AX400 Series

User Guide

Models AX460 and AX466
Single and Dual Input pH/Redox (ORP) Analyzers
The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of our dedication to quality and accuracy.

Use of Instructions

Warning.
An instruction that draws attention to the risk of injury or death.

Note.
Clarification of an instruction or additional information.

Caution.
An instruction that draws attention to the risk of damage to the product, process or surroundings.

Information.
Further reference for more detailed information or technical details.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Marketing Communications Department.

Health and Safety
To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>1.1 System Description</td>
<td>2</td>
</tr>
<tr>
<td>1.2 AX400 Series Analyzer Options</td>
<td>2</td>
</tr>
<tr>
<td>2 OPERATION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Powering Up the Analyzer</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Displays and Controls</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Key Functions</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Operating Page</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Single Input pH</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Dual Input pH</td>
<td>7</td>
</tr>
<tr>
<td>2.3.3 Wash Function</td>
<td>8</td>
</tr>
<tr>
<td>2.3.4 Single Input Redox (ORP)</td>
<td>9</td>
</tr>
<tr>
<td>2.3.5 Dual Input Redox (ORP)</td>
<td>10</td>
</tr>
<tr>
<td>2.3.6 Dual Input pH and Redox (ORP)</td>
<td>11</td>
</tr>
<tr>
<td>3 OPERATOR VIEWS</td>
<td>12</td>
</tr>
<tr>
<td>3.1 View Set Points</td>
<td>12</td>
</tr>
<tr>
<td>3.2 View Outputs</td>
<td>13</td>
</tr>
<tr>
<td>3.3 View Hardware</td>
<td>13</td>
</tr>
<tr>
<td>3.4 View Software</td>
<td>14</td>
</tr>
<tr>
<td>3.5 View Logbook</td>
<td>14</td>
</tr>
<tr>
<td>3.6 View Clock</td>
<td>17</td>
</tr>
<tr>
<td>4 SETUP</td>
<td>18</td>
</tr>
<tr>
<td>4.1 Sensor Calibration</td>
<td>18</td>
</tr>
<tr>
<td>4.1.1 Set Buffer Type (pH Only)</td>
<td>18</td>
</tr>
<tr>
<td>4.1.2 Set Up User Defined Buffers (pH Only)</td>
<td>20</td>
</tr>
<tr>
<td>4.1.3 Adjust Offset (Redox/ORP Only)</td>
<td>21</td>
</tr>
<tr>
<td>4.1.4 Automatic and Manual, Single- and Two-Point Calibration (pH Only)</td>
<td>22</td>
</tr>
<tr>
<td>4.1.5 Grab Calibration (pH Only)</td>
<td>24</td>
</tr>
<tr>
<td>5 PROGRAMMING</td>
<td>25</td>
</tr>
<tr>
<td>5.1 Security Code</td>
<td>25</td>
</tr>
<tr>
<td>5.2 Configure Display</td>
<td>26</td>
</tr>
<tr>
<td>5.3 Configure Sensors</td>
<td>27</td>
</tr>
<tr>
<td>5.4 Configure Alarms</td>
<td>30</td>
</tr>
<tr>
<td>5.4.1 Wash Cycle Configuration (Applicable Only to Alarm 3)</td>
<td>32</td>
</tr>
<tr>
<td>5.5 Configure Outputs</td>
<td>34</td>
</tr>
<tr>
<td>5.6 Configure Clock</td>
<td>36</td>
</tr>
<tr>
<td>5.7 Configure Security</td>
<td>37</td>
</tr>
<tr>
<td>5.8 Configure Logbook</td>
<td>37</td>
</tr>
<tr>
<td>5.9 Test Outputs and Maintenance</td>
<td>38</td>
</tr>
<tr>
<td>6 INSTALLATION</td>
<td>39</td>
</tr>
<tr>
<td>6.1 Siting Requirements</td>
<td>39</td>
</tr>
<tr>
<td>6.2 Mounting</td>
<td>40</td>
</tr>
<tr>
<td>6.2.1 Wall-/Pipe-mount Analyzers</td>
<td>40</td>
</tr>
<tr>
<td>6.2.2 Panel-mount Analyzers</td>
<td>41</td>
</tr>
<tr>
<td>6.3 Connections, General</td>
<td>42</td>
</tr>
<tr>
<td>6.3.1 Relay Contact Protection and Interference Suppression</td>
<td>43</td>
</tr>
<tr>
<td>6.3.2 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer</td>
<td>44</td>
</tr>
<tr>
<td>6.4 Wall-/Pipe-mount Analyzer Connections</td>
<td>45</td>
</tr>
<tr>
<td>6.4.1 Access to Terminals</td>
<td>45</td>
</tr>
<tr>
<td>6.4.2 Connections</td>
<td>46</td>
</tr>
<tr>
<td>6.5 Panel-mount Analyzer Connections</td>
<td>47</td>
</tr>
<tr>
<td>6.5.1 Access to Terminals</td>
<td>47</td>
</tr>
<tr>
<td>6.5.2 Connections</td>
<td>48</td>
</tr>
<tr>
<td>7 CALIBRATION</td>
<td>49</td>
</tr>
<tr>
<td>7.1 Equipment Required</td>
<td>49</td>
</tr>
<tr>
<td>7.2 Preparation</td>
<td>49</td>
</tr>
<tr>
<td>7.3 Factory Settings</td>
<td>50</td>
</tr>
<tr>
<td>8 SIMPLE FAULT FINDING</td>
<td>55</td>
</tr>
<tr>
<td>8.1 Error Messages</td>
<td>55</td>
</tr>
<tr>
<td>8.2 Calibration Fail Message or no Response to pH/Redox Changes</td>
<td>55</td>
</tr>
<tr>
<td>8.3 Checking the Temperature Input</td>
<td>55</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>56</td>
</tr>
<tr>
<td>A1 Buffer Solutions</td>
<td>56</td>
</tr>
<tr>
<td>SPECIFICATION</td>
<td>59</td>
</tr>
</tbody>
</table>
1.1 System Description
The AX400 Series pH/Redox (ORP) analyzers and associated electrode systems have been designed for continuous monitoring and control of pH and Redox (ORP). The electrode system can be standardized to the analyzer using the built-in calibration facility and a single point buffering facility provides easy re-calibration after initial standardization.

The analyzer is available in wall-/pipe-mount or panel-mount versions with either one or two programmable, pH or Redox (ORP) input channels, each with its own associated temperature input channel. When making temperature compensated measurements, the sample temperature is sensed by a resistance thermometer (Pt100, Pt1000 or Balco 3K) mounted in the electrode system.

The analyzer can be configured for and connected to either a standard pH input (single, high impedance input >10\(^{13}\) Ω) or differential pH input (dual, high impedance inputs, both >10\(^{13}\) Ω).

Differential pH input is designed for use with pH electrode systems that incorporate a solution earth (ground) rod. The measuring electrode and reference electrode signals are measured separately using two, high impedance amplifiers and compared with the solution earth (ground) potential. The difference between the results is the value used for the pH measurement.

All models incorporate a wash facility for system cleaning; the alarm 3 relay can be configured to control the wash system either automatically or manually. The relay can be programmed to deliver either a continuous or pulsed signal to control an external power supply to a solenoid or pump and the frequency, duration and recovery time for the wash cycle are also programmable. During a wash cycle, the analog output value is held in its pre-cycle condition.

Analyzer operation and programming are performed using five tactile membrane keys on the front panel. Programmed functions are protected from unauthorized alteration by a four-digit security code.

1.2 AX400 Series Analyzer Options
Table 1.1 shows the range of configurations that are possible for the AX400 Series analyzers. The analyzer automatically detects the type of input board fitted for each input and displays only the frames applicable to that input board type. If no input board is fitted for Sensor B input, Sensor B frames are not displayed.

<table>
<thead>
<tr>
<th>Analyzer Model Number</th>
<th>Description of Analyzer</th>
<th>Sensor A</th>
<th>Sensor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX410</td>
<td>Single Input Conductivity (0 to 10,000 μS/cm)</td>
<td>Conductivity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>AX411</td>
<td>Dual Input Conductivity (0 to 10,000 μS/cm)</td>
<td>Conductivity</td>
<td>Conductivity</td>
</tr>
<tr>
<td>AX416</td>
<td>Dual Input Conductivity and pH/Redox(ORP)</td>
<td>Conductivity</td>
<td>pH/Redox(ORP)</td>
</tr>
<tr>
<td>AX450</td>
<td>Single Input Conductivity (USP)</td>
<td>Conductivity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>AX455</td>
<td>Dual Input Conductivity (USP)</td>
<td>Conductivity</td>
<td>Conductivity</td>
</tr>
<tr>
<td>AX460</td>
<td>Single Input pH/Redox(ORP)</td>
<td>pH/Redox(ORP)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>AX466</td>
<td>Dual Input pH/Redox(ORP)</td>
<td>pH/Redox(ORP)</td>
<td>pH/Redox(ORP)</td>
</tr>
</tbody>
</table>

Table 1.1 AX400 Series Analyzer Options
2 OPERATION

2.1 Powering Up the Analyzer

Caution. Ensure all connections are made correctly, especially to the earth stud – see Section 6.3.

1) Ensure the input sensor(s) is/are connected correctly.

2) Switch on the power supply to the analyzer. A start-up screen is displayed while internal checks are performed, then the Operating Page (see Section 2.3) is displayed as the pH or Redox (ORP) monitoring operation starts.

2.2 Displays and Controls – Fig. 2.1

The display comprises two rows of 4½ digit, 7-segment digital displays, which show the actual values of the measured parameters and alarm set points, and a 6-character dot matrix display showing the associated units. The lower display line is a 16-character dot matrix display showing the programming information.

![Fig. 2.1 Location of Controls and Displays](image-url)

2.2.1 Key Functions

A – Moving Between Menus

B – Advancing to Next Page

C – Moving Between Parameters

D – Adjusting and Storing a Parameter Value

E – Selecting and Storing a Parameter Choice
Use the Menu Key to scroll through the Menus

Use the Sidescroll Key to scroll through the Pages within each Menu

Use the Downscroll Key to scroll through the Parameters within each Page

Section 2.3, Page 6

Section 3.1, Page 12

Section 3.2, Page 13

Section 3.3, Page 13

Section 3.4, Page 14

Section 3.5, Page 14

Section 3.6, Page 17

Section 4.1, Page 18

Section 5.1, Page 25

Section 5.2, Page 26

Section 5.3, Page 27

100% 100% 100% 100%

** Note. ** Sensor calibration frames shown above are for 2-point calibration only. For other calibration options, refer to Section 4.1.

** Key
- Available only if the analog option board is fitted
- Dual input analyzer only

** Fig. 2.3A Overall Programming Chart **
CONFIG. ALARMS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: Type</td>
<td>A2: Type</td>
<td>A3: Type</td>
</tr>
<tr>
<td>A1: Setpoint</td>
<td>A2: Setpoint</td>
<td>A3: Setpoint</td>
</tr>
<tr>
<td>A1: Delay</td>
<td>A2: Delay</td>
<td>A3: Delay</td>
</tr>
</tbody>
</table>

* Applicable only to Alarm 3

CONFIG. OUTPUTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1: Assign</td>
<td>AO2: Assign</td>
<td>AO3: Assign</td>
<td>AO4: Assign</td>
</tr>
<tr>
<td>AO1: Range</td>
<td>AO2: Range</td>
<td>AO3: Range</td>
<td>AO4: Range</td>
</tr>
<tr>
<td>AO1: Span Value</td>
<td>AO2: Span Value</td>
<td>AO3: Span Value</td>
<td>AO4: Span Value</td>
</tr>
<tr>
<td>AO1: Default</td>
<td>AO2: Default</td>
<td>AO3: Default</td>
<td>AO4: Default</td>
</tr>
<tr>
<td>AO1: Default Val</td>
<td>AO2: Default Val</td>
<td>AO3: Default Val</td>
<td>AO4: Default Val</td>
</tr>
</tbody>
</table>

CONFIG. CLOCK

Set Clock?

- Format dd/mm/yy
- Date 01:01:02
- Time 12:00

Press ▲ To Set Press ▼ To Abort

CONFIG. SECURITY

- Alter Sec. Code
- Alter Cal. Code

CONFIG. LOGBOOK

- Logbook

TEST/Maintenance

- Test Outputs
- Test Output 1
- Test Output 2
- Test Output 3
- Test Output 4
- Maintenance
- Hold Outputs

* Available only if the analog option board is fitted

Fig. 2.3B Overall Programming Chart
2.3 Operating Page

2.3.1 Single Input pH

Measured Values
- pH
- Temperature

Measured Millivolts
- Millivolts

% Slope and pH Check Value
- A value between the programmed minimum % slope value (see Set Min Slope in the CONFIG. SENSORS page – Section 5.3) and 105% is displayed. If the value is outside these limits, check the electrode system.
- pH check value (zero point).
 - Displayed as an additional indication of pH electrode system condition; 7pH is the optimum value for glass electrodes and 0pH for Antimony electrodes.

Alarm 3 set to **Wash** (A3: Type, Section 5.4) – see Section 2.3.3.
Alarm 3 not set to **Wash**.
2.3 Operating Page

2.3.2 Dual Input pH

- **Measured pH**
 - Sensor A: 7.00 pH
 - Sensor B: 7.00 pH

- **Measured Temperature**
 - Sensor A: 25.6 Deg.C
 - Sensor B: 24.4 Deg.C

- **Measured Millivolts**
 - Sensor A: 404 mV
 - Sensor B: -256 mV

- **Sensor A % Slope and pH Check Value**
 - % slope value.
 - A value between the programmed minimum % slope value (see **Set Min Slope** in the CONFIG. SENSORS page – Section 5.3) and 105% is displayed. If the value is outside these limits, check the electrode system.
 - pH check value (zero point).
 - Displayed as an additional indication of pH electrode system condition; 7pH being the optimum value for glass electrodes and 0pH for Antimony electrodes.

- **Sensor B % Slope and pH Check Value**
 - % slope value.
 - pH check value (zero point).
 - See Sensor A above.

- **Wash Function**
 - Alarm 3 set to Wash (A3: Type, Section 5.4) – see Section 2.3.3.
 - Alarm 3 not set to Wash.
2.3 Operating Page

2.3.3 Wash Function

Note. Applicable only if Alarm 3 (A3: Type) is set to Wash in the CONFIG. ALARMS page – see Section 5.4.

Wash Function

- Off – Wash function off. Lower display line of Operating Page shows WASH INHIBITED.
- On – Wash function controlled automatically. Lower display line of Operating Page shows WASH IN PROGRESS.
- Manual – Enables wash function to be initiated manually – see below.

Caution. Set Wash Function to Off before removing the sensor from the process.

Probe Type set to pH (for either sensor if dual input analyzer) – see Section 5.3.

Probe Type set to Redox or ORP (for both sensors in any combination if dual input analyzer) – see Section 5.3.

Sensor calibration enabled (Section 5.3) – see Section 4.1.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.

Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Wash Function set to Manual – see below.

Press to Wash (Manual Wash only)

Press ▲ to Wash and Press ▼ to Abort are shown alternately on the lower display line.

Press the ▲ key to initiate the wash cycle. The display returns to the top of the Operating Page and the lower display line shows WASH IN PROGRESS until the wash cycle is completed. The Wash Function selection resets to the one that was set before Manual was selected.

Press the ▼ key to abort the wash cycle. The display returns to the top of the Operating Page.
2.3.4 Single Input Redox (ORP)

Measured Values
- Millivolts.
- Temperature.

Note. If Probe Type is set to ORP in the CONFIG. SENSORS page (see Section 5.3), the lower display line shows Monitoring ORP.

Sensor A Offset
Displays the offset value for the sensor set in A: Adjust Offset – see Section 4.1.3.

Alarm 3 set to Wash (A3: Type, Section 5.4) – see Section 2.3.3.
Alarm 3 not set to Wash.
2.3.5 Dual Input Redox (ORP)

- **Measured Millivolts**
 - Sensor A: 404 mV
 - Sensor B: -256 mV

Note: If Probe Type for both Sensor A and Sensor B is set to ORP in the CONFIG. SENSORS page (see Section 5.3), the lower display line shows Dual ORP.

- **Sample Temperature**
 - Sensor A: 25.6 Deg.C
 - Sensor B: 24.4 Deg.C

Note: The measured temperature is displayed only if Temp. Sensor is not set to None in the CONFIG. SENSORS page – see Section 5.3.

- **Sensor A Offset**
 Displays the offset value for Sensor A set in A: Adjust Offset – see Section 4.1.3.

- **Sensor B Offset**
 Displays the offset value for Sensor B set in B: Adjust Offset – see Section 4.1.3.

Alarm 3 set to Wash (A3: Type, Section 5.4) – see Section 2.3.3. Alarm 3 not set to Wash.
2.3 Operating Page

2.3.6 Dual Input pH and Redox (ORP)

- **Measured pH and Millivolts**
 - Sensor A: 7.00 pH, -256 mV
 - Sensor B: pH/Redox

- **Measured Temperature**
 - Sensor A: 25.6 Deg.C
 - Sensor B: 24.4 Deg.C

- **Measured Millivolts**
 - Sensor A: 404 mV, -256 mV
 - Sensor B: -256 mV

- **Sensor B Offset**
 - Displays the offset value for Sensor B set in B: Adjust Offset – see Section 4.1.3.

- **Sensor A % Slope and pH Check Value**
 - % slope value: 100.0%
 - pH check value (zero value): 7.00 pH

- **Alarm 3 set to Wash (A3: Type, Section 5.4)** – see Section 2.3.3.
 - Alarm 3 not set to Wash.

Note. The Probe Type for Sensors A and B can be set to any combination of pH, Redox or ORP in the CONFIG. SENSORS page – see Section 5.3. The display indications change depending on Probe Type settings, e.g. if Sensor A is set to Redox and Sensor B to pH, the lower display shows Redox/pH.

Note. The measured temperature is displayed only if Temp. Sensor is not set to None in the CONFIG. SENSORS page – see Section 5.3.
3 OPERATOR VIEWS

3.1 View Set Points

Note. The parameter names and units of measurement displayed in the View Set Points page depend on the Probe Type settings for Sensors A and B in the CONFIG. SENSORS page – see Section 5.3. Those shown below are given as examples only.

View Set Points
This page shows alarm set points. The value of each of the set points is shown, together with the name of the parameter it is assigned to.

Set point values and relay/LED actions are programmable – see Section 5.4.

Sensor A (pH), Alarm 1 Set Point

Sensor A (Temperature), Alarm 2 Set Point

Sensor B (pH), Alarm 3 Set Point – Dual input analyzers only

Sensor B (Temperature), Alarm 4 Set Point – Dual input analyzers only

Note. Alarm 4 is available only if the optional analog output board is fitted.

Alarm 5 Set Point

Note. Alarm 5 is available only if the optional analog output board is fitted.

Return to main menu.

Sensor calibration enabled (Section 5.3) – see Section 4.1.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.

Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.
3.2 View Outputs

Theoretical Analog Output
There are up to four analog outputs, each showing information for one sensor.

Note. Analog outputs 3 and 4 are available only if the optional analog output board is fitted.

Live current output value being retransmitted.

Current output shown as a percentage of full scale for the output range set in CONFIG. OUPUTS – see Section 5.6.

3.3 View Hardware

Sensor A Module
Shows the type of input board fitted to the analyzer for the Sensor A input.

Sensor B Module – Dual input analyzers only
Shows the type of input board fitted to the analyzer for the Sensor B input.

Option Board
Shows the type of option board fitted to the analyzer (if applicable).

See Section 3.4.
3.4 View Software

Issue
Shows the version number of the operating software.

Optional analog output board fitted and Logbook set to On in the CONFIG. LOGBOOK page (Section 5.8) – see Section 3.5.

Operating Page (optional analog output board not fitted) – see Section 2.3.

Sensor calibration enabled (Section 5.3) – see Section 4.1.
Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

3.5 View Logbook

Note. The VIEW LOGBOOK function is available only if the optional analog output board is fitted and Logbook is set to On in the CONFIG. LOGBOOK page – see Section 5.8.

The logbook stores data entries for alarm events, sensor errors, power failures and pH calibration information.

View Logbook
Use the ↑ and ↓ keys to access the Alarms logbook.

Alarms
The Alarms logbook contains up to 10 entries (entry 1 is the most recent), each comprising an alarm number, alarm state (On or Off) and the date and time of the occurrence.

Optional analog input board fitted – see Section 3.6.

Sensor calibration enabled (Section 5.3) – see Section 4.1.
Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Advance to entries 2 to 10.

Note. If no more entries are stored, the display shows No More Entries.
3 OPERATOR VIEWS...

...3.5 Logbook

View Logbook
Use the [▲] and [▼] keys to access the **Errors** logbook.

Errors
The **Errors** logbook contains up to 5 entries (entry 1 is the most recent), each comprising the sensor letter, error number and the date and time of the occurrence.

Optional analog input board fitted – see Section 3.6.
Sensor calibration enabled (Section 5.3) – see Section 4.1.
Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Advance to entries 2 to 5.

Note. If no more entries are stored, the display shows **No More Entries**.

View Logbook
Use the [▲] and [▼] keys to access the **Power** logbook.

Power
The **Power** logbook contains up to 2 entries (entry 1 is the most recent), each comprising the power state (On or Off) and the date and time of the occurrence.

Optional analog input board fitted – see Section 3.6.
Sensor calibration enabled (Section 5.3) – see Section 4.1.
Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Advance to entry 2.

Note. If no more entries are stored, the display shows **No More Entries**.
3.5 Logbook

View Logbook

Use the [▲] and [▼] keys to access the Cals logbook.

Calibration

The Cals logbook contains up to 5 entries (entry 1 is the most recent), each comprising 2 frames. Frame 1 contains the entry number, sensor letter and the calibration pass/fail indication.

Frame 2 contains the % slope value, the pH check value and the date and time of the occurrence.

Optional analog input board fitted – see Section 3.6.

Sensor calibration enabled (Section 5.3) – see Section 4.1.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.

Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Advance to entries 2 to 5.

Note. If no more entries are stored, the display shows No More Entries.
3.6 View Clock

Note. The VIEW CLOCK function is available only if the optional analog output board is fitted.

Date
Shows the current date.

Time
Shows the current time.

Sensor calibration enabled (Section 5.3) – see Section 4.1.
Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.
4.1 Sensor Calibration

4.1.1 Set Buffer Type (pH Only)

Sensor Calibration

Note. When Probe Type for either sensor (Sensor A only if single-input) is set to Redox or ORP, this section is applicable only if Enable Cals. for that sensor is set to Yes – see Section 5.3.

Sensor Calibration Security Code

Enter the required code number (between 0000 and 19999), to gain access to the sensor calibration procedure. If an incorrect value is entered, access to subsequent calibration pages is prevented and the display reverts to the SENSOR CAL. page.

Note. Applicable only if Alter Cal. Code is not set to zero – see Section 5.7.

Probe Type set to pH (for either sensor if dual input analyzer) – continued below.

Probe Type set to Redox or ORP (for both sensors if dual input analyzer) – continued on page 21.

Set Auto Buffers

Continued on Page 21.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.

Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Continued below.

Buffer Type

Select the relevant type of buffer solution (see Appendix A):

- ABB – ABB supplied buffer solution.
- NIST – NIST buffer solution.
- DIN – DIN 19266 buffer solution.
- MERCK – MERCK buffer solution
- TECH – US Technical buffer solution
- User* – Buffer solution with a user defined pH value – see Section 4.1.2.

Buffer Type not set to User – continued on next page.

Buffer Type set to User – see Section 4.1.2.
...4.1 Sensor Calibration

...4.1.1 Set Buffer Type (pH Only)

Set Buffer 1
Set the pH value of the buffer 1 solution – see Appendix A for pH tables.

Set Buffer 2
Set the pH value of the buffer 2 solution.

⚠️ Note. The solution selected for buffer 2 must be at least 2pH value greater than that selected for buffer 1, e.g. if buffer 1 is set to 7pH, buffer 2 must be set to at least 9pH.
...4 SETUP

...4.1 Sensor Calibration

4.1.2 Set Up User Defined Buffers (pH Only)

Buffer Type set to User (see section 4.1.1)

Solution A: Enter point 1 (to 5)

Deg. C and Adjust are shown alternately on the upper display line. Using the ▲ and ▼ keys, adjust the temperature reading (in 5° increments) to the first of the temperatures on the pH/temperature curve.

pH and Adjust are shown alternately on the center display line. Using the ▲ and ▼ keys, adjust the pH reading (in 0.01pH) to the pH reading that corresponds to the temperature reading entered above.

Notes.

1) For accurate calibration, it is important to repeat the above for buffer solution A at all 5 points along the pH/temperature curve.

2) The displayed temperature value increases automatically by 5°C from the value set for the previous point. The setting may be increased but not decreased.

Solution B: Enter point 1 (to 5)

Solution B set up is identical to solution A set up.

Note. For accurate calibration, it is important to repeat the above for buffer solution B at all 5 points along the pH/temperature curve.

The analyzer calculates the pH/temperature relationship from the data entered.

See Section 4.1.3.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.

Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.
4.1 Sensor Calibration

4.1.3 Adjust Offset (Redox/ORP Only)

Sensor B (dual input analyzers only) calibration is identical to Sensor A calibration.

Probe Type for Sensor B (dual input analyzers only) set to Redox or ORP and Enable Cals. set to No (see Section 5.3) – return to top of page.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Probe Type set to Redox or ORP – continued below.
Probe Type set to pH – see Section 4.1.4.

Adjust Offset (ORP/Redox probes only)

mV and Adjust are shown alternately on the upper display line. Use the ▲ and ▼ keys to adjust the upper display line to the required offset value for the process.

Return to main menu.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Return to top of page.
4.1 Sensor Calibration

4.1.4 Automatic and Manual, Single- and Two-Point Calibration (pH Only)

Sensor A: Buffer Method (pH probes only)
Select the type of calibration required:
- Auto 1-Pt – Automatic, single-point calibration
- Auto 2-Pt – Automatic, two-point calibration
- Man 1-Pt – Manual, single-point calibration
- Man 2-Pt – Manual, two-point calibration
- Grab – Adjust the display to match the measured pH value of a sample.

Anything other than Grab selected – continued below.
Grab selected, see Adjust Value on page 24.

Calibrate Buffer (Single-Point Calibration) or Calibrate Buffer 1 (Two-Point Calibration)
Immerse sensor A in the buffer solution.

If a Manual calibration has been selected, set the upper display to the temperature-corrected pH value of the chosen solution (see the datasheet provided with the solution).

Press the key to initiate calibration.

Note. To abort calibration, press the key again at any time before calibration is complete – see below.

The center display line shows the sensor e.m.f.
As calibration proceeds, a progress indicator appears in the lower display line. When a stable e.m.f. is detected, the lower display line shows 100%.

The display then changes for 2 seconds to show the temperature corrected buffer value in the upper display line, then advances automatically to the next parameter.

Two-point calibration selected – continued on next page.
Single-point calibration selected – continued on next page.

Abort Calibration
Select Yes or No.

Yes selected – the display returns to the top of the Calibration Page.
No selected – calibration continues.
...4.1 Sensor Calibration

...4.1.4 Automatic and Manual, Single- and Two-Point Calibration (pH Only)

Calibrate Buffer 2 (Two-Point Calibration only)
Immerse Sensor A in the second buffer solution and continue as for Buffer 1.

Note. To abort calibration, press the key again at any time before calibration is complete – see previous page.

The center display line shows the sensor e.m.f. As calibration proceeds, a progress indicator appears in the lower display line. When a stable e.m.f. is detected, the lower display line shows ##### 100% #####.

The display then changes for 2 seconds to show the temperature corrected buffer value in the upper display line, then advances automatically to the next parameter.

Calibration Message
See Table 4.1 for details of calibration messages.

<table>
<thead>
<tr>
<th>Calibration Message</th>
<th>Min.</th>
<th>Max.</th>
<th>Explanation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASSED</td>
<td>40 to 70%</td>
<td>105%</td>
<td>The new calibration coefficients are accepted</td>
<td>None</td>
</tr>
<tr>
<td>CAL LOW SLOPE</td>
<td>60 to 90%</td>
<td>60 to 90%</td>
<td>The new calibration coefficients are accepted</td>
<td>The electrode pair are becoming fatigued – replacement is recommended</td>
</tr>
<tr>
<td>PH CAL FAILED</td>
<td>0%</td>
<td>40 to 70%</td>
<td>The new calibration coefficients are ignored and the last known good calibration coefficients are used</td>
<td>Check buffer values and repeat buffering. If the fault persists, replace the electrodes</td>
</tr>
</tbody>
</table>

Table 4.1 Calibration Messages
...4 SETUP

...4.1 Sensor Calibration

4.1.5 Grab Calibration (pH Only)

A: Buffer Method set to Grab (see section 4.1.4)

Adjust Value (Grab only)
ph and Adjust are shown alternately on the upper display line. The displayed pH value is the reading sampled by the analyzer as this frame opened and is held until the display advances to the next frame. Use the ▲ and ▼ keys to adjust the displayed value as necessary to match the pH value of the measured grab sample.

Return to main menu.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.

Continued below.

Slope Value

% slope value.
The value between the programmed minimum % slope value (see Set Min Slope in the CONFIG. SENSORS page – Section 5.3) and 105% generated during the last valid two-point calibration is displayed.

pH check value.
The value generated during the last valid two-point calibration, adjusted by the value applied in Adjust Value (above), is displayed.

Note. The pH check value is reset to the previous, valid check value if a single- or two-point calibration is carried out after a grab calibration.

Alter Sec. Code not set to zero (Section 5.7) – see Section 5.1.
Alter Sec. Code set to zero (Section 5.7) – see Section 5.2.
5 PROGRAMMING

5.1 Security Code

Enter the required code number (between 0000 and 19999), to gain access to the secure parameters. If an incorrect value is entered, access to subsequent programming pages is prevented and the display reverts to the Operating Page – see Section 2.3.

Note. This item is displayed only if Alter Sec. Code is not set to zero – see Section 5.7.

See Section 5.2.
5.2 Configure Display

Set Language
Sets the language to be used on all displays.

Language Page
Use the \[\] and \[\] keys to select the required language.

Set Temperature Units

Temperature Units
Use the \[\] and \[\] keys to select the sample temperature display units.

Set Up Display Backlight

Backlight
Use the \[\] and \[\] keys to select the required backlight option:
- **Auto.** – Backlight comes on at each button press and switches off one minute after the last button press.
- **On** – Backlight is always on.

Return to main menu.
See Section 5.3.
5.3 Configure Sensors

Configure Sensor A

Sensor B (dual input analyzers only) configuration is identical to Sensor A configuration.

A: Probe Type
Select the required probe type.
- ORP – Millivolt display
- Redox – Millivolt display
- pH – pH display

A: Differential Input
- Yes – Select if electrode system is equipped with a solution earth (ground) rod.
- No – Select if electrode system is not equipped with a solution earth (ground) rod.

Note. Ensure the electrode system is connected correctly for the type of input selected (Standard or Differential) – see Fig. 6.9 (wall-/pipe-mount analyzers) or Fig. 6.11 (panel-mount analyzers).

A: Probe Type
Probe Type set to Redox or ORP – continued below.
Probe Type set to pH – continued on next page.

Temperature Sensor
Select the type of temperature sensor used: Pt100, Pt1000, Balco 3K or None.

Enable Calibration
Select Yes to enable sensor calibration.
Select No to disable sensor calibration and all associated menus.

Return to main menu.
See Section 5.4.
...5 PROGRAMMING

...5.3 Configure Sensors

pH Electrode Type
Select the type of pH electrode used, Glass or Antimony.

Temperature Compensation
Select *Auto* to enable the analyzer to compensate automatically for fluctuations in sample temperature.

Temperature Sensor (Automatic Temperature Compensation only)
Select the type of temperature sensor used: Pt100, Pt1000 or Balco 3K.

Preset Temperature (Manual Temperature Compensation only)
Enter the temperature of the sample within the range –10.0 to 120.0°C.
...5.3 Configure Sensors

Sample Compensation
Select *Yes* to enable boiling water compensation.

Yes selected – see below.
No selected – see below.

Sample Coefficient
If sample compensation is enabled, enter the temperature coefficient of the sample, in pH/°C, within the range 0.020 to −0.050 (in −0.001 increments). For boiling water applications, enter −0.035.

pH Calibration Minimum Slope Value
Set the required pH calibration minimum slope value, in %, within the range 60.0 to 90.0 (in 0.1 increments). The calibration fail limit is set automatically to 20% below the minimum slope setting – see table 4.1.

Sensor B (dual input analyzers only) configuration is identical to Sensor A configuration.

See Section 5.4.
5.4 Configure Alarms

Configure Alarm 1

Configuration of Alarms 2 to 5 is identical to Alarm 1 configuration. Alarm 3 can also be configured as a Wash alarm if A3: Type is set to Wash.

Note. Alarms 4 and 5 are available only if optional analog output board is fitted.

Alarm 1 Type

Select the type of alarm required:

- **Off** – The alarm is disabled, the alarm LED is off and the relay is de-energized at all times.
- **Alarm** – The analyzer is configured using the Assign parameter (following) to generate an alarm in response to a specified high or low pH, Redox (ORP) or process temperature sensor reading.
- **Status** – The analyzer alerts the operator to either a power failure or a condition that causes any of the error messages in Table 8.1 to be displayed.
- **Wash** – Alarm 3 is configured to control the wash sequence.

Note. The Wash alarm type can be assigned only to Alarm 3 and is displayed only when the lower display line shows A3: Type.

Alarm 1 Assign

The alarm can be assigned to one of two alarm conditions for a specified sensor:

- **Sen.A** – The analyzer alerts the operator if the pH or Redox (ORP) value of the process fluid measured by the selected sensor exceeds or drops below the value set in the Alarm 1 Set Point parameter (see next page), depending on the type of Alarm 1 Action selected – see next page.
- **Temp.A** – The analyzer alerts the operator if the temperature of the process fluid measured by the selected sensor exceeds or drops below the value set in the Alarm 1 Set Point parameter (see next page), depending on the type of Alarm 1 Action selected – see next page.

A1: Assign

Continued on next page.
5.4 Configure Alarms

Alarm 1 Failsafe
Select Yes to enable failsafe action, otherwise select No. See also Figs. 5.2 to 5.6.

Alarm 1 Action
Select the alarm action required, High or Low. See also Figs. 5.2 to 5.6.

Alarm 1 Set Point
The Alarm 1 Set Point can be set within the following ranges:

- pH: –2.00 to 16.00 pH
- mV: –2000 to 2000 mV
- Deg. C: –10.0 to 150.0
- Deg. F: –14.0 to 302.0

Set to the required value.

Alarm 1 Hysteresis
A differential set point can be defined between 0 and 5% of the alarm set point value. Set the required hysteresis in 0.1% increments. See also Figs. 5.2 to 5.6.

Alarm 1 Delay
When an alarm condition occurs, the activation of the relays and LEDs can be delayed for a specified time period. If the alarm clears within the period, the alarm is not activated. Set the required delay, in the range 0 to 60 seconds in 1 second increments. See also Figs. 5.2 to 5.6.

Configure Alarm 2.

See Section 5.5.
5.4 Configure Alarms

5.4.1 Wash Cycle Configuration (applicable only to Alarm 3)

Wash Mode
The wash can be configured as continuous or pulsed. If **Cont.** is selected, the relay remains energized for the wash duration. If **Pulsed** is selected, the relay is switched on and off every second for the duration of the wash – see Fig. 5.1.

Wash Frequency
Wash frequency is set in 15 minute increments between 15 and 45 minutes, then in 1 hour increments between 1 and 24 hours.

Wash Duration
Wash duration is set in 15 second intervals between 15 and 45 seconds, then in 1 minute intervals between 1 and 10 minutes.

Recovery Period
The recovery period is set in 0.5 minute intervals between 0.5 and 5.0 minutes.

Configure Alarm 4.

See Section 5.5.

Fig. 5.1 Pulsed and Continuous Wash Cycles
5.4 Configure Alarms

Fig. 5.2 High Failsafe Alarm without Hysteresis and Delay

Fig. 5.3 High Failsafe Alarm with Hysteresis but no Delay

Fig. 5.4 High Failsafe Alarm with Hysteresis and Delay

Fig. 5.5 High Non-Failsafe Alarm without Delay and Hysteresis

Fig. 5.6 High Failsafe Alarm with Delay but no Hysteresis
5.5 Configure Outputs

Configure Output 1

Output 2 configuration (and Outputs 3 and 4 if optional analog output board is fitted) is identical to Output 1 configuration.

Assign
Select the sensor and analog output required:

- **Sen.A** – pH/Redox (ORP)/mV for the selected sensor.
- **Temp.A** – Temperature for the selected sensor.

Note. Sen.B and Temp.B are applicable only to dual input analyzers.

Range
Select the analog output current range for the selected output.

- **AO1: Assign**

- **AO1: Range**

Span Value
ph (or *mV* or *Deg.C* or *Deg.F*) and *Adjust* are shown alternately on the upper display line. Use the [▲] and [▼] keys to adjust the displayed reading to the required span value.

Note. The minimum and maximum span values are determined by the Zero Value setting (see next page) plus the minimum differential, e.g. to set a Span Value of 0.00 pH, first set the Zero Value to −2.00pH.

- **pH** — 0.00 to 16.00 pH (minimum differential, 2.00pH)
- **Redox/ORP** — −1100 to 1200 mV (minimum differential, 100mV)
- **Temperature** — Deg. C 0.0 to 150.0 (minimum differential, 10°C)
 - Deg. F 32.0 to 302.0 (minimum differential, 18°F)

Continued on next page.
...5.5 Configure Outputs

Zero Value

ph (or mV or Deg.C or Deg.F) and Adjust are shown alternately on the center display line. Use the [▲] and [▼] keys to adjust the displayed reading to the required zero value:

Note. The zero value setting plus the minimum differential determines the minimum and maximum values for the span setting, e.g. to set a span value of –1100mV, first set the zero value to –1200mV.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Differential</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>–2.00 to 14.00</td>
<td></td>
<td>2.00pH</td>
</tr>
<tr>
<td>ORP/Redox</td>
<td>–1200 to 1100</td>
<td></td>
<td>100mV</td>
</tr>
<tr>
<td>Temperature</td>
<td>–10.0 to 140.0</td>
<td>14.0 to 284.0</td>
<td>10°C</td>
</tr>
</tbody>
</table>

Default Output

Select the system reaction to failure:

- **Hold** – Hold the analog output at the value prior to the failure.
- **On** – Stop on failure. This drives the analog output to the level set in the Default Val frame below.
- **Off** – Ignore failure and continue operation.

Default Value

The level to which the analog output is driven if a failure occurs.

Set the value between 0.00 and 22.00mA.
5.6 Configure Clock

Note. The Config. Clock function is available only if the optional analog output board is fitted.

Set Clock
Set the system clock.

Format
Select the required clock format.

Date
Set the date in the form dd:mm:yy.
Press \[\text{\textarrowup} \] to move between the day, month and year fields.
Use the \[\text{\textarrowup} \] and \[\text{\textarrowdown} \] keys to adjust each field.

Time
Set the time in the form hh:mm.
Press \[\text{\textarrowup} \] to move between hours and minute fields.
Use the \[\text{\textarrowup} \] and \[\text{\textarrowdown} \] keys to adjust each field.

Press \[\text{\textarrowup} \] to Set and Press \[\text{\textarrowdown} \] to Abort are shown alternately on the lower display line.
Press the appropriate key to set the clock or abort the changes.
5.7 Configure Security

Alter Security Code
Set the security code to a value between 0000 and 19999.

Alter Calibration Code
Set the sensor calibration access code to a value between 0000 and 19999.

Return to main menu.
See Section 5.8.

5.8 Configure Logbook

Configure Logbook
Use the ▲ and ▼ keys to set the logbook On or Off. If Off is selected, all data entries in the logbook are cleared.

Return to main menu.
See Section 5.9.
5.9 Test Outputs and Maintenance

Test Outputs
Displays the output test details for the four channels. Test Output 1 only is shown; the remaining outputs are identical.

Note. Outputs 3 and 4 are available only if the optional analog output board is fitted.

Test Output 1
The theoretical output current value.

Output current as a percentage of the full range current.

Use the [▲] and [▼] keys to adjust the displayed theoretical output current value to give the output required.

See Section 7.3.

Maintenance

Hold Outputs
Enables the relay action and analog outputs to be maintained.

- **Auto.** – Hold is released automatically after six hours.
- **On** – Changes in relay action and analog outputs are inhibited.
- **Off** – Changes in relay action and analog outputs are not inhibited.

Note. The LEDs flash while the analyzer is in Hold mode.

Return to main menu.

See Section 7.3.
6.1 Siting Requirements

⚠️ Caution.
- Mount in a location free from excessive vibration.
- Mount away from harmful vapours and/or dripping fluids.

ℹ️ Information. It is preferable to mount the analyzer at eye level, allowing an unrestricted view of the front panel displays and controls.

Fig. 6.1 Siting Requirements

A – Maximum Distance Between Analyzer and Electrode

B – Within Temperature Limits

C – Within Environmental Limits

IP66
NEMA 4X

Fig. 6.1 Siting Requirements
6.2 Mounting

6.2.1 Wall-/Pipe-mount Analyzers – Figs. 6.2 and 6.3

Dimensions in mm (in.)

210 (8.23) 192 (7.56) 96 (3.76)

Fig. 6.2 Overall Dimensions

Mark fixing centres (see Fig. 6.2)

A – Wall-mounting

1. Mark fixing centres
2. Drill suitable holes
3. Secure instrument to wall using suitable fixings

Position plate over "U" bolts

B – Pipe-mounting

1. Position "U" bolts on pipe
2. Position plate over "U" bolts
3. Secure plate
4. Secure transmitter to mounting plate

Fig. 6.3 Wall-/Pipe-mounting
...6.2 Mounting

6.2.2 Panel-mount Analyzers – Figs. 6.4 and 6.5

[Diagram showing panel dimensions and instructions]

1. Cut a hole in the panel (see Fig. 6.4 for dimensions). Instruments may be close stacked to DIN 43835.

2. Loosen the retaining screw on each panel clamp.

3. Remove the panel clamp and anchors from the instrument case.

4. Insert the instrument into the panel cut-out.

5. Refit the panel clamps to the case, ensuring that the panel clamp anchors are located correctly in their slots.

6. Secure the analyzer by tightening the panel clamp retaining screws.

Caution. The clamp must fit flat on the analyzer casing. If the clamp is bowed, the securing screw is overtight and sealing problems may occur.
Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of RFI interference and correct operation of the power supply interference filter.

Information.

- **Earthing (grounding)** – a case earth (ground) stud is fitted to the analyzer case for bus-bar earth (ground) connection – see Fig. 6.8 (wall-/pipe-mount analyzers) or Fig. 6.10 (panel-mount analyzers).

- **Cable routing** – always route signal output/pH electrode cable leads and mains-carrying/relay cables separately, ideally in earthed metal conduit. Use twisted pair output leads or screened cable with the screen connected to the case earth (ground) stud.

 Ensure that the cables enter the analyzer through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.

- **Cable glands & conduit fittings** – ensure that the NEMA4X/IP66 rating is not compromised when using cable glands, conduit fittings and blanking plugs/bungs (M20 holes). The M20 glands accept cable of between 5 and 9mm (0.2 and 0.35 in.) diameter.

- **Relays** – the relay contacts are voltage-free and must be appropriately connected in series with the power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded. Refer also to Section 6.3.1 for relay contact protection details when the relays are to be used for switching loads.

- **Analog output** – Do not exceed the maximum load specification for the selected analog output range.

 Since the analog output is isolated, the –ve terminal must be connected to earth (ground) if connecting to the isolated input of another device.
6.3 Connections, General

6.3.1 Relay Contact Protection and Interference Suppression – Fig. 6.6

If the relays are used to switch loads on and off, the relay contacts can become eroded due to arcing. Arcing also generates radio frequency interference (RFI) which can result in analyzer malfunctions and incorrect readings. To minimize the effects of RFI, arc suppression components are required; resistor/capacitor networks for a.c. applications or diodes for d.c. applications. These components can be connected either across the load or directly across the relay contacts. The RFI components must be fitted to the relay terminal block along with the supply and load wires – see Fig 6.6.

For **AC applications** the value of the resistor/capacitor network depends on the load current and inductance that is switched. Initially, fit a 100R/0.022µF RC suppressor unit (part no. B9303) as shown in Fig. 6.6A. If the analyzer malfunctions (locks up, display goes blank, resets etc.) the value of the RC network is too low for suppression and an alternative value must be used. If the correct value cannot be obtained, contact the manufacturer of the switched device for details on the RC unit required.

For **DC applications** fit a diode as shown in Fig. 6.6B. For general applications use an IN5406 type (600V peak inverse voltage at 3A – part no. B7363).

Note. For reliable switching the minimum voltage must be greater than 12V and the minimum current greater than 100mA.
...6 INSTALLATION

...6.3 Connections, General

6.3.2 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer – Fig. 6.7
The analyzer is supplied with 7 cable glands, one fitted and six to be fitted, as required, by the user – see Fig. 6.7.

1. Release the captive screws and remove the terminal cover plate.
2. Place the blade of a small, flat bladed screwdriver into the knockout groove and tap the screwdriver smartly to remove the knockout.
3. Smooth the edges of the hole with a small round or half round file.
4. Fit an ‘O’ ring seal to the the cable gland.
5. Insert the cable gland into the hole in the analyzer case from the outside.
6. Secure the cable gland with the securing nut.

Caution. When removing knockouts, take great care not to damage wiring and components within the analyzer.

Fig. 6.7 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer
Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

6.4 Wall-/Pipe-mount Analyzer Connections

6.4.1 Access to Terminals – Fig. 6.8

Fig. 6.8 Access to Terminals, Wall-/Pipe-mount Analyzer
6.4 Wall-/Pipe-mount Analyzer Connections

6.4.2 Connections – Fig. 6.9

<table>
<thead>
<tr>
<th>Terminal Block B</th>
<th>pH/Redox (ORP) without solution earth (standard input)</th>
<th>pH/Redox (ORP) with solution earth (differential input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor B</td>
<td>Sensor A</td>
<td>TC Common*, Link 1 & 2/9 & 10**</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>TC Common*, Link 1 & 2/9 & 10**</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>TC Third Lead*</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>TC</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>Not Used</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>Reference Electrode</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>Screen*</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>Glass/Metal Electrode</td>
</tr>
</tbody>
</table>

* If fitted
** When a 2-wire Pt100, Pt1000 or ‘Balco 3K’ temperature compensator is fitted.
*** Solution Earth also referred to as Ground Rod.

Note. Relay 3 can be configured to control the wash facility – see Section 5.4.
Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

6.5 Panel-mount Analyzer Connections

6.5.1 Access to Terminals – Fig. 6.10

Fig. 6.10 Access to Terminals, Panel-mount Analyzers
6.5 Panel-mount Analyzer Connections

6.5.2 Connections – Fig. 6.11

Note. Relay 3 can be configured to control the wash facility – see Section 5.4.

Fig. 6.11 Connections, Panel-mount Analyzers
7 CALIBRATION

Notes.
- The analyzer is calibrated by the Company prior to dispatch and routine recalibration is not necessary. High stability components are used in the analyzer’s input circuitry and, once calibrated, the Analog to Digital converter chip self-compensates for zero and span drift. It is therefore unlikely that the calibration will change over time. It is not advisable to attempt recalibration unless the input board has been replaced or the calibration tampered with.
- Prior to attempting recalibration, test the analyzer’s accuracy using suitably calibrated test equipment – see Sections 7.2 and 7.3.

7.1 Equipment Required
a) Millivolt source (pH or Redox input simulator): −1000 to 1000 mV.
b) Decade resistance box (Pt100/Pt1000 temperature input simulator): 0 to 1 kΩ (in increments of 0.01 Ω), accuracy ±0.1%.
c) Digital milliammeter (current output measurement): 0 to 20 mA.

Note. Resistance boxes have an inherent residual resistance which may range from a few mΩ up to 1 Ω. This value must be taken into account when simulating input levels, as should the overall tolerance of the resistors within the boxes.

7.2 Preparation
a) Switch off the supply and disconnect the electrode system, temperature compensator(s) and current output(s) from the analyzer’s terminal blocks.

b) Sensor A:
1) Link terminals B9 and B10.
2) Connect the millivolt source to terminals B16 (+ve) and B14 (−ve) to simulate the pH or Redox input. Connect the millivolt source earth to the Case Earth (Ground) Stud – see Fig. 6.8 (wall-/pipe-mount analyzer) or Fig. 6.10 (panel-mount analyzer).
4) Connect the 0 to 10 kΩ decade resistance box to terminals B11 and B9 to simulate the Pt100/Pt1000/Balco 3K.

Sensor B:
1) Link terminals B1 and B2.
2) Connect the millivolt source to terminals B8 (+ve) and B6 (−ve) to simulate the pH or Redox input. Connect the millivolt source earth to the Case Earth (Ground) Stud – see Fig. 6.8 or (wall-/pipe-mount analyzer) or Fig. 6.10 (panel-mount analyzer).
4) Connect the 0 to 10 kΩ decade resistance box to terminals B3 and B1 to simulate the Pt100/Pt1000/Balco 3K.

c) Connect the milliammeter to the analog output terminals.

d) Switch on the supply and allow ten minutes for the circuits to stabilize.

d) Select the FACTORY SETTINGS page and carry out Section 7.3.
7.3 Factory Settings

FACTORY SETTINGS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A: mV Zero (-1V)</td>
<td>B: mV Zero (-1V)</td>
<td>O1: Adjust 4mA</td>
<td>O2: Adjust 4mA</td>
<td>O3: Adjust 4mA</td>
<td>O4: Adjust 4mA</td>
</tr>
<tr>
<td></td>
<td>A: mV Span (+1V)</td>
<td>B: mV Span (+1V)</td>
<td></td>
<td>O2: Adjust 20mA</td>
<td>O3: Adjust 20mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: T. Zero (100R)</td>
<td>B: T. Zero (100R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: T. Span (150R)</td>
<td>B: T. Span (150R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: T. Zero (1K0)</td>
<td>B: T. Zero (1K0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: T. Span (1K5)</td>
<td>B: T. Span (1K5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: T. Zero (2K0)</td>
<td>B: T. Zero (2K0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: T. Span (5K0)</td>
<td>B: T. Span (5K0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key
- Available only if the analog option board is fitted
- Dual input analyzer only

Use the Sidescroll Key to scroll through the Pages within each Menu

Use the Menu Key to scroll through the Menus

Use the Downscroll Key to scroll through the Parameters within each Page

To OPERATING PAGE

Fig. 7.2 Overall Factory Settings Chart
...7.3 Factory Settings

Factory Settings Access Code
Enter the required code number, between 0000 and 19999, to gain access to the factory settings. If an incorrect value is entered, access to subsequent parameters is prevented and the display reverts to the top of the Factory Settings Page.

Calibrate Sensor A

Note. The values in the display lines for sensor calibration are shown only as examples – the actual values obtained will differ.

Sensor B calibration (dual input analyzers only) is identical to Sensor A calibration.

See page 53.

Return to Operating Page – see Section 2.3.

Millivolt Zero
Set the millivolt source to −1000mV.

The display advances automatically to the next step once a stable and valid value is recorded.

Note. The upper 6-segment display shows the measured input voltage. Once the signal is within range the lower 6-segment display shows the same value and Calib is displayed to indicate that calibration is in progress.

Millivolt Span
Set the millivolt source to +1000mV.

The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Zero (100R)
Set the temperature simulator to 100Ω.

The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Span (150R)
Set the temperature simulator to 150Ω.

The display advances automatically to the next step once a stable and valid value is recorded.

Continued on next page.
7.3 Factory Settings

Temperature Zero (1kΩ)
Set the temperature simulator to 1000Ω

The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Span (1k5)
Set the temperature simulator to 1500Ω

The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Zero (2k0)
Set the temperature simulator to 2000Ω

The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Span (5k0)
Set the temperature simulator to 5000Ω

The display returns automatically to **Cal. Sensor A** once a stable and valid value is recorded.
...7.3 Factory Settings

Calibrate Output 1

Note. When adjusting the 4 and 20mA outputs, the display reading is unimportant and is used only to indicate that the output is changing when the ▲ and ▼ keys are pressed.

Adjust 4mA

Use the ▲ and ▼ keys to set the milliammeter reading to 4mA.

Note. The analog output range selected in Configure Outputs (see Section 5.5) does not affect the reading.

Adjust 20mA

Use the ▲ and ▼ keys to set the milliammeter reading to 20mA.

Note. The analog output range selected in Configure Outputs (see Section 5.5) does not affect the reading.

Calibrate Output 2

Note. Output 2 calibration (and Outputs 3 and 4 if optional analog output board is fitted) is identical to Output 1 calibration.

Adjust 20mA

Use the ▲ and ▼ keys to set the milliammeter reading to 20mA.

Note. The analog output range selected in Configure Outputs (see Section 5.5) does not affect the reading.

Operating Page – see Section 2.3.
...7 CALIBRATION

...7.3 Factory Settings

Load/Save Configuration
Select whether a configuration is to be loaded or saved.

Note. If No is selected, pressing the [] key has no effect.

Load User/Factory Configuration

Note. Applicable only if Load/Save Config. is set to Yes.

Factory Config. – resets all the parameters in the Configuration Pages to the Company Standard.
Save User Config. – saves the current configuration into memory.
Load User Config. – reads a saved user configuration into memory.

User Config. and Factory Config. are displayed alternately if a User Configuration has been saved previously. Use the [] and [] keys to make the required selection.

Note. User Config. is displayed only if a User Configuration has been saved previously.

Press [] to Set and Press [] to Abort are displayed alternately on the lower display line.

Press the appropriate key to load/save the configuration or abort the changes.

Alter Factory Code
Set the factory settings access code to a value between 0000 and 19999.

Return to main menu.

Operating Page – see Section 2.3.
8 SIMPLE FAULT FINDING

8.1 Error Messages
If erroneous or unexpected results are obtained the fault may be indicated by an error message – see Table 8.1. However, some faults may cause problems with analyzer calibration or give discrepancies when compared with independent laboratory measurements.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: FAULTY PT100 A: FAULTY PT1000 A: FAULTY BALCO</td>
<td>Temperature compensator/associated connections for Sensor A are either open circuit or short circuit.</td>
</tr>
<tr>
<td>B: FAULTY PT100 B: FAULTY PT1000 B: FAULTY BALCO</td>
<td>Temperature compensator/associated connections for Sensor B are either open circuit or short circuit.</td>
</tr>
<tr>
<td>A: CAL LOW SLOPE B: CAL LOW SLOPE</td>
<td>Although the calibration has not failed, the electrode pair associated with the sensor indicated is becoming fatigued and replacement is recommended.</td>
</tr>
<tr>
<td>A: PH CAL FAILED B: PH CAL FAILED</td>
<td>The calibration of the sensor indicated has failed. Check buffer values and repeat buffering. If the fault persists, replace the electrodes.</td>
</tr>
<tr>
<td>WASH INHIBITED</td>
<td>Wash Function is set to Off in the Operating Page. Set Wash Function to On – see Section 2.3.3.</td>
</tr>
</tbody>
</table>

Table 8.1 Error Messages

8.2 Calibration Fail Message or no Response to pH/Redox Changes
The majority of problems are associated with the electrodes and cabling. Replace the electrodes as an initial check – refer to the appropriate instruction manual. It is also important that all program parameters have been entered correctly and have not been altered inadvertently – see Section 7.

If the above checks do not resolve the fault:

a) Check that the analyzer responds to a millivolt input. Connect a pH simulator, such as Model 2410, to the transmitter input; +ve to glass and –ve to reference – see Section 6.4 or 6.5. Select the CONFIG SENSORS page and set the Probe Type to Redox or ORP. Check that the analyzer displays the correct values as set on the simulator.

b) Use the pH simulator to carry out an impedance check on the analyzer, i.e. glass to reference, glass to earth and reference to earth – refer to simulator manual.

If the analyzer fails this test, check for moisture within the transmitter and in particular the terminal compartment. It is vital that all evidence of moisture is removed with the use of a hot air drier.

c) Reconnect the electrode cable and connect the simulator to the electrode end of the cable. Repeat the procedures a) and b) above. If the analyzer fails test b), check for moisture around the connections and check that the insulation on the inner co-axial conductor is clean and that the graphite layer has been removed.

8.3 Checking the Temperature Input
Check the analyzer responds to a temperature input. Disconnect the Pt100/Pt1000/Balco 3K leads and connect a suitable resistance box directly to the analyzer inputs – see Section 6.4 (wall-/pipe-mount analyzer) or Section 6.5 (panel-mount analyzer). Check the analyzer displays the correct values as set on the resistance box – see Table 8.2.

Incorrect readings usually indicate an electrical calibration problem. Re-calibrate the analyzer as detailed in Section 7.3.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Input Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Pt100</td>
</tr>
<tr>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>10</td>
<td>103.90</td>
</tr>
<tr>
<td>20</td>
<td>107.79</td>
</tr>
<tr>
<td>25</td>
<td>109.73</td>
</tr>
<tr>
<td>30</td>
<td>111.67</td>
</tr>
<tr>
<td>40</td>
<td>115.54</td>
</tr>
<tr>
<td>50</td>
<td>119.40</td>
</tr>
<tr>
<td>60</td>
<td>123.24</td>
</tr>
<tr>
<td>70</td>
<td>127.07</td>
</tr>
<tr>
<td>80</td>
<td>130.89</td>
</tr>
<tr>
<td>90</td>
<td>134.70</td>
</tr>
<tr>
<td>100</td>
<td>138.50</td>
</tr>
<tr>
<td>130.5</td>
<td>150.00</td>
</tr>
</tbody>
</table>

Table 8.2 Temperature Readings for Resistance Inputs

Failure to respond to the input indicates a fault with the analyzer which must be returned to the Company for repair. Correct response, but with incorrect readings, usually indicates a calibration problem. Recalibrate the analyzer as detailed in Section 7.
APPENDIX A

A1 Buffer Solutions
The pH value of buffer solutions is influenced considerably by temperature variations. Thus, when significant temperature fluctuations occur, it is general practice to correct automatically the measured, prevailing pH to the value that would apply if the solution temperature were 25°C, the internationally accepted standard.

The following tables include the pH values for US Tech, NIST, DIN, Merck, and ABB buffer solutions. Standards are for 4, 7 and 9pH values, from 0 to 100°C.

Table A1 ABB Buffer Solutions

<table>
<thead>
<tr>
<th>Temp</th>
<th>ABB Buffers</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>75</td>
<td>167</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>85</td>
<td>185</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
</tr>
<tr>
<td>95</td>
<td>203</td>
</tr>
</tbody>
</table>

Table A2 DIN Buffer Solutions

<table>
<thead>
<tr>
<th>Temp</th>
<th>DIN 19266</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>75</td>
<td>167</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>85</td>
<td>185</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
</tr>
<tr>
<td>95</td>
<td>203</td>
</tr>
</tbody>
</table>

Table A1 ABB Buffer Solutions

Table A2 DIN Buffer Solutions
APPENDIX A

Buffer Solutions

<table>
<thead>
<tr>
<th>Temp</th>
<th>Merck</th>
<th>Temp</th>
<th>NIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
<td>4pH</td>
<td>7pH</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>4.05</td>
<td>7.13</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>4.04</td>
<td>7.07</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>4.02</td>
<td>7.05</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>4.01</td>
<td>7.02</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>4.00</td>
<td>7.00</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>4.01</td>
<td>6.98</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>4.01</td>
<td>6.98</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>4.01</td>
<td>6.96</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>4.01</td>
<td>6.95</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>4.01</td>
<td>6.95</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>4.00</td>
<td>6.95</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
<td>4.00</td>
<td>6.95</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>4.00</td>
<td>6.96</td>
</tr>
<tr>
<td>65</td>
<td>149</td>
<td>4.00</td>
<td>6.96</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>4.00</td>
<td>6.96</td>
</tr>
<tr>
<td>75</td>
<td>167</td>
<td>4.00</td>
<td>6.96</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>4.00</td>
<td>6.97</td>
</tr>
<tr>
<td>85</td>
<td>185</td>
<td>4.00</td>
<td>6.98</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>4.00</td>
<td>7.00</td>
</tr>
<tr>
<td>95</td>
<td>203</td>
<td>4.00</td>
<td>7.02</td>
</tr>
</tbody>
</table>

Table A3 MERCK Buffer Solutions

Table A4 NIST Buffer Solutions
APPENDIX A

A1 Buffer Solutions

<table>
<thead>
<tr>
<th>Temp</th>
<th>°C</th>
<th>°F</th>
<th>4.01pH</th>
<th>7pH</th>
<th>10.01pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>0</td>
<td>4.000</td>
<td>7.118</td>
<td>10.317</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>95</td>
<td>3.998</td>
<td>7.087</td>
<td>10.245</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>158</td>
<td>3.997</td>
<td>7.059</td>
<td>10.179</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>176</td>
<td>3.998</td>
<td>7.036</td>
<td>10.118</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>185</td>
<td>4.001</td>
<td>7.016</td>
<td>10.062</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>194</td>
<td>4.005</td>
<td>7.000</td>
<td>10.012</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>203</td>
<td>4.011</td>
<td>6.987</td>
<td>9.966</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>214</td>
<td>4.018</td>
<td>6.977</td>
<td>9.925</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>224</td>
<td>4.027</td>
<td>6.970</td>
<td>9.889</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
<td>234</td>
<td>4.038</td>
<td>6.965</td>
<td>9.857</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>244</td>
<td>4.050</td>
<td>6.964</td>
<td>9.828</td>
</tr>
<tr>
<td>55</td>
<td>131</td>
<td>254</td>
<td>4.064</td>
<td>6.965</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>264</td>
<td>4.080</td>
<td>6.968</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>149</td>
<td>274</td>
<td>4.097</td>
<td>6.974</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>284</td>
<td>4.116</td>
<td>6.982</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>167</td>
<td>294</td>
<td>4.137</td>
<td>6.992</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>304</td>
<td>4.159</td>
<td>7.004</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>185</td>
<td>314</td>
<td>4.183</td>
<td>7.018</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>324</td>
<td>4.208</td>
<td>7.034</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>203</td>
<td>334</td>
<td>4.235</td>
<td>7.052</td>
<td></td>
</tr>
</tbody>
</table>

Table A5 US Tech Buffer Solutions
SPECIFICATION

pH/Redox (ORP)

Inputs
1 or 2* pH or mV inputs (*AX466 only) and solution earth
1 or 2* temperature sensors (*AX466 only)
Permits connection to glass or enamel pH and reference sensors and Redox (ORP) sensors

Input resistance
Glass >1 x 10\(^{13}\)Ω
Reference 1 x 10\(^{14}\)Ω

Range
–2 to 16pH or –1200 to +1200mV

Minimum span
Any 2pH span or 100mV

Resolution
0.01pH

Accuracy
0.01pH

Temperature compensation modes
Automatic or manual Nernstian compensation
Range –10 to 150°C (14 to 302°F)
Process solution compensation with configurable coefficient
Range 0 to 100°C (32 to 212°F)

Temperature sensor
Programmable Pt100, Pt1000 & Balco 3KΩ

Control Function – AX460 Only

Controller Type
P, PI, PID (Configurable)

Control Outputs

Analog
Current output control (0 to 100%)

Time proportioning cycle time
5 to 60s, programmable in 1s steps displayed with doP or roP

Pulse frequency
1 to 120 pulses per minute

Controller action
Reverse, direct or bi-directional (programmable)

Proportional band
0.1 to 1000%, programmable in 0.1% increments

Integral action time (Reset)
1 to 7200s in 1s steps, 0 = Off

Derivative
0.1 to 1000s in 0.1s increments

Auto/Manual
User-programmable

Display

Type
Dual 5-digit, 7-segment backlit LCD

Information
16-character, single line dot-matrix

Energy-saving function
Backlit LCD configurable as ON or Auto Off after 60s

Logbook (with option board)
Electronic record of major process events and calibration data

Real-time clock (with option board)
Records time for logbook and auto-cleaning functions
...SPECIFICATION

Sensor cleaning function
Configurable cleaning action relay contact
 Continuous
 Pulse in 1s on and off times
Frequency
 5 minutes to 24 hours, fully configurable
Duration
 15s to 10 minutes, fully configurable
Recovery period
 30s to 5 minutes, fully configurable

Electrode Calibration Modes
Calibration with auto-stability checking
 Automatic 1 or 2 point calibration selectable from:
 ABB
 DIN
 Merck
 NIST
 US Tech
 2 x User-defined buffer tables
 manual entry or 2-point calibration
 one-point process calibration

Calibration Ranges
Zero point
 0 to 14pH
Slope
 Between 40 and 105% (low limit user configurable)

Outputs and Set Points
Number of set points
 3 if relay control, 5 with option card
Number of relays
 4 standard, 2 standard and 2 control
Retransmission outputs
 2 (4 optional) fully-isolated standard

Environmental Data
Operating temperature limits
 −20 to 65°C (−4 to 149°F)
Storage temperature limits
 −25 to 75°C (−13 to 167°F)
Operating humidity limits
 Up to 95%RH non condensing

EMC
Emissions and immunity
 Meets requirements of:
 EN61326 (for an industrial environment)
 EN50081-2
 EN50082-2

Analog Retransmission
Number of signals
 Two, fully-isolated outputs supplied as standard
 Four, fully-isolated outputs when ordered with option card
Output current
 0 to 10mA, 0 to 20mA or 4 to 20mA
 Analog output programmable to any value between
 0 and 22mA to indicate system failure
Accuracy
 ±0.25% FSD, ±5% of reading
Resolution
 0.1% at 10mA 0.05% at 20mA
Maximum load resistance
 750Ω at 20mA
Configuration
 Can be assigned to either measured variable or
 either sample temperature
Serial communications
 Modbus serial data interface
Relay Outputs – On/Off

Number of relays
 Three, supplied as standard
 Five, when ordered with option card

Set point adjustment
 Fully configurable as normal or failsafe high/low or diagnostic alert

Hysteresis of reading
 Programmable 0 to 5% in 0.1% increments

Delay
 Programmable 0 to 60s in 1s intervals

Relay contacts
 Single-pole changeover
 Rating 5A, 115/230V AC, 5A DC

Insulation
 2kV RMS contacts to earth/ground

Access to Functions

Direct keypad access
 Measurement, maintenance, configuration, diagnostics or service functions
 Performed without external equipment or internal jumpers

Power supply

Voltage requirements
 85 to 265V AC 50/60 Hz
 24V AC or 12 to 30V DC (optional)

Power consumption
 <10VA

Insulation
 Mains to earth (line to ground) 2kV RMS

Safety

General safety
 EN61010-1
 Overvoltage Class II on inputs and outputs
 Pollution category 2

Cable Entry Types

Standard
 5 or 7* x M20 cable glands

N. American
 7 x knockouts suitable for 1/2 in. Hubble gland

Hazardous area approvals

CENELEC ATEX IIG EEx n IIC T4 Pending
 FM non-incendive Class I Div. 2 Groups A to D Pending
 CSA non-incendive Class I Div. 2 Groups A to D Pending

Mechanical Data

Panel-mount versions
 IP66/NEMA4X
 Dimensions 192mm high x 230mm wide x 94mm deep
 (7.56 in. high x 9.06 in. wide x 3.7 in. deep)
 Weight 1kg (2.2 lb)

Panel-mount versions
 IP66/NEMA4X (front only)
 Dimensions 96mm x 96mm x 162mm deep
 (3.78 in. x 3.78 in. x 6.38 in. deep)
 Weight 0.6kg (13.2 lb)

Languages

Languages configurable
 English
 French
 German
 Italian
 Spanish
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC motors to 1kV
- Drive systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart, Strip Chart and Paperless Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Magnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Wedge Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, conductivity, and dissolved oxygen transmitters and sensors
- ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.
- Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 827856

United States of America
ABB Inc.
Tel: +1 (0) 755 883 4366
Fax: +1 (0) 755 883 4373

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company’s published specification. Periodic checks must be made on the equipment’s condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of operating and maintenance records relating to the alleged faulty unit.