ABB ABILITY ENERGY MANAGEMENT FOR SITES

OPTIMAX® for Smart Charging

ABB AbilityTM Energy Management for Sites Smart Energy Management for EV Charging – February 2020

••

OPTIMAX® for Smart Charging

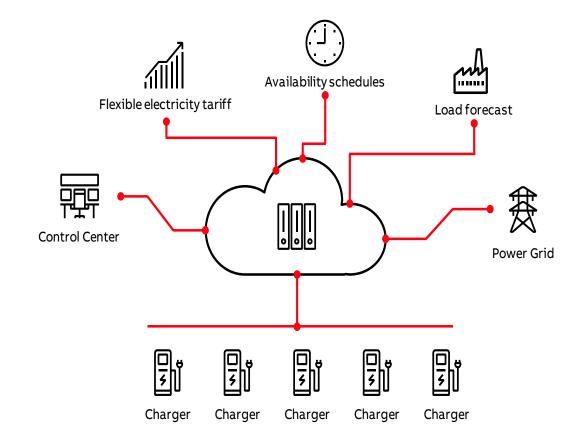
OPTIMAX for Smart Charging - Smart Energy Management for EV Charging helps customers that install EV charging infrastructure to

- meet grid limits
- minimize grid extensions
- avoid peaks
- reduce energy cost
- ensure safe operation

What's happening in the industry?

The problem

The key challenge for customers installing EV Charging Infrastructure is


- Significantly higher energy consumption than before
- All cars and busses need to be charged to be fully operational

The situation

- Charging infrastructure requires a bigger grid connection
- High power charging can exceed grid limits
- Peak loads at prime times
- Long standing time

OPTIMAX® for Smart Charging

The benefit

- Avoid extensive grid extensions
- Avoid exceed grid limits
- Avoid peaks at prime times
- Reduce cost of energy consumed by charging vehicles

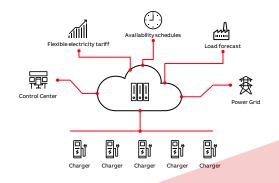
The value

Reduce the cost for power and energy, when installing and operating charging stations.

- Reduce CAPEX: decrease grid connection cost when installing Charging infrastructure, avoid exceed grid capacity
- Reduce OPEX: Better distribute energy consumption while loading E-Vehicle to avoid peaks and high price times

No manual interaction for delivering

OPTIMAX for Smart Charging


Are you facing the challenge?

Bus depot charging	Bus operators Transportation companies who are switching to electric buses
Service stations	Utilities building up service stations along the road
	Charging point operators or municipal utilities who offer electric charging infrastructure but need to satisfy grid limits
	Charging station operators operate many sites with multiple chargers on each site
Service car fleets	Companies having electric service cars Enterprises with large EV fleets
Commercial areas	Private car owners are charging on someone else's premise
	Retail customer parking Commercial site owners like shopping malls, hotels supermarkets who offer electric vehicle charging to their customers
	Company employer parking Enterprises with increasing number of employees owning electric vehicles
	Municipalities (parking houses, public car parking,)
	Airports
Residential areas	Charging for private residents and hotels, smart cities / urban developer

OPTIMAX® for Smart Charging

How it works and what's delivered

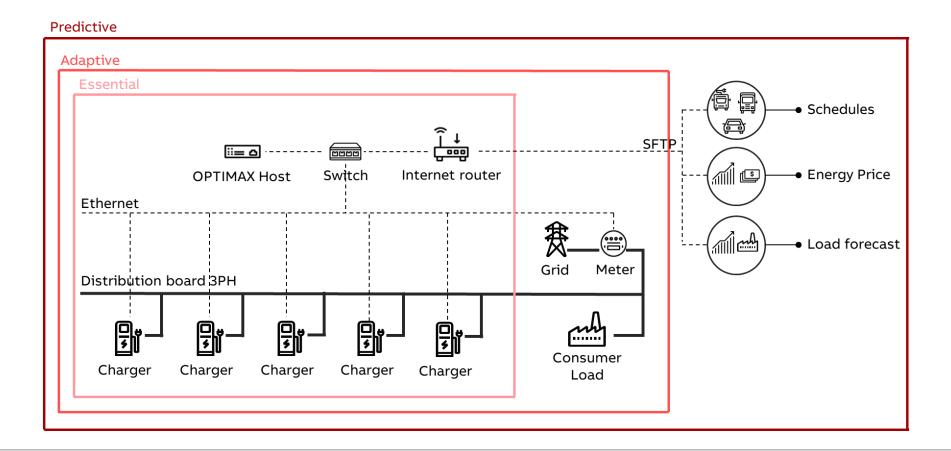
OPTIMAX® for Smart Charging - Smart Energy Management for EV Charging

Essential	Adaptive	Predictive	Site EMS	Virtual Power Plant
For sites with a fixed charging allocation	For sites with dynamic charging allocation	For large EV fleets, bus and service centers	For sites with on- site generation	Trading the flexibility of multiple sites
 ✓ Improved safety ✓ Never exceed your grid limit ✓ Avoid overloading your circuit ✓ Reduce likelihood of a grid extension 	 ✓ Flexibility to meet your site needs ✓ Maximized charging power ✓ Avoid overloading your circuit ✓ Reduce energy costs 	 ✓ Reduce energy costs ✓ Reduce grid extensions ✓ Safe and optimal control ✓ Enable data based decision making 	 ✓ Maximize on-site generation ✓ Reduce energy costs ✓ Safe and optimal control ✓ Enable data based decision making 	 ✓ Maximize revenues ✓ Trade flexibilities ✓ Grid stabilization ✓ Enable data based decision making

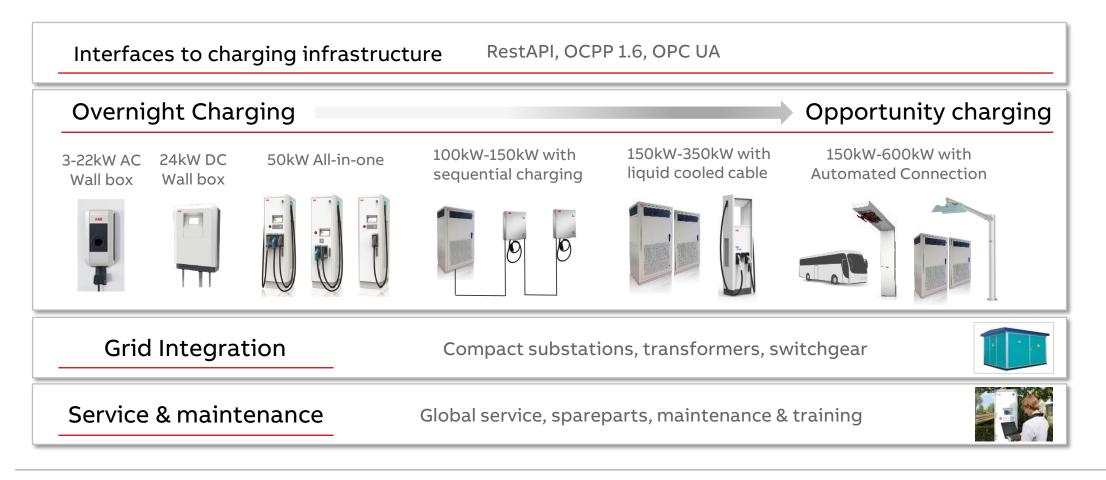
A solution to fit the needs of every charging application

Smart Charging – Functionalities per product

	EVI	ΟΡΤΙΜΑΧ		
Functionalities and Modules	EVI	Essential	Adaptive	Predictive
Smart Charging Optimization	х	х	x	x
Visualization		x	x	x
Setpoint to all chargers	х	х	х	х
Alarms and Warning		x*	х	х
Email notification				х
Adaptive grid limit			x	x
Optimal charging schedules				х
Pre-configured IPC		о	о	о
Redundant Setup on Pre-configured IPC				0
Power measurement			x	х
BESS as booster (Modbus TCP)			0	ο
PV Inverter (Sunspec)			0	ο
Additional Loads (Modbus TCP)			0	0
Advanced Monitoring (archive function for KPI calculation)			0*	о
Vehicle schedules Import				х
Price forecast import				х
Dynamic Pricing				x
Archive				x


	Smart Charging CARE					
Yearly Services	Essential	Adaptive	Predictive	Site EMS		
Software Usage	х	х	х	х		
Application support	0	0	O/X*SaaS	O/X*SaaS		
Provision of Patches	х	х	х	х		
Provision of Software Update	х	х	х	х		
Annual review ¹		0	х	х		
Quarterly review		0	O/X* ^{SaaS}	O/X* ^{SaaS}		

©**ABB** April 20, 2020 X ... included O ... optional * ... coming soon


Slide 9

ABB

OPTIMAX for Smart Charging – System Architecture

OPTIMAX® for Smart Charging – Integrate charging Infrastructure with OPTIMAX Smart Charging

OPTIMAX® for Smart Charging – Case Studies

- Opportunity Charging in Leiden, NL
- Audi Retailer Adaptive Smart Charging, Krefeld, DE
- Service Car Fleet at Allgäuer Überlandwerke, DE
- Mission to Zero ABB Busch-Jaeger Factory

OPTIMAX for Smart Charging – Essential Module

Reference Project: Arriva Leiden, NL Enabling maximum utilization of available power for opportunity bus charging

Challenge:

Grid connection is smaller than the capacity of the opportunity chargers.

CAPEX Savings: No need to increase grid connection

Solution:

OPTIMAX actively decides how much power each charger and therefore each bus receives per charging session:

- If one bus is charging with full power, the other will only receive the leftover power (100kW).
- After first bus is fully charged and stops the charging session, the second bus will be able to charge at full power.

OPTIMAX Control Box

Easy and safe integration of charging infrastructure into sites with constraints while allowing optimal usage.

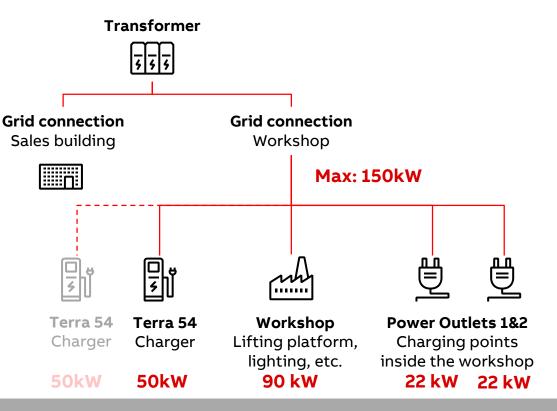
OPTIMAX for Smart Charging – Adaptive Module

Krefeld – Audi retailer Project overview

Integrating charging infrastructure by dynamically adapting to real time values

Challenge:

Power supplied by the grid is too small to allow all charge points to operate with full power.


Power used by the body shop varies with the tools that are used.

To make sure fuse is not blown maximum possible power usage of body shop needs to be reserved all the time.

Adding more charging infrastructure makes it even less efficient because maximum power needs to be limited.

Solution:

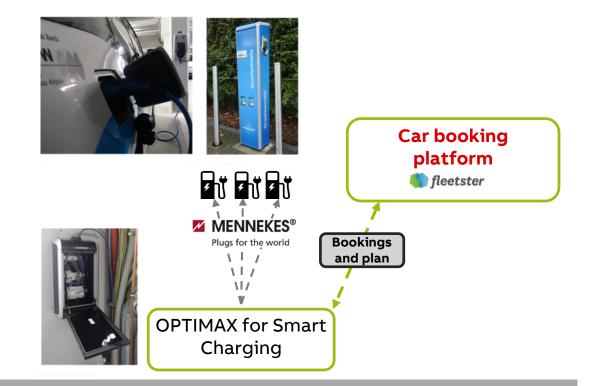
OPTIMAX dynamically adjusts power for charging stations by calculating the available power with the help of a power measurement at the grid connection.

Enabling maximal use of available power by considering other consumers.

OPTIMAX for Smart Charging

Reference project: 3connect, Kempten DE

Limiting the power that can be drawn by a set of chargers


Challenge:

Combined maximum power of chargers exceeds the grid connection.

Solution:

Limiting the available power for all charging points depending on the information from the fleetster car booking platform.

Vehicle	Charging power	Available power per charge point
Smart electrive drive	3,6 kW (1-phase)	11 kW
BMW i3 Range Extender	11 kW (3-phase)	11 kW
Audi A3 e-tron	3,6 kW (1-phase)	11 kW
BMW i3	11 kW (3-phase)	22 kW
VW Golf GTE	3,6 kW (1-phase)	22 kW
VW e-Caddy	11 kW (3-phase)	22 kW
Other	Max. 22 kW (3phase)	22 kW

Generating CAPEX savings by eliminating the need to increase the grid connection.

Gefördert durch:

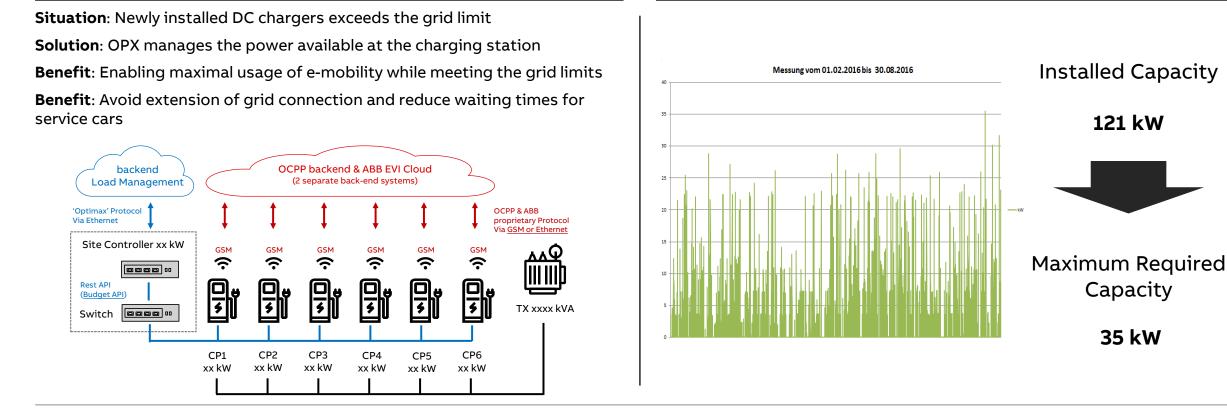
aufgrund eines Beschlusses des Deutschen Bundestages

Installed Capacity

121 kW

Capacity

35 kW

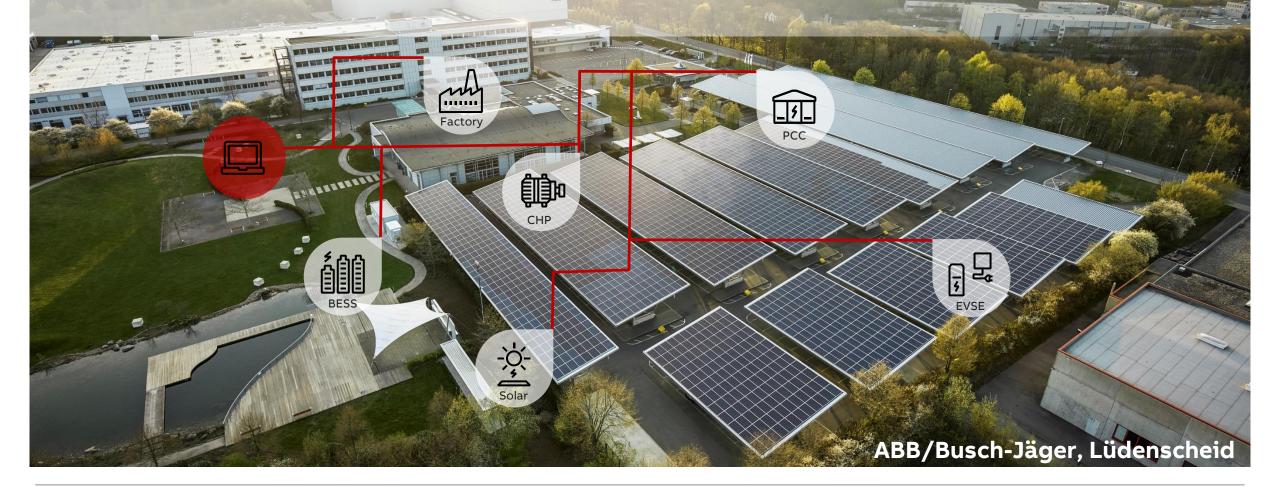

Bundesministerium für Wirtschaft und Technologie

OPTIMAX for Smart Charging

Essential Load Management

Reference project: 3connect, Kempten DE

Limiting the power that can be drawn by a set of chargers

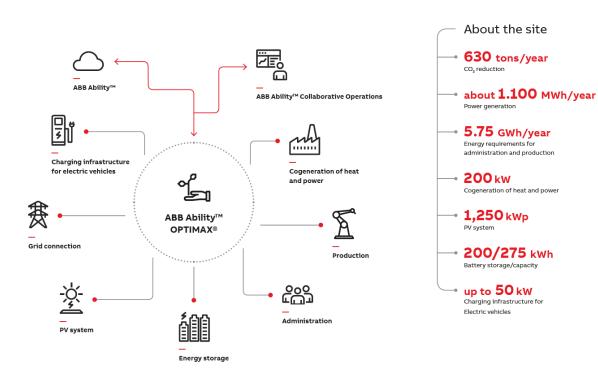


Results from the Field Test

ABB – Mission to Zero

Slide 17

The future of electrification is safe, smart and Carbon neutral - through OPTIMAX optimization


©**ABB** April 20, 2020 BESS: Battery Energy Storage System CHP: Combined heat and power EVSE: Electric Vehicle Supply Equipment PCC: Point of common coupling

ABB

ABB Factory Busch-Jaeger Lüdenscheid – Mission to Zero

Fact Sheet - Mission to Zero

Achieved with OPTIMAX

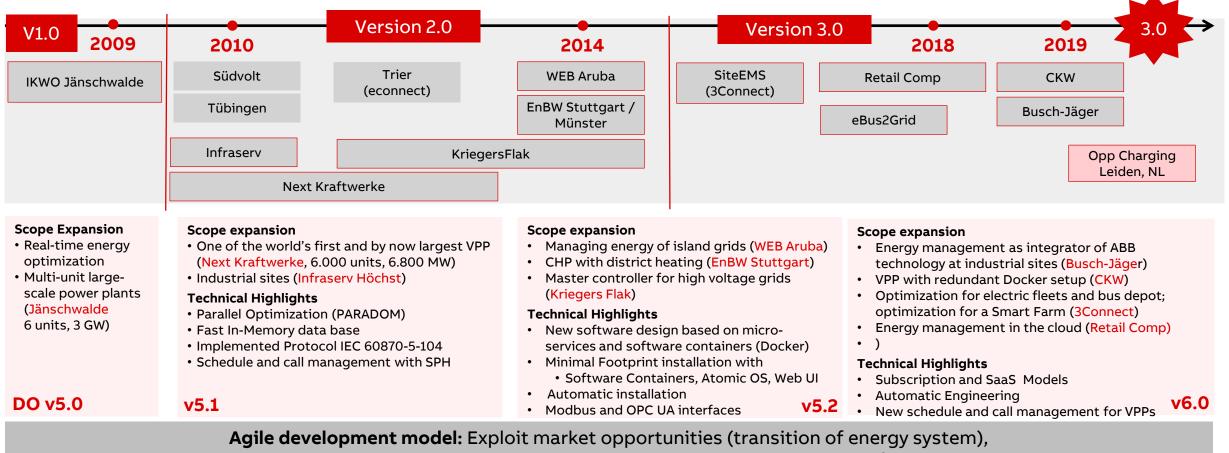
Create operational visibility	Saved time
Have a clear picture of consumption versus	5 - 20h/m
energy prices	Reduced CO ₂
Track carbon emissions	630 tons/year
Optimal utilization of the connected assets	Reduced Cost
Forecast loads and on-site generation	4,2% ¹⁾
Participation at energy markets Enabled the participation at real-time markets Use dynamic pricing schemes from the EaaS provider MVV	Increased revenues 2 – 5% ²⁾

©ABB

April 20, 2020

Slide 18

<u>https://new.abb.com/mission-to-zero/</u> compared to non-optimized operation


compared to non-optimized operat
 Evaluation ongoing

ABB

OPTIMAX® for Smart Charging Why ABB

ABB Dynamic Optimization development driven by project requirements

OPTIMAX – A modern and widespread energy management software

Close interaction with pilot customers, R&D with partners, public, co-funding

OPTIMAX for Smart Charging

Leading software in Energy Management

Easily scalable and flexible

- Easily move to higher value service (Adaptive, Predictive, SiteEMS)
- Expand sites from 3 to over 100 chargers
- Expand over many sites

Plug & Play with ABB

- Plug & Play for a wide range of charging infrastructure
- T5x, HVI, THP, DC Wallbox, Opp & Depot Charging, AC Wallboxes

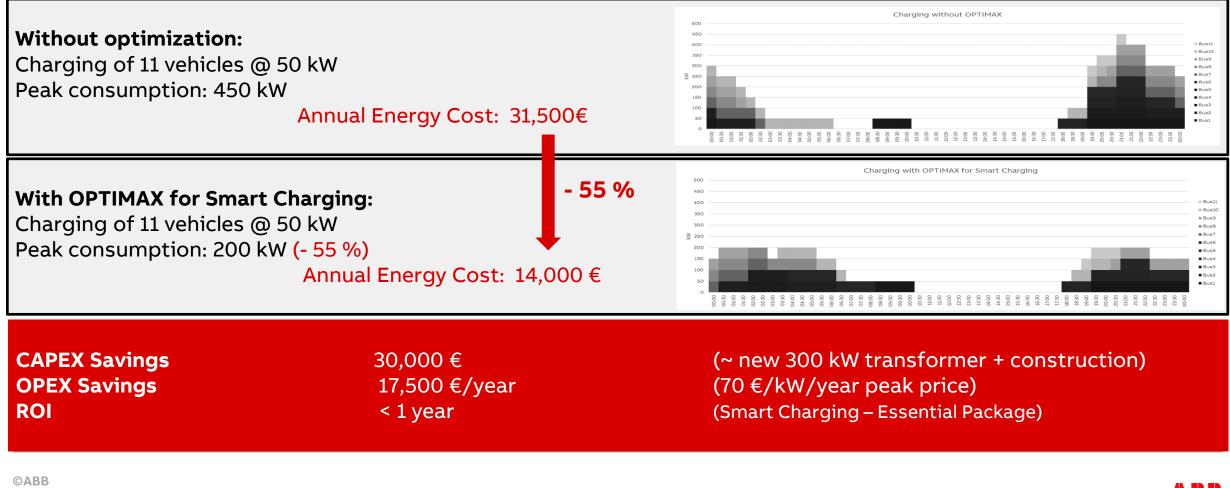
Deep energy expertise

Proven expertise with more than 30 years of experience in energy management in almost all energy industries

Superior technologies

The world's most modern and widespread used energy management software

Complete portfolio


We offer the most comprehensive range of energy management solutions.

OPTIMAX is managing your charging infrastructure

Let's calculate the value

OPTIMAX® for Smart Charging

Demo

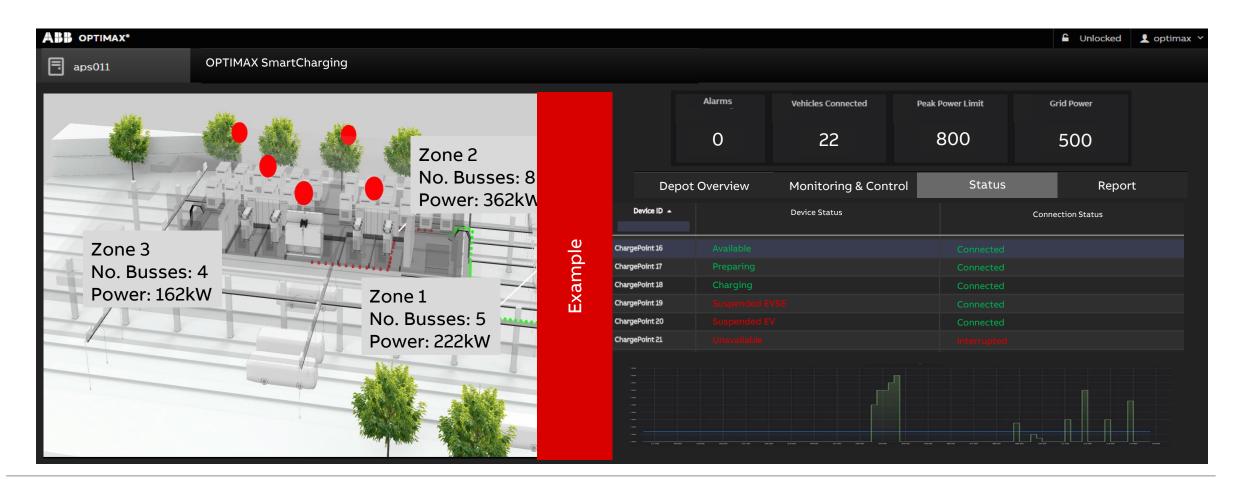
OPTIMAX for Smart Charging – Essential

ABB OPTIMAX*				🔒 Locked 💄 sleman.saliba@de.abb.com 🗸			
Energy Optim	VPP SiteEMS EV Fleet						
Essential Charging Adaptive Charging Predictive Charging							
Device ID	Assigned Power	Minimum Power	Maximum Power	Status			
ChargePoint 26	50	10	50	•			
ChargePoint 2	50	10	50	•			
ChargePoint 1	50	10	50	•			
ChargePoint 3	50	10	50	•			
ChargePoint 4	50	10	50	•			
ChargePoint 5	10	10	50	•			
ChargePoint 13	10	10	50	•			
ChargePoint 7	10	10	50	•			
ChargePoint 8	10	10	50	•			
ChargePoint 22	10	10	50	• •			
	Grid Limit	Charging Power	Remaining Power 230 kw				

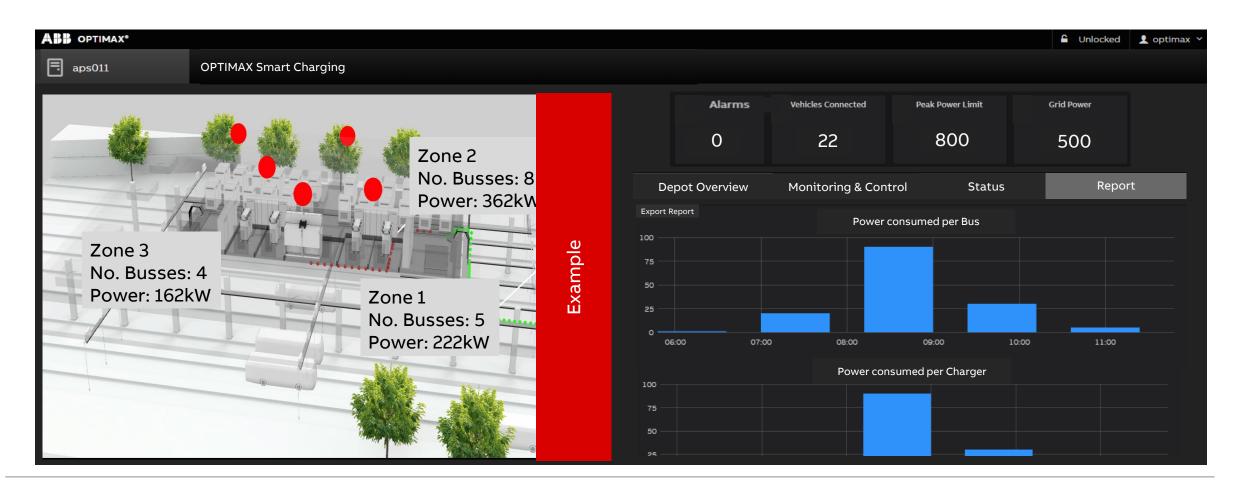
OPTIMAX for Smart Charging – Adaptive

АВВ ОРТІМАХ"					🔒 Locked 👤 sleman.saliba@de.abb.com 🗸
Energy Optim	VPP SiteEMS EV	Fleet			
Essential Charging	Adaptive Charging Predictive Charging				
Device ID	Assigned Power	Minim	um Power	Maximum Power	Status
ChargePoint 1	10	10	50		•
ChargePoint 2	30	10	50		
ChargePoint 3	50	10	50		•
ChargePoint 4	50	10	50		
ChargePoint 5	10	10	50		
ChargePoint 6	10	10	50		
ChargePoint 7	10	10	50		
ChargePoint 8	10	10	50		\bullet
ChargePoint 9	10	10	50		\bullet
ChargePoint 10	10	10	50		•
	Grid Limit	Other 14	Assets	Charging Power	Remaining Power-

Predictive – User Interface for Smart Charging – Depot Overview



Predictive – User Interface for Smart Charging – Monitoring & Control


User Interface for Smart Charging

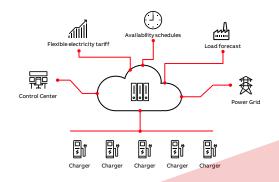
Predictive – User Interface for Smart Charging – asset health view

User Interface for Smart Charging

Predictive – User Interface for Smart Charging – Reporting Sections

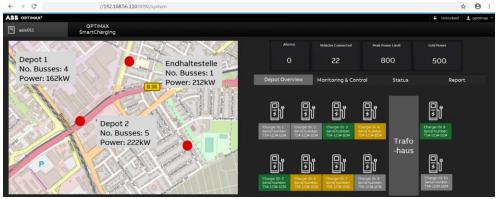
OPTIMAX® for Smart Charging

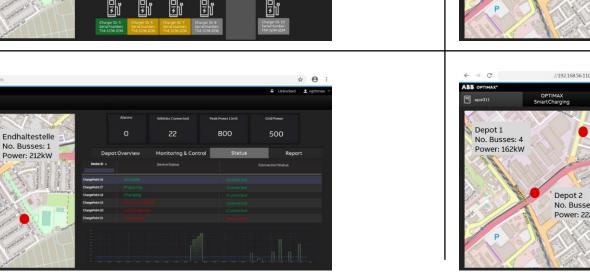
Contact us

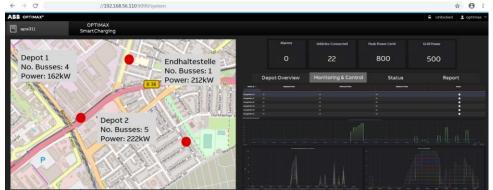

Contact information

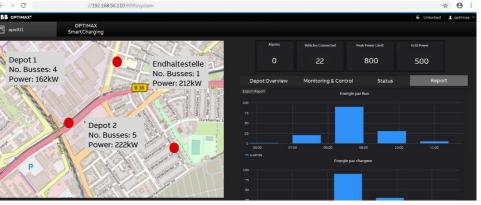
Who to contact for further support

Name	Title	Email
Speaker	Xx	XXX
Andreas Berthold	Global Operations Manager	andreas.berthold@de.abb.com
Dr. Sleman Saliba	Global Product Manager	sleman.saliba@de.abb.com


OPTIMAX® for Smart Charging - Smart Energy Management for EV Charging




Essential	Adaptive	Predictive	Site EMS	Virtual Power Plant
For sites with a fixed charging allocation	For sites with dynamic charging allocation	For large EV fleets, bus and service centers	For sites with on- site generation	Trading the flexibility of multiple sites
 ✓ Improved safety ✓ Never exceed your grid limit ✓ Avoid overloading your circuit ✓ Reduce likelihood of a grid extension 	 ✓ Flexibility to meet your site needs ✓ Maximized charging power ✓ Avoid overloading your circuit ✓ Reduce energy costs 	 ✓ Reduce energy costs ✓ Reduce grid extensions ✓ Safe and optimal control ✓ Enable data based decision making 	 ✓ Maximize on-site generation ✓ Reduce energy costs ✓ Safe and optimal control ✓ Enable data based decision making 	 ✓ Maximize revenues ✓ Trade flexibilities ✓ Grid stabilization ✓ Enable data based decision making


A solution to fit the needs of every charging application

Alternative Depot Layouts – project specific

//192.168.56.110.909

Depot 2

No. Busses: 5

Power: 222kW

OPTIMAX SmartCharging

← → C

ABB OPTIMAX

= aps011

Depot 1

No. Busses: 4

Power: 162kW

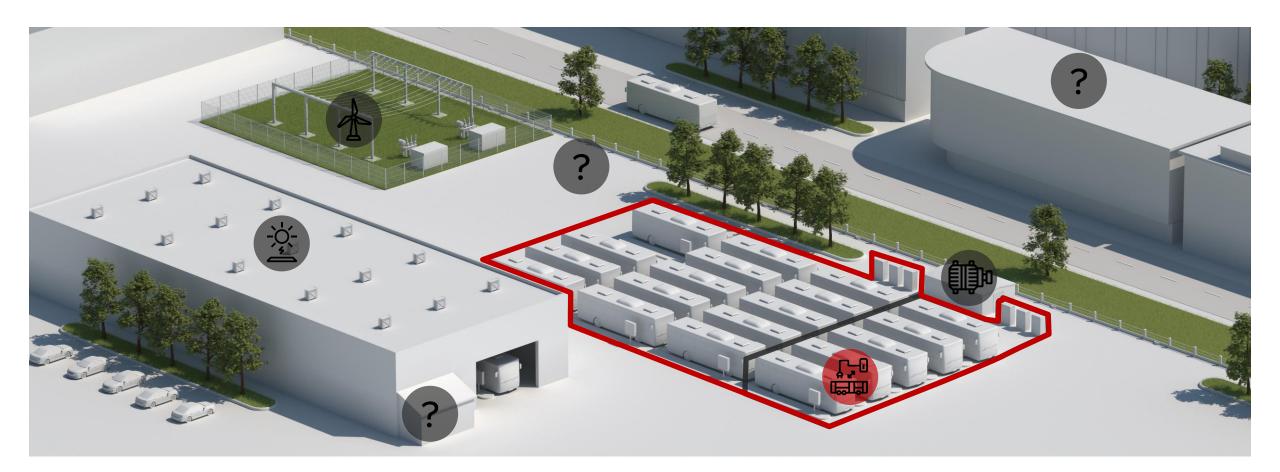


ABB Ability[™] – Energy Management for Sites

Expanding your site as you need it

