Caractéristiques du produit
IRB 910INV
Caractéristiques du produit
IRB 910INV-3/0.35
IRB 910INV-6/0.55
OmniCore

ID du document: 3HAC068057-004
Révision: B

© Copyright 2019- ABB. Tous droits réservés.
Spécifications sujettes à changement sans préavis.
Les informations contenues dans ce manuel peuvent être modifiées sans préavis et ne doivent pas être interprétées comme un engagement de la part d'ABB. La responsabilité d'ABB ne sera pas engagée par suite d'erreurs contenues dans ce manuel.

Sauf stipulation expresse du présent manuel, aucune des informations ne pourra être interprétée comme une garantie d'ABB couvrant les risques de perte, de dommages corporels ou matériels, l'adaptation à un usage particulier ou toute autre garantie que ce soit.

En aucun cas, la responsabilité d'ABB ne pourra être engagée à la suite de dommages fortuits ou liés à l'utilisation du présent manuel ou des produits décrits dans le manuel.

Le présent manuel ne doit pas être reproduit ou copié, intégralement ou en partie, sans l'autorisation écrite d'ABB.

À conserver pour référence ultérieure.

D'autres exemplaires de ce manuel peuvent être obtenus auprès d'ABB.

Traduction de la notice originale.

© Copyright 2019- ABB. Tous droits réservés.
Spécifications sujettes à changement sans préavis.
Table des matières

Vue générale de ce manuel .. 7

1 Description 9

1.1 Structure .. 9
 1.1.1 Introduction concernant la structure .. 9
 1.1.2 Le robot .. 12
 1.1.2.1 Caractéristiques techniques ... 13
1.2 Normes standard .. 18
 1.2.1 Normes applicables .. 18
1.3 Installation ... 20
 1.3.1 Présentation de l'installation ... 20
 1.3.2 Conditions d'exploitation .. 21
 1.3.3 Montage du manipulateur ... 22
1.4 Diagrammes des charges ... 24
 1.4.1 Présentation des diagrammes de charge ... 24
 1.4.2 Diagramme des charges ... 25
 1.4.3 Charge et moment d'inertie maximaux .. 27
1.5 Montage de l'équipement .. 28
1.6 Étalonnage .. 33
 1.6.1 Méthodes d'étalonnage ... 33
 1.6.2 Étalonnage précis .. 35
 1.6.3 Option Absolute Accuracy .. 36
1.7 Maintenance et dépannage .. 38
 1.7.1 Présentation de la maintenance et du dépannage ... 38
1.8 Mouvements du robot .. 39
 1.8.1 Enveloppe de travail et type de mouvement ... 40
 1.8.2 Performances conformes à la norme ISO 9283 ... 42
 1.8.3 Vitesse .. 43
 1.8.4 Distances et temps d'arrêt du robot ... 44
1.9 Connexions client ... 45

2 Spécifications des variantes et options .. 47

2.1 Présentation des variantes et options .. 47
2.2 Manipulateur ... 48
2.3 Câbles au sol ... 49
2.4 Documentation utilisateur .. 51

3 Accessoires .. 53

Index ... 55
Cette page a été volontairement laissée vierge
Vue générale de ce manuel

À propos de ces caractéristiques du produit

Ces caractéristiques de produit décrivent les performances du manipulateur ou d’une famille complète de manipulateurs en termes :

- d’impressions structurelles et dimensionnelles ;
- de respect des normes, de la sécurité et de l’équipement de fonctionnement ;
- de diagrammes des charges, de montage d’équipement supplémentaire, de mouvement et de position atteinte ;
- de caractéristiques de variante et d’options disponibles.

Utilisation

Les caractéristiques du produit permettent d’obtenir des informations sur les performances d’un produit, par exemple pour décider quel produit acheter. Pour savoir comment utiliser un produit, il faut consulter le manuel du produit.

Les caractéristiques sont destinées au :

- Chefs et personnel produit ;
- Personnel ventes et marketing
- Personnel commandes et service clientèle

Références

<table>
<thead>
<tr>
<th>Nom du document</th>
<th>ID du document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuel du produit, pièces détachées - IRB 910INV</td>
<td>3HAC068056-004</td>
</tr>
<tr>
<td>Manuel du produit - IRB 910INV</td>
<td>3HAC068055-004</td>
</tr>
<tr>
<td>Circuit diagram - IRB 910INV</td>
<td>3HAC061899-011</td>
</tr>
<tr>
<td>Manuel d’utilisation - Consignes générales de sécurité</td>
<td>3HAC031045-004</td>
</tr>
<tr>
<td>Manuel du produit - OmniCore C30</td>
<td>3HAC060860-004</td>
</tr>
<tr>
<td>Operating manual - OmniCore</td>
<td>3HAC065036-001</td>
</tr>
<tr>
<td>Application manual - Controller software OmniCore</td>
<td>3HAC066554-001</td>
</tr>
<tr>
<td>Application manual - CalibWare Field</td>
<td>3HAC030421-001</td>
</tr>
<tr>
<td>Manuel de référence technique - Event logs for RobotWare 7</td>
<td>3HAC066553-004</td>
</tr>
<tr>
<td>Manuel de référence technique - Lubrification des réducteurs</td>
<td>3HAC042927-004</td>
</tr>
<tr>
<td>Manuel de référence technique - Paramètres système</td>
<td>3HAC065041-004</td>
</tr>
</tbody>
</table>

Ce manuel contient toutes les instructions de sécurité des manuels de produit sur les manipulateurs et systèmes de commande.

Révisions

<table>
<thead>
<tr>
<th>Révision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Première édition.</td>
</tr>
</tbody>
</table>

© Copyright 2019- ABB. Tous droits réservés.
<table>
<thead>
<tr>
<th>Révision</th>
<th>Description</th>
</tr>
</thead>
</table>
| B | Publié dans la version R19D Les mises à jour suivantes sont effectuées dans la présente révision :
| | - Ajout de l'option de protection 3350-540 Base 54 et de 3351-1 Salle blanche 1. 209-2 Ajout du blanc standard ABB.
| | - Modifications mineures. |
1 Description

1.1 Structure

1.1.1 Introduction concernant la structure

Généralités

L’IRB 910INV est un robot SCARA de deuxième génération d’ABB Robotics, à 4 axes d’une charge utile max. de 3 kg et 6 kg dans deux variantes de portée de 0,35 m et 0,55 m, spécifiquement conçu pour les industries manufacturières nécessitant une souplesse élevée en matière d'automatisation, notamment dans l'informatique, la communication et l'électronique grand public. Il dispose d'une structure ouverte spécialement adaptée à une utilisation souple. Il peut communiquer parfaitement avec les systèmes externes.

Robots pour salle blanche

Les émissions de particules du robot respectent les normes de classe 1 Clean room selon DIN EN ISO 14644-1. Les robots Clean room sont conçus spécialement pour fonctionner dans un environnement de salle blanche.

Conformément au résultat du test IPA :

Le robot IRB 910INV est adapté pour une utilisation en salles blanches répondant à la pureté de l'air de classe 1 conformément à la norme ISO 14644-1, lorsqu'il fonctionne à une capacité de 50 %.

Le robot IRB 910INV est adapté pour une utilisation en salles blanches répondant à la pureté de l'air de classe 1 conformément à la norme ISO 14644-1, lorsqu'il fonctionne à une capacité de 100 %.

Les robots pour Clean room sont conçus spécialement pour empêcher toute émission de particules en provenance du robot. Par exemple, il est possible d’effectuer des travaux de maintenance fréquents sans fissurer la peinture. Le robot est recouvert de quatre couches de peinture polyuréthane. La dernière couche est un vernis appliqué sur les étiquettes afin de simplifier le nettoyage. La peinture a été testée par rapport à sa tenue face au dégazage de composés organiques volatiles (VOC) et a été classée en conformité avec la norme ISO 14644-8.
Classification de la contamination moléculaire aérienne, voir ci-dessous :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Quantité de dégazage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone (m²)</td>
<td></td>
</tr>
<tr>
<td>Durée(s) du test</td>
<td></td>
</tr>
<tr>
<td>Temp. (°C)</td>
<td></td>
</tr>
<tr>
<td>Test réalisé</td>
<td></td>
</tr>
<tr>
<td>Total détecté (ng)</td>
<td></td>
</tr>
<tr>
<td>Certification basée sur 1 m² et 1s (g)</td>
<td></td>
</tr>
<tr>
<td>Classifica-</td>
<td></td>
</tr>
<tr>
<td>tion conforme à la norme ISO 14644-8</td>
<td></td>
</tr>
<tr>
<td>4.5E-03</td>
<td></td>
</tr>
<tr>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>TVOC</td>
<td></td>
</tr>
<tr>
<td>2848</td>
<td>1.7E-07</td>
</tr>
<tr>
<td>-6.8</td>
<td></td>
</tr>
<tr>
<td>4.5E-03</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>TVOC</td>
<td></td>
</tr>
<tr>
<td>46524</td>
<td>1.7E-04</td>
</tr>
<tr>
<td>-3.8</td>
<td></td>
</tr>
</tbody>
</table>

Résultats de classification selon la norme ISO 14644-8 à différentes températures de test.

Protection IP54

Le robot est doté d’une IP54 en option. L’option ajoute des joints et des pièces d’usinage.

Système d’exploitation

Le robot est équipé du système de commande OmniCore C30 et du logiciel de commande du robot, RobotWare. RobotWare prend en charge tous les aspects du système de robot, notamment le contrôle des mouvements, le développement et l’exécution des programmes applicatifs, la communication, etc. Voir Operating manual - OmniCore.

Sécurité

Les normes de sécurité concernent le robot, le manipulateur et le système de commande complèts.

Fonctionnalités complémentaires

En ce qui concerne les fonctionnalités supplémentaires, le robot peut être équipé d’un logiciel optionnel d’applications (comme la distribution et la découpe), de fonctions de communication (communication réseau) et de fonctions avancées (fonctionnement multitâche, contrôle par capteur, etc.). Pour obtenir la description complète des logiciels optionnels, reportez-vous à Caractéristiques du produit - OmniCore série C.
Axes du manipulateur

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Axe 1</td>
<td>2</td>
<td>Axe 2</td>
</tr>
<tr>
<td>3</td>
<td>Axe 3</td>
<td>4</td>
<td>Axe 4</td>
</tr>
</tbody>
</table>
1 Description

1.1.2 Le robot

Généralités
L'IRB 910INV est disponible dans deux versions et ne peut être monté qu’au plafond, aucune autre position de montage n’est autorisée.

<table>
<thead>
<tr>
<th>Type de robot</th>
<th>Capacité de manutention maximale (kg)</th>
<th>Portée (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 910INV-3/0.35</td>
<td>3 kg</td>
<td>0,35 m</td>
</tr>
<tr>
<td>IRB 910INV-6/0.55</td>
<td>6 kg</td>
<td>0,55 m</td>
</tr>
</tbody>
</table>
1.1.2.1 Caractéristiques techniques

Poids, robot

Le tableau indique le poids du robot.

<table>
<thead>
<tr>
<th>Modèle de robot</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 910INV</td>
<td>IRB 910INV-3/0.35: 19 kg</td>
</tr>
<tr>
<td></td>
<td>IRB 910INV-6/0.55: 22 kg</td>
</tr>
</tbody>
</table>

Remarque

Le poids n’inclut pas les outils et autres équipements installés sur le robot !

Charges sur la fondation, robot

<table>
<thead>
<tr>
<th>F_{xy}</th>
<th>Force dans un sens du plan XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{z}</td>
<td>Force dans un plan Z</td>
</tr>
<tr>
<td>T_{xy}</td>
<td>Couple de torsion dans un sens du plan XY</td>
</tr>
<tr>
<td>T_{z}</td>
<td>Couple de torsion dans un plan Z</td>
</tr>
</tbody>
</table>

Le tableau ci-dessous indique les forces et couples exercés sur le robot au cours de divers types de fonctionnement.

Remarque

Ces valeurs de forces et de couples sont extrêmes et rarement atteintes en cours de fonctionnement. Les valeurs n’atteignent également jamais leur maximum en même temps.
AVERTISSEMENT

L'installation du robot est limitée aux options de montage indiquées dans les tableaux de charges suivants.

Inversé

<table>
<thead>
<tr>
<th>Force</th>
<th>Charge d'endurance (en fonctionnement)</th>
<th>Charge max. (arrêt d'urgence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force xy</td>
<td>±420/440 N</td>
<td>±770/710 N</td>
</tr>
<tr>
<td>Force z</td>
<td>190 ±135/220 ±200 N</td>
<td>190 ±660/220 ±110 N</td>
</tr>
<tr>
<td>Couple xy</td>
<td>±220/170 Nm</td>
<td>±220/320 Nm</td>
</tr>
<tr>
<td>Couple z</td>
<td>±90/125 Nm</td>
<td>±160/190 Nm</td>
</tr>
</tbody>
</table>

Exigences, fondation

Le tableau ci-dessous indique les exigences auxquelles doit répondre la fondation supportant le poids du robot installé :

<table>
<thead>
<tr>
<th>Exigences</th>
<th>Valeur</th>
<th>Remarque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platitude de la surface de fondation</td>
<td>0.1/500 mm</td>
<td>Les fondations planes offrent une meilleure répétabilité de l'étalonnage du résolveur par rapport aux paramètres originaux lors de la livraison d'ABB. La valeur du nivellement est définie selon les points d'ancrage de la base du robot. Pour compenser une surface irrégulière, le robot peut être étalonné à l'installation. Si l'étalonnage du résolveur/encodeur est modifié, cela aura un impact sur la absolute accuracy.</td>
</tr>
<tr>
<td>Inclinaison maximum</td>
<td>3°</td>
<td>La valeur est recommandée pour une performance optimale. En raison de la rigidité de la fondation, prenez en compte l'équipement dans la masse du robot. Pour des informations liées à la compensation des flexibilités de fondation, voir Application manual - Controller software OmniCore, rubrique Mode de processus des mouvements.</td>
</tr>
<tr>
<td>Fréquence de résonance minimum</td>
<td>22 Hz</td>
<td>Le fait d'avoir une fréquence de résonance plus faible que celle recommandée peut affecter la durée de vie du manipulateur.</td>
</tr>
</tbody>
</table>

La fréquence de résonance minimale donnée doit être interprétée comme la fréquence de la masse/inertie du robot, le robot supposé rigide, lorsqu'une elasticité translationnelle/torsionnelle de la fondation est ajoutée, p. ex. la rigidité du piedestal sur lequel le robot est monté. La fréquence de résonance minimale ne doit pas être interprétée comme la fréquence de résonance du bâtiment, du sol, etc. Par exemple, si la masse équivalente du sol est très élevée, cela n’affectera pas le mouvement du robot, même si la fréquence est bien inférieure à la fréquence déclarée. Le robot doit être monté aussi rigide que possible sur le sol. Les perturbations des autres machineries affecteront le robot et la précision de l’outil. Le robot possède des fréquences de résonance dans la zone de 10-20 Hz et les perturbations dans cette plage seront amplifiées, bien qu’amorties quelque peu par le servo-contrôle. Cela pourrait être un problème, en fonction des exigences des applications. Si c’est un problème, le robot doit être isolé de l’environnement.
Conditions d'entreposage, robot
Le tableau ci-dessous indique les conditions d'entreposage préconisées pour le robot :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température ambiante minimale</td>
<td>-25°C</td>
</tr>
<tr>
<td>Température ambiante maximale</td>
<td>55°C</td>
</tr>
<tr>
<td>Température ambiante maximale (moins de 24 h)</td>
<td>70°C</td>
</tr>
<tr>
<td>Humidité ambiante maximale</td>
<td>95% at constant temperature (gaseous only)</td>
</tr>
</tbody>
</table>

Conditions de fonctionnement, robot
Le tableau ci-dessous indique les conditions de fonctionnement préconisées pour le robot :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température ambiante minimale</td>
<td>5°C</td>
</tr>
<tr>
<td>Température ambiante maximale</td>
<td>45°C</td>
</tr>
<tr>
<td>Humidité ambiante maximale</td>
<td>95% à température constante</td>
</tr>
</tbody>
</table>

À faible température < 10°C, comme pour toute autre machine, une phase de préchauffage est recommandée. Sinon, le robot risque de s'arrêter ou de fonctionner à faible performance en raison d'huile et de graisse dont la viscosité dépend de la température.

Classes de protection, robot
Le tableau présente les types de protection disponibles du robot, avec la classe de protection correspondante.

<table>
<thead>
<tr>
<th>Type de protection</th>
<th>Classe de protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulateur, type de protection Standard</td>
<td>IP30¹</td>
</tr>
<tr>
<td></td>
<td>IP54 (option 3350-540)</td>
</tr>
<tr>
<td>Manipulateur, type de protection Clean Room</td>
<td>ISO Class 1</td>
</tr>
</tbody>
</table>

¹ The protection class of the ballscrew area is IP20. For more information, please contact ABB.

Autres informations techniques

<table>
<thead>
<tr>
<th>Données</th>
<th>Description</th>
<th>Remarque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niveau de bruit aérien</td>
<td>Niveau de pression acoustique à l'extérieur</td>
<td>< 70 dB (A) Leq (conformément à la directive machine de l'espace de travail 2006/42/CE)</td>
</tr>
</tbody>
</table>

Consommation d'énergie

<table>
<thead>
<tr>
<th>Robot en position 0 degrés</th>
<th>IRB 910INV-3/0.35</th>
<th>IRB 910INV-6/0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freins engagés (W)</td>
<td>74</td>
<td>81</td>
</tr>
<tr>
<td>Freins desserrés (W)</td>
<td>102</td>
<td>115</td>
</tr>
</tbody>
</table>
1 Description

1.1.2.1 Caractéristiques techniques

Suite

Dimensions de IRB 910INV-3/0.35

Robots avec classe de protection IP30 (option 3350-300)

Robots avec classe de protection IP54 (option 3350-540) ou type de protection Clean Room (option 3351-1)

xx1800002818

xx1900001540

© Copyright 2019- ABB. Tous droits réservés.
Dimensions de IRB 910INV-6/0.55

Robots avec classe de protection IP30 (option 3350-300)

Robots avec classe de protection IP54 (option 3350-540) ou type de protection Clean Room (option 3351-1)

La figure indique les dimensions du IRB 910INV-6/0.55 for Clean Room/IP54.
1 Description

1.2 Normes standard

1.2.1 Normes applicables

<table>
<thead>
<tr>
<th>Norme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 12100:2010</td>
<td>Safety of machinery - General principles for design - Risk assessment and risk reduction</td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery, safety related parts of control systems - Part 1: General principles for design</td>
</tr>
<tr>
<td>EN ISO 13850:2015</td>
<td>Safety of machinery - Emergency stop - Principles for design</td>
</tr>
<tr>
<td>EN ISO 10218-1:2011</td>
<td>Robots for industrial environments - Safety requirements - Part 1 Robot</td>
</tr>
<tr>
<td>ISO 9787:2013</td>
<td>Robots and robotic devices -- Coordinate systems and motion nomenclatures</td>
</tr>
<tr>
<td>EN ISO 14644-1:2015</td>
<td>Classification of air cleanliness</td>
</tr>
<tr>
<td>EN ISO 13732-1:2008</td>
<td>Ergonomics of the thermal environment - Part 1</td>
</tr>
<tr>
<td>EN 61000-6-2:2005 IEC 61000-6-2:2005</td>
<td>EMC, Generic immunity</td>
</tr>
<tr>
<td>EN IEC 60974-1:2012</td>
<td>Arc welding equipment - Part 1: Welding power sources</td>
</tr>
<tr>
<td>EN IEC 60974-10:2014</td>
<td>Arc welding equipment - Part 10: EMC requirements</td>
</tr>
<tr>
<td>EN IEC 60204-1:2016</td>
<td>Safety of machinery - Electrical equipment of machines - Part 1 General requirements</td>
</tr>
<tr>
<td>IEC 60529:1989 + A2:2013</td>
<td>Degrees of protection provided by enclosures (IP code)</td>
</tr>
</tbody>
</table>

Remarque
Les normes indiquées sont valides au moment de la publication de ce document. Les normes abandonnées ou remplacées sont retirées de la liste lorsque cela est nécessaire.

Normes, EN ISO
Le produit est conçu conformément aux exigences des normes suivantes :
1 Description

1.2.1 Normes applicables

Normes européennes

<table>
<thead>
<tr>
<th>Norme</th>
<th>Description</th>
</tr>
</thead>
</table>

Autres normes

<table>
<thead>
<tr>
<th>Norme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/RIA R15.06</td>
<td>Safety requirements for industrial robots and robot systems</td>
</tr>
<tr>
<td>ANSI/UL 1740</td>
<td>Safety standard for robots and robotic equipment</td>
</tr>
<tr>
<td>CAN/CSA Z 434-14</td>
<td>Industrial robots and robot Systems - General safety requirements</td>
</tr>
</tbody>
</table>
1 Description

1.3 Installation

1.3.1 Présentation de l'installation

Généralités

L'IRB 910INV est adapté à un environnement industriel normal. Un outil terminal d'un poids maximal de 6 kg (charge utile comprise) peut être monté sur l'extrémité inférieure de l'arbre de spline avec vis à billes (axe 3). Pour en savoir plus sur le montage d'équipements supplémentaires, consultez la section Montage de l'équipement à la page 28.
1.3.2 Conditions d'exploitation

Norme de protection

<table>
<thead>
<tr>
<th>Variante du robot</th>
<th>Norme de protection CEI529</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes les variantes, manipulateur</td>
<td>IP30</td>
</tr>
<tr>
<td>Option, toutes les variantes, manipulateur</td>
<td>IP54</td>
</tr>
<tr>
<td>Option, toutes les variantes, manipulateur</td>
<td>ISO Class 1</td>
</tr>
</tbody>
</table>

Environnements explosifs

Le robot ne doit pas être placé ou manipulé dans un environnement explosif.

Limitations du rayon d'action

EPS ne pourra pas être sélectionné et aucune limitation mécanique ne s'appliquera.

Humidité relative

<table>
<thead>
<tr>
<th>Description</th>
<th>Humidité relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot complet pendant le fonctionnement, le transport et le stockage</td>
<td>95% max. à température constante</td>
</tr>
</tbody>
</table>
1.3.3 Montage du manipulateur

Configuration des trous, base

Cette illustration représente la configuration des trous utilisée pour l’ancrage du robot.

* Fenêtre de maintenance : Il est recommandé d’ouvrir le couvercle du bras interne.
Vis de fixation

Le tableau ci-dessous indique le type de vis de fixation et de rondelle à utiliser pour l'ancrage du robot dans la plaque d'assise/la fondation.

<table>
<thead>
<tr>
<th>Vis appropriées</th>
<th>M6x25 (installation directe au sol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantité</td>
<td>6 pcs</td>
</tr>
<tr>
<td>Qualité</td>
<td>10.9</td>
</tr>
<tr>
<td>Rondelle appropriée</td>
<td>12 x 6.4 x 1.6, dureté de l'acier de classe 300HV</td>
</tr>
<tr>
<td>Goujons de guidage</td>
<td>2 pcs, D5x20, ISO 2338 - 5m6x20 - A1</td>
</tr>
<tr>
<td>Couple de serrage</td>
<td>11 Nm±1,1 Nm</td>
</tr>
</tbody>
</table>

Exigences en matière de surface plane

![0.2]

xx0900000643

1 Description

1.3.3 Montage du manipulateur

Suite
1 Description

1.4 Diagrammes des charges

1.4.1 Présentation des diagrammes de charge

Informations

AVERTISSEMENT

Il est primordial de toujours définir les données de charge réelle correctes et de corriger la charge utile du robot. Des définitions incorrectes des données de charge peuvent entraîner une surcharge du robot.

Si des données de charge et/ou des charges incorrectes (en dehors du diagramme des charges) sont utilisées, les pièces suivantes peuvent être endommagées par une surcharge :

• unité de spline avec vis à billes
• moteurs
• réducteurs
• structure mécanique

AVERTISSEMENT

La routine de service LoadIdentify est disponible dans le système de robot, ce qui permet à l’utilisateur de définir automatiquement l’outil et la charge et de déterminer les paramètres de charge appropriés. Pour des informations plus détaillées, voir Manuel du produit - OmniCore C30.

AVERTISSEMENT

Les robots fonctionnant avec des données de charge et/ou des charges en dehors du diagramme de charges, ne seront pas couverts par la garantie du robot.

Généralités

Le diagramme des charges comprend une inertie de charge nominale J_0 de 0,01 kgm2. Le diagramme de charge varie en fonction du moment d’inertie. Pour les robots qui peuvent être montés inversés, les diagrammes de charge tels qu’ils sont donnés sont valables et par conséquent, il est également possible d’utiliser RobotLoad dans les limites d’inclinaison et d’axe.
1.4.2 Diagramme des charges

IRB 910INV-3/0.35
1 Description

1.4.2 Diagramme des charges

Suite
1.4.3 Charge et moment d’inertie maximaux

Généralités

Charge totale donnée en : masse en kg, centre de gravité (Z et L) en mètres et moment d’inertie (\(J_{ox}\), \(J_{oy}\), \(J_{oz}\)) en kgm\(^2\). \(L = \sqrt{X^2 + Y^2}\).

Pour IRB 910INV, \(L\) is 0 mm à la valeur nominale par défaut et sa valeur maximale change avec la charge utile. Voir Diagramme des charges à la page 25.

Mouvement complet

<table>
<thead>
<tr>
<th>Axe</th>
<th>Variante du robot</th>
<th>Valeur maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>IRB 910INV-3/0.35</td>
<td>(J_4 = \text{Masse} \times L^2 + J_{oz} \leq 0,05 \text{ kgm}^2)</td>
</tr>
<tr>
<td></td>
<td>IRB 910INV-6/0.55</td>
<td>(J_4 = \text{Masse} \times L^2 + J_{oz} \leq 0,12 \text{ kgm}^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Centre de gravité</td>
</tr>
<tr>
<td>(J_{ox}), (J_{oy}), (J_{oz})</td>
<td>Moment d’inertie maximal autour des axes X, Y et Z au centre de gravité.</td>
</tr>
</tbody>
</table>
1 Description

1.5 Montage de l’équipement

1.5 Montage de l’équipement

Montage de l’outil terminal sur l’arbre de spline avec vis à billes

Un outil terminal peut être fixé à l’extrémité inférieure de l’arbre de l’unité de spline avec vis à billes. Les dimensions pour le montage de l’outil terminal sont indiquées dans la figure suivante.

Remarque

Le montage d’autres équipements sur l’IRB 910INV peut endommager les réducteurs.

<table>
<thead>
<tr>
<th>A</th>
<th>Trou conique</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Diamètre de l’arbre</td>
</tr>
<tr>
<td>C</td>
<td>Orifice de passage</td>
</tr>
<tr>
<td>D</td>
<td>Découpe plate</td>
</tr>
</tbody>
</table>

Suite page suivante
Bride de l’outil terminal de l’IRB 910INV-3/0.35

IP30

xx1900001315

Éléments de l’équipement
1 Description

1.5 Montage de l’équipement

Suite
Bride de l'outil terminal de l'IRB 910INV-6/0.55

IP30
1 Description

1.5 Montage de l’équipement

Suite

Clean Room/ IP54
1 Étalonnage

1.6 Étalonnage

1.6.1 Méthodes d’étalonnage

Vue d’ensemble

Cette section indique les différents types d’étalonnage et les méthodes d’étalonnage proposées par ABB.

Les données d’étalonnage d’origine fournies avec le robot sont générales lorsque le robot est monté au sol. Si le robot n’est pas monté au sol, la précision du robot pourrait en être affectée. Le robot doit être étalonné après son montage.

Le manuel du produit contient des informations complémentaires.

Types d’étalonnage

<table>
<thead>
<tr>
<th>Type d’étalonnage</th>
<th>Description</th>
<th>Méthode d’étalonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Étalonnage standard</td>
<td>Le robot étalonné est placé en position d’étalonnage.</td>
<td>Axis Calibration¹</td>
</tr>
<tr>
<td></td>
<td>Les données d’étalonnage standard se trouvent sur la carte SMB (carte de mesure en série) ou EIB dans le robot.</td>
<td></td>
</tr>
</tbody>
</table>
| Absolute accuracy étalonnage (facultatif) | Basé sur l’étalonnage standard, l’étalonnage Absolute accuracy (précision absolue) place le robot en position de synchronisation, mais compense également :
 | • les tolérances mécaniques de la structure du robot ; | CalibWare | |
| | • toute flexion due à la charge | |
| | L'étalonnage Absolute accuracy (précision absolue) met l'accent sur la précision du positionnement dans le système de coordonnées cartésien du robot. | |
| | Les données d'étalonnage Absolute accuracy se trouvent sur la SMB (carte de mesure série) du robot. | |
| | Dans le cas des robots étalonnés avec la fonctionnalité Absolute accuracy, les informations d’option sont imprimées sur la plaque signalétique. | |
| | Pour que le robot retrouve des performances Absolute accuracy (précision absolue) optimales, le robot doit être ré-étalonné afin de garantir une précision absolue optimale après toute intervention de maintenance ou réparation concernant sa structure mécanique. | |

¹ Seuls les axes 1 et 2 peuvent être étalonnés à l’aide de la méthode Axis Calibration.

Brève description des méthodes d’étalonnage

Méthode Axis Calibration

Axis Calibration est une méthode d’étalonnage standard pour IRB 910INV et constitue la méthode d’étalonnage standard la plus précise. C’est la méthode recommandée pour obtenir des performances adéquates.
Les routines suivantes sont disponibles pour la méthode Axis Calibration :

- Étalonnage précis
- Mise à jour des compte-tours
- Reference Calibration

L'équipement d'étalonnage de Axis Calibration est fourni sous la forme d'un jeu d'outils.

Vous trouverez les instructions relatives à l'exécution de la procédure d'étalonnage sur le FlexPendant. Il vous guidera, étape par étape, tout au long de la procédure d'étalonnage.

CalibWare - Absolute Accuracy étalonnage

L'outil CalibWare vous guide tout au long du processus d'étalonnage et calcule les nouveaux paramètres de compensation. Pour plus d'informations, voir Application manual - CalibWare Field.

Si une opération de service est effectuée sur un robot avec l'option Absolute Accuracy, un nouvel étalonnage de précision absolue est nécessaire afin d'obtenir des performances optimales. Dans la plupart des cas, après un remplacement du ne comprenant pas le démontage de la structure du robot, un étalonnage standard est suffisant.

L'option Absolute Accuracy varie en fonction de la position de montage du robot. Cette information est indiquée sur la plaque signalétique de chaque robot. Afin d'assurer une précision absolue, le robot doit être placé dans sa bonne position de montage lors de son réétalonnage.
1.6.2 Étalonnage précis

Généralités

L'étalonnage précis consiste à déplacer les axes de façon à aligner le repère de synchronisation sur chaque articulation. Pour plus de détails sur l'étalonnage du robot, reportez-vous à *Manuel du produit - IRB 910INV*.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Axe 1</td>
<td>2</td>
<td>Axe 2</td>
</tr>
<tr>
<td>3</td>
<td>Axe 3</td>
<td>4</td>
<td>Axe 4</td>
</tr>
</tbody>
</table>
1 Description

1.6.3 Option Absolute Accuracy

Objet

Le concept d'étalonnage Absolute Accuracy assure une précision absolue TCP. La différence entre un robot idéal et un robot réel peut être de plusieurs millimètres et s'explique par les tolérances mécaniques et la déflexion de la structure du robot due à la charge. La valeur Absolute Accuracy permet de compenser ces différences.

Voici quelques exemples pour lesquels cette précision est primordiale :

• Les possibilités de changement de robot
• Programmation hors ligne avec un minimum de réglage ou aucun réglage
• Programmation en ligne avec des mouvements précis et une réorientation précise de l'outil
• L'alignement précis des cellules pour le mouvement coordonné MultiMove
• La programmation avec des mouvements de décalage précis en relation, par exemple, avec le système de vision ou la programmation d'un décalage
• Réutilisation des programmes entre les applications

L'option Absolute Accuracy est intégrée aux algorithmes du système de commande afin de compenser cette différence et ne nécessite ni équipements, ni calculs externes.

Remarque

Les données de performance s'appliquent à la version de RobotWare installé sur le robot individuel.

Éléments inclus dans les

Chaque robot doté de l'option Absolute Accuracy est livré avec :

• paramètres de compensation enregistrés sur la carte de mesure série
• un certificat de naissance représentant le protocole de mesure de la Absolute Accuracy pour la séquence d'étalonnage et de vérification.

Un robot avec l'étalonnage Absolute Accuracy est marqué sur le manipulateur. L'option Absolute Accuracy prend en charge les installations montées sur le sol et les installations inversées. Le paramètre de compensation sera différent si le robot est monté au sol ou en installation inversée.

Quand la fonctionnalité Absolute Accuracy est-elle utilisée

La fonctionnalité Absolute Accuracy fonctionne sur les robots configurés sur des coordonnées cartésiennes, et non sur les articulations individuelles. Par conséquent, les mouvements reposant sur les articulations (comme MoveAbsJ) ne seront pas impactés.
En cas d'inversion du robot, l'étalonnage Absolute Accuracy doit être effectué au moment de l'inversion du robot.

Absolute Accuracy actif

L'option Absolute Accuracy sera active dans les cas suivants :

- Toute fonction de déplacement basée sur les valeurs robtarget (comme MoveL et ModPos sur robtargets)
- Pilotage en réorientation
- Pilotage manuel linéaire
- Définition d'outil (définition d'outil à 4, 5 et 6 points, TCP fixe, outil stationnaire)
- Définition du repère objet

Option Absolute Accuracy non active

Voici plusieurs exemples durant lesquels l'option Absolute Accuracy n'est pas active :

- Toute fonction de déplacement basée sur une valeur jointtarget (MoveAbsJ)
- Articulation indépendante
- Pilotage sur articulation

Instructions RAPID

Aucune instruction RAPID n'est incluse dans cette option.
1.7 Maintenance et dépannage

1.7.1 Présentation de la maintenance et du dépannage

Généralités
Le robot ne nécessite qu’un entretien minimal en cours de fonctionnement. Il a été conçu pour un entretien aussi simple que possible :
- Des moteurs à courant alternatif ne nécessitant aucun entretien sont utilisés.
- De la graisse est utilisée pour tous les réducteurs.
- Le câblage est conçu pour une longue durée de vie et, en cas (peu probable) de défaillance, sa conception modulaire facilite son remplacement.

Maintenance
Les intervalles de maintenance dépendent de l'utilisation du robot, les tâches de maintenance nécessaires dépendent également des options choisies. Pour obtenir des informations détaillées sur les procédures de maintenance, reportez-vous à la section Maintenance du Manuel du produit - IRB 910INV.
1.8 Mouvements du robot

Généralités

Remarque

Le robot se déplace plus vite lorsque l’axe 3 se trouve dans une position supérieure. Si l’axe 3 se trouve dans une position relativement basse, l’accélération et la décélération des axes 1, 2 et 4 peut être réduite en fonction de la position et de la vitesse réelles des axes, et le temps de stabilisation du positionnement final peut également être plus long lors du déplacement du robot à l’horizontale.
1 Description

1.8.1 Enveloppe de travail et type de mouvement

1.8.1 Enveloppe de travail et type de mouvement

Mouvements du robot

<table>
<thead>
<tr>
<th>Axe</th>
<th>Type de mouvement</th>
<th>Rayon d'action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IRB 910INV-3/0.35</td>
</tr>
<tr>
<td>Axe 1</td>
<td>Mouvement de rotation</td>
<td>±225°</td>
</tr>
<tr>
<td>Axe 2</td>
<td>Mouvement de rotation</td>
<td>±225°</td>
</tr>
<tr>
<td>Axe 3</td>
<td>Mouvement linéaire</td>
<td>-140 mm to 0 mm</td>
</tr>
<tr>
<td>Axe 3 (IP54 et Salle blanche)</td>
<td>Mouvement linéaire</td>
<td>-100 mm to 0 mm</td>
</tr>
<tr>
<td>Axe 4</td>
<td>Mouvement de rotation</td>
<td>±720°</td>
</tr>
</tbody>
</table>

Illustration, rayon d'action et rayon de rotation

Cette illustration représente le rayon d'action illimité et le rayon de rotation.
1 Description

1.8.1 Enveloppe de travail et type de mouvement

<table>
<thead>
<tr>
<th>IRB 910INV-3/0.35</th>
<th>IRB 910INV-6/0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP30</td>
<td>Salle blanche/IP54</td>
</tr>
<tr>
<td>C 175</td>
<td>175</td>
</tr>
<tr>
<td>D 140</td>
<td>100</td>
</tr>
</tbody>
</table>
Généralités

Pour une charge nominale maximale, un décalage maximal et une vitesse de 1,6 m/s sur le plan de test ISO incliné, avec les six axes en mouvement. Les valeurs du tableau ci-dessous correspondent au résultat moyen des mesures sur un petit nombre de robots. Le résultat peut varier en fonction de la position du robot dans le rayon d'action, de la vitesse, de la configuration de bras, du sens d'approche de la position, du sens de la charge sur le système de bras. Les jeux dans les réducteurs affectent également le résultat.

Les valeurs pour AP, RP, AT et RT sont mesurées conformément à l'image ci-dessous.

<table>
<thead>
<tr>
<th>Description</th>
<th>Valeurs¹</th>
<th>IRB 910INV-3/0.35</th>
<th>IRB 910INV-6/0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Répétabilité de pose, RP (mm)</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Répétabilité de la trajectoire linéaire, RT (mm)</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Temps de stabilisation de pose, PST (s) jusqu'à 0,1 mm de la position</td>
<td>0.61</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

¹ Les valeurs sont basées sur la position zéro de l'axe 3.
1.8.3 Vitesse

Généralités

<table>
<thead>
<tr>
<th>Variante du robot</th>
<th>Axe 1</th>
<th>Axe 2</th>
<th>Axe 3</th>
<th>Axe 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 910INV-3/0.35</td>
<td>672 °/s</td>
<td>780 °/s</td>
<td>1.1 m/s</td>
<td>3 000 °/s</td>
</tr>
<tr>
<td>IRB 910INV-6/0.55</td>
<td>420 °/s</td>
<td>780 °/s</td>
<td>1.1 m/s</td>
<td>3 000 °/s</td>
</tr>
</tbody>
</table>

Les vitesses des axes 1, 2 et 4 sont mesurées avec une charge utile de 1 kg et l’axe 3 à la position de 0 mm.

Une surveillance permet d’empêcher les surchauffes dans les applications avec des mouvements intensifs et fréquents.

Résolution

Environ 0,01° sur chaque axe.
1 Description

1.8.4 Distances et temps d'arrêt du robot

Introduction

Les distances et temps d'arrêt pour les arrêts de catégorie 0 et 1, conformément à la norme EN ISO 10218-1 Annex B, sont répertoriés dans Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645--001).
1.9 Connexions client

Présentation des connexions client

Le tuyau pour l'air comprimé est également intégré au manipulateur. La base comporte 4 entrées ((R1/8")) et 4 sorties ((M5)) sur le bras externe.

<table>
<thead>
<tr>
<th>Position</th>
<th>Connexion</th>
<th>Description</th>
<th>Nombre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Air</td>
<td>Max. 6 bars</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C1</td>
<td>Signaux et alimentations client</td>
<td>8 fils</td>
<td>30 V, 1.5 A</td>
</tr>
<tr>
<td>C</td>
<td>C2</td>
<td>Signaux et alimentations client ou Ethernet</td>
<td>8 fils</td>
<td>30 V, 1 A ou 1 Gbits/s</td>
</tr>
<tr>
<td>D</td>
<td>EP</td>
<td>Orifice d'échappement</td>
<td>1</td>
<td>Φ10 , 7–9L/min</td>
</tr>
</tbody>
</table>

1 Le connecteur comporte 12 broches. Seules les broches 1 à 8 sont utilisables.
2 Uniquement disponible pour le type de protection Clean Room.
3 Pour éviter la déformation des soufflets, réduisez le débit d'air si nécessaire.
1 Description

1.9 Connexions client

Suite

Kits de connexion

Le tableau décrit les kits de connexion CP/CS et Ethernet (le cas échéant) du bras externe.

Kits de connexion, bras externe

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kits de connexion</td>
<td>Kits de connexion droits mâles M12 CP/CS</td>
<td>3HAC066098-001</td>
</tr>
<tr>
<td></td>
<td>Kits de connexion coudés mâles M12 CP/CS</td>
<td>3HAC066099-001</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Kits de connexion droits mâles M12 Ethernet Cat5e</td>
<td>3HAC067413-001</td>
</tr>
<tr>
<td></td>
<td>Kits de connexion coudés mâles M12 Ethernet Cat5e</td>
<td>3HAC067414-001</td>
</tr>
</tbody>
</table>

Couvercles de protection

Couvercles de protection pour l’étanchéité à l’eau et à la poussière

Des couvercles de protection sont livrés avec le robot et doivent être installés sur les connecteurs pour toute application exigeant une étanchéité à l’eau et à la poussière.

Pensez toujours à replacer les couvercles de protection après les avoir retirés.

xx1900000149

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Couvercles de protection pour le connecteur du tuyau à air sur la base</td>
</tr>
<tr>
<td>B</td>
<td>Couvercles de protection pour le connecteur du tuyau à air sur le moyeu de processus</td>
</tr>
<tr>
<td>C</td>
<td>Couvercles de protection pour le connecteur C2/SMB sur la base et le connecteur C1/C2 sur le moyeu de processus</td>
</tr>
<tr>
<td>D</td>
<td>Couvercles de protection pour le connecteur C1 sur la base</td>
</tr>
<tr>
<td>E</td>
<td>Couvercle de protection pour le connecteur de l’orifice d’échappement sur la base</td>
</tr>
</tbody>
</table>
2 Spécifications des variantes et options

2.1 Présentation des variantes et options

Généralités

Les différentes variantes et options du IRB 910INV sont décrites dans les sections suivantes. Les numéros d'options utilisés ici sont les mêmes que ceux utilisés dans la fiche technique.

Les variantes et options relatives au système de commande du robot sont décrites dans les caractéristiques de produit du système de commande du robot.
2 Spécifications des variantes et options

2.2 Manipulateur

Variantes

<table>
<thead>
<tr>
<th>Option</th>
<th>Type d'IRB</th>
<th>Capacité de manutention max. (kg)</th>
<th>Portée (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300-3</td>
<td>IRB 910INV</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>3300-4</td>
<td>IRB 910INV</td>
<td>6</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Couleur du manipulateur

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>209-2</td>
<td>Blanc standard ABB, nécessitant Salle blanche 1 3351-1</td>
</tr>
<tr>
<td>209-202</td>
<td>Blanc graphite std ABB</td>
</tr>
</tbody>
</table>

Remarque

Notez que le délai de livraison des pièces détachées peintes sera plus long pour les couleurs non standard.

Protection

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3350-300</td>
<td>IP30</td>
</tr>
<tr>
<td>3350-540</td>
<td>IP54</td>
</tr>
<tr>
<td>3351-1</td>
<td>Salle blanche 1</td>
</tr>
</tbody>
</table>

Média et communication

<table>
<thead>
<tr>
<th>Option</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3303-1</td>
<td>Parallèle & Air</td>
<td>Comprend l'alimentation client (CP) et les signaux client (CS) + air.</td>
</tr>
<tr>
<td>3303-2</td>
<td>Ethernet, Parallèle, Air</td>
<td>Inclut CP, CS et PROFINET ou Ethernet + air.</td>
</tr>
</tbody>
</table>

Kit de connexion

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3304-1</td>
<td>Kits de connexion droits, de type mâle</td>
</tr>
<tr>
<td>3305-1</td>
<td>Kits de connexion coudés, de type mâle</td>
</tr>
<tr>
<td>3306-1</td>
<td>Kits de connexion Ethernet droits, de type mâle</td>
</tr>
<tr>
<td>3307-1</td>
<td>Kits de connexion Ethernet coudés, de type mâle</td>
</tr>
</tbody>
</table>
2.3 Câbles au sol

Longueur de câble du manipulateur

<table>
<thead>
<tr>
<th>Option</th>
<th>Longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200-1</td>
<td>3 m</td>
</tr>
<tr>
<td>3200-2</td>
<td>7 m</td>
</tr>
<tr>
<td>3200-3</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Connexion de communication parallèle

<table>
<thead>
<tr>
<th>Option</th>
<th>Longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201-1</td>
<td>3 m</td>
</tr>
<tr>
<td>3201-2</td>
<td>7 m</td>
</tr>
<tr>
<td>3201-3</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Connexion Ethernet

<table>
<thead>
<tr>
<th>Option</th>
<th>Longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>3202-2</td>
<td>7 m</td>
</tr>
<tr>
<td>3202-3</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Garantie

<table>
<thead>
<tr>
<th>Option</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>438-1</td>
<td>Garantie standard</td>
<td>La garantie standard est de 12 mois à compter de la date de livraison au client ou au plus tard 18 mois après la date d'expédition d'usine (selon la première éventualité à survenir). Les conditions générales de la garantie s’appliquent.</td>
</tr>
<tr>
<td>438-2</td>
<td>Garantie standard + 12 mois</td>
<td>Garantie standard étendue 12 mois à compter de la date de fin de garantie standard. Termes de la garantie et application des conditions. Contactez le service client en cas d’autres exigences.</td>
</tr>
<tr>
<td>438-4</td>
<td>Garantie standard + 18 mois</td>
<td>Garantie standard étendue de 18 mois à compter de la date de fin de garantie standard. Termes de la garantie et application des conditions. Contactez le service client en cas d’autres exigences.</td>
</tr>
<tr>
<td>438-5</td>
<td>Garantie standard + 24 mois</td>
<td>Garantie standard étendue 24 mois à compter de la date de fin de garantie standard. Termes de la garantie et application des conditions. Contactez le service client en cas d’autres exigences.</td>
</tr>
<tr>
<td>438-6</td>
<td>Garantie standard + 6 mois</td>
<td>Garantie standard étendue 6 mois à compter de la date de fin de garantie standard. Termes de la garantie et application des conditions. Contactez le service client en cas d’autres exigences.</td>
</tr>
<tr>
<td>438-7</td>
<td>Garantie standard + 30 mois</td>
<td>Garantie standard étendue 30 mois à compter de la date de fin de garantie standard. Termes de la garantie et application des conditions. Contactez le service client en cas d’autres exigences.</td>
</tr>
</tbody>
</table>
2 Spécifications des variantes et options

2.3 Câbles au sol

<table>
<thead>
<tr>
<th>Option</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>438-8</td>
<td>Garantie de stock</td>
<td>Le début de la garantie standard peut être différé de maximum 6 mois, à partir de la date d'expédition d'usine. Veuillez noter qu'aucune réclamation ne sera acceptée pour les garanties qui ont eu lieu avant la fin de la garantie de stock. La garantie standard commence automatiquement après 6 mois à compter de la date d’expédition d’usine ou à partir de la date d’activation de la garantie standard dans WebConfig.</td>
</tr>
</tbody>
</table>

Remarque

Des conditions spéciales sont applicables ; voir les directives de garantie robotique.
2.4 Documentation utilisateur

La documentation utilisateur décrit le robot en détail, y compris les instructions de service et de sécurité.

Cette page a été volontairement laissée vierge
3 Accessoires

Généralités

Une gamme d’outils et d’équipements est disponible.

Logiciels de base/options logicielles du robot et du PC

Pour plus d’informations, reportez-vous aux sections Caractéristiques du produit - OmniCore série C et Product specification - Controller software OmniCore.
Cette page a été volontairement laissée vierge
Index

A
Absolute Accuracy, 36
Absolute Accuracy, étalonnage, 34
ancrage du robot dans la fondation, vis de fixation, 23

C
CalibWare, 33
caractéristiques techniques
 robot, 13
catégorie 0, arrêt, 44
catégorie 1, arrêt, 44
charges sur la fondation, 13
classes de protection, 15
conditions d'entreposage, 15
conditions de fonctionnement, 15
couples sur la fondation, 13

D
distances d'arrêt, 44
documentation, 51
documentation utilisateur, 51

E
étalonnage
 Type Absolute Accuracy, 33
type standard, 33
étalonnage, Absolute Accuracy, 34
exigences sur la fondation, 14

F
fondation
 exigences, 14

G
garantie, 49
garantie de stock, 49
garantie standard, 49

H
humidité
 entreposage, 15
 fonctionnement, 15
humidité ambiante

entreposage, 15
fonctionnement, 15

I
instructions, 51
instructions de service, 51

M
manuels, 51

N
normes, 18
 ANSI, 19
 CAN, 19
 EN, 19
 EN IEC, 18
 EN ISO, 18
normes de sécurité, 18
normes des produits, 18

O
options, 47

P
paramètres de compensation., 36
poids, 13

R
robot
 caractéristiques techniques, 13
 classe de protection, 15
 types de protection, 15

température ambiante
 entreposage, 15
 fonctionnement, 15
températures
 entreposage, 15
 fonctionnement, 15
temps d'arrêt, 44
type de protection, 15

V
variantes, 47
ABB AB, Robotics
Robotics and Motion
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Robotics and Motion
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics and Motion
No. 4528 Kangxin Highway
PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics and Motion
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics