Series 2600T Pressure Transmitters

Engineered solutions for all applications

Selectable maximum operating pressure up to 41 MPa, 5,945 psi

Base accuracy
— ± 0.04 %

Span limits
— 0.05 ... 10,000 kPa; 0.2 in H2O up to 1,450 psi

High-performance transmitter and smallest possible measuring ranges

Proven sensor technology together with state-of-the-art digital technology
— Large turndown ratio of up to 100:1

Comprehensive selection of sensors
— Optimized performance and stability

5-year stability

Flexible configuration options
— On device using control buttons in combination with LCD display, handheld terminal, or PC user interface

Various communication protocols available
— Enables integration into HART®, PROFIBUS PA, and FOUNDATION fieldbus platforms
— Upgrade options thanks to interchangeable electronics with automatic configuration

Full compliance with Pressure Equipment Directive (PED) category III
Contents

1. Functional specifications ... 3
2. Operating limits ... 3
 2.1 Temperature limits in °C (°F).. 3
 2.2 Pressure limits ... 4
3. Environmental limits .. 4
4. Potentially explosive atmospheres ... 5
5. Electrical data and options ... 8
 5.1 HART digital communication and 4 ... 20 mA output current 8
 5.2 PROFIBUS PA output ... 9
 5.3 FOUNDATION fieldbus output .. 9
6. Measuring accuracy .. 10
7. Operating influences .. 11
8. Technical specification ... 12
9. Configuration .. 13
 9.1 Transmitter with HART communication and 4 ... 20 mA output current 13
 9.2 Transmitter with PROFIBUS PA communication 13
 9.3 Transmitter with FOUNDATION fieldbus communication 13
10. Mounting dimensions (not design data) ... 14
 10.1 Transmitter with barrel housing .. 14
 10.2 Transmitter with DIN housing ... 15
 10.3 Mounting options with bracket ... 16
11. Electrical connections ... 17
 11.1 Standard terminal strip .. 17
 11.2 Fieldbus plug connector .. 18
 11.3 Harting Han 8D (8U) plug connector ... 18
12. Ordering information ... 19
13. Standard scope of delivery (changes may be made by using additional ordering code) 23
1 Functional specifications

Measuring range and span limits

<table>
<thead>
<tr>
<th>Sensor code</th>
<th>Upper range limit (URL)</th>
<th>Lower range limit (LRL)</th>
<th>Minimum span</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 kPa</td>
<td>-1 kPa</td>
<td>0.05 kPa</td>
</tr>
<tr>
<td></td>
<td>10 mbar</td>
<td>-10 mbar</td>
<td>0.5 mbar</td>
</tr>
<tr>
<td></td>
<td>4 in H₂O</td>
<td>-4 in H₂O</td>
<td>0.2 in H₂O</td>
</tr>
<tr>
<td>C</td>
<td>6 kPa</td>
<td>-6 kPa</td>
<td>0.2 kPa</td>
</tr>
<tr>
<td></td>
<td>60 mbar</td>
<td>-60 mbar</td>
<td>2 mbar</td>
</tr>
<tr>
<td></td>
<td>24 in H₂O</td>
<td>-24 in H₂O</td>
<td>0.8 in H₂O</td>
</tr>
<tr>
<td>F</td>
<td>40 kPa</td>
<td>-40 kPa</td>
<td>0.4 kPa</td>
</tr>
<tr>
<td></td>
<td>400 mbar</td>
<td>-400 mbar</td>
<td>4 mbar</td>
</tr>
<tr>
<td></td>
<td>160 in H₂O</td>
<td>-160 in H₂O</td>
<td>1.6 in H₂O</td>
</tr>
<tr>
<td>L</td>
<td>250 kPa</td>
<td>-250 kPa</td>
<td>2.5 kPa</td>
</tr>
<tr>
<td></td>
<td>2,500 mbar</td>
<td>-2,500 mbar</td>
<td>25 mbar</td>
</tr>
<tr>
<td></td>
<td>1,000 in H₂O</td>
<td>-1,000 in H₂O</td>
<td>10 in H₂O</td>
</tr>
<tr>
<td>N</td>
<td>2,000 kPa</td>
<td>-2,000 kPa</td>
<td>20 kPa</td>
</tr>
<tr>
<td></td>
<td>20 bar</td>
<td>-20 bar</td>
<td>0.2 bar</td>
</tr>
<tr>
<td></td>
<td>290 psi</td>
<td>-290 psi</td>
<td>2.9 psi</td>
</tr>
<tr>
<td>R</td>
<td>10,000 kPa</td>
<td>-10,000 kPa</td>
<td>100 kPa</td>
</tr>
<tr>
<td></td>
<td>100 bar</td>
<td>-100 bar</td>
<td>1 bar</td>
</tr>
<tr>
<td></td>
<td>1,450 psi</td>
<td>-1,450 psi</td>
<td>14.5 psi</td>
</tr>
</tbody>
</table>

Span limits

Maximum span = URL = Upper range limit
(Within the range limits, may be adjusted up to ± upper range limit.)

Example (linear characteristic): -400 ... 400 mbar, but
Example (square root characteristic): 0 ... 400 mbar

To optimize performance characteristics, it is recommended that you select the transmitter sensor with the lowest turndown ratio.

Recommendation for square root function: At least 10 % of upper range limit (URL)

Zero suppression and elevation

The zero position and span can be set to any value within the range limits listed in the table if:
- Set span ≥ minimum span

Damping

Adjustable time constant: 0 ... 60 s
This is in addition to the sensor response time.

Second sensor for absolute pressure measurement

Measuring range: 41 MPa, 410 bar, 5,945 psi
(0.6 MPa, 6 bar, 87 psi for sensor code A)

Warm-up period

According to technical data, ready for operation in ≤ 2.5 s after switching on the transmitter, with minimum damping.

Insulation resistance

> 100 MΩ at 500 V DC (between terminals and ground)

2 Operating limits

2.1 Temperature limits in °C (°F)

<table>
<thead>
<tr>
<th>Ambient temperature range</th>
<th>Process temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>-40 ... 85 °C (-40 ... 185 °F)</td>
<td>-40 ... 120 °C (-40 ... 248 °F) 1)</td>
</tr>
<tr>
<td>LCD display</td>
<td>Carbon fluoride</td>
</tr>
<tr>
<td>-20 ... 70 °C (-4 ... 158 °F)</td>
<td>-40 ... 120 °C (-40 ... 248 °F) 2)</td>
</tr>
<tr>
<td>Viton seals</td>
<td></td>
</tr>
<tr>
<td>-20 ... 85 °C (-4 ... 185 °F)</td>
<td>-20 ... 120 °C (-4 ... 248 °F)</td>
</tr>
<tr>
<td>PTFE seals</td>
<td></td>
</tr>
<tr>
<td>-20 ... 85 °C (-4 ... 185 °F)</td>
<td>-20 ... 85 °C (-4 ... 185 °F)</td>
</tr>
</tbody>
</table>

Important

In the case of applications in potentially explosive atmospheres, the temperature range specified on the relevant certificate/approval must be observed.

1) ≤ 85 °C (185 °F) for operating pressures below 10 kPa, 100 mbar abs., 1.45 psia
2) ≤ 85 °C (185 °F) for operating pressures below atmospheric pressure up to 40 kPa abs., 400 mbar abs., 5.8 psia
2.2 Pressure limits

Overpressure limits
(without damage to the transmitter)

<table>
<thead>
<tr>
<th>Transmitter 265DS</th>
<th>Overpressure limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone oil for sensor code A</td>
<td>0.5 kPa abs., 5 mbar abs., 0.07 psia up to 0.6 MPa, 6 bar, 87 psi</td>
</tr>
<tr>
<td>Carbon fluoride for sensor code A</td>
<td>40 kPa abs., 400 mbar abs., 5.8 psia up to 0.6 MPa, 6 bar, 87 psi</td>
</tr>
<tr>
<td>Silicone oil for sensor code C ... R</td>
<td>0.5 kPa abs., 5 mbar abs., 0.07 psia up to 16 MPa, 160 bar, 2,320 psi, or 25 MPa, 250 bar, 3,625 psi, or 41 MPa, 410 bar, 5,945 psi depending on code variant selected</td>
</tr>
<tr>
<td>Carbon fluoride for sensor code C ... R</td>
<td>40 kPa abs., 400 mbar abs., 5.8 psia up to 16 MPa, 160 bar, 2,320 psi, or 25 MPa, 250 bar, 3,625 psi, or 41 MPa, 410 bar, 5,945 psi depending on code variant selected</td>
</tr>
</tbody>
</table>

Static pressure
The transmitter 265DS operates within the specifications with the following limits:

<table>
<thead>
<tr>
<th>Transmitter 265DS</th>
<th>Static pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone oil for sensor code A</td>
<td>3.5 kPa abs., 35 mbar abs., 0.5 psia up to 0.6 MPa, 6 bar, 87 psi</td>
</tr>
<tr>
<td>Carbon fluoride for sensor code A</td>
<td>40 kPa abs., 400 mbar abs., 5.8 psia up to 0.6 MPa, 6 bar, 87 psi</td>
</tr>
<tr>
<td>Silicone oil for sensor code C ... R</td>
<td>3.5 kPa abs., 35 mbar abs., 0.5 psia up to 16 MPa, 160 bar, 2,320 psi, or 25 MPa, 250 bar, 3,625 psi, or 41 MPa, 410 bar, 5,945 psi depending on code variant selected</td>
</tr>
<tr>
<td>Carbon fluoride for sensor code C ... R</td>
<td>40 kPa abs., 400 mbar abs., 5.8 psia up to 16 MPa, 160 bar, 2,320 psi, or 25 MPa, 250 bar, 3,625 psi, or 41 MPa, 410 bar, 5,945 psi depending on code variant selected</td>
</tr>
</tbody>
</table>

3 Environmental limits

Electromagnetic compatibility (EMC)
Conforms to the requirements and tests for EMC Directive 89/336/EC, as well as to EN 61000-6-3 concerning emitted interference and EN 61000-6-2 concerning interference immunity.
Meets NAMUR recommendations.

Low Voltage Directive
Complies with 73/23/EC.

Pressure Equipment Directive (PED)
Instruments with a maximum operating pressure of 25 MPa, 250 bar, 3,625 psi, or 41 MPa, 410 bar, 5,945 psi, comply with Directive 97/23/EC Category III, module H.

Humidity
Relative humidity: Up to 100 %
Condensation, icing: Permissible

Vibration resistance
Acceleration up to 2 g at frequencies up to 1,000 Hz (according to IEC 60068-2-6).

Shock resistance (acc. to IEC 60068-2-27)
Acceleration: 50 g
Duration: 11 ms

Protection type (humid and dusty atmospheres)
The transmitter is dust and sand-light, and is protected against immersion effects as defined by the following standards:
- IEC EN 60529 (1989) with IP 67 (with IP 68 on request)
- NEMA 4X
- JIS C0920
Protection type with plug connection: IP 65
4 Potentially explosive atmospheres

Transmitter with "Intrinsically safe EEx ia" type of explosion protection in accordance with Directive 94/9/EC (ATEX)

Transmitter with 4 ... 20 mA output signal and HART communication:
Designation: II 1/G D T 50 °C EEx ia IIC T6
II 1/G D T 95 °C EEx ia IIC T4

Power supply and signal circuit with "Intrinsically safe, EEx ib IIB/IIC" or "Intrinsically safe, EEx ia IIB/IIC" type of explosion protection, for connection to supply units with the following maximum values:
II 1/G D T 50 °C EEx ia or ib IIC T6
II 1/G D T 95 °C EEx ia or ib IIC T4

Temperature class T4:
\[U_i = 30 \text{ V} \]
\[I_i = 200 \text{ mA} \]
\[P_i = 0.8 \text{ W for T4 where } Ta = -40 \ldots 85 ^\circ \text{C} \]
\[P_i = 1.0 \text{ W for T4 where } Ta = -40 \ldots 70 ^\circ \text{C} \]

For temperature class T6:
\[P_i = 0.7 \text{ W for T6 where } Ta = -40 \ldots 40 ^\circ \text{C} \]

Effective internal capacitance: \(C_i = 10 \text{ nF} \)
Effective internal inductance: \(L_i = 0 \)

Fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus):

Designation: FISCO field device
II 1/G Ex ia IIC T6 or T4
II 1/2D Ex iaD 20 T50 °C or T95 °C

Power supply and signal circuit with "Intrinsically safe" type of explosion protection, only for connection to supply units certified according to the FISCO concept and with the following maximum values:
\[U_i = 17.5 \text{ V} \]
\[I_i = 500 \text{ mA} \]
\[P_i = 8.75 \text{ W} \]

or connection to supply units or barriers with linear characteristics.

Maximum values:
\[U_i = 24 \text{ V} \]
\[I_i = 250 \text{ mA} \]
\[P_i = 1.2 \text{ W} \]

Effective internal inductance: \(L_i = 10 \mu \text{H} \)
Effective internal capacitance: \(C_i = 5 \text{ nF} \)

Permissible ambient temperature range depending on temperature class:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Lower limit of ambient temperature</th>
<th>Upper limit of ambient temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>-40 °C (-40 °F)</td>
<td>85 °C (185 °F)</td>
</tr>
<tr>
<td>T5, T6</td>
<td>-40 °C (-40 °F)</td>
<td>40 °C (104 °F)</td>
</tr>
</tbody>
</table>

Category 3 transmitter for use in “Zone 2” as defined by Directive 94/9/EC (ATEX)

Transmitter with 4 ... 20 mA output signal and HART communication:
Designation: II 1/3 GD T 50 °C EEx nL IIC T6
II 1/3 GD T 95 °C EEx nL IIC T4

Operating conditions:
Supply and signal circuit
(terminal signal ±):
\[U \leq 45 \text{ V} \]
\[I \leq 22.5 \text{ mA} \]

Ambient temperature range:
Temperature class T4: \(Ta = -40 \ldots 85 ^\circ \text{C} \)
Temperature class T5 and T6: \(Ta = -40 \ldots 40 ^\circ \text{C} \)

Transmitter with "Flameproof EEx d" type of explosion protection in accordance with Directive 94/9/EC (ATEX)

Transmitter with 4 ... 20 mA output signal, HART communication, and fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus)
Designation: II 1/2 G EEx d IIC T6

Operating conditions:
Ambient temperature range: \(-40 \ldots 75 ^\circ \text{C}\)
Transmitter with "Intrinsically safe EEx ia" type of explosion protection in accordance with Directive 94/9/EC (ATEX), or "Flameproof EEx d" type of explosion protection in accordance with Directive 94/9/EC (ATEX), or "Limited energy EEx nL" type of explosion protection in accordance with Directive 94/9/EC (ATEX) (alternative certification).

Transmitter with 4 ... 20 mA output signal and HART communication:

Identification: II 1/2 GD T50 °C EEx ia IIC T6
II 1/2 GD T95 °C EEx ia IIC T4;
(or refer to "EEx ia" for additional data)

Identification: II 1/2 GD T85 °C EEx d IIC T6

Ambient temperature range: -40 ... 75 °C

Identification: II 3 GD T50 °C EEx nL IIC T6
II 3 GD T95 °C EEx nL IIC T4
(or refer to "EEx nL" for additional data)

Factory Mutual (FM)

Transmitter with 4 ... 20 mA output signal and HART communication:

Intrinsically safe protection

Class I, Division 1; Groups A, B, C, D; Class I, Zone 0; Group IIC; AEx ia IIC

Degree of protection: NEMA type 4X (indoor or outdoor installation)

Permissible ambient temperature range depending on temperature class:

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>Temperature class</th>
<th>Imax</th>
<th>Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 ... 85 °C</td>
<td>T4</td>
<td>200 mA</td>
<td>0.8 W</td>
</tr>
<tr>
<td>(-40 ... 185 °F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40 ... 70 °C</td>
<td>T4</td>
<td>200 mA</td>
<td>0.8 W</td>
</tr>
<tr>
<td>(-40 ... 158 °F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40 ... 40 °C</td>
<td>T5</td>
<td>25 mA</td>
<td>0.75 W</td>
</tr>
<tr>
<td>(-40 ... 104 °F)</td>
<td>T6</td>
<td>5 mA</td>
<td>0.5 W</td>
</tr>
</tbody>
</table>

Fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus):

Intrinsically safe protection:

Class I, II, and III; Division 1;
Groups A, B, C, D, E, F, G;
Class I, Zone 0; AEx ia Group IIC T6, T4;
Non-incendive Class I, II, and III; Division 2;
Groups A, B, C, D, F, G

Identification: II 1/2 GD T50 °C EEx ia IIC T6
II 1/2 GD T95 °C EEx ia IIC T4
(or refer to "EEx ia" for additional data)

Identification: II 1/2 GD T85 °C EEx d IIC T4

Canadian Standards Association (CSA)

Transmitter with 4 ... 20 mA output signal, HART communication, and fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus):

Explosion-proof protection:

Class I, Division 1, Groups A, B, C, D;
Class II/III, Division 1, Groups E, F, G

Degree of protection: NEMA type 4X (indoor or outdoor installation)

Effective internal capacitance: C = 52 nF
Effective internal inductance: L = 0 mH

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

IP 66

Intrinsically safe installation input parameters:
Ui = 30 V
Ii = 200 mA
P1 = 0.8 W for T4 where Ta = +85 °C or
P1 = 0.7 W for T6 where Ta = +40 °C

Effective internal inductance: L = 0 mH

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Effective internal inductance: L = 0 mH

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)

Identification:
Ex ia IIC T4 (Pi ≤ 0.8 W, Ta = 85 °C)/T6 (Pi ≤ 0.7 W, Ta = 40 °C)
Ex n IIC T4 (Ta = 85 °C)/T6 (Ta = 40 °C)
Transmitter with “Flameproof Ex d” type of explosion protection

Transmitter with 4 ... 20 mA output signal, HART communication, and fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus, Modbus):

Identification:
- Zone 1: Ex d IIC T6 (Tamb +75 °C) IP66 / IP67
- Zone A21: Ex tD A21 T85 (Tamb +75 °C) IP66 / IP67

NEPSI (China)

Intrinsically safe protection

Transmitter with 4 ... 20 mA output signal and HART communication:

Identification: Ex ia IIC T4/T6

Permissible ambient temperature range depending on temperature class:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Ambient temperature</th>
<th>P_isobaric</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>-40 ... 85 °C (-40 ... 185 °F)</td>
<td>0.8</td>
</tr>
<tr>
<td>T4</td>
<td>-40 ... 70 °C (-40 ... 158 °F)</td>
<td>1.0</td>
</tr>
<tr>
<td>T6</td>
<td>-40 ... 40 °C (-40 ... 104 °F)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Supply and signal circuit for connection to supply units with the following maximum values:

Fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus)

Identification: Ex ia IIB/IIC T4 ... T6

Permissible ambient temperature range depending on temperature class:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Ambient temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>-40 ... 85 °C (-40 ... 185 °F)</td>
</tr>
<tr>
<td>T5</td>
<td>-40 ... 50 °C (-40 ... 122 °F)</td>
</tr>
<tr>
<td>T6</td>
<td>-40 ... 40 °C (-40 ... 104 °F)</td>
</tr>
</tbody>
</table>

Supply and signal circuit for connection to supply units with the following maximum values:

<table>
<thead>
<tr>
<th>Ex mark</th>
<th>Characteristic Supply unit</th>
<th>U_{max} (V)</th>
<th>I_{max} (mA)</th>
<th>P_{max} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIC T4 ... T6</td>
<td>Rectangular or trapezoidal</td>
<td>17.5</td>
<td>360</td>
<td>2.52</td>
</tr>
<tr>
<td>Ex ia IIB T4 ... T6</td>
<td>Rectangular or trapezoidal</td>
<td>17.5</td>
<td>380</td>
<td>5.32</td>
</tr>
<tr>
<td>Ex ia IIC T4 ... T6</td>
<td>Linear</td>
<td>24</td>
<td>250</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Explosion-proof protection

Transmitter with 4 ... 20 mA output signal, HART communication, and fieldbus transmitter (PROFIBUS PA / FOUNDATION Fieldbus)

Identification: Ex d IIC T6

Operating conditions

Ambient temperature range: -40 ... 75 °C (-40 ... 167 °F)

Overfill protection

Model 265DS as part of overfill protection on containers used for storing flammable or non-flammable liquids that are hazardous to water

<table>
<thead>
<tr>
<th>Flammable liquids</th>
<th>Only in conjunction with EEx ia approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pressure</td>
<td>Up to 4 MPa, 40 bar, 580 psi</td>
</tr>
<tr>
<td>Sensor code</td>
<td>C, F, or L</td>
</tr>
<tr>
<td>Filling liquid</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>Process temperature limits</td>
<td>-40 ... 85 °C (-40 ... 185 °F)</td>
</tr>
<tr>
<td>Approval</td>
<td>Z-65.11-271</td>
</tr>
</tbody>
</table>
5 Electrical data and options

5.1 HART digital communication and 4 ... 20 mA output current

Power supply
The transmitter operates at voltages between 10.5 and 45 V DC with no load, and is protected against reverse polarity connection (additional load enables operation above 45 V DC). With a backlit LCD display, the minimum voltage is 14 V DC. In the case of the EEx ia version and other intrinsically safe, approved versions, the supply voltage must not exceed 30 V DC.

Ripple
Maximum permissible supply voltage ripple during communication: According to HART FSK "Physical Layer" specification rev. 8.1.

Load limitations
Total loop resistance with 4 ... 20 mA and HART:

\[R(\Omega) = \frac{\text{Voltage supply} - \text{Minimum operating voltage (VDC)}}{22.5 \text{ mA}} \]

Important
A minimum resistance of 250 \(\Omega \) is required for HART communication.

LCD display (optional)
19-segment alphanumeric display (two lines, six characters) with additional bar chart display; option of backlighting for customized display of:
• Output current in percent
• Output current in mA
• Freely selectable process variable

Diagnostic messages, alarms, measuring range upper limit violations, and changes to the configuration are also displayed.

Output signal
4 ... 20 mA two-wire output; linear output signal or square root output signal.

Additionally:
- Characteristic with exponents 3/2 or 5/2
- Horizontal cylindrical container
- Spherical vessel
- Freely programmable characteristic with 20 reference points

HART® communication provides digital process variables (\%, mA, or engineering units) superimposed on the 4 ... 20 mA signal (protocol in accordance with Bell 202 FSK standard).

Output current limits (according to NAMUR standard)
Overload condition:
- Lower limit: 3.8 mA (can be configured up to 3.5 mA)
- Upper limit: 20.5 mA (can be configured up to 22.5 mA)

Alarm current
Minimum alarm current: Can be configured from 3.5 ... 4 mA; default setting: 3.6 mA
Max. alarm current: Can be configured from 20 ... 22.5 mA; default setting: 21 mA

Default setting: Maximum alarm current

SIL: Functional safety (optional)
According to IEC 61 508/61 511
Device with certificate of conformity for use in safety-related applications, up to and including SIL 2.
5.2 PROFIBUS PA output

Model
Pressure transmitter conforming to Profile 3.0, Class A and B;
ID number 04C2 HEX

Power supply
The transmitter is operated at 10.2 ... 32 V DC (no polarity).
The supply voltage must not exceed 17.5 V DC when used in EEx ia zones.
Intrinsically safe installation in accordance with FISCO model.

Current consumption
Operating (quiescent): 11.7 mA
Fault current limiting: Maximum 17.3 mA

Output signal
Physical layer in accordance with IEC 1158-2/EN 61158-2;
transmission using Manchester II modulation at 31.25 kbit/sec.

Output interface
PROFIBUS PA communication according to PROFIBUS DP 50170
Part 2 / DIN 19245 Parts 1-3

Output cycle time
40 ms

Function blocks
2 standard analog input function blocks
1 transducer block
1 physical block

LCD display (optional)
19-segment alphanumeric display (two lines, six characters) with
additional bar chart display; option of backlighting.
Customized display:
Output value in percent or OUT (analog input)
Diagnostic messages, alarms, measuring range upper limit violations,
and changes to the configuration are also displayed.

Transmitter interference mode
Permanent self-diagnosis; potential errors indicated in diagnostic parameters and in the status of process values.

5.3 FOUNDATION fieldbus output

Power supply
The transmitter is operated at 10.2 ... 32 V DC (no polarity).
The supply voltage must not exceed 17.5 V DC when used in EEx ia zones.
Intrinsically safe installation in accordance with FISCO model.

Current consumption
Operating (quiescent): 11.7 mA
Fault current limiting: Maximum 17.3 mA

Output signal
Physical layer in accordance with IEC 1158-2/EN 61158-2;
transmission using Manchester II modulation at 31.25 kbit/sec.

Function blocks/execution time
2 standard analog input function blocks/maximum 25 ms
1 standard PID function block

Additional blocks
1 manufacturer-specific pressure with calibration transducer block
1 enhanced resource block

Number of link objects
10

Number of VCRs
16

Output interface
FOUNDATION fieldbus digital communication protocol in accordance with standard H1; complies with specification V. 1.5.
FF registration no.: IT023600

LCD display (optional)
19-segment alphanumeric display (two lines, six characters) with
additional bar chart display; option of backlighting.
Customized display:
Output value in percent or OUT (analog input)
Diagnostic messages, alarms, measuring range upper limit violations,
and changes to the configuration are also displayed.

Transmitter interference mode
Permanent self-diagnosis; potential errors indicated in diagnostic parameters and in the status of process values.
6 Measuring accuracy

Reference conditions acc. to IEC 60770

- Ambient temperature $T_U = \text{Constant, in range: } 18 \ldots 30 \, ^\circ\text{C (64 \ldots 86 \, ^\circ\text{F)}}$
- Relative humidity = Constant, in range: 30 \ldots 80 \%
- Atmospheric pressure $P_U = \text{Constant, in range: } 950 \ldots 1,060 \, \text{mbar}$
- Position of measuring cell (isolating diaphragm areas): Vertical $\pm 1^\circ$
- Span based on zero position
- Isolating diaphragm material: Hastelloy C276™
- Filling liquid: Silicone oil
- Supply voltage: 24 V DC
- Load with HART: 250 Ω
- Transmitter not grounded
- Characteristic setting: Linear, 4 \ldots 20 mA

Unless otherwise specified:
- The reference conditions apply for the following performance characteristics.
- Errors are given as a percentage of the span value.

The accuracy of the measurement in relation to the upper range limit (URL) is affected by the turndown (TD); i.e., the ratio of the upper range limit (URL) to the set span (URL/span).

Important
Select the transmitter sensor with the smallest possible turndown. This optimizes the accuracy of the measurement.

Dynamic behavior (according to IEC 61298-1)
Devices with standard configurations and a turndown of up to 30:1, plus linear output characteristics.

<table>
<thead>
<tr>
<th>Reaction time</th>
<th>30 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time constant (63 %)</td>
<td>150 ms (sensors F to R)</td>
</tr>
<tr>
<td>Time constant (63 %)</td>
<td>400 ms (sensor C)</td>
</tr>
<tr>
<td>Time constant (63 %)</td>
<td>1,000 ms (sensor A)</td>
</tr>
</tbody>
</table>

Measuring error (for terminal based conformity)
Percentage of set span, consisting of non-linearity, hysteresis, and non-reproducibility.
In the case of fieldbus devices, SPAN refers to the analog input function block output scale range.

Measuring error for differential pressure sensor

<table>
<thead>
<tr>
<th>Turndown</th>
<th>Measuring error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 to 10:1</td>
<td>$\pm 0.04 %$</td>
</tr>
<tr>
<td>$>$10:1</td>
<td>$\pm (0.04 + 0.005 \times \text{TD} - 0.05) %$</td>
</tr>
</tbody>
</table>

Measuring error for absolute pressure sensor

<table>
<thead>
<tr>
<th>Measuring error</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 kPa, 800 mbar, 321 in H₂O</td>
</tr>
</tbody>
</table>

For sensor code A with absolute pressure sensor

<table>
<thead>
<tr>
<th>Measuring error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 kPa, 12 mbar, 4.8 in H₂O</td>
</tr>
</tbody>
</table>

0.6 kPa, 6 bar, 87 psi
7 Operating influences

Thermal change in ambient temperature on the zero signal and span (turndown up to 15:1), in relation to the set span

Differential pressure sensor:

<table>
<thead>
<tr>
<th>Range</th>
<th>Maximum effect on zero signal and span</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 ... 60 °C</td>
<td>± (0.06 % x TD + 0.05 %)</td>
</tr>
<tr>
<td>(-14 ... 140 ºF)</td>
<td></td>
</tr>
<tr>
<td>-40 ... -10 °C</td>
<td>± (0.025 % / 10 K x TD + 0.03 % / 10 K)</td>
</tr>
<tr>
<td>(-40 ... 14 ºF) and</td>
<td></td>
</tr>
<tr>
<td>60 ... 80 °C</td>
<td></td>
</tr>
<tr>
<td>(140 ... 176 ºF)</td>
<td></td>
</tr>
</tbody>
</table>

Absolute pressure sensor
For the entire temperature range of 120 K

- Zero signal
 For sensors C, F, L, N, R:
 40 kPa, 400 mbar, 160 in H₂O
 (absolute pressure sensor 41 MPa, 410 bar, 5,945 psi)
 For sensor A:
 0.6 kPa, 6 mbar, 2.4 in H₂O
 (absolute pressure sensor 0.6 MPa, 6 bar, 87 psi)

- Span
 For sensors C, F, L, N, R:
 0.3 kPa, 3 bar, 43.5 psi
 (absolute pressure sensor 41 MPa, 410 bar, 5,945 psi)
 For sensor A:
 4.5 kPa, 45 mbar, 18 in H₂O
 (absolute pressure sensor 0.6 MPa, 6 bar, 87 psi)

Static pressure (zero signal errors may be calibrated out at operating pressure)

<table>
<thead>
<tr>
<th>Measuring range</th>
<th>Sensor A</th>
<th>Sensor C, F, L, N</th>
<th>Sensor R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero signal</td>
<td>Up to 2 bar: 0.05 % URL</td>
<td>Up to 100 bar: 0.05 % URL</td>
<td>Up to 100 bar: 0.1 % URL</td>
</tr>
<tr>
<td></td>
<td>> 2 bar: 0.05 % URL/bar</td>
<td>> 100 bar: 0.05 % URL/100 bar</td>
<td>> 100 bar: 0.1 % URL/100 bar</td>
</tr>
<tr>
<td>Span</td>
<td>Up to 2 bar: 0.05 % span</td>
<td>Up to 100 bar: 0.05 % span</td>
<td>Up to 100 bar: 0.1 % span</td>
</tr>
<tr>
<td></td>
<td>> 2 bar: 0.05 % span/bar</td>
<td>> 100 bar: 0.05 % span/100 bar</td>
<td>> 100 bar: 0.1 % span/100 bar</td>
</tr>
</tbody>
</table>

Power supply
Within the specified limits for the voltage/load, the total effect is less than 0.001 % of the upper range limit per volt.

Load
Within the specified load/voltage limits, the total effect is negligible.

Electromagnetic fields
Total effect: Less than 0.05 % of span between 80 and 1,000 MHz and at field strengths of up to 10 V/m, when tested with unshielded cables, and either with or without a display.

Installation position
Rotations in the plane of the diaphragm have a negligible effect. A tilt from the vertical causes a zero position shift of sin a x 0.35 kPa (3.5 mbar, 1.4 in H₂O) of the upper range limit, which can be corrected using an appropriate zero position adjustment. There is no effect on the span.

Long-term stability
Sensor code C ... R:
± (0.05 x TD) % / year
± (0.15 x TD) % / 5 years

Sensor code A:
± (0.2 x TD) % / year
± (0.3 x TD) % / 5 years

Vibration effect
±0.10 % of upper range limit (according to IEC 61298-3)

Base accuracy (Total performance)
Temperature change in the range -10 ... 60 °C (14 ... 140 °F), up to 10 MPa, 100 bar, 1,450 psi static pressure (sensors C ... R):
± 0.13 % of the set span (TD 1:1)

The base accuracy (Total performance) includes the measurement deviation (non-linearity including hysteresis and non-reproducibility), the thermal change in the ambient temperature on the zero signal and span, as well as the effect of the static pressure on the zero signal and span.

\[
E_{\text{perf}} = \sqrt{(E_{\Delta T} + E_{\Delta P})^2 + E_{\Delta P_{\text{stat}}}^2 + E_{\Delta L}^2}
\]

\[
E_{\text{perf}} = \text{Base accuracy}
\]

\[
E_{\Delta T} = \text{Effect of the ambient temperature on the zero signal}
\]

\[
E_{\Delta P} = \text{Effect of the ambient temperature on the span}
\]

\[
E_{\Delta P_{\text{stat}}} = \text{Effect of the static pressure on the zero signal}
\]

\[
E_{\Delta L} = \text{Effect of the static pressure on the span}
\]

\[
E_{\Delta L} = \text{Measuring error (for terminal-based conformity)}
\]
8 Technical specification

Important
Refer to the ordering information to check the availability of different versions of the relevant model.

Materials

Isolating diaphragms 1)	Hastelloy C276™; stainless steel (1.4435); Monel 400™; Tantal
Process flange, adapter, plugs, and drain/vent valves 1)	Hastelloy C276™; stainless steel (1.4404); Monel 400™; Kynar (PVDF)
Sensor filling liquid	Silicone oil, inert filling (carbon fluoride)
Sensor housing	Stainless steel (316L/1.4404)
Mounting bracket	Stainless steel
Seals 1)	Viton™ (FPM) color: Green; Buna (NBR) color: Black; EPDM color: Black; PTFE color: White (for sensors C, F, L, N, R) or PEP-coated Viton™ Color: Gray (for sensor A)
Screws and nuts	Stainless steel Class A4-70 screws and nuts to ISO 3506, in compliance with NACE MR0175 Class II
Electronics housing and cover	Barrel design • Aluminum alloy with low copper content (< 0.1 %), baked epoxy finish • Stainless steel (316L / 1.4404) DIN design • Aluminum alloy with low copper content (< 0.1 %), baked epoxy finish
O-ring cover	Viton™
Local zero and span adjustments	Fiber glass-reinforced polycarbonate plastic (removable), no adjustment options for stainless steel housings
Name plate	Stainless steel (304/1.4301) or plastic data plate attached to the electronics housing

1) Transmitter wetted parts

TM Hastelloy is a Cabot Corporation trademark.
TM Monel is an International Nickel Co. trademark.
TM Viton is a DuPont de Nemours trademark.

Calibration

| Standard: | 0 to upper range limit (URL) for ambient temperature and atmospheric pressure |
| Optional: | To specified span |

Optional accessories

Mounting bracket	For vertical and horizontal 60 mm (2") pipes or wall mounting
LCD display	Pluggable and rotatable design
Additional tag plate, e. g. for marking measuring points	Tag with wire (both stainless steel attached to the transmitter, with a maximum of 30 characters including spaces
Lightning protection	Up to 4 kV • Voltage pulses: 1.2 μs rise time; 50 μs delay time at half value • Current pulses: 8 μs rise time; 20 μs delay time at half value Not available for devices with ATEX-EEx nL or PROFIbus PA/FOUNDATION fieldbus featuring ATEX-EEx i or FM intrinsically safe designs.

Oil- and grease-free for oxygen applications

Preparation for hydrogen applications

Certificates (test, design, characteristics, material traceability)

Process connections

Flange:
1/4-18 NPT on the process axis; can be selected with 7/16-20 UNF fastening screw thread, DIN 19213 connection with M10 fastening screw thread for operating pressures of up to 16 MPa, 160 bar, 2,320 psi or M12 fastening screw thread for higher operating pressures of up to 41 MPa, 410 bar, 6,000 psi.

Adapter:
1/2-14 NPT on the process axis. Center distance between flanges: 54 mm (2.13 inch); 51, 54, or 57 mm (2.01, 2.13, or 2.24 inch) for adapter fittings.

Electrical connections

Two 1/2 - 14 NPT or M20 x 1.5 threaded bores for cable glands directly on housing, or plug connector • HART: Straight or angled Harting Han 8D (8U) connector and one mating plug • FOUNDATION Fieldbus / PROFIBUS PA; 7/8" plug / M12 x 1

Terminals

HART version: Four terminals for signal/external display, for wire cross sections of up to 2.5 mm² (14 AWG), and four connection points for testing and communication purposes.

Fieldbus versions: Two signal terminals (bus connection) for wire cross sections of up to 2.5 mm² (14 AWG).

Grounding

Internal and external ground terminals for wire cross sections of up to 4 mm² (12 AWG) are provided.

Installation position

The transmitter can be installed in any position. The electronics housing may be rotated 360°. A stop is provided to prevent overtravel.

Weight (without options)

Approximately 3.5 kg (7.72 lb); additional 1.5 kg (3.31 lb) for stainless steel housing

Packaging

Carton with dimensions of approx. 230 x 250 x 270 mm (9.06 x 9.84 x 10.63 inches).
9 Configuration

9.1 Transmitter with HART communication and 4 ... 20 mA output current

Standard configuration
Transmitters are calibrated at the factory to the customer's specified measuring range. The calibrated range and measuring point number are provided on the name plate. If this data has not been specified, the transmitter will be delivered with the following configuration:

- 4 mA Zero position
- 20 mA Upper range limit (URL)
- Output Linear
- Damping 0.125 sec.
- Transmitter failure mode 21 mA
- Optional LCD display 0 ... 100 % linear

Any or all of the configurable parameters listed above - including the upper and lower range limit values - can easily be changed using a portable HART handheld communicator or a PC running the configuration software SMART VISION with DTM for 2600T. Data regarding flange type and material, O-ring materials, and type of filling liquid is stored in the device.

9.2 Transmitter with PROFIBUS PA communication

Transmitters are calibrated at the factory to the customer's specified measuring range. The calibrated range and measuring point number are provided on the name plate. If this data has not been specified, the transmitter will be delivered with the following configuration:

- Measuring profile Pressure
- Engineering unit mbar/bar
- Output scale 0 % Lower range limit (LRL)
- Output scale 100 % Upper range limit (URL)
- Output Linear
- Upper alarm limit Upper range limit (URL)
- Upper warning limit Upper range limit (URL)
- Lower warning limit Lower range limit (LRL)
- Lower alarm limit Lower range limit (LRL)
- Hysteresis limit value 0.5 % of output scale
- PV filter 0.125 sec.
- Address Not required

Any or all of the configurable parameters listed above - including the upper and lower range limit values - can be changed using FOUNDATION Fieldbus compatible configuration tool. Data regarding flange type and material, O-ring materials, and type of filling liquid is stored in the device.

9.3 Transmitter with FOUNDATION fieldbus communication

Transmitters are calibrated at the factory to the customer's specified measuring range. The calibrated range and measuring point number are provided on the name plate. If this data has not been specified, the transmitter will be delivered with the following configuration:

Any or all of the configurable parameters listed above - including the upper and lower range limit values - can easily be changed using a PC running the configuration software SMART VISION with DTM for 2600T. Data regarding flange type and material, O-ring materials, and type of filling liquid is stored in the device.
10 Mounting dimensions (not design data)

10.1 Transmitter with barrel housing

Fig. 1: Dimensions in mm (inches), deviations in the drawing are possible

1 Terminal side
2 Housing stop-screw
3 Sensor plate
4 Process connection (conforms to IEC 61518)
5 With LCD display
6 Space for removing the cover required
7 Additional tag plate, e.g. for marking measuring points (optional)
8 Drain/vent valve (optional)
9 Thread for fixing screws
 (see "Process connections" data)
10 Electrical connection
11 Name plate
12 Housing cover
13 Plate with key legend, etc.
14 Captive fixing screw for keyboard cover
15 Space for rotating the keyboard cover required
16 Upper or lower threaded bore (optional); 1/4-18 NPT for drain/vent valve
10.2 Transmitter with DIN housing

Fig. 2: Dimensions in mm (inches), deviations in the drawing are possible

1. Space for rotating the keyboard cover required
2. Additional tag plate, e.g. for marking measuring points (optional)
3. Electrical connection
4. Sensor plate
5. Process connection (conforms to IEC 61518)
6. Thread for fixing screws
 (see "Process connections" data)
7. Name plate
8. Housing cover
9. Terminal side
10. Electrical connection (blind plug)
11. Space for removing the cover required
12. Housing stop-screw
13. Captive fixing screw for keyboard cover
14. Plate with key legend, etc.
15. With LCD display
10.3 Mounting options with bracket

Fig. 3: Dimensions in mm (inches), deviations in the drawing are possible

Fig. 4: Deviations in the drawing are possible
1 Vertical pipe mounting
2 Horizontal pipe mounting
3 Vertical pipe mounting and transmitter above the mounting bracket
4 Horizontal pipe mounting and transmitter above the mounting bracket
11 Electrical connections

11.1 Standard terminal strip

M00162

Fig. 5

1 Cable entry
2 Test terminals for 4 ... 20 mA (not with fieldbus transmitters)
3 Ground/equipotential bonding terminal
4 Output signal / power supply
5 Screw terminals for leads with cross section of 0.5 ... 2.5 mm²
 (AWG 20 ... AWG 14)
11.2 Fieldbus plug connector

![Fieldbus plug connector diagram](image)

Pin (male) assignment

<table>
<thead>
<tr>
<th>Pin number</th>
<th>FOUNDATION fieldbus</th>
<th>PROFIBUS PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FF-</td>
<td>PA+</td>
</tr>
<tr>
<td>2</td>
<td>FF+</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Shield</td>
<td>PA-</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>Shield</td>
</tr>
</tbody>
</table>

Mating plug (socket) not supplied

11.3 Harting Han 8D (8U) plug connector

![Harting Han 8D plug connector diagram](image)

1. Barrel housing
2. DIN housing
3. Harting Han 8D (8U) socket insert for mating plug supplied (view of sockets)
12 Ordering information

<table>
<thead>
<tr>
<th>Differential Pressure Transmitter, Static Pressure up to 41 MPa / 410 bar / 5945 psi, Base Accuracy 0.04 %</th>
<th>Main Catalog No.</th>
<th>Additional Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>265DS</td>
<td>X X X X X X X</td>
<td>XX</td>
</tr>
</tbody>
</table>

Sensor - Span Limits
- 0.05 ... 1 kPa / 0.5 ... 10 mbar / 0.2 ... 4 in. H2O
- 0.2 ... 6 kPa / 2 ... 60 mbar / 0.8 ... 24 in. H2O
- 0.4 ... 40 kPa / 4 ... 400 mbar / 1.6 ... 160 in. H2O
- 2.5 ... 250 kPa / 25 ... 2500 mbar / 10 ... 1000 in. H2O
- 20 ... 2000 kPa / 0.2 ... 20 bar / 2.9 ... 290 psi
- 100 ... 10000 kPa / 1 ... 100 bar / 14.5 ... 1450 psi

Static Pressure
- 0.6 MPa / 6 bar / 87 psi
- 1 MPa / 10 bar / 145 psi
- 16 MPa / 160 bar / 2320 psi
- 25 MPa / 250 bar / 3625 psi
- 41 MPa / 410 bar / 5945 psi

Diaphragm Material / Fill Fluid
- AISI 316L SST (1.4435) / Silicone Oil, NACE
- Hastelloy C-276 / Silicone Oil, NACE
- Monel 400 / Silicone Oil, NACE
- Monel 400 Gold-plated / Silicone Oil, NACE
- Tantalum / Silicone Oil, NACE
- AISI 316L SST (1.4435) / Inert Fluid
- Hastelloy C-276 / Inert Fluid, NACE
- Monel 400 / Inert Fluid, NACE
- Monel 400 Gold-plated / Inert Fluid, NACE
- Tantalum / Inert Fluid, NACE

Process Connection Material / Process Connection
- AISI 316L SST (1.4404 / 1.4408) / (horizontal) 1/4-18 NPT-f direct, NACE
- AISI 316L SST (1.4404 / 1.4408) / (horizontal) 1/4-18 NPT-f direct (DIN 19213), NACE
- AISI 316L SST (1.4404 / 1.4408) / (horizontal) 1/2-14 NPT-f through Adapter, NACE
- Hastelloy C-276 (horizontal) / 1/4-18 NPT-f direct, NACE
- Hastelloy C-276 (horizontal) / 1/2-14 NPT-f through Adapter, NACE
- Monel 400 (horizontal) / 1/4-18 NPT-f direct, NACE
- Monel 400 (horizontal) / 1/2-14 NPT-f through Adapter, NACE
- Kynar (PVDF) / (side axial) 1/4-18 NPT-f direct (SWP max. 1 MPa, 10 bar)
- AISI 316L SST (1.4404 / 1.4408) / (vertical) 1/4-18 NPT-f direct, NACE

Bolts / Gaskets
- AISI 316L SST / Viton, NACE
- AISI 316L SST / PTFE, NACE (max. 25 MPa)
- AISI 316L SST / EPDM, NACE
- AISI 316L SST / Perbunan
- AISI 316L SST / Graphite

1) Only with sensor code A
2) Not with sensor code A
3) Suitable for Oxygen Applications

Continued on next page
Series 2600T Pressure Transmitters 265DS

For differential pressure, selectable maximum operating pressure up to 41 MPa, 5,945 psi

<table>
<thead>
<tr>
<th>Main Catalog No.</th>
<th>Additional Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Pressure Transmitter, Static Pressure up to 41 MPa / 410 bar / 5945 psi, Base Accuracy 0.04 %</td>
<td>265DS X X X X X X X</td>
</tr>
<tr>
<td>Electronic Housing Material / Electrical Connection</td>
<td>XX</td>
</tr>
<tr>
<td>Aluminium Alloy (Barrel Type) / 1/2-14 NPT</td>
<td>A</td>
</tr>
<tr>
<td>Aluminium Alloy (Barrel Type) / M20 x 1.5</td>
<td>4) B</td>
</tr>
<tr>
<td>Aluminium Alloy (Barrel Type) / Harting Han Connector</td>
<td>5) E</td>
</tr>
<tr>
<td>Aluminium Alloy (Barrel Type) / Fieldbus Connector</td>
<td>6) G</td>
</tr>
<tr>
<td>AISI 316L SST (Barrel Type) / 1/2-14 NPT</td>
<td>S</td>
</tr>
<tr>
<td>AISI 316L SST (Barrel Type) / M20 x 1.5</td>
<td>4) T</td>
</tr>
<tr>
<td>Aluminium Alloy (DIN Type) / M20 x 1.5</td>
<td>4) J</td>
</tr>
<tr>
<td>Aluminium Alloy (DIN Type) / Harting Han Connector</td>
<td>5) K</td>
</tr>
<tr>
<td>Aluminium Alloy (DIN Type) / Fieldbus Connector</td>
<td>6) W</td>
</tr>
</tbody>
</table>

Output	
HART Digital Communication and 4 ... 20 mA	7) H
HART Digital Communication and 4 ... 20 mA	8) 1
PROFIBUS PA	7) P
PROFIBUS PA	8) 2
FOUNDATION Fieldbus	7) F
FOUNDATION Fieldbus	8) 3

Vent Valve Material / Position	
AISI 316L SST (1.4404) / On Process Axis, NACE	V1
AISI 316L SST (1.4404) / On Flanges Side Top, NACE	V2
AISI 316L SST (1.4404) / On Flanges Side Bottom, NACE	V3
Hastelloy C-276 / On Process Axis, NACE	V4
Hastelloy C-276 / On Flanges Side Top, NACE	V5
Hastelloy C-276 / On Flanges Side Bottom, NACE	V6
Monel 400 / On Process Axis, NACE	V7
Monel 400 / On Flanges Side Top, NACE	V8
Monel 400 / On Flanges Side Bottom, NACE	V9

Explosion Protection Certification	
ATEX Group II Category 1/2 GD – Intrinsic Safety EEx ia	E1
ATEX Group II Category 1/2 G - Flameproof EEx d	E2
ATEX Group II Category 3 GD – Type of Protection N EEx nL Energy Limited	E3
ATEX II 1/2 GD EEx ia + ATEX II 1/2 GD EEx d + ATEX EEx nL	EW
Factory Mutual (FM) - Intrinsically Safe	EA
Factory Mutual (FM) – Explosion Proof	9) EB
Canadian Standard Association (CSA)- Explosion Proof	EE
Canadian Standard Association (CSA)- Explosion Proof (Canada & USA)	EM
NEPSI Ex ia II C T4/T6	EY
NEPSI Ex d II C T6	EZ
GOST (Russia) EEx ia	W1
GOST (Russia) EEx d	W2
GOST (Kazakhstan) EEx ia	W3
GOST (Kazakhstan) EEx d	W4
GOST (Ukraine) EEx ia	WA
GOST (Ukraine) EEx d	WB
SAA Ex d IIIC T6 and Ex td A21 IP 66 T85 °C	X1
SAA Ex ia IIIC T4/T6 and Ex n IIIC T4/T6	X2

4) Not available with FM, CSA
5) Not available with EExnL, EExd, FM, CSA
6) Not with EEx nL, EEx d, FM- / CSA- / NEPSI-Explosion Proof
7) No Additional Options
8) Options requested (to be ordered by Additional Ordering Code)
9) Only with Electrical Connection 1/2-14 NPT and Stainless Steel Tag Plate

Continued on next page
Series 2600T Pressure Transmitters 265DS

For differential pressure, selectable maximum operating pressure up to 41 MPa, 5,945 psi

<table>
<thead>
<tr>
<th>Main Catalog No.</th>
<th>Additional Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>265DS X X X X X X</td>
<td>XX</td>
</tr>
</tbody>
</table>

Integrated Digital Display (LCD)
- With integrated LCD Display: L1
- With integrated LCD Display (Backlit): L2

Mounting Bracket Shape / Material
- For Pipe Mounting / AISI 304 SST (1.4301): B2
- For Wall Mounting / AISI 304 SST (1.4301): B4

Surge Protector
- Surge / Transient Protector: S1

Operating Manual
- German: M1
- Spanish: M3
- French: M4
- Swedish: M7
- Russian: MB

Label and Tag Language / Material
- German / Stainless Steel: T1
- German and English / Plastic: TA

Additional Tag Plate
- Stainless Steel: I1

Applications: Oxygen
- Oil- and Grease-free for Oxygen Applications (O2), (Pmax = 120 bar, Tmax = 60 °C): P1

Applications: Hydrogen
- Hydrogen Application (H2) (Fluid Film): P2

Connector
- Fieldbus 7/8 in. (without Mating Plug, recommended for FOUNDATION Fieldbus): U1
- Fieldbus M12 x 1 (without Mating Plug, recommended for PROFIBUS PA): U2
- Harting Han 8D (8U) - Straight Entry: U3
- Harting Han 8D (8U) - Angle Entry: U4

Output Characteristic
- Square Root Characteristic: 224

Material: 2.1 Compliance
- Certificate of Compliance with the Order EN 10204-2.1 of Process Wetted Parts: H1

Material: 3.1 Inspection
- Inspection Certificate EN 10204-3.1 of the pressure-bearing and process wetted parts with analysis certificates as material verification: H3

Material: 2.2 Test Report
- Test Report EN 10204-2.2 of the Pressure Bearing and Process Wetted Parts: H4

Certificates: 3.1 Calibration
- Inspection Certificate EN 10204-3.1 of Calibration: C1

Certificates: 3.1 Cleanliness Stage
- Inspection Certificate EN 10204-3.1 of the Cleanliness Stage: C3

Certificates: 3.1 Helium Leakage Test
- Inspection Certificate EN 10204-3.1 of Helium Leakage Test of the Sensor Module: C4

Certificates: 3.1 Pressure Test
- Inspection Certificate EN 10204-3.1 of the Pressure Test: C5

10) Not with ATEX-EEx nL (Code E3), not with PROFIBUS PA / FOUNDATION Fieldbus (Code 2, 3) with Intrinsic Safety EEx ia (Code E1, EY), not with FM Intrinsically Safe (Code EA) a. SAA (Code X2)
11) Not available with DIN Electronic Housing Code J, K, W
12) Not available with Factory Mutual - Explosion Proof
13) Pmax = 12 MPa, Tmax. = 60 °C
14) Minor Parts with Factory Certificate acc. to EN 10204

Continued on next page
Series 2600T Pressure Transmitters 265DS

For differential pressure, selectable maximum operating pressure up to 41 MPa, 5,945 psi

<table>
<thead>
<tr>
<th>Main Catalog No.</th>
<th>Additional Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>265DS</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>XX</td>
</tr>
</tbody>
</table>

Certificates: 2.1 Instrument Design
- Certificate of Compliance with the Order EN 10204-2.1 of Instrument Design
 - C6

Certificates: DNV / Germanischer Lloyd
- DET NORSKE VERITAS Approval
 - C7
- Germanischer Lloyd Approval
 - C8

Certificates: Overfill Protection
- Overfill Protection
 - C9

Certificates: SIL2
- SIL2 - Declaration of Conformity
 - CL

Certificates: GOST
- GOST (Russia) without explosion protection
 - WC
- GOST (Kazakhstan) without explosion protection
 - WD
- GOST (Ukraine) without explosion protection
 - WE

15) Not with sensor code A, N, R
13 Standard scope of delivery (changes may be made by using additional ordering code)

- Adapters supplied loose
- Plugs for process axis (no drain/vent valves)
- For general-purpose applications (no Ex applications)
- No display, no mounting bracket, no lightning protection
- English-language operating instructions and labels
- Name plate material: Barrel electronics housing code A, B, E, G, S, T – stainless steel
 DIN electronics housing code J, K, W – plastic
- Configuration with kPa and °C units
- No test, inspection, or material certificates

Unless otherwise specified prior to manufacture, the customer shall be responsible for the selection of suitable wetted parts and appropriate fill fluid to assure compatibility with the relevant process medium.