ACH580-34 drive modules

Hardware manual

Table of contents

1. Safety instructions

6. Mechanical installation

8. Electrical installation

13. Start-up
Table of contents

1 Safety instructions

Contents of this chapter ... 15
Use of warnings and notes .. 15
General safety in installation, start-up and maintenance 16
Electrical safety in installation, start-up and maintenance 18
 Electrical safety precautions ... 18
 Additional instructions and notes ... 20
 Printed circuit boards .. 20
 Grounding .. 20
General safety in operation .. 22
Additional instructions for permanent magnet motor drives 22
 Safety in installation, start-up, maintenance 22
 Safety in operation .. 23

2 Introduction to the manual

Contents of this chapter ... 25
Applicability .. 25
Target audience .. 25
Purpose of the manual ... 25
Categorization by frame size and option code 25
Quick installation, commissioning and operating flowchart 26
Terms and abbreviations .. 27
Related documents ... 27

3 Operation principle and hardware description

Contents of this chapter ... 29
Operation principle ... 29
 Block diagram of the main circuit of the drive module 30
 Line-side converter ... 30
 AC voltage and current waveforms ... 31
 Charging .. 31
 Motor-side converter ... 31
 DC voltage boost function ... 31
 DC connection ... 32
Layout ... 33
 Standard drive module configuration .. 33
 Drive with clear plastic shrouds (option +B051) 34
 Drive module .. 35
 LCL filter module ... 36
 Control panel .. 37
Overview of power and control connections .. 38
Type designation label ... 39
Type designation key ... 39
 Basic code .. 39
 Option codes .. 40
4 Generic cabinet planning instructions

Contents of this chapter ... 43
Limitation of liability ... 43
Cabinet construction ... 43
 Disposition of the devices ... 43
 Grounding of mounting structures ... 44
 Busbar material and joints ... 44
 Shrouds .. 44
 Tightening torques .. 44
 Electrical connections .. 44
 Mechanical connections .. 44
 Insulation supports ... 45
 Cable lugs ... 45
Cooling and degrees of protection .. 45
 Planning the cooling ... 45
 Air-cooled drive systems ... 45
 Air inlets and outlets .. 45
 Preventing the recirculation of hot air 47
 Liquid-cooled drive systems .. 48
EMC requirements .. 48
Attaching the cabinet ... 50
 Cabinet placement on a cable channel 50
 Cubicle heaters .. 51
Attaching the control panel on the cabinet door 51

5 Guidelines for planning the mechanical installation

Contents of this chapter ... 53
Installation positions of the drive module 53
 Layout example, door closed .. 54
 Layout example, door open (standard drive module configuration) 55
 Layout example, door open (option +B051) 56
Cooling solutions ... 57
 Preventing the recirculation of hot air 57
 Bookshelf mounting (standard drive module configuration) 58
 Bookshelf mounting (option +B051) 60
Required free space ... 60
 Free space at the top of the drive module 61
 Free space around the drive module 61
ABB air inlet and outlet kits ... 61

6 Mechanical installation

Contents of this chapter ... 63
Examining the installation site .. 63
Moving and unpacking ... 63
 Package drawings .. 64
 Drive module package ... 64
 Boxes ... 65
 LCL filter module package .. 68
Examining the delivery ... 68
Lifting .. 68
Attaching the drive module and LCL filter module to a mounting plate or wall 69
7 Guidelines for planning the electrical installation

Contents of this chapter ... 73
Limitation of liability ... 73
Selecting main disconnecting device ... 73
 AC main power supply .. 73
 European Union and United Kingdom 74
 North America ... 74
 Other regions .. 74
 DC solar PV main power supply .. 74
Selecting the main contactor ... 74
 North America .. 74
 Other regions .. 74
Examining the compatibility of the motor and drive 75
Protecting the motor insulation and bearings 75
Requirements table ... 75
 Availability of du/dt filter and common mode filter by drive type 78
 Additional requirements for explosion-safe (EX) motors 78
 Additional requirements for ABB motors of types other than M2_, 78
 M3_, M4_, HX_, and AM_ .. 78
 Additional requirements for the regenerative and low harmonics 78
 drives ... 78
 Additional requirements for ABB high-output and IP23 motors 78
 Additional requirements for non-ABB high-output and IP23 motors 78
 Additional data for calculating the rise time and the peak line-to-line 79
 voltage ... 79
Selecting the power cables .. 80
 General guidelines .. 80
 Typical power cable sizes ... 81
 Power cable types .. 81
 Preferred power cable types ... 81
 Alternate power cable types .. 82
 Not allowed power cable types 83
 Additional guidelines, North America 83
 Metal conduit ... 84
 Power cable shield .. 84
Selecting the control cables ... 85
 Shielding .. 85
 Signals in separate cables .. 85
 Signals that can be run in the same cable 85
 Relay cable ... 85
 Control panel to drive cable .. 85
 PC tool cable .. 86
Routing the cables .. 86
 General guidelines – IEC .. 86
 General guidelines – North America 87
Continuous motor cable shield/conduit or enclosure for equipment on the motor cable ... 87
Separate control cable ducts ... 88
Implementing motor and motor cable short-circuit and thermal overload protection 88
 Protecting the motor and motor cable in short-circuits 88
 Protecting the motor cables against thermal overload 88
 Protecting the motor against thermal overload ... 88
 Protecting the motor against overload without thermal model or temperature sensors 89
 Protecting the drive and the input power cable in short-circuits 89
 Protecting the drive against thermal overload .. 89
 Protecting the input power cable against thermal overload 90
 Implementing a motor temperature sensor connection 90
 Connecting motor temperature sensor to the drive via an option module 90
 Using power factor compensation capacitors with the drive 91
 Using a safety switch between the drive and the motor 91
 Implementing an ATEX-certified motor thermal protection 92
 Controlling a contactor between drive and motor ... 92
 Implementing a bypass connection .. 92
 Example bypass connection .. 93
 Switching the motor power supply from drive to direct-on-line 93
 Switching the motor power supply from direct-on-line to drive 94
 Protecting the contacts of relay outputs .. 94

8 Electrical installation

Contents of this chapter ... 95
Safety .. 95
Grounding the motor cable shield at the motor end 95
Measuring the insulation ... 96
 Measuring the insulation resistance of the drive ... 96
 Measuring the insulation resistance of the input power cable 96
 Measuring the insulation resistance of the motor and motor cable 96
 Measuring the insulation of brake resistor and resistor cable 96
Grounding system compatibility check .. 96
 Corner-grounded and midpoint-grounded delta systems 97
 Identifying the grounding system of the electrical power network 97
 When to disconnect EMC filter and ground-to-phase varistor: TN-S, IT, corner-
 grounded delta, and midpoint-grounded delta systems 98
 Guidelines for installing the drive to a TT system 98
 Disconnecting instructions .. 99
Connecting the power cables .. 99
 Power cable connection diagram .. 100
 Preparing the cable ends and making 360-degree grounding at the cable entry . 102
 Power cable connection procedure .. 103
Connecting the control cables to the integrated control unit 104
 Connecting external power supply wires to the control units 105
Connecting a control panel .. 106
Connecting a remote panel, or chaining one panel to several drives 106
Connecting a PC .. 107
Installing option modules ... 107
 Option slot 2 (I/O extension modules) .. 108
 Option slot 1 (fieldbus adapter modules) .. 109
 Wiring the optional modules ... 109
9 Control unit

Contents of this chapter ... 111
Layout .. 112
Default I/O connection diagram ... 113
Switches .. 114
Additional information on I/O connections .. 114
 PNP configuration for digital inputs (X2 & X3) ... 114
 NPN configuration for digital inputs (X2 & X3) ... 115
 Connection for obtaining 0…10 V from analog output 2 (AO2) .. 115
 Connection examples of two-wire and three-wire sensors to analog input (AI2) 116
 DI5 as frequency input .. 116
 DI6 as PTC input .. 116
 AI1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) 116
 Safe torque off (X4) .. 117
Technical data .. 118

10 External control unit (option +P906)

Contents of this chapter .. 123
Product overview ... 123
 Layout ... 124
 Cables ... 124
Unpacking the delivery ... 125
Installing the control unit ... 126
 Installation procedure ... 130
Maintenance ... 131
Dimension drawing ... 132

11 Installation example in Rittal VX25 enclosure

Contents of this chapter .. 133
Limitation of liability .. 133
Safety .. 133
Required parts .. 134
Required tools ... 134
Overall flowchart of the installation process .. 134
Installing the drive module and LCL filter module into an enclosure 135
Connecting the motor cables and installing the shrouds (option +B051) 136
Connecting the input cables and installing the shrouds (option +B051) 137
Installing the air baffles .. 138
Installing the roof and door (Rittal parts) ... 139
Removing the protective covering from the drive module and LCL filter module air outlet . 139

12 Installation checklist

Contents of this chapter .. 141
Checklist .. 141

13 Start-up

Contents of this chapter .. 143
Start-up procedure ... 143
14 Fault tracing

Contents of this chapter .. 145
 LEDs .. 145
 Drive LEDs .. 145
 Control panel LEDs .. 146
 Warning and fault messages .. 146

15 Maintenance

Contents of this chapter .. 147
 Maintenance intervals .. 147
 Descriptions of symbols ... 147
 Recommended annual maintenance actions by the user 147
 Recommended maintenance intervals after start-up 148
 Recommended functional safety actions 148
 Cleaning the interior of the cabinet 148
 Cleaning the interior of the heatsink 149
 Cleaning the interior of the LCL filter 150
 Fans ... 150
 Replacing the auxiliary cooling fans of the drive module 150
 Replacing the drive module main cooling fans 151
 Replacing the LCL filter module cooling fan 152
 Replacing the standard drive module 153
 Replacing the LCL filter module .. 156
 Capacitors .. 157
 Reforming the capacitors ... 157
 Control panel ... 157
 Cleaning the control panel ... 157
 Replacing the battery .. 157
 Functional safety components ... 158

16 Ordering information

Contents of this chapter .. 159
 Control panel options ... 159
 Brake choppers and resistors .. 160
 Output (du/dt) filters .. 160
 Cabinet ventilation .. 160
 Air inlet kits .. 160
 Air outlet kits ... 162
 Cooling fans ... 163
 Control panel mounting platforms 163
 Retrofit accessory kits .. 163

17 Technical data

Contents of this chapter .. 165
 Ratings ... 165
 When is derating necessary .. 167
 Surrounding air temperature derating 167
 Altitude derating .. 167
 Fuses (IEC) .. 169
 Fuses (UL) ... 170
18 Dimension drawings
Contents of this chapter ... 185
Standard configuration (+E208 and +E210 included) 186
Drive module with option +B051 .. 187
Drive module with options +B051, +H370 188
LCL filter module .. 189
Bottom plate ... 190
Air baffles .. 191
Material of the air baffles .. 191

19 Example circuit diagrams
Contents of this chapter ... 193
Example circuit diagram ... 193

20 The Safe torque off function
Contents of this chapter ... 195
Description .. 195
Compliance with the European Machinery Directive and the UK Supply of Machinery (Safety) Regulations .. 196
Wiring ... 197
Connection principle .. 197
Single ACH580-34 drive, internal power supply 197
Single ACH580-34 drive, external power supply 197
21 Resistor braking

Contents of this chapter ... 213
Operation principle and hardware description 213
Planning the braking system ... 213
Selecting the default brake circuit components - ABB chopper and ABB resistor 213
Calculating the maximum allowed braking power for a custom duty cycle – ABB chopper and ABB resistor ... 214
Selecting the default brake circuit components - ABB brake chopper and custom resistor 214
Selecting custom resistors ... 215
Calculating the maximum allowed braking power for a custom duty cycle – ABB chopper and custom resistor ... 216
Example 1 .. 216
Example 2 .. 216
Selecting and routing brake resistor cables 217
Minimizing electromagnetic interference 217
Maximum cable length ... 217
Placing the brake resistors .. 217
Protecting the system against thermal overload 218
Protecting the resistor cable against short-circuits 218
Mechanical installation of resistors 218
Electrical installation .. 218
Measuring the insulation resistance of the brake resistor circuit ... 218
Connection diagram .. 219
Connection procedure .. 219
Start-up .. 220
Technical data .. 221
22 CHDI-01 115/230 V digital input extension module

Contents of this chapter ... 223
Product overview ... 223
Layout and connection examples .. 224
Mechanical installation .. 225
 Necessary tools ... 225
 Unpacking and examining the delivery .. 225
 Installing the module ... 225
Electrical installation ... 225
 Necessary tools ... 225
Wiring ... 225
Start-up ... 226
 Setting the parameters .. 226
 Parameter setting example for relay output 226
Fault and warning messages ... 226
Technical data ... 226
Dimension drawing .. 227

23 CMOD-01 multifunction extension module (external 24 V AC/DC and digital I/O)

Contents of this chapter ... 229
Product overview ... 229
Layout and example connections .. 230
Mechanical installation .. 231
 Necessary tools ... 231
 Unpacking and examining the delivery .. 231
 Installing the module ... 231
Electrical installation ... 231
 Necessary tools ... 231
 Wiring .. 231
Start-up ... 232
 Setting the parameters .. 232
 Diagnostics .. 233
 Faults and warning messages ... 233
 LEDs .. 233
Technical data ... 233
Dimension drawing .. 234

24 CMOD-02 multifunction extension module (external 24 V AC/DC and isolated PTC interface)

Contents of this chapter ... 235
Product overview ... 235
Layout and example connections .. 236
Mechanical installation .. 236
 Necessary tools ... 236
 Unpacking and examining the delivery .. 236
 Installing the module ... 237
Electrical installation ... 237
 Necessary tools and instructions ... 237
 Wiring .. 237
Start-up .. 237
 Setting the parameters .. 237
Diagnostics ... 238
 Faults and warning messages ... 238
 LEDs ... 238
Technical data .. 238
Dimension drawing ... 239

25 Filters

Contents of this chapter ... 241
du/dt filters .. 241
 When is a du/dt filter necessary? ... 241
 Selection table ... 241
 Ordering codes .. 242
 Description, installation and technical data of the FOCH filters 242

26 Step-by-step drawings for an installation example of standard drive
 configuration in Rittal VX25 800 mm wide enclosure

Handling the drive module, power cable connection diagram 243
Installing the drive module and LCL filter module into a Rittal VX25 enclosure . 245
Connecting the motor cables and installing the shrouds 250
Connecting the input power cables and installing the shrouds 253
Installing the air baffles and removing the cardboard covers 254

Further information
Safety instructions

Contents of this chapter
This chapter contains the safety instructions which you must obey when you install, start-up, operate and do maintenance work on the drive. If you ignore the safety instructions, injury, death or damage can occur.

Use of warnings and notes
Warnings tell you about conditions which can cause injury or death, or damage to the equipment. They also tell you how to prevent the danger. Notes draw attention to a particular condition or fact, or give information on a subject.

The manual uses these warning symbols:

WARNING!
Electricity warning tells about hazards from electricity which can cause injury or death, or damage to the equipment.

WARNING!
General warning tells about conditions, other than those caused by electricity, which can cause injury or death, or damage to the equipment.

WARNING!
Electrostatic sensitive devices warning tells you about the risk of electrostatic discharge which can cause damage to the equipment.
General safety in installation, start-up and maintenance

These instructions are for all personnel who do work on the drive.

WARNING!
Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.

- Keep the drive in its package until you install it. After unpacking, protect the drive from dust, debris and moisture.
- Use the required personal protective equipment: safety shoes with metal toe cap, safety glasses, protective gloves and long sleeves, etc. Some parts have sharp edges.
- Lift a heavy drive with a lifting device. Use the designated lifting points. See the dimension drawings.
- Incorrect lifting can cause danger or damage. Obey the local laws and regulations applicable to lifting, such as requirements for planning the lift, for capacity and condition of lifting equipment, and for training of personnel.
- Attach the drive cabinet to the floor to prevent it from toppling over. The cabinet has a high center of gravity. When you pull out heavy components or power modules, there is a risk of overturning. Attach the cabinet also to the wall when necessary.

- Do not use the module extraction/installation ramp with plinth heights which exceeds the maximum allowed height.
- Attach the module extraction/installation ramp carefully.
• Make sure that the module does not topple over when you move it on the floor: To open the support legs, press each leg a little down and turn it aside (1, 2). Whenever possible attach the module also with chains. Do not tilt the drive module. It is heavy and its center of gravity is high. The module overturns from a sideways tilt of 5 degrees. Do not leave the module unattended on a sloping floor.

• To prevent the drive module from falling, attach its top lifting lugs with chains to the cabinet (1) before you push the module into the cabinet and pull it from the cabinet. Push the module into the cabinet and pull it from the cabinet carefully preferably with help from another person. Keep a constant pressure with one foot on the base of the module (2) to prevent the module from falling on its back.
• Beware of hot surfaces. Some parts, such as heatsinks of power semiconductors, and brake resistors, remain hot for a while after disconnection of the electrical supply.

• Vacuum clean the area around the drive before the start-up to prevent the drive cooling fan from drawing the dust inside the drive.

• Make sure that debris from drilling, cutting and grinding does not enter the drive during the installation. Electrically conductive debris inside the drive may cause damage or malfunction.

• Make sure that there is sufficient cooling. See the technical data.

• Keep the cabinet doors closed when the drive is powered. With the doors open, a risk of a potentially fatal electric shock, arc flash or high-energy arc blast exists. If you cannot avoid working on a powered drive, obey the local laws and regulations on live working (including – but not limited to – electric shock and arc protection).

• Before you adjust the drive operation limits, make sure that the motor and all driven equipment can operate throughout the set operation limits.

• Before you activate the automatic fault reset or automatic restart functions of the drive control program, make sure that no dangerous situations can occur. These functions reset the drive automatically and continue operation after a fault or supply break. If these functions are activated, the installation must be clearly marked as defined in IEC/EN/UL 61800-5-1, subclause 6.5.3, for example, "THIS MACHINE STARTS AUTOMATICALLY".

• The maximum drive power cycles is five times in ten minutes. Power cycling the drive too often can damage the charging circuit of the DC capacitors.

• If you have connected safety circuits to the drive (for example, Safe torque off or emergency stop), validate them at start-up. See separate instructions for the safety circuits.

• Beware of hot air exiting from the air outlets.

• Do not cover the air inlet or outlet when the drive is running.

Note:

• If you select an external source for the start command and it is on, the drive will start immediately after fault reset unless you configure the drive for pulse start. See the firmware manual.

• If the drive is in remote control mode, you cannot stop or start the drive with the control panel.

• Only authorized persons are allowed to repair a malfunctioning drive.

Electrical safety in installation, start-up and maintenance

Electrical safety precautions

These electrical safety precautions are for all personnel who do work on the drive, motor cable or motor.
WARNING!
Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.
If you are not a qualified electrical professional, do not do installation or maintenance work.
Go through these steps before you begin any installation or maintenance work.

1. Clearly identify the work location and equipment.
2. Disconnect all possible voltage sources. Make sure that re-connection is not possible. Lock out and tag out.
 • Open the main disconnecting device of the drive.
 • Open the charging switch if present.
 • Open the disconnector of the supply transformer. (The main disconnecting device in the drive cabinet does not disconnect the voltage from the AC input power busbars of the drive cabinet.)
 • Open the auxiliary voltage switch-disconnector (if present), and all other possible disconnecting devices that isolate the drive from dangerous voltage sources.
 • If you have a permanent magnet motor connected to the drive, disconnect the motor from the drive with a safety switch or by other means.
 • Disconnect all dangerous external voltages from the control circuits.
 • After you disconnect power from the drive, always wait 5 minutes to let the intermediate circuit capacitors discharge before you continue.

3. Protect any other energized parts in the work location against contact.
4. Take special precautions when close to bare conductors.
5. Measure that the installation is de-energized. Use a quality voltage tester. If the measurement requires removal or disassembly of shrouding or other cabinet structures, obey the local laws and regulations applicable to live working (including – but not limited to – electric shock and arc protection).
 • Before and after measuring the installation, verify the operation of the voltage tester on a known voltage source.
 • Make sure that the voltage between the drive input power terminals (L1, L2, L3) and the grounding (PE) busbar is zero.
 • Make sure that the voltage between the drive output terminals (T1/U, T2/V, T3/W) and the grounding (PE) busbar is zero.
 Important! Repeat the measurement also with the DC voltage setting of the tester. Measure between each phase and ground. There is a risk of dangerous DC voltage charging due to leakage capacitances of the motor circuit. This voltage can remain charged even long time after the drive power off. The measurement discharges the voltage.
 • Make sure that the voltage between the drive DC terminals (UDC+ and UDC-) and the grounding (PE) terminal is zero.
6. Install temporary grounding as required by the local regulations.
7. Ask for a permit to work from the person in control of the electrical installation work.
Additional instructions and notes

WARNING!
Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.

If you are not a qualified electrical professional, do not do installation or maintenance work.

- Keep the cabinet doors closed when the drive is powered. With the doors open, a risk of a potentially fatal electric shock, arc flash or high-energy arc blast exists.
- Make sure that the electrical power network, motor/generator, and environmental conditions agree with the drive data.
- Do not do insulation or voltage withstand tests on the drive.
- If you have a cardiac pacemaker or other electronic medical device, keep away from the area near motor, drive, and the drive power cabling when the drive is in operation. There are electromagnetic fields present which can interfere with the function of such devices. This can cause a health hazard.
- Remove the code labels attached to mechanical parts such as busbars, shrouds and sheet metal parts before installation. They may cause bad electrical connections, or, after peeling off and collecting dust in time, cause arcing or block the cooling air flow.

Note:
- When the drive is connected to the input power, the motor cable terminals and the DC bus are at a dangerous voltage. After disconnecting the drive from the input power, these remain at a dangerous voltage until the intermediate circuit capacitors have discharged.
- External wiring can supply dangerous voltages to the relay outputs of the control units of the drive.
- The Safe torque off function does not remove the voltage from the main and auxiliary circuits. The function is not effective against deliberate sabotage or misuse.

Printed circuit boards

WARNING!
Use a grounding wristband when you handle printed circuit boards. Do not touch the boards unnecessarily. The boards contain components sensitive to electrostatic discharge.

Grounding

These instructions are for all personnel who are responsible for the grounding of the drive.

WARNING!
Obey these instructions. If you ignore them, injury or death, or equipment malfunction can occur, and electromagnetic interference can increase.

If you are not a qualified electrical professional, do not do grounding work.
• Always ground the drive, the motor and adjoining equipment. This is necessary for the personnel safety. Proper grounding also reduces electromagnetic emission and interference.

• Make sure that the conductivity of the protective earth (PE) conductors is sufficient. See the electrical planning instructions of the drive. Obey the local regulations.

• Connect the power cable shields to protective earth (PE) terminals of the drive to make sure of personnel safety.

• Make a 360° grounding of the power and control cable shields at the cable entries to suppress electromagnetic disturbances.

• In a multiple-drive installation, connect each drive separately to the protective earth (PE) busbar of the power supply.

Note:

• You can use power cable shields as grounding conductors only when their conductivity is sufficient.

• As the normal touch current of the drive is higher than 3.5 mA AC or 10 mA DC, you must use a fixed protective earth (PE) connection. The minimum size of the protective earth conductor must comply with the local safety regulations for high protective earth conductor current equipment. See standard IEC/EN 61800-5-1 and the electrical planning instructions of the drive.
General safety in operation

These instructions are for all personnel that operate the drive.

WARNING!
Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.

- Keep the cabinet doors closed when the drive is powered. With the doors open, a risk of a potentially fatal electric shock, arc flash or high-energy arc blast exists.
- If you have a cardiac pacemaker or other electronic medical device, keep away from the area near motor, drive, and the drive power cabling when the drive is in operation. There are electromagnetic fields present which can interfere with the function of such devices. This can cause a health hazard.
- Give a stop command to the drive before you reset a fault. If you have an external source for the start command and the start is on, the drive will start immediately after the fault reset, unless you configure the drive for pulse start. See the firmware manual.
- Before you activate the automatic fault reset or automatic restart functions of the drive control program, make sure that no dangerous situations can occur. These functions reset the drive automatically and continue operation after a fault or supply break. If these functions are activated, the installation must be clearly marked as defined in IEC/EN/UL 61800-5-1, subclause 6.5.3, for example, "THIS MACHINE STARTS AUTOMATICALLY".

Note:
- The maximum drive power cycles is five times in ten minutes. Power cycling the drive too often can damage the charging circuit of the DC capacitors. If you need to start or stop the drive, use the control panel keys or commands through the I/O terminals of the drive.
- If the drive is in remote control mode, you cannot stop or start the drive with the control panel.

Additional instructions for permanent magnet motor drives

- **Safety in installation, start-up, maintenance**

These are additional warnings concerning permanent magnet motor drives. The other safety instructions in this chapter are also valid.

WARNING!
Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.

If you are not a qualified electrical professional, do not do installation or maintenance work.

- Do not do work on the drive when a rotating permanent magnet motor is connected to it. A rotating permanent magnet motor energizes the drive including its input and output power terminals.
Before installation, start-up and maintenance work on the drive:

- Stop the drive.
- Disconnect the motor from the drive with a safety switch or by other means.
- If you cannot disconnect the motor, make sure that the motor cannot rotate during work. Make sure that no other system, like hydraulic crawling drives, can rotate the motor directly or through any mechanical connection like felt, nip, rope, etc.
- Do the steps in section Electrical safety precautions (page 18).
- Install temporary grounding to the drive output terminals (T1/U, T2/V, T3/W). Connect the output terminals together as well as to the PE.

During the start-up:

- Make sure that the motor cannot run overspeed, for example, driven by the load. Motor overspeed causes overvoltage that can damage or destroy the capacitors in the intermediate circuit of the drive.

Safety in operation

WARNING!

Make sure that the motor cannot run overspeed, for example, driven by the load. Motor overspeed causes overvoltage that can damage or destroy the capacitors in the intermediate circuit of the drive.
Introduction to the manual

Contents of this chapter
This chapter describes the intended audience and contents of the manual. It contains a flowchart of steps in examining the delivery, installing and commissioning the drive. The flowchart refers to chapters/sections in this manual and other manuals.

Applicability
This manual applies to ACH580-34 drive modules intended for user-defined cabinet installations.

Target audience
This manual is intended for people who plan the installation, install, start-up and do maintenance work on the drive, or create instructions for the end user of the drive concerning the installation and maintenance of the drive.

Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

Purpose of the manual
This manual provides information needed for planning the installation, installing, and servicing the drive.

Categorization by frame size and option code
The instructions, technical data and dimension drawings which concern only certain drive frame sizes are marked with the symbol of the frame size (R11). The frame size is marked on the type designation label.
The instructions and technical data which concern only certain optional selections are marked with option codes, eg, +E208. The options included in the drive can be identified from the option codes visible on the type designation label. The option selections are listed in section Type designation key (page 39).

Quick installation, commissioning and operating flowchart

<table>
<thead>
<tr>
<th>Task</th>
<th>See chapter/section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan the mechanical and electrical installation and acquire the accessories needed (cables, fuses, etc.).</td>
<td>Guidelines for planning the mechanical installation (page 53)</td>
</tr>
<tr>
<td>Examine the ambient conditions, ratings, required cooling air flow, input power connection, compatibility of the motor, motor connection, and other technical data.</td>
<td>Guidelines for planning the electrical installation (page 73)</td>
</tr>
<tr>
<td>Unpack and examine the units. Make sure that all necessary optional modules and equipment are present and correct. Only intact units can be started up.</td>
<td>Technical data (page 165)</td>
</tr>
<tr>
<td>Examine the installation site. Attach the base of the cabinet to the floor.</td>
<td>Resistor braking (page 213) Option manual (if optional equipment is included)</td>
</tr>
<tr>
<td>Route the cables.</td>
<td>Moving and unpacking (page 63)</td>
</tr>
<tr>
<td>Measure the insulation of the supply cable, the motor and the motor cable and the resistor cable (if present).</td>
<td>Examining the delivery (page 68) If the drive module has been non-operational for a year or more, the converter DC link capacitors need to be reformed. (Reforming the capacitors (page 157))</td>
</tr>
<tr>
<td>Standard drive modules</td>
<td>Examining the installation site (page 63)</td>
</tr>
<tr>
<td>Standard drive modules</td>
<td>Ambient conditions (page 176)</td>
</tr>
<tr>
<td>- Install the additional components into the enclosure; for example, main disconnector, main contactor, main AC fuses, etc..</td>
<td>Routing the cables (page 86)</td>
</tr>
<tr>
<td>- Install the drive module into the enclosure.</td>
<td>Measuring the insulation (page 96)</td>
</tr>
<tr>
<td>- Connect the motor cables to the drive module terminals.</td>
<td>Installing the drive module and LCL filter module into an enclosure (page 135)</td>
</tr>
<tr>
<td>- Connect the brake resistor and DC connection cables (if any) to the drive module terminals.</td>
<td>Connecting the motor cables and installing the shrouds (option +B051) (page 136)</td>
</tr>
<tr>
<td>- If the main disconnector is installed into the enclosure, connect it to the drive module terminals and the input power cabling to the disconnector.</td>
<td>Connecting the input cables and installing the shrouds (option +B051) (page 137)</td>
</tr>
<tr>
<td>Drive modules with IP20 shrouds (option +B051)</td>
<td>Connecting the control cables to the integrated control unit (page 104)</td>
</tr>
<tr>
<td>Drive modules with IP20 shrouds (option +B051)</td>
<td>Manuals for any optional equipment</td>
</tr>
<tr>
<td>Connect the control cables to the drive control unit.</td>
<td>Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243)</td>
</tr>
<tr>
<td>Examine the installation.</td>
<td>Connecting the control cables to the integrated control unit (page 104)</td>
</tr>
<tr>
<td>Installation checklist (page 141)</td>
<td></td>
</tr>
</tbody>
</table>
Task | See chapter/section
---|---
Commission the drive. | Start-up (page 143)
Commission the brake chopper (if used). | Resistor braking (page 213)
Operate the drive: start, stop, speed control etc. | Appropriate firmware manual

Terms and abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCU</td>
<td>Type of control unit</td>
</tr>
<tr>
<td>CHDI-01</td>
<td>115/230 V digital input extension module</td>
</tr>
<tr>
<td>CMOD-01</td>
<td>Multifunction extension module (external 24 V AC/DC and digital I/O extension)</td>
</tr>
<tr>
<td>CMOD-02</td>
<td>Multifunction extension module (external 24 V AC/DC and isolated PTC interface)</td>
</tr>
<tr>
<td>Drive</td>
<td>Frequency converter for controlling AC motors</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>FBIP-21</td>
<td>BACnet/IP adapter module</td>
</tr>
<tr>
<td>FCAN</td>
<td>Optional CANopen® adapter module</td>
</tr>
<tr>
<td>FCNA-01</td>
<td>Optional ControlNet™ adapter module</td>
</tr>
<tr>
<td>FDNA-01</td>
<td>Optional DeviceNet™ adapter module</td>
</tr>
<tr>
<td>FECA-01</td>
<td>Optional EtherCAT® adapter module</td>
</tr>
<tr>
<td>FEIP-21</td>
<td>Optional Ethernet adapter module</td>
</tr>
<tr>
<td>FENA-21</td>
<td>Optional Ethernet adapter module for EtherNet/IP™, Modbus TCP® and PROFINET IO® protocols, 2-port</td>
</tr>
<tr>
<td>FEPL-02</td>
<td>Optional Ethernet POWERLINK adapter module</td>
</tr>
<tr>
<td>FLON-01</td>
<td>Optional LonWorks® adapter module</td>
</tr>
<tr>
<td>FMBT-21</td>
<td>Optional Ethernet adapter module for Modbus TCP protocol</td>
</tr>
<tr>
<td>FPBA-01</td>
<td>Optional PROFIBUS DP® adapter module</td>
</tr>
<tr>
<td>FPNO-21</td>
<td>Optional Profinet IO adapter module</td>
</tr>
<tr>
<td>Frame, frame size</td>
<td>Physical size of the drive or power module</td>
</tr>
<tr>
<td>FSCT-01</td>
<td>Safe torque off (IEC EN 61800-5-2)</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistor</td>
</tr>
<tr>
<td>STO</td>
<td>Safe torque off (IEC EN 61800-5-2)</td>
</tr>
</tbody>
</table>

Related documents

<table>
<thead>
<tr>
<th>Name</th>
<th>Code (English/Multilingual)</th>
<th>Code (Translation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive hardware manuals and guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive/converter/inverter safety instructions</td>
<td>3AXD50000037978</td>
<td></td>
</tr>
<tr>
<td>ACH580-34 drive modules (250 to 500 kW) hardware manual</td>
<td>3AXD50000419708</td>
<td></td>
</tr>
<tr>
<td>ACH580-34 drive modules (250 to 500 kW) quick installation guide</td>
<td>3AXD50000424627</td>
<td></td>
</tr>
<tr>
<td>Recycling instructions and environmental information for ACS880-04, ACS880-04F, ACS880-14, ACS880-34, ACS580-04, ACO580-04 and ACH580-04 drives</td>
<td>3AXD50000137688</td>
<td></td>
</tr>
<tr>
<td>Drive firmware manuals and guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACH580 HVAC control program firmware manual</td>
<td>3AXD50000027537</td>
<td></td>
</tr>
<tr>
<td>ACH580 drives with HVAC control program quick startup guide</td>
<td>3AXD50000047658</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to the manual

<table>
<thead>
<tr>
<th>Name</th>
<th>Code (English/Multilingual)</th>
<th>Code (Translation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive option manuals and guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACX-AP-x assistant control panels user’s manual</td>
<td>3AUA0000085685</td>
<td></td>
</tr>
<tr>
<td>DPMP-02/03 mounting platform for control panels installation guide</td>
<td>3AUA0000136205</td>
<td></td>
</tr>
<tr>
<td>CPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (+L537+Q971) user’s manual</td>
<td>3AXD50000030058</td>
<td></td>
</tr>
<tr>
<td>FOCH du/dt filters hardware manual</td>
<td>3AFE68577519</td>
<td></td>
</tr>
<tr>
<td>Manuals and quick guides for I/O extension modules, fieldbus adapters, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool and maintenance manuals and guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive composer PC tool user’s manual</td>
<td>3AUA0000094606</td>
<td></td>
</tr>
<tr>
<td>Capacitor reforming instructions</td>
<td>3BFE64059629</td>
<td></td>
</tr>
</tbody>
</table>

The code below opens an online listing of the manuals applicable to this product.

![QR Code](ACH580-34 manuals)
Operation principle and hardware description

Contents of this chapter
This chapter describes the operating principle and construction of the drive module.

Operation principle
The ACH580-34 is an ultra-low harmonic drive module for controlling asynchronous AC induction motors, permanent magnet motors in open loop control and synchronous reluctance motors.

The drive includes a line-side converter and a motor-side inverter. The parameters and signals for both of them are combined into one primary user program.
Block diagram of the main circuit of the drive module

![Block diagram of the main circuit of the drive module](image)

- **A** ACH580-34 drive module
- **1** Charging circuit contactor
- **2** Charging circuit
- **3** Line contactor
- **4** LCL filter
- **5** Line-side converter
- **6** DC link. DC circuit between the line-side converter and motor-side converter.
- **7** Motor-side converter
- **8** Common mode filter (+E208)

Line-side converter

The line-side converter rectifies three-phase AC current to direct current for the intermediate DC link of the drive.
The following figure shows the simplified main circuit diagram of the line-side converter. The line-side converter is controlled by a type ZCU control unit.

1. LCL filter contactor
2. LCL filter
3. Line-side converter
4. DC capacitors
5. DC link

AC voltage and current waveforms
The AC current is sinusoidal at a unity power factor. The LCL filter suppresses the AC voltage distortion and current harmonics. The high AC inductance smooths the line voltage waveform distorted by the high-frequency switching of the converter. The capacitive component of the filter effectively filters the high-frequency (over 1 kHz) harmonics.

Charging
Charging is needed to power up the DC link capacitors smoothly. Discharged capacitors cannot be connected to the full supply voltage. The voltage must be increased gradually until the capacitors are charged and ready for normal use. The drive contains a resistive charging circuit consisting of fuses, contactor and charging resistors. The charging circuit is in use after start-up until the DC voltage has risen to a predefined level.

- **Motor-side converter**
The motor-side converter converts the DC back to AC that rotates the motor. It is also able to feed the braking energy from a rotating motor back into the DC link. The motor-side converter is controlled by a type CCU-24 control unit. This is called the drive control unit or control unit in this manual.

- **DC voltage boost function**
The drive can boost their DC link voltage. In other words, it can increase the operating voltage of the DC link from its default value.

 To take the DC voltage boost function in use, adjust the user DC voltage reference value in parameter 94.22. The drive follows the user reference if it is greater than the measured DC voltage of the drive at the time of power up.

 Benefits of the DC voltage boost function are:
32 Operation principle and hardware description

- possibility to supply nominal voltage to the motor even when the supply voltage of the drive is below the motor nominal voltage level
- compensation of voltage drop due to output filter, motor cable or input supply cables
- increased motor torque in the field weakening area (ie, when the drive operates the motor in the speed range above the motor nominal speed)
- possibility to use a motor with higher nominal voltage than the actual supply voltage of the drive. Example: A drive that is connected to 415 V can supply 460 V to a 460 V motor.

For more information, see ACH580-31, ACQ580-31, ACH580-34 and ACQ580-34 drives product note on DC voltage boost (3AXD50000769407 [English]).

- **DC connection**

 You can connect an external brake chopper to the drive via the DC terminals. See chapter Resistor braking (page 213).

 ![WARNING!](#)

 Do not connect the drive DC link to a common DC system. The drive will get damaged.
Layout

- **Standard drive module configuration**

A	Drive module. Contains line-side converter and motor side converter.	4	Lower front cover
B | LCL filter module | 5 | Cooling fan cassette
C | LCL filter module connected to the drive module | 6 | Support legs
1 | Circuit board compartment | 7 | Pedestal
2 | Upper front cover | 8 | Busbars for connecting the LCL filter module to the drive module
3 | Control panel | 9 | Cover on busbar connections

See section *Drive module (page 35)* for descriptions and photos of the drive module. For LCL filter module, see section *LCL filter module (page 36)*.
Drive with clear plastic shrouds (option +B051)

For part descriptions, see section *Standard drive module configuration (page 33)*. For clear plastic shrouds, see section *Drive module (page 35)*.
Drive module

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clear plastic shroud to be attached onto the drive module input power cabling (1a). Entry shroud for side cabling (1b) (option +B051).</td>
</tr>
<tr>
<td>2</td>
<td>Clear plastic shrouds to be attached onto the drive module output power cabling (option +B051)</td>
</tr>
<tr>
<td>3</td>
<td>Clear plastic shroud to be attached on top of the drive module (entry for top cabling) (option +B051).</td>
</tr>
<tr>
<td>4</td>
<td>Upper back clear plastic shroud (option +B051)</td>
</tr>
<tr>
<td>5</td>
<td>Lower back clear plastic shroud (option +B051)</td>
</tr>
<tr>
<td>6</td>
<td>Front clear plastic shroud (option +B051)</td>
</tr>
<tr>
<td>7</td>
<td>Input power cable connection terminals (option +H370)</td>
</tr>
<tr>
<td>8</td>
<td>Telescopic extraction and insertion ramp</td>
</tr>
<tr>
<td>9</td>
<td>Control unit</td>
</tr>
<tr>
<td>10</td>
<td>Control cable clamp plate</td>
</tr>
<tr>
<td>11</td>
<td>Busbars for connecting the drive module to the LCL filter electrically</td>
</tr>
<tr>
<td>12</td>
<td>Cover for the busbar connection</td>
</tr>
<tr>
<td>13</td>
<td>Auxiliary cooling fan</td>
</tr>
<tr>
<td>14</td>
<td>Handle</td>
</tr>
</tbody>
</table>
LCL filter module

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Diagram Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Busbars for connecting the LCL filter module to the drive module electrically</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Handle</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Main cooling fans</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Pedestal guide plate for the LCL filter module</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Lifting lugs</td>
<td>5</td>
</tr>
</tbody>
</table>

Hardware Description

- **Cover.** When removed, you can attach the drive module to the LCL filter module.
- **Lifting lugs**
- **Grounding terminal for output power cable shields**
- **Metallic shroud. With option +H370, the shroud includes a ground bar.**
- **Connector for charging circuit switch or contactor**
- **Input power cable connection busbars (L1/U1, L2/V1, L3/W1 and DC+ and DC- busbars (UDC+ and UDC-)**
- **Common mode filter**

Operation principle and hardware description...
Control panel

In the standard drive module configuration, the control panel is located on the front cover of the module.

DPMP-02 door mounting platform allows you to mount the control panel on the cabinet door.

For the use of the control panel, see the firmware manual or *ACx-AP-x assistant control panels user’s manual* (3AUA0000085685 [English]).

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACH-AP-H hand-off-auto control panel (standard)</td>
</tr>
<tr>
<td>2</td>
<td>CDUM-01 blank control panel cover (no control panel) (option +J424)</td>
</tr>
<tr>
<td>4</td>
<td>ACH-AP-W hand-off-auto control panel with bluetooth interface (option +J429)</td>
</tr>
<tr>
<td>7</td>
<td>DPMP-02 control panel mounting platform (standard)</td>
</tr>
</tbody>
</table>

Operation principle and hardware description 37
Overview of power and control connections

The diagram shows the power connections and control interfaces of the drive module.

<table>
<thead>
<tr>
<th>A</th>
<th>Line-side converter control unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Option slot 1 for optional fieldbus adapter modules</td>
</tr>
<tr>
<td>2</td>
<td>Option slot 2 for optional I/O extension modules</td>
</tr>
<tr>
<td>3</td>
<td>Panel port</td>
</tr>
<tr>
<td>4</td>
<td>Line-side converter</td>
</tr>
<tr>
<td>5</td>
<td>DC link</td>
</tr>
<tr>
<td>6</td>
<td>Motor-side converter</td>
</tr>
<tr>
<td>7</td>
<td>Socket for external control panel (not required for normal operation of the drive)</td>
</tr>
<tr>
<td>8</td>
<td>Brake chopper (optional, see chapter Resistor braking (page 213))</td>
</tr>
<tr>
<td>9</td>
<td>Brake resistors (optional, see chapter Resistor braking (page 213))</td>
</tr>
</tbody>
</table>
Type designation label

The type designation label includes a rating, markings, a type designation and a serial number, which allow individual recognition of each drive module. The type designation label is located on the front cover. An example label is shown below.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type designation, see section Type designation key</td>
</tr>
<tr>
<td>2</td>
<td>Name and address of the manufacturer</td>
</tr>
<tr>
<td>3</td>
<td>Frame size</td>
</tr>
<tr>
<td>4</td>
<td>Cooling method</td>
</tr>
<tr>
<td>5</td>
<td>Degree of protection</td>
</tr>
<tr>
<td>6</td>
<td>Ratings, see section Ratings (page 165)</td>
</tr>
<tr>
<td>7</td>
<td>Short-circuit withstand strength, see section Electrical power network specification (page 174)</td>
</tr>
<tr>
<td>8</td>
<td>Valid markings</td>
</tr>
<tr>
<td>9</td>
<td>Serial number. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit’s manufacturing year and week, respectively. The remaining digits complete the serial number so that there are no two units with the same number.</td>
</tr>
<tr>
<td>10</td>
<td>Link to product information</td>
</tr>
</tbody>
</table>

Type designation key

The type designation contains information on the specifications and configuration of the drive. The first digits from left express the basic drive type. The optional selections are given thereafter, separated by plus signs. Codes preceded by zero indicate the absence of the specified feature. The main selections are described below. Not all selections are available for all types. For more information, refer to the ordering instructions available separately on request.

- **Basic code**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH580</td>
<td>Product series</td>
</tr>
</tbody>
</table>

 Type
When no options are selected: ultra-low-harmonic single drive module to be installed in an enclosure, IP00 (UL Type Open), bookshelf mounting with pedestal, integrated control unit with ACH-AP-H Assistant control panel with panel holder, build-in LCL filter, full-size output cable connection terminals, internal EMC filter (+E210), common mode filter (+E208), DC connection busbars, ACH580 HVAC standard control program, RS-485 Modbus RTU adapter module, Safe torque off function, coated boards, printed multilingual quick installation and start-up guides, extraction/installation ramp.

Size

-xxxxA See the ratings table.

Voltage range

-4 380...480 V AC. This is indicated in the type designation label as typical input voltage level (3~ 400/480 VAC)

<table>
<thead>
<tr>
<th>Option codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>B051</td>
</tr>
<tr>
<td>E208</td>
</tr>
<tr>
<td>E210</td>
</tr>
<tr>
<td>0H371</td>
</tr>
<tr>
<td>H370</td>
</tr>
<tr>
<td>0J400</td>
</tr>
<tr>
<td>J400</td>
</tr>
<tr>
<td>J410</td>
</tr>
<tr>
<td>J424</td>
</tr>
<tr>
<td>K451</td>
</tr>
<tr>
<td>K452</td>
</tr>
<tr>
<td>K454</td>
</tr>
<tr>
<td>K457</td>
</tr>
<tr>
<td>K458</td>
</tr>
<tr>
<td>K462</td>
</tr>
<tr>
<td>K465</td>
</tr>
<tr>
<td>K469</td>
</tr>
<tr>
<td>K470</td>
</tr>
<tr>
<td>K475</td>
</tr>
<tr>
<td>K490</td>
</tr>
<tr>
<td>K491</td>
</tr>
<tr>
<td>K492</td>
</tr>
<tr>
<td>L501</td>
</tr>
<tr>
<td>L512</td>
</tr>
<tr>
<td>L523</td>
</tr>
<tr>
<td>L537</td>
</tr>
<tr>
<td>N2000</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>N2901</td>
</tr>
<tr>
<td>N2902</td>
</tr>
<tr>
<td>0P919</td>
</tr>
<tr>
<td>P906</td>
</tr>
<tr>
<td>P931</td>
</tr>
<tr>
<td>P932</td>
</tr>
<tr>
<td>Q971</td>
</tr>
<tr>
<td>R700</td>
</tr>
<tr>
<td>R701</td>
</tr>
<tr>
<td>R702</td>
</tr>
<tr>
<td>R703</td>
</tr>
<tr>
<td>R704</td>
</tr>
<tr>
<td>R705</td>
</tr>
<tr>
<td>R706</td>
</tr>
<tr>
<td>R707</td>
</tr>
<tr>
<td>R708</td>
</tr>
<tr>
<td>R709</td>
</tr>
<tr>
<td>R711</td>
</tr>
<tr>
<td>R714</td>
</tr>
</tbody>
</table>
Generic cabinet planning instructions

Contents of this chapter
This chapter contains generic cabinet planning instructions applicable to any user-defined cabinet system. The topics discussed are essential for the safe and trouble-free use of the drive system.

Limitation of liability
The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover.

Cabinet construction
Basic requirements for the cabinet construction are listed below. Make sure that:

• cabinet frame is sturdy enough to carry the weight of the components, control circuitry and other equipment installed in it
• cabinet protects the modules against contact and agrees with the requirements for dust and humidity
• cabinet frame and doors are strong enough to provide adequate protection against flames or pressure blast originating from inside the cabinet in case of arc flash or similar failure
• cabinet has air inlet and outlet gratings that allow free flow of cooling air through the modules inside the cabinet.

Disposition of the devices
Plan a spacious layout to ensure easy installation and maintenance. Sufficient cooling air flow, obligatory clearances, cables and cable support structures all require space.
Place the control board(s) away from:
- main circuit components such as contactors, switches and power cables
- hot parts (heatsink, air outlet of the drive module).

Grounding of mounting structures

Arrange the grounding of the module by leaving the contact surfaces of the fastening points unpainted (bare metal-to-metal contact). The module frame is grounded to the PE busbar of the cabinet via the fastening surfaces, screws and the cabinet frame. Alternatively, use a separate grounding conductor between the PE terminal of the module and the PE busbar of the cabinet.

Ground also the other components in the cabinet according to the principle above.

Busbar material and joints

ABB recommends tin-plated copper, but aluminum can also be used.

Note: Before joining aluminum busbars, remove the oxide layer and apply suitable anti-oxidant joint compound.

Shrouds

The installation of shrouds (touch protection) to fulfill applicable safety regulations is the responsibility of the drive system builder.

Ready-made shrouding parts are available from ABB for some cabinet designs, see the ordering information.

Tightening torques

Unless a tightening torque is specified in the text, the following torques can be used.

Electrical connections

<table>
<thead>
<tr>
<th>Size</th>
<th>Torque</th>
<th>Strength class</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>0.5 N·m (4.4 lbf·in)</td>
<td>4.6...8.8</td>
</tr>
<tr>
<td>M4</td>
<td>1 N·m (9 lbf·in)</td>
<td>4.6...8.8</td>
</tr>
<tr>
<td>M5</td>
<td>4 N·m (35 lbf·in)</td>
<td>8.8</td>
</tr>
<tr>
<td>M6</td>
<td>9 N·m (6.6 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M8</td>
<td>22 N·m (16 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M10</td>
<td>42 N·m (31 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M12</td>
<td>70 N·m (52 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M16</td>
<td>120 N·m (90 lbf·ft)</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Mechanical connections

<table>
<thead>
<tr>
<th>Size</th>
<th>Max. torque</th>
<th>Strength class</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>6 N·m (53 lbf·in)</td>
<td>8.8</td>
</tr>
<tr>
<td>M6</td>
<td>10 N·m (7.4 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M8</td>
<td>24 N·m (17.7 lbf·ft)</td>
<td>8.8</td>
</tr>
</tbody>
</table>
Insulation supports

<table>
<thead>
<tr>
<th>Size</th>
<th>Max. torque</th>
<th>Strength class</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>5 N·m (44 lbf·in)</td>
<td>8.8</td>
</tr>
<tr>
<td>M8</td>
<td>9 N·m (6.6 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M10</td>
<td>18 N·m (13.3 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M12</td>
<td>31 N·m (23 lbf·ft)</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Cable lugs

<table>
<thead>
<tr>
<th>Size</th>
<th>Max. torque</th>
<th>Strength class</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8</td>
<td>15 N·m (11 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M10</td>
<td>32 N·m (23.5 lbf·ft)</td>
<td>8.8</td>
</tr>
<tr>
<td>M12</td>
<td>50 N·m (37 lbf·ft)</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Cooling and degrees of protection

- **Planning the cooling**

 When you plan the cooling of the cabinet:

 - make sure that the ventilation of the installation site is sufficient so that the cooling air flow and ambient temperature requirements of the module are met (see the hardware manual)

 - leave enough free space around the components to ensure sufficient cooling. Observe the minimum clearances given for each component. For the module specific free space requirements, see the respective hardware and cabinet installation manuals.

- **Air-cooled drive systems**

 Air inlets and outlets

 Equip the air inlets and outlets with gratings that:

 - are large enough to allow sufficient air flow in and out of the cabinet (critical for correct cooling of the module)

 - guide the air flow

 - protect against contact

 - prevent water splashes from entering the cabinet

 - ensure adequate protection against flames or pressure blast originating from inside the cabinet in case of arc flash or similar failure.

 The drawing below shows two typical cabinet cooling solutions. The air inlet is at the bottom of the cabinet. The outlet is on the roof or on the upper part of the door if room height is limited.
Note: Use an extra exhaust fan if the air outlet is on the cabinet door.

Arrange the cooling air flow through the components according to the technical data in the respective hardware manual. See the specifications for:

- cooling air flow
 - **Note:** The values stated for each component in their respective manuals apply to continuous nominal load. If the load is cyclic or less than nominal, less cooling air is required.
- allowed ambient temperature and temperature rise inside the cabinet
- allowed pressure drop over the cabinet that the cooling fan can overcome
- air inlet and outlet sizes required for cooling and recommended filter material (if used).

Note: The heat dissipated by cables and other additional equipment must also be ventilated.

The internal cooling fans of the converter modules and filters are usually sufficient to keep the component temperatures low enough in IP20 and IP42 cabinets. Additional fans are present in the example designs as needed. If you install additional heat-generating components to the cabinet, make sure to upgrade the cooling system accordingly.

In IP54 cabinets, thick filter mats are used to prevent water splashes from entering the cabinet. This requires the installation of additional cooling equipment, such as a hot air exhaust fan.
Preventing the recirculation of hot air

Prevent hot air circulation outside the cabinet by leading the outgoing hot air away from the area where the inlet air to the cabinet is taken. Possible solutions are listed below:

- gratings that guide air flow at the air inlet and outlet
- air inlet and outlet at different sides of the cabinet
- cool air inlet in the lower part of the front door, and an extra exhaust fan on the roof of the cabinet.

Prevent hot air circulation inside the cabinet with, for example, leak-proof air baffles. No gaskets are usually required.

The drawing below shows the air flow inside and outside the cabinet.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air flow in</td>
</tr>
<tr>
<td>2</td>
<td>Power module</td>
</tr>
<tr>
<td>3</td>
<td>Hot air circulation to be prevented</td>
</tr>
<tr>
<td>4</td>
<td>Air flow out</td>
</tr>
</tbody>
</table>
- **Liquid-cooled drive systems**

The cabinet can be sealed from the ambient air. The air inside the cabinet must be able to circulate freely. The power module in the cabinet can have a dedicated fan to push air through an air-to-liquid heat exchanger and the module. The returning air flow from the upper part of the cubicle must not be obstructed. A cabinet with diverse components can have a common fan/heat exchanger combination.

The drawing below shows the air flow inside the cabinet.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabinet heat exchanger</td>
</tr>
<tr>
<td>2</td>
<td>Power module</td>
</tr>
<tr>
<td>3</td>
<td>Module heat exchanger</td>
</tr>
<tr>
<td>4</td>
<td>Cooling fan</td>
</tr>
</tbody>
</table>

EMC requirements

Note the following when you plan the electromagnetic compatibility of the cabinet:
• Generally, the fewer and smaller the holes in the cabinet, the better the interference attenuation. The maximum recommended diameter of a hole in galvanic metal contact in the covering cabinet structure is 100 mm (3.94 in). Pay special attention to the cooling air inlet and outlet gratings.

• The best galvanic connection between the steel panels is achieved by welding them together as no holes are necessary. If welding is not possible, ABB recommends to leave the seams between the panels **unpainted** and equipped with special conductive EMC strips to provide adequate galvanic connection. Usually, reliable strips are made of flexible silicon mass covered with a metal mesh. The non-tightened touch-contact of the metal surfaces is not sufficient, so a conductive gasket between the surfaces is required. The maximum recommended distance between assembly screws is 100 mm (3.94 in).

• Construct sufficient high-frequency grounding network in the cabinet to avoid voltage differences and forming of high-impedance radiator structures. A good high-frequency grounding is made with short flat copper braids for low inductance. One-point high-frequency grounding cannot be used due to the long distances inside the cabinet.

• 360° high-frequency grounding of the cable shields at the cable entries improves the EMC shielding of the cabinet.

• ABB recommends 360° high-frequency grounding of the motor cable shields at their entries. The grounding can be implemented by a knitted wire mesh screening as shown below.

![Diagram of cable entry and grounding](image-url)
• ABB recommends 360° high-frequency grounding of the control cable shields at their entries. The shields can be grounded by means of conductive shielding cushions pressed against the cable shield from both directions as shown below.

ATTACHING THE CABINET

WARNING!
Do not attach the cabinet by electric welding. ABB does not assume any liability for damages caused by electric welding as the welding circuit can damage electronic circuits in the cabinet.

CABINET PLACEMENT ON A CABLE CHANNEL

Note the following when you plan to place the cabinet on a cable channel:

• The cabinet structure must be sturdy enough. If the whole cabinet base is not supported from below, the cabinet weight will lie on the sections that the floor carries.

• Equip the cabinet with a sealed bottom plate and cable entries to ensure the degree of protection and to prevent the cooling air flow from the cable channel into the cabinet.
Cubicle heaters

Use a heater if there is a risk of condensation in the cabinet. Although the primary function of the heater is to keep the air dry, it may also be required for heating at low temperatures.

Attaching the control panel on the cabinet door

You can use a mounting platform to attach the control panel on the cabinet door. Mounting platforms for control panels are available as options from ABB. For more information, see

<table>
<thead>
<tr>
<th>Manual</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPMP-01 mounting platform for control panels installation guide</td>
<td>3AUA0000100140</td>
</tr>
<tr>
<td>DPMP-02/03 mounting platform for control panels installation guide</td>
<td>3AUA0000136205</td>
</tr>
<tr>
<td>DPMP-04/05 mounting platform for control panels installation guide</td>
<td>3AXD50000308484</td>
</tr>
</tbody>
</table>
Guidelines for planning the mechanical installation

Contents of this chapter

This chapter guides in planning drive cabinets and installing the drive module into a user-defined cabinet. The chapter gives cabinet layout examples and free space requirements around the module for cooling. These guidelines are essential for the safe and trouble-free use of the drive system.

Installation positions of the drive module

The drive module must be installed in an upright bookshelf position in a cabinet.
Layout example, door closed

This diagram shows a cabinet layout example with the input power cable entry from top and the motor cable entry from bottom.

<table>
<thead>
<tr>
<th>1</th>
<th>Air inlet for the drive module</th>
<th>6</th>
<th>Operating handle of the disconnector</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>An extra fan is not necessary if an extra air baffle is used on the cabinet roof (see the following layout examples)</td>
<td>7</td>
<td>Rubber grommets for degree of protection</td>
</tr>
<tr>
<td>3</td>
<td>Air outlet for the drive module and LCL filter module and other equipment on the cabinet roof. An exhaust fan if needed.</td>
<td>8</td>
<td>Roof air flow viewed from top</td>
</tr>
<tr>
<td>4</td>
<td>Drive control panel with DPMP-01 mounting platform. The control panel is connected to the drive module control unit inside the cabinet.</td>
<td>9</td>
<td>Fan required for IP20, IP42 or IP54 air outlet kit, has to be ordered separately. See Cooling fans (page 163).</td>
</tr>
<tr>
<td>5</td>
<td>Contactor control switch and emergency stop switch (connected to the contactor control circuit inside the cabinet)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Note: The sizes of the air inlet and outlet gratings are critical for proper cooling of the drive module. For losses and cooling data requirements, see the technical data.
Layout example, door open (standard drive module configuration)

1. Supporting frame of the cabinet
2. Vertical (2a, 2b) and horizontal (2c, 2d) air baffles that separate the cool and hot areas (leak-proof lead-throughs). See section Preventing the recirculation of hot air (page 57).
2e. Optional air baffle that is needed when there is no fan on the lower part of the cabinet door. See section Preventing the recirculation of hot air (page 57).
3. Cabinet grounding busbar (PE)
4. Input power cable including the protective ground conductor (PE) of the drive
5. Disconnector and fuses
6. Contactor
7. Drive module
8. LCL filter module
9. Motor cable including the protective ground conductor of the drive module
10. Drive module control unit. **Note:** The upper door air inlet is critical for proper cooling of the control unit.
11. External control cables
12. Grounding screws
13. Alternative to grounding screws (12)
14. Air flow to the roof
15. Air flow through the drive module
16. Air flow through the LCL filter

Note: The power cable shields can also be grounded to the drive module grounding terminals.
Layout example, door open (option +B051)

1 Supporting frame of the cabinet
2a Vertical (2a) and horizontal (2b) air baffles that separate the cool and hot areas (leakproof entries). See section Preventing the recirculation of hot air (page 57).
2b Optional air baffle that is needed when there is no fan on the lower part of the cabinet door. See section Preventing the recirculation of hot air (page 57).
2c Groundingscrews
3 Cabinet grounding busbar (PE)
4 Input power cable including the protective ground conductor (PE) of the drive
5 Disconnecter and fuses
6 Contactor
7 Drive module
8 LCL filter module
9 Motor cable including the protective ground conductor of the drive module
10 Drive module control unit. Note: The upper door air inlet is critical for proper cooling of the control unit.
11 External control cables
12 Grounding screws
13 Alternative to grounding screws (12)
14 Air flow to the roof
15 Air flow through the drive module
16 Air flow through the LCL filter
Cooling solutions

The drawing below shows typical cabinet cooling solutions. The air inlet is at the bottom of the cabinet, while the outlet is on the roof or on the upper part of the door. Use extra exhaust fans if the air outlet is on the cabinet door, see the technical data for the required cooling air flow.

Preventing the recirculation of hot air

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air inlet</td>
</tr>
<tr>
<td>2</td>
<td>Air outlet</td>
</tr>
</tbody>
</table>
Bookshelf mounting (standard drive module configuration)
This diagram shows air baffle positions inside an example cabinet. For the descriptions, see the next page.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air flow to the drive modules, max. 40 °C (104 °F)</td>
<td>4</td>
</tr>
<tr>
<td>2a</td>
<td>Vertical air baffle that separates the cool and hot areas in the cabinet</td>
<td>5</td>
</tr>
<tr>
<td>2b</td>
<td>Vertical air baffle</td>
<td>6</td>
</tr>
<tr>
<td>2c</td>
<td>Upper horizontal air baffle</td>
<td>7</td>
</tr>
<tr>
<td>2d</td>
<td>Lower horizontal air baffle</td>
<td>8</td>
</tr>
<tr>
<td>2e</td>
<td>Optional air baffle that is needed when there is no fan on the lower part of the cabinet door</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Drive module</td>
<td></td>
</tr>
</tbody>
</table>
Bookshelf mounting (option +B051)

This diagram shows the air baffle position inside an example cabinet. For dimensions of the baffle, see the dimension drawings.

<table>
<thead>
<tr>
<th>Number</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air flow to the drive modules, max. 40 °C (104 °F)</td>
</tr>
<tr>
<td>2a</td>
<td>Vertical air baffle that separates the cool and hot areas in the cabinet</td>
</tr>
<tr>
<td>2b</td>
<td>Horizontal air baffle</td>
</tr>
<tr>
<td>2c</td>
<td>Optional air baffle that is needed when there is no fan on the lower part of the cabinet door</td>
</tr>
<tr>
<td>3</td>
<td>Drive module</td>
</tr>
<tr>
<td>4</td>
<td>LCL filter module</td>
</tr>
<tr>
<td>5</td>
<td>Disconnector and fuses</td>
</tr>
<tr>
<td>6</td>
<td>Contactor</td>
</tr>
<tr>
<td>7</td>
<td>Drive control unit</td>
</tr>
<tr>
<td>8</td>
<td>Air flow out</td>
</tr>
<tr>
<td>9</td>
<td>Cabinet grounding busbar (PE)</td>
</tr>
</tbody>
</table>

Required free space

Free space around the drive module is needed for ensuring that sufficient cooling air flows through the module and the module cools correctly.
Free space at the top of the drive module

The required free space at the top of the drive module is shown below.

![Diagram showing free space at top of drive module](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air inlet</td>
</tr>
<tr>
<td>2</td>
<td>Air outlet</td>
</tr>
</tbody>
</table>

Free space around the drive module

A free space of 20 mm (0.79 in) around the drive module is required from the cabinet back panel and front door. No free space for cooling is required on the left- and right-hand sides of the module.

The module can be installed in a cabinet with the following dimensions:

- width 800 mm (31.50 in)
- depth 600 mm (23.62 in)
- height 2000 mm (78.74 in).

ABB air inlet and outlet kits

See chapter *Ordering information (page 159).*
Mechanical installation

Contents of this chapter

This chapter describes alternatives of the mechanical installation of the drive module. It refers to the installation example chapters which contain instructions that depend on the selected drive configuration.

Examining the installation site

The material below the drive must be non-flammable and strong enough to carry the weight of the drive.

See section Ambient conditions (page 176) for the allowed ambient conditions and section Losses, cooling data and noise (page 172) for the required cooling air.

Moving and unpacking

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

Move the transport package by pallet truck to the installation site.

To unpack the package:

• Cut the straps.
• Lift the lid.
• Lift the sleeve.
• Unpack the top boxes (drive module package).
• Insert lifting hooks to the drive and LCL filter module lifting lugs and lift the modules to the installation place.
Transport package contents

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Finger guard</td>
</tr>
<tr>
<td>2</td>
<td>Pedestal guide plate for the LCL filter module</td>
</tr>
<tr>
<td>3</td>
<td>Pedestal guide plate for the drive module</td>
</tr>
<tr>
<td>4</td>
<td>Accessories box</td>
</tr>
<tr>
<td></td>
<td>See the box contents on the following pages.</td>
</tr>
<tr>
<td>5</td>
<td>Center of gravity symbol</td>
</tr>
<tr>
<td>6</td>
<td>Package for LCL filter fan</td>
</tr>
<tr>
<td>7</td>
<td>Package for LCL filter pedestal</td>
</tr>
<tr>
<td>8</td>
<td>Telescopic extraction/installation ramp</td>
</tr>
<tr>
<td>9</td>
<td>Package for option +H370: Full-size input power cable connection terminals and PE busbar.</td>
</tr>
<tr>
<td>10</td>
<td>Plywood support</td>
</tr>
<tr>
<td>11</td>
<td>With option +B051: Clear plastic shrouds box and output cable connection terminals box.</td>
</tr>
<tr>
<td></td>
<td>With option +H370: Also Input cable connection terminals box.</td>
</tr>
<tr>
<td></td>
<td>See the box contents on the following pages.</td>
</tr>
<tr>
<td>12</td>
<td>Lid for sleeve</td>
</tr>
<tr>
<td>13</td>
<td>Cardboard sleeve</td>
</tr>
<tr>
<td>14–16</td>
<td>Cardboard support</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Pallet</td>
</tr>
<tr>
<td>18</td>
<td>Strap</td>
</tr>
<tr>
<td>19</td>
<td>VCI film or bag</td>
</tr>
<tr>
<td>20</td>
<td>Drive module with factory installed options and multilingual residual voltage warning sticker, fastening screws in a plastic bag, integrated control unit, control panel and cable or control panel with door mounting kit (option +J410), delivery documents, printed multilingual installation and start-up quick guides. Other printed manuals with option +R700.</td>
</tr>
<tr>
<td>21</td>
<td>External control unit (option +P906)</td>
</tr>
<tr>
<td>22</td>
<td>Edgeboard supports</td>
</tr>
</tbody>
</table>

Boxes

![Diagram of boxes with labels](image)

<table>
<thead>
<tr>
<th></th>
<th>Shroud box with standard drive module configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paper fill</td>
</tr>
<tr>
<td>2</td>
<td>Clear plastic shroud for output cabling</td>
</tr>
<tr>
<td>3</td>
<td>Cardboard box cover</td>
</tr>
<tr>
<td>4</td>
<td>Cardboard box bottom</td>
</tr>
<tr>
<td>5</td>
<td>Support</td>
</tr>
<tr>
<td>6</td>
<td>Bands</td>
</tr>
<tr>
<td>7</td>
<td>Back clear plastic shroud (lower)</td>
</tr>
<tr>
<td>8</td>
<td>Back clear plastic shroud (upper)</td>
</tr>
<tr>
<td>9</td>
<td>Front clear plastic shroud</td>
</tr>
<tr>
<td>10</td>
<td>Clear plastic shroud for input cabling</td>
</tr>
<tr>
<td>11</td>
<td>Top clear plastic shroud</td>
</tr>
<tr>
<td>12</td>
<td>Clear plastic shroud for input cable entry from side</td>
</tr>
<tr>
<td>13</td>
<td>Screws in a plastic bag</td>
</tr>
<tr>
<td>14</td>
<td>Metallic shroud without ground bar</td>
</tr>
</tbody>
</table>
Mechanical installation

Output connection terminals box with standard drive module configuration

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paper fill</td>
</tr>
<tr>
<td>2</td>
<td>Output cable connection terminal T3/W2</td>
</tr>
<tr>
<td>3</td>
<td>Output cable connection terminal T2/V2</td>
</tr>
<tr>
<td>4</td>
<td>Output cable connection terminal T1/U2</td>
</tr>
<tr>
<td>5</td>
<td>Grounding terminal</td>
</tr>
<tr>
<td>6</td>
<td>Cardboard box</td>
</tr>
<tr>
<td>7</td>
<td>Screws and insulators in a plastic bag</td>
</tr>
</tbody>
</table>

Option +H370: input cable connection terminals box

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Metallic shroud with ground bar</td>
</tr>
<tr>
<td>2</td>
<td>Paper fill</td>
</tr>
<tr>
<td>3</td>
<td>Input cable connection terminal L3/W1</td>
</tr>
<tr>
<td>4</td>
<td>Input cable connection terminal L2/V1</td>
</tr>
<tr>
<td>5</td>
<td>Input cable connection terminal L1/U1</td>
</tr>
<tr>
<td>6</td>
<td>Cardboard box</td>
</tr>
<tr>
<td>7</td>
<td>Screws and insulators in a plastic bag</td>
</tr>
</tbody>
</table>
Ramp box

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cardboard box</td>
</tr>
<tr>
<td>2</td>
<td>Combi screws (4 pcs)</td>
</tr>
<tr>
<td>3</td>
<td>Ramp extension (50 to 150 mm)</td>
</tr>
<tr>
<td>4</td>
<td>Ramp up to 50 mm</td>
</tr>
</tbody>
</table>

Accessories box

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Screw package</td>
</tr>
<tr>
<td>2</td>
<td>Busbar for main contactor - LCL connection (3 pcs)</td>
</tr>
<tr>
<td>3</td>
<td>Busbar for IGBT - LCL connection (3 pcs)</td>
</tr>
<tr>
<td>4</td>
<td>Cardboard box</td>
</tr>
<tr>
<td>5</td>
<td>Installation bracket (2 pcs)</td>
</tr>
<tr>
<td>6</td>
<td>Feed through (4 pcs)</td>
</tr>
</tbody>
</table>
Examine the delivery

Make sure that all items listed in Moving and unpacking (page 63) are present. Make sure that there are no signs of damage. Before attempting installation and operation, examine the information on the type designation label of the drive to verify that the unit is of the correct type.

Lifting

Lift the drive module only by the lifting lugs.
Attaching the drive module and LCL filter module to a mounting plate or wall

Attach the LCL filter module and the drive module to wall or a mounting plate at the points shown below.

You can attach the modules to Rittal VX25 enclosure with the mounting brackets delivered with the drive, see Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243).

Attaching the drive module to the LCL filter module

See Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243).

Attaching the drive module and the LCL filter module to the enclosure base

See Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243).
Grounding the drive module and the LCL filter module

Ground the drive module and the LCL filter module from the fastening points:

![Grounding diagram]

Installing the drive in Rittal VX25 enclosure

For an installation example on how to install the drive module into a Rittal VX25 enclosure, see *Installation example in Rittal VX25 enclosure (page 133)* and *Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243).*
Optional input power cable connection terminals and ground busbar assembly (+H370)

Install the metallic shroud with ground bar as shown below.

Connect the input power cable connection terminals as shown in *Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243).*
Guidelines for planning the electrical installation

Contents of this chapter
This chapter contains generic guidelines for planning the electrical installation of the drive.

Limitation of liability
The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover.

Selecting main disconnecting device
- AC main power supply
You must equip the drive with a main supply disconnecting device which meets the local safety regulations. You must be able to lock the disconnecting device to the open position for installation and maintenance work.
European Union and United Kingdom

To meet the European Union Directives and United Kingdom Regulations, according to standard EN 60204-1, *Safety of Machinery*, the disconnecting device must be one of the following types:

- switch-disconnector of utilization category AC-23B (IEC 60947-3)
- disconnector that has an auxiliary contact that in all cases causes switching devices to break the load circuit before the opening of the main contacts of the disconnector (EN 60947-3)
- circuit-breaker suitable for isolation in accordance with IEC 60947-2.

North America

Installations must be compliant with NFPA 70 (NEC)\(^1\) and/or Canadian Electrical Code (CE) along with state and local codes for your location and application.

\(^1\) National Fire Protection Association 70 (National Electric Code).

Other regions

The disconnecting device must conform to the applicable local safety regulations.

DC solar PV main power supply

When you perform maintenance or wiring activities in the drive cabinet, make sure that:

- you disconnect Solar PV supply at string combiner box level
 - or
- remove the solar PV connections before installing the drive cabinet
 - or
- remove DC fuse inside drive cabinet.

Selecting the main contactor

You can equip the drive with a main contactor.

Follow these guidelines when you select a customer-defined main contactor:

- Dimension the contactor according to the nominal voltage and current of the drive. Also consider the environmental conditions such as surrounding air temperature.
- **IEC devices only:** Select contactor with utilization category AC-1 (number of operations under load) according to IEC 60947-4, *Low-voltage switch gear and control gear*.
- Consider the application life time requirements.

North America

Installations must be compliant with NFPA 70 (NEC)\(^1\) and/or Canadian Electrical Code (CE) along with state and local codes for your location and application.

\(^1\) National Fire Protection Association 70 (National Electric Code).

Other regions

The disconnecting device must conform to the applicable local safety regulations.
Examining the compatibility of the motor and drive

Use asynchronous AC induction motors, permanent magnet synchronous motors or ABB synchronous reluctance motors (SynRM motors) with the drive.

Select the motor size and drive type from the rating table on basis of the AC line voltage and motor load. You can find the rating table in the appropriate hardware manual. You can also use the DriveSize PC tool.

Make sure that the motor can be used with an AC drive. See [Requirements table (page 75)](#). For basics of protecting the motor insulation and bearings in drive systems, see [Protecting the motor insulation and bearings (page 75)](#).

Note:

- Consult the motor manufacturer before using a motor whose nominal voltage differs from the AC line voltage connected to the drive input.
- The voltage peaks at the motor terminals are relative to the supply voltage of the drive, not the drive output voltage.

Protecting the motor insulation and bearings

The drive employs modern IGBT inverter technology. Regardless of frequency, the drive output comprises pulses of approximately the drive DC bus voltage with a very short rise time. The pulse voltage can almost double at the motor terminals, depending on the attenuation and reflection properties of the motor cable and the terminals. This can cause additional stress on the motor and motor cable insulation.

Modern variable speed drives with their fast rising voltage pulses and high switching frequencies can generate current pulses that flow through the motor bearings. This can gradually erode the bearing races and rolling elements.

du/dt filters protect motor insulation system and reduce bearing currents. Common mode filters mainly reduce bearing currents. Insulated N-end (non-drive end) bearings protect the motor bearings.

Requirements table

These tables show how to select the motor insulation system and when a drive du/dt and common mode filters and insulated N-end (non-drive end) motor bearings are required. Ignoring the requirements or improper installation may shorten motor life or damage the motor bearings and voids the warranty.
This table shows the requirements when an ABB motor is in use.

Motor type	Nominal AC line voltage	Requirement for ABB du/dt and common mode filters, insulated N-end motor bearings			
		Motor insulation system	100 kW ≤ \(P_n \) < 350 kW or IEC 315 ≤ frame size < IEC 400	\(P_n \) ≥ 350 kW or frame size ≥ IEC 400	
		\(P_n \) < 134 hp and frame size < NEMA 500	134 hp ≤ \(P_n \) < 469 hp or NEMA 500 ≤ frame size ≤ NEMA 500	\(P_n \) ≥ 469 hp or frame size > NEMA 580	
Random-wound M2_, M3_ and M4_	\(U_n \) ≤ 500 V	Standard	-	+ N	+ N + CMF
	500 V < \(U_n \) ≤ 600 V	Standard	+ du/dt	+ N + du/dt	+ N + du/dt + CMF
		or			
	600 V < \(U_n \) ≤ 690 V (cable length ≤ 150 m)	Reinforced	+ du/dt	+ N + du/dt	+ N + du/dt + CMF
	600 V < \(U_n \) ≤ 690 V (cable length > 150 m)	Reinforced	-	+ N	+ N + CMF
Form-wound HX_ and AM_	380 V < \(U_n \) ≤ 690 V	Standard	n.a.	+ N + CMF	\(P_n \) < 500 kW: +N + CMF
				\(P_n \) ≥ 500 kW: +N + du/dt + CMF	
Old\(^1\) form-wound HX_ and modular	380 V < \(U_n \) ≤ 690 V	Check with the motor manufacturer.	+ N + du/dt with voltages over 500 V + CMF		
Random-wound HX_ and AM\(^2\)	0 V < \(U_n \) ≤ 500 V	Enamelled wire with fiber glass taping	+ N + CMF		
	500 V < \(U_n \) ≤ 690 V		+ N + du/dt + CMF		
HDP	Consult the motor manufacturer.				

\(^1\) manufactured before 1.1.1998
\(^2\) For motors manufactured before 1.1.1998, check for additional instructions with the motor manufacturer.
This table shows the requirements when a non-ABB motor is in use.

<table>
<thead>
<tr>
<th>Motor type</th>
<th>Nominal AC line voltage</th>
<th>Requirement for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Motor insulation system</td>
</tr>
<tr>
<td>Random-wound and form-wound</td>
<td>$U_n \leq 420$ V</td>
<td>Standard: $U_{LL} = 1300$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or $420 < U_n \leq 500$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforced: $U_{LL} = 1600$ V, 0.2 micro-second rise time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or $500 < U_n \leq 600$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforced: $U_{LL} = 1800$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or $600 < U_n \leq 690$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforced: $U_{LL} = 2000$ V, 0.3 micro-second rise time</td>
</tr>
</tbody>
</table>

1) If the intermediate DC circuit voltage of the drive is increased from the nominal level due to long term resistor braking cycles, check with the motor manufacturer if additional output filters are needed.

The abbreviations used in the tables are defined below.

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n</td>
<td>Nominal AC line voltage</td>
</tr>
<tr>
<td>\dot{U}_{LL}</td>
<td>Peak line-to-line voltage at motor terminals which the motor insulation must withstand</td>
</tr>
<tr>
<td>P_n</td>
<td>Motor nominal power</td>
</tr>
<tr>
<td>du/dt</td>
<td>du/dt filter at the output of the drive</td>
</tr>
<tr>
<td>CMF</td>
<td>Common mode filter of the drive</td>
</tr>
<tr>
<td>N</td>
<td>N-end bearing: insulated motor non-drive end bearing</td>
</tr>
<tr>
<td>n.a.</td>
<td>Motors of this power range are not available as standard units. Consult the motor manufacturer.</td>
</tr>
</tbody>
</table>
Availability of \(\frac{du}{dt} \) filter and common mode filter by drive type

<table>
<thead>
<tr>
<th>Product type</th>
<th>Availability of (\frac{du}{dt}) filter</th>
<th>Availability of common mode filter (CMF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH580-34</td>
<td>Ordered separately, see chapter Filters (page 241)</td>
<td>Standard</td>
</tr>
</tbody>
</table>

Additional requirements for explosion-safe (EX) motors

If you will use an explosion-safe (EX) motor, follow the rules in the requirements table above. In addition, consult the motor manufacturer for any further requirements.

Additional requirements for ABB motors of types other than M2_, M3_, M4_, HX_ and AM_

Use the selection criteria given for non-ABB motors.

Additional requirements for the regenerative and low harmonics drives

It is possible to increase the intermediate circuit DC voltage from the nominal (standard) level with a parameter in the control program. If you choose to do this, select the motor insulation system which withstands the increased DC voltage level.

Additional requirements for ABB high-output and IP23 motors

The rated output power of high output motors is higher than what is stated for the particular frame size in EN 50347 (2001).

This table shows the requirements for protecting the motor insulation and bearings in drive systems for ABB random-wound motor series (for example, M3AA, M3AP and M3BP).

<table>
<thead>
<tr>
<th>Nominal AC supply voltage</th>
<th>Requirement for ABB (\frac{du}{dt}) and common mode filters, insulated N-end motor bearings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motor insulation system</td>
</tr>
<tr>
<td>(U_n \leq 500) V</td>
<td>Standard</td>
</tr>
<tr>
<td>500 V < (U_n \leq 600) V</td>
<td>Standard</td>
</tr>
<tr>
<td>or</td>
<td>Reinforced</td>
</tr>
<tr>
<td>600 V < (U_n \leq 690) V</td>
<td>Reinforced</td>
</tr>
</tbody>
</table>

Additional requirements for non-ABB high-output and IP23 motors

The rated output power of high-output motors is higher than what is stated for the particular frame size in EN 50347 (2001).

If you plan to use a non-ABB high-output motor or an IP23 motor, consider these additional requirements for protecting the motor insulation and bearings in drive systems:

- If motor power is below 350 kW: Equip the drive and/or motor with the filters and/or bearings according to the table below.
- If motor power is above 350 kW: Consult the motor manufacturer.
Nominal AC supply voltage

<table>
<thead>
<tr>
<th></th>
<th>Requirement for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motor insulation system</td>
</tr>
<tr>
<td>$P_n < 100 \text{ kW}$ or frame size $< \text{IEC 315}$</td>
<td>$100 \text{ kW} < P_n < 350 \text{ kW}$ or IEC 315 $< \text{frame size} < \text{IEC 400}$</td>
</tr>
<tr>
<td>$P_n < 134 \text{ hp}$ or frame size $< \text{NEMA 500}$</td>
<td>$134 \text{ hp} < P_n < 469 \text{ hp}$ or NEMA 500 $< \text{frame size} < \text{NEMA 580}$</td>
</tr>
</tbody>
</table>

Guidelines for planning the electrical installation

1) If the intermediate DC circuit voltage of the drive is increased from the nominal level due to long term resistor braking cycles, check with the motor manufacturer if additional output filters are needed.

Additional data for calculating the rise time and the peak line-to-line voltage

The diagrams below show the relative peak line-to-line voltage and rate of change of voltage as a function of the motor cable length. If you need to calculate the actual peak voltage and voltage rise time considering the actual cable length, proceed as follows:

- **Peak line-to line voltage:** Read the relative \hat{U}_{LL}/U_n value from the diagram below and multiply it by the nominal supply voltage (U_n).

- **Voltage rise time:** Read the relative values \hat{U}_{LL}/U_n and $(du/dt)/U_n$ from the diagram below. Multiply the values by the nominal supply voltage (U_n) and substitute into equation $t = 0.8 \cdot \hat{U}_{LL}/(du/dt)$.

<table>
<thead>
<tr>
<th>Nominal AC supply voltage</th>
<th>Requirement for</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_n \leq 420 \text{ V}$</td>
<td>Standard: $\hat{U}_{LL} = 1300 \text{ V}$ + N or CMF + N or CMF</td>
</tr>
<tr>
<td>$420 \text{ V} < U_n < 500 \text{ V}$</td>
<td>Standard: $\hat{U}_{LL} = 1300 \text{ V}$ + du/dt + (N or CMF) + N + du/dt + CMF</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Reinforced: $\hat{U}_{LL} = 1600 \text{ V}$, 0.2 microsecond rise time + N or CMF + N or CMF</td>
</tr>
<tr>
<td>$500 \text{ V} < U_n \leq 600 \text{ V}$</td>
<td>Reinforced: $\hat{U}_{LL} = 1600 \text{ V}$ + du/dt + (N or CMF) + N + du/dt + CMF</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Reinforced: $\hat{U}_{LL} = 1800 \text{ V}$ + N or CMF + N + CMF</td>
</tr>
<tr>
<td>$600 \text{ V} < U_n \leq 690 \text{ V}$</td>
<td>Reinforced: $\hat{U}_{LL} = 1800 \text{ V}$ + $N + du/dt$ + (N or CMF) + N + du/dt + CMF</td>
</tr>
<tr>
<td></td>
<td>Reinforced: $\hat{U}_{LL} = 2000 \text{ V}$, 0.3 microsecond rise time $^1)$ + N + CMF + N + CMF</td>
</tr>
</tbody>
</table>

$^1)$ If the intermediate DC circuit voltage of the drive is increased from the nominal level due to long term resistor braking cycles, check with the motor manufacturer if additional output filters are needed.
Selecting the power cables

- **General guidelines**

Select the input power and motor cables according to local regulations.

- **Current:** Select a cable capable of carrying the maximum load current and suitable for the prospective short-circuit provided by the supply network. The method of installation and ambient temperature affect the cable current carrying capacity. Obey local regulations and laws.

- **Temperature:** For an IEC installation, select a cable rated for at least 70 °C (158 °F) maximum permissible temperature of conductor in continuous use. For North America, select a cable rated for at least 75 °C (167 °F). **Important:** For certain product types or option configurations higher temperature rating may be required. See the technical data for details.

- **Voltage:** 600 V AC cable is accepted for up to 500 V AC. 750 V AC cable is accepted for up to 600 V AC. 1000 V AC cable is accepted for up to 690 V AC.

To comply with the EMC requirements of the CE mark, use one of the preferred cable types. See *Preferred power cable types (page 81).*

Symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as the stress on motor insulation, bearing currents and wear.

Metal conduit reduces electromagnetic emission of the whole drive system.

The protective conductor must always have an adequate conductivity.
Unless local wiring regulations state otherwise, the cross-sectional area of the protective conductor must agree with the conditions that require automatic disconnection of the supply required in 411.3.2 of IEC 60364-4-41:2005 and be capable of withstanding the prospective fault current during the disconnection time of the protective device. The cross-sectional area of the protective conductor can either be selected from the table below or calculated according to 543.1 of IEC 60364-5-54.

This table shows the minimum cross-sectional area of the protective conductor related to the phase conductor size according to IEC/UL 61800-5-1 when the phase conductor and the protective conductor are made of the same metal. If this is not so, the cross-sectional area of the protective grounding conductor shall be determined in a manner which produces a conductance equivalent to that which results from the application of this table.

<table>
<thead>
<tr>
<th>Cross-sectional area of the phase conductors S (mm2)</th>
<th>Minimum cross-sectional area of the corresponding protective conductor S_p (mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \leq 16$</td>
<td>S 1)</td>
</tr>
<tr>
<td>$16 < S \leq 35$</td>
<td>16</td>
</tr>
<tr>
<td>$35 < S$</td>
<td>$S/2$</td>
</tr>
</tbody>
</table>

1) To comply with standard IEC/EN 61800-5-1:
 • use a protective earth conductor with a minimum cross-sectional area of 10 mm2 Cu or 16 mm2 Al (as an alternative when aluminum cables are permitted), or
 • use a second protective earth conductor of the same cross-sectional area as the original protective earth conductor, or
 • use a device that automatically disconnects the supply if the protective earth conductor is damaged.

If the protective earth conductor is separate (that is, it does not form part of the input power cable or the input power cable enclosure), the minimum cross-sectional area must be:
 • 2.5 mm2 when the conductor is mechanically protected, or
 • 4 mm2 when the conductor is not mechanically protected.

Typical power cable sizes

See the technical data.

Power cable types

Preferred power cable types

This section presents the preferred cable types. Make sure that the selected cable type also complies with local/state/country electrical codes.

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Use as input power cabling</th>
<th>Use as motor cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
82 Guidelines for planning the electrical installation

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Use as input power cabling</th>
<th>Use as motor cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical shielded (or armored) cable with three phase conductors and symmetrically constructed PE conductor and a shield (or armor)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Symmetrical shielded (or armored) cable with three phase conductors and a shield (or armor), and separate PE conductor/cable</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1) A separate PE conductor is required if the conductivity of the shield (or armor) is not sufficient for the PE use.

Alternate power cable types

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Use as input power cabling</th>
<th>Use as motor cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC Four-conductor cabling in PVC conduit or jacket (three phase conductors and PE)</td>
<td>Yes with phase conductor smaller than 10 mm² (8 AWG) Cu.</td>
<td>Yes with phase conductor smaller than 10 mm² (8 AWG) Cu, or motors up to 30 kW (40 hp). Note: Shielded or armored cable, or cabling in metal conduit is always recommended to minimize radio frequency interference.</td>
</tr>
<tr>
<td>EMT Four-conductor cabling in metal conduit (three phase conductors and PE). For example, EMT, or four-conductor armored cable</td>
<td>Yes</td>
<td>Yes with phase conductor smaller than 10 mm² (8 AWG) Cu, or motors up to 30 kW (40 hp)</td>
</tr>
<tr>
<td>Shielded (Al/Cu shield or armor) four-conductor cable (three phase conductors and a PE)</td>
<td>Yes</td>
<td>Yes with motors up to 100 kW (135 hp). A potential equalization between the frames of motor and driven equipment is required.</td>
</tr>
</tbody>
</table>
Cable type

<table>
<thead>
<tr>
<th>PE</th>
<th>Use as input power cabling</th>
<th>Use as motor cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>□ □ □ □</td>
<td>No</td>
</tr>
</tbody>
</table>

A single-core cable system: three phase conductors and PE conductor on cable tray

Preferable cable arrangement to avoid voltage or current unbalance between the phases

WARNING!

If you use unshielded single-core cables in an IT network, make sure that the non-conductive outer sheath (jacket) of the cables have good contact with a properly grounded conductive surface. For example, install the cables on a properly grounded cable tray. Otherwise voltage may become present on the non-conductive outer sheath of the cables, and there is even a risk of an electric shock.

Not allowed power cable types

<table>
<thead>
<tr>
<th>PE</th>
<th>Use as input power cabling</th>
<th>Use as motor cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>△ △ △ △</td>
<td>No</td>
</tr>
</tbody>
</table>

Symmetrical shielded cable with individual shields for each phase conductor

Additional guidelines, North America

ABB recommends the use of conduit for power wiring to the drive and between the drive and the motor(s). Due to the variety of application needs, metallic and non-metallic conduit can be used. ABB recommends the use of metallic conduit.

The following table shows examples of various materials and methods for wiring the drive in the intended application. See NEC 70 along with state and local codes for the appropriate materials for your application.

In all applications, ABB prefers the use of symmetrical shielded VFD cable between drive and motor(s).
84 Guidelines for planning the electrical installation

<table>
<thead>
<tr>
<th>Wiring method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduit - Metallic<sup>1)<sup> 2)</sup></td>
<td></td>
</tr>
<tr>
<td>Electrical metallic tubing: Type EMT</td>
<td>Prefer symmetrical shielded VFD cable.</td>
</tr>
<tr>
<td>Rigid metal conduit: Type RMC</td>
<td>Use separate conduit run for each motor.</td>
</tr>
<tr>
<td>Liquid-tight flexible metal electrical conduit: Type LFMC</td>
<td>Do not run input power wiring and motor wiring in the same conduit.</td>
</tr>
<tr>
<td>Conduit - Non-metallic<sup>2)</sup> <sup>3)</sup></td>
<td></td>
</tr>
<tr>
<td>Liquid-tight flexible non-metallic conduit: Type LFNC</td>
<td>Prefer symmetrical shielded VFD cable. Use separate conduit run for each motor. Do not run input power wiring and motor wiring in the same conduit.</td>
</tr>
<tr>
<td>Wireways<sup>2)</sup></td>
<td></td>
</tr>
<tr>
<td>Metallic</td>
<td>Prefer symmetrical shielded VFD cable. Separate motor wiring from input power wiring and other low voltage wiring. Do not run outputs of multiple drives parallel. Bundle each cable (wiring) together and use separators where possible.</td>
</tr>
<tr>
<td>Free air<sup>2)</sup></td>
<td>Prefer symmetrical shielded VFD cable. Allowed internally in enclosures when in accordance with UL.</td>
</tr>
<tr>
<td>Enclosures, air handlers, etc.</td>
<td></td>
</tr>
</tbody>
</table>

¹⁾ Metallic conduit may be used as an additional ground path, provided this path is a solid path capable of handling ground currents.

²⁾ See NFPA NEC 70, UL, and local codes for your application.

³⁾ Non-metallic conduit use underground is allowed; however, these installations inherently have an increased chance for nuisance problems due to the potential for water/moisture in the conduit. Water/moisture in the conduit increases the likelihood of VFD faults or warnings. Proper installation is required to make sure there is no intrusion of water/moisture.

Metal conduit

Couple separate parts of a metal conduit together: bridge the joints with a ground conductor bonded to the conduit on each side of the joint. Also bond the conduits to the drive enclosure and motor frame. Use separate conduits for input power, motor, brake resistor, and control wiring. Do not run motor wiring from more than one drive in the same conduit.

Power cable shield

If the cable shield is used as the sole protective earth (PE) conductor, make sure that its conductivity agrees with the PE conductor requirements.

To effectively suppress radiated and conducted radio-frequency emissions, the cable shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape or copper wire. The better and tighter the shield, the lower the emission level and bearing currents.
Selecting the control cables

- **Shielding**

Only use shielded control cables.

Use a double-shielded twisted pair cable for analog signals. This type of cable is recommended for the pulse encoder signals also. Use one individually shielded pair for each signal. Do not use common return for different analog signals.

A double-shielded cable (a) is the best alternative for low-voltage digital signals, but single-shielded (b) twisted pair cable is also acceptable.

- **Signals in separate cables**

Run analog and digital signals in separate, shielded cables. Do not mix 24 V DC and 115/230 V AC signals in the same cable.

- **Signals that can be run in the same cable**

If their voltage does not exceed 48 V, relay-controlled signals can be run in the same cables as digital input signals. The relay-controlled signals should be run as twisted pairs.

- **Relay cable**

The cable type with braided metallic shield (for example ÖLFLEX by LAPPKABEL, Germany) has been tested and approved by ABB.

- **Control panel to drive cable**

Use EIA-485 with male RJ-45 connector, cable type Cat 5e or better. The maximum permitted length of the cable is 100 m (328 ft).
PC tool cable

Connect the Drive composer PC tool to the drive through the USB port of the control panel. Use a USB Type A (PC) - Type Mini-B (control panel) cable. The maximum length of the cable is 3 m (9.8 ft).

Routing the cables

General guidelines – IEC

- Route the motor cable away from other cables. Motor cables of several drives can be run in parallel installed next to each other.
- Install the motor cable, input power cable and control cables on separate trays.
- Avoid long parallel runs of motor cables with other cables.
- Where control cables must cross power cables, make sure that they are arranged at an angle as near to 90 degrees as possible.
- Do not run extra cables through the drive.
- Make sure that the cable trays have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential.

The following figure illustrates the cable routing guidelines with an example drive. **Note:** When motor cable is symmetrical and shielded and it has short parallel runs with other cables (< 1.5 m / 5 ft), distances between the motor cable and other cables can be reduced by half.
General guidelines – North America

Make sure that the installation is in accordance with national and local codes. Obey these general guidelines:

• Use separate conduits for the input power, motor, brake resistor (optional), and control cabling.

• Use separate conduit for each motor cabling.

The following figure illustrates the cable routing guidelines with an example drive.

<table>
<thead>
<tr>
<th>1</th>
<th>Input power cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Motor cabling</td>
</tr>
<tr>
<td>3</td>
<td>Conduit</td>
</tr>
</tbody>
</table>

Continuous motor cable shield/conduit or enclosure for equipment on the motor cable

To minimize the emission level when safety switches, contactors, connection boxes or similar equipment are installed on the motor cable between the drive and the motor:

• Install the equipment in a metal enclosure.

• Use either a symmetrical shielded cable, or install the cabling in a metal conduit.

• Make sure that there is a good and continuous galvanic connection in the shield/conduit between drive and motor.

• Connect the shield/conduit to the protective ground terminal of the drive and the motor.
Separate control cable ducts

Put 24 V DC and 230 V AC (120 V AC) control cables in separate ducts, unless the 24 V DC cable is insulated for 230 V AC (120 V AC) or insulated with an insulation sleeving for 230 V AC (120 V AC).

Implementing motor and motor cable short-circuit and thermal overload protection

Protecting the motor and motor cable in short-circuits
The drive protects the motor cable and motor in a short-circuit situation when the motor cable is sized according to the nominal output current of the drive.

Protecting the motor cables against thermal overload
The drive protects the motor cables against thermal overload when the cables are sized according to the nominal output current of the drive. No additional thermal protection devices are needed.

WARNING!
If the drive is connected to multiple motors, use a separate overload protection for each motor cable and motor. The drive overload protection is tuned for the total motor load. It may not detect an overload in one motor circuit only.

North America: The local code (NEC) requires an overload protection and a short-circuit protection for each motor circuit. Use, for example:

- a manual motor protector
- circuit breaker, contactor and overload relay or
- fuses, contactor and overload relay.

Protecting the motor against thermal overload
According to regulations, the motor must be protected against thermal overload and the current must be switched off when overload is detected. The drive includes a motor thermal protection function that protects the motor and switches off the current when necessary. Depending on a drive parameter value, the function either monitors a calculated temperature value (based on a motor thermal model) or an actual temperature indication given by motor temperature sensors.

The motor thermal protection model supports thermal memory retention and speed sensitivity. The user can tune the thermal model further by feeding in additional motor and load data.
The most common temperature sensor types are PTC or Pt100. For more information, see the firmware manual.

- **Protecting the motor against overload without thermal model or temperature sensors**

Motor overload protection protects the motor against overload without using motor thermal model or temperature sensors.

Motor overload protection is required and specified by multiple standards including the US National Electric Code (NEC) and the common UL/IEC 61800-5-1 standard in conjunction with UL/IEC 60947-4-1. The standards allow for motor overload protection without external temperature sensors.

The protection feature allows the user to specify the class of operation in the same manner as the overload relays are specified in standards UL/IEC 60947-4-1 and NEMA ICS 2.

The motor overload protection supports thermal memory retention and speed sensitivity. For more information, see drive firmware manual.

Protecting the drive and the input power cable in short-circuits

Protect the drive (1) with fuses (a) and the input cable with fuses (b) or a circuit breaker.

Size the fuses or the circuit breaker according to local regulations for the input cable protection. Select the fuses for the drive according to the instructions given in the technical data. The fuses for the drive protection will restrict drive damage and prevent damage to adjoining equipment in case of a short-circuit inside the drive.

Note: Circuit breakers must not be used without fuses.

WARNING!

Due to the inherent operating principle and construction of circuit breakers, independent of the manufacturer, hot ionized gases can escape from the breaker enclosure in case of a short-circuit. To ensure safe use, pay special attention to the installation and placement of the breakers. Obey the manufacturer’s instructions.

Protecting the drive against thermal overload

The drive has overload protection as standard.
Protecting the input power cable against thermal overload

The drive has overload protection as standard. If the sizing of the input power cable is correct, the drive overload protection protects also the cable against overload. In case of parallel input power cables, it may be necessary to protect each cable separately. Obey the local regulations.

Implementing a motor temperature sensor connection

WARNING!
IEC 61800-5-1 requires double or reinforced insulation between live parts and accessible parts when:
- the accessible parts are not conductive, or
- the accessible parts are conductive, but not connected to the protective earth.

Obey this requirement when you plan the connection of the motor temperature sensor to the drive.

You have these implementation alternatives:

1. **If there is double or reinforced insulation between the sensor and the live parts of the motor:** You can connect the sensor directly to the analog/digital input(s) of the drive. See the control cable connection instructions. Make sure that the voltage does not exceed the maximum allowed voltage over the sensor.

2. **If there is basic insulation between the sensor and the live parts of the motor:** You can connect the sensor to the analog/digital input(s) of the drive. All other circuits connected to the digital and analog inputs (typically extra-low voltage circuits) must be:
 - protected against contact, and
 - insulated with basic insulation from other low-voltage circuits. The insulation must be rated for the same voltage level as the drive main circuit.

 Note: Extra-low voltage circuits (for example, 24 V DC) typically do not meet these requirements. Make sure that the voltage does not exceed the maximum allowed voltage over the sensor.

 As an alternative, you can connect the sensor with basic insulation to the analog/digital input(s) of the drive, if you do not connect any other external control circuits to the drive digital and analog inputs.

3. **You can connect the sensor to the drive via an option module.** The sensor and the module must form a double or reinforced insulation between the motor live parts and the drive control unit. See Connecting motor temperature sensor to the drive via an option module (page 90). Make sure that the voltage does not exceed the maximum allowed voltage over the sensor.

4. **You can connect a sensor to a digital input of the drive via an external relay.** The sensor and the relay must form a double or reinforced insulation between the motor live parts and the digital input of the drive. Make sure that the voltage does not exceed the maximum allowed voltage over the sensor.

Guidelines for planning the electrical installation

This table shows:
• option module types that you can use for the motor temperature sensor connection
• insulation or isolation level that each option module forms between its temperature sensor connector and other connectors
• temperature sensor types that you can connect to each option module
• temperature sensor insulation requirement in order to form, together with the insulation of the option module, a reinforced insulation between the motor live parts and the drive control unit.

<table>
<thead>
<tr>
<th>Option module</th>
<th>Temperature sensor type</th>
<th>Temperature sensor insulation requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Insulation/Isolation</td>
<td>PTC</td>
</tr>
<tr>
<td>CMOD-02</td>
<td>Reinforced insulation between the sensor connector and the other connectors of the module (including drive control unit connector). → No special requirements for the thermistor insulation level. (The drive control unit is PELV compatible also when the module and a thermistor protection circuit are installed.)</td>
<td>x</td>
</tr>
<tr>
<td>CPTC-02</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Using power factor compensation capacitors with the drive

Power factor compensation is not needed with AC drives. However, if a drive is to be connected in a system with compensation capacitors installed, note the following restrictions.

WARNING!

Do not connect power factor compensation capacitors or harmonic filters to the motor cables (between the drive and the motor). They are not meant to be used with AC drives and can cause permanent damage to the drive or themselves.

If there are power factor compensation capacitors in parallel with the input of the drive:

1. Do not connect a high-power capacitor to the power line while the drive is connected. The connection will cause voltage transients that may trip or even damage the drive.

2. If capacitor load is increased/decreased step by step when the AC drive is connected to the power line, make sure that the connection steps are low enough not to cause voltage transients that would trip the drive.

3. Make sure that the power factor compensation unit is suitable for use in systems with AC drives, i.e., harmonic generating loads. In such systems, the compensation unit should typically be equipped with a blocking reactor or harmonic filter.

Using a safety switch between the drive and the motor

ABB recommends to install a safety switch between the permanent magnet motor and the drive output. The switch is needed to isolate the motor from the drive during maintenance work on the drive.
Implementing an ATEX-certified motor thermal protection

With option +Q971, the drive provides ATEX-certified safe motor disconnection without contactor using the drive Safe torque off function. To implement the thermal protection of a motor in explosive atmosphere (Ex motor), you must also:

- use an ATEX-certified Ex motor
- order an ATEX-certified thermistor protection module for the drive (option +L537), or acquire and install an ATEX-compliant protection relay
- do the necessary connections.

For more information, see:

<table>
<thead>
<tr>
<th>User's manual</th>
<th>Manual code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (option +L537+Q971) user's manual</td>
<td>3AXD50000030058</td>
</tr>
</tbody>
</table>

Controlling a contactor between drive and motor

The control of the output contactor depends on how you use the drive, that is, which motor control mode and which motor stop mode you select.

If you have the vector control mode and motor ramp stop selected, open the contactor as follows:

1. Give a stop command to the drive.
2. Wait until the drive decelerates the motor to zero speed.
3. Open the contactor.

If you have the vector control mode and motor coast stop, or scalar control mode selected, open the contactor as follows:

1. Give a stop command to the drive.
2. Open the contactor.

WARNING!

When the vector control mode is in use, never open the output contactor while the drive controls the motor. The vector control operates extremely fast, much faster than it takes for the contactor to open its contacts. When the contactor starts opening while the drive controls the motor, the vector control will try to maintain the load current by immediately increasing the drive output voltage to the maximum. This will damage, or even burn the contactor completely.

Implementing a bypass connection

If bypassing is required, employ mechanically or electrically interlocked contactors between the motor and the drive and between the motor and the power line. Make sure with interlocking that the contactors cannot be closed simultaneously. The installation must be clearly marked as defined in IEC/EN/UL 61800-5-1, subclause 6.5.3, for example, “THIS MACHINE STARTS AUTOMATICALLY”.

This document is a part of the **92 Guidelines for planning the electrical installation**.
WARNING!

Never connect the drive output to the electrical power network. The connection may damage the drive.

- Example bypass connection

An example bypass connection is shown below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Drive main switch</td>
</tr>
<tr>
<td>Q4</td>
<td>Bypass circuit breaker</td>
</tr>
<tr>
<td>K1</td>
<td>Drive main contactor</td>
</tr>
<tr>
<td>K4</td>
<td>Bypass contactor</td>
</tr>
<tr>
<td>K5</td>
<td>Drive output contactor</td>
</tr>
<tr>
<td>S11</td>
<td>Drive main contactor on/off control</td>
</tr>
<tr>
<td>S40</td>
<td>Motor power supply selection (drive or direct-on-line)</td>
</tr>
<tr>
<td>S41</td>
<td>Start when motor is connected direct-on-line</td>
</tr>
<tr>
<td>S42</td>
<td>Stop when motor is connected direct-on-line</td>
</tr>
</tbody>
</table>

Switching the motor power supply from drive to direct-on-line

1. Stop the drive and the motor with the drive control panel stop key (drive in the local control mode) or the external stop signal (drive in the remote control mode).
2. Open the main contactor of the drive with S11.
3. Switch the motor power supply from the drive to direct-on-line with S40.
4. Wait for 10 seconds to allow the motor magnetization to dissipate.
5. Start the motor with S41.

Switching the motor power supply from direct-on-line to drive

1. Stop the motor with S42.
2. Switch the motor power supply from direct-on-line to the drive with S40.
3. Close the main contactor of the drive with switch S11 (-> turn to position ST for two seconds and leave to position 1).
4. Start the drive and the motor with the drive control panel start key (drive in the local control mode) or the external start signal (drive in the remote control mode).

Protecting the contacts of relay outputs

Inductive loads (relays, contactors, motors) cause voltage transients when switched off. Install the protective component as close to the inductive load as possible. Do not install protective components at the relay outputs.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relay output</td>
</tr>
<tr>
<td>2</td>
<td>Varistor</td>
</tr>
<tr>
<td>3</td>
<td>RC filter</td>
</tr>
<tr>
<td>4</td>
<td>Diode</td>
</tr>
</tbody>
</table>

Diagram: Circuit diagram showing relay output connections with protective components.
Electrical installation

Contents of this chapter
This chapter gives instructions on the wiring of the drive.

Safety

WARNING!
If you are not a qualified electrical professional, do not do installation or maintenance work. Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

Grounding the motor cable shield at the motor end
For minimum radio-frequency interference, ground the cable shield 360 degrees at the cable entry of the motor terminal box.
Measuring the insulation

■ Measuring the insulation resistance of the drive

WARNING!
Do not do any voltage withstand or insulation resistance tests on any part of the drive as testing can damage the drive. Every drive has been tested for insulation between the main circuit and the chassis at the factory. Also, there are voltage-limiting circuits inside the drive which cut down the testing voltage automatically.

■ Measuring the insulation resistance of the input power cable
Before you connect the input power cable to the drive, measure its insulation resistance according to local regulations.

■ Measuring the insulation resistance of the motor and motor cable

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.

1. Do the steps in section *Electrical safety precautions (page 18)* before you start the work.
2. Make sure that the motor cable is disconnected from the drive output terminals.
3. Measure the insulation resistance between each phase conductor and the protective earth conductor. Use a measuring voltage of 1000 V DC. The insulation resistance of an ABB motor must be more than 100 Mohm (reference value at 25 °C [77 °F]). For the insulation resistance of other motors, refer to the manufacturer’s instructions.

Note: Moisture inside the motor reduces the insulation resistance. If you think that there is moisture in the motor, dry the motor and do the measurement again.

![Diagram showing measuring the insulation resistance of the motor and motor cable](image_url)

■ Measuring the insulation of brake resistor and resistor cable
Obey the instructions given in section *Measuring the insulation resistance of the brake resistor circuit (page 218).*

Grounding system compatibility check
The standard drive with internal EMC filter +E210 and the ground-to-phase varistor connected can be installed to a symmetrically grounded TN-S system. If you install the drive to another system, you may need to disconnect the EMC filter and ground-to-phase varistor.
WARNING! Do not install the drive with the EMC filter and the ground-to-phase varistor connected to a system that they are not suitable for. If you do, it can cause danger or damage the drive.

- **Corner-grounded and midpoint-grounded delta systems**

 WARNING! Do not install the drive on a corner-grounded or midpoint-grounded delta system. Disconnecting the EMC filter and ground-to-phase varistor does not prevent damage to the drive.

- **Identifying the grounding system of the electrical power network**

 WARNING!
 Only a qualified electrical professional may do the work instructed in this section. Depending on the installation site, the work may even be categorized as live working. Continue only if you are an electrical professional certified for the work. Obey the local regulations. If you ignore them, injury or death can occur.

To identify the grounding system, examine the supply transformer connection. See the applicable electrical diagrams of the building. If that is not possible, measure these voltages at the distribution board, and use the table to define the grounding system type.

1. input voltage line to line (U_L-L)
2. input voltage line 1 to ground (U_L1-G)
3. input voltage line 2 to ground (U_L2-G)
4. input voltage line 3 to ground (U_L3-G).

The table below shows the line-to-ground voltages in relation to the line-to-line voltage for each grounding system.

<table>
<thead>
<tr>
<th>U_L-L</th>
<th>U_L1-G</th>
<th>U_L2-G</th>
<th>U_L3-G</th>
<th>Electrical power system type</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.58·X</td>
<td>0.58·X</td>
<td>0.58·X</td>
<td>Symmetrically grounded TN system (TN-S system)</td>
</tr>
<tr>
<td>X</td>
<td>1.0·X</td>
<td>1.0·X</td>
<td>0</td>
<td>Corner-grounded delta system (nonsymmetrical)</td>
</tr>
<tr>
<td>X</td>
<td>0.866·X</td>
<td>0.5·X</td>
<td>0.5·X</td>
<td>Midpoint-grounded delta system (nonsymmetrical)</td>
</tr>
<tr>
<td>X</td>
<td>Varying level versus time</td>
<td>Varying level versus time</td>
<td>Varying level versus time</td>
<td>IT systems (ungrounded or high-resistance-grounded [>30 ohms]) nonsymmetrical</td>
</tr>
<tr>
<td>X</td>
<td>Varying level versus time</td>
<td>Varying level versus time</td>
<td>Varying level versus time</td>
<td>TT system (the protective earth connection for the consumer is provided by a local earth electrode, and there is another independently installed at the generator)</td>
</tr>
</tbody>
</table>
When to disconnect EMC filter and ground-to-phase varistor: TN-S, IT, corner-grounded delta, and midpoint-grounded delta systems

Symmetrically grounded TN systems (TN-S systems)	Do not disconnect EMC AC and VAR wires.
Corner-grounded delta systems	Do not install the drive on a corner-grounded system.
Midpoint-grounded delta systems	Do not install the drive on a midpoint grounded system.
IT systems (ungrounded or high-resistance grounded [>30 ohms])	Disconnect EMC AC and VAR wires.

Guidelines for installing the drive to a TT system

The drive can be connected to a TT system under these conditions:
1. Residual current device has been installed in the supply system.
2. These wires have been disconnected. Otherwise ground-to-phase varistor capacitor leakage current will cause the residual current device to trip.

<table>
<thead>
<tr>
<th>TT system</th>
<th>Ground-to-phase varistor wire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAR</td>
</tr>
</tbody>
</table>

Note:
- Because the varistor wire has been disconnected, ABB does not guarantee the EMC category.
- ABB does not guarantee the functioning of the ground leakage detector built inside the drive.
- In large systems the residual current device can trip without a real reason.

Source document on TT system: 3AXD10000681917

Disconnecting instructions
EMC AC and varistor (VAR) grounding wires are located at the top of the circuit board compartment. Disconnect them (1) and attach them with the nearby plastic clamp (2).

Connecting the power cables

⚠️ **WARNING!**
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.
Power cable connection diagram

1. For alternatives, see *Guidelines for planning the electrical installation (page 73)*. In the installing example of this chapter, the disconnecting device is not in the same cubicle with the drive module.

2. If a shielded cable is used (not required but recommended) and the conductivity of the shield is < 50% of the conductivity of the phase conductor, use a separate PE cable (2a) or a cable with a grounding conductor (2b).

3. ABB recommends 360-degree grounding at the cabinet entry if a shielded cable is used. Ground the other end of the input cable shield or PE conductor at the distribution board.

4. ABB recommends 360-degree grounding at the cabinet entry.
<table>
<thead>
<tr>
<th></th>
<th>Use a separate grounding cable if the conductivity of the cable shield is < 50% of the conductivity of the phase conductor and there is no symmetrically constructed grounding conductor in the cable (see Guidelines for planning the electrical installation (page 73))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Common mode filter</td>
</tr>
<tr>
<td>7</td>
<td>du/dt filter (option)</td>
</tr>
<tr>
<td>8</td>
<td>EMC filter</td>
</tr>
<tr>
<td>9</td>
<td>The drive module frame must be connected to the cabinet frame. See Drive modules cabinet design and construction instructions (3AU000107668 [English]) and section Grounding the drive module and the LCL filter module (page 70).</td>
</tr>
<tr>
<td>10</td>
<td>Brake chopper</td>
</tr>
<tr>
<td>11</td>
<td>Brake resistors</td>
</tr>
</tbody>
</table>

Note: If there is a symmetrically constructed grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the drive and motor ends. Do not use an asymmetrically constructed motor cable. Connecting its fourth conductor at the motor end increases bearing currents and causes extra wear.
Preparing the cable ends and making 360-degree grounding at the cable entry

1. Peel off 3…5 cm (1 1/4 … 2 in) of the outer insulation of the cables at the cable entries with the conductive sleeves for the 360° high-frequency grounding.

2. Prepare the ends of the cables.

WARNING!
Apply grease to stripped aluminum conductors before attaching them to non-coated aluminum cable lugs. Obey the grease manufacturer’s instructions. Aluminum-aluminum contact can cause oxidation in the contact surfaces.

3. If fire insulation is used, make an opening in the mineral wool sheet according to the diameter of the cable.

4. Put the cables through the entry plate.
5. Remove rubber grommets from the entry plate for the cables to be connected. Cut adequate holes into the rubber grommets. Slide the grommets onto the cables. Slide the cables through the entry plate and attach the grommets to the holes.

6. Attach the conductive sleeves to the cable shields with cable ties. Tie up the unused conductive sleeves with cable ties. An example of bottom entry is shown below. For top entry, place the grommet upwards.

■ Power cable connection procedure

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

WARNING!
Apply grease to stripped aluminum conductors before attaching them to non-coated aluminum cable lugs. Obey the grease manufacturer’s instructions. Aluminum-aluminum contact can cause oxidation in the contact surfaces.

1. Run the motor cables from the motor to the cabinet. Ground the cable shields 360° at the entry plate.

2. Twist the cable shields of the motor cables into bundles and connect them and any separate ground conductors or cables to the ground terminal of the drive module or to the cabinet ground bar.

3. Connect the phase conductors of the motor cables to terminals T1/U2, T2/V2 and T3/W2 of the drive module. For the tightening torques, see the technical data.

4. Make sure that all power is disconnected and reconnection is not possible. Use correct safe disconnect procedures according to local codes.

5. Run the input cables from the supply source to the cabinet. Ground the cable shields 360° at the entry plate.

6. Twist the cable shields of the input cables into bundles and connect them and any separate ground conductors or cables to the drive module ground terminal or to the cabinet PE busbar.
7. Connect the phase conductors of the input cables to terminals L1/U1, L2/V1 and L3/W1 of the drive module. For the tightening torques, see the technical data.

8. Brake chopper option: Run the power cables from the brake chopper to the cabinet. Ground the cable shield (if present) 360° at the entry plate. Connect the conductors to the UDC+ and UDC- terminals. For the tightening torques, see the technical data.

Connecting the control cables to the integrated control unit

See chapter Control unit (page 111) for the default I/O connections of the drive control program. The default I/O connections can be different with some hardware options, see the circuit diagrams delivered with the drive for the actual wiring.

1. Ground the outer control cable shields 360 degrees at the cabinet entry plate (recommendation).

2. Remove the middle front cover of the drive module.

3. Attach the option modules if not attached already.

4. Remove the cover plate from the control cable entry plate and put the rubber grommet in its place. Put the control cables through the grommet. Use the M4 holes on the left side plate as mounting points to tie the cables.

 Note: Drive module with IP20 shrouds (option +B051): If you route the control cables from top or bottom instead of front or side, you need to make holes for the entry plates to the clear plastic shrouds.

IP20 shrouds (option +B051) included in the drawing
5. Ground the shields of the control cables at the clamp plate. The shields should be continuous as close to the terminals of the control unit as possible. Only remove the outer jacket of the cable at the cable clamp so that the clamp presses on the bare shield. The shield (especially in case of multiple shields) can also be terminated with a lug and fastened with a screw at the clamp plate. Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor, e.g., 3.3 nF / 630 V. The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points. Tighten the screws to secure the connection.

6. Connect the conductors to the appropriate detachable terminals of the control unit, see chapter Control unit (page 111). Use shrink tubing or insulating tape to contain any stray strands. Tighten the screws to secure the connection.

 Note: Keep any signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling.

7. Install the middle front cover back.

- **Connecting external power supply wires to the control units**

 The external power supply is used to keep the drive control unit (CCU) and line-side converter control unit (ZCU) powered when the main power is off.

 When external power supply is used, both control units should be connected to the external supply.

 1. **To connect CCU to external power**: Connect external power supply cables to terminals 40 and 41 on the CCU control unit.

 2. **To connect ZCU to external power**: Connect the provided wire harness from the “ISU ZCU XPOW” plug connector to CCU terminals 40 and 41, or directly to an external power supply.

 RED wire = (+) and BLACK wire = (-)
Connecting a control panel

With control panel door mounting platform, connect the control panel as follows:

1. Connect an Ethernet cable to the RJ-45 connector of the control panel.
2. Connect the other end of the cable to the panel port (X12) of the control unit.

Note: When a PC is connected to the control panel, the control panel keypad is disabled. In this case, the control panel acts as a USB-RS485 adapter.

Connecting a remote panel, or chaining one panel to several drives

You can connect a remote ACH-AP-H control panel to the drive, or to chain the control panel or a PC to several drives on a panel bus with a CDPI-01 communication adapter module. See *CDPI-01 communication adapter module user’s manual* (3AXD5000009929 [English]).
Connecting a PC

WARNING!
Do not connect the PC directly to the control panel connector of the control unit as this can cause damage.

A PC (with eg, the Drive composer PC tool) can be connected as follows:

1. Connect an ACx-AP-x control panel to the unit either
 - by inserting the control panel into the panel holder or platform, or
 - by using an Ethernet (eg, Cat 5e) networking cable.

2. Remove the USB connector cover on the front of the control panel.

3. Connect an USB cable (Type A to Type Mini-B) between the USB connector on the control panel (3a) and a free USB port on the PC (3b).

4. The panel will display an indication whenever the connection is active.

5. See the documentation of the PC tool for setup instructions.

Installing option modules

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

1. Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.
Option slot 2 (I/O extension modules)

1. Put the module carefully into its position on the control unit.
2. Tighten the mounting screw.
3. Tighten the grounding screw (CHASSIS) to 0.8 N·m (7 lbf·in). The screw grounds themodule. It is necessary for fulfilling the EMC requirements and for correct operation of the module.
- **Option slot 1 (fieldbus adapter modules)**

1. Put the module carefully into its position on the control unit.

2. Tighten the mounting screw (CHASSIS) to 0.8 N·m (7 lbf-in). The screw tightens the connections and grounds the module. It is necessary for fulfilling the EMC requirements and for correct operation of the module.

- **Wiring the optional modules**

See the appropriate option module manual or for I/O options the appropriate chapter in this manual.
Control unit

Contents of this chapter
This chapter contains the default I/O connection diagram, descriptions of the terminals and technical data for the drive control unit (CCU-24).
The layout of the external control connection terminals on the drive module control unit is shown below.
Default I/O connection diagram

Default control connections for the HVAC default are shown below.

Connection Descriptions

1. **X1**
 - **Reference voltage and analog inputs and outputs**
 - 1: SCR (Signal cable shield (screen))
 - 2: AI1 (Output frequency/speed reference: 0...10 V)
 - 3: AGND (Analog input circuit common)
 - 4: +10V (Reference voltage 10 V DC)
 - 5: AI2 (Actual feedback: 0...20 mA)
 - 6: AGND (Analog input circuit common)
 - 7: AO1 (Output frequency: 0...10 V)
 - 8: AO2 (Motor current: 0...20 mA)
 - 9: AGND (Analog output circuit common)

2. **X2 & X3**
 - **Auxiliary voltage output and programmable digital inputs**
 - 10: +24V (Aux. voltage output +24 V DC, max. 250 mA)
 - 11: DGND (Aux. voltage output common)
 - 12: DCOMM (Digital input common for all)
 - 13: DI1 (Stop (0) / Start (1))
 - 14: DI2 (Not configured)
 - 15: DI3 (Constant frequency/speed selection (1))
 - 16: DI4 (Start interlock 1 (1 = allow start))
 - 17: DI5 (Not configured)
 - 18: DI6 (Not configured)

3. **X6, X7, X8**
 - **Relay outputs**
 - 19: RO1C
 - 20: RO1A
 - 21: RO1B
 - 22: RO2C
 - 23: RO2A
 - 24: RO2B
 - 25: RO3C
 - 26: RO3A
 - 27: RO3B

4. **X5**
 - **Embedded fieldbus**
 - 29: B+
 - 30: A-
 - 31: DGND
 - 32: TERM
 - 33: BIAS

5. **X4**
 - **Safe torque off**
 - 34: OUT1
 - 35: OUT2
 - 36: SGND
 - 37: IN1
 - 38: IN2

6. **X10**
 - **24 V AC/DC**
 - 40: 24 V AC/DC+ in
 - 41: 24 V AC/DC- in

Notes:

- Total load capacity of the Auxiliary voltage output +24V (X2:10) is 6.0 W (250 mA / 24 V DC).
- Digital inputs DI1…DI5 also support 10 to 24 V AC
- Terminal sizes: 0.14 … 2.5 mm² (all terminals)
- Tightening torques: 0.5 … 0.6 N·m (0.4 lbf·ft)
1) Current [0(4)…20 mA, \(R_{in} = 100 \text{ ohm} \)] or voltage [0(2)…10 V, \(R_{in} > 200 \text{ kohm} \)]. Change of setting requires changing the corresponding parameter.

2) Total load capacity of the Auxiliary voltage output +24V (X2:10) is 6.0 W (250 mA / 24 V) minus the power taken by the option modules installed on the board.

3) In scalar control: Menu > Primary settings > Start, stop, reference > Constant speeds / constant frequencies or parameter group 28 Frequency reference chain.
 In vector control: See Menu > Primary settings > Start, stop, reference > Constant speeds / constant frequencies or parameter group 22 Speed reference selection.

<table>
<thead>
<tr>
<th>DI3</th>
<th>Operation/Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scalar control (default)</td>
</tr>
<tr>
<td>0</td>
<td>Set frequency through AI1</td>
</tr>
<tr>
<td>1</td>
<td>28.26 Constant frequency 1</td>
</tr>
</tbody>
</table>

4) Connected with jumpers at the factory.

5) Use shielded twisted-pair cables for digital signals.

6) Ground the outer shield of the cables 360 degrees at the cabinet entry.

7) **WARNING!** Connect external AC power supply (24 V AC) to control unit connectors 40 and 41. If you connect it to connector AGND, DGND or SGND, the power supply or the control unit can get damaged.

Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Description</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERM S4</td>
<td>EFB link termination. Must be set to the terminated (ON) position when the drive (or another device) is the first or last unit on the link.</td>
<td>Bus not terminated (default)</td>
</tr>
<tr>
<td>BIAS S5</td>
<td>Switches on the biasing voltages to the bus. One (and only one) device, preferably at the end of the bus must have the bias on.</td>
<td>Bias off (default)</td>
</tr>
</tbody>
</table>

Additional information on I/O connections

- **PNP configuration for digital inputs (X2 & X3)**

 Internal and external +24 V power supply connections for PNP configuration are shown in the figure below.
- **NPN configuration for digital inputs (X2 & X3)**

Internal and external +24 V power supply connections for NPN configuration are shown in the figure below.

<table>
<thead>
<tr>
<th>Internal +24 V power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2 & X3</td>
</tr>
<tr>
<td>10 +24V</td>
</tr>
<tr>
<td>11 DGND</td>
</tr>
<tr>
<td>12 DCOM</td>
</tr>
<tr>
<td>13 DI1</td>
</tr>
<tr>
<td>14 DI2</td>
</tr>
<tr>
<td>15 DI3</td>
</tr>
<tr>
<td>16 DI4</td>
</tr>
<tr>
<td>17 DI5</td>
</tr>
<tr>
<td>18 DI6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External +24 V power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2 & X3</td>
</tr>
<tr>
<td>10 +24V</td>
</tr>
<tr>
<td>11 DGND</td>
</tr>
<tr>
<td>12 DCOM</td>
</tr>
<tr>
<td>13 DI1</td>
</tr>
<tr>
<td>14 DI2</td>
</tr>
<tr>
<td>15 DI3</td>
</tr>
<tr>
<td>16 DI4</td>
</tr>
<tr>
<td>17 DI5</td>
</tr>
<tr>
<td>18 DI6</td>
</tr>
</tbody>
</table>

Warning:
Do not connect the +24 V AC cable to the control unit ground when the control unit is powered from an external 24 V AC supply.

- **Connection for obtaining 0...10 V from analog output 2 (AO2)**

To obtain 0...10 V from analog output AO2, connect a 500 ohm resistor (or two 1 kohm resistors in parallel) between analog output AO2 and analog common ground AGND.
- **Connection examples of two-wire and three-wire sensors to analog input (AI2)**

 Note: The maximum capability of the auxiliary voltage output (24 V DC [250 mA]) must not be exceeded.

 An example of a two-wire sensor/transmitter supplied by the drive auxiliary voltage output is shown below. Set the input signal to 4…20 mA, not 0…20 mA.

 ![Two-wire sensor/transmitter example](image1)

 An example of a three-wire sensor/transmitter supplied by the drive auxiliary voltage output is shown below. The sensor is supplied through its current output and the drive feeds the supply voltage (+24 V DC). Thus the output signal must be 4…20 mA, not 0…20 mA.

 ![Three-wire sensor/transmitter example](image2)

- **DI5 as frequency input**

 For setting the parameters for the digital frequency input, see the firmware manual.

- **DI6 as PTC input**

 If DI6 is used as a PTC input, see firmware manual for how to set parameters accordingly.

 Note: If DI6 is used as a PTC input, the wiring and the PTC sensor need to be double isolated. Otherwise the CMOD-02 I/O extension module must be used.

 ![PTC thermistor example](image3)

 1 One to six PTC thermistors connected in series

- **AI1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1)**

 Sensors for motor temperature measurement can be connected between an analog input and output, an example connection is shown below. Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor, for example, 3.3 nF / 630 V. The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>One, two or three Pt100 sensors; one, two or three Pt1000 sensors; or one Ni1000, KTY83 or KTY84 sensor</td>
</tr>
<tr>
<td>2</td>
<td>Set the input type to voltage for analog input AI1 or analog input AI2 with parameters. Set the appropriate analog input unit to V (volt) in parameter group 12 Standard AI.</td>
</tr>
<tr>
<td>3</td>
<td>Select the excitation mode in parameter group 13 Standard AO.</td>
</tr>
</tbody>
</table>

WARNING!

As the inputs pictured above are not insulated according to IEC 60664, the connection of the motor temperature sensor requires double or reinforced insulation between motor live parts and the sensor.

If the assembly does not fulfill this requirement, the I/O board terminals must be protected against contact and must not be connected to other equipment or the temperature sensor must be isolated from the I/O terminals.

Safe torque off (X4)

For the drive to start, both connections (+24 V DC to IN1 and +24 V DC to IN2) must be closed. By default, the terminal block has jumpers to close the circuit.

Remove the jumpers before connecting an external Safe torque off circuitry to the drive. See also chapter *The Safe torque off function (page 195)*.

Note: Only 24 V DC can be used for STO. Only PNP input configuration can be used.
Technical data

| External power supply Term. 40, 41 | Maximum power: 36 W, 1.50 A at 24 V AC/DC ±10% as standard
Terminal size: 0.14 ... 2.5 mm² |
|-----------------------------------|--|
| +24 V DC output (Term. 10) | Total load capacity of this outputs is 6.0 W (250 mA / 24 V) minus the power taken by the option modules installed on board.
Terminal size: 0.14 ... 2.5 mm² |
| Digital inputs DI1...DI6 (Term. 13...18) | Input type: NPN/PNP
Terminal size: 0.14 ... 2.5 mm²
DI1...DI4 (Term. 13...16)
12/24 V DC logic levels: "0" < 4 V, "1" > 8 V
R_{in}: 3 kohm
Hardware filtering: 0.04 ms, digital filtering: 2 ms sampling
DI5 (Term. 17)
Can be used as a digital or frequency input.
12/24 V DC logic levels: "0" < 4 V, "1" > 8 V
R_{in}: 3 kohm
Max. frequency: 16 kHz
Symmetrical signal (duty cycle D = 0.50)
DI6 (Term. 18)
Can be used as a digital or PTC input.
12/24 V DC logic levels: "0" < 3 V, "1" > 8 V
R_{in}: 3 kohm
Max. frequency: 16 kHz
Symmetrical signal (duty cycle D = 0.50)
Hardware filtering: 0.04 ms, digital filtering: 2 ms sampling
Note: DI6 is not supported in the NPN configuration.
PTC mode – PTC thermistor can be connected between DI6 and +24 V DC:
< 1.5 kohm = '1' (low temperature), > 4 kohm = '0' (high temperature), open circuit = '0' (high temperature).
DI6 is not a reinforced/double insulated input. Connecting the motor PTC sensor to this input requires usage of a reinforced/double insulated PTC sensor inside the motor |
| Relay outputs RO1...RO3 (Term. 19...27) | 250 V AC / 30 V DC, 2 A. Terminal size: 0.14 ... 2.5 mm²
See section **Isolation areas** (page 120). |
| Analog inputs AI1 and AI2 (Term. 2 and 5) | Current/voltage input mode selected with a parameter, see **AI1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1)** (page 116).
Current input: 0(4)...20 mA, R_{in}: 100 ohm
Voltage input: 0(2)...10 V, R_{in}: > 200 kohm
Terminal size: 0.14 ... 2.5 mm²
Inaccuracy: typical ±1%, max. ±1.5% of full scale
Inaccuracy for Pt100 sensors: 10 ºC (50 ºF) |
| Analog outputs AO1 and AO2 (Term. 7 and 8) | Current/voltage output mode for AO1 selected with a parameter, see **Connection for obtaining 0…10 V from analog output 2 (AO2)** (page 115).
Current output: 0…20 mA, R_{load}: < 500 ohm
Voltage input: 0…10 V, R_{load}: > 100 kohm (AO1 only)
Terminal size: 0.14 ... 2.5 mm²
Inaccuracy: ±1% of full scale (in voltage and current modes) |
| Reference voltage output for analog inputs +10V DC (Term. 4) | Max. 20 mA output
Inaccuracy: ±1% |
<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
</table>
| Safe torque off (STO) inputs IN1 and IN2 (Term. 37 and 38) | 24 V DC logic levels: "0" < 5 V, "1" > 13 V
 R_m: 2.47 kohm
 Terminal size: 0.14 … 2.5 mm² |
| Embedded fieldbus (X5) | Connector pitch 5 mm, wire size 2.5 mm²
 Physical layer: EIA-485
 Cable type: Shielded twisted pair cable with twisted pair for data and a wire or pair for signal ground, nominal impedance 100…165 ohms, for example Belden 9842
 Transmission rate: 9.6…115.2 kbit/s
 Termination by switch |
| Control panel - drive connection | EIA-485, male RJ-45 connector, max. cable length 100 m (328 ft) |
| Control panel - PC connection | USB Type Mini-B, max. cable length 2 m (7 ft) |
The terminals on the control board fulfill the Protective Extra Low Voltage (PELV) requirements (EN 50178): There is reinforced insulation between the user terminals which only accept ELV voltages and terminals that accept higher voltages (relay outputs).

Note: There is functional insulation also between the individual relay outputs.

Note: There is reinforced insulation on the power unit.
Ground isolation diagram

X1
1 SCR
2 A11
3 AGND
4 +10V
5 A12
6 AGND
7 AO1
8 AO2
9 AGND
X2 & X3
10 +24V
11 DGND
12 DCOM
13 DI1
14 DI2
15 DI3
16 DI4
17 DI5
18 DI6
X6, X7, X8
19 RO1C
20 RO1A
21 RO1B
22 RO2C
23 RO2A
24 RO2B
25 RO3C
26 RO3A
27 RO3B
X9
29 B+
30 A-
31 DGND
X4
34 OUT1
35 OUT2
36 SGND
37 IN1
38 IN2
X10
40 24VAC/DC+in
41 24VAC/DC-in

*) Jumper installed at factory
External control unit (option +P906)

Contents of this chapter
This chapter describes the external control unit option +P906 and its installation. The dimension drawing is included.

Product overview
Option +P906 allows the drive control unit CCU-24 to be installed separately from the main drive module, for instance in a separate compartment. The external control unit makes the drive module removal easier, as the customer control cabling can stay in place while the module is removed.
Layout

<table>
<thead>
<tr>
<th></th>
<th>Attaching points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Duct for cables from drive module to be connected to the ZBIB board at the back of the control unit.</td>
</tr>
<tr>
<td>3</td>
<td>Connectors. For descriptions, see chapter Control unit (page 111).</td>
</tr>
</tbody>
</table>

Cables for connecting the external control unit to the drive module:

Cables

These cables connect the control unit and the drive. They are supplied with the module and come with plugs and sockets that allow disconnection at either end.
Unpacking the delivery

The external control unit is in a separate box inside the main drive module box.

Installing the control unit

Determine where the control unit is to be located. Take into account the cable lengths, the physical dimensions and mounting points of the control unit assembly (see section Dimension drawing (page 132)). Install the unit inside an enclosure for protection.
Installation procedure

WARNING!
Handle the fiber optic cables with care:

- When you unplug the fiber optic cables, always hold the connector, not the cable itself.
- Do not touch the ends of the fibers with bare hands as the ends are extremely sensitive to dirt.
- Do not bend the fiber optic cables too tightly. The minimum allowed bend radius is 35 mm (1.4 in).

1. Remove the control unit from the anti-static bag and place it on top of it, then turn it over to find the rear connections.

![Diagram of control unit with cables](image1)

2. Identify the correct ends of the control cables to be connected to the control unit.

3. Pull the cables through the control unit assembly, so they appear in the opening at the rear of the control unit. Do not pull the ground conductor through, leave it outside the assembly. Check that the cables are not against sharp edges or bare live parts.

![Diagram of cable assembly](image2)
4. Connect the cables to their connectors on the ZBIB board.

<table>
<thead>
<tr>
<th>View of ZBIB</th>
<th>ZBIB connectors</th>
<th>Cables from QOIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X7 (STO 1)</td>
<td>INU STO</td>
</tr>
<tr>
<td></td>
<td>X8 (STO 2)</td>
<td>INU STO</td>
</tr>
<tr>
<td></td>
<td>V20</td>
<td>V8</td>
</tr>
<tr>
<td></td>
<td>V21</td>
<td>V13</td>
</tr>
<tr>
<td></td>
<td>V1</td>
<td>V7</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td></td>
<td>X3</td>
<td>X2</td>
</tr>
</tbody>
</table>

5. Connect the grounding wire.
6. The kit includes a plate for the customer cable screens. Attach the small bracket (a) first, then the full clamp plate (b).

7. Mark and drill the required holes in the mounting plate for attaching the control unit. Be careful to control the swarf from the drill.
8. Lift the control unit onto the mounting screws. Tighten the screws.

9. Attach the optional modules.

10. Ground the shields of the control cables at the clamp plate. The shields should be continuous as close to the terminals of the control unit as possible. Only remove the outer jacket of the cable at the cable clamp so that the clamp presses on the bare shield. The shield (especially in case of multiple shields) can also be terminated with a lug and fastened with a screw at the clamp plate. Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor, e.g., 3.3 nF / 630 V. The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points. Tighten the screws to secure the connection.

11. Connect the conductors to the appropriate detachable terminals of the control unit. See the default I/O diagram in chapter Control unit (page 111). Use shrink tubing or insulating tape to contain any stray strands. Tighten the screws to secure the connection.

Note: Keep any signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling.
Connecting the control unit to the drive module

1. Remove the middle front cover of the drive module. A view of drive module with optional clear plastic shrouds is shown below.

2. Remove the cover plate from the control cable entry and put the rubber grommet in its place. Put the control cables through the grommet.
3. Connect the control cables to the drive module. Make sure that the cables are not against sharp edges or bare live parts. Use the holes on top and bottom of the cover to tie the control cables using cable ties.

WARNING!
Handle the fiber optic cables with care:

- When you unplug the fiber optic cables, always hold the connector, not the cable itself.
- Do not touch the ends of the fibers with bare hands as the ends are extremely sensitive to dirt.
- Do not bend the fiber optic cables too tightly. The minimum allowed bend radius is 35 mm (1.4 in).

4. Connect the ground connection at the drive module end.

Maintenance

With the external control unit option +P906, the drive module removal procedure differs slightly from the instructions given in chapter *Maintenance*: before you detach the drive module, you must disconnect the control unit cables from the drive module in the following way:

<table>
<thead>
<tr>
<th>QOIA</th>
<th>ZBIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>INU STO</td>
<td>X7 (STO1)</td>
</tr>
<tr>
<td></td>
<td>X8 (STO2)</td>
</tr>
<tr>
<td>X2</td>
<td>X3</td>
</tr>
<tr>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td>V7</td>
<td>V1</td>
</tr>
<tr>
<td>V8</td>
<td>V20</td>
</tr>
<tr>
<td>V13</td>
<td>V21</td>
</tr>
</tbody>
</table>

Note: ISU ext. 24VDC connector is for supplying external 24 V DC to the line-side converter control unit if needed. ISU panel connector is for connecting the control panel to the line-side converter control unit if needed.
1. Remove the middle front cover of the drive module to be able to disconnect the cables.
 2 × combi screws M4×8 T20, 2 N·m (18 lbf·in).
2. Disconnect the optical, 2 × STO, 24 V, and ground connections from the drive module,
 and carefully remove the cables from the drive.
3. Wind the cables so they will not be damaged as the drive module is removed.
4. Continue the drive module removal procedure as described in chapter Maintenance.

Dimension drawing
Installation example in Rittal VX25 enclosure

Contents of this chapter
In this chapter, the drive module is installed in a 800 mm wide Rittal VX25 enclosure in a bookshelf way of mounting. The module is placed in an upright position on the cabinet bottom with its front facing the cabinet door. Available alternative ABB parts are also given. For control cable installation, see chapter Electrical installation (page 95).

Limitation of liability
The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover.

Safety

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.
Required parts

Drive module standard parts

- Drive module and LCL filter module
- Fastening brackets (2 pcs)
- Pedestal guide plates (2 pcs)
- Telescopic extraction/installation ramp
- Fastening screws and insulators in a plastic bag

Rittal parts / Alternative ABB parts

<table>
<thead>
<tr>
<th>Rittal part code</th>
<th>Qty (pcs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8806.000</td>
<td>1</td>
<td>Enclosure without bottom plates and side panels. Includes supports for installing air baffles.</td>
</tr>
<tr>
<td>7967.000</td>
<td>1</td>
<td>Spacers for roof plates / ABB roof</td>
</tr>
<tr>
<td>(one set = four pieces)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8100.743</td>
<td>1</td>
<td>Punched section with mounting flange, inner mounting level for 800 mm horizontal</td>
</tr>
<tr>
<td>Contact ABB for the suitable filter</td>
<td>4</td>
<td>Air filter. Remove the filter mats.</td>
</tr>
</tbody>
</table>

Alternative ABB parts for Rittal parts

- ABB air inlet kit 800 mm
 - 3AUA0000117005 (IP20)
 - 3AUA0000117009 (IP42)
 - See section *Air inlet kits (page 160)*

- ABB air outlet kit 800 mm
 - 3AUA0000125203 (IP20)
 - 3AUA0000114968 (IP42)
 - See section *Air outlet kits (page 162)*

Customer-made parts (not ABB or Rittal products)

- Air baffles | 4 | See section *Air baffles (page 191)* |
- Bottom plate | 1 | See section *Bottom plate (page 190)* |

Required tools

- Set of screw drivers (Torx and Pozidriv)
- Set of metric magnetic-end hexagon sockets
- Torque wrench
- Step drill bit for drilling the holes in the clear plastic shroud for input power cables (option +B051)

Overall flowchart of the installation process

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>For instructions, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install the Rittal parts, drive bottom guide plate and loose drive options in the drive module cubicle</td>
<td>Installing the drive module and LCL filter module into an enclosure (page 135)</td>
</tr>
<tr>
<td>2</td>
<td>Install the auxiliary components (such as mounting plates, switches, busbars etc.)</td>
<td>The component manufacturer’s instructions Preventing the recirculation of hot air (page 57)</td>
</tr>
<tr>
<td>3</td>
<td>Attach the drive module and LCL filter module into the enclosure</td>
<td>Installing the drive module and LCL filter module into an enclosure (page 135)</td>
</tr>
</tbody>
</table>
Connecting the motor cables and installing the shrouds (option +B051) (page 136)

Connect the power cables and clear plastic shrouds to the drive module. Connect the power supply cable to the LCL filter cooling fan.

Connecting the input cables and installing the shrouds (option +B051) (page 137)

Connecting the power cables (page 99)

The component manufacturer’s instructions

Installing the drive module and LCL filter module into an enclosure

See *Installing the drive module and LCL filter module into a Rittal VX25 enclosure (page 245)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>For instructions, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Connect the power cables and clear plastic shrouds to the drive module. Connect the power supply cable to the LCL filter cooling fan.</td>
<td>Connecting the motor cables and installing the shrouds (option +B051) (page 136) Connecting the input cables and installing the shrouds (option +B051) (page 137) Connecting the power cables (page 99)</td>
</tr>
<tr>
<td>5</td>
<td>Install the remaining parts, for example, air baffles, cabinet doors, side plates, etc.</td>
<td>The component manufacturer’s instructions</td>
</tr>
</tbody>
</table>

Mechanical accessories

1. Attach the plinth to the floor.
2. Attach the enclosure frame to the plinth.
3. Make the bottom plate with 360-degree grounding entries for power cables. Attach the bottom plate to the enclosure frame.
4. Attach the punched section to the back of enclosure frame.
5. Attach the mounting brackets to the punched section.

LCL filter module

6. Install the pedestal to the LCL filter module.
7. Install the cooling fan to the LCL filter module.
8. Attach the LCL filter module pedestal guide plate to the enclosure bottom plate.
9. Attach the drive module pedestal guide plate to the enclosure bottom plate.
10. Attach the extraction/installation ramp to the LCL filter module pedestal guide plate.
11. To prevent the LCL filter module from falling, attach its lifting lugs with chains to the enclosure frame.
12. Push the LCL filter module carefully into the enclosure along the extraction/installation ramp. Work preferably with help from another person as shown below. Keep a constant pressure with one foot on the base of the module to prevent the module from falling on its back.
Drive module

- **13** Unfasten the extraction/installation ramp and attach the LCL filter module to bottom plate.
- **14** Attach the extraction/installation ramp to the drive module pedestal guide plate.
- **15** Remove the sheeting from the clear plastic shrouds (option +B051) of the drive module from both sides.
- **16** Install the top metallic shroud to the drive module.
- **17** Install the back shrouds to the drive module.
- **18** To prevent the drive module from falling, attach its lifting lugs with chains to the enclosure frame.
- **19** Push the drive module carefully into the enclosure along the extraction/installation ramp. Work preferably with help from another person as shown above. Keep a constant pressure with one foot on the base of the module to prevent the module from falling on its back.
- **20** Unfasten the extraction/installation ramp and attach the drive module to the bottom plate.

LCL filter module and drive module attachments and intermediate electrical connections

- **21** Attach the LCL filter module and drive module to the punched section.
- **22** Attach the LCL filter module to the side of drive module from top. Reinstall the cover.
- **23** Attach the drive module and LCL filter module to the bottom plate.
- **24** Connect the LCL filter busbars to the drive module busbars with the connecting busbars.
- **25** Attach the LCL filter module to the drive module side from bottom.
- **26** Connect the LCL filter fan power supply cable to connector FAN3:LCL.

Air baffles

- After the electrical installation has been done, install the air baffles. For instructions, see section [Installing the air baffles (page 138)](#).

Connecting the motor cables and installing the shrouds (option +B051)

See [Connecting the motor cables and installing the shrouds (page 250)](#)

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks (motor cables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Install the grounding terminal to the drive module base.</td>
</tr>
<tr>
<td>2</td>
<td>Run the motor cables to the enclosure. Ground the cable shields 360 degrees at the enclosure entry.</td>
</tr>
<tr>
<td>3</td>
<td>Connect the twisted shields of the motor cables to the grounding terminal.</td>
</tr>
<tr>
<td>4</td>
<td>Screw in and tighten the insulators to the drive module by hand. Install the T3/W2 connection terminal to the insulators. WARNING! Do not use longer screws or bigger tightening torque than given in the installation drawing. They can damage the insulator and cause dangerous voltage to be present at the module frame.</td>
</tr>
<tr>
<td>5</td>
<td>Connect the phase T3/W2 conductors to the T3/W2 terminal.</td>
</tr>
<tr>
<td>6</td>
<td>Install the T2/V2 connection terminal to the insulators. See the warning in step 4.</td>
</tr>
<tr>
<td>7</td>
<td>Connect the phase T2/V2 conductors to the T2/V2 connection terminal.</td>
</tr>
<tr>
<td>8</td>
<td>Install the T1/U2 connection terminal to the insulators. See the warning in step 4.</td>
</tr>
<tr>
<td>9</td>
<td>Connect the phase T1/U2 conductors to the T1/U2 terminal.</td>
</tr>
</tbody>
</table>
Remove the plastic sheeting from the motor cable clear plastic shroud (option +B051) from both sides.

Install the shroud (option +B051) on the motor cable connections.

Install the lower front cover to the drive module.

Drill holes for the power cables to the bottom clear plastic shrouds.

Remove the plastic sheeting from the bottom clear plastic shrouds.

Install the bottom first shroud on the motor cable entry.

Install the second shroud on the motor cable entry.

Connecting the input cables and installing the shrouds (option +B051)

See *Connecting the input power cables and installing the shrouds (page 253)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks (input cables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground the input cable shields (if present) 360 degrees at the enclosure entry.</td>
</tr>
<tr>
<td>2</td>
<td>Connect the twisted shields of the input cables and separate ground cable (if present) to the enclosure grounding busbar.</td>
</tr>
<tr>
<td>3</td>
<td>Step drill carefully sufficiently big holes to the entry clear plastic shroud for the cables to be connected. Align the holes in the vertical direction according to the alignment holes in the shroud. Smooth the hole edges. Remove the plastic sheeting from both sides of the shroud. Attach the cables firmly to the enclosure frame to prevent chafing against the hole edges.</td>
</tr>
<tr>
<td>4</td>
<td>Put the conductors of the input cables through the drilled holes in the clear plastic shroud.</td>
</tr>
<tr>
<td>5</td>
<td>For drive modules without option +H370: Connect the input cable conductors to the drive module L1/U1, L2/V1 and L3/W1 connection busbars, Go to step 12. Tasks with option +H370: Do steps 6 to 11.</td>
</tr>
</tbody>
</table>
| 6 | Screw in and tighten the insulators to the drive module by hand. Install the L1/U1 connection terminal to the insulators.

WARNING!
Do not use longer screws or bigger tightening torque than given in the installation drawing. They can damage the insulator and cause dangerous voltage to be present at the module frame. |
7	Connect the L1/U1 conductors to the L1/U1 connection terminal.
8	Install the L2/V1 connection terminal to the insulators. See the warning in step 5.
9	Connect the L2/V1 conductors to the L2/V1 connection terminal.
10	Install the L3/W1 connection terminal to the insulators. See the warning in step 5.
11	Connect the L3/W1 conductors to the L3/W1 connection terminal.
12	Install the side clear plastic shroud and the upper front cover of the drive module.
13	Install the entry clear plastic shroud (option +B051). and motor cable shroud (option +B051).
14	Install the top clear plastic shroud (option +B051) to the drive module.
Installing the air baffles

See:
- Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure (page 243)
- Air baffles (page 191)

Installing the roof and door (Rittal parts)

This drawing shows a layout tested by ABB.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Door</td>
</tr>
<tr>
<td>2</td>
<td>Install these gratings as close to each other as possible. Remove the filter mats.</td>
</tr>
</tbody>
</table>
Removing the protective covering from the drive module and LCL filter module air outlet

WARNING!
Remove the protective covering from the top of the drive module after the installation. If the covering is not removed, the cooling air cannot flow freely through the module and the drive will run to overtemperature.

WARNING!
Remove the protective covering from the top of the LCL filter module after the installation. If the covering is not removed, the cooling air cannot flow freely through the module and the drive will run to overtemperature.
Installation checklist

Contents of this chapter

This chapter contains a checklist of the mechanical and electrical installation of the drive.

Checklist

Examine the mechanical and electrical installation of the drive before start-up. Go through the checklist together with another person.

WARNING!

Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.

WARNING!

Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.

<table>
<thead>
<tr>
<th>Make sure that …</th>
<th>☑</th>
<th>☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ambient operating conditions meet the drive ambient conditions specification, and enclosure rating (IP code or UL enclosure type).</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td>The supply voltage matches the nominal input voltage of the drive. See the type designation label.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>The insulation resistance of the input power cable, motor cable and motor is measured according to local regulations and the manuals of the drive.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>The drive cabinet is attached to the floor, and if necessary due to vibration etc, also by its top to the wall or roof.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>The drive module is fastened properly to the enclosure.</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Make sure that …

<table>
<thead>
<tr>
<th>Make sure that …</th>
<th>✔</th>
</tr>
</thead>
<tbody>
<tr>
<td>The cooling air flows freely in and out of the drive. Air recirculation inside the cabinet is not possible (air baffle plates are on place, or there is another air guiding solution).</td>
<td></td>
</tr>
<tr>
<td>If the drive is connected to a network other than a symmetrically grounded TN-S system: You have done all the required modifications (for example, you may need to disconnect the EMC filter or ground-to-phase varistor). See the electrical installation instructions.</td>
<td></td>
</tr>
<tr>
<td>The enclosures of the equipment in the cabinet have proper galvanic connection to the cabinet protective earth (ground) busbar; The connection surfaces at the fastening points are bare (unpainted) and the connections are tight, or separate grounding conductors have been installed.</td>
<td></td>
</tr>
<tr>
<td>The main circuit connections inside the drive cabinet correspond to the circuit diagrams.</td>
<td></td>
</tr>
<tr>
<td>The control unit has been connected. See the circuit diagrams.</td>
<td></td>
</tr>
<tr>
<td>Appropriate AC fuses and main disconnecting device are installed.</td>
<td></td>
</tr>
<tr>
<td>There is an adequately sized protective earth (ground) conductor(s) between the drive and the switchboard, the conductor is connected to correct terminal, and the terminal is tightened to the correct torque.</td>
<td></td>
</tr>
<tr>
<td>Proper grounding has also been measured according to the regulations.</td>
<td></td>
</tr>
<tr>
<td>The input power cable is connected to the correct terminals, the phase order is correct, and the terminals are tightened to the correct torque.</td>
<td></td>
</tr>
<tr>
<td>There is an adequately sized protective earth (ground) conductor between the motor and the drive, and the conductor is connected to the correct terminal, and the terminal is tightened to the correct torque.</td>
<td></td>
</tr>
<tr>
<td>Proper grounding has also been measured according to the regulations.</td>
<td></td>
</tr>
<tr>
<td>The motor cable is connected to the correct terminals, the phase order is correct, and the terminals are tightened to the correct torque.</td>
<td></td>
</tr>
<tr>
<td>The motor cable is routed away from other cables.</td>
<td></td>
</tr>
<tr>
<td>No power factor compensation capacitors are connected to the motor cable.</td>
<td></td>
</tr>
<tr>
<td>The control cables are connected to the correct terminals, and the terminals are tightened to the correct torque.</td>
<td></td>
</tr>
<tr>
<td>If a drive bypass connection will be used: The direct-on-line contactor of the motor and the drive output contactor are either mechanically and/or electrically interlocked, that is, they cannot be closed at the same time. A thermal overload device must be used for protection when bypassing the drive. Refer to local codes and regulations.</td>
<td></td>
</tr>
<tr>
<td>There are no tools, foreign objects or dust from drilling inside the drive.</td>
<td></td>
</tr>
<tr>
<td>The area in front of the drive is clean: the drive cooling fan cannot draw any dust or dirt inside.</td>
<td></td>
</tr>
<tr>
<td>Cover(s) of the motor connection box are in place. Cabinet shrouds are in place and doors are closed.</td>
<td></td>
</tr>
<tr>
<td>The motor and the driven equipment are ready for power-up.</td>
<td></td>
</tr>
</tbody>
</table>
Start-up

Contents of this chapter
This chapter describes the start-up procedure of the drive.

Start-up procedure
1. Only qualified electrical professionals are allowed to start-up the drive.
2. Make sure that the installation of the drive module has been checked according to the checklist in chapter Installation checklist, and that the motor and driven equipment are ready for start.
3. Perform the start-up tasks instructed by the cabinet-installer of the drive module.
4. Switch the power on, setup the drive control program, and perform the first start of the drive and motor. See ACH580 drives with HVAC control program quick startup guide (3AXD50000047658 [English]) or ACH580 HVAC control program firmware manual (3AXD50000027537 [English])
5. For drive modules in which the Safe torque off function is in use: Test and validate the operation of the Safe torque off function. See Validation test procedure (page 203).
Fault tracing

Contents of this chapter

This chapter describes the fault tracing possibilities of the drive.

LEDs

- Drive LEDs

There is a green POWER and a red FAULT LED visible when the control panel is removed. If a control panel is attached to the drive, switch to remote control (otherwise a fault will be generated), and then remove the panel to be able to see the LEDs.
The table below describes the drive LED indications.

<table>
<thead>
<tr>
<th>LEDs off</th>
<th>LED lit and steady</th>
<th>LED blinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>No power</td>
<td>Green (POWER)</td>
<td>Blinking:</td>
</tr>
<tr>
<td></td>
<td>Power supply of the unit is on</td>
<td>Drive in an alarm state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking for one second:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drive selected on the control panel when multiple drives are connected to the same panel bus.</td>
</tr>
<tr>
<td>Red (FAULT)</td>
<td>Active fault in the drive. To reset the fault, press RESET from the control panel or switch off the drive power.</td>
<td>Red (FAULT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active fault in the drive. To reset the fault, switch off the drive power.</td>
</tr>
</tbody>
</table>

- **Control panel LEDs**

The assistant control panel has one LED. For the meaning of the LED indications, see *ACx-AP-x assistant control panels user’s manual* (3AUA0000085685 [English]).

Warning and fault messages

See the firmware manual for the descriptions, causes and remedies of the control program warning and fault messages.
Maintenance

Contents of this chapter
This chapter contains maintenance instructions of the drive modules.

Maintenance intervals
The tables below show the maintenance tasks which can be done by the end user. The complete maintenance schedule is available on the Internet (www.abb.com/drivesservices). For more information, consult your local ABB Service representative (www.abb.com/searchchannels).

The maintenance and component replacement intervals are based on the assumption that the equipment is operated within the specified ratings and ambient conditions. ABB recommends annual drive inspections to ensure the highest reliability and optimum performance.

Note: Long term operation near the specified maximum ratings or ambient conditions may require shorter maintenance intervals for certain components. Consult your local ABB Service representative for additional maintenance recommendations.

- Descriptions of symbols

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Inspection (visual inspection and maintenance action if needed)</td>
</tr>
<tr>
<td>P</td>
<td>Performance of on/off-site work (commissioning, tests, measurements or other work)</td>
</tr>
<tr>
<td>R</td>
<td>Replacement</td>
</tr>
</tbody>
</table>

- Recommended annual maintenance actions by the user

ABB recommends these annual inspections to ensure the highest reliability and optimum performance.
Recommended annual actions by the user

<table>
<thead>
<tr>
<th>Connections and environment</th>
<th>Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of supply voltage</td>
<td>P</td>
</tr>
<tr>
<td>Spare parts</td>
<td>I</td>
</tr>
<tr>
<td>DC circuit capacitors reforming, spare modules and spare capacitors</td>
<td>P</td>
</tr>
</tbody>
</table>

Inspections by the user

- Tightness of terminals: I
- Dustiness, corrosion and temperature: I
- Heat sink cleaning: I

Recommended maintenance intervals after start-up

<table>
<thead>
<tr>
<th>Component</th>
<th>Years from start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
</tr>
<tr>
<td>Main cooling fan</td>
<td></td>
</tr>
<tr>
<td>Main cooling fan</td>
<td>R</td>
</tr>
<tr>
<td>Auxiliary cooling fan</td>
<td></td>
</tr>
<tr>
<td>Circuit board compartment cooling fans LONG-LIFE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Aging</td>
<td></td>
</tr>
<tr>
<td>ZCU control unit battery (real-time clock)</td>
<td>R</td>
</tr>
<tr>
<td>Control panel battery (real-time clock)</td>
<td>R</td>
</tr>
</tbody>
</table>

4FPS10000239703

Recommended functional safety actions

<table>
<thead>
<tr>
<th>Functional safety actions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety function test interval</td>
<td>I</td>
</tr>
<tr>
<td>Safety component expiry (Mission time T_M) 20 years</td>
<td>R</td>
</tr>
</tbody>
</table>

Cleaning the interior of the cabinet

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.

WARNING!
Use a vacuum cleaner with antistatic hose and nozzle, and wear a grounding wristband. Using a normal vacuum cleaner creates static discharges which can damage circuit boards.
1. Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.
2. Open the cabinet door.
3. Clean the interior of the cabinet. Use a vacuum cleaner and a soft brush.
4. Clean the air inlets of the fans and air outlets of the modules (top).
5. Clean the air inlet gratings (if any) on the door.
6. Close the door.

Cleaning the interior of the heatsink

The module heatsink fins pick up dust from the cooling air. The drive runs into overtemperature warnings and faults if the heatsink is not clean.

WARNING!

Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

WARNING!

Use a vacuum cleaner with antistatic hose and nozzle, and wear a grounding wristband. Using a normal vacuum cleaner creates static discharges which can damage circuit boards.

1. Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.
2. Make sure that the drive is disconnected from the power line and all other precautions described under *Grounding (page 20)* have been taken into consideration.
3. Undo the attaching screws of the handle plate of the drive module.
4. Remove the handle plate.
5. Vacuum the interior of the heatsink from the opening.
6. Blow clean compressed air (not humid or oily) upwards from the opening and, at the same time, vacuum from the top of the drive module. **Note:** If there is a risk of dust entering adjoining equipment, perform the cleaning in another room.
7. Reinstall the cover plate.
Cleaning the interior of the LCL filter

Clean the interior of the LCL filter in the same way as the heatsink in section Cleaning the interior of the heatsink (page 149).

Fans

The lifespan of the cooling fans of the drive depends on the running time, ambient temperature and dust concentration. See the firmware manual for the actual signal which indicates the running time of the cooling fan. Reset the running time signal after fan replacement.

Replacement fans are available from ABB. Do not use other than ABB specified spare parts.

- Replacing the auxiliary cooling fans of the drive module

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

Fan in the front panel:
1. Stop the drive and do the steps in section Electrical safety precautions (page 18) before you start the work.
2. Undo the mounting screw of the fan cassette.
3. Unplug the power supply cable of the fan.
4. Undo the mounting screws of the fan.
5. Install the new fan in reverse order. Make sure that the arrow in the fan points to the drive module.
6. Reset the counter (if used) in group 5 in the primary control program.
Fan at the bottom of the circuit board compartment:

1. Stop the drive and do the steps in section Electrical safety precautions (page 18) before you start the work.
2. Undo the mounting screw of the fan cassette.
3. Pull the fan cassette out:
4. Unplug the power supply cable of the fan.
5. Undo the mounting screws of the fan.
6. Install the new fan in reverse order. Make sure that the arrow in the fan points up.
7. Reset the counter (if used) in group 5 in the primary control program.

Replacing the drive module main cooling fans

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

1. Stop the drive and do the steps in section Electrical safety precautions (page 18) before you start the work.
2. Disconnect the power supply wires of the fans from the connector. FAN1:PWR1 and FAN2:PWR2.
3. Undo the mounting screws of the fan cassette.
4. Pull the fan cassette out.
5. Undo the mounting screws of the fan(s).
6. Install the new fans in reverse order.
7. Reset the counter (if used) in group 5 in the primary control program.

Replacing the LCL filter module cooling fan

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

1. Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.
2. Disconnect the power supply wire of the fan from connector FAN3:LCL.
3. Undo the attaching screw of the fan cassette.
4. Pull the fan cassette out.
5. Undo the mounting screws of the fan. The finger guard of the fan is attached by the same screws and is removed at the same time. Keep the finger guard for reuse.
6. Install the new fan in reverse order. Make sure that the arrow in the fan points up.
Replacing the standard drive module

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

Handle the drive module carefully:

- Use safety shoes with a metal toe cap to prevent foot injury.
- Lift the drive module only by the lifting lugs.
- Make sure that the module does not topple over when you move it on the floor: To open the support legs, press each leg a little down and turn it aside (1, 2). Whenever possible secure the module also with chains.
- Do not tilt the drive module. It is heavy and its center of gravity is high. The module overturns from a sideways tilt of 5 degrees. Do not leave the module unattended on a sloping floor.
1. Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.

2. Remove the clear plastic shrouds on the power cables and parts in front of the drive module (if present).

3. Disconnect the power cables.

4. Disconnect the external control cables connected to the control unit.

5. Disconnect the cooling fan power supply cable from the LCL filter module. Pull the cable inside the drive module.

6. Remove the screws that attach the drive module to the cabinet at the top and behind the front support legs.

7. Remove the screws that connect the drive module to the LCL filter module from top and at the side.

8. To prevent the drive module from falling, attach its top lifting lugs with chains to the cabinet frame.

9. To open the support legs 90 degrees, press each leg a little down and turn it aside.
10. Adjust the extraction/installation ramp to the correct height and attach it to the cabinet base with the two mounting screws.
11. Pull the drive module carefully out of the cabinet preferably with help from another person.

12. Install the new module in reverse order.

Replacing the LCL filter module

Replace the LCL filter module in the same way as the drive module.
Capacitors

The DC link of the drive contains several electrolytic capacitors. Operating time, load, and surrounding air temperature have an effect on the life of the capacitors. Capacitor life can be extended by decreasing the surrounding air temperature.

Capacitor failure is usually followed by damage to the unit and an input cable fuse failure, or a fault trip. If you think that any capacitors in the drive have failed, contact ABB.

- **Reforming the capacitors**

 The capacitors must be reformed if the drive has not been powered (either in storage or unused) for a year or more. The manufacturing date is on the type designation label. For information on reforming the capacitors, see *Capacitor reforming instructions* (3BFE64059629 [English]) in the ABB Library (https://library.abb.com/en).

Control panel

For detailed information on the control panel, see *ACx-AP-x assistant control panels user’s manual* (3AUA0000085685 [English]).

- **Cleaning the control panel**

 Use a soft damp cloth to clean the control panel. Avoid harsh cleaners which could scratch the display window.

- **Replacing the battery**

 The instructions below describe how to replace the battery that powers the real-time clock of the control panel.

 1. Turn the lid on the back of the control panel counter-clockwise until the lid opens.
 2. Remove the battery gently.
 3. Replace the battery with a new CR2032 battery. The battery holder has grip nails. First slide the battery and then press on the other side. The battery will snap in.
 4. Make sure that the battery polarity shows positive on the upside.
 5. Put the lid back and tighten it by turning it clockwise.
 6. Dispose of the old battery according to local disposal rules or applicable laws.
Note: Contact ABB for ZCU-12 (Supply control unit) battery replacement.

Functional safety components

The mission time of functional safety components is 20 years which equals the time during which failure rates of electronic components remain constant. This applies to the components of the standard Safe torque off circuit as well as any modules, relays and, typically, any other components that are part of functional safety circuits.

The expiry of mission time terminates the certification and SIL/PL classification of the safety function. The following options exist:

- Renewal of the whole drive and all optional functional safety module(s) and components.
- Renewal of the components in the safety function circuit. In practice, this is economical only with larger drives that have replaceable circuit boards and other components such as relays.

Note that some of the components may already have been renewed earlier, restarting their mission time. The remaining mission time of the whole circuit is however determined by its oldest component.

Contact your local ABB service representative for more information.
Ordering information

Contents of this chapter
This chapter gives ordering information on additional components available from ABB for the drive module installation.

Note: This chapter only lists the installation accessories available from ABB. All other parts must be sourced from a third party by the system integrator.

Control panel options
The control panel can be mounted on the cabinet door with the help of a door mounting kit.
For more information on the control panel, see ACx-AP-x assistant control panels user’s manual (3AUA0000085685 [English]).

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Ordering code</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH-AP-W</td>
<td>Control panel with Bluetooth and Hand-Off-Auto operation logic</td>
<td>3AXD50000030360</td>
<td></td>
</tr>
<tr>
<td>ACS-AP-W</td>
<td>Control panel with Bluetooth and Starts/Stop, Local/Remote operation logic</td>
<td>3AXD50000025965</td>
<td></td>
</tr>
</tbody>
</table>
160 Ordering information

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Ordering code</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPMP-01</td>
<td>Door mounting kit for flush mounting. Includes a control panel mounting platform, an IP54 cover and a 3-meter panel connection cable.</td>
<td>3AUA0000108878</td>
<td></td>
</tr>
</tbody>
</table>

Brake choppers and resistors

See section *Resistor braking.*

Output (du/dt) filters

See section *du/dt filters.*

Cabinet ventilation

- **Air inlet kits**

Mounting screws are included.

<table>
<thead>
<tr>
<th>Enclosure width / Degree of protection</th>
<th>Kit code</th>
<th>Ordering code</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 mm / IP20</td>
<td>A-8-X-023</td>
<td>3AUA0000117005</td>
<td></td>
</tr>
</tbody>
</table>

Instruction code: 3AUA0000116887
<table>
<thead>
<tr>
<th>Enclosure width / Degree of protection</th>
<th>Kit code</th>
<th>Ordering code</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 mm / IP42</td>
<td>A-8-X-026</td>
<td>3AUA0000117009</td>
<td>Instruction code: 3AUA0000116875</td>
</tr>
<tr>
<td>800 mm / IP54</td>
<td>A-8-X-029</td>
<td>3AXD5000009186</td>
<td>Instruction code: 3AXD5000010001</td>
</tr>
</tbody>
</table>
Air outlet kits

<table>
<thead>
<tr>
<th>Enclosure width / Degree of protection</th>
<th>Qty</th>
<th>Kit code</th>
<th>Ordering code</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 mm / IP20</td>
<td>2</td>
<td>A-4-X-062</td>
<td>3AUA0000125201</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Instruction code: 3AXD50000001982</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: Fan to be ordered separately</td>
<td></td>
</tr>
</tbody>
</table>

800 mm / IP42	2	A-4-X-060	3AUA0000114967	
			Instruction code: 3AUA0000115290	
			Note: Fan to be ordered separately	

800 mm / IP54 (IEC)	2	A-4-X-064	3AXD5000009187	
			Instruction code: 3AXD50000010284	
			Note: Fan to be ordered separately	
Cooling fans

Two cooling fans must be installed inside the air outlet compartment to ensure sufficient cooling of the cabinet.

<table>
<thead>
<tr>
<th>Enclosure width / Degree of protection</th>
<th>Component Name</th>
<th>Data</th>
<th>Qty</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 mm / IP20, IP42</td>
<td>Fan</td>
<td>R2E225-RA92-17 (230 V)</td>
<td>2</td>
<td>3AXD5000000514</td>
</tr>
<tr>
<td></td>
<td>Capacitor</td>
<td>MSB MKP 3.5/603/E1679</td>
<td>2</td>
<td>3AXD5000000882</td>
</tr>
<tr>
<td></td>
<td>Connector</td>
<td>SPB2,5/7 (2.5 mm², 12AWG)</td>
<td>2</td>
<td>3AXD5000000723</td>
</tr>
<tr>
<td></td>
<td>Connector</td>
<td>SC 2.5-RZ/7 (2.5 mm², 12AWG)</td>
<td>2</td>
<td>3AXD5000000724</td>
</tr>
<tr>
<td>800 mm / IP54</td>
<td>Fan</td>
<td>RB4C-355/170</td>
<td>2</td>
<td>3AXD5000006934</td>
</tr>
<tr>
<td></td>
<td>Capacitor</td>
<td>MSB MKP 6/603/E1679</td>
<td>2</td>
<td>3AXD5000006959</td>
</tr>
<tr>
<td></td>
<td>Connector</td>
<td>SPB2,5/7 (2.5 mm², 12AWG)</td>
<td>2</td>
<td>3AXD5000000723</td>
</tr>
<tr>
<td></td>
<td>Connector</td>
<td>SC 2.5-RZ/7 (2.5 mm², 12AWG)</td>
<td>2</td>
<td>3AXD5000000724</td>
</tr>
</tbody>
</table>

Control panel mounting platforms

<table>
<thead>
<tr>
<th>Kit</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPMP-04 control panel mounting platform</td>
<td>3AXD50000217717</td>
</tr>
<tr>
<td>DPMP-05 control panel mounting platform</td>
<td>3AXD50000240319</td>
</tr>
</tbody>
</table>

Retrofit accessory kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Option code</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common mode filter kit (included as standard)</td>
<td>+E208</td>
<td>3AXD50000026145</td>
</tr>
<tr>
<td>Full size cable connection terminals for input power cables</td>
<td>+H370</td>
<td>3AXD50000019542</td>
</tr>
</tbody>
</table>
Technical data

Contents of this chapter

This chapter contains the technical specifications of the drive, for example, the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings.

Ratings

The nominal rating for the drive modules with 50 Hz and 60 Hz supply are given below.

<table>
<thead>
<tr>
<th>Drive type ACHR150-34...</th>
<th>Frame size</th>
<th>Input rating</th>
<th>Max current</th>
<th>Output ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nominal ratings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>kW</td>
</tr>
<tr>
<td>$U_n = 400 \text{ V}$</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>246A-4</td>
<td>R11</td>
<td>212</td>
<td>350</td>
<td>246</td>
</tr>
<tr>
<td>293A-4</td>
<td>R11</td>
<td>257</td>
<td>418</td>
<td>293</td>
</tr>
<tr>
<td>365A-4</td>
<td>R11</td>
<td>321</td>
<td>498</td>
<td>365</td>
</tr>
<tr>
<td>442A-4</td>
<td>R11</td>
<td>401</td>
<td>621</td>
<td>442</td>
</tr>
<tr>
<td>505A-4</td>
<td>R11</td>
<td>401</td>
<td>631</td>
<td>505</td>
</tr>
<tr>
<td>585A-4</td>
<td>R11</td>
<td>505</td>
<td>751</td>
<td>585</td>
</tr>
</tbody>
</table>
IEC RATINGS

<table>
<thead>
<tr>
<th>Drive type ACH580-34-</th>
<th>Frame size</th>
<th>Input rating</th>
<th>Max. current</th>
<th>Output ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nominal ratings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>650A-4</td>
<td>R11</td>
<td>569</td>
<td>859</td>
<td>650</td>
</tr>
</tbody>
</table>

UL (NEC) RATINGS

<table>
<thead>
<tr>
<th>Drive type ACH580-34-</th>
<th>Frame size</th>
<th>Input rating</th>
<th>Max. current</th>
<th>Output ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nominal ratings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>$U_n = 480$ V</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>240A-4</td>
<td>R11</td>
<td>209</td>
<td>350</td>
<td>240</td>
</tr>
<tr>
<td>302A-4</td>
<td>R11</td>
<td>258</td>
<td>498</td>
<td>302</td>
</tr>
<tr>
<td>361A-4</td>
<td>R11</td>
<td>307</td>
<td>542</td>
<td>361</td>
</tr>
<tr>
<td>414A-4</td>
<td>R11</td>
<td>363</td>
<td>614</td>
<td>414</td>
</tr>
<tr>
<td>477A-4</td>
<td>R11</td>
<td>418</td>
<td>704</td>
<td>477</td>
</tr>
</tbody>
</table>

U_n Nominal voltage of the drive

I_1 Nominal input current (rms) at 40 °C (104 °F)

I_max Maximum output current. Available for 2 seconds at start, otherwise as long as allowed by drive temperature. 140% ... 200% of I_{Ld}, depending on power rating.

I_2 Continuous rms output current. No overload capability at 40 °C (104 °F). This is indicated in the type designation label as output current I_2.

P_n Typical motor power in no-overload use

I_{Ld} Continuous rms output current allowing 10% overload for 1 minute every 10 minutes when parameter 97.02 Minimum switching frequency is set to 2 kHz or less.
Typical motor power in light-duty use

P_{Ld}

Continuous rms output current allowing 50% overload for 1 minute every 10 minutes when parameter 97.02 Minimum switching frequency is set to 2 kHz or less.

Typical motor power in heavy-duty use

P_{Hd}

Note: To achieve the rated motor power given in the table, the rated current of the drive must be higher than or equal to the rated motor current. The power ratings apply to most IEC 34 motors at the nominal voltage of the drive.

ABB recommends to select the drive, motor and gear combination for the required motion profile with the DriveSize dimensioning tool available from ABB.

- **When is derating necessary**

 Derate the continuous output current of the drive if

 - ambient temperature exceeds +40 °C (+104 °F) or
 - drive is installed higher than 1000 m (3280 ft) above sea level
 - the minimum requirements of motor cable length are not met (see Filters (page 241)).

 Note: The final derating factor is a multiplication of all applicable derating factors.

- **Surrounding air temperature derating**

 In the temperature range +40…55 °C (+104…131 °F), the rated output current is derated by 1% for every added 1 °C (1.8 °F) as follows. Calculate the output current by multiplying the current given in the rating table by the derating factor.

 ![Surrounding air temperature derating chart]

 Altitude derating

 At altitudes from 1000 to 4000 m (3300 to 13123 ft) above sea level, the derating is 1% for every 100 m (328 ft). If ambient temperature is below +40 °C (+104 °F), the derating can be reduced by 1.5% for every 1 °C reduction in temperature. For a more accurate derating, use the DriveSize PC tool. A few altitude derating curves are shown below.
For a more accurate derating, use the DriveSize PC tool.
Fuses (IEC)

aR fuses by Cooper Bussmann for protection against short-circuit in the input power cable of drive are listed below.

<table>
<thead>
<tr>
<th>Drive type</th>
<th>Input current (A)</th>
<th>Fuse</th>
<th>Min. short circuit current (A)</th>
<th>A</th>
<th>A²s</th>
<th>V</th>
<th>Type DIN 43653</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH580-34-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246A-4</td>
<td>212</td>
<td>1500</td>
<td>400</td>
<td>74000</td>
<td>690</td>
<td>170M5408</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>293A-4</td>
<td>257</td>
<td>2200</td>
<td>500</td>
<td>145000</td>
<td>690</td>
<td>170M5410</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>365A-4</td>
<td>321</td>
<td>2600</td>
<td>630</td>
<td>210000</td>
<td>690</td>
<td>170M6410</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>442A-4</td>
<td>401</td>
<td>3100</td>
<td>700</td>
<td>300000</td>
<td>690</td>
<td>170M6411</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>505A-4</td>
<td>401</td>
<td>4000</td>
<td>800</td>
<td>465000</td>
<td>690</td>
<td>170M6412</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>585A-4</td>
<td>505</td>
<td>5400</td>
<td>1000</td>
<td>945000</td>
<td>690</td>
<td>170M6414</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>650A-4</td>
<td>569</td>
<td>5400</td>
<td>1000</td>
<td>945000</td>
<td>690</td>
<td>170M6414</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 480 V, IEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246A-4</td>
<td>209</td>
<td>1100</td>
<td>315</td>
<td>42000</td>
<td>690</td>
<td>170M4410</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>293A-4</td>
<td>233</td>
<td>1500</td>
<td>400</td>
<td>74000</td>
<td>690</td>
<td>170M5408</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>365A-4</td>
<td>307</td>
<td>2200</td>
<td>500</td>
<td>145000</td>
<td>690</td>
<td>170M5410</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>442A-4</td>
<td>363</td>
<td>2600</td>
<td>630</td>
<td>210000</td>
<td>690</td>
<td>170M6410</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>505A-4</td>
<td>363</td>
<td>3100</td>
<td>700</td>
<td>300000</td>
<td>690</td>
<td>170M6411</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>585A-4</td>
<td>389</td>
<td>3100</td>
<td>700</td>
<td>300000</td>
<td>690</td>
<td>170M6411</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>650A-4</td>
<td>441</td>
<td>4000</td>
<td>800</td>
<td>465000</td>
<td>690</td>
<td>170M6412</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Note:

- See also sections:
 - Protecting the drive and the input power cable in short-circuits (page 89)
 - Protecting the drive against thermal overload (page 89)
 - Protecting the input power cable against thermal overload (page 90).

- In multicable installations, install only one fuse per phase (not one fuse per conductor).
- Fuses with higher current rating than the recommended ones must not be used. Fuses with lower current rating can be used.
- Fuses from other manufacturers can be used if they agree with the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table.
Fuses (UL)

UL 248-13 Recognized fuses for branch circuit protection per NEC are listed below. Obey local regulations.

<table>
<thead>
<tr>
<th>Drive type</th>
<th>Input current (A)</th>
<th>Min. short circuit current (A)</th>
<th>A</th>
<th>V</th>
<th>Type Flush End</th>
<th>Type DIN 43653</th>
<th>Type US Style</th>
<th>Type French Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH580-34-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240A-4</td>
<td>209</td>
<td>1100</td>
<td>400</td>
<td>690</td>
<td>170M5408</td>
<td>170M5008</td>
<td>170M5608</td>
<td>170M5308</td>
</tr>
<tr>
<td>302A-4</td>
<td>258</td>
<td>1500</td>
<td>500</td>
<td>690</td>
<td>170M5410</td>
<td>170M5010</td>
<td>170M5610</td>
<td>170M5310</td>
</tr>
<tr>
<td>361A-4</td>
<td>307</td>
<td>2200</td>
<td>630</td>
<td>690</td>
<td>170M6410</td>
<td>170M6010</td>
<td>170M6610</td>
<td>170M6310</td>
</tr>
<tr>
<td>414A-4</td>
<td>363</td>
<td>2600</td>
<td>700</td>
<td>690</td>
<td>170M6411</td>
<td>170M6011</td>
<td>170M6611</td>
<td>170M6311</td>
</tr>
<tr>
<td>477A-4</td>
<td>414</td>
<td>3100</td>
<td>800</td>
<td>690</td>
<td>170M6412</td>
<td>170M6012</td>
<td>170M6612</td>
<td>170M6312</td>
</tr>
</tbody>
</table>

Note:

- See also sections:
 - *Protecting the drive and the input power cable in short-circuits (page 89)*
 - *Protecting the drive against thermal overload (page 89)*
 - *Protecting the input power cable against thermal overload (page 90).*

- In multicable installations, install only one fuse per phase (not one fuse per conductor).
- Fuses with higher current rating than the recommended ones must not be used. Fuses with lower current rating can be used.
- Alternative fuses can be used if they meet certain characteristics. For acceptable fuses, see the technical note *(3AXD50000645015)*.
Dimensions, weights and free space requirements

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Height</th>
<th>Width</th>
<th>Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>in</td>
<td>in</td>
<td>in</td>
<td>lb</td>
</tr>
<tr>
<td>R11</td>
<td>1722</td>
<td>637</td>
<td>505</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>67.8</td>
<td>25.1</td>
<td>19.9</td>
<td>805</td>
</tr>
</tbody>
</table>

Weight of the drive module: 185 kg (409 lb)
Weight of the LCL filter module: 180 kg (396 lb)

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Height</th>
<th>Width</th>
<th>Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>in</td>
<td>in</td>
<td>in</td>
<td>lb</td>
</tr>
<tr>
<td>R11</td>
<td>1741</td>
<td>685</td>
<td>505</td>
<td>367(^1)</td>
</tr>
<tr>
<td></td>
<td>68.5</td>
<td>27.0</td>
<td>19.9</td>
<td>808(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>814(^2)</td>
</tr>
</tbody>
</table>

\(^1\)+B051
\(^2\)+B051 and +H370

For requirements of free space around the drive module, see *Required free space (page 60).*
Losses, cooling data and noise

The air flow direction is from bottom to top.

This table shows typical heat loss values, required air flow and noise at the nominal ratings of the drive. The heat loss values can vary depending on voltage, cable conditions, motor efficiency and power factor. To obtain more accurate values for given conditions, use ABB DriveSize tool (http://new.abb.com/drives/software-tools/drivesize).

<table>
<thead>
<tr>
<th>Drive type</th>
<th>Frame size</th>
<th>Air flow</th>
<th>Heat dissipation</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH580-34-</td>
<td></td>
<td>m³/h</td>
<td>ft³/min</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Un = 400 V, IEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>5280</td>
</tr>
<tr>
<td>293A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>6400</td>
</tr>
<tr>
<td>365A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>8000</td>
</tr>
<tr>
<td>442A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>10000</td>
</tr>
<tr>
<td>505A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>10000</td>
</tr>
<tr>
<td>585A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>12600</td>
</tr>
<tr>
<td>650A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>14200</td>
</tr>
<tr>
<td>Un = 480 V, IEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>5220</td>
</tr>
<tr>
<td>293A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>5220</td>
</tr>
<tr>
<td>365A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>7830</td>
</tr>
<tr>
<td>442A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>9135</td>
</tr>
<tr>
<td>505A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>9135</td>
</tr>
<tr>
<td>585A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>9135</td>
</tr>
<tr>
<td>650A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>10440</td>
</tr>
<tr>
<td>Un = 480 V, UL (NEC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>5280</td>
</tr>
<tr>
<td>302A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>6525</td>
</tr>
<tr>
<td>361A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>7830</td>
</tr>
<tr>
<td>414A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>9135</td>
</tr>
<tr>
<td>477A-4</td>
<td>R11</td>
<td>2100</td>
<td>1236</td>
<td>10440</td>
</tr>
</tbody>
</table>

These losses are not calculated according to IEC 61800-9-2.

The cooling air temperature rises 30 degrees Celsius when it goes through the drive module if the temperature of the input cooling air is 40 degrees Celsius and the drive is operating with nominal load.

Terminal and entry data for the power cables

The maximum accepted cable size is 4 × (3 × 240) mm² or 4 × (3 × 500 MCM). Screw size for connecting busbars to the drive module input and output busbars: M12, tightening torque 50…75 N·m (37…55 lbf·ft).
Power cables

The table below gives typical copper and aluminum cable types with concentric copper shield for the drives with nominal current. The value separated by the plus sign means the diameter of the PE conductor. See also section Terminal and entry data for the power cables (page 172).

<table>
<thead>
<tr>
<th>Drive type</th>
<th>IEC 1)</th>
<th>UL (NEC) 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu cable type</td>
<td>Al cable type</td>
</tr>
<tr>
<td></td>
<td>mm²</td>
<td>mm²</td>
</tr>
<tr>
<td>ACH580-34-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 400 V, 480 V (IEC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246A-4</td>
<td>2 × (3 × 70 + 35)</td>
<td>2 × (3 × 95)</td>
</tr>
<tr>
<td>293A-4</td>
<td>2 × (3 × 95 + 50)</td>
<td>2 × (3 × 120)</td>
</tr>
<tr>
<td>365A-4</td>
<td>2 × (3 × 120 + 70)</td>
<td>2 × (3 × 185)</td>
</tr>
<tr>
<td>442A-4</td>
<td>2 × (3 × 150 + 70)</td>
<td>2 × (3 × 240)</td>
</tr>
<tr>
<td>505A-4</td>
<td>3 × (3 × 95 + 50)</td>
<td>3 × (3 × 150)</td>
</tr>
<tr>
<td>585A-4</td>
<td>3 × (3 × 120 + 70)</td>
<td>3 × (3 × 185)</td>
</tr>
<tr>
<td>650A-4</td>
<td>3 × (3 × 150 + 70)</td>
<td>3 × (3 × 240)</td>
</tr>
<tr>
<td>Un = 480 V, UL (NEC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240A-4</td>
<td>2 × (3 × 70 + 35)</td>
<td>2 × (3 × 95)</td>
</tr>
<tr>
<td>302A-4</td>
<td>2 × (3 × 95 + 50)</td>
<td>2 × (3 × 150)</td>
</tr>
<tr>
<td>361A-4</td>
<td>2 × (3 × 120 + 70)</td>
<td>2 × (3 × 185)</td>
</tr>
<tr>
<td>414A-4</td>
<td>2 × (3 × 150 + 70)</td>
<td>2 × (3 × 240)</td>
</tr>
<tr>
<td>477A-4</td>
<td>3 × (3 × 95 + 50)</td>
<td>3 × (3 × 150)</td>
</tr>
</tbody>
</table>

1) The cable sizing is based on max. 9 cables laid on a cable ladder side by side, three ladder type trays one on top of the other, ambient temperature 30 °C (86 °F) PVC insulation, surface temperature 70 °C (158 °F) (EN 60204-1 and IEC 60364-5-52). For other conditions, dimension the cables according to local safety regulations, appropriate input voltage and the load current of the drive.

2) The cable sizing is based on NEC Table 310-16 for copper wires, 75 °C (167 °F) wire insulation at 40 °C (104 °F) ambient temperature. Not more than three current-carrying conductors in raceway or cable or earth (directly buried). For other conditions, dimension the cables according to local safety regulations, appropriate input voltage and the load current of the drive.

Temperature: For IEC, select a cable rated for at least 70 °C maximum permissible temperature of conductor in continuous use. For North America, power cables must be rated for 75 °C (167 °F) or higher.

Voltage: 600 V AC cable is accepted for up to 500 V AC.

Terminal data for the control cables

See section Technical data (page 118).
Electrical power network specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (U_1)</td>
<td>ACH580-34-xxxx-4 drive modules; 380…480 V AC 3-phase +10%…-15%. This is indicated in the type designation label as typical input voltage levels 3~400/480 V AC.</td>
</tr>
<tr>
<td>Network type</td>
<td>TN (grounded) and IT (ungrounded) systems</td>
</tr>
<tr>
<td>Short-circuit withstand strength (IEC 61439-1)</td>
<td>Maximum allowable prospective short-circuit current is 65 kA when protected by the fuses given in the fuse table. For the maximum allowable prospective short-circuit current with circuit breakers, see section Protecting the drive and the input power cable in short-circuits (page 89).</td>
</tr>
<tr>
<td>Short-circuit current protection (UL 61800-5-1, CSA C22.2 No. 274-17)</td>
<td>The drive is suitable for use on a circuit capable of delivering not more than 100 kA rms symmetrical amperes at 600 V maximum when protected by the fuses given in the fuse table.</td>
</tr>
<tr>
<td>Frequency (f_1)</td>
<td>50/60 Hz. Variation ±5% of nominal frequency.</td>
</tr>
<tr>
<td>Imbalance</td>
<td>Max. ± 3% of nominal phase to phase input voltage</td>
</tr>
<tr>
<td>Fundamental power factor ($\cos \phi_1$)</td>
<td>1.0 (at nominal load)</td>
</tr>
</tbody>
</table>
Harmonic distortion

Harmonics are below the limits defined in IEEE 519-2014, and G5/4. The drive complies with IEC 61000-3-2, IEC 61000-3-4 and IEC 61000-3-12. The table below shows typical values of the drive for short-circuit ratio \(I_{sc}/I_1 \) of 20 to 100. The values will be met if the supply network voltage is not distorted by other loads and when the drive operates at nominal load.

<table>
<thead>
<tr>
<th>Nominal bus voltage (V) at PCC</th>
<th>THDi (%)</th>
<th>THDv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V \leq 690 \text{ V})</td>
<td>3*</td>
<td>< 3**</td>
</tr>
</tbody>
</table>

PCC
Point on a public power supply system, electrically nearest to a particular load, at which other loads are, or could be, connected. The PCC is a point located upstream of the considered installation.

THDi
Indicates the total harmonic current distortion of the waveform. This value is defined as the ratio (in %) of the harmonic current to the fundamental (non-harmonic) current measured at a load point at the particular moment when the measurement is taken:

\[
\text{THDi} = \sqrt[2]{\sum_{n} I_n^2} / I_1 \times 100\%
\]

THDv
Indicates the total magnitude of the voltage distortion. This value is defined as the ratio (in %) of the harmonic voltage to the fundamental (non-harmonic) voltage:

\[
\text{THDv} = \sqrt[2]{\sum_{n} U_n^2} / U_1 \times 100\%
\]

- \(I_{sc}/I_1 \): Short-circuit ratio
- \(I_{sc} \): Maximum short-circuit current at PCC
- \(I_1 \): Continuous rms input current of the drive
- \(I_n \): Amplitude of the current harmonic \(n \)
- \(U_1 \): Supply voltage
- \(U_n \): Amplitude of the voltage harmonic \(n \)

* The short-circuit ratio can influence the THDi value
** Other loads can influence the THDv value

Motor connection data

<table>
<thead>
<tr>
<th>Motor types</th>
<th>Asynchronous AC induction motors, permanent magnet motors and ABB synchronous reluctance motors (SynRM motors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (U_2)</td>
<td>0 to (U_1) nominal, can be boosted higher but requires derating. Contact ABB for more information.</td>
</tr>
<tr>
<td>Frequency (f_2)</td>
<td>0…500 Hz</td>
</tr>
</tbody>
</table>

Note: Operation above 150 Hz can require type-specific derating. For more information, contact your local ABB representative.

- For drives with du/dt filter: 0…120 Hz
- For drives with sine filter: 0…120 Hz

<table>
<thead>
<tr>
<th>Frequency resolution</th>
<th>0.01 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>See section Ratings</td>
</tr>
</tbody>
</table>
Technical Data

<table>
<thead>
<tr>
<th>Switching frequency</th>
<th>2 kHz, 4 kHz, 8 kHz (depends on the parameter settings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum recommended motor cable length</td>
<td>Scalar control: 300 m (984 ft)</td>
</tr>
</tbody>
</table>

Note: For restrictions due to EMC compatibility, see section *EMC compliance (IEC/EN 61800-3:2004) (page 179).* Longer motor cables cause a motor voltage decrease which limits the available motor power. The decrease depends on the motor cable length and characteristics. Contact ABB for more information. Note that a sine filter (optional) at the drive output also causes a voltage decrease.

Control panel type

ACH-AP-H assistant control panel

Efficiency

Approximately 96.5% at nominal power level.

The efficiency is not calculated according to IEC 61800-9-2.

Energy efficiency data (ecodesign)

Energy efficiency data is not provided for the drive. The low-harmonic drives are exempt from the EU ecodesign requirements (Regulation EU/2019/1781, §2.3.d) and the UK ecodesign requirements (Regulation SI 2021 No. 745).

Protection classes for module

<table>
<thead>
<tr>
<th>Degrees of protection (IEC/EN 60529)</th>
<th>IP00 (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP20 (option +B051)</td>
</tr>
<tr>
<td>Enclosure types (UL 50/50E)</td>
<td>UL Type Open</td>
</tr>
<tr>
<td>Overvoltage category (IEC/EN 60664-1)</td>
<td>III</td>
</tr>
<tr>
<td>Protective class (IEC/EN 61800-5-1)</td>
<td>I</td>
</tr>
</tbody>
</table>

Ambient conditions

Environmental limits for the drive are given below. The drive is to be used in a heated, indoor, controlled environment.

Ambient conditions

<table>
<thead>
<tr>
<th>Installation site altitude</th>
<th>Operation installed for stationary use</th>
<th>Storage in the protective package</th>
<th>Transportation in the protective package</th>
</tr>
</thead>
<tbody>
<tr>
<td>For TN and TT neutral-grounded network systems and IT ungrounded network systems; 0 to 4000 m (13123 ft) above sea level Above 1000 m (3281 ft): see When is derating necessary (page 167)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Technical data

<table>
<thead>
<tr>
<th>Surrounding air temperature</th>
<th>-15…+55 °C (5…131 °F), No frost allowed. See When is derating necessary (page 167)</th>
<th>-40…+70 °C (-40…+158 °F)</th>
<th>-40…+70 °C (-40…+158 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative humidity</td>
<td>5…95%</td>
<td>Max. 95%</td>
<td>Max. 95%</td>
</tr>
<tr>
<td></td>
<td>No condensation allowed. Maximum allowed relative humidity is 60% in the presence of corrosive gases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination</td>
<td>IEC/EN 60721-3-3:2002</td>
<td>IEC 60721-3-1:1997</td>
<td>IEC 60721-3-2:1997</td>
</tr>
<tr>
<td>Chemical gases</td>
<td>Class 3C2</td>
<td>Class 1C2</td>
<td>Class 2C2</td>
</tr>
<tr>
<td>Solid particles</td>
<td>Class 3S2. No conductive dust allowed.</td>
<td>Class 1S3. (packing must support this, otherwise 1S2)</td>
<td>Class 2S2</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>70…106 kPa 0.7 … 1.05 atmospheres</td>
<td>70…106 kPa 0.7 … 1.05 atmospheres</td>
<td>60…106 kPa 0.6 … 1.05 atmospheres</td>
</tr>
<tr>
<td>Vibration</td>
<td>Max. 0.1 mm (0.004 in) (10…57 Hz), max. 10 m/s² (33 ft/s²) (57…150 Hz) sinusoidal</td>
<td>Max. 1 mm (0.04 in) (5 … 13.2 Hz), max. 7 m/s² (23 ft/s²) (13.2 … 100 Hz) sinusoidal</td>
<td>Max. 3.5 mm (0.14 in) (2…9 Hz), max. 15 m/s² (49 ft/s²) (9…200 Hz) sinusoidal</td>
</tr>
<tr>
<td>Shock</td>
<td>Not allowed</td>
<td>With packing max. 100 m/s² (330 ft/s²), 11 ms</td>
<td>With packing max. 100 m/s² (330 ft/s²), 11 ms</td>
</tr>
<tr>
<td>Free fall</td>
<td>Not allowed</td>
<td>100 mm (4 in) for weight over 100 kg (220 lb)</td>
<td>100 mm (4 in) for weight over 100 kg (220 lb)</td>
</tr>
</tbody>
</table>

Materials

Drive enclosure
- PC/ABS 2.5 mm (0.098 in), color NCS 1502-Y (RAL 9002 / PMS 420 C)
- Hot-dip zinc coated steel sheet 1.5 … 2.5 mm (0.059 … 0.098 in), thickness of coating 100 micrometers, color NCS 1502-Y

Air baffles for Rittal cabinet
See section *Material of the air baffles.*

Package
- Plywood and cardboard, bands PP.
Disposal

The main parts of the drive can be recycled to preserve natural resources and energy. Product parts and materials should be dismantled and separated. Generally all metals, such as steel, aluminum, copper and its alloys, and precious metals can be recycled as material. Plastics, rubber, cardboard and other packaging material can be used in energy recovery. Printed circuit boards and large electrolytic capacitors need selective treatment according to IEC 62635 guidelines. To aid recycling, plastic parts are marked with an appropriate identification code.

Contact your local ABB distributor for further information on environmental aspects and recycling instructions for professional recyclers. End of life treatment must follow international and local regulations.

Applicable standards

The drive complies with the following standards.

<table>
<thead>
<tr>
<th>European electrical safety requirements product standards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61800-5-1:2007</td>
<td>Adjustable speed electrical power drive systems. Part 5-1: Safety requirements – electrical, thermal and energy</td>
</tr>
<tr>
<td>EN 60529:1991 + A2:2013</td>
<td>Degrees of protection provided by enclosures (IP code)</td>
</tr>
<tr>
<td>CSA C22.2 No. 0-10</td>
<td>General Requirements - Canadian Electrical Code, Part II</td>
</tr>
<tr>
<td>CSA C22.2 No. 274-7</td>
<td>Adjustable Speed Drives</td>
</tr>
</tbody>
</table>

Markings

These markings are attached to the drive:

- **CE mark**
 - Product complies with the applicable European Union legislation. For fulfilling the EMC requirements, see the additional information concerning the drive EMC compliance (IEC/EN 61800-3).

- **TÜV Safety Approved mark (functional safety)**
 - Product contains Safe Torque Off and possibly other (optional) safety functions which are certified by TÜV according to the relevant functional safety standards. Applicable to drives and inverters; not applicable to supply, brake or DC/DC converter units or modules.

- **UL Listed mark for USA and Canada**
 - Product has been tested and evaluated against the relevant North American standards by the Underwriters Laboratories. Valid with rated voltages up to 600 V.
EAC (Eurasian Conformity) mark
Product complies with the technical regulations of the Eurasian Customs Union. EAC mark is required in Russia, Belarus and Kazakhstan.

UKCA (UK Conformity Assessed) mark
Product complies with the applicable United Kingdom’s legislation (Statutory Instruments). Marking is required for products being placed on the market in Great Britain (England, Wales and Scotland).

Electronic Information Products (EIP) green mark
The product complies with the People’s Republic of China Electronic Industry Standard (SJ/T 11364-2014). The product does not contain toxic and hazardous substances or elements above the maximum concentration values, and it is an environmentally-friendly product which can be recycled.

RCM mark
Product complies with Australian and New Zealand requirements specific to EMC, telecommunication and electrical safety. For fulfilling the EMC requirements, see the additional information concerning the drive EMC compliance (IEC/EN 61800-3).

KC mark
Product complies with Korea’s product safety requirements for electrical and electronic equipment and components that utilize power from 50…1000 V AC.

BTL (BACnet Testing Laboratories) mark
Product has BACnet conformance certificate.

WEEE mark
At the end of life the product should enter the recycling system at an appropriate collection point and not placed in the normal waste stream.

EMC compliance (IEC/EN 61800-3:2004)

Definitions
EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.

First environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes.

Second environment includes establishments connected to a network not supplying domestic premises.

Drive of category C1: drive of rated voltage less than 1000 V and intended for use in the first environment.

Drive of category C2: drive of rated voltage less than 1000 V and intended to be installed and started up only by a professional when used in the first environment.
Note: A professional is a person or organization having necessary skills in installing and/or starting up power drive systems, including their EMC aspects.

Drive of category C3: drive of rated voltage less than 1000 V and intended for use in the second environment and not intended for use in the first environment.

Drive of category C4: drive of rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

- **Category C3**

 The drive complies with the standard with the following provisions:

 1. The drive is equipped with internal EMC filter (+E210).
 2. The motor and control cables are selected as specified in the hardware manual.
 3. The drive is installed according to the instructions given in the hardware manual.
 4. Maximum motor cable length is 100 meters.

 WARNING!

 A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

- **Category C4**

 If the provisions under Category C3 cannot be met, the requirements of the standard can be met as follows:
1. It is ensured that no excessive emission is propagated to neighboring low-voltage networks. In some cases, the inherent suppression in transformers and cables is sufficient. If in doubt, the supply transformer with static screening between the primary and secondary windings can be used.

2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available in Technical guide No. 3 EMC compliant installation and configuration for a power drive system (3AFE61348280 (English)).

3. The motor and control cables are selected as specified in the hardware manual.

4. The drive is installed according to the instructions given in the hardware manual.

WARNING!
A drive of category C4 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

UL and CSA checklist

WARNING!
Operation of this drive requires detailed installation and operation instructions provided in the hardware and software manuals. The manuals are provided in electronic format in the drive package or on the Internet. Keep the manuals with the drive at all times. Hard copies of the manuals can be ordered through the manufacturer.

- Make sure that the drive type designation label includes the applicable marking.
- **DANGER - Risk of electric shock.** After disconnecting the input power, always wait for 5 minutes to let the intermediate circuit capacitors discharge before you start working on the drive, motor or motor cable.
• The drive is to be used in a heated, indoor controlled environment. The drive must be installed in clean air according to the enclosure classification. Cooling air must be clean, free from corrosive materials and electrically conductive dust.

• The maximum surrounding air temperature is 40 °C at rated output current. The output current is derated for 40 … 55 °C.

• The drive is suitable for use in a circuit capable of delivering not more than 100 kA rms symmetrical amperes, 600 V maximum when protected by the UL fuses given elsewhere in this chapter.

• The cables located within the motor circuit must be rated for at least 75 °C in UL-compliant installations.

• The input cable must be protected with fuses or circuit breakers. These protective devices provide branch circuit protection in accordance with the national regulations (National Electrical Code (NEC) or Canadian Electrical Code). Obey also any other applicable local or provincial codes.

WARNING!
The opening of the branch-circuit protective device may be an indication that a fault current has been interrupted. To reduce the risk of fire or electric shock, current-carrying parts and other components of the device should be examined and replaced if damaged.

• The drive provides motor overload protection. For adjustments, see the firmware manual.

• The drive overvoltage category according to IEC 60664-1 is III

Design lifetime expectancy
The design lifetime expectancy of the drive and its overall components exceeds ten (10) years in normal operating environments. In some cases, the drive can last 20 years or more. To achieve a long lifetime of the product the manufacturer’s instructions for sizing the drive, installation, operational conditions and preventive maintenance schedule shall be followed.

EU Declaration of Conformity (Machinery Directive)
See The Safe torque off function (page 195)

Disclaimer

 Generic disclaimer
The manufacturer shall have no obligation with respect to any product which (i) has been improperly repaired or altered; (ii) has been subjected to misuse, negligence or accident; (iii) has been used in a manner contrary to the manufacturer’s instructions; or (iv) has failed as a result of ordinary wear and tear.

 Cybersecurity disclaimer
This product can be connected to and to communicate information and data via a network interface. The HTTP protocol, which is used between the commissioning tool (Drive Composer) and the product, is an unsecured protocol. For independent and continuous operation of product such connection via network to commissioning tool is not necessary. However it is Customer's sole responsibility to provide and continuously ensure a secure
connection between the product and Customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, prevention of physical access, application of authentication measures, encryption of data, installation of anti-virus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Notwithstanding any other provision to the contrary and regardless whether the contract is terminated or not, ABB and its affiliates are under no circumstances liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.
Dimension drawings

Contents of this chapter
This chapter contains dimension drawings of the drive modules with optional parts for Rittal VX25 cabinet assembly.
Standard configuration (+E208 and +E210 included)
Drive module with option +B051
Drive module with options +B051, +H370

188 Dimension drawings
LCL filter module
Bottom plate

This drawing shows the dimensions of the bottom plate for 800 mm Rittal VX25 enclosure. It is not an ABB product.
Air baffles

This drawing shows the dimensions of the air baffles around the drive module with option +B051 for 800 mm Rittal VX25 enclosure.

These are not ABB products.

- Material of the air baffles

0.75 mm polycarbonate (PC) film LEXAN® FR60 (GE) with UL94 V–0 listing, UV stability. (LEXAN® FR700 or Valox FR1 only with special permission). Unmarked bend radii 0.6 mm.
Example circuit diagrams

Contents of this chapter
This chapter shows an example circuit diagram for a cabinet-installed drive module.

Example circuit diagram
This diagram is an example for the main wiring of a drive cabinet. Note that the diagram includes components which are not included in a basic delivery (* plus code options, ** other options, *** to be acquired by the customer).
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabinet</td>
</tr>
<tr>
<td>2</td>
<td>*ACx-AP-x control panel</td>
</tr>
<tr>
<td>3</td>
<td>CCU control unit</td>
</tr>
<tr>
<td>4</td>
<td>***Main contactor</td>
</tr>
<tr>
<td>5</td>
<td>**Motor temperature supervision</td>
</tr>
<tr>
<td>6</td>
<td>****Switch fuse disconnector</td>
</tr>
<tr>
<td>7</td>
<td>Common mode filter</td>
</tr>
<tr>
<td>8</td>
<td>**du/dt filter or sine filter</td>
</tr>
<tr>
<td>9</td>
<td>Drive module</td>
</tr>
<tr>
<td>10</td>
<td>Input and output signals</td>
</tr>
<tr>
<td>11</td>
<td>Alarm</td>
</tr>
<tr>
<td>12</td>
<td>Supply</td>
</tr>
<tr>
<td>13</td>
<td>360 degree grounding recommended</td>
</tr>
<tr>
<td>14</td>
<td>**Brake resistor</td>
</tr>
</tbody>
</table>
The Safe torque off function

Contents of this chapter
This chapter describes the Safe torque off (STO) function of the drive and gives instructions for its use.

Description
The Safe torque off function can be used, for example, as the final actuator device of safety circuits that stop the drive in case of danger (such as an emergency stop circuit). Another typical application is a prevention of unexpected start-up function that enables short-time maintenance operations like cleaning or work on non-electrical parts of the machinery without switching off the power supply to the drive.

When activated, the Safe torque off function disables the control voltage for the power semiconductors of the drive output stage (A, see the diagrams below), thus preventing the drive from generating the torque required to rotate the motor. If the motor is running when Safe torque off is activated, it coasts to a stop.

The Safe torque off function has a redundant architecture, that is, both channels must be used in the safety function implementation. The safety data given in this manual is calculated for redundant use, and does not apply if both channels are not used.

The Safe torque off function complies with these standards:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60204-1:2016</td>
<td>Safety of machinery – Electrical equipment of machines – Part 1: General requirements</td>
</tr>
<tr>
<td>EN 60204-1:2018</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-6-7:2014</td>
<td>Electromagnetic compatibility (EMC) – Part 6-7: Generic standards – Immunity requirements for equipment intended to perform functions in a safety-related system (functional safety) in industrial locations</td>
</tr>
<tr>
<td>Standard</td>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>IEC 61326-3-1:2017</td>
<td>Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) – General industrial applications</td>
</tr>
<tr>
<td>IEC 61511-1:2017</td>
<td>Functional safety – Safety instrumented systems for the process industry sector</td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design</td>
</tr>
</tbody>
</table>

The function also corresponds to Prevention of unexpected start-up as specified by EN ISO 14118:2018 (ISO 14118:2017), and Uncontrolled stop (stop category 0) as specified in EN/IEC 60204-1.

- **Compliance with the European Machinery Directive and the UK Supply of Machinery (Safety) Regulations**

See the technical data.

The Declarations of conformity are shown at the end of this chapter.
Wiring

For the electrical specifications of the STO connection, see the technical data of the control unit.

- **Connection principle**

Single ACH580-34 drive, internal power supply

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drive</td>
</tr>
<tr>
<td>2</td>
<td>Control unit</td>
</tr>
<tr>
<td>3</td>
<td>Control logic</td>
</tr>
<tr>
<td>4</td>
<td>To motor</td>
</tr>
<tr>
<td>K</td>
<td>Activation switch</td>
</tr>
</tbody>
</table>

Single ACH580-34 drive, external power supply
198 The Safe torque off function

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drive</td>
</tr>
<tr>
<td>2</td>
<td>Control unit</td>
</tr>
<tr>
<td>3</td>
<td>Control logic</td>
</tr>
<tr>
<td>4</td>
<td>To motor</td>
</tr>
<tr>
<td>K</td>
<td>Activation switch</td>
</tr>
</tbody>
</table>

Wiring examples

Single ACH580-34 drive, internal power supply

Single ACH580-34 drive, external power supply

1 Drive
2 Safety PLC
K Safety relay
Multiple ACH580-34 drives, internal power supply

1 Drive
2 Control unit
K Activation switch
Activation switch

In the wiring diagrams, the activation switch has the designation [K]. This represents a component such as a manually operated switch, an emergency stop push button switch, or the contacts of a safety relay or safety PLC.
In case a manually operated activation switch is used, the switch must be of a type that can be locked out to the open position.

- The contacts of the switch or relay must open/close within 200 ms of each other.
- A CPTC-02 thermistor protection module can also be used. For more information, see the module documentation.

Cable types and lengths

- Double-shielded twisted-pair cable is recommended.
- Maximum cable lengths:
 - 300 m (1000 ft) between activation switch [K] and drive control unit
 - 60 m (200 ft) between multiple drives
 - 60 m (200 ft) between external power supply and first control unit

Note: A short-circuit in the wiring between the switch and an STO terminal causes a dangerous fault. Therefore, it is recommended to use a safety relay (including wiring diagnostics) or a wiring method (shield grounding, channel separation) which reduces or eliminates the risk caused by the short-circuit.

Note: The voltage at the STO input terminals of the drive must be at least 13 V DC to be interpreted as “1”.

The pulse tolerance of the input channels is 1 ms.

Grounding of protective shields

- Ground the shield in the cabling between the activation switch and the control unit at the control unit only.
- Ground the shield in the cabling between two control units at one control unit only.
Operation principle

1. The Safe torque off activates (the activation switch is opened, or safety relay contacts open).

2. The STO inputs of the drive control unit de-energize.

3. The control unit cuts off the control voltage from the output IGBTs.

4. The control program generates an indication as defined by parameter 31.22 (see the firmware manual of the drive).
 The parameter selects which indications are given when one or both STO signals are switched off or lost. The indications also depend on whether the drive is running or stopped when this occurs.

 Note: This parameter does not affect the operation of the STO function itself. The STO function will operate regardless of the setting of this parameter: a running drive will stop upon removal of one or both STO signals, and will not start until both STO signals are restored and all faults reset.

 Note: The loss of only one STO signal always generates a fault as it is interpreted as a malfunction of STO hardware or wiring.

5. The motor coasts to a stop (if running). The drive cannot restart while the activation switch or safety relay contacts are open. After the contacts close, a reset may be needed (depending on the setting of parameter 31.22). A new start command is required to start the drive.
Start-up including validation test

To ensure the safe operation of a safety function, validation is required. The final assembler of the machine must validate the function by performing a validation test. The test must be performed

- at initial start-up of the safety function
- after any changes related to the safety function (circuit boards, wiring, components, settings, etc.)
- after any maintenance work related to the safety function
- at the proof test of the safety function
- after a drive firmware update.

Competence

The validation test of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6. The test procedures and report must be documented and signed by this person.

Validation test reports

Signed validation test reports must be stored in the logbook of the machine. The report shall include documentation of start-up activities and test results, references to failure reports and resolution of failures. Any new validation tests performed due to changes or maintenance shall be logged into the logbook.

Validation test procedure

After wiring the Safe torque off function, validate its operation as follows.

Note: If a CPTC-02 module is installed, refer to its documentation.

<table>
<thead>
<tr>
<th>Action</th>
<th>✔️</th>
</tr>
</thead>
<tbody>
<tr>
<td>![WARNING!] Obey the safety instructions. If you ignore them, injury or death, or damage to the equipment can occur.</td>
<td>□</td>
</tr>
<tr>
<td>Make sure that the drive can be run and stopped freely during start-up.</td>
<td>□</td>
</tr>
<tr>
<td>Stop the drive (if running), switch the input power off and isolate the drive from the power line using a disconnector.</td>
<td>□</td>
</tr>
<tr>
<td>Check the STO circuit connections against the wiring diagram.</td>
<td>□</td>
</tr>
<tr>
<td>Close the disconnector and switch the power on.</td>
<td>□</td>
</tr>
<tr>
<td>Test the operation of the STO function when the motor is stopped.</td>
<td>□</td>
</tr>
<tr>
<td>• Give a stop command for the drive (if running) and wait until the motor shaft is at a standstill. Make sure that the drive operates as follows:</td>
<td>□</td>
</tr>
<tr>
<td>• Open the STO circuit. The drive generates an indication if one is defined for the 'stopped' state in parameter 31.22 (see the firmware manual).</td>
<td>□</td>
</tr>
<tr>
<td>• Give a start command to verify that the STO function blocks the drive's operation. The drive generates a warning. The motor should not start.</td>
<td>□</td>
</tr>
<tr>
<td>• Close the STO circuit.</td>
<td>□</td>
</tr>
<tr>
<td>• Reset any active faults. Restart the drive and check that the motor runs normally.</td>
<td>□</td>
</tr>
</tbody>
</table>
Test the operation of the STO function when the motor is running.

- **Start the drive and make sure the motor is running.**
- **Open the STO circuit.** The motor should stop. The drive generates an indication if one is defined for the ‘running’ state in parameter 31.22 (see the firmware manual).
- **Reset any active faults and try to start the drive.**
- **Make sure that the motor stays at a standstill and the drive operates as described above in testing the operation when the motor is stopped.**
- **Close the STO circuit.**
- **Reset any active faults.** Restart the drive and check that the motor runs normally.

Test the operation of the failure detection of the drive. The motor can be stopped or running.

- **Open the 1st channel of the STO circuit.** If the motor was running, it should coast to a stop. The drive generates a **FA81 Safe Torque Off 1 loss** fault indication (see the firmware manual).
- **Give a start command to verify that the STO function blocks the drive’s operation.** The motor should not start.
- **Close the STO circuit.**
- **Reset any active faults.** Restart the drive and check that the motor runs normally.
- **Open the 2nd channel of the STO circuit.** If the motor was running, it should coast to a stop. The drive generates a **FA82 Safe Torque Off 2 loss** fault indication (see the firmware manual).
- **Give a start command to verify that the STO function blocks the drive’s operation.** The motor should not start.
- **Close the STO circuit.**
- **Reset any active faults.** Restart the drive and check that the motor runs normally.

Document and sign the validation test report which verifies that the safety function is safe and accepted for operation.
Use

1. Open the activation switch, or activate the safety functionality that is wired to the STO connection.
2. The STO inputs on the drive control unit de-energize, and the control unit cuts off the control voltage from the output IGBTs.
3. The control program generates an indication as defined by parameter 31.22 (see the firmware manual of the drive).
4. The motor coasts to a stop (if running). The drive will not restart while the activation switch or safety relay contacts are open.
5. Deactivate the STO by closing the activation switch, or resetting the safety functionality that is wired to the STO connection.
6. Reset any faults before restarting.

WARNING!
The Safe torque off function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive from the supply and all other voltage sources.

WARNING!
The drive cannot detect or memorize any changes in the STO circuitry when the drive control unit is not powered. If both STO circuits are closed and a level-type start signal is active when the power is restored, it is possible that the drive starts without a fresh start command. Take this into account in the risk assessment of the system.

This is also valid when the drive is only powered by a CMOD-xx multifunction extension module.

WARNING!
(With permanent magnet or synchronous reluctance [SynRM] motors only)
In case of a multiple IGBT power semiconductor failure, the drive can produce an alignment torque which maximally rotates the motor shaft by $180/\text{p}$ degrees (with permanent magnet motors) or $180/2\text{p}$ degrees (with synchronous reluctance [SynRM] motors) regardless of the activation of the Safe torque off function. p denotes the number of pole pairs.

Notes:

• If a running drive is stopped by using the Safe torque off function, the drive will cut off the motor supply voltage and the motor will coast to a stop. If this causes danger or is not otherwise acceptable, stop the drive and machinery using the appropriate stop mode before activating the Safe torque off function.

• The Safe torque off function overrides all other functions of the drive.

• The Safe torque off function is ineffective against deliberate sabotage or misuse.

• The Safe torque off function has been designed to reduce the recognized hazardous conditions. In spite of this, it is not always possible to eliminate all potential hazards. The assembler of the machine must inform the final user about the residual risks.
Maintenance

After the operation of the circuit is validated at start-up, the STO function shall be maintained by periodic proof testing. In high demand mode of operation, the maximum proof test interval is 20 years. In low demand mode of operation, the maximum proof test interval is 5 or 2 years; see section Safety data (page 208). It is assumed that all dangerous failures of the STO circuit are detected by the proof test. To perform the proof test, do the Validation test procedure (page 203).

Note: See also the Recommendation of Use CNB/M/11.050 (published by the European co-ordination of Notified Bodies) concerning dual-channel safety-related systems with electromechanical outputs:

• When the safety integrity requirement for the safety function is SIL 3 or PL e (cat. 3 or 4), the proof test for the function must be performed at least every month.
• When the safety integrity requirement for the safety function is SIL 2 (HFT = 1) or PL d (cat. 3), the proof test for the function must be performed at least every 12 months.

The STO function of the drive does not contain any electromechanical components.

In addition to proof testing, it is a good practice to check the operation of the function when other maintenance procedures are carried out on the machinery.

Include the Safe torque off operation test described above in the routine maintenance program of the machinery that the drive runs.

If any wiring or component change is needed after start-up, or the parameters are restored, do the test given in section Validation test procedure (page 203).

Use only spare parts approved by ABB.

Record all maintenance and proof test activities in the machine logbook.

Competence

The maintenance and proof test activities of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6.
Fault tracing

The indications given during the normal operation of the Safe torque off function are selected by drive control program parameter 31.22.

The diagnostics of the Safe torque off function cross-compare the status of the two STO channels. In case the channels are not in the same state, a fault reaction function is performed and the drive trips on an “STO hardware failure” fault. An attempt to use the STO in a non-redundant manner, for example activating only one channel, will trigger the same reaction.

See the firmware manual of the drive control program for the indications generated by the drive, and for details on directing fault and warning indications to an output on the control unit for external diagnostics.

Any failures of the Safe torque off function must be reported to ABB.
Safety data

The safety data for the Safe torque off function is given below.

Note: The safety data is calculated for redundant use, and does not apply if both STO channels are not used.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>SIL/ SILCL</th>
<th>PL</th>
<th>SFF (%)</th>
<th>PFH ((T_1 = 20 \text{ a})) ((1/\text{h}))</th>
<th>PFD(_{\text{avg}}) ((T_1 = 2 \text{ a}))</th>
<th>PFD(_{\text{avg}}) ((T_1 = 5 \text{ a}))</th>
<th>MTTF(_D) (a)</th>
<th>DC (%)</th>
<th>Cat.</th>
<th>SC</th>
<th>HFT</th>
<th>CCF</th>
<th>(T_m) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R11</td>
<td>3</td>
<td>e</td>
<td>99.61</td>
<td>4.14E-09</td>
<td>3.63E-05</td>
<td>9.08E-05</td>
<td>16398</td>
<td>≥90</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

- The following temperature profile is used in safety value calculations:
 - 670 on/off cycles per year with \(\Delta T = 71.66 \) °C
 - 1340 on/off cycles per year with \(\Delta T = 61.66 \) °C
 - 30 on/off cycles per year with \(\Delta T = 10.0 \) °C
 - 32 °C board temperature at 2.0% of time
 - 60 °C board temperature at 1.5% of time
 - 85 °C board temperature at 2.3% of time.

- The STO is a type A safety component as defined in IEC 61508-2.

- Relevant failure modes:
 - The STO trips spuriously (safe failure)
 - The STO does not activate when requested
 - A fault exclusion on the failure mode “short circuit on printed circuit board” has been made (EN 13849-2, table D.5). The analysis is based on an assumption that one failure occurs at one time. No accumulated failures have been analyzed.

- STO response times:
 - STO reaction time (shortest detectable break): 1 ms
 - STO response time: 2 ms (typical), 30 ms (maximum)
 - Fault detection time: Channels in different states for longer than 200 ms
 - Fault reaction time: Fault detection time + 10 ms

- Indication delays:
 - STO fault indication (parameter 31.22) delay: < 500 ms
 - STO warning indication (parameter 31.22) delay: < 1000 ms

Terms and abbreviations

<table>
<thead>
<tr>
<th>Term or abbreviation</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat.</td>
<td>EN ISO 13849-1</td>
<td>Classification of the safety-related parts of a control system in respect of their resistance to faults and their subsequent behavior in the fault condition, and which is achieved by the structural arrangement of the parts, fault detection and/or by their reliability. The categories are: B, 1, 2, 3 and 4.</td>
</tr>
<tr>
<td>CCF</td>
<td>EN ISO 13849-1</td>
<td>Common cause failure (%)</td>
</tr>
<tr>
<td>Term or abbreviation</td>
<td>Reference</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>DC</td>
<td>EN ISO 13849-1</td>
<td>Diagnostic coverage</td>
</tr>
<tr>
<td>HFT</td>
<td>IEC 61508</td>
<td>Hardware fault tolerance</td>
</tr>
<tr>
<td>MTTF<sub>D</sub></td>
<td>EN ISO 13849-1</td>
<td>Mean time to dangerous failure: (Total number of life units) / (Number of dangerous, undetected failures) during a particular measurement interval under stated conditions</td>
</tr>
<tr>
<td>PFD<sub>avg</sub></td>
<td>IEC 61508</td>
<td>Average probability of dangerous failure on demand, that is, mean unavailability of a safety-related system to perform the specified safety function when a demand occurs</td>
</tr>
<tr>
<td>PFH</td>
<td>IEC 61508</td>
<td>Average frequency of dangerous failures per hour, that is, average frequency of a dangerous failure of a safety related system to perform the specified safety function over a given period of time</td>
</tr>
<tr>
<td>PL</td>
<td>EN ISO 13849-1</td>
<td>Performance level. Levels a...e correspond to SIL</td>
</tr>
<tr>
<td>Proof test</td>
<td>IEC 61508, IEC 62061</td>
<td>Periodic test performed to detect failures in a safety-related system so that, if necessary, a repair can restore the system to an "as new" condition or as close as practical to this condition</td>
</tr>
<tr>
<td>SC</td>
<td>IEC 61508</td>
<td>Systematic capability</td>
</tr>
<tr>
<td>SFF</td>
<td>IEC 61508</td>
<td>Safe failure fraction (%)</td>
</tr>
<tr>
<td>SIL</td>
<td>IEC 61508</td>
<td>Safety integrity level (1...3)</td>
</tr>
<tr>
<td>SILCL</td>
<td>IEC/EN 62061</td>
<td>Maximum SIL (level 1...3) that can be claimed for a safety function or subsystem</td>
</tr>
<tr>
<td>STO</td>
<td>IEC/EN 61800-5-2</td>
<td>Safe torque off</td>
</tr>
<tr>
<td>(T_1)</td>
<td>IEC 61508-6</td>
<td>Proof test interval. (T_1) is a parameter used to define the probabilistic failure rate (PFH or PFD) for the safety function or subsystem. Performing a proof test at a maximum interval of (T_1) is required to keep the SIL capability valid. The same interval must be followed to keep the PL capability (EN ISO 13849) valid. See also section Maintenance.</td>
</tr>
<tr>
<td>(T_M)</td>
<td>EN ISO 13849-1</td>
<td>Mission time: the period of time covering the intended use of the safety function/device. After the mission time elapses, the safety device must be replaced. Note that any (T_M) values given cannot be regarded as a guarantee or warranty.</td>
</tr>
</tbody>
</table>

- **TÜV certificate**

EU Declaration of Conformity
Machinery Directive 2006/42/EC

We, ABB Oy
Address: Hiisli 13, 00380 Helsinki, Finland.
Phone: +358 10 22 11

declare under our sole responsibility that the following product:

Frequency converter(s)
ACH580-04/-34

with regard to the safety function(s)

Safe Torque Off
is/are in conformity with all the relevant safety component requirements of EU Machinery Directive 2006/42/EC, when the listed safety function is used for safety component functionality.

The following harmonized standards have been applied:

EN61800-5-2:2007
EN60061:2005
ENISO 13849-1:2015
ENISO 13849-2:2012
EN60204-1:2018

The following other standards have been applied:

IEC 61508:2010, parts 1-2
IEC 61800-5-2:2016

Functional safety of electrical / electronic / programmable electronic safety-related systems
Adjustable speed electrical power drive systems - Part 5-2: Safety requirements - Functional

The product(s) referred in this Declaration of conformity fulfill(s) the relevant provisions of other European Union Directives which are notified in Single EU Declaration of conformity 3AXD10000487691.

Person authorized to compile the technical file:
Name and address: Jussi Vestl, Hiisli 13, 00380 Helsinki, Finland.

Signed for and on behalf of:

Tuomo Tarula
Vice president, ABB Oy

Vesa Tuomainen
Product Engineering manager, ABB Oy

Document number 3AXD100000611401
Declaration of Conformity
Supply of Machinery (Safety) Regulations 2008

We, ABB Oy
Address: Hietaniemen 13, 00380 Helsinki, Finland
Phone: +358 10 28 11

declare under our sole responsibility that the following product:

Frequency converters
ACH580-04/-34

with regard to the safety function
Safe Torque Off

is in conformity with all the relevant safety component requirements of the Supply of Machinery (Safety) Regulations 2008, when the listed safety function is used for safety component functionality.

The following designated standards have been applied:
EN 60204-1:2007
EN 60204 (2008)
EN ISO 13849-1:2015
EN ISO 13849-2:2012
EN 62024-1:2010

The following other standards have been applied:
IEC 61508-2:2010, parts 1-2
IEC 61800-5:2016

Adjustable speed electrical power drive systems – Part 5-2: Safety requirements - Functional
Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems
Safety of machinery – Safety-related parts of control systems. Part 1: General requirements
Safety of machinery – Safety-related parts of the control systems. Part 2: Validation
Safety of machinery – Electrical equipment of machines – Part 1: General requirements
Functional safety of electrical / electronic / programmable electronic safety-related systems
Adjustable speed electrical power drive systems – Part 5-2: Safety requirements - Functional

The products referred to in this declaration of conformity fulfill(s) the relevant provisions of other UK statutory requirements, which are notified in a separate declaration of conformity JAX001000:139956/8.

Authorized to compile the technical file: ABB Limited, Daresbury Park, Cheshire, United Kingdom, WA4 4BT.

Helsinki, May 7, 2021
Signed for and on behalf of:

Tuomo Tanila
Local Division Manager, ABB Oy

Henni Mäkinen
Product Unit Manager, ABB Oy

Document number JAX001000:139956/8
Resistor braking

Contents of this chapter
This chapter describes how to select, protect and wire brake choppers and resistors. The chapter also contains the technical data.

Operation principle and hardware description
Brake choppers and resistors are available as add-on kits for the drive modules.

The brake chopper handles the energy generated by a decelerating motor. The extra energy increases the DC link voltage. The chopper connects the brake resistor to the intermediate DC circuit whenever the voltage in the circuit exceeds the limit defined by the control program. Energy consumption by the resistor losses lowers the voltage until the resistor can be disconnected.

Planning the braking system

- Selecting the default brake circuit components - ABB chopper and ABB resistor
 1. Calculate the maximum power generated by the motor during braking and define the braking cycle.
 2. Select a drive according to motor load cycle considering also the braking cycle. See the drive ratings.
3. See the pre-selected chopper and the pre-selected resistor for the drive from the technical data of the ABB brake choppers and resistors.

4. Check the pre-selection of the chopper and resistor: Is your braking cycle 1/5 min or 10/60 s?
 a. If yes: Is your braking power smaller than the value for the cycle given in the ratings of the ABB resistors? If yes: the pre-selected chopper and resistor combination is ok for the drive.
 b. If no: Verify the pre-selected chopper and resistor according to the instructions given in section Calculating the maximum allowed braking power for a custom duty cycle – ABB chopper and ABB resistor (page 214).

Calculating the maximum allowed braking power for a custom duty cycle – ABB chopper and ABB resistor

The maximum allowed braking power for the customer braking cycle must meet both of the conditions 1 and 2 below.

1. The braking power of the custom duty cycle must not be greater than the maximum braking power given in the ratings of the ABB choppers and resistors.

 \[P_{br} \leq P_{br,\text{max}} \]

2. The braking energy transferred during any 600-second period must be smaller than or equal to the energy that is transferred during the reference braking cycle of 40 seconds every 600 seconds:

 \[n \times P_{br} \times t_{br} \leq P_{br,\text{max}} \times 40 \text{ s} \]

 where

 - \(n \) Number of the braking pulses during the 600-second period
 - \(P_{br} \) Braking power of the custom duty cycle in kW
 - \(t_{br} \) Braking time within the custom duty cycle in seconds
 - \(P_{br,\text{max}} \) Maximum braking power allowed for 40 seconds every 600 seconds. See the value in the ratings of the ABB choppers and resistors. (The ABB resistor does not withstand the 60-second cycle of the brake chopper.)

Selecting the default brake circuit components - ABB brake chopper and custom resistor

1. Calculate the maximum power generated by the motor during braking and define the braking cycle.

2. Select a drive and brake chopper combination. The reference braking cycle is 60 seconds in every 600 seconds.

3. Verify the selection. See section Calculating the maximum allowed braking power for a custom duty cycle – ABB chopper and custom resistor (page 216). If necessary, repeat the pre-selection and verification until you find a suitable drive and chopper combination.

4. Select a custom brake resistor. See Selecting custom resistors (page 215).
Selecting custom resistors

If you use other than ABB resistor,

1. make sure that the resistance of the custom resistor is greater or equal than the resistance of the default resistor in the ratings of the custom resistors:

$$ R \geq R_{\text{min}} $$

where,

- R Resistance of the custom resistor
- R_{min} Resistance of the default resistor

WARNING!
Never use a brake resistor with a resistance smaller than R_{min}. This will cause overcurrent that will damage the brake chopper and the drive.

2. the resistance of the custom resistor does not restrict the braking capacity needed, ie.

$$ P_{\text{max}} < \frac{U_{\text{DC}}^2}{R} $$

where,

- P_{max} Maximum power generated by the motor during braking
- U_{DC} Drive intermediate DC circuit voltage
 - $1.35 \cdot 1.25 \cdot 415 \text{ V DC}$ (when supply voltage is 380 to 415 V AC)
 - $1.35 \cdot 1.25 \cdot 500 \text{ V DC}$ (when supply voltage is 440 to 500 V AC) or
 - $1.35 \cdot 1.25 \cdot 690 \text{ V DC}$ (when supply voltage is 525 to 690 V AC)
- R Resistance of the custom resistor

3. make sure that the resistor can dissipate the energy transferred to it during the braking:
 - Braking energy is not greater than the resistor heat dissipation capacity (E_r) during the period specified. See the custom resistor specification.
 - The resistor is installed in a properly ventilated and cooled space. Otherwise the resistor cannot meet its heat dissipation capacity and overheats.

4. make sure that the instantaneous load capacity of the custom resistor is greater than the maximum power taken by the the resistor when it is connected to the drive intermediate DC circuit by the chopper

$$ P_{R,\text{inst}} > \frac{U_{\text{DC}}^2}{R} $$

where,

- $P_{R,\text{inst}}$ Instantaneous load capacity of the custom resistor
- U_{DC} Drive intermediate DC circuit voltage
 - $1.35 \cdot 1.25 \cdot 415 \text{ V DC}$ (when supply voltage is 380 to 415 V AC)
 - $1.35 \cdot 1.25 \cdot 500 \text{ V DC}$ (when supply voltage is 440 to 500 V AC) or
 - $1.35 \cdot 1.25 \cdot 690 \text{ V DC}$ (when supply voltage is 525 to 690 V AC)
- R Resistance of the custom resistor
Calculating the maximum allowed braking power for a custom duty cycle – ABB chopper and custom resistor

The maximum allowed braking power for the customer braking cycle must meet both of the conditions 1 and 2 below.

1. The braking power of the custom duty cycle must not be greater than the maximum braking power given in the ratings of the factory-installed brake choppers and custom resistors:

\[P_{br} \leq P_{br,max} \]

2. The braking energy transferred during any 600-second period must be smaller than or equal to the energy that is transferred during the reference braking cycle of 60 seconds every 600 seconds:

\[n \times P_{br} \times t_{br} \leq P_{br,max} \times 60 \text{ s} \]

where,

- \(n \) Number of the braking pulses during the 600-second period
- \(P_{br} \) Braking power of the custom duty cycle in kW
- \(t_{br} \) Braking time within the custom duty cycle in seconds
- \(P_{br,max} \) Maximum braking power allowed for 60 seconds every 600 seconds. See the value in the ratings of the factory-installed brake choppers and custom resistors.

Example 1

The duration of a braking cycle is three minutes. The braking time is 15 minutes.

\[1. \ P_{br} \leq P_{br,max} \]

\[2. \ n \times P_{br} \times t_{br} \leq P_{br,max} \times 60 \text{ s} \]

\[1 \times P_{br} \times 600 \text{ s} \leq P_{br,max} \times 60 \text{ s} \]

\[P_{br} \leq P_{br,max} \times 60/600 \text{ s} = 0.1 \times P_{br,max} \]

\[\rightarrow \text{The allowed continuous braking power is 10\% of the maximum braking power (} P_{br,max} \text{).} \]

This fulfills also condition 1.

Example 2

The duration of a braking cycle \(T \) is three minutes = 3 \times 60 \text{ s} = 180 \text{ s}. The braking time \(t_{br} \) is 30 seconds.
1. $P_{br} \leq P_{br,max}$

2. $P_{br} \leq (P_{br,max} \times 60\,\text{s})/(4 \times 30\,\text{s}) = 0.5 \times P_{br,max}$

-> The maximum allowed braking power for the cycle is 50% of the rated value given for the reference cycle. This fulfills also condition 1.

Selecting and routing brake resistor cables

Use the same cable type for the resistor cabling as for the drive input cabling to ensure that the input fuses also protect the resistor cable. Alternatively, a two conductor shielded cable with the same cross-sectional area can be used.

Minimizing electromagnetic interference

Obey these rules in order to minimize electromagnetic interference caused by the rapid current changes in the resistor cables:

- Shield the braking power line completely, either by using shielded cable or a metallic enclosure. Unshielded single-core cable can only be used if it is routed inside a cabinet that efficiently suppresses the radiated emissions.

- Install the cables away from other cable routes.

- Avoid long parallel runs with other cables. The minimum parallel cabling separation distance is 0.3 meters (1 ft).

- Cross the other cables at 90 degree angles.

- Keep the cable as short as possible in order to minimize the radiated emissions and stress on chopper IGBTs. The longer the cable the greater the radiated emissions, inductive load and voltage peaks over the IGBT semiconductors of the brake chopper.

Note: ABB has not verified that the EMC requirements are fulfilled with custom brake resistors and cabling. The customer must consider the EMC compliance of the complete installation.

Maximum cable length

The maximum length of the resistor cable(s) is 10 m (33 ft).

Placing the brake resistors

Install the resistor assembly outside the drive in a place where it is able to cool effectively. Arrange the cooling of the resistor in a way that:
• no danger of overheating is caused to the resistor or nearby materials, and
• the temperature of the room the resistor is located in does not exceed the allowed maximum.

Supply the resistor with cooling air or coolant according to the resistor manufacturer’s instructions.

WARNING!
The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius. If the exhaust vents are connected to a ventilation system, make sure that the material withstands high temperatures. Protect the resistor against contact.

Protecting the system against thermal overload
The brake chopper protects itself and the resistor cables against thermal overload when the cables are dimensioned according to the nominal current of the drive. The drive control program includes a resistor and resistor cable thermal protection function which can be tuned by the user. See the firmware manual.

ABB requires that the resistor has a thermal switch (standard in ABB resistors) which is wired to the chopper for safety reasons. The thermal switch cable must be shielded and may not be longer than the resistor cable.

Protecting the resistor cable against short-circuits
The DC fuses for the brake chopper protection protect also the resistor cable against short-circuits.

Mechanical installation of resistors
All brake resistors must be installed outside the drive. Obey the resistor manufacturer’s instructions.

Electrical installation

- **Measuring the insulation resistance of the brake resistor circuit**

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.
1. Stop the drive and do the steps in section *Electrical safety precautions (page 18)* before you start the work.

2. Make sure that the resistor cable is connected to the resistor and disconnected from the drive output terminals.

3. At the drive end, connect the R+ and R- conductors of the resistor cable together. Measure the insulation resistance between the conductors and the PE conductor with a measuring voltage of 1000 V DC. The insulation resistance must be more than 1 Mohm.

Connection diagram

See section *Connecting the power cables (page 99)*.

Connection procedure

- Connect the brake chopper via fuses to drive module terminals UDC+ and UDC-.
- Connect the resistor cables to the brake chopper terminals. If a shielded three-conductor cable with shield conductivity good enough for the protective earth (ground) conductor is used, cut the third conductor. If the shield conductivity is not good enough, use the third conductor as the PE conductor. Ground the twisted shield of the cable (protective earth conductor of the resistor assembly) as well as any separate PE conductor (if present) at both ends.
- Wire the thermal switch to the chopper enable input X1. Connect the fault indication relay output X3 on the chopper control board to digital input DIIL (XD2D:1) of the drive. In ACH580 HVAC control program, digital input DIIL is configured to parameter 20.12 Run enable 1 source by default. Parameter 20.11 Run enable stop mode is set to Coast. Any temperature failure in resistor or chopper cabinet will stop the drive (motor-side converter). It is not possible to start the drive while the chopper fault indication is on.
WARNING!

Input terminal block X1 of the brake chopper is at intermediate circuit potential of the drive. This voltage is extremely dangerous and can cause serious damage or injury if the isolation level and protection conditions for the thermal switches are not sufficient. Insulate the thermal switches correctly (over 2.5 kV) and shroud them against contact. Use a cable with correct voltage rating.

Start-up

Set the following parameters (ACH580 HVAC control program): Make sure that

- parameter 20.12 Run enable 1 source is set to DIIL
- parameter 20.11 Run enable stop mode is set to Coast.

You can activate and configure an additional thermal protection function for the chopper and resistor. See the firmware manual.
Note: Some brake resistors are coated with oil film for protection. At the start-up, the coating burns off and produces a little bit of smoke. Make sure there is sufficient ventilation at the start-up.

Technical data

Contact ABB for more information.
CHDI-01 115/230 V digital input extension module

Contents of this chapter
This chapter describes the optional CHDI-01 115/230 V digital input extension module.

Product overview
The CHDI-01 115/230 V digital input extension module expands the inputs of the drive control unit. It has six high voltage inputs and two relay outputs.
Layout and connection examples

<table>
<thead>
<tr>
<th>4</th>
<th>3-pin terminal blocks for 115/230 V inputs</th>
<th>3</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>HDI7</td>
<td>115/230 V input 1</td>
<td>50</td>
</tr>
<tr>
<td>71</td>
<td>HDI8</td>
<td>115/230 V input 2</td>
<td>51</td>
</tr>
<tr>
<td>72</td>
<td>NEUTRAL ¹)</td>
<td>Neutral point</td>
<td>52</td>
</tr>
<tr>
<td>73</td>
<td>HDI9</td>
<td>115/230 V input 3</td>
<td>53</td>
</tr>
<tr>
<td>74</td>
<td>HDI10</td>
<td>115/230 V input 4</td>
<td>54</td>
</tr>
<tr>
<td>75</td>
<td>NEUTRAL ¹)</td>
<td>Neutral point</td>
<td>55</td>
</tr>
<tr>
<td>76</td>
<td>HDI11</td>
<td>115/230 V input 5</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>HDI12</td>
<td>115/230 V input 5</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>NEUTRAL ¹)</td>
<td>Neutral point</td>
<td>5</td>
</tr>
</tbody>
</table>

¹) Neutral points 72, 75 and 78 are connected.
Mechanical installation

■ **Necessary tools**
 • Screwdriver and a set of suitable bits.

■ **Unpacking and examining the delivery**
 1. Open the option package. Make sure that the package contains:
 • the option module
 • a mounting screw.
 2. Make sure that there are no signs of damage.

■ **Installing the module**
See section *Installing option modules (page 107).*

Electrical installation

WARNING!
Obey the instructions in chapter *Safety instructions (page 15)*. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrician, do not do electrical work.

Make sure that the drive is disconnected from the input power during installation. If the drive is already connected to the input power, wait for 5 minutes after disconnecting the input power.

■ **Necessary tools**
 • Screwdriver and a set of suitable bits.

■ **Wiring**
Connect the external control cables to the applicable module terminals. Ground the outer shield of the cables 360 degrees under a grounding clamp on the grounding shelf of the control cables.
Start-up

- Setting the parameters

1. Power up the drive.
2. If no warning is shown,
 - make sure that the value of both parameters 15.01 Extension module type and 15.02 Detected extension module is CHDI-01.
 If warning A7AB Extension I/O configuration failure is shown,
 - make sure that the value of parameter 15.02 is CHDI-01.
 - set parameter 15.01 value to CHDI-01.
 You can now see the parameters of the extension module in parameter group 15 I/O extension module.
3. Set the parameters of the extension module to applicable values.

Parameter setting example for relay output

This example shows how make relay output RO4 of the extension module indicate the reverse direction of rotation of the motor with a one-second delay.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.07 RO4 source</td>
<td>Reverse</td>
</tr>
<tr>
<td>15.08 RO4 ON delay</td>
<td>1 s</td>
</tr>
<tr>
<td>15.09 RO4 OFF delay</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Fault and warning messages

Warning A7AB Extension I/O configuration failure.

Technical data

<table>
<thead>
<tr>
<th>Installation</th>
<th>Into an option slot on the drive control unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of protection</td>
<td>IP20 / UL Type 1</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>See the drive technical data.</td>
</tr>
<tr>
<td>Package</td>
<td>Cardboard</td>
</tr>
<tr>
<td>Relay outputs (50…52, 53…55)</td>
<td></td>
</tr>
<tr>
<td>Maximum wire size</td>
<td>1.5 mm²</td>
</tr>
<tr>
<td>Minimum contact rating</td>
<td>12 V / 10 mA</td>
</tr>
<tr>
<td>Maximum contact rating</td>
<td>250 V AC / 30 V DC / 2 A</td>
</tr>
<tr>
<td>Maximum breaking capacity</td>
<td>1500 VA</td>
</tr>
<tr>
<td>115/230 V inputs (70…78)</td>
<td></td>
</tr>
<tr>
<td>Maximum wire size</td>
<td>1.5 mm²</td>
</tr>
<tr>
<td>Input voltage</td>
<td>115 to 230 V AC ±10%</td>
</tr>
<tr>
<td>Maximum current leakage</td>
<td>2 mA</td>
</tr>
<tr>
<td>in digital off state</td>
<td></td>
</tr>
<tr>
<td>Isolation areas</td>
<td></td>
</tr>
</tbody>
</table>
Plugged to drive SLOT2

Reinforced insulation (IEC 61800-5-1:2007)

Functional insulation (IEC 61800-5-1:2007)

Dimension drawing

The dimensions are in millimeters and [inches].
CMOD-01 multifunction extension module (external 24 V AC/DC and digital I/O)

Contents of this chapter
This chapter describes the optional CMOD-01 multifunction extension module (external 24 V AC/DC and digital I/O).

Product overview
The CMOD-01 multifunction extension module (external 24 V AC/DC and digital I/O) expands the outputs of the drive control unit. It has two relay outputs and one transistor output, which can function as a digital or frequency output.

In addition, the extension module has an external power supply interface, which can be used to power up the drive control unit in case the drive power supply is not on. If you do not need the back-up power supply, you do not have to connect it because the module is powered from the drive control unit by default.
Layout and example connections

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grounding screw</td>
</tr>
<tr>
<td>2</td>
<td>Hole for mounting screw</td>
</tr>
<tr>
<td>3</td>
<td>3-pin terminal blocks for relay outputs</td>
</tr>
<tr>
<td>4</td>
<td>3-pin terminal block for transistor output</td>
</tr>
<tr>
<td>5</td>
<td>2-pin terminal block for external power supply</td>
</tr>
<tr>
<td>6</td>
<td>Diagnostic LED</td>
</tr>
</tbody>
</table>

3-pin terminal block for transistor output

- **24 V DC**
- **24 V AC/DC + in**
- **24 V AC/DC - in**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>24 V AC/DC + in</td>
<td>External 24 V (AC/DC) input</td>
</tr>
<tr>
<td>41</td>
<td>24 V AC/DC - in</td>
<td>External 24 V (AC/DC) input</td>
</tr>
<tr>
<td>42</td>
<td>DO1 SRC</td>
<td>Source input</td>
</tr>
<tr>
<td>43</td>
<td>DO1 OUT</td>
<td>Digital or frequency output</td>
</tr>
<tr>
<td>44</td>
<td>DO1 SGND</td>
<td>Ground (earth) potential</td>
</tr>
</tbody>
</table>

1) Digital output connection example

2) An externally supplied frequency indicator which provides, for example:

- a 40 mA / 12 V DC power supply for the sensor circuit (CMOD frequency output)
- suitable voltage pulse input (10 Hz … 16 kHz).
Mechanical installation

- **Necessary tools**
 - Screwdriver and a set of suitable bits.

- **Unpacking and examining the delivery**
 1. Open the option package. Make sure that the package contains:
 - the option module
 - a mounting screw.
 2. Make sure that there are no signs of damage.

- **Installing the module**
 See section *Installing option modules (page 107).*

Electrical installation

WARNING!
Obey the instructions in chapter *Safety instructions (page 15).* If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrician, do not do electrical work.

Make sure that the drive is disconnected from the input power during installation. If the drive is already connected to the input power, wait for 5 minutes after disconnecting the input power.

- **Necessary tools**
 - Screwdriver and a set of suitable bits

- **Wiring**
 Connect the external control cables to the applicable module terminals. Ground the outer shield of the cables 360 degrees under a grounding clamp on the grounding shelf of the control cables.

WARNING!
Do not connect the +24 V AC cable to the control unit ground when the control unit is powered using an external 24 V AC supply.
Start-up

- Setting the parameters

1. Power up the drive.

2. If no warning is shown,
 - make sure that the value of both parameters 15.01 Extension module type and 15.02 Detected extension module is CMOD-01.
 If warning A7AB Extension I/O configuration failure is shown,
 - make sure that the value of parameter 15.02 is CMOD-01.
 - set the parameter 15.01 value to CMOD-01.

You can now see the parameters of the extension module in parameter group 15 I/O extension module.

3. Set the parameters of the extension module to applicable values.

Examples are given below.

Parameter setting example for relay output
This example shows how make relay output RO4 of the extension module indicate the reverse direction of rotation of the motor with a one-second delay.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.07 RO4 source</td>
<td>Reverse</td>
</tr>
<tr>
<td>15.08 RO4 ON delay</td>
<td>1 s</td>
</tr>
<tr>
<td>15.09 RO4 OFF delay</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Parameter setting example for digital output
This example shows how to make digital output DO1 of the extension module indicate the reverse direction of rotation of the motor with a one-second delay.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.22 DO1 configuration</td>
<td>Digital output</td>
</tr>
<tr>
<td>15.23 DO1 source</td>
<td>Reverse</td>
</tr>
<tr>
<td>15.24 DO1 ON delay</td>
<td>1 s</td>
</tr>
<tr>
<td>15.25 DO1 OFF delay</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Parameter setting example for frequency output
This example shows how to make digital output DO1 of the extension module indicate the motor speed 0... 1500 rpm with a frequency range of 0...10000 Hz.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.22 DO1 configuration</td>
<td>Frequency output</td>
</tr>
<tr>
<td>15.33 Freq out 1 source</td>
<td>01.01 Motor speed used</td>
</tr>
<tr>
<td>15.34 Freq out 1 src min</td>
<td>0</td>
</tr>
<tr>
<td>15.35 Freq out 1 src max</td>
<td>1500.00</td>
</tr>
<tr>
<td>15.36 Freq out 1 at src min</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>15.37 Freq out 1 at src max</td>
<td>10000 Hz</td>
</tr>
</tbody>
</table>
Diagnostics

Faults and warning messages
Warning A7AB Extension I/O configuration failure.

LEDs
The extension module has one diagnostic LED.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The extension module is powered up.</td>
</tr>
</tbody>
</table>

Technical data

<table>
<thead>
<tr>
<th>Installation</th>
<th>Into an option slot on the drive control unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of protection</td>
<td>IP20 / UL Type 1</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>See the drive technical data.</td>
</tr>
<tr>
<td>Package</td>
<td>Cardboard</td>
</tr>
</tbody>
</table>

Relay outputs (50…52, 53…55)

<table>
<thead>
<tr>
<th>Maximum wire size</th>
<th>1.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum contact rating</td>
<td>12 V / 10 mA</td>
</tr>
<tr>
<td>Maximum contact rating</td>
<td>250 V AC / 30 V DC / 2 A</td>
</tr>
<tr>
<td>Maximum breaking capacity</td>
<td>1500 VA</td>
</tr>
</tbody>
</table>

Transistor output (42…44)

<table>
<thead>
<tr>
<th>Maximum wire size</th>
<th>1.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Transistor output PNP</td>
</tr>
<tr>
<td>Maximum load</td>
<td>4 kohm</td>
</tr>
<tr>
<td>Maximum switching voltage</td>
<td>30 V DC</td>
</tr>
<tr>
<td>Maximum switching current</td>
<td>100 mA / 30 V DC, short-circuit protected</td>
</tr>
<tr>
<td>Frequency</td>
<td>10 Hz … 16 kHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Inaccuracy</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

External power supply (40…41)

<table>
<thead>
<tr>
<th>Maximum wire size</th>
<th>1.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>24 V AC / V DC ±10% (GND, user potential)</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>25 W, 1.04 A at 24 V DC</td>
</tr>
</tbody>
</table>
Isolation areas

<table>
<thead>
<tr>
<th>CMOD-01</th>
<th>24 V<sub>in</sub></th>
<th>RO4</th>
<th>DO1</th>
<th>RO5</th>
</tr>
</thead>
</table>

1. Plugged to drive SLOT2
2. Reinforced insulation (IEC 61800-5-1:2007)
3. Functional insulation (IEC 61800-5-1:2007)

Dimension drawing
The dimensions are in millimeters and [inches].
CMOD-02 multifunction extension module (external 24 V AC/DC and isolated PTC interface)

Contents of this chapter

This chapter describes the optional CMOD-02 multifunction extension module (external 24 V AC/DC and isolated PTC interface).

Product overview

The CMOD-02 multifunction extension module (external 24 V AC/DC and isolated PTC interface) has a motor thermistor connection for supervising the motor temperature and one relay output, which indicates the thermistor status. In case the thermistor overheats, the drive trips on motor overtemperature. If Safe torque off tripping is required, the user must wire the overtemperature indication relay to the certified Safe torque off input of the drive.

In addition, the extension module has an external power supply interface, which can be used to power up the drive control unit in case the drive power supply is not on. If you do not need the back-up power supply, you do not have to connect it because the module is powered from the drive control unit by default.

There is reinforced insulation between the motor thermistor connection, the relay output and the drive control unit interface. Thus, you can connect a motor thermistor to the drive through the extension module.
Layout and example connections

<table>
<thead>
<tr>
<th></th>
<th>2-pin terminal block for external power supply</th>
<th>2-pin terminal block for relay output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>24 V AC/DC + in</td>
<td>RO PTC C</td>
</tr>
<tr>
<td></td>
<td>External 24 V (AC/DC) input</td>
<td>Common, C</td>
</tr>
<tr>
<td>41</td>
<td>24 V AC/DC - in</td>
<td>RO PTC B</td>
</tr>
<tr>
<td></td>
<td>External 24 V (AC/DC) input</td>
<td>Normally open, NO</td>
</tr>
<tr>
<td>5</td>
<td>Motor thermistor connection</td>
<td>1 Grounding screw</td>
</tr>
<tr>
<td>60</td>
<td>PTC IN</td>
<td>2 Hole for mounting screw</td>
</tr>
<tr>
<td>61</td>
<td>PTC IN</td>
<td>6 Diagnostic LED</td>
</tr>
</tbody>
</table>

One to six PTC thermistors connected in series.

Mechanical installation

- **Necessary tools**
 - Screwdriver and a set of suitable bits.
Unpacking and examining the delivery

1. Open the option package. Make sure that the package contains:
 • the option module
 • a mounting screw.

2. Make sure that there are no signs of damage.

Installing the module

See section Installing option modules (page 107).

Electrical installation

WARNING!
Obey the instructions in chapter Safety instructions (page 15). If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrician, do not do electrical work.

Make sure that the drive is disconnected from the input power during installation. If the drive is already connected to the input power, wait for 5 minutes after disconnecting the input power.

Necessary tools and instructions

• Screwdriver and a set of suitable bits

Wiring

Connect the external control cables to the applicable module terminals. Ground the outer shield of the cables 360 degrees under a grounding clamp on the grounding shelf of the control cables.

WARNING!
Do not connect the +24 V AC cable to the control unit ground when the control unit is powered using an external 24 V AC supply.

Start-up

Setting the parameters

1. Power up the drive.

2. If no warning is shown,
 • make sure that the values of both parameters 15.01 Extension module type and 15.02 Detected extension module are CMOD-02.

 If warning A7AB Extension I/O configuration failure is shown,
 • make sure that the value of parameter 15.02 is CMOD-02.
 • set the parameter 15.01 value to CMOD-02.

 You can now see the parameters of the extension module in parameter group 15 I/O extension module.
Diagnostics

- **Faults and warning messages**
 Warning A7AB Extension I/O configuration failure.

- **LEDs**
 The extension module has one diagnostic LED.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The extension module is powered up.</td>
</tr>
</tbody>
</table>

Technical data

<table>
<thead>
<tr>
<th>Installation</th>
<th>Into option slot 2 on the drive control unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of protection</td>
<td>IP20 / UL Type 1</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>See the drive technical data.</td>
</tr>
<tr>
<td>Package</td>
<td>Cardboard</td>
</tr>
</tbody>
</table>

Motor thermistor connection (60…61)

<table>
<thead>
<tr>
<th>Maximum wire size</th>
<th>1.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported standards</td>
<td>DIN 44081 and DIN 44082</td>
</tr>
<tr>
<td>Triggering threshold</td>
<td>3.6 kohm ±10%</td>
</tr>
<tr>
<td>Recovery threshold</td>
<td>1.6 kohm ±10%</td>
</tr>
<tr>
<td>PTC terminal voltage</td>
<td>≤ 5.0 V</td>
</tr>
<tr>
<td>PTC terminal current</td>
<td>< 1 mA</td>
</tr>
<tr>
<td>Short-circuit detection</td>
<td>< 50 ohm ±10%</td>
</tr>
</tbody>
</table>

The PTC input is reinforced/double insulated. If the motor part of the PTC sensor and wiring are reinforced/double insulated, voltages on the PTC wiring are within SELV limits. If the motor PTC circuit is not reinforced/double insulated (i.e., it is basic insulated), it is mandatory to use reinforced/double insulated wiring between the motor PTC and CMOD-02 PTC terminal.

Relay output (62…63)

<table>
<thead>
<tr>
<th>Maximum wire size</th>
<th>1.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum contact rating</td>
<td>250 V AC / 30 V DC / 5 A</td>
</tr>
<tr>
<td>Maximum breaking capacity</td>
<td>1000 VA</td>
</tr>
</tbody>
</table>

External power supply (40…41)

<table>
<thead>
<tr>
<th>Maximum wire size</th>
<th>1.5 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>24 V AC / V DC ±10% (GND, user potential)</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>25 W, 1.04 A at 24 V DC</td>
</tr>
</tbody>
</table>
Isolation areas

<table>
<thead>
<tr>
<th></th>
<th>Plugged to drive SLOT2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reinforced insulation (IEC 61800-5-1:2007)</td>
</tr>
<tr>
<td></td>
<td>Functional insulation (IEC 61800-5-1:2007)</td>
</tr>
</tbody>
</table>

Dimension drawing

The dimensions are in millimeters and [inches].
Filters

Contents of this chapter

This chapter describes how to select du/dt filters for the drive.

du/dt filters

- **When is a du/dt filter necessary?**

 See section *Examining the compatibility of the motor and drive (page 75).*

- **Selection table**

 du/dt filter types for the drive modules are given below.

<table>
<thead>
<tr>
<th>ACH580-34-…</th>
<th>du/dt filter type</th>
<th>ACH580-34-…</th>
<th>du/dt filter type</th>
<th>ACH580-34-…</th>
<th>du/dt filter type</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n = 400 V, IEC</td>
<td></td>
<td>U_n = 480 V, IEC</td>
<td></td>
<td>U_n = 480 V, UL (NEC)</td>
<td></td>
</tr>
<tr>
<td>246A-4</td>
<td>FOCH0260-7x</td>
<td>246A-4</td>
<td>FOCH0260-7x</td>
<td>240A-4</td>
<td>FOCH0260-7x</td>
</tr>
<tr>
<td>293A-4</td>
<td>FOCH0260-7x</td>
<td>293A-4</td>
<td>FOCH0320-50</td>
<td>302A-4</td>
<td>FOCH0320-5x</td>
</tr>
<tr>
<td>365A-4</td>
<td>FOCH0320-5x</td>
<td>365A-4</td>
<td>FOCH0320-50</td>
<td>361A-4</td>
<td>FOCH0320-5x</td>
</tr>
<tr>
<td>442A-4</td>
<td>FOCH0320-5x</td>
<td>442A-4</td>
<td>FOCH0320-50</td>
<td>414A-4</td>
<td>FOCH0320-5x</td>
</tr>
<tr>
<td>505A-4</td>
<td>FOCH0610-70</td>
<td>505A-4</td>
<td>FOCH0610-70</td>
<td>477A-4</td>
<td>FOCH0610-70</td>
</tr>
<tr>
<td>585A-4</td>
<td>FOCH0610-70</td>
<td>585A-4</td>
<td>FOCH0610-70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>650A-4</td>
<td>FOCH0610-70</td>
<td>650A-4</td>
<td>FOCH0610-70</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
242 Filters

- **Ordering codes**

<table>
<thead>
<tr>
<th>Drive module type</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH580-34-</td>
<td>3AUA0000125245</td>
</tr>
</tbody>
</table>

- **Description, installation and technical data of the FOCH filters**

See *FOCH du/dt filters hardware manual* (3AFE68577519 [English]).
26. Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure

See:

• Handling the drive module, power cable connection diagram (page 243)
• Installing the drive module and LCL filter module into a Rittal VX25 enclosure (page 245)
• Connecting the motor cables and installing the shrouds (page 250)
• Connecting the input power cables and installing the shrouds (page 253)
• Installing the air baffles and removing the cardboard covers (page 254)
Handling the drive module, power cable connection diagram

WARNING! The UDC+ and UDC- terminals of the drive module must not be used for any other than optional external brake chopper connection.
Installing the drive module and LCL filter module into a Rittal VX25 enclosure

See instructions in section Installing the drive module and LCL filter module into an enclosure (page 135).
246 Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure
Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure 247
248 Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure
Combi screw M4×8
Torx T20 2 N·m (18 lbf·in)
Combi screw M12×25 70 N·m (52 lbf·ft)
FAN3:LCL
25
24
26
250 Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure

Connecting the motor cables and installing the shrouds

See instructions in section Connecting the motor cables and installing the shrouds (option +B051) (page 136).
Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure.
Connecting the input power cables and installing the shrouds

See instructions in section Connecting the input cables and installing the shrouds (option +B051) (page 137)
254 Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure
Installing the air baffles and removing the cardboard covers

See instructions in section Installing the air baffles (page 138)
Step-by-step drawings for an installation example of standard drive configuration in Rittal VX25 800 mm wide enclosure
Further information

Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/searchchannels.

Product training
For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals
Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet at www.abb.com/drives/documents.