

ROBOTICS **Product specification** IRB 910SC

Trace back information: Workspace R18-2 version a9 Checked in 2018-10-09 Skribenta version 5.3.008

Product specification

IRB 910SC-3/0.45 IRB 910SC-3/0.55 IRB 910SC-3/0.65

IRC5

Document ID: 3HAC056431-001 Revision: E

© Copyright 2016-2018 ABB. All rights reserved. Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damages to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.

Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2016-2018 ABB. All rights reserved. Specifications subject to change without notice.

ABB AB, Robotics Robotics and Motion Se-721 68 Västerås Sweden

Table of contents

	Overview of this specification			
1	Desc	ription	9	
	1.1	Structure	9	
		1.1.1 Introduction to structure	9	
		1.1.2 The robot	11	
	1.2	Standards	14	
		1.2.1 Applicable standards	14	
	1.3	Installation	16	
		1.3.1 Introduction to installation	16	
		1.3.2 Operating requirements	17	
		1.3.3 Mounting the manipulator	18	
	1.4	Load diagrams	20	
		1.4.1 Introduction to load diagram	20	
		1.4.2 Load diagram	21	
		1.4.3 Maximum load and moment of inertia	24	
	1.5	Mounting of equipment	26	
	1.6	Calibration	28	
		1.6.1 Fine calibration	28	
	1.7	Maintenance and troubleshooting	29	
		1.7.1 Introduction to maintenance and trouble shooting	29	
	1.8	Robot motion	30	
		1.8.1 Working range and type of motion	31	
		1.8.2 Performance according to ISO 9283	35	
		1.8.3 Velocity	36	
	_	1.8.4 Robot stopping distances and times	37	
	1.9	Customer connections	38	
2	Spec	ification of variants and options	41	
	2.1	Introduction to variants and options	41	
	2.2	Manipulator	42	
	2.3	Floor cables	44	
	2.4	User documentation	45	
3	Acce	ssories	47	
ind	dex		49	

This page is intentionally left blank

Overview of this specification

About this product specification

It describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- · The fulfilment of standards, safety and operating requirements
- The load diagrams, mounting of extra equipment, the motion and the robot reach
- · The specification of variants and options available

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

Users

It is intended for:

- Product managers and product personnel
- · Sales and marketing personnel
- Order and customer service personnel

References

Documentation referred to in the manual, is listed in the table below.

Document name	Document ID
Product manual - IRB 910SC	3HAC056430-001
Product manual, spare parts - IRB 910SC	3HAC056433-001
Reference to the circuit diagram for the robot.	Document ID
Product manual - IRC5 Compact	3HAC035738-001
Operating manual - IRC5 with FlexPendant	3HAC050941-001
Product specification - Controller software IRC5	3HAC050945-001
Product specification - Controller IRC5	3HAC047400-001
Product specification - Robot user documentation, IRC5 with Robot- Ware 6	3HAC052355-001

Revisions

Revision	Description
-	First edition.

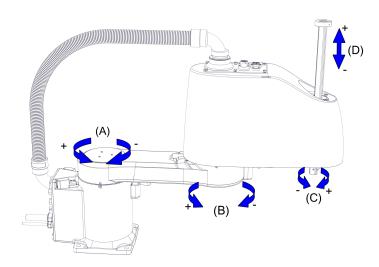
Continued

Revision	Description
A	The force and torque values under endurance load and maximum load have been updated. See <i>Floor mounted on page 18</i> .
	 Ball screw spline unit is added to the warning listing the parts that are easily damaged due to overload. See <i>Information on page 20</i>.
	 Working range of axis 4 has been updated. See <i>Robot motion on page 31</i>.
	 Performance data of IRB 910SC-3/0.45 and IRB 910SC-3/0.65 has been added. See Performance according to ISO 9283 on page 35.
	 Velocity of axis 3 changes from 1.02 m/s to 1 m/s. See Velocity on page 36.
	Minor changes.
В	Published in release R16.2. The following updates are done in this revi- sion:
	• Dimension drawing for fitting the end effector is updated. See <i>Fitting of end effector to the ball screw spline shaft on page 26.</i>
С	Published in release R17.1. The following updates are done in this revi- sion:
	Restriction of load diagram added.
	Changed protection from IP30 to IP20
D	Published in release R17.2. The following updates are done in this revision:
	 Updated list of applicable standards.
	Improved picture of end effector dimension.
E	Published in release R18.2. The following updates are done in this revision:
	 Updated the COG figure for describing max. moment of inertia.

1.1 Structure

1.1.1 Introduction to structure

General	
	The IRB 910SC is ABB Robotics first generation SCARA robot, with 4 axes and a rated payload of 3 kg (maximum payload of 6 kg) in three different reach variants 0.45 m, 0.55 m, and 0.65 m, designed specifically for manufacturing industries that use flexible robot-based automation, e.g. 3C industry. The robot has an open structure that is especially adapted for flexible use, and can communicate extensively with external systems.
Operating system	
	The robot is equipped with the IRC5 Compact (IRC5C) controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication etc. See <i>Product specification - Controller IRC5 with FlexPendant</i> (IRC5C included).
Safety	
	The safety standards are valid for the complete robot, manipulator and controller.
Additional function	nality
	For additional functionality, the robot can be equipped with optional software for application support - for example dispensing and cutting, communication features


- network communication - and advanced functions such as multitasking, sensor

control etc. For a complete description on optional software, see *Product specification - Controller software IRC5*.

9

1.1.1 Introduction to structure *Continued*

Manipulator axes

Posi- tion	Description	Posi- tion	Description
Α	Axis 1	в	Axis 2
С	Axis 4	D	Axis 3

1.1.2 The robot

1.1.2 The robot

General

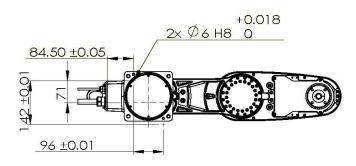
The IRB 910SC is available in three versions and all can only be mounted on floor or other flat surface, no other mounting position is permitted.

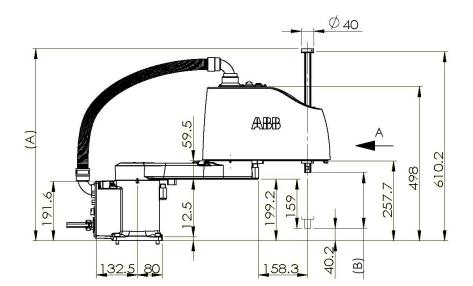
Robot type	Rated handling capacity (kg)	Maximum handling ca- pacity (kg)	Reach (m)
IRB 910SC	3 kg	6 kg	0.45 m
IRB 910SC	3 kg	6 kg	0.55 m
IRB 910SC	3 kg	6 kg	0.65 m

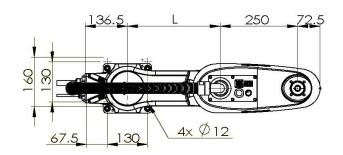
Manipulator weight

Data	Weight
IRB 910SC-3/0.45	24.5 kg
IRB 910SC-3/0.55	25 kg
IRB 910SC-3/0.65	25.5 kg

Other technical data


Data	Description	Note
Airborne noise level		< 70 dB (A) Leq (acc. to the work- ing space Machinery directive 2006/42/EG)


Power consumption


Robot in 0 degree position		IRB 910SC- 3/0.55	IRB 910SC- 3/0.65
Brakes engaged	71 W	71 W	71 W
Brakes disengaged	127.6 W	127.6 W	127.6 W

1.1.2 The robot *Continued*

Dimensions

xx1500002526

Item	Description	Variant		
		IRB 910SC- 3/0.45	IRB 910SC- 3/0.55	IRB 910SC- 3/0.65
L	Length of lower arm	200 mm	300 mm	400 mm
А	Maximum height	620 mm	620 mm	620 mm

Continues on next page

1.1.2 The robot Continued

Item	Item Description Vari		Variant		
		IRB 910SC- 3/0.45	IRB 910SC- 3/0.55	IRB 910SC- 3/0.65	
В	Z stroke	180 mm	180 mm	180 mm	

1.2.1 Applicable standards

1.2 Standards

1.2.1 Applicable standards

The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed.

Standards, EN ISO

The product is designed in accordance with the requirements of:

Standard	Description
EN ISO 12100:2010	Safety of machinery - General principles for design - Risk as- sessment and risk reduction
EN ISO 13849-1:2015	Safety of machinery, safety related parts of control systems - Part 1: General principles for design
EN ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design
EN ISO 10218-1:2011	Robots for industrial environments - Safety requirements -Part 1 Robot
ISO 9787:2013	Robots and robotic devices Coordinate systems and motion nomenclatures
ISO 9283:1998	Manipulating industrial robots, performance criteria, and related test methods
EN ISO 14644-1:2015 ⁱ	Classification of air cleanliness
EN ISO 13732-1:2008	Ergonomics of the thermal environment - Part 1
EN 61000-6-4:2007 + A1:2011 IEC 61000-6-4:2006 + A1:2010	EMC, Generic emission
(option 129-1)	
EN 61000-6-2:2005 IEC 61000-6-2:2005	EMC, Generic immunity
EN IEC 60974-1:2012 ⁱⁱ	Arc welding equipment - Part 1: Welding power sources
EN IEC 60974-10:2014 ^{<i>ii</i>}	Arc welding equipment - Part 10: EMC requirements
EN IEC 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1 General requirements
IEC 60529:1989 + A2:2013	Degrees of protection provided by enclosures (IP code)
Only robots with protection Clean Room.	

Only robots with protection Clean Room.

ii Only valid for arc welding robots. Replaces EN IEC 61000-6-4 for arc welding robots.

European standards

Standard	Description
EN 614-1:2006 + A1:2009	Safety of machinery - Ergonomic design principles - Part 1: Terminology and general principles

14

1.2.1 Applicable standards *Continued*

Standard	Description
EN 574:1996 + A1:2008	Safety of machinery - Two-hand control devices - Functional aspects - Principles for design

Other standards

Standard	Description
ANSI/RIA R15.06	Safety requirements for industrial robots and robot systems
ANSI/UL 1740	Safety standard for robots and robotic equipment
CAN/CSA Z 434-14	Industrial robots and robot Systems - General safety require- ments

1.3.1 Introduction to installation

1.3 Installation

1.3.1 Introduction to installation

General

IRB 910SC is adapted for normal industrial environment. An end effector with max. weight of 6 kg, including payload, can be mounted on the lower end of the ball screw spline shaft (axis 3). For more information about mounting of extra equipment, see *Mounting of equipment on page 26*.

1.3.2 Operating requirements

1.3.2 Operating requirements

Protection standard

Robot variant	Protection standard IEC529
All variants, manipulator	IP20

Explosive environments

The robot must not be located or operated in an explosive environment.

Working range limitations

EPS will not be selectable and no mechanical limitations available.

Ambient temperature

Description	Standard/Option	Temperature
Manipulator during opera- tion	Standard	+ 5°C ⁱ (41°F) to + 45°C (113°F)
For the controller	Standard/Option	See Product specification - Control- ler IRC5
Complete robot during transportation and storage	Standard	- 25°C (-13°F) to + 55°C (131°F)
For short periods (not ex- ceeding 24 hours)	Standard	up to + 70°C (158°F)

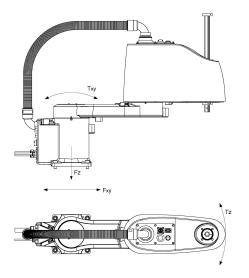
At low environmental temperature < 10°C is, as with any other machine, a warm-up phase recommended to be run with the robot. Otherwise there is a risk that the robot stops or run with lower performance due to temperature dependent oil and grease viscosity.

Relative humidity

Description	Relative humidity
Complete robot during operation, transportation and storage	Max. 95% at constant temperature

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator


General

Maximum load in relation to the base coordination system. See Figure below.

Floor mounted

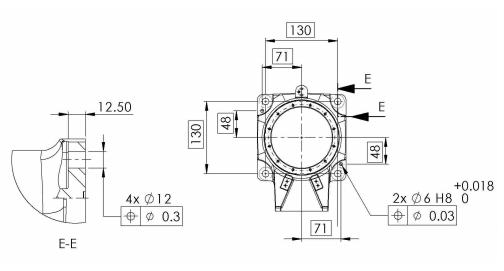
Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	±651 N	±945 N
Force z	255±392 N	255±441 N
Torque xy	±260 Nm	±418 Nm
Torque z	±121 Nm	±238 Nm

The illustration shows the directions of the robots stress forces.

xx1500002522

F _{xy}	Force in any direction in the XY plane
Fz	Force in the Z plane
T _{xy}	Bending torque in any direction in the XY plane
Tz	Bending torque in the Z plane

The table shows the various forces and torques working on the robot during different kinds of operation.



These forces and torques are extreme values that are rarely encountered during operation. The values also never reach their maximum at the same time!

1.3.3 Mounting the manipulator Continued

Fastening holes robot base

xx1500002521

Attachment bolts, specification

The table specifies the type of securing screws and washers to be used to secure the robot directly to the foundation. It also specifies the type of pins to be used.

Suitable screws	M10x25
Quantity	4 pcs
Quality	8.8
Suitable washer	20x10.5x2
Guide pins	2 pcs, D6x20, ISO 2338 - 6m6x20 - A1
Tightening torque	45 Nm
Level surface requirements	0.1
	xx1500000627

1.4.1 Introduction to load diagram

1.4 Load diagrams

1.4.1 Introduction to load diagram

Information

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data and/or loads are outside load diagram is used the following parts can be damaged due to overload:

- ball screw spline unit
- motors
- gearboxes
- mechanical structure

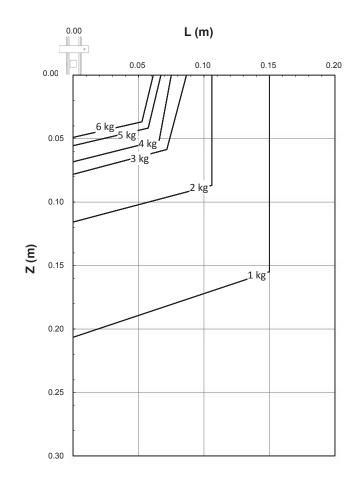
In the robot system is the service routine LoadIdentify available, which allows the user to make an automatic definition of the tool and load, to determine correct load parameters. For detailed information, see *Operating manual - IRC5 with FlexPendant*.

Robots running with incorrect load data and/or with loads outside diagram, will not be covered by robot warranty.

General

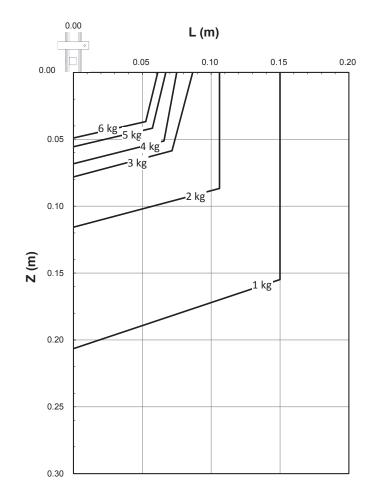
The load diagram includes a nominal pay load inertia, J_0 of 0.01 kgm². At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

Control of load case by "RobotLoad"

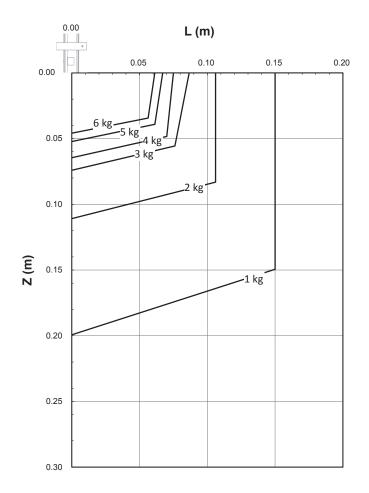

To easily control a specific load case, use the calculation program ABB RobotLoad. Contact your local ABB organization for more information.

The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted armload is exceeded. For over load cases and special applications, contact ABB for further analysis.

1.4.2 Load diagram


1.4.2 Load diagram

IRB 910SC-3/0.45


1.4.2 Load diagram *Continued*

IRB 910SC-3/0.55

1.4.2 Load diagram Continued

IRB 910SC-3/0.65

1.4.3 Maximum load and moment of inertia

1.4.3 Maximum load and moment of inertia

General

Total load given as: Mass in kg, center of gravity (Z and L) in m and moment of inertia (J_{ox}, J_{oy}, J_{ox}) in kgm². L= $\sqrt{(X^2 + Y^2)}$.

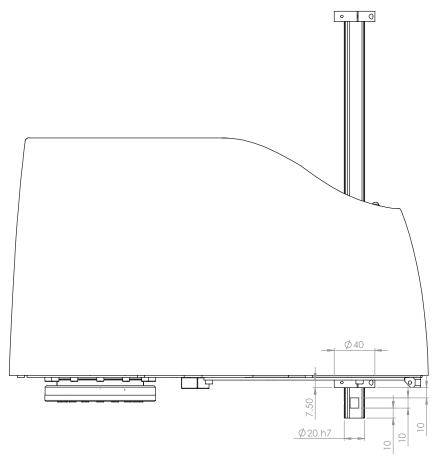
For IRB 910SC, L is 0 mm at the default rating and its maximum value changes with the payload. See *Load diagram on page 21*.

Full movement

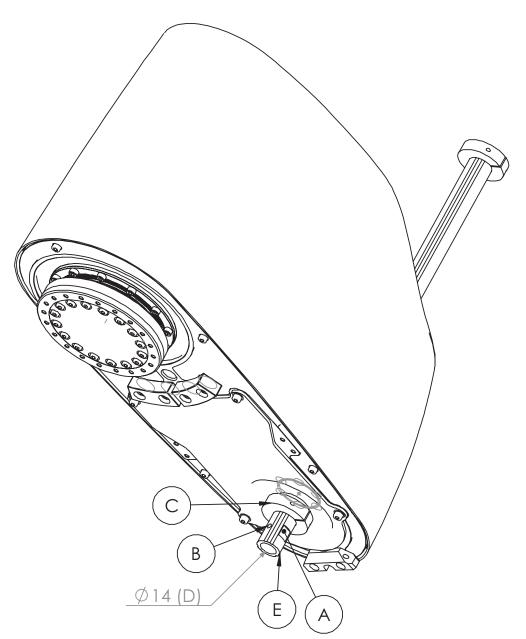
Axis	Robot variant	Max. value
4	IRB 910SC-3/0.45	J_4 = Mass x L ² + $J_{0Z} \le 0.1$ kgm ²
	IRB 910SC-3/0.55	J_4 = Mass x L ² + $J_{0Z} \le 0.1$ kgm ²
	IRB 910SC-3/0.65	J_4 = Mass x L ² + $J_{0Z} \le 0.1$ kgm ²
	Z	(A)
x150000	2615	

Position	Description
Α	Center of gravity

1.4.3 Maximum load and moment of inertia *Continued*


Position	Description
J _{ox} , J _{oy} , J _{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.

1.5 Mounting of equipment

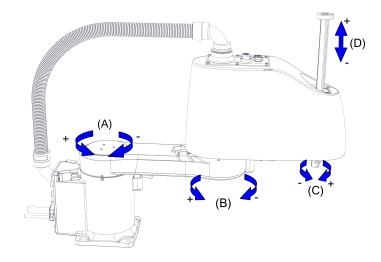

1.5 Mounting of equipment

Fitting of end effector to the ball screw spline shaft

An end effector can be attached to the lower end of the shaft of the ball screw spline unit. The dimensions for fitting the end effector is shown in the following figure.

1.5 Mounting of equipment *Continued*

Α	Flat cut
В	Conical hole
С	Stop block diameter
D	Through hole
E	Shaft diameter


1.6.1 Fine calibration

1.6 Calibration

1.6.1 Fine calibration

General

Fine calibration is made by moving the axes so that the synchronization mark on each joint is aligned. For detailed information on calibration of the robot see *Product manual - IRB 910SC*.

Posi- tion	Description	Posi- tion	Description
Α	Axis 1	в	Axis 2
С	Axis 4	D	Axis 3

1.7 Maintenance and troubleshooting

1.7.1 Introduction to maintenance and trouble shooting

General	
	The robot requires only a minimum of maintenance during operation. It has been designed to make it as easy to service as possible:
	Maintenance-free AC motors are used.
	Grease used for all gearboxes.
	 The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change.
Maintenance	
	The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see <i>Maintenance</i> section in the <i>Product Manual - IRB 910SC</i> .

1.8 Robot motion

1.8 Robot motion

General

Robot moves faster when axis 3 is at a higher position. If the axis 3 is at a relatively low position, the acceleration and deceleration of axes 1, 2 and 4 may be reduced based on the actual position and speed of the axes, and the stabilization time for final positioning may also be longer when moving the robot horizontally.

1.8.1 Working range and type of motion

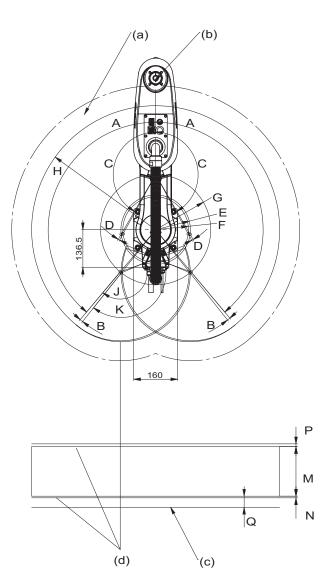
1.8.1 Working range and type of motion

i

Robot motion

Axis	Type of motion	Working range
Axis 1	Rotation motion	-140° to +140°
Axis 2	Rotation motion	-150° to +150° ⁱ
Axis 3	Linear motion	-180 mm to 0 mm
Axis 4	Rotation motion	Default: -400° to +400° Maximum revolutions: -864 to +864 ⁱⁱ

The axis 2 can be restricted to a smaller working range by fitting one more axis-2 mechanical stop block to the upper arm. For how to fit the block, see *Product manual - IRB 910SC*.


 The additional mechanical stop block and related screws are provided in accessory package.
 The default working range for axis 4 can be extended by changing parameter values in the software. Option 610-1 Independent axis can be used for resetting the revolution counter after the axis has been rotated (no need for "rewinding" the axis).

1.8.1 Working range and type of motion *Continued*

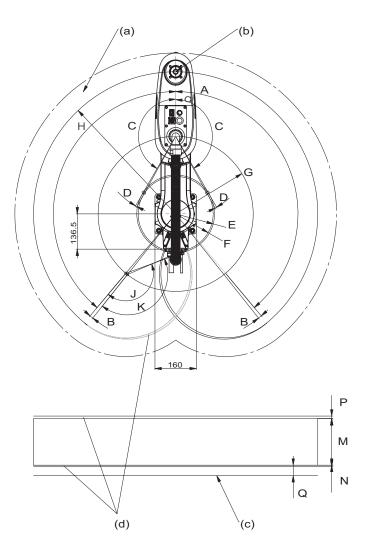
Working range

Illustration, working range and turning radius IRB 910SC-3/0.45

This illustration shows the unrestricted working range and turning radius of IRB 910SC-3/0.45.

xx1500002474

а	Maximum space	F	119 mm
b	Center joint of axis 3	G	200 mm
с	Base mounting face	н	450 mm
d	Area limited by mechanical stop	J	150°
Α	140°	к	151.2°
в	1.5°	М	180 mm
С	150°	Ν	5 mm
D	1.2°	Р	2 mm

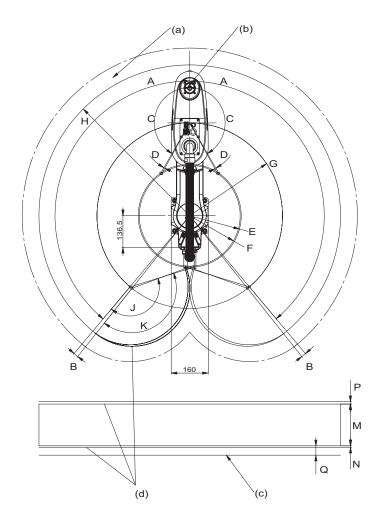

Continues on next page

1.8.1 Working range and type of motion *Continued*

E	126 mm	Q	40.2 mm

Illustration, working range and turning radius IRB 910SC-3/0.55

This illustration shows the unrestricted working range and turning radius of IRB 910SC-3/0.55.



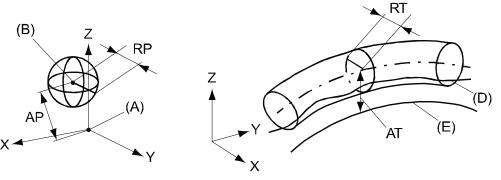
a	Maximum space	F	145 mm
b	Center joint of axis 3	G	300 mm
с	Base mounting face	н	550 mm
d	Area limited by mechanical stop	J	150°
Α	140°	к	151.2°
в	1.5°	М	180 mm
С	150°	Ν	5 mm
D	1.2°	Р	2 mm
Е	150 mm	Q	40.2 mm

1.8.1 Working range and type of motion *Continued*

Illustration, working range and turning radius IRB 910SC-3/0.65

This illustration shows the unrestricted working range and turning radius of IRB 910SC-3/0.65.

a	Maximum space	F	217 mm
b	Center joint of axis 3	G	400 mm
с	Base mounting face	н	650 mm
d	Area limited by mechanical stop	J	150°
Α	140°	к	151.2°
в	1.5°	М	180 mm
С	150°	Ν	5 mm
D	1.2°	Р	2 mm
Е	222 mm	Q	40.2 mm


1.8.2 Performance according to ISO 9283

1.8.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Pos	Description	Pos	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D Actual path at program execu	
AP	Mean distance from pro- grammed position	AT	Max deviation from E to average path
RP	Tolerance of position B at re- peated positioning	RT	Tolerance of the path at repeated program execution

Description	Values ⁱ			
	IRB 910SC-3/0.45	IRB 910SC-3/0.55	IRB 910SC-3/0.65	
Pose repeatability, RP (mm)	0.01	0.01	0.01	
Pose accuracy, AP (mm) ⁱⁱ	0.01	0.01	0.01	
Linear path repeatability, RT (mm)	0.09	0.06	0.06	
Linear path accuracy, AT (mm)	0.91	0.70	0.65	
Pose stabilization time, PSt (s) within 0.1 mm of the posi- tion	0.08	0.19	1.01	

The values are based on the zero position of axis 3.

ii AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

1.8.3 Velocity

1.8.3 Velocity

General

Robot variant	Axis 1	Axis 2	Axis 3	Axis 4
IRB 910SC-3/0.45	415 °/s	659 °/s	1 m/s	2,400 °/s
IRB 910SC-3/0.55	415 °/s	659 °/s	1 m/s	2,400 °/s
IRB 910SC-3/0.65	415 °/s	659 °/s	1 m/s	2,400 °/s

The velocities of axes 1, 2, and 4 are measured with rated payload and axis 3 at position of 0 mm.

Supervision is required to prevent overheating in applications with intensive and frequent movements.

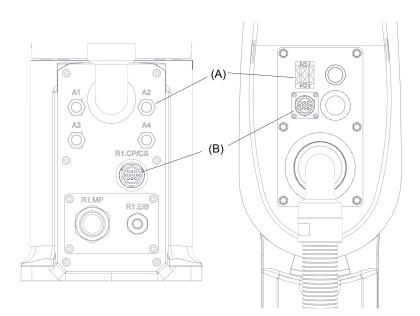
Resolution

Approximately 0.01° on each axis.

1.8.4 Robot stopping distances and times

1.8.4 Robot stopping distances and times

Introduction


The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.

1.9 Customer connections

1.9 Customer connections

Introduction to customer connections

The cables for customer connection are integrated in the robot and the connectors are placed at the upper arm and base. There is one connector R4.CP/CS at the upper arm. Corresponding connector R1.CP/CS is located at the base. Hose for compressed air is also integrated into the manipulator. There are 4 inlets at the base (R1/8") and 4 outlets (M5) on the upper arm.

xx1500002751

Position	Connection	Description	Number	Value
Α	Air	Max. 5 bar	4	Inner hose diameter 4 mm
В	(R1)R4.CP/CS	Customer power/signal	10	49 V, 500 mA

Connectors

The tables describes the connectors on base and upper arm.

Connectors, base

Position	Description	Art. no.
Robot	Pin connector 10p, bulkhead	3HAC022117-002
Customer connector	Connector set R1.CP/CS	3HAC037038-001

Connectors, upper arm

Position	Description	Art. no.
Robot	Socket connector 10p, flange mounted	3HAC023624-002
Customer connector	Connector set R3.CP/CS	3HAC037070-001

1.9 Customer connections Continued

Air, connector

Position	Description	Art. no.
Robot	4xM5	
Customer cable	Air connector	3HAC032049-001

This page is intentionally left blank

2.1 Introduction to variants and options

2 Specification of variants and options

2.1 Introduction to variants and options

General	
	The different variants and options for the IRB 910SC are described in the following sections. The same option numbers are used here as in the specification form.
Related inform	ation
	For the controller see Product specification - Controller IRC5.
	For the software options see Product specification - Controller software IRC5.

2.2 Manipulator

2.2 Manipulator

Variants

Option	IRB Type	Rated handling capacity (kg)	Reach (m)
435-135	IRB 910SC	3	0.45
435-136	IRB 910SC	3	0.55
435-137	IRB 910SC	3	0.65

Protection

Option	Description
287-4	Standard

Connection kit

Option	Description	
431-1	For the connectors on the upper arm, customer connection.	
239-1	For the connectors on the foot.	

Warranty

Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and con- ditions apply. Contact Customer Service in case of other requirements.
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.

2.2 Manipulator Continued

Option	Туре	Description
438-8	Stock warranty	Maximum 6 months postponed start of standard war- ranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred be- fore the end of stock warranty. Standard warranty com- mences automatically after 6 months from <i>Factory</i> <i>Shipment Date</i> or from activation date of standard war- ranty in WebConfig.
		Note
		Special conditions are applicable, see <i>Robotics Warranty Directives</i> .

2.3 Floor cables

2.3 Floor cables

Manipulator cable length

Option	Lengths
210-1	3 m
210-2	7 m
210-3	15 m

Application interface connection to

Option I	Description
16-1	Cabinet

Connection of parallel communication

Option	Lengths
94-6	3 m
94-1	7 m REQUIRES: 16-1 Cabinet.
94-2	15 m REQUIRES: 16-1 Cabinet.

2.4 User documentation

2.4 User documentation

User documentation

The user documentation describes the robot in detail, including service and safety instructions.

All documents can be found via myABB Business Portal, <u>www.myportal.abb.com</u>.

This page is intentionally left blank

3 Accessories

General

There is a range of tools and equipment available.

Basic software and software options for robot and PC

For more information, see *Product specification - Controller IRC5* and *Product specification - Controller software IRC5*.

This page is intentionally left blank

Index

С

category 0 stop, 37 category 1 stop, 37

D documentation, 45

l instructions, 45

M manuals, 45

O options, 41

Ρ

product standards, 14

S

safety standards, 14 service instructions, 45 standards, 14 ANSI, 15 CAN, 15 EN, 14 EN IEC, 14 EN ISO, 14 standard warranty, 42 stock warranty, 42 stopping distances, 37 stopping times, 37 U user documentation, 45

variants, 41

W warranty, 42

ABB AB, Robotics Robotics and Motion S-721 68 VÄSTERÅS, Sweden Telephone +46 (0) 21 344 400

ABB AS, Robotics Robotics and Motion Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd. Robotics and Motion No. 4528 Kangxin Highway PuDong District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc. Robotics and Motion 1250 Brown Road Auburn Hills, MI 48326 USA Telephone: +1 248 391 9000

abb.com/robotics