

ABB Automation & Power World: April 18-21, 2011

WSE-103-1 Cyber security 101: What you need to know about current threats, solutions, standards and more

WSE-103-1 Cyber security 101: What you need to know about current threats, solutions, standards and more

- Speaker name: Bart de Wijs
- Speaker title: Head of Cyber Security PS/PP

ABB

- Company name:
- Location:

The Netherlands

Your safety is important to us Please be aware of these emergency procedures

- In the event of an emergency please dial ext. 55555 from any house phone. Do not dial 9-1-1.
- In the event of an alarm, please proceed carefully to the nearest exit. Emergency exits are clearly marked throughout the hotel and convention center.
- Use the stairwells to evacuate the building and do not attempt to use the elevators.
- Hotel associates will be located throughout the public space to assist in directing guests toward the closest exit.
- Any guest requiring assistance during an evacuation should dial "0" from any house phone and notify the operator of their location.
- Do not re-enter the building until advised by hotel personnel or an "all clear" announcement is made.

Your safety is important to us Convention Center exits in case of an emergency

Demand & drivers for cyber security

•© ABB Group •April 21, 2011 | Slide 8

What is Cyber Security?

The goals of Cyber Security are

- Availability avoid denial of service
- Integrity avoid unauthorized modification
- Confidentiality avoid disclosure
- Authentication avoid spoofing / forgery
- Authorization avoid unauthorized usage
- Auditability avoid hiding of attacks
- Non-repudiation avoid denial of responsibility

Cyber Security has

- **functional aspects** (e.g. user authentication, firewall, anti-virus)
- quality aspects (e.g. defense in depth, testing)

Why is cyber security relevant to control systems?

Cyber Security for industrial control systems Actual incidents

Chasing the Night Dragon in Big-Energy IT

By Richard Adhikari TechNewsWorld 02/14/11 6:00 AM PT

B. Print Version
Image: Second Second

For years, hackers have been having their way with the IT networks of major oil, energy and petrochemical companies, according to security vendor McAfee. The firm has described the attacks as unsophisticated and sloppy, and it says most seem to originate in China.

Others, however, question whether such attacks are still going on and whether they can accurately be traced to any geographic location.

Stuxnet virus targets and spread revealed

By Jonathan Fildes Technology reporter, BBC News

A powerful internet worm repeatedly targeted five industrial facilities in Iran over 10 months, ongoing analysis by security researchers shows.

Stuxnet, which came to light in 2010, was the first-known virus specifically designed to target real-world infrastructure, such as power stations.

Security firm Symantec has now revealed how waves of new variants were launched at Iranian industrial facilities.

Stuxnet may have been designed to target Iran's nuclear programme

THE WALL STREET JOURNAL.

WSJ.com

TECHNOLOGY | APRIL 8, 2009

Electricity Grid in U.S. Penetrated By Spies

CIA: Hackers demanding cash disrupted power

Electrical utilities in multiple overseas cities affected By Ted Bridis The Associated Press

updated 6:06 p.m. ET, Fri., Jan. 18, 2008

WASHINGTON - Hackers literally turned out the lights in multiple cities after breaking into electrical utilities and demanding extortion payments before disrupting the power, a senior CIA analyst told utility engineers at a trade conference.

Cyber Security for Power Systems **US** government

May 29, 2009

REMARKS BY THE PRESIDENT ON SECURING OUR NATION'S CYBER INFRASTRUCTURE

... In short, America's economic prosperity in the 21st century will depend on cybersecurity.

And this is also a matter of public safety and national security. We count on computer networks to deliver our oil and gas, our power and our water. We rely on them for public transportation and air traffic control. Yet we know that cyber intruders have probed our electrical grid and that in other countries cyber attacks have plunged entire cities into darkness...."

"But we do say -- even if an award scored 'A' grades on all aspects but doesn't address cyber -- we reserve right to not go forward with that grant."

Hank Kenchington, Energy Department's Office of Electric Delivery and Energy Reliability

...as the United States deploys new Smart Grid technology, the Federal government must POLICY REVIEW ensure that security standards are developed and adopted to avoid creating unexpected Assuring a Trusted and Resilient Information opportunities for adversaries to penetrate these systems or conduct large-scale attacks.

CYBERSPACE

Why has Cyber Security become an issue?

Modern automation, protection and control systems:

- Leverage standard IT components (e.g. MS Windows, Internet Explorer)
- Use IP based communication protocols ("Internet technology")
- Are connected to external networks
- Use mobile devices and storage media

Modern control systems are specialized IT Systems

Drivers for Cyber Security The global picture

USA - biggest security demand, mainly driven by regulation and Smart Grid initiatives

Canada - similar to USA

- Europe less security demand, main drivers Netherlands, Germany, Sweden, UK
- Middle East security demand still low to medium but increasing

Drivers for Cyber Security By industry and applications

Drivers for Cyber Security What about smart grid?

Drivers for Cyber Security Standards, regulations, best practices, ...

Committee/Document	Title	Comment
AGA / Report 12	AGA Report No. 12, <u>Cryptographic</u> Protection of SCADA Communications, Part 1: Background, Policies and Test Plan, American Gas Association, March 2005	Detailed description see below
American Chemistry Council / Cyber Security Guideline	Guidance for Addressing Cybersecurity In the Chemical Industry, Version 3.0, May 2006	Detailed description see below
API / API 1164	SCADA Security, First Edition API Standard 1164, <u>Pipeline SCADA</u> Security, September 2004	Detailed description see below
API / Security Guideline	API Security Guidelines for the Petroleum Industry, April 2005	Detailed description see below
CIGRE / Security for Information Systems and Intranets In Electric Power Systems	Management of Information Security for an Electric Power Utility - On Security Domains and Use of ISO/IEC1799 Standard	Detailed descriptio see below
CPNI / SCADA Best Practice	A good practice guide: Process Control and SCADA Security	Detailed description see below
CPNI / SCADA Firewalling	Firewall Deployment for SCADA and Process Control Networks	Detailed description see below
DHS / Catalog for Standards Developers	Catalog of Control Systems Security: Recommendations for Standards Developers	Detailed descriptio see below
DoE / DHS Roadmap	DoE / DHS Roadmap to Secure Control Systems in the Energy Sector	Detailed description see below
DoE / ESISAC Risk Management Checklist	Energy Infrastructure Risk Management Checklists for Small and Medium Sized Energy Facilities	Detailed descriptio see below
DoE / ESISAC VAM	Vulnerability Assessment Methodology	Detailed description see below
DoE / TSWG 21 Steps	21 Steps to Improve Cyber Security for SCADA systems	Detailed descriptio see below

	1	
Committee/Document	Title	Comment
DoE / TSWG Securing	Securing Your SCADA and Industrial Control	Detailed description
SCADA and ICS	Systems	see below
	Communications for monitoring and control	Detailed description
IEC 61400-25	of wind power plants	see below
	Industrial Communications - Fieldous Profile	Detailed description
	- Part 4: Profiles for secure communications	see below
IEC 61784-4	in industrial networks	
	Power system control and associated	Detailed description
	communications - Data and communication	see below
IEC 62210	security	
		Detailed description
IEC 62351	Data and communication security	see below
	SECURITY FOR INDUSTRIAL PROCESS	Detailed description
	MEASUREMENT AND CONTROL - Network	see below
IEC 62443	and system security	
	IEEE Guide for Electric Power Substation	Detailed description
IEEE 1402	Physical and Electronic Security	see below
IEEE INVL		Detailed description
	Draft Standard for Substation IED Cyber	see below
IEEE P1686	Security Standards	
	Trial Use Standard for Cyber Security of	Detailed description
	Serial SCADA Links and IED Remote	see below
IEEE P1689	Access	
	Trial Use Standard for SCADA Serial Link	Detailed description
IEEE P 1711	Cryptographic Modules and Protocol	see below
	Security of industrial automation and control	Detailed description
ISA -99 series	systems	see below
	Information Technology - Guidelines for the	Detailed description
180 13335	Management of IT-Security	see below
180 13335	Management of These unity	Detailed description
180 15408	Common Criteria	see below
130 13405	Common Criteria	precursor of ISO
		27000 series and
	Code of practice for information security	therefore not further
ISO 17799	management	considered
100 11735	Information technology - Security	Detailed description
	techniques information security	see below
ISO 2700x	management systems Requirements	New Weight
	IT Security for Industrial Automation	Detailed description
	Systems: Constraints for measures applied	see below
NAMUR NA 115	In process industries	
The second s	in provide interesting	Detailed description
NERC CIP-002-009	Cyber Security Standard	see below
NERC CIP-002-005	cyser accord annuald	Detailed description
DoF / ESISAC		see below
Security Guidelines	Security Guidelines for the Electricity Sector	See nerval
decuny ouldernes	occurrer ourgennes rur the Electricity aector	

Committee/Document	Title	Comment	
NIST PP ICC	Protection Profile for Industrial Control Centers	Detailed description see below	
NIST SP 800-53	Recommended Security Controls for Federal Information Systems	Base for ISA 99 and therefore not further considered	
NIST SP800-82	Guide to Industrial Control Systems (ICS) Security	Detailed description see below	
NIST/PCSRF PP Field Devices	Field Device Protection Profile For SCADA Systems in Medium Robustness Environments	Detailed description see below	
OLF Guideline No. 104	Information Security Baseline Requirements for Process Control, Safety and Support ICT Systems		
SEMA	Guide to increased Security in Process Control Systems for Critical Societal Functions	Detailed description see below	
VDEW M-07/2005	Zehn Schritte zur VEDIS-Sicherheit	Detailed description see below	
VDI 2182	Informationssicherheit in der industriellen Auformatisierung - Aligemeines Vorgehensmodell	Detailed description see below	
VGB-R 175	IT Sicherheit für Erzeugungsanlagen	Detailed description see below	

.... and many, many more!

Technical vs. non-technical

Generic vs. application specific

End user vs. vendor centric

Drivers for Cyber Security The most relevant efforts

		Status
NIST SGIP-CSWG	Smart Grid Interoperability Panel – Cyber Security Working Group	On-going
NERC CIP	Cyber Security regulation for North American Power Utilities	Released, On-going
IEC 62351	Data and Communications Security	Partly released, On-going
IEEE PSRC H13	Cyber Security Requirements for Substation Automation, Protection and Control Systems	On-going
IEEE 1686	IEEE Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities	Finalized
ISA S99	Industrial Automation and Control System Security	Partly released, On-going
ICSJWG	Industrial Control System Joint Working Group	On-going

What is *really* driving Cyber Security? What is driving the drivers?

Currently many initiatives and activities driven by technology, solutions and FUD*

however

Control System security should be based on an understanding of risk

So, how big is the risk?

Risk

•April 21, 2011 | Slide 20

C ABB Group

Who are the attackers?

Accidents / mistakes

Rogue insider

Malware

Thieves / extortionists

Enemies / terrorists

Bottom line is

- Likelihood is unknown
- Consequences are potentially huge

How big is the risk?

Cyber incidents are real and cyber security for industrial control systems must be taken seriously

but it is a challenge that can be met

Challenges

ABB

•© ABB Group •April 21, 2011 | Slide 23

Enterprise IT vs. Control systems A different set of challenges

	Enterprise IT	Control systems
Primary object under protection	Information	Physical process
Primary risk impact	Information disclosure, financial	Safety, health, environment, financial
Main security objective	Confidentiality	Availability
Security focus	Central Servers (fast CPU, lots of memory,)	Distributed System (possibly limited resources)
Availability requirements	95 — 99% (accept. downtime/year: 18.25 - 3.65 days)	99.9 – 99.999% (accept. downtime/year: 8.76 hrs – 5.25 minutes)
Problem response	Reboot, patching/upgrade, isolation	Fault tolerance, online repair

Cyber Security vs. Safety Similar but different

Cyber Security = Safety

- Both require(d) a culture change
- Both are all about processes
- Both require training
- Both require top management support

Cyber Security ≠ Safety

- Safety is static and predictable (threats don't change)
- Cyber Security is constantly changing (threats change)
- For Cyber Security the attacker evolves
- Safety solutions can be certified

Main challenges for end users

WHY to protect WHAT from WHOM and HOW

Assessment of existing systems

Making cyber security part of risk management process

Definition of security requirements for vendors & system integrators

Operation and management of security architecture Continuous monitoring of the infrastructure Regular analysis of log files Regular reevaluation of security architecture Continuous threat modeling & risk management Development of IT-security policies and processes

Training of employees

Evaluation and planning of "new" costs

Main challenges for end users Addressing risk

Answer the what ifs

- What if I cannot operate this device
- What if someone else can operate this device
- What if this information gets disclosed
- What if someone opens this breaker
- What if it does not open when it should

Don't fall for myths

Cyber security is only an issue for TCP/IP based systems

- Serial links are just as vulnerable
- Even isolated systems have entry points (e.g. portable media, see the Stuxnet case)

Cyber attacks will not come from within the physical perimeter because a physical attack would be easier

- Cyber attack can be much more sophisticated
- Attack could be used as entry point into other systems
- Cyber attack can be "accidental"

Security of "isolated" systems

- Most systems are NOT really isolated
- Virtual connections always exists (e.g. portable media, laptops)

Solution approaches

•© ABB Group •April 21, 2011 | Slide 29

Back to the basics

Accept responsibility

Security is about processes

Ignore compliance - at least at first

There is no such thing as 100% security

Security does not come for free

Use a pragmatic approach based on common best practices

Effectively use what is available

Access Control & Least-privileges

Make use of the possibility to have **personal** accounts Make use of the ability to **change** passwords Make use of (role based) access control to **limit** access privileges

System hardening

Servers and Workstations

- Removal of unused software
- Disabling unused services
- Removal unused accounts
- Change of default passwords

Network and other Devices

- Disabling unused services
- Removal unused accounts
- Change of default passwords

Cyber Security challenges in the system lifecycle

time

Trends & Conclusions

•© ABB Group •April 21, 2011 | Slide 33

Trends

	Today	Trend
Regulation & Government initiatives	NERC CIP regulation for securing Bulk Electric System	Additional security regulations expected for Smart Grid and will cover all voltage level
		Government organizations increase attention to securing critical infrastructure
Application focus	DCS, EMS, SCADA	Focus on end-to-end security
Business aspects	Smart Grid stimulus funding tied to sound security approach	Reduction of risk (for both end-users and vendors)
	Avoiding fines associated with non-compliance (end-users)	

Conclusions

Security is **not just a matter of technology**, it is primarily about people, relationships, organizations and processes working in tandem to prevent an attack

Effective security solutions require a **joint effort** by vendors, integrators, operating system providers and end users.

There is **no single solution** that is effective for all organizations and applications.

Security is a continuous process, not a product or a one-time investment

Security must be addressed with **multiple barriers** and requires both **protection** and **detection** mechanisms

Security is about risk management - perfect security is neither existent nor economically feasible

Reminders Automation & Power World 2011

- Please be sure to complete the workshop evaluation
- Professional Development Hours (PDHs) and Continuing Education Credits (CEUs):
 - You will receive a link via e-mail to print certificates for all the workshops you have attended during Automation & Power World 2011.
 - BE SURE YOU HAVE YOUR BADGE SCANNED for each workshop you attend. If you do not have your badge scanned you will not be able to obtain PDHs or CEUs.

Power and productivity

