

Wireless Communication in the Oil Industry

Presented by
Mogens L. Mathiesen
ABB

Wireless - Motivation

Reduced Costs

 Through the elimination of cables, wireless technology greatly reduces the CAPEX associated with instrumentation.

Improved Flexibility

 Mobile instruments and hand-held devices (video cameras, PDAs, laptops) allow devices to be positioned, both temporally and spatially, as required.

 The elimination of cables increases the scalability of the wireless networks: enabling the ease of new device installation on an existing infrastructure

New Applications

 Wireless instruments and hand-held devices provide additional solutions that are not possible (physically or financially) with today wired solutions.

Motivation for Wireless Technology

"It is possible to achieve up to 10% reduction of construction costs by utilizing wireless instrumentation in new plants and facilities."

Dag Sjong, Automation Leader StatoilHydro 2007

Limiting factors for industrial adoption

 Not understanding the possible benefits of wireless technology is the largest barrier

Source: Industry Total

The (Perceived) Issues with Wireless...

Security

Eavesdropping, Tamperering, Malicious attacks...

Battery Lifetime

 Changing batteries in the field is not acceptable, changing thousands of batteries every year is too time-consuming, battery life too low...

Difficult to Install

 Tricky to get good coverage, especially in a typical Oil & Gas environment, results vary...

Coexistance

 Different technoligies operating in the same space will intefere with each other

No standards

 Forced to use proprietary solutions, don't want to be locked into a particular vendor...

The Wireless Reality...

- Security?
 - As good as wired
- Battery Lifetime?
 - 5-10 years typical for wireless instrumentation
- Difficult to Install?
 - Mesh networking, Redundancy, Site surveys...
- Coexistance?
 - Standards are ensuring that their technologies are 'good neighbours'
 channel blacklisting, frequency hopping, frequency agility...
- No standards?
 - WLAN, WirelessHART, ISA 100...

Main Application Areas for O&G

- Mobile Worker
- Condition & Performance Monitoring
- In-Process Wireless

Case – Tail IO: F3 Wireless (StatoilHydro)

- Evaluate, test and apply new and open standardized communication system architectures that allow handling increased amount of data in a cost-efficient and reliable manner for remote support & operation centres
- Develop a functional requirement specification for future communications integrated in process control and safety systems
- Investigate new monitoring and control opportunities brought about by wireless sensors
- Support condition based maintenance with wireless sensing techniques & communication
- Coordinate with mobile ICT to keep infrastructure cost at minimum when installed

Mobile Worker

Presence monitor and safety advisor

Always connected

- Online access to asset information and documentation.
- Online reporting
- Real-time collaboration between operators and engineers in support centres
- Improved safety through presence monitoring
- Read/write work notifications, work orders and permits in field
- Activity planning for modifications
 / turnarounds
- Tools for condition monitoring etc.

Mobile Worker: Wireless Video

- Company: StatoilHydro at Asgard B
- Company: ConocoPhillips at Ekofisk
- Challenge:
 - Relay real-time field video to control room and or
 - Maintain field worker mobility

- Mobile video system based on WLAN
- Why Wireless?
 - Mobility is not possible (or is severely reduced) when the worker needs to be attached with a cable
- Outcome
 - Mobile solution allows field workers to relay real-time video data to control room and onshore support centre.

Mobile Worker: Fire & Gas Testing

- Company: StatoilHydro at Snøhvit
- Challenge:
 - To remove the time-consuming interaction
 between field worker & control room operator
 - Reduce the capacity for human error

- Mobile F&G tester based on WLAN & RFID
- Connected to ABB's Safety & Automation System (SAS)
- Why Wireless?
 - Provides the necessary mobility
 - Reduces human errors
 - Reduces the control room operators workload
- Outcome
 - Currently in protoype->pilot phase

Condition & Performance Monitoring

- Monitoring the condition & performance of assets increases lifetime and maintenance interval
- Low-cost solutions, brought by wireless technology, enable monitoring of less-critical equipment
- The mobility of a wireless installation allows for installation in hard to reach areas
- Rotating equipment can be particularly difficult to wire

WiVib – Wireless Vibration Sensor

- Vibration monitoring of LV AC motors
 - Size below 400kW
 - Non-intrusive (very simple installation)
 - Fully autonomous
 - Small, inexpensive, wireless
 - Long battery life (5-10 years)
 - Suitable for EX environment
 - WirelessHART compliant

Available Q2 2009

In-Process Wireless

- Wireless instrumentation,
- Wireless remote I/O,
- Wireless fieldbus.
- Low-cost installation
- Installation in difficult areas
- Ideal for modular processes
- Line-powered / Battery powered

In Process: Wireless Remote IO

- Wireless PROFIBUS between controller and multiple remote IO
- Allows for islands of remote IO units to operate within the scope of a controller without the need for a physical connection
- Mobile process modules
- New process modules where cabling would lead to great installation costs
- Retrofit installations

Key Oil & Gas Wireless Technologies

- Wireless Sensor Networks
 - Monitoring, in-line process measurements, enabling smart instrumentation...
- WLAN
 - real-time plant information, local instrument configuration, work process activation/deactivation...
- RFID
 - Asset Tracking, Personnel Tracking...
- WiMax
 - Long-range communication, Inter-Platform communication...

Next: Wireless intelligent environments

- Intelligent environments
 - Space or environment with embedded systems and information and communication technologies
 - In which information and communication technologies and sensor systems "disappear" as they become embedded into physical objects, infrastructures,

and the surroundings

- Always on, anytime, anyplace, anywhere
- Context-aware
 - Sense physical environment and adapt behaviour accordingly
 - Where device is
 - What other devices are in range
 - Available resources

If I'd asked my customers what they wanted, they'd have said a **faster horse**. Henry Ford (on inventing the Model T)

Summary

- Market Drivers
 - Health and Safety
 - Execution & Ressources
 - Energy & Sustainability
 - Service & Maintenance
- Technology Drivers
 - Wireless
 - Web technologies
 - Remote operation support
 - Asset Management

Flawless Execution

Product Technologies

Process and Energy

Integrated Operations