Functional Safety Assessments & IEC 61508 Development of a competency scheme for functional safety assessors

Stuart R Nunns BSc, CEng, FIET, FInstMC ABB Ltd

1.0 Introduction

Functional Safety Assessments (FSAs) are undertaken in addition to the traditional safety lifecycle activities of verification, validation and functional safety audits. These safety lifecycle activities are typically planned and executed directly by the safety-related systems project team implementing phase(s) of the safety lifecycle. The purpose of a FSA is to independently ensure that functional safety has been achieved within the specific scope of supply for the organisation(s) in the context of the safety lifecycle.

Performing FSAs requires staff to have a high level of knowledge of IEC 61508 [Ref 1] & IEC 61511[Ref 2] combined with assessment experience who can ensure a careful balance between subjectivity and objectivity. This paper describes the approach taken by ABB in developing a competency scheme for functional safety assessors who operate in ABB's global Safety Execution Centres (SEC's)

2.0 Functional Safety Management within ABB

Figure 1 - SEC and SLCC responsibilities

ABB is a global company who engineer safety-related systems through SEC's located in 25 countries around the world. These SEC's work to a Functional Safety Management System (FSMS) that is compliant and certified to IEC 61508/IEC61511. The SEC's are supported by a corporate functional safety authority, the Safety Lead Competency Centre (SLCC). Figure 1 below outlines the relationship between the SEC's and the SLCC.

Instantiate FSMS Safety syst SEC FS Consultancy SEC FS Design Authority Generic FS Management SEC SEC System (FSMS) SLCC Training of FS Assessors Approval of FS Assessors SEC SEC

Recognising the importance of competency as an integral part of this functional safety management system, ABB developed a competency framework for functional safety assessors drawing on *good practice* competency guidance by way of the IET [Ref 3], IET/BCS [Ref 4], HSE [Ref 5] and the CASS Scheme [Ref 6]

Safety-related projects are engineered in accordance with a safety life cycle mapped across to IEC 61508 Phase 5 and IEC 61511 phase 4. In the context of the end-to-end safety instrumented system, the SEC's are typically responsible for the logic solver subsystem as shown in the following figure.

Each safety project is subject to two functional safety audits and a functional safety assessment performed at three stages of the safety design and engineering activities. Safety projects can be 'green field' and 'brown field' and linked to on-going support contracts involving modifications to existing safety systems. The audits are performed by the SEC QA function and form an integral part of the SEC's ISO 9001 certification. The functional safety assessments are performed by competent 'independent-from-project' functional safety assessors in accordance with the requirements of the standards.

3.0 The FS Assessor competency scheme

As stated in section 2 an SEC engineers safety-related systems in accordance with the requirements of IEC 61508 Phase 5 and IEC 61511 Phase 4. However, one of the challenges faced by the company was to develop a competency scheme for FS assessors which could be rolled out across all of the company's 25 SEC's, which was cost effective, easily managed and represented a pragmatic interpretation of the requirements of the standards. It had to have the support and endorsement of each of the SEC's senior management. FS assessments and the responsibilities of the FS assessors had to align to the requirements of the standards. Because the SEC's work predominantly in the Oil, Gas and Petrochemical sectors, the decision was taken to use IEC 61511 as the applicable standard for guidance on performing functional safety assessments.

Candidate FS assessors have to meet minimum eligibility requirements:

- To be actively working within an SEC using the compliant FSMS
- To have previously attended ABB University courses on FS management, IEC 61508/61511 and SIL Achievement
- To have a minimum of 2 years in safety projects

Additional desirable eligibility requirements are:

- TUV FS Eng qualification
- Experience in auditing
- Education to degree level

Candidates are then required to provide a detailed Curriculum Vitae, focussed on functional safety detail including:

- Qualifications
- Training (courses, seminars, conferences)
- Publications
- Additional relevant experience (e.g. control systems, oil & gas, petrochemical, chemical, reviews and auditing)
- A comprehensive list of safety projects undertaken, covering:
 - Project description and scope
 - Responsibilities and key work activities
 - Application (e.g. F&G, ESD, BMS)
 - \circ SIL rating
 - Complexity and novelty of technology

The IET and IET/BCS were used to assist in identifying core competencies relevant to these phases of the safety lifecycle. These were then reviewed and developed into a set of core competencies tailored to the specific role and organisational model in use within the SEC's resulting in the following set of core competency requirements:

- Domain and safety related knowledge
- Project execution and review
- System architectural design
- System hardware realisation
- System software realisation
- Verification and validation
- Safety-related system operation, maintenance and modification

Each of these core competencies has associated tasks and attributes with guidance notes. Candidate FS assessors are required to provide supporting evidence against each of these core competency requirements, in particular their knowledge, experience, training and qualifications.

The information provided by the assessor is reviewed by the SEC manager and also by the company's global FS manager within the SLCC. If required, an interview may be necessary (local or remote) to establish more details of the experience and knowledge.

The tables below provide extracts from the competency proforma

٦

	met	
Evaluating	Can evaluate	
solutions	architectural design	
	solutions against	
	performance criteria	
	to provide a safety-	
	compliant solution	
Specifying safety-	Can specify a system	
related system	architecture that	
architecture	meets the safety	
	requirements in both	
	hardware and	
	software	
Knowledge of ABB	Has knowledge of	
safety technology	ABB safety	
	technology, safety	
	manual and reliability	
	handbooks, and	
	practical experience	
	in at least one safety	
	platform	

Core Competency – Extract from Domain & safety		
knowledge	Deres to day	Contractorio de la
Associated tasks & attributes	Description	Context statement (supporting information to qualifications, training, knowledge & experience)
Domain knowledge	Has knowledge and understanding of the oil & gas industry. General knowledge of processes, plants, hazards and operational environment	
Principles of functional safety practices & assurance	Has a basic knowledge and understanding of functional safety practices and principles of functional safety assurance, hazard & risk assessment, ALARP	
Interpreting safety requirements	Can understand and interpret safety requirements in order to devise an implementation strategy and develops functional design specifications based on those requirements	
Core Competency – Extract from system		
Associated tasks & attributes	Description	Context statement (supporting information to qualifications, training, knowledge & experience)
Partitioning safety requirements	Can partition safety requirements into individual subsystems and functions so that the overall safety requirements can be	

Core Competency – Extract from system software realisation		
Associated tasks & attributes	Description	Context statement (supporting information to qualifications, training, knowledge & experience)
Interpreting safety requirements for system software design and engineering	Can interpret safety requirements and determine whether these are complete and feasible for transposing into software design	
Transposing requirements into software design	Can produce software design specifications based on safety requirements, that are coherent, clear and testable and recognise software constraints	
Producing and analysing code	Can translate a software functional design specification into modular, understandable and analysable source code using a relevant programming language (e.g LVL(

Core Competency – Extract from Verification and Validation		
Description	Context statement (supporting information to qualifications, training, knowledge & experience)	
Has knowledge of a range of relevant test and analysis methods and measures for safety assurance, and insight for applying		
	Description Has knowledge of a range of relevant test and analysis methods and measures for safety assurance, and insight for applying them into a general	

	verification and	
	validation plan and	
	specifications. Can	
	develop a V&V plan	
	and produce stage	
	specific	
	specifications for	
	different V&V	
	phases; e.g. IAT,	
	FAT, SAT	
SIL analysis	Can develop and	
-	interpret SIL	
	achievement reports	
	congruent with the	
	safety requirements	
	specification, FDS	
	and the scope of	
	supply. Can interpret	
	and analyse SIL	
	achievement reports.	
Specifying software	Can produce	
tests	software test	
	specifications	
	congruent with the	
	test stage, which can	
	detect systematic	
	errors and omissions	
	on the software	
	functionality through	
	the use of	
	appropriate methods	
	and techniques	

On completion of this information and subject to the candidate having achieved a specific threshold, they are nominated as *'Provisional FS Assessors'*.

The next stage is for the candidate to attend a three-day training course on performing functional safety assessments. The objectives of the course are to:

- Develop core competencies in functional safety assessment
- Train candidates in the ABB functional safety assessment process, methodology and reporting
- Provide an understanding of the impact FS assessments have on a safety project
- Introduce the techniques used in performing FS assessments
- Overlay the FS implementation points to the safety lifecycle model and the specific processes and deliverables to be assessed at implementation points

The course is intended to reinforce the attendees' knowledge in the FSMS and to develop the following safety assessment related skills.

Skills	Description
Scope and context	Can identify the safety scope
appreciation and strategy	of the project and its context,
selection	and determine the best
	assessment strategy
Assessment Planning	Can develop plans for
	assessing a project based on
	its scope, size and context
Safety auditing & eliciting	Can perform an assessment
information	using audit techniques using a
	non-confrontational but
	tenacious style for soliciting
	evidence
Reviewing safety	Can review systematically and
documentation	accurately safety-related
	documentation identifying the

	main features and issues
Forming a judgement	Can make an unambiguous
	judgement with a reasoned
	argument on whether safety
	objectives have been achieved
Report writing	Can produce reports with
	accuracy, logical structure and
Assossing safety analysis	
Assessing salety analysis	documents in order to judge
	safety compliance identify
	issues and the need of further
	safety analyses. Can make a
	judgement and constructing
	logical arguments for safety
	compliance
Managing outcomes &	Can manage and track
monitoring compliance	effectively results of a safety
	assessment, such that
	necessary corrective actions
	and recommendations are
Knowledge of safety	Has knowledge of relevant
regulations and standards	safety regulations focused
(regulatory and legal	on IFC 61508/61511
compliance)	compliance, and can
	determine whether
	requirements have been met,
	included lifecycle
	management, hardware and
	software realization
Principles of functional	Has a knowledge and
safety practices & assurance	understanding of functional
	of functional safety assurance
	(hazards risk ALARP safety
	nrinciples etc.)
Principles of functional	Has a knowledge and
safety management specific	understanding of the SLCC
to SEC	recommended safety lifecycle
	and FSMS
Methodical approach	Can select and apply relevant
	methods to plan, execute and
	complete the assessment
To see a station of	
I eam working	vvorks well within a team,
	and creating a cellaborative
	environment
Professional standing and	Has a level of personal
nersonal integrity	standing sufficient to give
personal integrity	credibility to judgements on
	safety assessments. and a
	verifiable record of personal
	independence and integrity
Attention to accuracy and	Recognize incomplete,
detail	inaccurate and misleading
	pieces of information design
	and test specifications and
	reports

The course duration is three days, two thirds of this time requires attendees to work in break-out groups performing functional safety assessments on an actual safety project (sanitised and seeded with errors and omissions) and to feedback their findings. In addition there are a number of individual multi-choice exercises for course candidates to complete to a satisfactory level.

Candidates are provided with checklists and guide-words to assist them in performing future assessments. However, these are provided as an aide memoir and should not be used to drive the assessment.

Following attendance at the training course a mentoring process commences whereby the global FS Manager and his core team of FS

Assessors will act as observers at an agreed number of FS assessments undertaken by the individual assessors within their SEC. This process will provide feedback on the planning, performance, analysis and recording of findings. After an agreed number of mentoring assignments the FS Assessors will have there status changed from '*Provisional FS Assessor*' to '*FS Assessor*'. This allows the assessor to undertake FS assessments within their local SEC and also if required within other SEC's operating as a cluster within defined regions of the world.

Finally, it is planned to organise annual meetings of FS Assessors to enable them to exchange experiences, findings and suggestions for improvements to the process itself.

4.0 Conclusions

When operating in the safety-related systems domain, organisations need to recognise the importance and relevance of the competency of individuals and teams. The competency of those involved in the assessment of functional safety is equally, if not more important, as the competency of those engineering such systems. FS Assessors operate with a high level of independence and impartiality and need to demonstrate professionalism and integrity in the tasks they are asked to perform. Their recommendations on the achievement of functional safety of a safety-related system and project can have significant impact on not only the project but the organisation as a whole. Independent FS Assessments provide an additional level of assurance to clients and regulatory authorities.

This paper is designed to provide the reader with an overview of the approach taken in the development of a competency framework for FS Assessors within the global safety organisation. It is a major exercise in its own right and requires commitment of resources and support from senior management. Measure need to be put in place to ensure continuous feedback from the FS Assessors enabling improvements to be made to the implementation of these assessments.

References

1	IEC 61508 Functional safety of
	electrical/electronic/programmable electronic
	safety-related systems
2	IEC 61511 Functional safety – Safety instrumen

- 2 IEC 61511 Functional safety Safety instrumented systems for the process industry sector
- 3 IET Competence criteria for safety-related system practitioners
- 4 IET/BCS Competency Framework for
- Independent Safety Assessors (ISAs)
- 5 HSE Managing competence for safety-related systems
- 6 The CASS Assessor Competency Scheme