen fout</td>
</tr>
<tr>
<td>10</td>
<td>DATASET STATUS</td>
<td>Dataset is niet geüpdatet.</td>
</tr>
<tr>
<td>11</td>
<td>MACRO CHG</td>
<td>Bezig met macro wijzigen of opslaan.</td>
</tr>
<tr>
<td>12…15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

Besturing via een veldbus
03.14 AUX STATUSWOORD 4

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TOERENT1 LIM</td>
<td>Uitgangstoerental is onder bewakingslimiet 1 gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>1</td>
<td>TOERENT2 LIM</td>
<td>Uitgangstoerental is onder bewakingslimiet 2 gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>2</td>
<td>STROOMLIMIET</td>
<td>Motorstroom is onder de ingestelde bewakingslimiet gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>3</td>
<td>REF1 LIMIET</td>
<td>Referentie 1 is onder de ingestelde bewakingslimiet gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>4</td>
<td>REF2 LIMIET</td>
<td>Referentie 2 is onder de ingestelde bewakingslimiet gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>5</td>
<td>KOPPEL1 LIM</td>
<td>Het motorkoppel is onder de bewakingslimiet TORQUE1 gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>6</td>
<td>KOPPEL2 LIM</td>
<td>Het motorkoppel is onder de bewakingslimiet TORQUE2 gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>7</td>
<td>WERKW1 LIM</td>
<td>Werkelijke waarde 1 van de PID-regeling is onder de ingestelde bewakingslimiet gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>8</td>
<td>WERKW2 LIM</td>
<td>Werkelijke waarde 2 van de PID-regeling is onder de ingestelde bewakingslimiet gedaald of heeft deze overschreden. Zie groep 32 BEWAKING.</td>
</tr>
<tr>
<td>9</td>
<td>ABOVE_LIMIT</td>
<td>Werkelijke frequentie- of toerentalwaarde is gelijk aan of groter dan de bewakingslimiet (par. 32.02). 0 = Werkelijke waarde van toerental of frequentie is binnen de bewakingslimiet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CHOKE OTEMP</td>
<td>Fout in step-up module</td>
</tr>
<tr>
<td>1</td>
<td>MOTOR 1 TEMP</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>2</td>
<td>MOTOR 2 TEMP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REM BEVESTIG</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03.15 FOUTWOORD 4

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CHOKE OTEMP</td>
<td>Fout in step-up module</td>
</tr>
<tr>
<td>1</td>
<td>MOTOR 1 TEMP</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>2</td>
<td>MOTOR 2 TEMP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REM BEVESTIG</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
03.16 ALARMWOORD 4

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FAN OTEMP</td>
<td>Waarschuwing voor te hoge temperatuur van de ventilator van de step-up module</td>
</tr>
<tr>
<td>1</td>
<td>MOTOR 1 TEMP</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>2</td>
<td>MOTOR 2 TEMP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REM BEVESTIG</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SLAAP MODE</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MACRO CHANGING</td>
<td>Bezig met bewaren of laden van gebruikers- of toepassingsmacro</td>
</tr>
<tr>
<td>6 ... 15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

03.17 FOUTWOORD 5

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>REMWRST FOUT</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>1</td>
<td>REMWRS KABEL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>REMCH KORTSL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REMWRS OVERB</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>REMCH OVERB</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NETSMOOR TEM</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PP OVERBEL</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>INV DISABLED</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TEMP DIF</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>POWERF INV xx/ POWERFAIL</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>INT CONFIG</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>GEBR L CURVE</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>INV OVERTEMP</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>14...15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>
03.18 ALARMWOORD 5

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VERVANG VENT</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>1</td>
<td>SYNCHRO TOER</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>REMWRS OVERB</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REMCH OVERB</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NETSMOOR TEM</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PP OVERBEL</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>INV DISABLED</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>STROOM UNBAL</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>INV STR LIM</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DC BUS LIM</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MOT STR LIM</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MOT KOPP LIM</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>MOT VERM LIM</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GEBR L CURVE</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>BATTERIJFOUT</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
</tbody>
</table>

03.19 INT INIT FOUT

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AINT FAULT</td>
<td>Verkeerde EPLD-versie</td>
</tr>
<tr>
<td>1</td>
<td>AINT FAULT</td>
<td>Verkeerde revisie AINT-kaart</td>
</tr>
<tr>
<td>2</td>
<td>AINT FAULT</td>
<td>Hardwareedefect vanwege du/dt-beperking</td>
</tr>
<tr>
<td>3</td>
<td>AINT FAULT</td>
<td>Schaalfout in huidige meting</td>
</tr>
<tr>
<td>4</td>
<td>AINT FAULT</td>
<td>Schaalfout in spanningsmeting</td>
</tr>
<tr>
<td>5</td>
<td>... 15 Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

Dit signaal is actief bij AINT-kaart.
03.30 LIMIETWOORD INVRT

Het LIMIT WORD INV-woord bevat fouten en waarschuwingen, die optreden wanneer de uitgangsstroomlimieit van de omvormer overschreden wordt. De stroomlimiet beschermt de omvormer in meerdere gevallen, bijvoorbeeld bij integratoroverbelasting, hoge IGBT-temperatuur, etc.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INTEGRAT 200</td>
<td>Stroomlimiet bij 200% integratoroverbelasting. Temperatuurmodel is niet actief.*</td>
</tr>
<tr>
<td>1</td>
<td>INTEGRAT 150</td>
<td>Stroomlimiet bij 150% integratoroverbelasting. Temperatuurmodel is niet actief.*</td>
</tr>
<tr>
<td>2</td>
<td>INT LOW FREQ</td>
<td>Stroomlimiet bij hoge IGBT temperatuur bij lage uitgangsfrequentie (<10 Hz). Temperatuurmodel is niet actief.*</td>
</tr>
<tr>
<td>3</td>
<td>INTG PP TEMP</td>
<td>Stroomlimiet bij hoge IGBT temperatuur. Temperatuurmodel is niet actief.*</td>
</tr>
<tr>
<td>4</td>
<td>PP OVER TEMP</td>
<td>Stroomlimiet bij hoge IGBT temperatuur. Temperatuurmodel is actief.</td>
</tr>
<tr>
<td>5</td>
<td>PP OVERBEL</td>
<td>Stroomlimiet bij hoge IGBT junction to case temperatuur. Temperatuurmodel is actief. Als de IGBT junction to case temperatuur blijft stijgen ondanks de stroombegrenzing, treed er een PP OVERLOAD alarm of fout op. Zie het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>6</td>
<td>INV POW LIM</td>
<td>Stroomlimiet bij uitgangsvermogenslimiet van de omzetter</td>
</tr>
<tr>
<td>7</td>
<td>INV TRIP CUR</td>
<td>Stroomlimiet bij overstroomfout-limit van de omzetter</td>
</tr>
<tr>
<td>8</td>
<td>OVERLOAD CUR</td>
<td>Maximum overstroomlimiet van de omzetter. Zie par. 20.03.</td>
</tr>
<tr>
<td>9</td>
<td>CONT DC CUR</td>
<td>Continue dc-stroom limiet</td>
</tr>
<tr>
<td>10</td>
<td>CONT OUT CUR</td>
<td>Continue uitgangsstroom limiet ($I_{cont:max}$)</td>
</tr>
<tr>
<td>11...15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

*Niet actief bij ACS800 standaard macro instellingen van de fabriek.

03.31 ALARMWOORD 6

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INV OVERTEMP</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>1...2</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ENC CABLE</td>
<td>Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing.</td>
</tr>
<tr>
<td>4...15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>
03.32 EXT IO STATUS

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EMSTOP MODULE ERROR</td>
<td>Noodstopmodule communiceert niet met de omvormersoftware.</td>
</tr>
<tr>
<td>1</td>
<td>EMSTOP OFF2 CMD</td>
<td>DI1 van noodstopmodule. Zie 03.01 HOOFD CONTROLWOORD bit1 OFF2 CONTROL.</td>
</tr>
<tr>
<td>2</td>
<td>EMSTOP OFF3 CMD</td>
<td>DI2 van noodstopmodule. Zie 03.01 HOOFD CONTROLWOORD bit2 OFF3 CONTROL.</td>
</tr>
<tr>
<td>3</td>
<td>FREE</td>
<td>DI3 van noodstopmodule.</td>
</tr>
<tr>
<td>4</td>
<td>EMSTOP OFF3 STATUS</td>
<td>RO1 van noodstopmodule. Zie 03.02 HOOFD STATUSWOORD bit5 OFF_3_STA, Bit geïnverteerd.</td>
</tr>
<tr>
<td>5</td>
<td>EMSTOP TRIP STATUS</td>
<td>RO2 van noodstopmodule. Zie 03.02 HOOFD STATUSWOORD bit3 TRIPPED.</td>
</tr>
<tr>
<td>6</td>
<td>STEPUP MODULE ERROR</td>
<td>Step-up module communiceert niet met de omvormersoftware.</td>
</tr>
<tr>
<td>7</td>
<td>STEPUP CHOKE FLT CMD</td>
<td>DI1 van Step-Up module. Zie voor mogelijke oorzaken en oplossingen het hoofdstuk Foutopsporing: CHOKE OTEMP (FF82).</td>
</tr>
<tr>
<td>8</td>
<td>STEPUP FAN ALM CMD</td>
<td>DI2 van Step-Up module. Voor mogelijke oorzaken en oplossingen, zie hoofdstuk Foutopsporing: FAN OTEMP (FF83).</td>
</tr>
<tr>
<td>9</td>
<td>FREE</td>
<td>DI3 van Step-Up module.</td>
</tr>
<tr>
<td>10</td>
<td>STEPUP MODULATING STATUS</td>
<td>RO1 van Step-Up module. Omvormer moduleert.</td>
</tr>
<tr>
<td>11</td>
<td>STEPUP TRIP STATUS</td>
<td>RO2 van Step-Up module. Zie 03.02 HOOFD STATUSWOORD bit3 TRIPPED.</td>
</tr>
<tr>
<td>12-15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>

03.33 FOUTWOORD 6

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...1</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ENC CABLE</td>
<td>Voor mogelijke oorzaken en oplossingen, zie hoofdstuk Foutopsporing:</td>
</tr>
<tr>
<td>3...15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>
04.01 FOUTE INT INFO

Het FOUTE INT INFO-woord omvat informatie over de locatie van de fouten PPCC LINK, OVERSTROOM, AARDFOUT, KORTSLUITING, ACS800 TEMP, TEMP DIF en POWERF INV (zie 03.05 FOUTWOORD 1, 03.06 FOUTWOORD 2, 03.17 FOUTWOORD 5 en het hoofdstuk Foutopsporing).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INT 1 FLT</td>
<td>INT 1-kaartfout</td>
</tr>
<tr>
<td>1</td>
<td>INT 2 FLT</td>
<td>INT 2-kaartfout</td>
</tr>
<tr>
<td>2</td>
<td>INT 3 FLT</td>
<td>INT 3-kaartfout</td>
</tr>
<tr>
<td>3</td>
<td>INT 4 FLT</td>
<td>INT 4-kaartfout</td>
</tr>
<tr>
<td>4</td>
<td>INT 5 FLT</td>
<td>INT 5-kaartfout</td>
</tr>
<tr>
<td>5</td>
<td>INT 6 FLT</td>
<td>INT 6-kaartfout</td>
</tr>
<tr>
<td>6</td>
<td>INT 7 FLT</td>
<td>INT 7-kaartfout</td>
</tr>
<tr>
<td>7</td>
<td>INT 8 FLT</td>
<td>INT 8-kaartfout</td>
</tr>
<tr>
<td>8</td>
<td>INT 9 FLT</td>
<td>INT 9-kaartfout</td>
</tr>
<tr>
<td>9</td>
<td>INT 10 FLT</td>
<td>INT 10-kaartfout</td>
</tr>
<tr>
<td>10</td>
<td>INT 11 FLT</td>
<td>INT 11-kaartfout</td>
</tr>
<tr>
<td>11</td>
<td>INT 12 FLT</td>
<td>INT 12-kaartfout</td>
</tr>
<tr>
<td>12...14</td>
<td>Gereserveerd</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PBU FLT</td>
<td>PBU-kaartfout</td>
</tr>
</tbody>
</table>

Alleen gebruikt bij parallel aangesloten omzetters.
04.02 INT SC INFO

Het INT SC INFO-woord omvat informatie over de locatie van de SHORT CIRCUIT-fout (zie 03.05 FOUTWOORD 1 en hoofdstuk *Foutsporing*).

<table>
<thead>
<tr>
<th>Bit</th>
<th>Benaming</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U-PH SC U</td>
<td>Fase U bovenste deel IGBT(s) kortsluiting</td>
</tr>
<tr>
<td>1</td>
<td>U-PH SC L</td>
<td>Fase U onderste deel IGBT(s) kortsluiting</td>
</tr>
<tr>
<td>2</td>
<td>V-PH SC U</td>
<td>Fase V bovenste deel IGBT(s) kortsluiting</td>
</tr>
<tr>
<td>3</td>
<td>V-PH SC L</td>
<td>Fase V onderste deel IGBT(s) kortsluiting</td>
</tr>
<tr>
<td>4</td>
<td>W-PH SC U</td>
<td>Fase W bovenste deel IGBT(s) kortsluiting</td>
</tr>
<tr>
<td>5</td>
<td>W-PH SC L</td>
<td>Fase W onderste deel IGBT(s) kortsluiting</td>
</tr>
<tr>
<td>6...15</td>
<td>Gereserveerd</td>
<td></td>
</tr>
</tbody>
</table>
Foutopsporing

Overzicht

Dit hoofdstuk geeft alle waarschuwings- en foutmeldingen met vermelding van de mogelijke oorzaak en oplossing.

Veiligheid

WAARSCHUWING! Het onderhoud van de omvormer mag uitsluitend door een gekwalificeerde elektricien worden uitgevoerd. Lees de Veiligheidsinstructies op de eerste pagina’s van de betreffende hardwarehandleiding alvorens met werk aan de omvormer te beginnen.

Waarschuwingen- en foutindicaties

Een waarschuwing- of foutmelding op de display van het bedieningspaneel geeft een afwijkende omvormerstatus aan. De meeste oorzaken van waarschuwingen- en foutmeldingen kunnen met behulp van deze informatie worden vastgesteld en gecorrigeerd. Zo niet, dan moet contact worden opgenomen met een vertegenwoordiger van ABB.

Als de omvormer wordt bestuurd met een los bedieningspaneel, dan geeft de rode LED in de montageplaat van het bedieningspaneel een foutstatus aan. (Opmerking: een aantal typen omvormer is standaard niet voorzien van de LED’s).

Het codenummer van vier cijfers dat tussen haakjes achter de melding staat, is voor de veldbuscommunicatie. (Zie hoofdstuk Besturing via een veldbus.)

Resetten

De omvormer kan worden gereset door op de RESET-toets van het toetsenbord te drukken, via een digitale ingang of de veldbus of door voor enige tijd de voedingsspanning uit te schakelen. Wanneer de fout is verholpen, kan de motor opnieuw worden gestart.

Foutgeschiedenis

Wanneer een fout wordt gedetecteerd, wordt deze opgeslagen in de foutgeschiedenis. De laatste fouten en waarschuwingen worden opgeslagen met de tijd waarop deze zijn gedetecteerd.

De foutlogger bewaart de laatste 64 fouten. Wanneer de omvormer uitgeschakeld wordt, worden de laatste 16 fouten opgeslagen.

Zie hoofdstuk Bedieningspaneel voor aanvullende informatie.
<table>
<thead>
<tr>
<th>WAARSCHUWING</th>
<th>OORZAAK</th>
<th>OPLOSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS800 TEMP</td>
<td>IGBT temperatuur van de omvormer veel te hoog. De limiet voor het optreden van een fout is 100%.</td>
<td>Controleer omgevingscondities. Controleer luchtstroom en werking van de ventilator. Controleer koellichaamribben op stofafzetting. Controleer motorvermogen t.o.v. omvormervermogen.</td>
</tr>
<tr>
<td>(4210) 3.08 AW 1 bit 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI < MIN FUNC</td>
<td>Een analoog besturingssignaal ligt onder de minimaal toegestane waarde. Dit kan een gevolg zijn van een verkeerd signaalniveau of een fout in de besturingbedrading.</td>
<td>Controleer de niveaus van analoge besturingssignalen. Controleer de bedrading van de besturing. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>(8110) 3.09 AW 2 bit 10 (programmeerbare foutfunctie 30.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD [bericht]</td>
<td>Bericht gegenereerd door een EVENT-blok in het Adaptieve programma.</td>
<td>Zie de handleiding of neem contact op met de maker van het Adaptieve programma.</td>
</tr>
<tr>
<td>BACKUP USED</td>
<td>Een op de pc opgeslagen back-up van de omvormerparameters wordt weggeschreven.</td>
<td>Wacht totdat het wegschrijven is voltooid.</td>
</tr>
<tr>
<td>(FFA3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATTERIJFOUT</td>
<td>Fout in de back-up batterij van het geheugen van de Branching unit APBU, veroorzaakt door - onjuiste instelling van schakelaar S3 van de APBU - te lage batterijspanning.</td>
<td>Bij parallel aangesloten omvormers, activeer de back-up batterij door actuator 6 van schakelaar S3 in te stellen op AAN. Vervang de back-up batterij.</td>
</tr>
<tr>
<td>(5581) 3.18 AW 5 bit 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7114) 3.18 AW 5 bit 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REM BEVESTIG</td>
<td>Onverwachte status van het rembevestigingssignaal</td>
<td>Zie parametergroep 42 MECH REMBEST. Controleer de aansluiting van het remterugmeldingssignaal.</td>
</tr>
<tr>
<td>(FF74) 3.16 AW 4 bit 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7112) 3.18 AW 5 bit 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIBRA DONE</td>
<td>Kalibrering van de uitgangsstroom-transformatoren voltooid.</td>
<td>Normaal bedrijf voortzetten.</td>
</tr>
<tr>
<td>(FF37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>COMM MODULE (7510)</td>
<td>Cyclische communicatie tussen omvormer en master is uitgevallen.</td>
<td>Controleer status van veldbuscommunicatie. Zie hoofdstuk Besturing via een veldbus of de betreffende veldbusadapterhandleiding. Controleer parameterinstellingen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- groep 51 COMM MOD DATA (voor veldbusadapter)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- groep 52 STANDAARD MODBUS (voor standaard Modbusverbinding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controleer kabelaansluitingen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controleer of de master kan communiceren.</td>
</tr>
<tr>
<td>DC BUS LIM (3211)</td>
<td>Omvormer begrenst koppel wegens te hoge of te lage DC spanning van de tussenkring.</td>
<td>Informatief alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>AARDFOUT (2330)</td>
<td>De omvormer heeft gedetecteerd dat de somstroom geen nul is; meestal is dit een gevolg van een aardfout in de motor of de motorkabel.</td>
<td>Controleer dat er geen condensatoren voor arbeidsfactorcompensatie of afvlakcondensatoren in de motorkabel opgenomen zijn. Controleer motor en motorkabels op aardfouten:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- meet de isolatieweerstanden van motor en motorkabel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Als er geen aardfout gedetecteerd wordt, neem dan contact op met uw plaatselijke ABB-vertegenwoordiger.</td>
</tr>
<tr>
<td>ENC CABLE (7310)</td>
<td>Fasesignaal van de pulsgever ontbreekt.</td>
<td>Controleer de pulsgever en de bedrading ervan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controleer de interfacemodule van de pulsgever en de bedrading ervan.</td>
</tr>
<tr>
<td>ENCODER A<>B (7302)</td>
<td>Fasering pulsgever niet goed: fase A is aangesloten op klem van fase B en omgekeerd.</td>
<td>Verwissel de aansluitingen van de pulsgeverfasen A en B.</td>
</tr>
<tr>
<td>ENCODER (7301)</td>
<td>Communicatiefout tussen de pulsgever en interfacemodule van de pulsgever en tussen module en omvormer</td>
<td>Controleer pulsgever met bedrading, de interfacemodule van de pulsgever met bedrading, instellingen parameter groep 50 ENCODER MODULE.</td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>OORZAKEN</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>FAN OTEMP (FF83) 3.16 AW 4 bit 0</td>
<td>Te hoge temperatuur van de ventilator voor het uitgangsfilter van de omvormer. Bewaking is in gebruik bij step-up omvormers.</td>
<td>Stop de omvormer. Laat hem afkoelen. Controleer de omgevingstemperatuur. Controleer dat de ventilator in de juiste richting draait en dat de lucht vrijelijk kan stromen.</td>
</tr>
<tr>
<td>HW RECONF RQ (FF38)</td>
<td>Omvormertype (bv. sr0025_3) is gewijzigd. Omvormertype wordt doorgaans gewijzigd in de fabriek of tijdens implementatie van de omvormer.</td>
<td>Wacht tot het alarm POWEROFF! actief wordt en schakel de voeding van de stuurkaart uit om de wijziging van omvormer-type te valideren.</td>
</tr>
<tr>
<td>ID VOLTOOID (FF32)</td>
<td>De omvormer heeft de identificatiemagnetisatie van de motor uitgevoerd en is gereed voor bedrijf. Deze waarschuwing maakt deel uit van de normale opstartprocedure.</td>
<td>Ga door met gebruik van de omvormer.</td>
</tr>
<tr>
<td>ID MAGN (FF31)</td>
<td>Identificatiemagnetisatie van motor is gaande. Deze waarschuwing maakt deel uit van de normale opstartprocedure.</td>
<td>Wacht totdat de omvormer aangeeft dat de motoridentificatie is voltooid.</td>
</tr>
<tr>
<td>ID MAGN REQ (FF30)</td>
<td>Motoridentificatie is vereist. Deze waarschuwing maakt deel uit van de normale opstartprocedure. De omvormer verwacht dat de gebruiker aangeeft hoe de motoridentificatie moet worden uitgevoerd: door ID-magnetisatie of door een identificatie run.</td>
<td>Start de ID-magnetisatie door op de starttoets te drukken of kies het type identificatierun en start (zie parameter 99.10).</td>
</tr>
<tr>
<td>ID NR VERAND (FF68)</td>
<td>Het ID-nummer van de omvormer is van 1 in iets anders veranderd.</td>
<td>Zet het ID-nummer terug op 1. Zie hoofdstuk Bedieningspaneel.</td>
</tr>
<tr>
<td>ID RUN (FF35)</td>
<td>Motoridentificatierun is bezig.</td>
<td>Wacht tot de omvormer aangeeft dat de motoridentificatierun voltooid is.</td>
</tr>
<tr>
<td>ID RUN GESEL (FF33)</td>
<td>De motoridentificatierun is geselecteerd en de omvormer is gereed om de ID run te starten. Deze waarschuwing maakt deel uit van de ID runprocedure.</td>
<td>Druk op de starttoets om de identificatierun te starten.</td>
</tr>
<tr>
<td>NETSMOOR TEM (FF81) 3.18 AW 5 bit 4</td>
<td>Te hoge netsmoorspoeltemperatuur</td>
<td>Stop de omvormer. Laat hem afkoelen. Controleer de omgevingstemperatuur. Controleer of de ventilator in de juiste richting draait en de lucht vrij kan stromen.</td>
</tr>
<tr>
<td>INV STR LIM (2212) 3.18 AW 5 bit 8 (programmeerbare foutfunctie 30.23)</td>
<td>Interne omvormerstroom of -vermogen heeft de limiet overschreden.</td>
<td>Verminder de belasting of verhoog de hellintijd. Beperk het werkelijk vermogen van de omvormer of verlaag de referentiewaarde van de reactief vermogen generatie aan de ingangszijde van de omvormer (parameter 95.06 LCU Q PW REF). Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>INV DISABLED (3200) 3.18 AW 5 bit 6</td>
<td>Optionele DC schakelaar is geopend terwijl de unit gestopt werd.</td>
<td>Sluit de DC schakelaar. Controleer de AFSC-0x Fuse Switch Controller unit.</td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>INV OVERTEMP</td>
<td>Temperatuur van de omvormermodule is te hoog.</td>
<td>Controleer de omgevingstemperatuur. Als deze hoger is dan 40°C, zorg er dan voor dat de belastingsstroom de belastingscapaciteit, aangepast met deratingfactor, van de omvormer niet overschrijdt. Zie de betreffende hardware handleiding. Controleer of de instelling van de omgevingstemperatuur juist is (parameter 95.10). Controleer de koelluchtstroom en de werking van de ventilator van de omvormermodule. Kastinstallatie: Controleer de luchtinlaatfilters van de kast. Vervang deze indien nodig. Zie de betreffende hardware handleiding. Modules die door gebruiker in kast geïnstalleerd zijn: Controleer of koelluchtcirculatie in de kast voorkomen is met luchtgeleideplaten. Zie de installatievoorschriften van de module. Controleer of er stof verzameld is in de kast en het koellichaam van de omvormermodule. Maak schoon indien nodig.</td>
</tr>
<tr>
<td>IO CONFIG</td>
<td>Een in- of uitgang van een optionele I/O-uitbreidingsmodule of veldbusmodule is in het applicatieprogramma als signaalinterface gekozen maar de communicatie naar de betreffende I/O-uitbreidingsmodule is niet conform ingesteld.</td>
<td>Controleer de parameters van de foutfunctie. Controleer de instelling van parametergroep 98 OPTIMODULES.</td>
</tr>
<tr>
<td>MACRO WIJZIG</td>
<td>Macro wordt hersteld of een gebruikersmacro wordt opgeslagen.</td>
<td>Wacht tot de omvormer de taak heeft voltooid.</td>
</tr>
<tr>
<td>MOD BOARD T</td>
<td>Te hoge temperatuur in AINT-kaart van de omvormermodule.</td>
<td>Controleer de ventilator van de omvormer. Controleer de omgevingstemperatuur.</td>
</tr>
<tr>
<td>MOD CHoke T</td>
<td>Te hoge temperatuur in de choke van de vloeistofgekoelde R8i omvormermodule.</td>
<td>Controleer de ventilator van de omvormer. Controleer de omgevingstemperatuur. Controleer het vloeistofkoelsysteem.</td>
</tr>
<tr>
<td>MOT STR LIM</td>
<td>De omvormer beperkt de motorstroom volgens de stroomlimiet gedefinieerd door parameter 20.03 MAXIMUM STROOM.</td>
<td>Verminder de belasting of verhoog de hellingtijd. Verhoog de waarde van parameter 20.03 MAXIMUM STROOM. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MOTOR START (FF34)</td>
<td>De motoridentificatierun wordt gestart. Deze waarschuwing maakt deel uit van de ID runprocedure.</td>
<td>Wacht totdat de omvormer aangeeft dat de motoridentificatie is voltooid.</td>
</tr>
<tr>
<td>MOTORTEMP (4310) 3.08 AW 1 bit 3 (programmeerbare foutfunctie 30.04...30.09)</td>
<td>De temperatuur van de motor is te hoog (of lijkt te hoog). Dat kan worden veroorzaakt door overmatige belasting, onvoldoende motorvermogen, onvoldoende koeling of verkeerde opstartgegevens.</td>
<td>Controleer de nominale waarden, belasting en koeling van de motor. Controleer de opstartgegevens. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>MOTOR 1 TEMP (4312) 3.16 AW 4 bit 1</td>
<td>De gemeten motortemperatuur overschrijdt de alarmlimiet ingesteld door parameter 35.02.</td>
<td>Controleer de waarde van de alarmlimiet. Controleer of het werkelijke aantal sensoren overeenkomt met de ingestelde parameterwaarde. Laat de motor afkoelen. Zorg voor een goede motorkoeling: controleer de koelventilator, maak de koeloppervlakken schoon, enz..</td>
</tr>
<tr>
<td>MOTOR 2 TEMP (4313) 3.16 AW 4 bit 2</td>
<td>De gemeten motortemperatuur overschrijdt de alarmlimiet ingesteld door parameter 35.05.</td>
<td>Controleer de waarde van de alarmlimiet. Controleer of het werkelijke aantal sensoren overeenkomt met de ingestelde parameterwaarde. Laat de motor afkoelen. Zorg voor een goede motorkoeling: controleer de koelventilator, maak de koeloppervlakken schoon, enz..</td>
</tr>
<tr>
<td>MOT KOPP LIM (FF85) 3.18 AW 5 bit 11 (programmeerbare foutfunctie 30.23)</td>
<td>De omvormer beperkt het motorkoppel volgens de berekende motor losbreekkoppellimiet en minimum en maximum koppellimieten bepaald door parameters 20.13 en 20.14.</td>
<td>Informatief alarm Controleer de instelling van parameter 20.13 MIN KOPPELKEUZE en 20.14 MAX KOPPELKEUZE. Controleer de parameters van de foutfunctie. Als LIEMIET WOORD 1 bit 0 TORQ MOTOR LIM is 1, - controleer de instelling van de motorparameter (parameter groep 99 OPSTARTGEGEVENS) - zorg er voor dat de ID run succesvol voltooid is.</td>
</tr>
<tr>
<td>POINTER ERROR (FFD0)</td>
<td>Bronkeuzeparameter (pointer) wijst naar een niet bestaande parameterindex.</td>
<td>Controleer instelling bronkeuzeparameter (pointer).</td>
</tr>
</tbody>
</table>

Foutopsporing
<table>
<thead>
<tr>
<th>WAARSCHUWING</th>
<th>OORZAAK</th>
<th>OPLOSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>→POWEROFF! (FF:39)</td>
<td>Omvormertype (bv. sr0025_3) is gewijzigd. Omvormertype wordt doorgaans gewijzigd in de fabriek of tijdens implementatie van de omvormer.</td>
<td>Schakel de voeding van de stuurkaart uit om de wijziging van omvormertype te valideren.</td>
</tr>
<tr>
<td>PPCC LINK (5210) 3.06 FW 2 bit 11</td>
<td>Optische vezelverbinding naar de INT-kaart is defect.</td>
<td>Controleer de optische vezelkabels of galvanische verbinding. Bij frames R2-R6 is de verbinding galvanisch. Als RMIO gevoed wordt door externe voeding, controleer dan dat de voeding ingeschakeld is. Zie parameter 16.09 CTRL BOARD VOED. Controleer signaal 03.19. Neem contact op met de vertegenwoordiger van ABB als er fouten in signaal 3.19 actief zijn.</td>
</tr>
<tr>
<td>PPCC LINK xx (5210) 3.06 FW 2 bit 11 en 4.01</td>
<td>INT-kaart optische vezel aansluitfout in een van de parallel geschakelde omzettermodules. xx verwijst naar het nummer van de omzettermodule</td>
<td>Controleer de aansluiting van de hoofdcircuit-interfacekaart, INT naar de PPCC-verdeeleenheid, PBU. (Omvormermodule 1 is aangesloten op PBU INT1 etc.) Controleer signaal 03.19. Neem contact op met de vertegenwoordiger van ABB als er fouten in signaal 3.19 actief zijn.</td>
</tr>
<tr>
<td>PP OVERBEL (5482) 3.18 AW 5 bit 5</td>
<td>Te hoge IGBT junction to case temperatuur. Dit kan veroorzaakt worden door te hoge belasting bij lage frequenties (bijv. snelle richtingverandering bij een te hoge belasting en inertia).</td>
<td>Verhoog de hellingtijd. Verminder de belasting.</td>
</tr>
<tr>
<td>VERVANG VENT (4280) 3.18 AW 5 bit 0</td>
<td>Looptijd koelventilator van de omvormer heeft de geschatte levensduur overschreden.</td>
<td>Vervang de ventilator. Reset looptijdteller van de ventilator 01.44.</td>
</tr>
<tr>
<td>STARTVRIJGAVE (FF8E) 3.06 FW 2 bit 4</td>
<td>Geen startvrijgavesignaal ontvangen.</td>
<td>Controleer instelling van parameter 16.01. Schakel het signaal in of controleer de bedrading van de gekozen bron.</td>
</tr>
<tr>
<td>SLAAP MODE (FF8C) 3.16 AW 4 bit 4</td>
<td>De slaapfunctie is overgegaan naar de slaapmodus.</td>
<td>Zie parametergroep 40 PID REGELING.</td>
</tr>
<tr>
<td>START INHIBI (FF7A) AW 1 bit 0</td>
<td>Safe torque off functie is geactiveerd terwijl de omvormer gestopt werd. Of: Optionele “startblokking” hardware logica is geactiveerd.</td>
<td>Sluit de Safe torque off functie-schakelaar. Als de schakelaar gesloten is en de waarschuwing nog steeds actief is, controleer dan de voeding bij de ingangsklemmen van de ASTO-kaart. Vervang ASTO-kaart. Of: Controleer het startblokkeringscircuit (AGPS-kaart).</td>
</tr>
<tr>
<td>START INTERLOCK (FF8D)</td>
<td>Geen “start interlock”-signaal ontvangen.</td>
<td>Controleer de kring aangesloten op de “start interlock”-ingang op de RMIO-kaart.</td>
</tr>
</tbody>
</table>

Foutopsporing
<table>
<thead>
<tr>
<th>WAARSCHUWING</th>
<th>OORZAAK</th>
<th>OPLOSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNCHRO TOER (FF87) 3.18 AW 5 bit 1</td>
<td>Waarde van nominale motortoerental ingesteld bij parameter 99.08 is niet correct: De waarde ligt te dicht bij het synchrone toerental van de motor. Tolerantie bedraagt 0,1%. Deze waarschuwing is alleen actief in DTC modus.</td>
<td>Controleer nominale toerental op de motortypeplaat en stel parameter 99.08 in op precies dezelfde waarde.</td>
</tr>
<tr>
<td>TEMP DIF xx y (4380) 4.01 FOUTE INT INFO</td>
<td>Te hoog temperatuurverschil tussen verschillende parallel aangesloten omzettermodules. xx (1...12) verwijst naar het nummer van de omzettermodule en y verwijst naar de fase (U, V, W). Er wordt een alarm gegeven wanneer het temperatuurverschil 15°C is. Er wordt een fout gegeven wanneer het temperatuurverschil 20°C is. Te hoge temperatuur kan bijvoorbeeld veroorzaakt worden door een ongelijke stroomverdeling tussen parallel geschakelde omzetters.</td>
<td>Controleer de koelventilator. Vervang de ventilator. Controleer de luchtfilters.</td>
</tr>
<tr>
<td>THERMISTOR (4311) 3.08 AW 1 bit 2 (programmeerbare foutfunctie 30.04, 30.05)</td>
<td>De motortemperatuur is veel te hoog. TEMP SENSOR is gekozen als de thermische beveiligingsmodus van de motor.</td>
<td>Controleer nominale waarden en belasting van de motor. Controleer de opstartgegevens. Controleer de thermistoraansluitingen op digitale ingang DI6.</td>
</tr>
<tr>
<td>T MEET ALARM (FF91) 3.08 AW 1 bit 6</td>
<td>Motortemperatuurmeting is buiten toegestaan bereik</td>
<td>Controleer de aansluitingen van het meetcircuit voor de motortemperatuur. Zie hoofdstuk Programmakenmerken voor het bedradingsschema.</td>
</tr>
<tr>
<td>ONDERBELAST (FF6A) 3.09 AW 2 bit 1 (programmeerbare foutfunctie 30.13)</td>
<td>De motorbelasting is te laag vanwege bijvoorbeeld ontkoppelmechanismen in de aangedreven apparatuur.</td>
<td>Controleer op problemen met de aangedreven apparatuur. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>GEBR L CURVE (2312) 3.18 AW 5 bit 13</td>
<td>Geïntegreerde motorstroom heeft de belastingscurve overschreden gedefinieerd door parameters in groep 72 BEL CURVE GEBR.</td>
<td>Controleer de instelling van parametergroep 72 BEL CURVE GEBR. Verminder de belasting.</td>
</tr>
<tr>
<td>WAARSCHUWING</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>WEGSCHRIJF- FOUT</td>
<td>De wegschrijffunctie op het paneel is mislukt. Er zijn geen gegevens van het paneel naar de omvormer gekopieerd.</td>
<td>Zorg dat paneel in lokale modus is. Opnieuw proberen (mogelijke storing op de verbinding). Raadpleeg de vertegenwoordiger van ABB.</td>
</tr>
<tr>
<td>OMOVORMER IN BEDRIJF WEGSCHRIJVEN NIET MOGELIJK</td>
<td>Wegschrijven is niet mogelijk terwijl de motor draait.</td>
<td>Stop de motor. Voer het wegschrijven uit.</td>
</tr>
<tr>
<td>(4) = Paneeltype is niet compatibel met de versie van het applicatieprogramma van de omvormer.</td>
<td>Controleer het paneeltype en de versie van het applicatieprogramma van de omvormer. U vindt het paneeltype op de kap van het paneel. De versie van het softwareprogramma is opgeslagen in parameter 33.02.</td>
<td></td>
</tr>
<tr>
<td>GEEN ID- NUMMERS VRIJ ID-NUMMER INSTELLING NIET MOGELIJK</td>
<td>De paneelverbinding bevat al 31 stations.</td>
<td>Verbreek de verbinding met een ander station om een ID-nummer vrij te maken.</td>
</tr>
<tr>
<td>NIET GELEZEN WEGSCHRIJVEN NIET MOGELIJK</td>
<td>Er is geen leesfunctie uitgevoerd.</td>
<td>Voer leesfunctie uit voordat u wegschrijft. Zie het hoofdstuk Bedieningspaneel.</td>
</tr>
<tr>
<td>LEESFOUT</td>
<td>De leesfunctie van het paneel is mislukt. Er zijn geen gegevens van de omvormer naar het paneel gekopieerd.</td>
<td>Opnieuw proberen (mogelijke storing op de verbinding). Raadpleeg de vertegenwoordiger van ABB.</td>
</tr>
<tr>
<td>SCHRIJVEN ONMOGELIJK PARAMETER INSTELLING NIET MOGELIJK</td>
<td>Bepaalde parameters kunnen niet worden gewijzigd terwijl de motor draait. Als u dit toch probeert, wordt de wijziging niet geaccepteerd en verschijnt er een waarschuwing. Het parameterslot is actief.</td>
<td>Stop de motor en wijzig daarna de parameterwaarde.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open het parameterslot (zie parameter 16.02).</td>
</tr>
</tbody>
</table>
Foutmeldingen gegenereerd door de omvormer

<table>
<thead>
<tr>
<th>FOUT</th>
<th>OORZAAK</th>
<th>OPLOSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS800 TEMP (4210) 3.05 FW 1 bit 3</td>
<td>IGBT temperatuur van de omvormer veel te hoog. De limiet voor het optreden van een fout is 100%.</td>
<td>Controleer omgevingscondities. Controleer luchtstroom en werking van de ventilator. Controleer koellichaamribben op stofafzetting. Controleer motorvermogen t.o.v. omvormervermogen.</td>
</tr>
<tr>
<td>ACS TEMP xx y (4210) 3.05 FW 1 bit 3 en 4.01</td>
<td>Te hoge interne temperatuur in een van de parallel geschakelde omzettermodules. xx(1...12) verwijst naar het nummer van de omzettermodule en y verwijst naar de fase (U, V, W).</td>
<td>Controleer omgevingscondities. Controleer luchtstroom en werking van de ventilator. Controleer koellichaamribben op stofafzetting. Controleer motorvermogen t.o.v. omvormervermogen.</td>
</tr>
<tr>
<td>AI < MIN FUNC (8110) 3.06 FW 2 bit 10 (programmeerbare foutfunctie 30.01)</td>
<td>Een analoog besturingssignaal ligt onder de minimaal toegestane waarde. Dit kan een gevolg zijn van een verkeerd signaalniveau of een fout in de besturingsbedrading.</td>
<td>Controleer de niveaus van analoge besturingssignalen. Controleer de bedrading van de besturing. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>AD [bericht]</td>
<td>Bericht gegenereerd door een EVENT-blok in het Adaptieve programma.</td>
<td>Zie de handleiding of neem contact op met de maker van het Adaptieve programma.</td>
</tr>
<tr>
<td>REMCH OVERB (7114) 3.17 FW 5 bit 4</td>
<td>Remchopper overbelast</td>
<td>Laat chopper afkoelen. Controleer parameterinstellingen van beveiligingsfunctie voor overbelasting van weerstand (zie parametergroep 27 REMCHOPPER). Controleer of remcyclus tussen de toegestane grenzen ligt. Controleer of AC voedingsspanning van de omvormer niet te hoog is.</td>
</tr>
<tr>
<td>REMCH KORTSL (7113) 3.17 FW 5 bit 2</td>
<td>Kortsluiting in IGBT(s) van de remchopper.</td>
<td>Vervang remchopper. Zorg dat de remweerstand is aangesloten en niet is beschadigd.</td>
</tr>
<tr>
<td>REM BEVESTIG (FF74) 3.15 FW 4 bit 3</td>
<td>Onverwachte status van het rembevestigingssignaal</td>
<td>Zie parametergroep 42 MECH REMBEST. Controleer de aansluiting van het remterugmeldingssignaal.</td>
</tr>
<tr>
<td>FOUT</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3.17 FW 5 bit 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMWRS KABEL (7111)</td>
<td>Verkeerde aansluiting van de remweerstand.</td>
<td>Controleer aansluiting van de remweerstand. Zorg dat de remweerstand niet is beschadigd.</td>
</tr>
<tr>
<td>3.17 FW 5 bit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOKE OTEMP (FF82)</td>
<td>Te hoge temperatuur van het uitgangsfilter van de omvormer. Bewaking is in gebruik bij step-up omvormers.</td>
<td>Laat de omvormer afkoelen. Controleer de omgevingstemperatuur. Controleer of filterventilator in de juiste richting draait en er vrije luchstroming is.</td>
</tr>
<tr>
<td>3.06 FW 2 bit 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(programmeerbare foutfunctie 30.18, 30.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.06 FW 2 bit 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STROOMMETING (2211)</td>
<td>Defect in stroomtransformator van de meetkring voor uitgangsstroom.</td>
<td>Controleer aansluitingen van stroomtransformator met interfacekaart van het hoofdcircuit, INT.</td>
</tr>
<tr>
<td>STROOM UNBAL xx</td>
<td>De omvormer heeft gedetecteerd dat er een te hoge uitgangsstroom-onbalans is in de unit van verscheidene parallelgeschakelde omvormermodules. Dit kan veroorzaakt worden door een externe fout (aardfout, motor, motorbekabeling, etc.) of een interne fout (beschadigde omvormercomponent). xx (1...12) verwijst naar het nummer van de omvormermodule.</td>
<td>Controleer dat er geen condensatoren voor arbeidsfactorcompensatie of afvlakcondensatoren in de motorkabel opgenomen zijn. Controleer motor en motorkabel op aardfouten: - meet de isolatieweerstanden van motor en motorkabel. Als er geen aardfout gedetecteerd wordt, neem dan contact op met uw plaatselijke ABB-vertegenwoordiger.</td>
</tr>
<tr>
<td>2330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05 FW 1 bit 4 en 4.01 (programmeerbare foutfunctie 30.17)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foutopsporing
<table>
<thead>
<tr>
<th>FOUT</th>
<th>OORZAAK</th>
<th>OPLOSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC HOGE PIEK (FF80)</td>
<td>Voedingsspanning naar omvormer is te hoog. Wanneer voedingsspanning meer dan 124% van de nominale spanning van de omvormer bedraagt (415, 500 of 690 V), piekt het motortoerental bij de uitschakellimiet (40% van het nominale toerental).</td>
<td>Controleer voedingsspanning, nominale spanning van de omvormer en toegestaan spanningsbereik van de omvormer.</td>
</tr>
<tr>
<td>DC OVERSPAN (3210) 3.05 FW 1 bit 2</td>
<td>DC-spanning van tussenkring is te hoog. De uitschakellimiet voor DC-overspanning is $1,3 \times 1,35 \times U_{\text{1max}}$, waarbij U_{1max} de maximumwaarde van het voedingsspanningsbereik is. Voor 400 V units, U_{1max} is 415 V. Voor 500 V units, U_{1max} is 500 V. Voor 690 V units, U_{1max} is 690 V. Actuele spanning in de tussenkring die overeenkomt met het voedingsspanningstripniveau is 728 V DC voor 400 V units, 877 V DC voor 500 V units, en 1210 V DC voor 690 V units.</td>
<td>Controleer dat overspanningsregeling actief is (parameter 20.05). Controleer voedingsspanning op statische of tijdelijke overspanning. Controleer remchopper en weerstand (indien gebruikt). Controleer deceleratietijd. Gebruik uitloopstopfunctie (indien van toepassing). Voorzie frequentieomvormer van remchopper en remweerstand.</td>
</tr>
<tr>
<td>DC ONDERSPAN (3220) 3.06 FW 2 bit 2</td>
<td>DC-spanning in tussenkring te laag. Kan worden veroorzaakt door een ontbrekende voedingsspanningfase, aangesproken zekering of een interne fout van de gelijkrichtbrug. De uitschakellimiet voor DC-onderspanning is $0,6 \times 1,35 \times U_{\text{1min}}$, waarbij U_{1min} de minimale waarde van het voedingsspanningsbereik is. Voor 400 V- en 500 V-omvormers is U_{1min} 380 V. Voor 690 V-omvormers is U_{1min} 525 V. De feitelijke spanning in het tussenliggende circuit overeenkomend met het uitschakel niveau van de voedingsspanning is 307 V DC voor 400 V- en 500 V-omvormers en 425 V DC voor 690 V-omvormers.</td>
<td>Controleer de voeding en de zekeringen.</td>
</tr>
<tr>
<td>AARDFOUT (2330) 3.05 FW 1 bit 4 (programmeerbare foutfunctie 30.17)</td>
<td>De omvormer heeft gedetecteerd dat de somstroom geen nul is; meestal is dit een gevolg van een aardfout in de motor of de motorkabel.</td>
<td>Controleer dat er geen condensatoren voor arbeidsfactorcompensatie of afvlakcondensatoren in de motorkabel opgenomen zijn. Controleer motor en motorkabel op aardfouten: - meet de isolatieweerstanden van motor en motorkabel. Als er geen aardfout gedetecteerd wordt, neem dan contact op met uw plaatselijke ABB-vertegenwoordiger.</td>
</tr>
<tr>
<td>ENC CABLE (7310) 3.33 FW 6 bit 2 (programmeerbare foutfunctie 50.07)</td>
<td>Fasesignaal van de pulsgever ontbreekt.</td>
<td>Controleer de pulsgever en de bedrading ervan. Controleer de interfacemodule van de pulsgever en de bedrading ervan.</td>
</tr>
</tbody>
</table>
Foutopsporing

<table>
<thead>
<tr>
<th>FOUT</th>
<th>OORZAAK</th>
<th>OPLOSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCODER A<>B (7302)</td>
<td>Fasering pulsgever niet goed: fase A is aangesloten op klem van fase B en omgekeerd.</td>
<td>Verwissel de aansluitingen van de pulsgeverfasen A en B.</td>
</tr>
<tr>
<td>ENCODER (7301) 3.06 FW 2 bit 5</td>
<td>Communicatiefout tussen de pulsgever en interfacemodule van de pulsgever en tussen module en omvormer</td>
<td>Controleer pulsgever met bedrading, de interfacemodule van de pulsgever met bedrading en instellingen parametergroep 50 ENCODER MODULE.</td>
</tr>
<tr>
<td>EXTERNE FOUT (9000) 3.06 FW 2 bit 8 (programmeerbar foutfunctie 30.03)</td>
<td>Fout in een van de externe apparaten. (Deze informatie wordt geconfigureerd via een van de programmeerbare digitale ingangen.)</td>
<td>Controleer externe apparaatuur op defecten. Controleer parameter 30.03 EXTERNE FOUT.</td>
</tr>
<tr>
<td>FORCED TRIP (FF8F)</td>
<td>Foutcommando van Generic Drive Communicatieprofiel</td>
<td>Zie de handleiding van de betreffende communicatiemodule.</td>
</tr>
<tr>
<td>GD DISABLED (FF53)</td>
<td>AGPS voeding van de parallel aangesloten R8i invertermodule is uitgeschakeld tijdens bedrijf. X (1...12) verwijst naar het nummer van de invertermodule.</td>
<td>Controleer het ‘Preventie van onverwacht opstarten’-circuit. Vervang de AGPS-kaart van R8i invertermodule.</td>
</tr>
<tr>
<td>ID RUN FOUT (FF84)</td>
<td>De motoridentificatierun is niet met succes uitgevoerd.</td>
<td>Controleer maximale toerental (parameter 20.02). Dit moet ten minste 80% zijn van het nominale motortoerental (parameter 99.08).</td>
</tr>
<tr>
<td>INT CONFIG (5410) 03.17 FW 5 bit 10</td>
<td>Aantal omvormermodules is niet gelijk aan het originele aantal omvormers.</td>
<td>Controleer de status van de omzetters. Zie signaal 04.01 FOUTE INT INFO. Controleer de glasvezelkabels tussen APBU en omvormermodules. Als de Reduced Run functie gebruikt is, verwijder dan de foutemzettermodule uit het hoofdcircuit en schrijf het aantal overgebleven omzettermodule naar parameter 95.03 INT CONFIG USER. Reset de omvormer.</td>
</tr>
<tr>
<td>INV DISABLED 03.17 FW 5 bit 7 (3200)</td>
<td>Optionele DC schakelaar is geopend terwijl de unit in werking was of een startopdracht werd gegeven.</td>
<td>Sluit de DC schakelaar. Controleer de AFSC-0x Fuse Switch Controller unit.</td>
</tr>
</tbody>
</table>
FOUT OORZAAK OPLSING

<table>
<thead>
<tr>
<th>FOUT</th>
<th>OORZAAK</th>
<th>OPLSSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV OVERTEMP (4290) 3.17 FW 5 bit 13</td>
<td>Temperatuur van de omvormermodule is te hoog.</td>
<td>Controleer de omgevingstemperatuur. Als deze hoger is dan 40°C, zorg er dan voor dat de belastingsstroom de belastingscapaciteit, aangepast met deratingfactor, van de omvormer niet overschrijdt. Zie de betreffende hardware handleiding. Controleer of de instelling van de omgevingstemperatuur juist is (parameter 95.10). Controleer de koelluchtstroming en de werking van de ventilator van de omvormermodule. Kastinstallatie: Controleer de luchtinlaatfilters van de kast. Vervang deze indien nodig. Zie de betreffende hardware handleiding. Modules die door gebruiker in kast geïnstalleerd zijn: Controleer of koelluchtcirculatie in de kast voorkomen is met luchtgeleideplaten. Zie de installatievoorschriften van de module. Controleer of er stof verzameld is in de kast en het koellichaam van de omvormermodule. Maak schoon indien nodig. Reset en herstart nadat het probleem opgelost is en laat de omvormermodule afkoelen.</td>
</tr>
<tr>
<td>I/O COMM FT (7000) 3.06 FW 2 bit 6</td>
<td>Communicatiefout op de besturingskaart, kanaal CH1. Elektromagnetische interferentie.</td>
<td>Controleer aansluitingen van de optische vezelkabels op kanaal CH1. Controleer alle I/O-modules (indien aanwezig) aangesloten op kanaal CH1. Controleer of de apparatuur goed is geaard. Controleer op sterk emitterende componenten in directe omgeving</td>
</tr>
<tr>
<td>INGANGSBRUG (FF51)</td>
<td>Fout aan de ingangszijde van de omvormer.</td>
<td>Schuif paneel van besturingskaart van de omvormer aan motorzijde naar besturingskaart van de omvormer aan ingangszijde. Zie handleiding van de omvormer aan ingangszijde voor beschrijving van de fout.</td>
</tr>
<tr>
<td>MOD BOARD T (FF88)</td>
<td>Te hoge temperatuur in AINT-kaart van de omvormermodule.</td>
<td>Controleer de ventilator van de omvormer. Controleer de omgevingstemperatuur.</td>
</tr>
<tr>
<td>MOD CHOKE T (FF89)</td>
<td>Te hoge temperatuur in de choke van de vloeistofgekoelde R8i omvormermodule.</td>
<td>Controleer de ventilator van de omvormer. Controleer de omgevingstemperatuur. Controleer het vloeistofkoelsysteem.</td>
</tr>
<tr>
<td>MOTORFASE (FF56) 3.06 FW 2 bit 15 (programmeerbare foutfunctie 30.16)</td>
<td>Een van de motorfasen is uitgevallen. Dat kan worden veroorzaakt door een fout in de motor, de motorkabel of een thermisch relais (indien gebruikt), of door een interne fout.</td>
<td>Controleer motor en motorkabel. Controleer thermisch relais (indien gebruikt). Controleer de parameters van de foutfunctie. Hef deze beveiliging op.</td>
</tr>
<tr>
<td>FOUT</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>(7121)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.06 FW 2 bit 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(programmeerbare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foutfunctie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.10…30.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTORTEMP</td>
<td>De temperatuur van de motor is te hoog (of lijkt te hoog). Dat kan worden veroorzaakt door overmatige belasting, onvoldoende motorvermogen, onvoldoende koeling of verkeerde opstartgegevens.</td>
<td>Controleer nominale waarden en belasting van de motor. Controleer de opstartgegevens. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>(4310)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05 FW 1 bit 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(programmeerbare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foutfunctie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.04, 30.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR 1 TEMP</td>
<td>De gemeten motortemperatuur overschrijdt de foutlimiet ingesteld door parameter 35.03.</td>
<td>Controleer de waarde van de foutlimiet. Laat de motor afkoelen. Zorg voor een goede motorkoeling: controleer de koelventilator, maak de koeloppervlakken schoon, enz..</td>
</tr>
<tr>
<td>(4312)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15 FW 4 bit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR 2 TEMP</td>
<td>De gemeten motortemperatuur overschrijdt de foutlimiet ingesteld door parameter 35.06.</td>
<td>Controleer de waarde van de foutlimiet. Laat de motor afkoelen. Zorg voor een goede motorkoeling: controleer de koelventilator, maak de koeloppervlakken schoon, enz..</td>
</tr>
<tr>
<td>(4313)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15 FW 4 bit 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEEN M-DATA</td>
<td>Er zijn geen motorgegevens opgegeven of de motorgegevens komen niet overeen met de gegevens van de omvormer.</td>
<td>Controleer de motorgegevens die worden opgegeven door parameters 99.04…99.09.</td>
</tr>
<tr>
<td>(FF52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.06 FW 2 bit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2310)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05 FW 1 bit 1 en 4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2310)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05 FW 1 bit 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOUT</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>OVERFREQ</td>
<td>De motor draait sneller dan het hoogst toegestane toerental. Dat kan komen door een verkeerd ingesteld minimum-/maximumtoerental, onvoldoende remkoppel of wijzigingen in de belasting wanneer koppelfrequentie wordt gebruikt. Het uitschakelniveau is 50 Hz boven het absolute maximumtoerental van het werkbereik (als de Direct Torque Control-modus actief is) of de frequentielimiet (als de Scalarmodus actief is). De limieten van het werkbereik worden ingesteld door de parameters 20.01 en 20.02 (DTC-modus actief) of 20.07 en 20.08 (Scalarmodus actief).</td>
<td>Controleer instellingen van minimum-/maximumtoerental. Controleer of motorremkoppel adequaat is. Controleer de toepasbaarheid van de koppelfrequentie. Controleer de noodzaak van een remchopper en remweerstand(en).</td>
</tr>
<tr>
<td>OVER SWFREQ (FF55)</td>
<td>Schakelfrequentie is te hoog.</td>
<td>Controleer de instellingen van de motorparameters (parameter groep 99 OPSTARTGEVENS) Zorg er voor dat de ID run met succes voltooid is.</td>
</tr>
<tr>
<td>PARAM CRC (6320)</td>
<td>CRC (Cyclic Redundancy Check) fout</td>
<td>Schakel de voeding van de stuurkaart uit en weer in. Laad de firmware opnieuw naar de stuurkaart. Vervang de stuurkaart.</td>
</tr>
<tr>
<td>FOUT</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PPCC LINK (5210) 3.06 FW 2 bit 11</td>
<td>Optische vezelverbinding naar de INT-kaart is defect.</td>
<td>Controleer de optische vezelkables of galvanische verbinding. Bij frames R2-R6 is de verbinding galvanisch. Als RMIO gevoed wordt door externe voeding, controleer dan dat de voeding ingeschakeld is. Zie parameter 16.09 CTRL BOARD VOED. Controleer signaal 03.19. Neem contact op met de vertegenwoordiger van ABB als er fouten in signaal 3.19 actief zijn.</td>
</tr>
<tr>
<td>PPCC LINK xx (5210) 3.06 FW 2 bit 11 en 4.01</td>
<td>INT-kaart optische vezel aansluitfout in een van de parallelgeschakelde omzettermodules. xx verwijst naar het nummer van de omzettermodule</td>
<td>Controleer de aansluiting van de hoofdcircuit-interfacekaart, INT naar de PPCC-verdeeleenheid, PBU. (Omvormermodule 1 is aangesloten op PBU INT1 etc.) Controleer signaal 03.19. Neem contact op met de vertegenwoordiger van ABB als er fouten in signaal 3.19 actief zijn.</td>
</tr>
<tr>
<td>PP OVERBEL (5482) 3.17 FW 5 bit 6</td>
<td>Te hoge IGBT junction to case temperatuur. Deze fout beschermt IGBT(s) en kan geactiveerd worden door kortsluiting bij uitgang van lange motorkables.</td>
<td>Controleer motorkables.</td>
</tr>
<tr>
<td>KORTSLU xx y (2340) 3.05 FW 1 bit 0, 4.01 en 4.02</td>
<td>Kortsluiting in een van de parallelgeschakelde omzettermodules. xx (1…12) verwijst naar het nummer van de omzettermodule en y verwijst naar fase (U, V, W).</td>
<td>Controleer motor en motorkabel. Controleer vermogen halfgeleiders (IGBTs) van de omzettermodule.</td>
</tr>
<tr>
<td>KORTSLUITING (2340) 3.05 FW 1 bit 0 en 4.02</td>
<td>Kortsluiting in motorkabel(s) of motor. Uitgangsbrug van de omvormer is defect.</td>
<td>Controleer motor en motorkabel. Controleer dat er geen condensatoren voor arbeidsfactorcompensatie of afvlakcondensatoren in de motorkabel opgenomen zijn. Raadpleeg de vertegenwoordiger van ABB.</td>
</tr>
<tr>
<td>SLOT OVERLAP (FF8A)</td>
<td>Twee optiemodules hebben dezelfde gekozen aansluitinterface.</td>
<td>Controleer de keuzes van aansluitinterface in groep 98 OPTIMODULES.</td>
</tr>
<tr>
<td>START INHIBI (FF7A) 3.03 bit 8</td>
<td>Safe torque off is geactiveerd terwijl de motor draaide of er is een motorstartopdracht gegeven terwijl Safe torque off actief is. Of: Optionele “startblokkering” hardware logica is geactiveerd.</td>
<td>Sluit de Safe torque off schakelaar. Als de schakelaar gesloten is en de fout nog steeds actief is, controleer dan de voeding bij de ingangsklemmen van de ASTO-kaart. Vervang ASTO-kaart. Of: Controleer het startblokkeringscircuit (AGPS-kaart).</td>
</tr>
<tr>
<td>NETFASE (3130) 3.06 FW 2 bit 0</td>
<td>DC-spanning van tussenkring oscilleert. Dat kan worden veroorzaakt door een ontbrekende voedingsspanning fase, een aangesproken zekering of een interne fout van de gelijkrichtbrug. Uitschakeling treedt op wanneer de spanningsrimpel 13% van de DC-spanning bedraagt.</td>
<td>Controleer de zekeringen van de voeding. Controleer de voeding op onbalans.</td>
</tr>
<tr>
<td>FOUT</td>
<td>OORZAAK</td>
<td>OPLOSSING</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>TEMP DIF xx y (4380) 3.17 FW 5 bit 8 en 4.01</td>
<td>Te hoog temperatuurverschil tussen verschillende parallelgeschakelde omzettermodules. xx(1...12) verwijst naar het nummer van de omzettermodule en y verwijst naar de fase (U, V, W). Er wordt een alarm gegeven wanneer het temperatuurverschil 15°C is. Er wordt een fout gegeven wanneer het temperatuurverschil 20°C is. Te hoge temperatuur kan bijvoorbeeld veroorzaakt worden door een ongelijke stroomverdeling tussen parallelgeschakelde omzitters.</td>
<td>Controleer de koelventilator. Vervang de ventilator. Controleer de luchtfilters.</td>
</tr>
<tr>
<td>THERM MODE (FF50)</td>
<td>De thermische beveiliging van de motor is ingesteld op DTC voor een motor met hoog vermogen.</td>
<td>Zie parameter 30.05.</td>
</tr>
<tr>
<td>THERMISTOR (4311) 3.05 FW 1 bit 5 (programmeerbaar foutfunctie 30.04, 30.05)</td>
<td>De motortemperatuur is veel te hoog. TEMP SENSOR is gekozen als de thermische beveiligingsmodus van de motor.</td>
<td>Controleer nominale waarden en belasting van de motor. Controleer de opstartgegevens. Controleer de thermistoraansluitingen op digitale ingang DI6.</td>
</tr>
<tr>
<td>ONDERBELAST (FF6A) 3.05 FW 1 bit 8 (programmeerbaar foutfunctie 30.13...30.15)</td>
<td>De motorbelasting is te laag vanwege bijvoorbeeld ontkoppelmechanismen in de aangedreven apparatuur.</td>
<td>Controleer op problemen met de aangedreven apparatuur. Controleer de parameters van de foutfunctie.</td>
</tr>
<tr>
<td>GEBR L CURVE (2312) 3.17 FW 5 bit 11</td>
<td>Geïntegreerde motorstroom heeft de belastingscurve, gedefinieerd door parametergroep, overschreden 72 BEL CURVE GEBR.</td>
<td>Controleer de instelling van parametergroep 72 BEL CURVE GEBR. Nadat de motorkoeltijd bepaald door parameter 72.20 BEL AFKOELTIJD verstreken is, kan de fout gereset worden.</td>
</tr>
<tr>
<td>G1/G2 (FFA1) 3.07 SFW bit 1</td>
<td>Geen gebruikersmacro opgeslagen of het bestand is beschadigd.</td>
<td>Maak gebruikersmacro.</td>
</tr>
</tbody>
</table>
Analoge uitbreidingsmodule

Overzicht

Dit hoofdstuk beschrijft het gebruik van de analoge uitbreidingsmodule RAIO als interface voor de toerentalreferentie van de ACS800 voorzien van het standaardbesturingsprogramma.

Toerenregeling via de analoge uitbreidingsmodule

Er worden twee varianten beschreven:
• Bipolaire ingang bij standaardtoerenregeling
• Bipolaire ingang bij joystickbesturing

Deze beschrijving omvat uitsluitend het gebruik van een bipolaire ingang (± signaalbereik). Het gebruik van een unipolaire ingang correspondeert met dat van een standaardingang als:
• de hieronder beschreven instellingen zijn uitgevoerd, en
• de communicatie tussen de module en omvormer met parameters is geactiveerd98.06.

Basiscontroles

Zorg dat de omvormer:
• is geïnstalleerd en in bedrijf is genomen, en dat
• de externe start- en stopsignalen zijn aangesloten.

Zorg dat voor de uitbreidmodule:
• de instellingen zijn aangepast. (Zie hieronder.)
• de module is geïnstalleerd en het referentiesignaal is aangesloten op AI1.
• de module is aangesloten op de omvormer.

Instellingen van de analoge uitbreidingsmodule en omvormer

• Stel het nodeadres van de omvormer in op 5 (niet nodig als de module is geïnstalleerd in het optieslot van de omvormer).
• Kies het signaaltypenode voor de module-ingang AI1 (DIP-switch).
• Kies de bedrijfsmodus (unipolaar/bipolaar) van de module-ingang (DIP-switch).
• Zorg dat de parameterinstellingen van de omvormer overeenvallen met de modus van de module-ingangen (parameter 98.13 en 98.14).
• Stel de parameters van de omvormer in (zie het betreffende onderdeel op de volgende pagina's).
Parameterinstellingen: bipolaire ingang bij standaard toerenregeling

De onderstaande tabel geeft de parameters die van invloed zijn op de verwerking van de toerentalreferentie ontvangen via de bipolaire ingang AI1 van de uitbreidingsmodule (AI5 van de omvormer).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.06 EXT AI/O MODULE</td>
<td>RAIO-SLOT1</td>
</tr>
<tr>
<td>98.13 AI/O EXT AI1 FUNC</td>
<td>BIPO AI5</td>
</tr>
<tr>
<td>10.03 DRAAIRICHTING</td>
<td>VOORUIT, ACHTERUIT, VERZOEK<sup>1</sup></td>
</tr>
<tr>
<td>11.02 EXT1/EXT2 KEUZE</td>
<td>EXT1</td>
</tr>
<tr>
<td>11.03 EXTERN REF1 KEUZE</td>
<td>Ai5</td>
</tr>
<tr>
<td>11.04 EXTERN REF1 MIN</td>
<td>minREF1</td>
</tr>
<tr>
<td>11.05 EXTERN REF1 MAX</td>
<td>maxREF1</td>
</tr>
<tr>
<td>13.16 MINIMUM AI5</td>
<td>minAI5</td>
</tr>
<tr>
<td>13.17 MAXIMUM AI5</td>
<td>maxAI5</td>
</tr>
<tr>
<td>13.18 SCHAALFACTOR AI5</td>
<td>100%</td>
</tr>
<tr>
<td>13.20 INVERTEREN AI5</td>
<td>NEE</td>
</tr>
<tr>
<td>30.01 AI < MIN FUNCTIE</td>
<td><sup>2</sup></td>
</tr>
</tbody>
</table>

Onderstaande afbeelding geeft de toerentalreferentie weer die correspondeert met de bipolaire ingang AI1 van de uitbreidingsmodule.

¹ Voor het negatief toerentalbereik moet de omvormer een aparte inversieopdracht ontvangen.

² Instellen als living-zero-bewaking wordt toegepast.

Analoog ingangssignaal

- minAI5 = 13.16 MINIMUM AI5
- maxAI5 = 13.17 MAXIMUM AI5
- geschaald maxREF1 = 13.18 SCHAALFACTOR AI5 x 11.05 EXTERN REF1 MAX
- minREF1 = 11.04 EXTERN REF1 MIN
Parameterinstellingen: bipolaire ingang bij joystickbesturing

De onderstaande tabel bevat de parameters die van invloed zijn op de verwerking van de toerental- en richtingreferenties ontvangen via de bipolaire ingang AI1 van de uitbreidingsmodule (AI5 van de omvormer).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.06 EXT AI/O MODULE</td>
<td>RAIO-SLOT1</td>
</tr>
<tr>
<td>98.13 AI/O EXT AI1 FUNC</td>
<td>BIPO AI5</td>
</tr>
<tr>
<td>10.03 DRAAIRICHTING</td>
<td>VOORUIT, ACHTERUIT, VERZOEK(1)</td>
</tr>
<tr>
<td>11.02 EXT1/EXT2 KEUZE</td>
<td>EXT1</td>
</tr>
<tr>
<td>11.03 EXTERN REF1 KEUZE</td>
<td>AI5/JOYST</td>
</tr>
<tr>
<td>11.04 EXTERN REF1 MIN</td>
<td>minREF1</td>
</tr>
<tr>
<td>11.05 EXTERN REF1 MAX</td>
<td>maxREF1</td>
</tr>
<tr>
<td>13.16 MINIMUM AI5</td>
<td>minAI5</td>
</tr>
<tr>
<td>13.17 MAXIMUM AI5</td>
<td>maxAI5</td>
</tr>
<tr>
<td>13.18 SCHAALFACTOR AI5</td>
<td>100%</td>
</tr>
<tr>
<td>13.20 INVERTEREN AI5</td>
<td>NEE</td>
</tr>
<tr>
<td>30.01 AI < MIN FUNCTIE</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Onderstaande afbeelding geeft de toerentalreferentie weer die correspondeert met de bipolaire ingang AI1 van de uitbreidingsmodule in joystickmodus.

1) Activeert het gebruik van zowel het positief als negatief toerentalbereik.
2) Instellen als living-zero-bewaking wordt toegepast.
Analoge uitbreidingsmodule
Aanvullende gegevens: actuele gegevens en parameters

Overzicht

Dit hoofdstuk beschrijft de actuele gegevens en parameters met enige aanvullende gegevens. Voor de beschrijvingen, zie het hoofdstuk *Actuele signalen en parameters*.

Termen en afkortingen

<table>
<thead>
<tr>
<th>Term</th>
<th>Betekenis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB</td>
<td>Profibus equivalent van omvormerparameters die via de NPBA-12 Profibus adapter communiceren.</td>
</tr>
<tr>
<td>FbEq</td>
<td>Veldbusequivalent: De schaling tussen de waarde weergegeven op de display en de in de seriële communicatie gebruikte integer.</td>
</tr>
<tr>
<td>Absoluut frequentiemaximum</td>
<td>Waarde van 20.08 of 20.07 als de absolute waarde van de onderlimiet groter is dan de bovenlimiet.</td>
</tr>
<tr>
<td>Absoluut toerentalmaximum</td>
<td>Waarde van parameter 20.02 of 20.01 als de absolute waarde van de onderlimiet groter is dan de bovenlimiet.</td>
</tr>
</tbody>
</table>
| W | Schrijftoegang is niet toegestaan als de motor draait. |}

Veldbusadressen

Rxxx adaptermodules (zoals RPBA-01, RDNA-01, etc.)

Zie de gebruikershandleiding van de betreffende veldbusadaptermodule.

Adaptermodules van het type (zoals NPBA-12, NDNA-02, etc.)

NPBA-12 Profibus Adapter:

Alle versies
- Zie kolom PB in onderstaande tabellen.
Versie 1.5 of later
- zie *NPBA-12 PROFIBUS Adapter Installation and Start-Up Guide* [3BFE64341588 (Engels)].

Het lezen of schrijven van een omvormerparameter is ook mogelijk door de parametergroep (PNU) en de parameterindex (subindex) naar hexadecimaal te converteren.
Voorbeeld: parameter voor de omvormer 12.07:
12 = 0C(hex)
07 = 07(hex) => 0C07.

Waar de aanvraaglabel voor aanvraagparameter is 6. Waar de aanvraaglabel voor veranderingsparameter is 7. NB: Niet elke parameter heeft een equivalente waarde voor Profibus (PB).

NIBA-01 InterBus-S Adapter:

- xxxyy · 100 + 12288 omgezet naar hexadecimaal, waarbij xxxyy = nummer van de omvormerparameter
Voorbeeld: De index voor omvormerparameter 13.09 is 1309 + 12288 = 13597 (dec) = 351D (hex)

NMBP-01 ModbusPlus® Adapter en NMBA-01 Modbus Adapter

- 4xxyy, waarbij xxyy = nummer parameter omvormer
Actuele gegevens

<table>
<thead>
<tr>
<th>Index</th>
<th>Benaming</th>
<th>Korte naam</th>
<th>FbEq</th>
<th>Einheid</th>
<th>Bereik</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01</td>
<td>PROCES DATA</td>
<td>PROCDATA</td>
<td>1 = 1</td>
<td></td>
<td>Overeenkomst parameter 34.02</td>
<td>1</td>
</tr>
<tr>
<td>01.02</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>-20000 = -100% 20000 = 100% van abs. toerental max. motor</td>
<td>rpm</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>01.03</td>
<td>FREQUENTIE</td>
<td>FREQ</td>
<td>-100 = -1 Hz 100 = 1 Hz</td>
<td>Hz</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>01.04</td>
<td>STROOM</td>
<td>STROOM</td>
<td>10 = 1 A</td>
<td></td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>01.05</td>
<td>KOPPEL</td>
<td>KOPPEL</td>
<td>-10000 = -100% 10000 = 100% van nom. motorkoppel</td>
<td>%</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>01.06</td>
<td>VERMOGEN</td>
<td>VERMOGEN</td>
<td>-1000 = -100% 1000 = 100% van nominaal motorvermogen</td>
<td>%</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01.07</td>
<td>DC BUS SPANNING</td>
<td>DC SPAN</td>
<td>1 = 1 V</td>
<td></td>
<td>V</td>
<td>7</td>
</tr>
<tr>
<td>01.08</td>
<td>VOEDINGSSPANNING</td>
<td>VOEDSPAN</td>
<td>1 = 1 V</td>
<td></td>
<td>V</td>
<td>8</td>
</tr>
<tr>
<td>01.09</td>
<td>UITGANGSSPANNING</td>
<td>UITGSPAN</td>
<td>1 = 1 V</td>
<td></td>
<td>V</td>
<td>9</td>
</tr>
<tr>
<td>01.10</td>
<td>ACS800 TEMP</td>
<td>ACS TEMP</td>
<td>10 = 1%</td>
<td></td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>01.11</td>
<td>EXTERNE REF 1</td>
<td>EXTERNE REF1</td>
<td>1 = 1 rpm</td>
<td></td>
<td>rpm</td>
<td>11</td>
</tr>
<tr>
<td>01.12</td>
<td>EXTERNE REF 2</td>
<td>EXTERNE REF2</td>
<td>0 = 0% 10000 = 100% 1)</td>
<td>%</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>01.13</td>
<td>BEDIENINGSPLAATS</td>
<td>BEDIENPL</td>
<td>(1,2) LOKAAL; (3) LOKAAL; (4) LOKAAL; (3) LOKAAL; (4)</td>
<td>LOKAAL; EXT1; EXT2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>01.14</td>
<td>BEDR. URENTELLER</td>
<td>URENTEL</td>
<td>1 = 1 uur</td>
<td></td>
<td>h</td>
<td>14</td>
</tr>
<tr>
<td>01.15</td>
<td>KILOWATTUUR</td>
<td>KWUUR</td>
<td>1 = 100 kWh</td>
<td></td>
<td>kWh</td>
<td>15</td>
</tr>
<tr>
<td>01.16</td>
<td>APPL BLOK UITGANG</td>
<td>APPL UIT</td>
<td>0 = 0% 10000 = 100%</td>
<td></td>
<td>%</td>
<td>16</td>
</tr>
<tr>
<td>01.17</td>
<td>DI6-1 STATUS</td>
<td>DI6-1</td>
<td>1 = 1</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>01.18</td>
<td>AI1 [V]</td>
<td>AI1 [V]</td>
<td>1 = 0,001 V</td>
<td></td>
<td>V</td>
<td>18</td>
</tr>
<tr>
<td>01.19</td>
<td>AI2 [mA]</td>
<td>AI2 [mA]</td>
<td>1 = 0,001 mA</td>
<td></td>
<td>mA</td>
<td>19</td>
</tr>
<tr>
<td>01.20</td>
<td>AI3 [mA]</td>
<td>AI3 [mA]</td>
<td>1 = 0,001 mA</td>
<td></td>
<td>mA</td>
<td>20</td>
</tr>
<tr>
<td>01.21</td>
<td>RELAIS 3-1 STATUS</td>
<td>RO3-1</td>
<td>1 = 1</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>01.22</td>
<td>AO1 [mA]</td>
<td>AO1 [mA]</td>
<td>1 = 0,001 mA</td>
<td></td>
<td>mA</td>
<td>22</td>
</tr>
<tr>
<td>01.23</td>
<td>AO2 [mA]</td>
<td>AO2 [mA]</td>
<td>1 = 0,001 mA</td>
<td></td>
<td>mA</td>
<td>23</td>
</tr>
<tr>
<td>01.24</td>
<td>WERKWAARDE 1</td>
<td>WERKWAARDE 1</td>
<td>0 = 0% 10000 = 100%</td>
<td></td>
<td>%</td>
<td>24</td>
</tr>
<tr>
<td>01.25</td>
<td>WERKWAARDE 2</td>
<td>WERKWAARDE 2</td>
<td>0 = 0% 10000 = 100%</td>
<td></td>
<td>%</td>
<td>25</td>
</tr>
<tr>
<td>01.26</td>
<td>REGELAFWIJKING</td>
<td>REGELAFWIJKING</td>
<td>-10000 = -100% 10000 = 100%</td>
<td></td>
<td>%</td>
<td>26</td>
</tr>
<tr>
<td>01.27</td>
<td>APPLICATIE MACRO</td>
<td>APPLICATIE MACRO</td>
<td>1 = 7</td>
<td></td>
<td>Overeenkomst parameter 99.02</td>
<td>27</td>
</tr>
<tr>
<td>01.28</td>
<td>EXT AO1 [mA]</td>
<td>EXT AO1</td>
<td>1 = 0,001 mA</td>
<td></td>
<td>mA</td>
<td>28</td>
</tr>
<tr>
<td>01.29</td>
<td>EXT AO2 [mA]</td>
<td>EXT AO2</td>
<td>1 = 0,001 mA</td>
<td></td>
<td>mA</td>
<td>29</td>
</tr>
<tr>
<td>01.30</td>
<td>PP 1 TEMP</td>
<td>PP 1 TEMP</td>
<td>1 = 1°C</td>
<td></td>
<td>°C</td>
<td>30</td>
</tr>
<tr>
<td>01.31</td>
<td>PP 2 TEMP</td>
<td>PP 2 TEMP</td>
<td>1 = 1°C</td>
<td></td>
<td>°C</td>
<td>31</td>
</tr>
<tr>
<td>01.32</td>
<td>PP 3 TEMP</td>
<td>PP 3 TEMP</td>
<td>1 = 1°C</td>
<td></td>
<td>°C</td>
<td>32</td>
</tr>
<tr>
<td>01.33</td>
<td>PP 4 TEMP</td>
<td>PP 4 TEMP</td>
<td>1 = 1°C</td>
<td></td>
<td>°C</td>
<td>33</td>
</tr>
<tr>
<td>01.34</td>
<td>ACTUELE GEGEVENS</td>
<td>ACT GEG</td>
<td>0 = 0% 10000 = 100%</td>
<td></td>
<td>%</td>
<td>34</td>
</tr>
<tr>
<td>01.35</td>
<td>MOTOR 1 TEMP</td>
<td>M 1 TEMP</td>
<td>1 = 1°C/ohm</td>
<td></td>
<td>°C</td>
<td>35</td>
</tr>
<tr>
<td>01.36</td>
<td>MOTOR 2 TEMP</td>
<td>M 2 TEMP</td>
<td>1 = 1°C/ohm</td>
<td></td>
<td>°C</td>
<td>36</td>
</tr>
</tbody>
</table>
Aanvullende gegevens

ACTUELE GEGEVENS

<table>
<thead>
<tr>
<th>Index</th>
<th>Benaming</th>
<th>Korte naam</th>
<th>FbEq</th>
<th>Eenheid</th>
<th>Bereik</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.37</td>
<td>MOTTEMP SCHATTING</td>
<td>MTSCHAT</td>
<td>1</td>
<td>1°C</td>
<td>°C</td>
<td>37</td>
</tr>
<tr>
<td>01.38</td>
<td>AI5 [mA]</td>
<td>AI5 [mA]</td>
<td>1</td>
<td>0,001 mA</td>
<td>mA</td>
<td>38</td>
</tr>
<tr>
<td>01.39</td>
<td>AI6 [mA]</td>
<td>AI6 [mA]</td>
<td>1</td>
<td>0,001 mA</td>
<td>mA</td>
<td>39</td>
</tr>
<tr>
<td>01.40</td>
<td>DI7-12 STATUS</td>
<td>DI7...12</td>
<td>1</td>
<td>1</td>
<td>%</td>
<td>40</td>
</tr>
<tr>
<td>01.41</td>
<td>EXT RO STATUS</td>
<td>EXT RO</td>
<td>1</td>
<td>1</td>
<td>%</td>
<td>41</td>
</tr>
<tr>
<td>01.42</td>
<td>PROC SNELHEID REL</td>
<td>PROCES DATA</td>
<td>1</td>
<td>1</td>
<td>%</td>
<td>42</td>
</tr>
<tr>
<td>01.43</td>
<td>MOTOR DRAAI-UREN</td>
<td>MOTOR DRAAI-UREN</td>
<td>1</td>
<td>10 uur</td>
<td>h</td>
<td>43</td>
</tr>
<tr>
<td>01.44</td>
<td>VENT AANTIJD</td>
<td>FAN TIME</td>
<td>10 uur</td>
<td>1</td>
<td>h</td>
<td>44</td>
</tr>
<tr>
<td>01.45</td>
<td>CTRL BOARD TEMP</td>
<td>CTRL B T</td>
<td>1</td>
<td>1</td>
<td>°C</td>
<td>45</td>
</tr>
<tr>
<td>01.46</td>
<td>SAVED KWH</td>
<td>SAV KWH</td>
<td>1</td>
<td>100 kWh</td>
<td>kWh</td>
<td>46</td>
</tr>
<tr>
<td>01.47</td>
<td>SAVED GWH</td>
<td>SAV GWH</td>
<td>1</td>
<td>1 GWh</td>
<td>GWh</td>
<td>47</td>
</tr>
<tr>
<td>01.48</td>
<td>SAVED AMOUNT</td>
<td>SAV AM</td>
<td>1</td>
<td>100 cur</td>
<td>plaatselijk; EUR; USD</td>
<td>48</td>
</tr>
<tr>
<td>01.49</td>
<td>SAVED AMOUNT M</td>
<td>SAV AM M</td>
<td>1</td>
<td>1 Mcur</td>
<td>plaatselijk; EUR; USD</td>
<td>49</td>
</tr>
<tr>
<td>01.50</td>
<td>SAVED CO2</td>
<td>SAV CO2</td>
<td>1</td>
<td>100 kg</td>
<td>kg</td>
<td>50</td>
</tr>
<tr>
<td>01.51</td>
<td>SAVED CO2 KTON</td>
<td>SAV CO2K</td>
<td>1</td>
<td>1 kton</td>
<td>kton</td>
<td>51</td>
</tr>
</tbody>
</table>

ACTUELE GEGEVENS

<table>
<thead>
<tr>
<th>Index</th>
<th>Hoofd Woord</th>
<th>HSTATUSW</th>
<th>0</th>
<th>65535 (decimaal)</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.01</td>
<td>TOERENTAL REF 2</td>
<td>N REF 2</td>
<td>0</td>
<td>0% 20000 = rpm</td>
<td>51</td>
</tr>
<tr>
<td>02.02</td>
<td>TOERENTAL REF 3</td>
<td>N REF 3</td>
<td>100% van abs. toerental-max. motor</td>
<td>rpm</td>
<td>52</td>
</tr>
<tr>
<td>02.09</td>
<td>KOPPEL REF 2</td>
<td>K REF 2</td>
<td>0</td>
<td>0% 10000 = %</td>
<td>59</td>
</tr>
<tr>
<td>02.10</td>
<td>KOPPEL REF 3</td>
<td>K REF 3</td>
<td>100% van nom.</td>
<td>%</td>
<td>60</td>
</tr>
<tr>
<td>02.13</td>
<td>KOPPEL GEBR REF</td>
<td>K GBR R</td>
<td>1</td>
<td>100% motorkoppel</td>
<td>%</td>
</tr>
<tr>
<td>02.14</td>
<td>FLUX REF</td>
<td>FLUX REF</td>
<td>0</td>
<td>0% 10000 = %</td>
<td>64</td>
</tr>
<tr>
<td>02.15</td>
<td>GESCHAT TOERENTAL</td>
<td>GESCH N</td>
<td>0</td>
<td>0% 20000 = 100% van abs. toerental-max. motor</td>
<td>rpm</td>
</tr>
<tr>
<td>02.18</td>
<td>GEMETEN TOERENTAL</td>
<td>GEMET N</td>
<td>100% van abs. toerental-max. motor</td>
<td>rpm</td>
<td>68</td>
</tr>
<tr>
<td>02.19</td>
<td>MOTOR ACCELERATIE</td>
<td>MOTOR AC</td>
<td>1</td>
<td>1 rpm/s</td>
<td>rpm/s</td>
</tr>
<tr>
<td>02.20</td>
<td>GEBRUIKER STROOM</td>
<td>USER CUR</td>
<td>10</td>
<td>1%</td>
<td>%</td>
</tr>
</tbody>
</table>

ACTUELE GEGEVENS

<table>
<thead>
<tr>
<th>Index</th>
<th>Hoofd CTRL Woord</th>
<th>MAIN CW</th>
<th>0</th>
<th>65535 (decimaal)</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.02</td>
<td>HOOFD STATUSWOORD</td>
<td>HSTATUSW</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>77</td>
</tr>
<tr>
<td>03.03</td>
<td>AUX STATUSWOORD</td>
<td>ASTATUSW</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>78</td>
</tr>
<tr>
<td>03.04</td>
<td>LIMIETWOORD 1</td>
<td>LIMIETW1</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>79</td>
</tr>
<tr>
<td>03.05</td>
<td>FOUTWOORD 1</td>
<td>FOUTW 1</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>80</td>
</tr>
<tr>
<td>03.06</td>
<td>FOUTWOORD 2</td>
<td>FOUTW 2</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>81</td>
</tr>
<tr>
<td>03.07</td>
<td>SYSTEEMFOUT</td>
<td>SYS FOUT</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>82</td>
</tr>
<tr>
<td>03.08</td>
<td>ALARMWOORD 1</td>
<td>ALARMW 1</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>83</td>
</tr>
<tr>
<td>03.09</td>
<td>ALARMWOORD 2</td>
<td>ALARMW 2</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>84</td>
</tr>
<tr>
<td>03.11</td>
<td>FOLLOWER MCW</td>
<td>FOLL MCW</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>86</td>
</tr>
<tr>
<td>03.13</td>
<td>AUX STATUSWOORD 3</td>
<td>AUX SW 3</td>
<td>0</td>
<td>65535 (decimaal)</td>
<td>88</td>
</tr>
<tr>
<td>Index</td>
<td>Benaming</td>
<td>Korte naam</td>
<td>FB Eq</td>
<td>Eenheid</td>
<td>Bereik</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>03.14</td>
<td>AUX STATUSWOORD 4</td>
<td>AUX SW 4</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>89</td>
</tr>
<tr>
<td>03.15</td>
<td>FOUTWOORD 4</td>
<td>FOUTW 4</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>90</td>
</tr>
<tr>
<td>03.16</td>
<td>ALARMWOORD 4</td>
<td>ALARMW 4</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>91</td>
</tr>
<tr>
<td>03.17</td>
<td>FOUTWOORD 5</td>
<td>FOUTW 5</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>92</td>
</tr>
<tr>
<td>03.18</td>
<td>ALARMWOORD 5</td>
<td>ALARMW 5</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>93</td>
</tr>
<tr>
<td>03.19</td>
<td>INT INIT FOUT</td>
<td>INT INIT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>94</td>
</tr>
<tr>
<td>03.20</td>
<td>LAATSTE FOUT 1</td>
<td>FOUT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>95</td>
</tr>
<tr>
<td>03.21</td>
<td>2.LAATSTE FOUT</td>
<td>FOUT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>96</td>
</tr>
<tr>
<td>03.22</td>
<td>3.LAATSTE FOUT</td>
<td>FOUT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>97</td>
</tr>
<tr>
<td>03.23</td>
<td>4.LAATSTE FOUT</td>
<td>FOUT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>98</td>
</tr>
<tr>
<td>03.24</td>
<td>5.LAATSTE FOUT</td>
<td>FOUT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>99</td>
</tr>
<tr>
<td>03.25</td>
<td>LAATSTE WAARSCH 1</td>
<td>WAARS</td>
<td>0</td>
<td>65535 (decimal)</td>
<td>100</td>
</tr>
<tr>
<td>03.26</td>
<td>2.LAATSTE WAARSCH</td>
<td>WAARS</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>03.27</td>
<td>3.LAATSTE WAARSCH</td>
<td>WAARS</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>03.28</td>
<td>4.LAATSTE WAARSCH</td>
<td>WAARS</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>03.29</td>
<td>5.LAATSTE WAARSCH</td>
<td>WAARS</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>03.30</td>
<td>LIMIETWOORD INVRT</td>
<td>LIMIT WO</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>03.31</td>
<td>ALARMWOORD 6</td>
<td>ALARMW 6</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>03.32</td>
<td>EXT IO STATUS</td>
<td>E IO ST</td>
<td>0…65535</td>
<td>Decimaal</td>
<td></td>
</tr>
<tr>
<td>03.33</td>
<td>FOUTWOORD 6</td>
<td>FAULT W6</td>
<td>0…65535</td>
<td>Decimaal</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>ACTUELE GEGEVENS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.01</td>
<td>FOUTE INT INFO</td>
<td>FLTD INT</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>04.02</td>
<td>INT SC INFO</td>
<td>INT SC</td>
<td>0</td>
<td>65535 (decimal)</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>ACTUELE GEGEVENS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.01</td>
<td>AI1 GESCHAALD</td>
<td>AI1 SCAL</td>
<td>20000 = 10 V</td>
<td>0…20000</td>
<td></td>
</tr>
<tr>
<td>09.02</td>
<td>AI2 GESCHAALD</td>
<td>AI2 SCAL</td>
<td>20000 = 20 mA</td>
<td>0…20000</td>
<td></td>
</tr>
<tr>
<td>09.03</td>
<td>AI3 GESCHAALD</td>
<td>AI3 SCAL</td>
<td>20000 = 20 mA</td>
<td>0…20000</td>
<td></td>
</tr>
<tr>
<td>09.04</td>
<td>AI5 GESCHAALD</td>
<td>AI5 SCAL</td>
<td>20000 = 20 mA</td>
<td>0…20000</td>
<td></td>
</tr>
<tr>
<td>09.05</td>
<td>AI6 GESCHAALD</td>
<td>AI6 SCAL</td>
<td>20000 = 20 mA</td>
<td>0…20000</td>
<td></td>
</tr>
<tr>
<td>09.06</td>
<td>DS MCW</td>
<td>DS MCW</td>
<td>0…65535 (decimal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.07</td>
<td>MASTER REF1</td>
<td>M REF1</td>
<td>-32768…32767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.08</td>
<td>MASTER REF2</td>
<td>M REF2</td>
<td>-32768…32767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.09</td>
<td>AUX DS VAL1</td>
<td>AUX DSV1</td>
<td>-32768…32767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.10</td>
<td>AUX DS VAL2</td>
<td>AUX DSV2</td>
<td>-32768…32767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.11</td>
<td>AUX DS VAL3</td>
<td>AUX DSV3</td>
<td>-32768…32767</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Benaming</th>
<th>Korte naam</th>
<th>FbEq</th>
<th>Eenheid</th>
<th>Bereik</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.12</td>
<td>LCU WERKW SIGN1</td>
<td>LCU ACT1</td>
<td>1 = 1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>09.13</td>
<td>LCU WERKW SIGN2</td>
<td>LCU ACT2</td>
<td>1 = 1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1) Percentage van maximale motortoerental / nominale koppel / max. procesreferentie (afhankelijk van de voor de ACS800 gekozen macro).

2) De inhoud van deze datawoorden wordt uiteengezet in het hoofdstuk *Besturing via een veldbus*. Voor de inhoud van Actual Signal 3.11, zie de Master/Follower Application Guide [3AFE64590430 (Engels)].
Parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>FABRIEK</th>
<th>HAND/AUTO</th>
<th>PID-REGELING</th>
<th>KOPPEL-REGEL</th>
<th>VOLGORDE</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>START/STOP/DRAAIR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.01</td>
<td>EXT1 STRT/STP/RIC</td>
<td>D11,2 (US: D11P,2P,3)</td>
<td>D11</td>
<td>D11,2</td>
<td>D11,2</td>
<td>101</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>10.02</td>
<td>EXT2 STRT/STP/RIC</td>
<td>NEE</td>
<td>D16,5</td>
<td>D16</td>
<td>D11,2</td>
<td>NEE</td>
<td>102</td>
<td>W</td>
</tr>
<tr>
<td>10.03</td>
<td>DRAAIRICHTING</td>
<td>VOORUIT</td>
<td>VERZOEK</td>
<td>VOORUIT</td>
<td>VERZOEK</td>
<td>VERZOEK</td>
<td>103</td>
<td>W</td>
</tr>
<tr>
<td>10.04</td>
<td>EXT 1 STRT PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>10.05</td>
<td>EXT 2 STRT PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>105</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>10.06</td>
<td>KRUUTOEREN KEUZE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>106</td>
<td>W</td>
</tr>
<tr>
<td>10.07</td>
<td>NET CONTROL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.08</td>
<td>NET REFERENTIE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>10.09</td>
<td>SLS ACTIVE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>REFERENTIE KEUZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.01</td>
<td>PANELREF KEUZE</td>
<td>REF1 (rpm)</td>
<td>REF1 (rpm)</td>
<td>REF1 (rpm)</td>
<td>REF1 (rpm)</td>
<td>REF1 (rpm)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>11.02</td>
<td>EXT1/EXT2 KEUZE</td>
<td>EXT1</td>
<td>D13</td>
<td>D13</td>
<td>D13</td>
<td>EXT1</td>
<td>127</td>
<td>W</td>
</tr>
<tr>
<td>11.03</td>
<td>EXTERN REF1 KEUZE</td>
<td>Af1</td>
<td>Af1</td>
<td>Af1</td>
<td>Af1</td>
<td>Af1</td>
<td>128</td>
<td>W</td>
</tr>
<tr>
<td>11.04</td>
<td>EXTERN REF1 MIN</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>11.05</td>
<td>EXTERN REF1 MAX</td>
<td>1500 rpm</td>
<td>1500 rpm</td>
<td>1500 rpm</td>
<td>1500 rpm</td>
<td>1500 rpm</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>11.06</td>
<td>EXTERN REF2 KEUZE</td>
<td>PANEEL</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>131</td>
<td>W</td>
</tr>
<tr>
<td>11.07</td>
<td>EXTERN REF1 MIN</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>11.08</td>
<td>EXTERN REF1 MAX</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>11.09</td>
<td>EXT 1/2 KEUZE PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>11.10</td>
<td>EXT 1 REF PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>11.11</td>
<td>EXT 2 REF PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CONSTANT TOEREN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.01</td>
<td>CNST TOERENKEUZE</td>
<td>D15,6</td>
<td>D14(TOEREN 4)</td>
<td>D14(TOEREN 4)</td>
<td>D14(TOEREN 4)</td>
<td>D14,5,6</td>
<td>151</td>
<td>W</td>
</tr>
<tr>
<td>12.02</td>
<td>CNST TOERENTAL 1</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>12.03</td>
<td>CNST TOERENTAL 2</td>
<td>600 rpm</td>
<td>600 rpm</td>
<td>600 rpm</td>
<td>600 rpm</td>
<td>600 rpm</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>12.04</td>
<td>CNST TOERENTAL 3</td>
<td>900 rpm</td>
<td>900 rpm</td>
<td>900 rpm</td>
<td>900 rpm</td>
<td>900 rpm</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>12.05</td>
<td>CNST TOERENTAL 4</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>300 rpm</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>12.06</td>
<td>CNST TOERENTAL 5</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>12.07</td>
<td>CNST TOERENTAL 6</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>12.08</td>
<td>CNST TOERENTAL 7</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>12.09</td>
<td>CNST TOERENTAL 8</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>12.10</td>
<td>CNST TOERENTAL 9</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>12.11</td>
<td>CNST TOERENTAL 10</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>12.12</td>
<td>CNST TOERENTAL 11</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>12.13</td>
<td>CNST TOERENTAL 12</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>12.14</td>
<td>CNST TOERENTAL 13</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>12.15</td>
<td>CNST TOERENTAL 14</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>12.16</td>
<td>CNST TOERENTAL 15</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ANALOGE INGANGEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.01</td>
<td>MINIMUM A1</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>13.02</td>
<td>MAXIMUM A1</td>
<td>10 V</td>
<td>10 V</td>
<td>10 V</td>
<td>10 V</td>
<td>10 V</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>13.03</td>
<td>SCHAALFACOR A1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>13.04</td>
<td>FILTERTIJD A1</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>13.05</td>
<td>INVERTEREN A1</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>13.06</td>
<td>MINIMUM A2</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>13.07</td>
<td>MAXIMUM A2</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>13.08</td>
<td>SCHAALFACOR A2</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>13.09</td>
<td>FILTERTIJD A2</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td>INVERT A2</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>13.11</td>
<td>MINIMUM A3</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>MAXIMUM A3</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>13.13</td>
<td>SCHAALFACOR A3</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>188</td>
<td></td>
</tr>
</tbody>
</table>
Aanvullende gegevens: actuele gegevens en parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>FABRIEK</th>
<th>HAND/AUTO</th>
<th>PID-REGELING</th>
<th>KOPPEL-REGEL</th>
<th>VOLGORDE BST</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.14</td>
<td>FILTERTIJD AI3</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>13.15</td>
<td>INVERTEREN AI3</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>13.16</td>
<td>MINIMUM AI5</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>13.17</td>
<td>MAXIMUM AI5</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>13.18</td>
<td>SCHAALFACTOR AI5</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>13.19</td>
<td>FILTERTIJD AI5</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>13.20</td>
<td>INVERTEREN AI5</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>13.21</td>
<td>MINIMUM AI6</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>13.22</td>
<td>MAXIMUM AI6</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>20 mA</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>13.23</td>
<td>SCHAALFACTOR AI6</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>13.24</td>
<td>FILTERTIJD AI6</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>13.25</td>
<td>INVERTEREN AI6</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>RELAIS UITGANGEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.01</td>
<td>RELAIS RO1</td>
<td>GEREED</td>
<td>GEREED</td>
<td>GEREED</td>
<td>GEREED</td>
<td>GEREED</td>
<td>201 W</td>
<td></td>
</tr>
<tr>
<td>14.02</td>
<td>RELAIS RO2</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>202 W</td>
<td></td>
</tr>
<tr>
<td>14.03</td>
<td>RELAIS RO3</td>
<td>FOUT(-1)</td>
<td>FOUT(-1)</td>
<td>FOUT(-1)</td>
<td>FOUT(-1)</td>
<td>FOUT(-1)</td>
<td>203 W</td>
<td></td>
</tr>
<tr>
<td>14.04</td>
<td>R01 AANVERTRAGING</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>204 W</td>
<td></td>
</tr>
<tr>
<td>14.05</td>
<td>R01 UITVERTRAGING</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>205 W</td>
<td></td>
</tr>
<tr>
<td>14.06</td>
<td>R02 AANVERTRAGING</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>206 W</td>
<td></td>
</tr>
<tr>
<td>14.07</td>
<td>R02 UITVERTRAGING</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>207 W</td>
<td></td>
</tr>
<tr>
<td>14.08</td>
<td>R03 AANVERTRAGING</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>208 W</td>
<td></td>
</tr>
<tr>
<td>14.09</td>
<td>R03 UITVERTRAGING</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>209 W</td>
<td></td>
</tr>
<tr>
<td>14.10</td>
<td>DIO MOD1 R01</td>
<td>GEREED</td>
<td>GEREED</td>
<td>GEREED</td>
<td>GEREED</td>
<td>GEREED</td>
<td>210 W</td>
<td></td>
</tr>
<tr>
<td>14.11</td>
<td>DIO MOD1 R02</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>IN BEDRIJF</td>
<td>211 W</td>
<td></td>
</tr>
<tr>
<td>14.12</td>
<td>DIO MOD2 R01</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>212 W</td>
<td></td>
</tr>
<tr>
<td>14.13</td>
<td>DIO MOD2 R02</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>213 W</td>
<td></td>
</tr>
<tr>
<td>14.14</td>
<td>DIO MOD3 R01</td>
<td>REF 2</td>
<td>ACTIEF</td>
<td>REF 2</td>
<td>ACTIEF</td>
<td>REF 2</td>
<td>ACTIEF</td>
<td>214 W</td>
</tr>
<tr>
<td>14.15</td>
<td>DIO MOD3 R02</td>
<td>OP SNELHEID</td>
<td>OP SNELHEID</td>
<td>OP SNELHEID</td>
<td>OP SNELHEID</td>
<td>OP SNELHEID</td>
<td>215 W</td>
<td></td>
</tr>
<tr>
<td>14.16</td>
<td>RO PTR1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>216 W</td>
<td></td>
</tr>
<tr>
<td>14.17</td>
<td>RO PTR2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>217 W</td>
<td></td>
</tr>
<tr>
<td>14.18</td>
<td>RO PTR3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>218 W</td>
<td></td>
</tr>
<tr>
<td>14.19</td>
<td>RO PTR4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>219 W</td>
<td></td>
</tr>
<tr>
<td>14.20</td>
<td>RO PTR5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>220 W</td>
<td></td>
</tr>
<tr>
<td>14.21</td>
<td>RO PTR6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>221 W</td>
<td></td>
</tr>
<tr>
<td>14.22</td>
<td>RO PTR7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>222 W</td>
<td></td>
</tr>
<tr>
<td>14.23</td>
<td>RO PTR8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>223 W</td>
<td></td>
</tr>
<tr>
<td>14.24</td>
<td>RO PTR9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>224 W</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ANALOGUE UITGANGEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.01</td>
<td>ANALOGUE UITGANG1</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>226 W</td>
<td></td>
</tr>
<tr>
<td>15.02</td>
<td>INVERTEREN AO1</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>15.03</td>
<td>MINIMUM AO1</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>15.04</td>
<td>FILTERTIJD AO1</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>0,10 s</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>15.05</td>
<td>SCHAALFACTOR AO1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>15.06</td>
<td>ANALOGUE UITGANG2</td>
<td>STROOM</td>
<td>STROOM</td>
<td>STROOM</td>
<td>STROOM</td>
<td>STROOM</td>
<td>231 W</td>
<td></td>
</tr>
<tr>
<td>15.07</td>
<td>INVERTEREN AO2</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>15.08</td>
<td>MINIMUM AO2</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>15.09</td>
<td>FILTER AO2</td>
<td>2,00 s</td>
<td>2,00 s</td>
<td>2,00 s</td>
<td>2,00 s</td>
<td>2,00 s</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>15.10</td>
<td>SCHAALFACTOR AO2</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>15.11</td>
<td>AO1 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>15.12</td>
<td>AO2 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>STUURINGANGEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.01</td>
<td>STARTVRIJGAVE</td>
<td>JA</td>
<td>JA</td>
<td>DI5</td>
<td>DI6</td>
<td>JA</td>
<td>251 W</td>
<td></td>
</tr>
<tr>
<td>16.02</td>
<td>PARAMETER SLOT</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>16.03</td>
<td>TOEGANGSCODE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>253</td>
<td></td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>FABRIEK</th>
<th>HAND/AUTO</th>
<th>PID-REGELING</th>
<th>KOPPEL-REGEL</th>
<th>VOLGORDE</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.04</td>
<td>FOUTRESET KEUZE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>254</td>
<td>W</td>
</tr>
<tr>
<td>16.05</td>
<td>G IO LEZEN</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>255</td>
<td>W</td>
</tr>
<tr>
<td>16.06</td>
<td>PANEELSLOT</td>
<td>UIT</td>
<td>UIT</td>
<td>UIT</td>
<td>UIT</td>
<td>UIT</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>16.07</td>
<td>PARAMETER OPSLAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>16.08</td>
<td>STARTVRUGAVE PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>16.09</td>
<td>CTRL BOARD VOED</td>
<td>INTERNE 24V</td>
<td>INTERNE 24V</td>
<td>INTERNE 24V</td>
<td>INTERNE 24V</td>
<td>INTERNE 24V</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>16.10</td>
<td>ASSISTENT KEUZE</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>16.11</td>
<td>FOUT RESET PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>16.12</td>
<td>RESET COUNTER</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>LIMIETEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.01</td>
<td>MINIMUM TOERENTAL</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>20.02</td>
<td>MAXIMUM TOERENTAL</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>20.03</td>
<td>MAXIMUM STROOM</td>
<td>afh. van type</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>20.04</td>
<td>MAXIMUM KOPPEL</td>
<td>300%</td>
<td>300%</td>
<td>300%</td>
<td>300%</td>
<td>300%</td>
<td>354</td>
<td></td>
</tr>
<tr>
<td>20.05</td>
<td>OVERSPANNINGS-REG</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>20.06</td>
<td>ONDERSPANNINGS-REG</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>20.07</td>
<td>MINIMUM FREQ</td>
<td>- 50 Hz</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>20.08</td>
<td>MAXIMUM FREQ</td>
<td>50 Hz</td>
<td>50 Hz</td>
<td>50 Hz</td>
<td>50 Hz</td>
<td>50 Hz</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>21.01</td>
<td>START FUNCTIE</td>
<td>AUTO</td>
<td>AUTO</td>
<td>AUTO</td>
<td>AUTO</td>
<td>AUTO</td>
<td>376</td>
<td>W</td>
</tr>
<tr>
<td>21.02</td>
<td>CONST MAGN TIJD</td>
<td>500.0 ms</td>
<td>500.0 ms</td>
<td>500.0 ms</td>
<td>500.0 ms</td>
<td>500.0 ms</td>
<td>377</td>
<td>W</td>
</tr>
<tr>
<td>21.03</td>
<td>STOP FUNCTIE</td>
<td>UITLOOP</td>
<td>UITLOOP</td>
<td>UITLOOP</td>
<td>UITLOOP</td>
<td>RAMP</td>
<td>378</td>
<td></td>
</tr>
<tr>
<td>21.04</td>
<td>DC HOUDFUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>21.05</td>
<td>DC HOUD TOERENTAL</td>
<td>5 rpm</td>
<td>5 rpm</td>
<td>5 rpm</td>
<td>5 rpm</td>
<td>5 rpm</td>
<td>380</td>
<td>W</td>
</tr>
<tr>
<td>21.06</td>
<td>DC HOUDSTROOM</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>381</td>
<td>W</td>
</tr>
<tr>
<td>21.07</td>
<td>STRTVRUGAVE FUNC</td>
<td>UITLOOPSTO</td>
<td>UITLOOPSTO</td>
<td>UITLOOPSTO</td>
<td>UITLOOPSTO</td>
<td>UITLOOPSTO</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>21.08</td>
<td>SCALAR VLIEG STRT</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>21.09</td>
<td>START INTL FUNC</td>
<td>UIT2 STOP</td>
<td>UIT2 STOP</td>
<td>UIT2 STOP</td>
<td>UIT2 STOP</td>
<td>UIT2 STOP</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>21.10</td>
<td>NULTOEREN VERTRAG</td>
<td>0.5 s</td>
<td>0.5 s</td>
<td>0.5 s</td>
<td>0.5 s</td>
<td>0.5 s</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ACCEL/DECEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.01</td>
<td>ACC/DEC KEUZE</td>
<td>D14</td>
<td>ACC/DEC 1</td>
<td>ACC/DEC 1</td>
<td>D15</td>
<td>D15</td>
<td>401</td>
<td>W</td>
</tr>
<tr>
<td>22.02</td>
<td>ACCELER TJD 1</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>22.03</td>
<td>DECELTJD 1</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>22.04</td>
<td>ACCELER TJD 2</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>22.05</td>
<td>DECELTJD 2</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>60.00 s</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>22.06</td>
<td>ACC/DEC CURVE</td>
<td>0.00 s</td>
<td>0.00 s</td>
<td>0.00 s</td>
<td>0.00 s</td>
<td>0.00 s</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>22.07</td>
<td>NOODSTOP DEC.TIJD</td>
<td>3.00 s</td>
<td>3.00 s</td>
<td>3.00 s</td>
<td>3.00 s</td>
<td>3.00 s</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>22.08</td>
<td>ACC PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>22.09</td>
<td>DEC PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>22.10</td>
<td>SLS ACCELER TIME</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>410</td>
<td>W</td>
</tr>
<tr>
<td>22.11</td>
<td>SLS DECELER TIME</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>20 s</td>
<td>411</td>
<td>W</td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
Index Naam/Keuze

<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Fabriek</th>
<th>Hand/Auto</th>
<th>PID-Regeling</th>
<th>Koppel-Regel</th>
<th>Volgorde BST</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.01</td>
<td>Versterking</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td>23.02</td>
<td>Integratie Tijd</td>
<td>2,50 s</td>
<td>2,50 s</td>
<td>2,50 s</td>
<td>2,50 s</td>
<td>2,50 s</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>23.03</td>
<td>Differentiat Tijd</td>
<td>0,0 ms</td>
<td>0,0 ms</td>
<td>0,0 ms</td>
<td>0,0 ms</td>
<td>0,0 ms</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>23.04</td>
<td>Acc Compensatie</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>0,12 s</td>
<td>429</td>
<td></td>
</tr>
<tr>
<td>23.05</td>
<td>Acc Compensation</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>23.06</td>
<td>Autotune N-Regel</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>23.07</td>
<td>SP Act Filt Tijd</td>
<td>8 ms</td>
<td>8 ms</td>
<td>8 ms</td>
<td>8 ms</td>
<td>8 ms</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Koppelregelaar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.01</td>
<td>Koppelopbouw Tijd</td>
<td>0,00 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.02</td>
<td>Koppelafbouw Tijd</td>
<td>0,00 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Krachtige Toeren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.01</td>
<td>Kr. Toer Keuze</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>25.02</td>
<td>Kr. Toeren 1 Laag</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>25.03</td>
<td>Kr. Toeren 1 Hoog</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>25.04</td>
<td>Kr. Toeren 2 Laag</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>25.05</td>
<td>Kr. Toeren 2 Hoog</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>25.06</td>
<td>Kr. Toeren 3 Laag</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>25.07</td>
<td>Kr. Toeren 3 Hoog</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Motorbesturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.01</td>
<td>Flux-Optimalisatie</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>501</td>
<td>W</td>
</tr>
<tr>
<td>26.02</td>
<td>Flux Remmen</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>502</td>
<td>W</td>
</tr>
<tr>
<td>26.03</td>
<td>Ir-Compensatie</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>503</td>
<td>W</td>
</tr>
<tr>
<td>26.04</td>
<td>Ir Step-Up Freq</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>504</td>
<td>W</td>
</tr>
<tr>
<td>26.05</td>
<td>Hex Veldverzw</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>505</td>
<td>W</td>
</tr>
<tr>
<td>26.06</td>
<td>Flux Ref PTr</td>
<td>C0,10000</td>
<td>C0,10000</td>
<td>C0,10000</td>
<td>C0,10000</td>
<td>C0,10000</td>
<td>506</td>
<td>W</td>
</tr>
<tr>
<td>26.07</td>
<td>Flystart Cur Ref [%]</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>507</td>
<td>W</td>
</tr>
<tr>
<td>26.08</td>
<td>Flystart init Dly</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>508</td>
<td>W</td>
</tr>
<tr>
<td>26.09</td>
<td>Fs Method</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>509</td>
<td>W</td>
</tr>
<tr>
<td>27</td>
<td>Remchopper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.01</td>
<td>Remchopper Best</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>UIt</td>
<td>526</td>
<td>W</td>
</tr>
<tr>
<td>27.02</td>
<td>Rem Overbel Funct</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>527</td>
<td></td>
</tr>
<tr>
<td>27.03</td>
<td>Remweerstand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.04</td>
<td>Rem Therm T Const</td>
<td>0 s</td>
<td>0 s</td>
<td>0 s</td>
<td>0 s</td>
<td>0 s</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>27.05</td>
<td>Max Cont Rem Verm</td>
<td>0 kW</td>
<td>0 kW</td>
<td>0 kW</td>
<td>0 kW</td>
<td>0 kW</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>27.06</td>
<td>BC Ctrl Mode</td>
<td>Common DC</td>
<td>Common DC</td>
<td>Common DC</td>
<td>Common DC</td>
<td>Common DC</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Fout Functies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.01</td>
<td>Ai<min Functie</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>30.02</td>
<td>Paneelluitval</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>602</td>
<td></td>
</tr>
<tr>
<td>30.03</td>
<td>Externe Fout</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>603</td>
<td></td>
</tr>
<tr>
<td>30.04</td>
<td>Motor Therm Bev.</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>30.05</td>
<td>Motor Bev. Model</td>
<td>DTC/Gebruik-ErafH</td>
<td>DTC/Gebruik-ErafH</td>
<td>DTC/Gebruik-ErafH</td>
<td>DTC/Gebruik-ErafH</td>
<td>DTC/Gebruik-ErafH</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>30.06</td>
<td>M-Thermische Tijd</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>(berekend)</td>
<td>606</td>
<td></td>
</tr>
<tr>
<td>30.07</td>
<td>M-Belasting Curve</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>30.08</td>
<td>Stilstandslast</td>
<td>74,0%</td>
<td>74,0%</td>
<td>74,0%</td>
<td>74,0%</td>
<td>74,0%</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>30.09</td>
<td>Knikpunt</td>
<td>45,0 Hz</td>
<td>45,0 Hz</td>
<td>45,0 Hz</td>
<td>45,0 Hz</td>
<td>45,0 Hz</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>30.10</td>
<td>Blok. Functie</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>30.11</td>
<td>Blok. Freq. Hoog</td>
<td>20,0 Hz</td>
<td>20,0 Hz</td>
<td>20,0 Hz</td>
<td>20,0 Hz</td>
<td>20,0 Hz</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>30.12</td>
<td>Blok. Tijd</td>
<td>20,00 s</td>
<td>20,00 s</td>
<td>20,00 s</td>
<td>20,00 s</td>
<td>20,00 s</td>
<td>612</td>
<td></td>
</tr>
<tr>
<td>30.13</td>
<td>Onderbelast Func</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>30.14</td>
<td>Onderbelast Tijd</td>
<td>600,0 s</td>
<td>600,0 s</td>
<td>600,0 s</td>
<td>600,0 s</td>
<td>600,0 s</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>30.15</td>
<td>Onderbelast Curve</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>30.16</td>
<td>Motorfase Verlies</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>616</td>
<td></td>
</tr>
<tr>
<td>30.17</td>
<td>Aardfout</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>30.18</td>
<td>Comm Fout Func</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>618</td>
<td></td>
</tr>
<tr>
<td>30.19</td>
<td>Main Ref Ds Fout</td>
<td>3,00 s</td>
<td>3,00 s</td>
<td>3,00 s</td>
<td>3,00 s</td>
<td>3,00 s</td>
<td>619</td>
<td></td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>FABRIEK</th>
<th>HAND/AUTO</th>
<th>PID-REGELING</th>
<th>KOPPEL-REGEL</th>
<th>VOLGORDE BST</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.20</td>
<td>COMM FOUT RO/AO</td>
<td>NUL</td>
<td>NUL</td>
<td>NUL</td>
<td>NUL</td>
<td>NUL</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>30.21</td>
<td>AUX REF DS T-OUT</td>
<td>3,0 s</td>
<td>3,0 s</td>
<td>3,0 s</td>
<td>3,0 s</td>
<td>3,0 s</td>
<td>621</td>
<td></td>
</tr>
<tr>
<td>30.22</td>
<td>I/O CONFIG FUNC</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>WAARSCHUWING</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>30.23</td>
<td>LIMIET WAARSCH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>AUTO-RESET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.01</td>
<td>AANTAL POGINGEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>31.02</td>
<td>HERSTARTTIJD</td>
<td>30,0 s</td>
<td>30,0 s</td>
<td>30,0 s</td>
<td>30,0 s</td>
<td>30,0 s</td>
<td>627</td>
<td></td>
</tr>
<tr>
<td>31.03</td>
<td>VERTRAGINGSTIJD</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>0,0 s</td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>31.04</td>
<td>OVERSTROOM</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>629</td>
<td></td>
</tr>
<tr>
<td>31.05</td>
<td>OVERSPANNING</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>31.06</td>
<td>ONDERSPANNING</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>631</td>
<td></td>
</tr>
<tr>
<td>31.07</td>
<td>AI SIGNAAL=MIN</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>632</td>
<td></td>
</tr>
<tr>
<td>31.08</td>
<td>LINE CONV</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>633</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>BEWAKING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.01</td>
<td>TOEREN 1 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td>32.02</td>
<td>TOEREN 1 LIMIET</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>652</td>
<td></td>
</tr>
<tr>
<td>32.03</td>
<td>TOEREN 2 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>653</td>
<td></td>
</tr>
<tr>
<td>32.04</td>
<td>TOEREN 2 LIMIET</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>654</td>
<td></td>
</tr>
<tr>
<td>32.05</td>
<td>STROOMFUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>655</td>
<td></td>
</tr>
<tr>
<td>32.06</td>
<td>STROOMLIMIET</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>656</td>
<td></td>
</tr>
<tr>
<td>32.07</td>
<td>KOPPEL 1 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>32.08</td>
<td>KOPPEL 1 LIMIET</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>658</td>
<td></td>
</tr>
<tr>
<td>32.09</td>
<td>KOPPEL 2 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>659</td>
<td></td>
</tr>
<tr>
<td>32.10</td>
<td>KOPPEL 2 LIMIET</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>32.11</td>
<td>REF1 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>661</td>
<td></td>
</tr>
<tr>
<td>32.12</td>
<td>REF1 LIMIET</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>0 rpm</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>32.13</td>
<td>REF2 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>663</td>
<td></td>
</tr>
<tr>
<td>32.14</td>
<td>REF2 LIMIET</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>664</td>
<td></td>
</tr>
<tr>
<td>32.15</td>
<td>WERKW 1 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td>32.16</td>
<td>WERKW 1 LIMIET</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>666</td>
<td></td>
</tr>
<tr>
<td>32.17</td>
<td>WERKW 2 FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>32.18</td>
<td>WERKW 2 LIMIET</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>668</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>INFORMATIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.01</td>
<td>SW. VERSIE</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>676</td>
<td></td>
</tr>
<tr>
<td>33.02</td>
<td>APPL SW VERSION</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>(Versie)</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>33.03</td>
<td>TESTDATUM</td>
<td>(Datum)</td>
<td>(Datum)</td>
<td>(Datum)</td>
<td>(Datum)</td>
<td>(Datum)</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>33.04</td>
<td>BOARD TYPE</td>
<td>(Type stuurkaart)</td>
<td>(Type stuurkaart)</td>
<td>(Type stuurkaart)</td>
<td>(Type stuurkaart)</td>
<td>(Type stuurkaart)</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>PROCES DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.01</td>
<td>SCHALING</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>34.02</td>
<td>EENHEID</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>702</td>
<td></td>
</tr>
<tr>
<td>34.03</td>
<td>PROCES DATA KEUZE</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>34.04</td>
<td>MOT TOERENFILTERT</td>
<td>500 ms</td>
<td>500 ms</td>
<td>500 ms</td>
<td>500 ms</td>
<td>500 ms</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>34.05</td>
<td>KOPPEL FILTERTIJD</td>
<td>100 ms</td>
<td>100 ms</td>
<td>100 ms</td>
<td>100 ms</td>
<td>100 ms</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>34.06</td>
<td>RESET M-UREN</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>MOT TEMP METING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.01</td>
<td>MT TEMP AIT KEUZE</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>35.02</td>
<td>MOT 1 TEMP ALM L</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>727</td>
<td></td>
</tr>
<tr>
<td>35.03</td>
<td>MOT 1 TEMP FT L</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>35.04</td>
<td>M 2 TEMP A12 KEUZE</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td>35.05</td>
<td>MOT 2 TEMP ALM L</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>35.06</td>
<td>MOT 2 TEMP FT L</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>731</td>
<td></td>
</tr>
<tr>
<td>35.07</td>
<td>MOT MOD COMPENSAT</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>35.08</td>
<td>MOT MOD COMP PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>733</td>
<td></td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>Fabriek</th>
<th>HAND/AUTO</th>
<th>PID-REGELING</th>
<th>KOPPEL-REGEL</th>
<th>VOLGORDE BST</th>
<th>PB W</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.01</td>
<td>PID VERSTERRING</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>851</td>
</tr>
<tr>
<td>40.02</td>
<td>PID INTEGR. TIJD</td>
<td>60,00 s</td>
<td>60,00 s</td>
<td>60,00 s</td>
<td>60,00 s</td>
<td>60,00 s</td>
<td>852</td>
</tr>
<tr>
<td>40.03</td>
<td>PID DIFF. TIJD</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>0,00 s</td>
<td>853</td>
</tr>
<tr>
<td>40.04</td>
<td>PID DIFF. FILTER</td>
<td>1,00 s</td>
<td>1,00 s</td>
<td>1,00 s</td>
<td>1,00 s</td>
<td>1,00 s</td>
<td>854</td>
</tr>
<tr>
<td>40.05</td>
<td>INVERTEREN FOUTW</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>855</td>
</tr>
<tr>
<td>40.06</td>
<td>WERKW KEUZE</td>
<td>WERKW1</td>
<td>WERKW1</td>
<td>WERKW1</td>
<td>WERKW1</td>
<td>WERKW1</td>
<td>856</td>
</tr>
<tr>
<td>40.07</td>
<td>WERKW1 KEUZE</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>857</td>
</tr>
<tr>
<td>40.08</td>
<td>WERKW2 KEUZE</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>A12</td>
<td>858</td>
</tr>
<tr>
<td>40.09</td>
<td>WERKW1 MINIMUM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>859</td>
</tr>
<tr>
<td>40.10</td>
<td>WERKW1 MAXIMUM</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>860</td>
</tr>
<tr>
<td>40.11</td>
<td>WERKW2 MINIMUM</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>861</td>
</tr>
<tr>
<td>40.12</td>
<td>WERKW2 MAXIMUM</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>862</td>
</tr>
<tr>
<td>40.13</td>
<td>PID INTEGRATOR</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>AAN</td>
<td>863</td>
</tr>
<tr>
<td>40.14</td>
<td>TRIM MODE</td>
<td>UIT</td>
<td>UIT</td>
<td>UIT</td>
<td>UIT</td>
<td>UIT</td>
<td>864</td>
</tr>
<tr>
<td>40.15</td>
<td>TRIM REF KEUZE</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
<td>865</td>
</tr>
<tr>
<td>40.16</td>
<td>TRIM REFERENTIE</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>866</td>
</tr>
<tr>
<td>40.17</td>
<td>TRIM INSTELGEBI</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>867</td>
</tr>
<tr>
<td>40.18</td>
<td>TRIM KEUZE</td>
<td>TOEREN</td>
<td>TRIM</td>
<td>TRIM</td>
<td>TRIM</td>
<td>TRIM</td>
<td>868</td>
</tr>
<tr>
<td>40.19</td>
<td>WERK-FILTERTIJD</td>
<td>0,04 s</td>
<td>0,04 s</td>
<td>0,04 s</td>
<td>0,04 s</td>
<td>0,04 s</td>
<td>869</td>
</tr>
<tr>
<td>40.20</td>
<td>SLAAPKEUZE</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>UIT</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>870</td>
</tr>
<tr>
<td>40.21</td>
<td>SLAAP NIVO</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>0.0 rpm</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>871</td>
</tr>
<tr>
<td>40.22</td>
<td>SLAAP VERTRAGING</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>0.0 s</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>872</td>
</tr>
<tr>
<td>40.23</td>
<td>WEK NIVO</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>0%</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>873</td>
</tr>
<tr>
<td>40.24</td>
<td>WEK VERTRAGING</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>0.0 s</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>874</td>
</tr>
<tr>
<td>40.25</td>
<td>WERKW1 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>875</td>
</tr>
<tr>
<td>40.26</td>
<td>WERKW1 MINIMUM</td>
<td>-100,0%</td>
<td>-100,0%</td>
<td>-100,0%</td>
<td>-100,0%</td>
<td>-100,0%</td>
<td>876</td>
</tr>
<tr>
<td>40.27</td>
<td>WERKW1 MAXIMUM</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>877</td>
</tr>
<tr>
<td>40.28</td>
<td>TRIM REF PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>878</td>
</tr>
<tr>
<td>42</td>
<td>MECH REMBEST</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>879</td>
</tr>
<tr>
<td>42.01</td>
<td>MECH REMBEST</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>880</td>
</tr>
<tr>
<td>42.02</td>
<td>REM TERUGMELDING</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>UUT</td>
<td>881</td>
</tr>
<tr>
<td>42.03</td>
<td>REM OPEN VERTR</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>882</td>
</tr>
<tr>
<td>42.04</td>
<td>REM DICH VERTR</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>883</td>
</tr>
<tr>
<td>42.05</td>
<td>ABS REMDICHT SML</td>
<td>10 rpm</td>
<td>10 rpm</td>
<td>10 rpm</td>
<td>10 rpm</td>
<td>10 rpm</td>
<td>884</td>
</tr>
<tr>
<td>42.06</td>
<td>REM FOUTFUNCTIE</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>FOUT</td>
<td>885</td>
</tr>
<tr>
<td>42.07</td>
<td>STRTKOPP REF KEU</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>886</td>
</tr>
<tr>
<td>42.08</td>
<td>STARTKOPPEL REF</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>887</td>
</tr>
<tr>
<td>42.09</td>
<td>EXTEND RUN TIJD</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>888</td>
</tr>
<tr>
<td>42.10</td>
<td>LAAG REF REM HOUD</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>0.0 s</td>
<td>889</td>
</tr>
<tr>
<td>45</td>
<td>ENERGY OPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.02</td>
<td>ENERGY TARIFF1</td>
<td>0 c/E</td>
<td>0 c/E</td>
<td>0 c/E</td>
<td>0 c/E</td>
<td>0 c/E</td>
<td>890</td>
</tr>
<tr>
<td>45.06</td>
<td>E TARIFF UNIT</td>
<td>EUR</td>
<td>EUR</td>
<td>EUR</td>
<td>EUR</td>
<td>EUR</td>
<td>891</td>
</tr>
<tr>
<td>45.08</td>
<td>PUMP REF POWER</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>892</td>
</tr>
<tr>
<td>45.09</td>
<td>ENERGY RESET</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>GEDAAN</td>
<td>893</td>
</tr>
<tr>
<td>50</td>
<td>ENCODER MODULE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.01</td>
<td>PULSE AANTAL</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>894</td>
</tr>
<tr>
<td>50.02</td>
<td>TOEREN MEET MODE</td>
<td>A --- B ---</td>
<td>895</td>
</tr>
<tr>
<td>50.03</td>
<td>PULSEGVEW FOUT</td>
<td>WAARSCU WING</td>
<td>WAARSCU WING</td>
<td>WAARSCU WING</td>
<td>WAARSCU WING</td>
<td>WAARSCU WING</td>
<td>896</td>
</tr>
<tr>
<td>50.04</td>
<td>ENCODER-VERTRAGING</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>897</td>
</tr>
<tr>
<td>50.05</td>
<td>ENCODER DDCC CHANNEL</td>
<td>CHANNEL 1</td>
<td>CHANNEL 1</td>
<td>CHANNEL 1</td>
<td>CHANNEL 1</td>
<td>CHANNEL 1</td>
<td>898</td>
</tr>
<tr>
<td>50.06</td>
<td>SPEED FB SEL</td>
<td>INTERNAL</td>
<td>INTERNAL</td>
<td>INTERNAL</td>
<td>INTERNAL</td>
<td>INTERNAL</td>
<td>899</td>
</tr>
<tr>
<td>50.07</td>
<td>ENC CABLE CHECK</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>900</td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>FABRIEK</th>
<th>HAND/AUTO</th>
<th>PID-REGELING</th>
<th>KOPPEL-REGEL</th>
<th>VOLGORDE BST</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>COMM MOD DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>STANDAARD MODBUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1051</td>
<td></td>
</tr>
<tr>
<td>52.01</td>
<td>STATIONNUMMER</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1052</td>
<td></td>
</tr>
<tr>
<td>52.02</td>
<td>BAUDRATE</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td>1053</td>
<td></td>
</tr>
<tr>
<td>52.03</td>
<td>PARITEIT</td>
<td>ONEWEN</td>
<td>ONEWEN</td>
<td>ONEWEN</td>
<td>ONEWEN</td>
<td>ONEWEN</td>
<td>1054</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>MASTER/FOLLOWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1112</td>
<td></td>
</tr>
<tr>
<td>60.01</td>
<td>MASTER LINK MODE</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>NIET GEBRUIKT</td>
<td>1113</td>
<td></td>
</tr>
<tr>
<td>60.02</td>
<td>KOPPEL SELECTOR</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>KOPPEL</td>
<td>onzichtbaar</td>
<td>1114</td>
<td></td>
</tr>
<tr>
<td>60.03</td>
<td>WINDOW KEUZE AAN</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>NEE</td>
<td>onzichtbaar</td>
<td>1115</td>
<td></td>
</tr>
<tr>
<td>60.04</td>
<td>WINDOW BREDTE POS</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>0</td>
<td>onzichtbaar</td>
<td>1116</td>
<td></td>
</tr>
<tr>
<td>60.05</td>
<td>WINDOW BREDTE NEG</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>onzichtbaar</td>
<td>0</td>
<td>onzichtbaar</td>
<td>1117</td>
<td></td>
</tr>
<tr>
<td>60.06</td>
<td>DROOPRATE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>60.07</td>
<td>MASTER SIGNAAL 2</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>1201</td>
<td></td>
</tr>
<tr>
<td>60.08</td>
<td>MASTER SIGNAAL 3</td>
<td>213</td>
<td>213</td>
<td>213</td>
<td>213</td>
<td>213</td>
<td>1202</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>DDCS BESTURING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1375</td>
<td></td>
</tr>
<tr>
<td>70.01</td>
<td>CHANNEL 0 ADDR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1376</td>
<td></td>
</tr>
<tr>
<td>70.02</td>
<td>CHANNEL 3 ADDR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1377</td>
<td></td>
</tr>
<tr>
<td>70.03</td>
<td>CH1 BAUDRATE</td>
<td>4 Mbit/s</td>
<td>4 Mbit/s</td>
<td>4 Mbit/s</td>
<td>4 Mbit/s</td>
<td>4 Mbit/s</td>
<td>1378</td>
<td></td>
</tr>
<tr>
<td>70.04</td>
<td>CH0 DDCS HW Conn</td>
<td>RING</td>
<td>RING</td>
<td>RING</td>
<td>RING</td>
<td>RING</td>
<td>1379</td>
<td></td>
</tr>
<tr>
<td>70.05</td>
<td>CH2 HW CONNECTION</td>
<td>RING</td>
<td>RING</td>
<td>RING</td>
<td>RING</td>
<td>RING</td>
<td>1380</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>BEL CURVE GEBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1411</td>
<td></td>
</tr>
<tr>
<td>72.01</td>
<td>OVERBEL FUNCTIE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1412</td>
<td></td>
</tr>
<tr>
<td>72.02</td>
<td>BELASTING STROOM1</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1413</td>
<td></td>
</tr>
<tr>
<td>72.03</td>
<td>BELASTING STROOM2</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1414</td>
<td></td>
</tr>
<tr>
<td>72.04</td>
<td>BELASTING STROOM3</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1415</td>
<td></td>
</tr>
<tr>
<td>72.05</td>
<td>BELASTING STROOM4</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1416</td>
<td></td>
</tr>
<tr>
<td>72.06</td>
<td>BELASTING STROOM5</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1417</td>
<td></td>
</tr>
<tr>
<td>72.07</td>
<td>BELASTING STROOM6</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1418</td>
<td></td>
</tr>
<tr>
<td>72.08</td>
<td>BELASTING STROOM7</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1419</td>
<td></td>
</tr>
<tr>
<td>72.09</td>
<td>BELASTING STROOM8</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>1420</td>
<td></td>
</tr>
<tr>
<td>72.10</td>
<td>BELASTING FREQ 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1421</td>
<td></td>
</tr>
<tr>
<td>72.11</td>
<td>BELASTING FREQ 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1422</td>
<td></td>
</tr>
<tr>
<td>72.12</td>
<td>BELASTING FREQ 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1423</td>
<td></td>
</tr>
<tr>
<td>72.13</td>
<td>BELASTING FREQ 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1424</td>
<td></td>
</tr>
<tr>
<td>72.14</td>
<td>BELASTING FREQ 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1425</td>
<td></td>
</tr>
<tr>
<td>72.15</td>
<td>BELASTING FREQ 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1426</td>
<td></td>
</tr>
<tr>
<td>72.16</td>
<td>BELASTING FREQ 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1427</td>
<td></td>
</tr>
<tr>
<td>72.17</td>
<td>BELASTING FREQ 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1428</td>
<td></td>
</tr>
<tr>
<td>72.18</td>
<td>BEL STROOMLIMIET</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>1429</td>
<td></td>
</tr>
<tr>
<td>72.19</td>
<td>BEL THERM TIJD</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1430</td>
<td></td>
</tr>
<tr>
<td>72.20</td>
<td>BEL AFKOELTIJD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1431</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>ADAPT PROG CTRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1609</td>
<td>W</td>
</tr>
<tr>
<td>83.01</td>
<td>ADAPT PROG CMD</td>
<td>EDIT</td>
<td>EDIT</td>
<td>EDIT</td>
<td>EDIT</td>
<td>EDIT</td>
<td>1610</td>
<td></td>
</tr>
<tr>
<td>83.02</td>
<td>EDIT COMMAND</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1611</td>
<td></td>
</tr>
<tr>
<td>83.03</td>
<td>EDIT BLOK</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1612</td>
<td></td>
</tr>
<tr>
<td>83.04</td>
<td>TIMELEVEL KEUZE</td>
<td>100ms</td>
<td>100ms</td>
<td>100ms</td>
<td>100ms</td>
<td>100ms</td>
<td>1613</td>
<td></td>
</tr>
<tr>
<td>83.05</td>
<td>PASSCODE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1614</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>ADAPTIVE PROGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1628</td>
<td></td>
</tr>
<tr>
<td>84.01</td>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1629</td>
<td></td>
</tr>
<tr>
<td>84.02</td>
<td>FAULTED PAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>84.05</td>
<td>BLOK 1</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1631</td>
<td></td>
</tr>
<tr>
<td>84.06</td>
<td>INGANG 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1632</td>
<td></td>
</tr>
<tr>
<td>84.07</td>
<td>INGANG 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1633</td>
<td></td>
</tr>
<tr>
<td>84.08</td>
<td>INGANG 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1634</td>
<td></td>
</tr>
<tr>
<td>84.09</td>
<td>UITGANG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1635</td>
<td></td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
<table>
<thead>
<tr>
<th>Index</th>
<th>Naam/Keuze</th>
<th>FABRIEK</th>
<th>HAND/AUTO</th>
<th>PID-REGELENG</th>
<th>KOPPEL-REGELEN</th>
<th>VOLGORDE BST</th>
<th>PB</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.79</td>
<td>UITGANG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>GEBR CONSTANTEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.01</td>
<td>CONSTANTE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1645</td>
<td></td>
</tr>
<tr>
<td>85.02</td>
<td>CONSTANTE2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1646</td>
<td></td>
</tr>
<tr>
<td>85.03</td>
<td>CONSTANTE3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1647</td>
<td></td>
</tr>
<tr>
<td>85.04</td>
<td>CONSTANTE4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1648</td>
<td></td>
</tr>
<tr>
<td>85.05</td>
<td>CONSTANTE5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1649</td>
<td></td>
</tr>
<tr>
<td>85.06</td>
<td>CONSTANTE6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1650</td>
<td></td>
</tr>
<tr>
<td>85.07</td>
<td>CONSTANTE7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1651</td>
<td></td>
</tr>
<tr>
<td>85.08</td>
<td>CONSTANTE8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1652</td>
<td></td>
</tr>
<tr>
<td>85.09</td>
<td>CONSTANTE9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1653</td>
<td></td>
</tr>
<tr>
<td>85.10</td>
<td>CONSTANTEN10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.11</td>
<td>STRING1</td>
<td>BERICHT 1</td>
<td>BERICHT 1</td>
<td>BERICHT 1</td>
<td>BERICHT 1</td>
<td>BERICHT 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.12</td>
<td>STRING2</td>
<td>BERICHT 2</td>
<td>BERICHT 2</td>
<td>BERICHT 2</td>
<td>BERICHT 2</td>
<td>BERICHT 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.13</td>
<td>STRING3</td>
<td>BERICHT 3</td>
<td>BERICHT 3</td>
<td>BERICHT 3</td>
<td>BERICHT 3</td>
<td>BERICHT 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.14</td>
<td>STRING4</td>
<td>BERICHT 4</td>
<td>BERICHT 4</td>
<td>BERICHT 4</td>
<td>BERICHT 4</td>
<td>BERICHT 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.15</td>
<td>STRING5</td>
<td>BERICHT 5</td>
<td>BERICHT 5</td>
<td>BERICHT 5</td>
<td>BERICHT 5</td>
<td>BERICHT 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>D SET REC ADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.01</td>
<td>AUX DS REF3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1735</td>
<td></td>
</tr>
<tr>
<td>90.02</td>
<td>AUX DS REF4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1736</td>
<td></td>
</tr>
<tr>
<td>90.03</td>
<td>AUX DS REF5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1737</td>
<td></td>
</tr>
<tr>
<td>90.04</td>
<td>MAIN DS SOURCE</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1738</td>
</tr>
<tr>
<td>90.05</td>
<td>AUX DS SOURCE</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1739</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>D SET TR ADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.01</td>
<td>MAIN DS STATUS WORD</td>
<td>302</td>
<td>302</td>
<td>302</td>
<td>302</td>
<td>302</td>
<td>1771</td>
<td></td>
</tr>
<tr>
<td>92.02</td>
<td>MAIN DS ACT1</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>1772</td>
<td></td>
</tr>
<tr>
<td>92.03</td>
<td>MAIN DS ACT2</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>1773</td>
<td></td>
</tr>
<tr>
<td>92.04</td>
<td>AUX DS ACT3</td>
<td>305</td>
<td>305</td>
<td>305</td>
<td>305</td>
<td>305</td>
<td>1774</td>
<td></td>
</tr>
<tr>
<td>92.05</td>
<td>AUX DS ACT4</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>308</td>
<td>1775</td>
<td></td>
</tr>
<tr>
<td>92.06</td>
<td>AUX DS ACT5</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>1776</td>
<td></td>
</tr>
<tr>
<td>92.07</td>
<td>MSW B10 PTR</td>
<td>3.014.0</td>
<td>3.014.0</td>
<td>3.014.0</td>
<td>3.014.0</td>
<td>3.014.0</td>
<td>1777</td>
<td></td>
</tr>
<tr>
<td>92.08</td>
<td>MSW B13 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1778</td>
<td></td>
</tr>
<tr>
<td>92.09</td>
<td>MSW B14 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1779</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>HARDWARE SPECIF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.01</td>
<td>FAN SPD CTRL MODE</td>
<td>CONTROLLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1825</td>
<td></td>
</tr>
<tr>
<td>95.02</td>
<td>FUSE SWITCH CTRL</td>
<td>Afhankelijk van omvormertype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1826</td>
<td></td>
</tr>
<tr>
<td>95.03</td>
<td>INT CONFIG USER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1827</td>
<td></td>
</tr>
<tr>
<td>95.04</td>
<td>EX/SIN VERZOEK</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1828</td>
<td></td>
</tr>
<tr>
<td>95.05</td>
<td>ENA INC SW FREQ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1829</td>
<td></td>
</tr>
<tr>
<td>95.06</td>
<td>LCU Q PW REF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1830</td>
<td></td>
</tr>
<tr>
<td>95.07</td>
<td>LCU DC REF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1831</td>
<td></td>
</tr>
<tr>
<td>95.08</td>
<td>LCU PAR1 SEL</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>1832</td>
<td></td>
</tr>
<tr>
<td>95.09</td>
<td>LCU PAR2 SEL</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>1833</td>
<td></td>
</tr>
<tr>
<td>95.10</td>
<td>TEMP INV AMBIENT</td>
<td>40°C</td>
<td>40°C</td>
<td>40°C</td>
<td>40°C</td>
<td>40°C</td>
<td>1834</td>
<td></td>
</tr>
<tr>
<td>95.11</td>
<td>SUPPLY CTRL MODE</td>
<td>afh. van type</td>
<td>1835</td>
<td></td>
</tr>
<tr>
<td>95.12</td>
<td>LCU RUN PTR</td>
<td>C.00000</td>
<td>C.00000</td>
<td>C.00000</td>
<td>C.00000</td>
<td>C.00000</td>
<td>1836</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>EXT AO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.01</td>
<td>EXT AO1</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>TOERENTAL</td>
<td>1843</td>
<td></td>
</tr>
<tr>
<td>96.02</td>
<td>INVERT EXT AO1</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1844</td>
<td></td>
</tr>
<tr>
<td>96.03</td>
<td>MINIMUM EXT AO1</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>1845</td>
<td></td>
</tr>
<tr>
<td>96.04</td>
<td>FILTER EXT AO1</td>
<td>0,01 s</td>
<td>0,01 s</td>
<td>0,01 s</td>
<td>0,01 s</td>
<td>0,01 s</td>
<td>1846</td>
<td></td>
</tr>
<tr>
<td>96.05</td>
<td>SCHAAL EXT AO1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>1847</td>
<td></td>
</tr>
<tr>
<td>96.06</td>
<td>EXT AO2</td>
<td>STROOM</td>
<td>STROOM</td>
<td>STROOM</td>
<td>STROOM</td>
<td>STROOM</td>
<td>1848</td>
<td></td>
</tr>
<tr>
<td>96.07</td>
<td>INVERT EXT AO2</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1849</td>
<td></td>
</tr>
<tr>
<td>96.08</td>
<td>MINIMUM EXT AO2</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>0 mA</td>
<td>1850</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Naam/Keuze</td>
<td>FABRIEK</td>
<td>HAND/AUTO</td>
<td>PID-REGELING</td>
<td>KOPPEL-REGEL</td>
<td>VOLGORDE</td>
<td>PB</td>
<td>W</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>96.09</td>
<td>FILTER EXT AO2</td>
<td>2.00 s</td>
<td>2.00 s</td>
<td>2.00 s</td>
<td>2.00 s</td>
<td>1851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.10</td>
<td>SCHAAL EXT AO2</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>1852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.11</td>
<td>EXT AO1 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.12</td>
<td>EXT AO2 PTR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1854</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>OPTIEMODULES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.01</td>
<td>ENCODER MODULE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.02</td>
<td>COMM. MODULE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.03</td>
<td>DI/O EXT MODULE 1</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.04</td>
<td>DI/O EXT MODULE 2</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.05</td>
<td>DI/O EXT MODULE 3</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.06</td>
<td>EXT AI/O MODULE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.07</td>
<td>COMM PROFIEL</td>
<td>ABB DRIVES</td>
<td>ABB DRIVES</td>
<td>ABB DRIVES</td>
<td>ABB DRIVES</td>
<td>1907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.09</td>
<td>DI/O EXT1 DI FUNC</td>
<td>DI7,8,9</td>
<td>DI7,8,9</td>
<td>DI7,8,9</td>
<td>DI7,8,9</td>
<td>1909</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.10</td>
<td>DI/O EXT2 DI FUNC</td>
<td>DI10,11,12</td>
<td>DI10,11,12</td>
<td>DI10,11,12</td>
<td>DI10,11,12</td>
<td>1910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.11</td>
<td>DI/O EXT3 DI FUNC</td>
<td>DI11,12</td>
<td>DI11,12</td>
<td>DI11,12</td>
<td>DI11,12</td>
<td>1911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.12</td>
<td>AI/O MOTOR TEMP</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.13</td>
<td>AI/O EXT AI1 FUNC</td>
<td>UNIPOLAR A15</td>
<td>UNIPOLAR A15</td>
<td>UNIPOLAR A15</td>
<td>UNIPOLAR A15</td>
<td>1913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.14</td>
<td>AI/O EXT AI2 FUNC</td>
<td>UNIPOLAR A16</td>
<td>UNIPOLAR A16</td>
<td>UNIPOLAR A16</td>
<td>UNIPOLAR A16</td>
<td>1914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.16</td>
<td>SIN FILT SUPERV</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>OPSTARTGEGEVENS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.01</td>
<td>TAAL</td>
<td>ENGLISH</td>
<td>ENGLISH</td>
<td>ENGLISH</td>
<td>ENGLISH</td>
<td>1926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.02</td>
<td>APPLICATIE MACRO</td>
<td>FABRIEK</td>
<td>HAND/AUTO</td>
<td>PID-REGELING</td>
<td>KOPPELREGEL</td>
<td>VOLGORDE</td>
<td>PB</td>
<td>W</td>
</tr>
<tr>
<td>99.03</td>
<td>HERSTEL MACRO</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>NEE</td>
<td>1928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.04</td>
<td>MOTOR CTRL MODE</td>
<td>DTC</td>
<td>DTC</td>
<td>DTC</td>
<td>DTC</td>
<td>1929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.05</td>
<td>M NOM SPANNING</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
<td>1930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.06</td>
<td>M NOM STROM</td>
<td>0,0 A</td>
<td>0,0 A</td>
<td>0,0 A</td>
<td>0,0 A</td>
<td>1931</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.07</td>
<td>M NOM FREQ</td>
<td>50,0 Hz</td>
<td>50,0 Hz</td>
<td>50,0 Hz</td>
<td>50,0 Hz</td>
<td>1932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.08</td>
<td>M NOM TOERENTAL</td>
<td>2900 rpm</td>
<td>2900 rpm</td>
<td>2900 rpm</td>
<td>2900 rpm</td>
<td>1933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.09</td>
<td>M NOM VERMOGEN</td>
<td>0,0 kW</td>
<td>0,0 kW</td>
<td>0,0 kW</td>
<td>0,0 kW</td>
<td>1934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.10</td>
<td>MOTOR IDENT. RUN</td>
<td>ID MAGN</td>
<td>ID MAGN</td>
<td>ID MAGN</td>
<td>ID MAGN</td>
<td>1935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.11</td>
<td>DEVICE NAAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1936</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aanvullende gegevens: actuele gegevens en parameters
Aanvullende gegevens: actuele gegevens en parameters
Overzicht

<table>
<thead>
<tr>
<th>Schema</th>
<th>Gerelateerde diagrammen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besturingsketen, blad 1</td>
<td>Vervolgd op blad 2</td>
</tr>
<tr>
<td>Geldig als de macro FABRIEK, HAND/AUTO, VOLGORDE BST of KOPPELREGEL actief is (zie parameter 99.02).</td>
<td></td>
</tr>
<tr>
<td>Besturingsketen, blad 1</td>
<td>Vervolgd op blad 2</td>
</tr>
<tr>
<td>Geldig als de macro PID REGELING actief is (zie parameter 99.02).</td>
<td></td>
</tr>
<tr>
<td>Besturingsketen, blad 2</td>
<td>Vervolg van blad 1</td>
</tr>
<tr>
<td>Geldig bij alle macro’s (zie parameter 99.02).</td>
<td></td>
</tr>
<tr>
<td>Starten, stoppen, startvrijgave en startvergrendeling</td>
<td>-</td>
</tr>
<tr>
<td>Geldig bij alle macro’s (zie parameter 99.02).</td>
<td></td>
</tr>
<tr>
<td>Resetten, in- en uitschakelen</td>
<td>-</td>
</tr>
<tr>
<td>Geldig bij alle macro’s (zie parameter 99.02).</td>
<td></td>
</tr>
</tbody>
</table>
Besturingsketen, blad 1: macro's FABRIEK, HAND/AUTO, VOLGORDE BST en KOPPELREGEL (vervolgd op volgende pagina ...)

FACTORY, HAND/AUTO, SEQUENTIAL AND TORQUE MACRO

Based on

Prepared

Customer

Approved

Cust. Doc. No.

Project name

Date

Besturingsblokschema's
... vervolg van vorige pagina
Besturingsketen, blad 1: macro PID REGELING (vervolgd op volgende pagina ...)

PID MACRO
... vervolg van vorige pagina
Besturingsketen, blad 2: Alle macro's (vervolgd op volgende pagina ...)

SPEED REFERENCE CHAIN

TORQUE REFERENCE CHAIN

FLUX REFERENCE CHAIN

Besturingsblokschema's
1) See the separate sheet on reference handling.
2) Not effective if Start is received through the fieldbus (FIELDBUS CW).
3) See the separate sheet on the handling of Reset and ON/OFF bit.
Resetten, in- en uitschakelen

Het onderstaande schema is een detail van het voorgaande schema (Starten, stoppen, startvrijgave en startvergrendeling).

\[\text{RESET VANUIT PANEEL} \quad \text{RESET VANUIT VELDBUS} \quad \text{IN LOCALE MODUS} \]

\[\text{16.04} \quad \text{EXT RESET} \quad \text{EN} \quad \text{EN} \quad \text{HOOFD CW / B7 (RESET)} \]

\[\text{31} \quad \text{AUTORESET} \quad \text{EN} \quad \text{EN} \quad \text{HOOFD CW / B0 (ON/OFF)} \]

\[\text{NIET GEREED VOOR INSCHAKELEN} \quad \text{INSCHAKELEN VERBODEN} \quad \text{VELDBUS CW / B0} \]
Besturingsblokschema's
Index

Symbols

'Boolean'-waarden 41

Numerics

03.07 SYSTEEMFOUTWOORD 237

A

Aardfoutbeveiliging 68
ABB Drives communicatieprofiel 224
Absoluut frequentiemaximum 103, 269
Absoluut toerentalmaximum 103, 269
ACCEL/DECEL 141
ACCELER TIJD 1 141
Acceleratie
 compensatie 145
 hellingen 62
 instellingen 62
 motor 106
 tijden 20
 tijden, instellen 44
 toerentalreferentiehellingen 49
Actuele gegevens 56
 actuele gegevens 55, 56
 analoge uitgang 53
 definitie 219
 digitale ingangen 54
 relaisuitgang 55
Actueel gegeven .
 de volledige namen weergeven 30
Actuele gegevens 56, 271–274
 Afregelning van de toerenregelaar 64
 diagnostiek 47, 55, 56
 door gebruiker gekozen variabelen 73
 instellingen 55, 56
 parameters 55, 56
 PID-regeling 75
 toerentalbesturing 63
 uitleesmodus 29
Actuele signalen
 gedefinieerd 103
Adaptermodule, veldbus 204
Advant controller 210–211
Afregelning van de toerenregelaar 63
AI<Min instellingen;Instellingen:AI<Min;
Parameters:AI<Min;
Paneelverlies:Externe fout;
Instellingen:externe fout; Parameter:externe fout;Fouten:externe, instellingen 66
ALARMWOORD 1 237
ALARMWOORD 2 238
ALARMWOORD 4 240
ALARMWOORD 5 241
ALARMWOORD 6 242
Analoge ingangen
 optioneel, bewaking 69
Analoge uitbreidingsmodule 265
Analoge uitgangen
 diagnostiek 53
 Instellingen 53
 optioneel, bewaking 69
 parameters 53
APPLICATIE MACRO 105, 198
Applicatie, selecteren voor start-up assistant 43
Applicatiemacro’s 89
 fabriek 89, 91
 gebruik 89, 101
 hand/auto 89, 93
 koppelregeling 89, 97
 PID control
 diagram besturingsketen 288
 PID-regeling 89, 95
 volgordebesturing 89, 99
Automatische resets 72
Automatische start 57
AUX STATUSWOORD 3 238
AUX STATUSWOORD 4 239

B

Bedieningspaneel
 basistoetsen 35
 besturing omvormer 27–28
 bezig met downloaden van
 omvormergegevens 37
 het contrast van het display aanpassen 38
 omvormergegevens uploaden 36
 overzicht 25–26
 uitleesmodus 29
Besturing omvormer
 door I/O interface 22
 parameters 212–214
Besturing via een veldbus 203–245
 controloecd, statuswoord 217
 interface 216–223
Referenties 217
twee veldbussen met een omvormer verbinden 204
Besturingsblokschema's 285–293
Beveiligingsfuncties 66
Blokkeerbeveiliging 68

C

Communicatie
 een veldbusadaptermodule gebruiken 206
 foutbeveiliging 69
 profielen 224–233
Communicatieprofielen 224–233
 ABB drives 224
 generieke omvormer 229
 Constant toerental 62
 Controlwoord 217
 CSA 2.8/3.0 communicatieprofiel 232

D

DC
 bescherming tussenkring 72
 houd 60
 magnetisatie 60
 onderspanningsfout 70
 overspanningsfout 69
De foutgeschiedenis bekijken 30
Deceleratie
 compensatie 145
 hellingen 62
 instellingen 62
DECELTIJD 1 141
Diagnostiek
 Actuele gegevens 47
 actuele gegevens 55, 56
 analoge uitgang 53
 bewaking van door gebruiker gekozen variabelen 73
 digitale ingangen 54
 relaisuitgang 55
 toerentalbesturing 63
Digitale ingangen
 diagnostiek 54
 instellingen 54
 optioneel, bewaking 69
 parameters 54
Digitale uitgangen
 optioneel, bewaking 69
Door gebruiker gekozen variabelen beheren 72
Doorg gebruiker gekozen, beheren 72

E

Energie-optimalisatie 106, 172
EXT IO STATUS 243
Externe besturing 46
 diagnostiek 47
 referentiebrondiagram 48
 stop, start, draairichtingsdiagram 45 48

F

Fluxoptimalisatie 61
Fluxremmen 60, 61
FOUT WOORD 1 235
FOUTE INT INFO 244
Fouten
 aarde, beveiliging 68
 communicatie, beveiliging 69
 DC-overspanning 69
 overstroom 69
 voorgeprogrammeerd 69
 DC-overspanning 70
 interne fout 72
 kortsluiting 71
 Omvormertemperatuur 70
 Overfrequentie 71
 Temperatuur van de besturingskaart 71
 Uitgebreide monitoring omvormer-temperatuur 70
 verlies ingangsfas 71
Foutgeschiedenis
 bekijken en resetten 30
 wissen 30
FOUTWOORD 2 236
FOUTWOORD 4 239
FOUTWOORD 5 240
FOUTWOORD 6 243

G

Gebruikersmacro’s 101
 definitie 89
Generic Drive communicatieprofiel 229

H

Hellingen
 acceleratie 62
 deceleratie 62
 Hexagonale motorflux 66
| I | ID Run procedure 23–24
ID-nummer op de paneelverbinding, veranderen 39
Ingangsbewegingsbescherming 72
Instellen, versnellingsstijd 44
Instellingen
aardfoutbeveiliging 68
acceleratie 62
actuele gegevens 55, 56
analoge uitgang 53
amtomatiche reset 72
amtomatiche start 57
bewaking 72
blokkeerbeveiliging 68
communicatiefoutbeveiliging 69
Constante toeren 62
DC houd 60
DC magnetisatie 60
deceleratie 62
digitale ingangen 54
Externe besturing 47
faseverlies 68
Fluxoptimisatie 61
fluxremmen 61
Hexagonale motorflux 66
IR compensatie 65
kritische toeren 62
limieten 72
lokale besturing 47
motor temperatuur 67
onderbelastingsbeveiliging 63 68
optienele analoge ingangen 69
optienele analoge uitgangen 69
optienele digitale ingangen 69
optienele digitale uitgangen 69
parameterslot 73
PID-regeling 75
Reference trimming 50
relaisuitgang 55
Scalarbesturing 65
toerentalbesturing 63
| L | LIMIET WOORD 1 235
Limieten, instelbaar 72
LIMIETWOORD INVRT 242
Lokale besturing 46
M | Macro Hand/Auto 89, 93
Macro Volgordebesturing 99
definitie 89
Macro’s
fabriek 89, 91
gebruiker 101
definitie 89
hand/auto 89, 93
koppelregeling 89, 97
overzicht 89
PID control
diagram besturingsketen 288
PID-regeling 89, 95
volgordebesturing 99
definitie 89
Macro’s Fabriek 89–91
Modbus
adaptermodule 205
adresseren 209
koppeling, communicatieparameters 208–209
Mogelijkheden van het programma 43–88
Motor
blokkeerbeveiliging 68
faseverlies 68
identificatie 56
onderbelastingsbeveiliging 68
temperatuur thermisch model 67
temperatuurmeting met standaard I/O 76, 77
thermische beveiliging 67
O | Omvormer
gegevens, downloaden naar het bedieningspaneel 37
gegevens, uploaden naar het bedieningspaneel 36
IR-compensatie voor scalarbesturing 60 65
opstarten 15
Referentietypes en hun verwerking 49
temperatuurfout 70
veranderen van het ID-nummer op de paneelverbinding 39
Onderbelastingsbeveiliging 68
Opstarten 15
amtomatiche start 57
K | Kabelaansluiting, bewaking 68
Koppelregeling
macro 89, 97
prestatiecijfers 63
Kortsluiting 71
Kritische toeren 62
Kabelaansluiting, bewaking 68
Koppelregeling
macro 89, 97
prestatiecijfers 63
Kortsluiting 71
Kritische toeren 62
INT INIT FOUT 241
INT SC INFO 245
Integer scaling 70
Interne fout 72
K |
basisinstellingen 17–21
begeleid 15–16
Opstarten assistent
 applicatie selecteren 43
 standaardtaken 43
 taken en parameters 43
Overfrequentiefout 71
Overstroom fout 69

P
Parameterinstellingen, bipolaire ingang bij
joystickbesturing 267
Parameters
 aardfoutbeveiliging 68
 actuele gegevens 55, 56
 Advant controller 210–211
 afregeling van de toerenregelaar 63
 analoge uitgang 53
 automatische reset 72
 besturing omvormer 212–214
 bewaking 72
 blokkeerbeveiliging 68
 communicatiefoutbeveiliging 69
digitale ingangen 54
 faseverlies 68
gedefinieerd 103
gegevenstabellen 275
Hexagonale motorflux 66
IR compensatie 65
motortemperatuur 67
onderbelastingsbeveiliging 63 68
optionele analoge in- en uitgangen 69
parameterslot 73
Reference trimming 50
relaisuitgang 55
Scalarbesturing 65
standaard modbus link 208–209
start-up assistant 43
veldbusadapter 206–207
waarden selecteren en wijzigen 32
werkbereik 72
Parameterslot 73
PB, definitie 269
PID control
 macro, diagram besturingsketen 288
PID-regeling
 blokschema’s 74
 instellingen 75
 macro 89, 95
 parameters 75
 slaapfunctie 75
Prestatiecijfers
 koppelregeling 63
toerentalbesturing 63
Preventie van onverwacht opstarten (POUS). 58
Programmaanmerken 43–88
Programmeerbaar
 analoge uitgang 53
digitale ingangen 54
 relaisuitgang 55
R
Referentie
 bron
 EXT 1 48
types en verwerking 46 49
 correctie 50
diagrammen besturingsketen 288
 verwerking 218
Relaisuitgangen
diagnostiek 55
instellingen 55
parameters 55
reset, automatisch 72
Resetten
 foutgeschiedenis 30
S
Safe torque off (STO) 58
Scalarbesturing 65
Schaling van de veldbusreferentie
 ABB Drives communicatieprofiel 228
 CSA 2.8/3.0 communicatieprofiel 232
generieke omvormer 231
Slaapfunctie 75
 voorbeeld 76
Standaardtaken, opstartassistent 43
Statuswoord 217
 auxiliary 234
 CSA 2.8/3.0 communicatieprofiel 233
Systeemoverzicht 203
T
Temperatuur
 berekeningsmethode 67
 meting met standaard I/O 76, 77
 Temperatuur van de besturingskaart 71
Toerentalreferentie
 parameters 266
 versnellings-/vertragingshellingen 49
Toerentalregeling afstemmen 63
Toetsen op het bedieningspaneel 35
U
Uitval van ingangsfaase 71

V
Variabelen 72
Veilig beperkt toerental (SLS) 59
Veldbus, equivalent, gedefinieerd 103
Veldbusadapter
 communicatieparameters 206–207
 module 204
Veldbusadressen 269
Vermogensbegrenzing 72
Voorgeprogrammeerde fouten 69
 DC-onderspanning 70
 interne fout. 72
 kortsluiting 71
 Omvormertemperatuur 70
 Overfrequentie 71
 Temperatuur van de besturingskaart 71
Uitgebreide monitoring
 omvormertemperatuur 70
 verlies ingangsfaase 71

W
Weergavecontrast, instelling 38
Weergeven
 foutgeschiedenis 30
 volledige namen van actuele gegevens 30
Werkbereik 72
Werking bij korte spanningsuitval 57
Wissen
 foutgeschiedenis 30