MEDIUM VOLTAGE PRODUCT

KECA 80 C260
Indoor current sensor
The main benefit is that the behavior of the sensor is not influenced by non-linearity and width of hysteresis curve, which results in a highly accurate and linear response over a wide dynamic range of measured quantities.

A linear and highly accurate sensor characteristic in the full operating range enables the combination of metering and protection classes in one winding.

With KECA 80 C260 sensors measuring class 0.5 is reached for continuous current measurement in the extended accuracy range from 5% of the rated primary current I_pr, not only up to 120% of I_pr (as being common for conventional current transformers), but even up to the rated continuous thermal current I_cth. For dynamic current measurement (protection purposes) the ABB sensors KECA 80 C260 fulfill requirements of protection class 5P up to an impressive value reaching 31.5 kA. That provides the possibility to designate the corresponding accuracy class as 0.5/SP400-A2, proving excellent linearity and accuracy measurements.

Current sensor

Current measurement in KECA 80 C260 sensors is based on the Rogowski coil principle. A Rogowski coil is a toroidal coil, without an iron core, placed around the primary conductor in the same way as the secondary winding in a current transformer. However, the output signal from a Rogowski coil is not a current, but a voltage (see Fig. 2).
Protection and control IEDs (Intelligent Electronic Devices)

Protection and control IEDs incorporate the functions of a traditional relay, as well as allow new additional functions. The information transmitted from the sensors to the IED is very accurate, providing the possibility of versatile relay functionality.

However, the IED must be able to operate with sufficient accuracy at a sensor’s low input signal level, and the signal from the Rogowski coil must be integrated. Modern IEDs (such as ABB’s 601 series relays) are designed for such sensor use, and they are also equipped with built-in integrators for Rogowski coil sensor inputs.

Modern digital apparatuses (microprocessor based relays) allow protection and measurement functions to be combined. They fully support current sensing realized by the single sensor with double the accuracy class designation, e.g.: current sensing with combined accuracy class 0.5/5P400-A2.

Sensor applications

The current sensors type KECA 80 C260 are intended for use in current measurement in low voltage or medium voltage switchgear. In case of medium voltage switchgear the current sensor shall be installed over a bushing insulator, insulated and shielded cable, insulated & shielded cable connectors or any other type of insulated and shielded conductor. The current sensor is equipped with a clamping system which provides easy and fast installation and therefore makes the sensor suitable for retrofit purposes.

Linearity

Due to the absence of a ferromagnetic core the sensor has a linear response over a very wide primary current range, far exceeding the typical CT range. Thus, current sensing for both measurement and protection purposes could be realized with single secondary winding with a double rating. In addition, one standard sensor can be used for a broad range of rated currents and is also capable of precisely transferring signals containing frequencies different from rated ones.

For this type of sensor, the variation of amplitude and phase error or composite error in a current range from 5% of rated primary current I_p up to 31.5 kA is within the limits specified by IEC 61869-10.

Example of current measurement range with rated current 80 A and accuracy class 0.5/SP400-A2:

Metering accuracy class 0.5 is, according to the IEC 61869-10 standard, guaranteed from 5% of I_p up to K_pinc x I_p where K_pinc is rated extended primary current factor and I_p is rated primary current. Factor K_pinc is in the case of conventional CTs usually just 1.2, but in the case of the KECA 80 C260 sensor the K_pinc factor is several times higher and equals 39.375. Protection accuracy SP400-A2 is guaranteed, for the advanced KECA 80 C260 sensor, from the current equal to K_pinc x I_p up to the current corresponding to KAlarm x I_p value, where KAlarm is, according to IEC 61869-10, the accuracy limit factor. For this type of sensor the value of K_pinc x I_p is equal to the rated continuous thermal current I_c (3 150 A) and the value of KAlarm x I_p is equal to 31.5 kA. The accuracy limits are described on the graph below.
Compactness
Since the sensing elements are particularly small, and the same elements are used for both measurement and protection, the current sensors can be easily integrated into other equipment.

Rated parameters
Because the sensors are highly linear within a very wide range of currents, the same single sensor can be used for the various rated currents associated with each specific application up to the specified maximum voltage for equipment. There is no need to specify other parameters such as burden, safety factor, etc. since they are standard over the defined range. To achieve the correct function of the protection and control IED, the selected rated current, as well as the rated transformation ratio, must be properly set into the IED.

Energy savings concept
As there is no iron core, no necessity for high burden values and thus a possibility for low current losses and only one secondary winding needed, KECA 80 C260 sensors exhibit extremely low energy consumption that is just a fraction of that transferred to heat in conventional CTs. This fact contributes to huge energy savings during its entire operating life, supporting the world-wide effort to reduce energy consumption.

Correction factors
The amplitude and phase error of a current sensor is, in practice, constant and independent of the primary current. Due to this fact it is an inherent and constant property of each sensor and it is not considered as unpredictable and influenced error. Hence, it can be easily corrected in the IED by using appropriate correction factors, stated separately for every sensor.

Values of the correction factors for the amplitude and phase error of a current sensor are mentioned on the sensor label (for more information please refer to Instructions for installation, use and maintenance) and should be uploaded without any modification into the IED before the sensors are put into operation (please check available correction in the IED manual). To achieve required accuracy classes it is recommended to use all correction factors: amplitude correction factor (CFI) and phase error correction factor (ϕ_{cor}) of a current sensor.

Secondary cables
The sensor is equipped with a cable for connection with the IED. The cable connector is type RJ45. The sensor accuracy classes are verified up to the RJ45 connector, i.e. considering also its secondary cable. These cables are intended to be connected directly to the IED, and subsequently neither burden calculation nor secondary wiring is needed. Every sensor is therefore accuracy tested when equipped with its own cable and connector.

Connector adapters
To provide connectivity between current and voltage sensors with RJ45 cable connectors and IEDs with RJ45 connector the coupling adapter was designed. The use of connector or coupling adapters has no influence on the current and/or voltage signal and accuracy of the sensor with the cable. For more information about connector adapters and coupling adapter refer to Doc. No. 1VLC000710 - Sensor accessories.
Standards
- IEC 61869-10 (2017-12) Instrument transformers Part 10: Additional requirements for low-power passive current transformers

Highest voltage for equipment and test voltages
- Highest voltage for equipment, \(U_m \): 0.72 kV

Insulation requirements for secondary terminals according to IEC 61869-10
- Power frequency voltage withstand capability: 0.82 kV
- Impulse voltage withstand capability: 1.5 kV 1.2/50 μs

Current sensor, rated values
- Rated primary current, \(I_{pr} \): 80 A
- Rated transformation ratio, \(K_r \): 80 A/0.150 V at 50 Hz
- 80 A/0.180 V at 60 Hz
- Rated secondary output, \(U_{sr} \): 3 mV/Hz
 i.e. 150 mV at 50 Hz
 or 180 mV at 60 Hz
- Rated continuous thermal current, \(I_{cth} \): 3 150 A
- Rated short-time thermal current, \(I_{ths} \): 31.5 kA/3s
- Rated dynamic current, \(I_{dyn} \): 80 kA
- Rated frequency, \(f_r \): 50/60 Hz
- Rated extended primary current factor, \(K_{prc} \): 39.375
- Accuracy limit factor, \(K_{alf} \): 400
- Accuracy class: 0.5/5P400-A2
- Rated burden, \(R_{br} \): 2 MΩ; 50 pF

Temperature category
- Operation: -5°C/+55°C
- Transport and storage: -40°C/+80°C

Cable
- Length: 3.5; 6.5 m
- Connector: RJ45 (CAT-6)
- Grounding wire length: 0.5 m

Dimensions and weight
- Outline drawing number: 2RKA026032
- Weight: 0.5 kg

Cable length

<table>
<thead>
<tr>
<th></th>
<th>3 position mounting system</th>
<th>4 position mounting system</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 m</td>
<td>1VL5400087V1101</td>
<td>1VL5400088V1101</td>
</tr>
<tr>
<td>6.5 m</td>
<td>1VL5400087V1102</td>
<td>1VL5400088V1102</td>
</tr>
</tbody>
</table>
Dimensional Drawing

KECA 80 C260
3 position mounting system

GROUNDING WIRE 0.5m, EYE Ø8.3mm

CONNECTOR RJ45, CAT 6

CONNECTOR RJ45 CAT6

PIN 1 - COIL START (S1)
PIN 2 - COIL END (S2)
KECA 80 C260
4 position mounting system

GROUNDING WIRE 0.5m, EYE Ø 8.3mm

CONNECTOR RJ45, CAT6

PIN 1
PIN 1 - COIL START (S1)

PIN 2
PIN 2 - COIL END (S2)
NOTE
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB.

Copyright© 2020 ABB
All rights reserved