OCTOBER 2020

Wire-to-Air Efficiency

SynRM\(^2\) motor technology – optimize system design and performance

Mark Gmitro, Global Product Manager – Variable Speed AC Motors
EC Titanium

Beyond EC Efficiency and Performance

WEBINAR #7

“Wire-to-air efficiency SynRM^2 motor technology to optimize system design and performance”

Mark Gmitro, Global Product Manager, Variable Speed AC Motors, ABB Motors and Generators
Agenda

- Industry Trends why efficiency is important
- Technology Discussion SynRM² Motors (Synchronous Reluctance - Ferrite Assisted)
- Comparison motor technology and efficiency
- IEC Design considerations for SynRM² motors
- Lab testing data, partial load efficiency focus
- Fan design impact on wire to air efficiency
Energy efficiencies

Did you know?

Motors consume a lot of energy...

And it’s going to increase...

A lot...

Motors consume about 1/3 of the world’s electricity

That number is expected to double by 2040

...equivalent to adding an electricity market the size of China

If this is a concern your customers have, we have a new product that will interest you
Energy efficiencies

Who are the biggest users?

- In the U.S., **PUMP SYSTEMS** account for **40%** of the total industrial motor systems electricity consumption
- In the U.S., **FAN SYSTEMS** account for **20%** of the total industrial motor systems electricity consumption
- In the U.S., **COMPRESSED AIR SYSTEMS** account for **22%** of the total industrial motor systems electricity consumption

How can I make my operation more efficient?
Motor efficiency

What is the best motor design to optimize efficiency?

- In HVAC efficiency is the top design consideration.
- EC fans have been gaining favorability for high efficient systems.
- Systems using EC technology tend to be limited in design around the motor best operation point, do they result in the highest wire-to-air efficiency?
- EC motors in most cases are brushless DC also known as PM motors, equal to IE4, but the control is not necessarily efficient, causing poor part load conditions.
- More recent designs are tackling these challenges with SynRM² (Synchronous Reluctance – Ferrite Assisted Motor technology)
- The SynRM² designs provide a broader peak efficiency island (operating range), allowing greater flexibility in matching the motor directly to the Fan or Pumps best efficiency region.

- Real efficiency has to be evaluated based on wire to air efficiency
- Using the right type of motor allows manufacturers to select the best efficiency point for operation of the fan or pump.
SynRM² Motor Design
SynRM² Motors

Synchronous Reluctance - Ferrite Assisted Rotor Design

- SynRM² Motors operate on the same principle as induction motors for rotation
- Utilizes a standard induction motor stator winding
- SynRM rotors have flux barriers (air gaps in rotor)
 - Flux gaps direct the flow of current in the rotor
 - Eliminates losses normally associated with induction solid rotors
 - No Loss Rotor = higher efficiency (only losses in stator)
 - Power factor is low in the 70% range
- SynRM² adds Ferrites to Rotor
 - Ferrite materials add to torque generation and field strength
 - No current required ferrites = no losses and added field strength further improves overall efficiency (less losses)
 - Less work stator = lower losses overall = higher efficiency
 - Stator just supplies “torque on demand” beyond ferrite field strength allows optimization of current and partial loads
 - Improves PF to at least 92% and up to 98% range
Energy efficiency bands
Each band of efficiency = 10% less losses in motor

<table>
<thead>
<tr>
<th>Induction Motor</th>
<th>IE3</th>
<th>Synchronous Reluctance</th>
<th>IE4</th>
<th>SynRM² - Ferrite Assisted</th>
<th>IE5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Losses</td>
<td>100%</td>
<td>60%</td>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I²R Rotor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I²R Stator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slip losses in rotor (I^2R)</td>
<td>• Air gaps rotor direct magnet field lines</td>
<td>• Same SynRM rotor benefits with the addition of ferrite material in rotor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Heats up bearings and motor</td>
<td>• Eliminates circulating currents</td>
<td>• Increases field strength (more lines of flux) less work required stator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Lower efficiency adds to heat</td>
<td>• Synchronous, no slip losses in rotor</td>
<td>• Less overall losses, lower current draw and lower motor temperatures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High efficiency and low motor temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increasing density magnetic lines of flux (torque per amp)
SynRM² Motor Temperature Rise
Less Losses = Cooler Running Motor

<table>
<thead>
<tr>
<th>Induction Motor</th>
<th>Max Temperature 84.3 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 HP, TEFC, 1800 RPM Induction with ODE Drive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SynRM² Motor</th>
<th>Max Temperature 68.2 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 HP, TEFC, 1800 RPM SynRM² Motor with ODE Drive</td>
<td></td>
</tr>
<tr>
<td>16.2 °C lower temperature rise (20% cooler)</td>
<td></td>
</tr>
</tbody>
</table>
Motor Technology Comparison

Induction Motor (IE3)

Benefits
- Familiar and proven technology
- Starts Direct Across Line
- Easy to use and maintain

Limitations
- Speed accuracy difficult without sensors
- Slip losses in rotor (I²R) adds heat to motor and bearings
- Lower efficiency at lower speed and partial loads
- Drive less efficient at lower loads due no load current

SynRM Motor (IE4)

Benefits
- High Efficiency IE4
- Synchronous Speed
- Low bearing / winding temp.
- High power density
- Magnet Free – No losses rotor
- Easy to use and maintain

Limitations
- Requires Drive (VFD)
- Higher current demand
- Low power factor (~70%)

ECM (IE4 to IE5)

Benefits
- High Efficiency IE4
- Easy to use and maintain
- Well recognized in market
- Compact / light / built in control
- Packaged fan, motor & drive

Limitations
- Requires DC Drive Rectifier
- Lower efficiency at part speed / load inefficient power converter
- Must replace entire unit with fan, restricts OEM fan designs

Interior PM (IE5)

Benefits
- Very high efficiency IE5
- High torque density
- Excellent torque to inertia ratio
- Excellent PF
- Excellent partial load efficiency
- Low noise levels

Limitations
- Rare earth magnets / high cost / limited availability
- Difficult service (high magnet strength)
- High back-EMF (safety concern)
- Requires VFD

SynRM² (IE5)

Benefits
- High Efficiency: IE5+
- Synchronous Speed
- Sustainable Ferrite material
- Low bearing / winding temp.
- Excellent Power Density
- Lower current draw requires smaller power converter
- Maintains efficiency at low speed and partial loads
- High PF (above 90%)

Limitations
- Requires VFD
SynRM2 Motors

Summary Technology

- SynRM2 motor technology employs **ferrite materials**
 - Readily available, price stable, and environmentally sustainable ceramic magnet material
 - Best motor in terms of cost and performance you can design using ferrite material
- Design allows **maximum utilization of the active materials**: electrical steel, copper and ferrites
 - Achieves extremely high efficiency and performance, very low losses in motor
 - Suitable for constant and variable torque applications
 - Performance is excellent in the constant power range.
 - "Flat" efficiency map; efficiency stays high at any speed and also at partial load
- Design is characterized by **high power factor**
 - Above 90% leading to the best utilization of the power converter
 - **Lower amp draw** per rating than induction motors = **smaller drive converter** required
- SynRM2 motors share the **same building blocks as standard induction motors**.
 - Guarantees extreme high production capacity, manufactured Fort Smith, AR
 - High product configurability and versatility for applications
IEC Efficiency Standards
IEC Nominal Efficiency Limits

IEC 60034-30-1 Standard

IEC Efficiency Standards

<table>
<thead>
<tr>
<th>IEC 60034-30-1</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Direct Line Motors or VFD</td>
<td></td>
</tr>
<tr>
<td>– Standard Induction Motors & Line Start PM</td>
<td></td>
</tr>
<tr>
<td>– IE1, 2, 3, 4</td>
<td></td>
</tr>
</tbody>
</table>

IEC 60034-30-2 Technical Standard (New)

<table>
<thead>
<tr>
<th>IEC 60034-30-2</th>
<th>Technical Standard (New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Frequency Converter Only</td>
<td></td>
</tr>
<tr>
<td>– SynRM, SynRM2 (FA), Permanent Magnet Motors</td>
<td></td>
</tr>
<tr>
<td>– IE1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

The purpose of IEC/TS 60034-30-2 is to create a level playing field between established and new, innovative motor technologies in order to enable fair competition and market development.

Efficiency Bands

- IEC Defines Efficiency Bands Internationally
- NEMA Energy Efficiency in United States
- Each band of efficiency equates to 10% less motor losses

<table>
<thead>
<tr>
<th>IEC</th>
<th>NEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE1</td>
<td>Standard Efficient</td>
</tr>
<tr>
<td>IE2</td>
<td>High Efficiency</td>
</tr>
<tr>
<td>IE3</td>
<td>Premium Efficiency</td>
</tr>
<tr>
<td>IE4</td>
<td>Super Premium</td>
</tr>
<tr>
<td>IE5</td>
<td>No Standard</td>
</tr>
</tbody>
</table>

Each band of efficiency = 10% less motor losses
SynRM² motors meet or exceed IE5 efficiency level

IE5+ Motors for variable speed drive applications
IEC and NEMA SynRM² Motors

Comparison Ratings

IEC 1500 RPM 50 HZ Designs

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Motor Input Voltage</th>
<th>1500 RPM 50 HZ Motor Data</th>
<th>HP</th>
<th>Motor Frame</th>
<th>Efficiency</th>
<th>Motor PF 1st HRM</th>
<th>Motor Input Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS101M0H1DF4</td>
<td>140</td>
<td>80/90</td>
<td>0.746</td>
<td>86.3%</td>
<td>97%</td>
<td>2.6/1.3</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H2DF4</td>
<td>140</td>
<td>80/90</td>
<td>0.746</td>
<td>90.6%</td>
<td>96%</td>
<td>2.8/1.4</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H3DF4</td>
<td>140</td>
<td>80/90</td>
<td>1.5</td>
<td>88.2%</td>
<td>96%</td>
<td>5.2/2.6</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H3EF4</td>
<td>180</td>
<td>100/112</td>
<td>2.2</td>
<td>90.9%</td>
<td>85%</td>
<td>6.8/3.4</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H5DF4</td>
<td>140</td>
<td>80/90</td>
<td>2.2</td>
<td>89.1%</td>
<td>95%</td>
<td>8.8/4.4</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H5EF4</td>
<td>180</td>
<td>100/112</td>
<td>3</td>
<td>94.3%</td>
<td>98%</td>
<td>8.4/4.2</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H7DF4</td>
<td>180</td>
<td>100/112</td>
<td>3</td>
<td>92.7%</td>
<td>97%</td>
<td>10.4/5.2</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H7EF4</td>
<td>180</td>
<td>100/112</td>
<td>4</td>
<td>93.2%</td>
<td>97%</td>
<td>12.8/6.4</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H7FF4</td>
<td>210</td>
<td>132</td>
<td>5.5</td>
<td>93.3%</td>
<td>96%</td>
<td>19.2/9.6</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H10FF4</td>
<td>210</td>
<td>132</td>
<td>5.5</td>
<td>94.5%</td>
<td>96%</td>
<td>27.2/13.6</td>
<td></td>
</tr>
<tr>
<td>ECS101M0H15FF4</td>
<td>210</td>
<td>132</td>
<td>7.5</td>
<td>94.8%</td>
<td>95%</td>
<td>39/19.5</td>
<td></td>
</tr>
<tr>
<td>ECS101M4H20FF4</td>
<td>460</td>
<td>132</td>
<td>11</td>
<td>93.8%</td>
<td>93%</td>
<td>26.1</td>
<td></td>
</tr>
</tbody>
</table>

NEMA 1800 RPM 60 HZ Designs

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>1800 RPM 60 HZ Motor Data</th>
<th>230V/460V</th>
<th>HP</th>
<th>Motor Frame</th>
<th>Efficiency</th>
<th>Motor PF 1st HRM</th>
<th>Motor Input Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS101M0H1DF4</td>
<td>140</td>
<td>89.30%</td>
<td>2.3/1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H2DF4</td>
<td>140</td>
<td>90.70%</td>
<td>4.5/2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H3DF4</td>
<td>180</td>
<td>92.80%</td>
<td>7.3/3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H5DF4</td>
<td>180</td>
<td>93.00%</td>
<td>10.4/5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H5EF4</td>
<td>180</td>
<td>93.70%</td>
<td>13/6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H7EF4</td>
<td>180</td>
<td>94.00%</td>
<td>17.5/8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H7FF4</td>
<td>210</td>
<td>94.00%</td>
<td>17.4/8.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H10FF4</td>
<td>210</td>
<td>94.80%</td>
<td>22.0/11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M0H15FF4</td>
<td>210</td>
<td>95.60%</td>
<td>34.8/17.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS101M4H20FF4</td>
<td>210</td>
<td>95.90%</td>
<td>36.2/18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©ABB

November 4, 2020 | Slide 16
Efficiency Test Data
Energy savings in practice

Why wire-to-air efficiency is critical

- Most HVAC systems operate at 80% load or less more than 99% of the time
- Systems should be optimized for part load operation and energy consumption should be documented at the actual load points

Factors impacting system wire-to-air efficiency

- Fan or Pump Design is the most important factor in optimal wire-to-air efficiency and while impact total wire-to-air efficiency more than the motor in of itself (the FASR motor allows flexibility to pick the best system design)
- The motor and the fan in the package might be efficient, but if the motor is blocking the airflow through the fan or there is air interference between fans, then wire-air efficiency drops
- Many fan designs today are only sold as a package, efficiency of each component is unknown
- If the drive controlling the motor isn’t efficient under part load conditions, then 1 + 1 might equal 1.5, however motor control efficiency has been developed over several years
- Using variable frequency drives, it is possible to over speed (ex. +15% on nominal speed) for the 1% of peak requirement (flat efficiency region but increased audible noise)

Design of the Fan or Pump is the primary contributor of the overall wire-to-air efficiency
SynRM² Motor

Energy efficiency system savings

Affinity laws and energy savings

Variable speed control takes advantage of the affinity laws:

Flow is proportional to speed

Power is proportional to the cube of speed:

\[
\frac{P_1}{P_2} = \left(\frac{N_1}{N_2}\right)^3
\]

Example: 80% flow:

\[0.8^3 = 0.512 \text{ or } 51\% \text{ HP}\]
Efficiency versus load

SynRM², ECM, Induction Efficiency

System Efficiency (Motor + Drive)

Lab test including losses in power converter

3 HP, 1800 RPM base speed, 2200 RPM top speed
Variable Torque Load Profile

• Superior efficiency performance over other motor technology at rated and partial load speed points

• SynRM² wider speed torque range with higher efficiency allows more flexibility to match a fan impeller and reach a nominal fan duty point

• Other motor technology may have high efficiency, however it may be over a more restrictive speed and torque range

• Potential to operate at higher speeds (constant horsepower range)
Fan Design Considerations
Fan Design Considerations
Optimizing System Design & Flexibility

- SynRM² motors provide a wide best efficiency region (BER)
 - Allows the best fan design with highest efficiency to be selected and the motor fitted to this curve, optimizing wire-to-air efficiency
 - SynRM² motors maintain efficiency at partial load and speed
 - Allows operation above speed in a flat efficiency region
 - Individual ECM fans may be more efficient, however the high efficiency SynRM² motor still comes out ahead

- ECM Fan Designs
 - The EC Motor best operating efficiency region is limited
 - Requires fan design be fitted to motor operating region
 - Depending on loading you may need to step up to the next size ECM unit, which causing the system to run partial loading and loose efficiency due to inefficient dc power converter
SynRM² Motor Efficiency Map
Best Efficiency Region – Efficiency Island

NEMA 180 – 7.5 Hp – Efficiency Map – 1800 RPM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>29.7</td>
<td>1.9</td>
<td>117</td>
<td>8.7</td>
<td>86.6</td>
<td>91.1</td>
<td>66</td>
</tr>
<tr>
<td>900</td>
<td>29.7</td>
<td>3.8</td>
<td>226</td>
<td>8.7</td>
<td>91.4</td>
<td>91.6</td>
<td>62</td>
</tr>
<tr>
<td>1620</td>
<td>29.7</td>
<td>6.7</td>
<td>405</td>
<td>8.8</td>
<td>93.6</td>
<td>92.0</td>
<td>61</td>
</tr>
<tr>
<td>1800</td>
<td>29.7</td>
<td>7.5</td>
<td>446</td>
<td>8.8</td>
<td>93.8</td>
<td>92.3</td>
<td>60</td>
</tr>
<tr>
<td>1800</td>
<td>22.3</td>
<td>5.6</td>
<td>408</td>
<td>7</td>
<td>93.9</td>
<td>92.5</td>
<td>41</td>
</tr>
<tr>
<td>1800</td>
<td>14.8</td>
<td>3.7</td>
<td>365</td>
<td>5.1</td>
<td>93.1</td>
<td>92.1</td>
<td>29</td>
</tr>
<tr>
<td>1800</td>
<td>7.4</td>
<td>1.9</td>
<td>299</td>
<td>3.1</td>
<td>90.4</td>
<td>94.4</td>
<td>18</td>
</tr>
<tr>
<td>1800</td>
<td>39.6</td>
<td>10</td>
<td>473</td>
<td>11.2</td>
<td>93.5</td>
<td>93.0</td>
<td>85</td>
</tr>
<tr>
<td>2250</td>
<td>31.7</td>
<td>10</td>
<td>476</td>
<td>9.9</td>
<td>94.3</td>
<td>96.2</td>
<td>70</td>
</tr>
<tr>
<td>2700</td>
<td>26.4</td>
<td>10</td>
<td>470</td>
<td>9.9</td>
<td>93.9</td>
<td>98.9</td>
<td>64</td>
</tr>
<tr>
<td>3150</td>
<td>22.6</td>
<td>10</td>
<td>476</td>
<td>9.8</td>
<td>93.1</td>
<td>99.5</td>
<td>64</td>
</tr>
<tr>
<td>3600</td>
<td>19.8</td>
<td>10</td>
<td>475</td>
<td>9.9</td>
<td>92.4</td>
<td>99.6</td>
<td>63</td>
</tr>
</tbody>
</table>

IE5+
IE4+
SynRM² Motor and Drive

Best of both worlds – Standard Frame Motor & Component Drives

ABB Drive and EC Titanium motor
- Superior performance and low speed operation
- Optimized Partial Load Efficiency
- Over-speed Constant Horsepower Range operation
- Integral harmonic mitigation (5% DC link choke)
- Ultra Low harmonics compatible
- Wide range network interfaces
- Extensive Pump and Fan Drive Features
- Motor Ground Brush Standard

SynRM² motor and ABB ACH480 / ACH580 drives

Standard discrete components are easy to integrate, readily available and allow drop in replacement and ease of service.
EC Titanium – SynRM² Product – Summary
Baldor-Reliance® EC Titanium™ - SynRM² Motor Technology

Top Mount IMD
- 1 – 10 HP
- 1-Phase Input 1HP 115V
- 3-Phase Input 1-3HP 230V
- NEMA 140, 180 & 210 frames

Motor only
- 1 – 20 HP
- 1HP 115V
- 230V/460V 3-Phase input
- NEMA 140, 180, and 210 Frames

Axial Mount IMD
- 1 – 7.5 HP
- 1-Phase Input 1HP 115V
- 3-Phase Input 1-3HP 230V
- NEMA 140 and 180 frames
- 1-2 HP 230V
- 1-7.5HP 460V

Ultra Efficient - Innovative Magnet Technology – Sustainable – Reliable - Wirelessly Connected
Baldor-Reliance® EC Titanium™ - SynRM² Motor Technology

Features that improve performance

- **IE5 Efficiency – Stay Ahead of the Curve**
 - High Total System Efficiency at full and partial load

- **Minimizing your Environmental Impact**
 - Sustainable Non-Rare Earth Magnet Material
 - IE5+ Efficiency – Low Energy Use

- **Together as One – Cut the Cord**
 - Integrated motor & drive
 - Eliminate expensive wiring and installation time
 - Reduce personnel risks and access hazards
 - Reap the benefits of pairing the drive together for better energy efficiencies

- **Plug and Play**
 - Pre-programmed motor & drive to run out of the box
 - Easy Start-up – Keypad, PC or Mobile Tools (option)
 - Bluetooth Option for ABB Ability™ and Mobile Tools

- **Reliability & Low Noise**
 - Extremely low starting current and less cogging
 - Reduces mechanical stress and produces ultra-quiet operation

- **Power Density**
 - Higher ratings per frame size than traditional motor designs
 - Reduces cost and saves valuable space
As an OEM, the total system efficiency (or end-result) is the primary focus for improvement. The United States Department of Energy (DOE) has been trying to pass legislation to various industry segments and applications to improve energy efficiency of industrial equipment. At what point does regulation get in the way of innovation? “There’s been a push from AMCA to mandate ‘wire to air’ test to calculate how much power a fan uses. A fan-alone legislation would hurt innovation. When you put a fan in a unit, it changes the performance. Component metrics already exist for motors, so we’re trying to keep the DOE from adding more efficiency metrics.”

So why is motor efficiency such a hot topic? There are many reasons to target the motor:
• It consumes a lot of energy and roughly 50% of electricity consumption in systems is by motors.
• By targeting the component, equipment designers can still design their equipment to improve overall system efficiencies.

“The efficiency is part of the story - this product has a lot more capabilities - more flexibility” “basically, allow us to innovate, to the end-result, but don’t specify components because it hurts innovation”