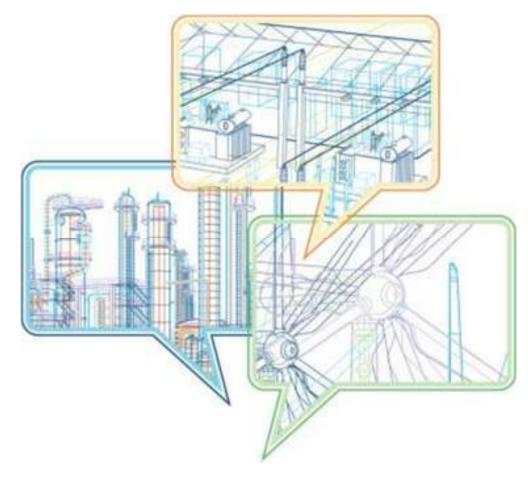


ABB Automation & Power World: April 18-21, 2011

WCS-120-1 (presentation code) Three easy steps to sizing motors and drives



Automation & Power World 2011 April 18-21, 2011 in Orlando, Florida

Automation & Power World 2011 April 18-21, 2011 in Orlando, Florida

- Save the date for this "must attend" event!
- General April 18-21, 2011
- Orlando World Center Marriott, Florida
- Over 400 hours of educational training
 - Business forum
 - Customer case studies
 - Hands-on training
 - Panel discussions
 - Technical workshops
- Earn PDHs and CEUs
- Technology & Solution Center
 - General and a second secon
- Network with your peers
- www.abb.com/a&pworld

ABB Automation & Power World At-a-glance

Educational workshops

Automation & Power World offers over 400 hours of educational workshops specifically designed to make engineers, maintenance and management more valuable to their companies.

Technology & Solution Center

Over 1 $\frac{1}{2}$ acres (70,000 ft²) of with nearly100 tons of electrical gear and 100's of experts ready to answer any of your questions and share the future of Automation & Power Solutions.

Connect with peers

With over 4,000 of your peers in attendance, this is a powerful opportunity to network and learn from the industry. In addition, over 45 customers will be sharing their own case studies.

Educational workshops developed for all audiences Just a few examples

Past attendees input

"I am impressed with the different parts of the program, the workshops and also the exhibit set-up... there is a lot of information to pick up."

Duane Souers, Georgia Pacific

"It's a great opportunity to get a lot of exposure to people and products in one week."

Pardeep Gill, Alcoa

"It is well worth the time given the opportunities to: learn from industry experts, network with peers in the same industry, learn about emerging technologies, and build excellent supplier relationships." Sanjin Osmancevic, National Grid

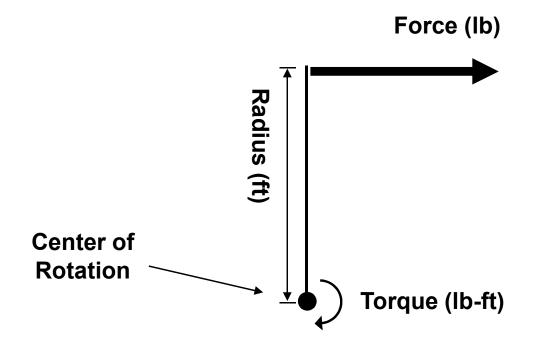
WCS-120-1 (presentation code) Three easy steps to sizing motors and drives

- Speaker name:
- Speaker title:
- Company name:
- Location:

Steve Weingarth Director, Application Eng. ABB, Inc New Berlin, WI

Drive and motor sizing made easy

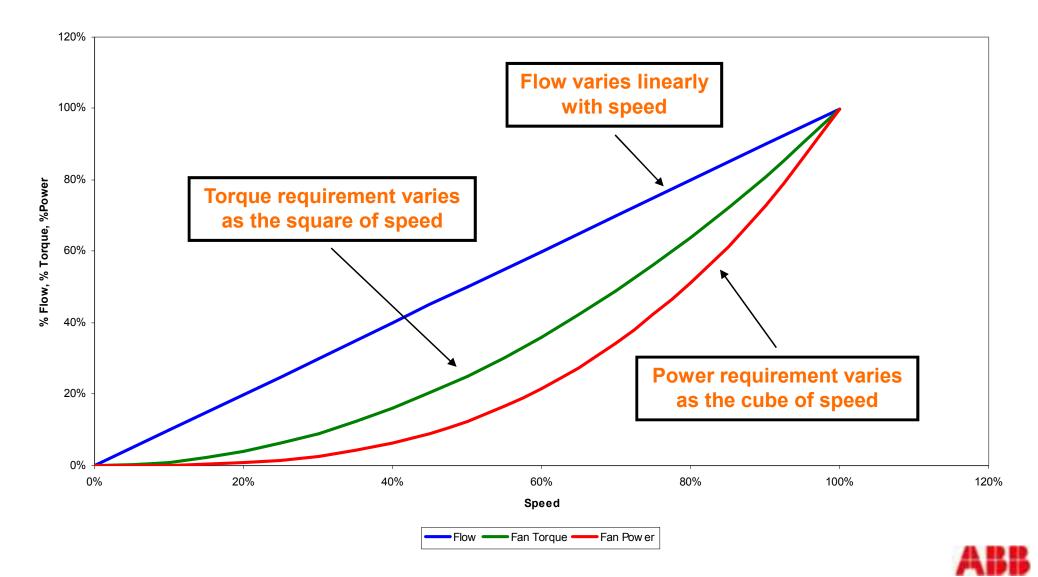
- Size your drive and motor in three easy steps
 - Determine the application requirements
 - Size the motor to meet the application
 - Size the drive to meet the motor and the application

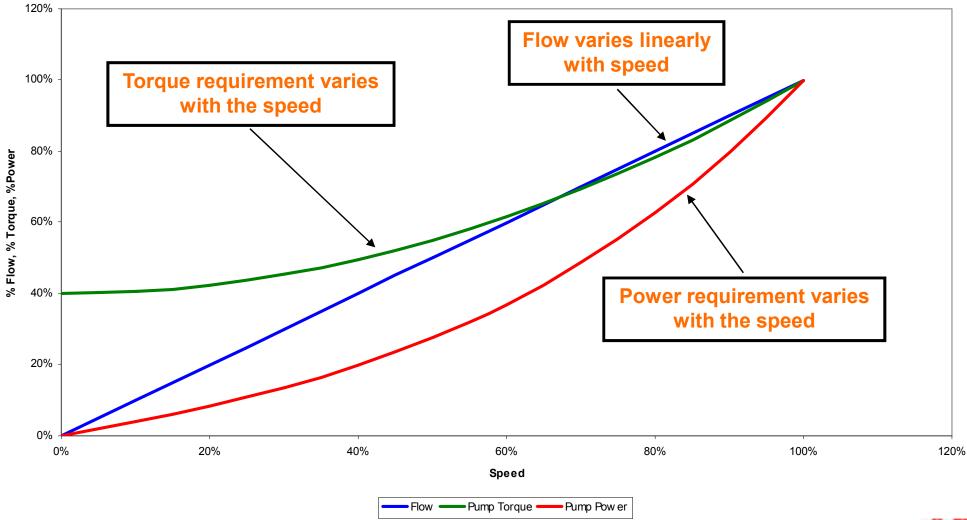

Determine the application requirements

- What are the torque requirements?
 - Motor torque (not power) is usually the decisive factor
 - Torque requirement establishes current requirement
 - Continuous torque requirements
 - Variable torque vs. constant torque
 - Intermittent (peak) torque requirements
 - Starting torque
 - Acceleration torque
- What is the speed requirement?
 - Maximum speed
 - Minimum speed

Torque, what is it?

- A measure of the effect of a force applied at a distance to an axis
 - Torque is a force that tends to rotate or turn things
 - Torque(lb-ft) = Force (lb) x Radius (ft)

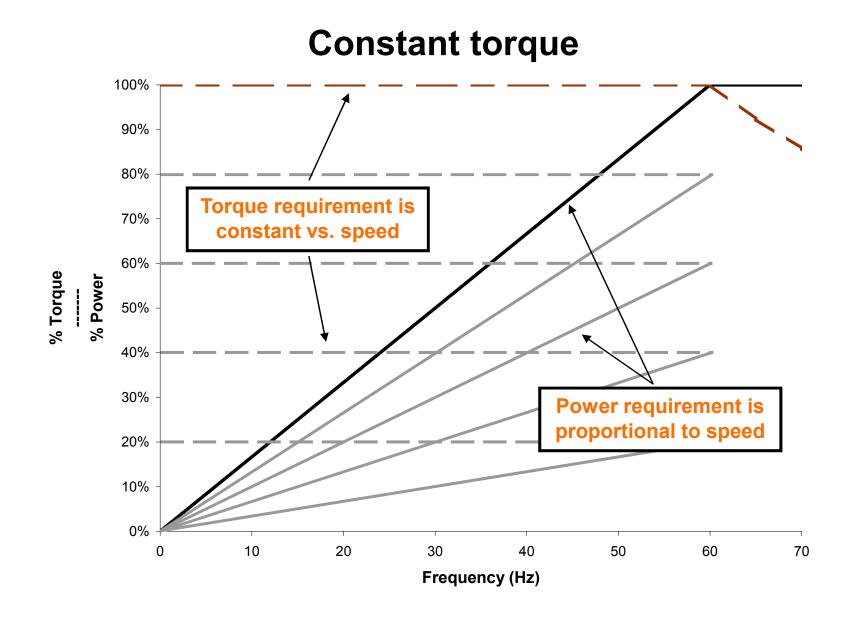

- Variable torque changes as the operating speed changes
 - Fans
 - Centrifugal pumps
 - Centrifugal blowers
 - Mixers (material dependent)



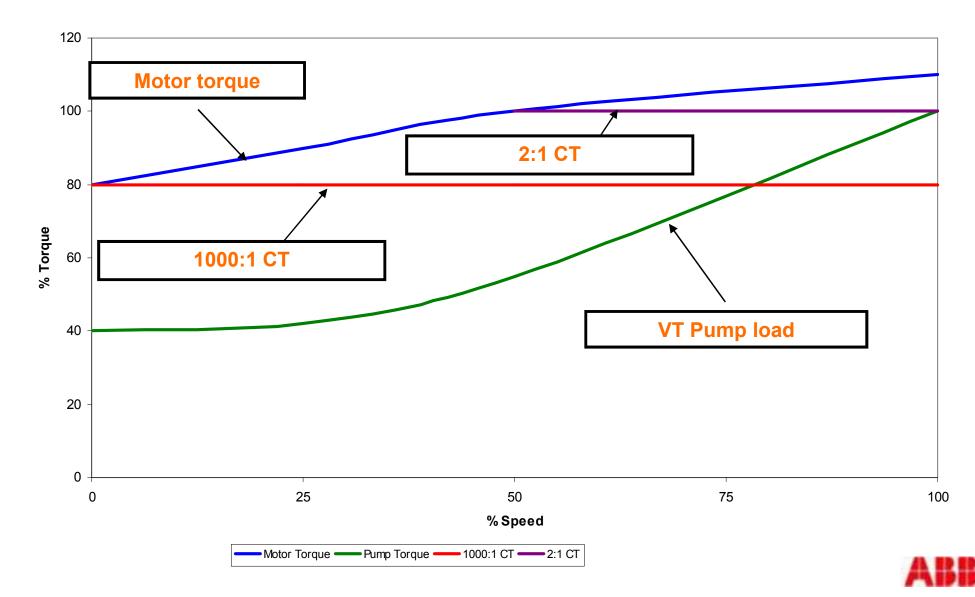
Variable torque (fan with no static head)

Variable torque (pump with static head)

Constant torque


- Constant torque remains the same as the speed changes
 - Conveyers
 - Positive displacement pumps
 - Extruders
 - Crushers
 - Mixers (material dependent)
 - Rotary kilns
 - Hoists
 - Elevators

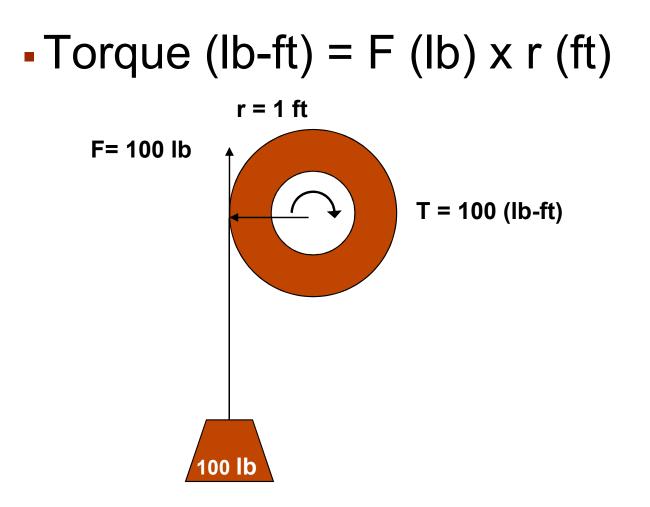
Constant torque


Constant Vs. variable torque

- Why should I care?
- Isn't all torque the same?
- Yes. But
 - Motor current is proportional to torque
 - Motor heating is proportional to current
 - In the case of a TEFC motor, cooling is proportional to speed
- Result --- a TEFC motor's ability to thermally handle torque varies with speed
- A constant torque load often requires a larger TEFC motor than that required for an equivalent variable torque load
 - Alternative is a separately driven fan, TEBC motor

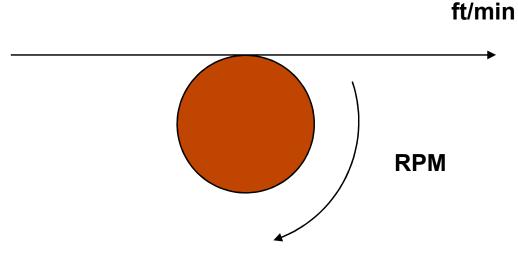
TEFC motor torque

TEFC motor



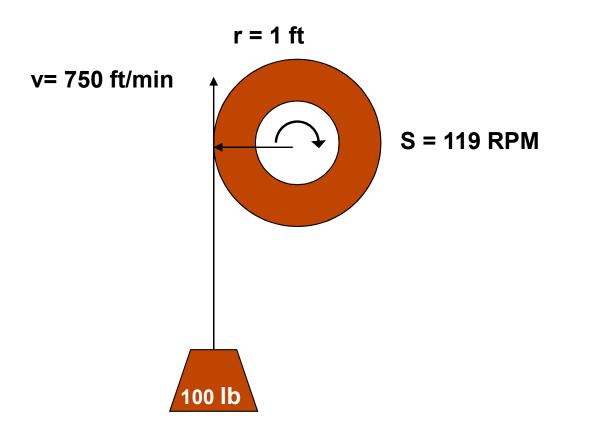
Intermittent torque

- Intermittent torque is torque that is required for a relatively short period of time. Examples:
 - Torque to breakaway the load and start motion
 - Friction
- Torque to accelerate the load
 - Inertia


Torque example

Speed

- With direct mechanical drive, motor speed is determined by mechanical speed and physical dimensions
- Speed (RPM) = v (ft/min) / (r (ft) x 2 x pi)



Speed example

- Speed (RPM) = v(ft/min) / (r(ft) x 2 x pi)
- Speed (RPM) = 750(ft/min) / (1 (ft) x 2 x pi) = 119 (RPM)

Power

- Power is the product of torque times speed
 - Power (HP) = Torque (lb-ft) x Speed (RPM) / 5252
 - For our example:
 - Torque = 100 lb-ft
 - Speed = 119 RPM
 - Power = 100 (lb-ft) x 119 (RPM) / 5252 = 2.3 HP

Motor sizing

- In our example
 - Torque = 100 lb-ft
 - Speed = 119 RPM
 - Power = 100 x 119 / 5252 = 2.3 HP
- What size motor do we pick?
 - 3 HP @ 1790 RPM?
 - 40 HP @ 1790 RPM?

	Base	Rated
HP	Speed	Torque
3	1790	9
5	1790	15
7.5	1790	22
10	1790	29
15	1790	44
30	1790	88
40	1790	117
	3 5 7.5 10 15 30	HPSpeed31790517907.51790101790151790301790

A motor only develops its nameplate power at its nameplate speed. At a reduced speed it develops a proportionately reduced power.

Motor sizing

	Base	Rated	What if we add a gear box?
HP	Speed	Torque	
3	1790	9	Torque at motor = torque / gear ratio
5	1790	15	Speed at motor = speed x gear ratio
7.5	1790	22	
10	1790	29	 Now what motor do we pick?
15	1790	44	
30	1790	88	
40	1790	117	
		1	

Gear Ratio		2	5	10	15
Torque at					
motor (lb-ft)	100	50	20	10	6.7
Speed at					
motor (RPM)	119	239	597	1194	1790

Intermittent torque

- Torque for Acceleration
 - Torque = Inertia x Acceleration rate
 - If you know:
 - Inertia (WK2) in lb-ft2
 - Acceleration time in sec.
 - Change in motor speed in RPM
 - Then:
 - Torque = WK2 (lb-ft2) x Speed(RPM) / (Accel time(sec.) x 307.6)

Intermittent torque

- Torque for Acceleration
 - Assume for our example:
 - Total WK² = 1.2 lb-ft²
 - Includes 100 lb load, drum, 15:1 gear box and motor
 - Change in speed is 1790 RPM
 - If accel time is 10 seconds
 - Accel Torque = 1.2(lb-ft²) x 1790(RPM) / (10(sec.) x 307.6)
 - Accel Torque = 0.7(lb-ft)
 - Total torque = 6.7 + 0.7 = 7.4 lb-ft; less than rated motor torque
 - If accel time = 1 second
 - Accel Torque = 1.2(lb-ft²) x 1790(RPM) / (1(sec.) x 307.6)
 - Accel Torque = 7.0 (lb-ft)
 - Total torque = 6.7 + 7.0 = 13.7 lb-ft, 150% of rated motor torque

Pick a drive

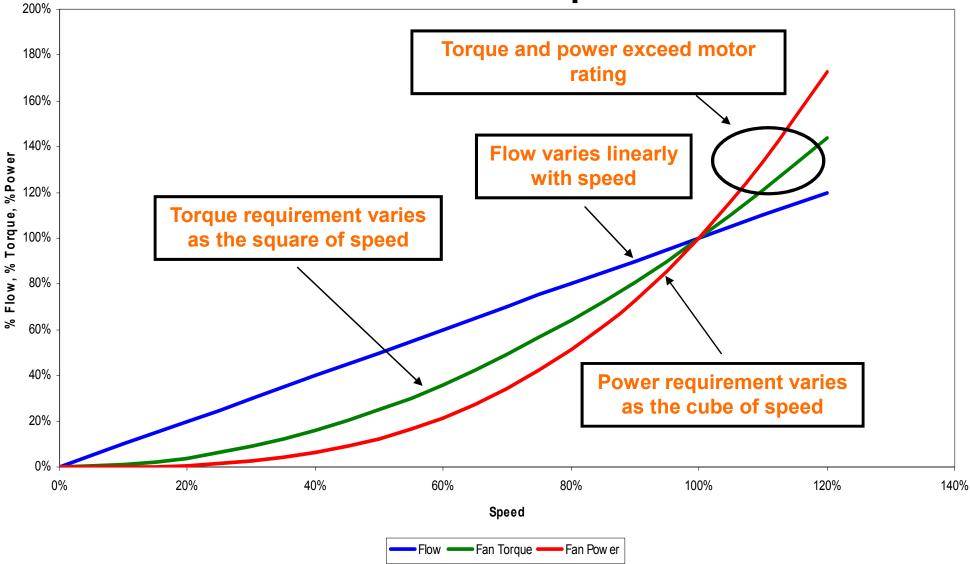
- Assume for our example:
 - Motor is 3 HP, 1790 rpm, 4.2 FLA, 9 lb-ft
 - Torque to lift load and accel in 10 s is 7.4 lb-ft
 - Max current is less than 4.2 amps
 - Use 3 HP normal duty drive, 4.9 amps, with 110%
 O.L. (5.4 amps peak)
 - Torque to lift load and accel in 1 s is 13.7 lb-ft
 - Max current is about 6.4 amps
 - Use 3 HP heavy duty drive, 5.6 amps, with 150%
 O.L. (8.4 amps peak)

Sample rating table

ACS800-U1 size	I _{max}	Normal use He		Heavy-duty use		Frame size	Air flow	Heat dissipation
		1 _{2N}	PN	I _{2hd}	P _{hd}	1		
	A	A	HP	A	HP		ft ³ /min	BTU/Hr
Three-phase supply voltage 208 V, 220 V, 230 V or 240 V								
-0002-2	8.2	6.6	1.5	4.6	1	R2	21	350
-0003-2	10.8	8.1	2	6.6	1.5	R2	21	350
-0004-2	13.8	11	3	7.5	2	R2	21	410
-0006-2	24	21	5	13	3	R3	41	550
-0009-2	32	27	7.5	17	5	R3	41	680
-0011-2	46	34	10	25	7.5	R3	41	850
-0016-2	62	42	15	31	10	R4	61	1150
-0020-2	72	54	20 *	42	15 **	R4	61	1490
-0025-2	86	69	25	54	20 **	R5	147	1790
-0030-2	112	80	30	68	25 **	R5	147	2090
-0040-2	138	104	40 *	80	30 **	R5	147	2770
-0050-2	164	132	50	104	40	R6	238	3370
-0060-2	202	157	60	130	50 **	R6	238	4050
-0070-2	282	192	75	154	60 **	R6	238	4910
Three-phase supp	bly voltage	380 V, 40	9 V, 415 V,	440 V, 46	0 V or 480			
-0004-5	6.5	4.9	3	3.4	2	R2	21	410
-0005-5	8.2	6.2	3	42	2	R2	21	480
-0006-5	10.8	8.1	5	5.6	3	R2	21	550
-0009-5	13.8	11	7.5	0.1	5	R2	21	690
-0011-5	17.6	14	10	11	7.5	R2	21	860
-0016-5	24	21	15	15	10	R3	41	1150
-0020-5	32	27	20	21	15	R3	41	1490
-0025-5	46	34	25	27	20	R3	41	1790

Special cases

- Intermittent torque is required for a relatively long time
 - Large inertias
 - Results in long accel time, several minutes
 - Drive and motor sized for acceleration torque
 - Examples
 - Centrifuges
 - Kilns
 - Long periods of breakaway torque
 - Mixer starting with product



Watch the limits

- Limits that can come in to play
 - Torque
 - AC Motors have max torque limits, about 200% (Drive limits motor to about 70% of motor's rated breakdown torque)
 - Speed
 - Limited by maximum safe mechanical speed
 - Limited by maximum drive frequency
 - Limited by reduced maximum torque above base speed (Constant HP operation)
 - Current
 - Limited by inverter
 - Full speed motor current rises when line voltage is low
 - Regenerative (braking) torque
 - If less than 10% flux braking may be good enough
 - If more than 10% but intermittent, such has stopping only, use brake chopper and resistor
 - If more than 10% and continuous, consider a regenerative drive

Variable torque above base speed

Conclusion

- Drive sizing made easy
 - Determine the application's requirements
 - Torque
 - Continuous
 - Intermittent
 - Speed
 - Pick the motor
 - Try to gear in to run at base speed
 - Size on torque not power!
 - Pick the inverter
 - Continuous current
 - Overload current

Now, that's easy!

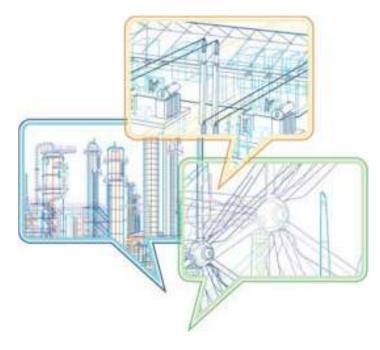
Automation & Power World 2011 April 18-21, 2011 in Orlando, Florida

Workshop statistics Over 400 hours of training

- ~45 customer presented case studies
- 87 sessions in the Technology and Solution Center
- 11 hours of panel discussions consisting of customers, industry experts and ABB executives
- Nearly 50 hours of hands on technical training

ABB Automation & Power World Registration options

	Full Conference	Courtesy Registration
Access to ABB product developers and application experts in the 70,000 ft ² (over 1.5 acre) Technology & Solution Center		
Access to a series of complimentary and educational workshops.		
Free Lunch and Tuesday Evening Reception		
Access to over 300 additional educational workshops – Including ARC Analysts presentations		
Up to \$1,500 off a future ABB purchase*		
Complimentary ARC report valued at \$2,500!*		
Evening Events (Monday and Wednesday)		
* See <u>www.abb.com/a&pworld</u> for more details	\$300 per day or \$800 for all three days.	Free!


Top ten reasons to attend

- Become more valuable, choose from over 400 educational workshops and hands-on training sessions
- Connect with thousands of peers and industry experts from 40 countries
- Ask questions of, and give feedback to, ABB product developers and executive management
- Get up to date with new and emerging technologies and industry trends
- Learn how to maximize the value from your existing assets
- Discover how to improve grid reliability, energy efficiency and industrial productivity
- Apply lessons learned from over 45 customer-presented case studies
- Focus on critical non-technical issues facing your company in the business forums
- Succeed professionally by earning CEUs on select workshops and PDHs for every workshop you attend
- See the widest range of technologies from one company at one conference!

Automation & Power World 2011 April 18-21, 2011 in Orlando, Florida

Register today!

www.abb.com/a&pworld

Join the Automation & Power conversation: **Stay in the loop**:

Power and productivity for a better world[™]

