XMC20 SATP8
TDM Circuit Emulation
Services over Packet Networks

Despite the transition of many core networks to Ethernet/IP, legacy data interfaces are not losing their importance. Many applications will demand E1 interfaces in the future in order to continue to use the already installed equipment.

Network operators wanting to save costs with an All-IP network must be able to distribute these legacy interfaces via Ethernet/IP.

The maximum saving potential can be realised without having to withdraw the well-known services from the client-base.

- 8 x E1 interfaces
- CES with up to 8 x 2 Mbps Pseudo Wires
- Highly-accurate and stable clock recovery according to ITU-T G.823
- Precise and steady “hold-over” clock
- Designed for indoor and outdoor deployment
- All functions out of one network management system
- Compatible with PacketBand units

SAToP in XMC20
With its hybrid backplane XMC20 provides native TDM and Ethernet services.

SATP8 emulates TDM services via Ethernet/IP technology. SATP8 transmits an arriving E1 data stream via Pseudo Wires together with data of other services over the IP core network. A SATP8 or PacketBand unit can convert this data back to an E1 data stream at any position in the network.

Clock recovery
With its highly-accurate algorithms the clock can be recovered from any arriving Pseudo Wire.

Thanks to the exact “hold-over” function a high-precision clock signal can be delivered also during network failure.

Clock algorithms
The SATP8 supports three base algorithms designed for different network types.

One for high quality managed networks with low jitter (PDV) and packet loss, one for general networks with lower performance characteristics and one for applications, where the frequency stability is most important.

Safety concept
XMC20 offers fail safety in carriergrade quality. For this purpose all modules come with decentral on board power supplies. In addition the central module can be made redundant to guarantee for optimum fail safety.

Management
All XMC20 functions are central managed via the management system UNEM/ECST or via a local access (CLI, XML, SNMP).
Technical Data

<table>
<thead>
<tr>
<th>CESeP</th>
<th>SAToP (Structure Agnostic TDM over Packet) acc. to IETF RFC 4553</th>
</tr>
</thead>
</table>
| **Pseudo-Wires** | 8 x 2 Mbps
2 Mbps clear channel (unstructured) or n x 64 kbps structured |
| **QoS** | According to 802.1p VLAN priority
IP DiffServ (DSCP) |
| **VLAN** | VLAN tagging in upstream direction and VLAN filtering in downstream direction
(IEEE 802.1Q) |
| **Timing and synchronization** | According to ITU-T G.8261 |

Clock

Adaptive	The network clock is recovered from the arriving data packets
Clock master (P12s, P0nc)	XMC20 system clock is distributed via data packets
Transparent (P12x)	Clock of one G.703 interface will be transmitted transparent
Stability	24 h hold-over stability of ±0.280 ppm (ITU-T Stratum 3)

E1 Interface

Number of ports	8 G.703
Impedance	75 and 120 ohms
Transmission	2 Mbps transparent and n x 64 kbps
Jitter and wander	According to ITU-T G.823

Management

| **ECST** | For local management |
| **UNEM** | For central management |

Power Supply

| **Input voltage nominal (min/max)** | –48/-–60 V DC (–40.5 V DC … –72 V DC) |

Operation Environment

| **Temperature range and humidity** | According to XMC20 environmental specifications |