ABB AG - Calor Emag Medium Voltage Products

I_S-limiter
The world's fastest switching device

- Reduces substation cost
- Solves short-circuit problems in new and extended substations
- Optimum solution for interconnection of switchgears and substations
- In most cases the only technical solution
- Reliability and function proofed in thousands of installations
- In service worldwide
- The peak short-circuit current will never be reached
- The short-circuit current is limited at the very first current rise
Technical data

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>Rated current</th>
<th>Switching capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 kV</td>
<td>... 5000 A</td>
<td>... 140 kA<sub>RMS</sub></td>
</tr>
<tr>
<td>12.00 kV</td>
<td>... 4000 A</td>
<td>... 210 kA<sub>RMS</sub></td>
</tr>
<tr>
<td>17.50 kV</td>
<td>... 4000 A</td>
<td>... 210 kA<sub>RMS</sub></td>
</tr>
<tr>
<td>24.00 kV</td>
<td>... 3000 A</td>
<td>... 140 kA<sub>RMS</sub></td>
</tr>
<tr>
<td>36.00 kV</td>
<td>... 2500 A</td>
<td>... 140 kA<sub>RMS</sub></td>
</tr>
<tr>
<td>40.50 kV</td>
<td>... 2500 A</td>
<td>... 140 kA<sub>RMS</sub></td>
</tr>
</tbody>
</table>

At higher rated currents parallel installation of I_S-limiters is possible.
More than 3000 I_S-limiters in service in approx. 80 countries

Customers:

- **Industry**
 - Paper mills
 - Refineries
 - Chemical industries
 - Car industries
 - Power stations
 - Steel-, Aluminum mills
 - On-Off-shore platforms
 - Ships / Vessels

- **Town’s utilities**

- **Utilities**

- **Test-laboratories**
Comparison: I_s-limiter – Circuit-breaker

- T_0: Response time of protection relay: 10 - 20 ms
- T_1: Operating time of protection relay: 30 - 40 ms
- T_2: Operating time of circuit-breaker: 40 - 80 ms
- T_3: Arc duration: 10 - 20 ms, 90 - 160 ms
Iₜ-limiter

Comparison: Iₜ-limiter – Circuit-breaker

- **T₀**: Response time of protection relay: 10 - 20 ms
- **T₁**: Operating time of protection relay: 30 - 40 ms
- **T₂**: Operating time of circuit-breaker: 40 - 80 ms
- **T₃**: Arc duration: 10 - 20 ms

 90 - 160 ms

Current flow time by use of Iₜ-limiter: T = 5 - 10 ms
I_s-limiter – Function

Breaking of a short-circuit current with I_s-limiter

Current curve at the short-circuit location

- $I_k^{\text{perm.}} = 50$ kA
- $I_k = 50$ kA

$50\text{ kA} \times \sqrt{2}$
I_s-limiter – Function

Breaking of a short-circuit current with I_s-limiter

\[i = i_1 + i_2 \]

- **T_1**
 - \(I_k^1 = 50 \text{ kA} \)
 - \(i_1 \)
 - \(i = i_1 + i_2 \)
 - \(I_{k \text{ perm.}}^1 = 50 \text{ kA} \)

- **T_2**
 - \(I_k^2 = 50 \text{ kA} \)
 - \(i_2 \)
 - \(I_{k \text{ perm.}}^2 = 50 \text{ kA} \)

Current curve at the short-circuit location

- \(u \)
- \(i_1 \)
- \(i = i_1 + i_2 \)

Without I_s-limiter

\(250 \text{ kA} \)

\(125 \text{ kA} \)

\(50 \text{ kA} \times \chi \times \sqrt{2} \)
I_s-limiter – Function

Breaking of a short-circuit current with \(I_s \)-limiter

\[i = i_1 + i_2 \]

Current curve at the short-circuit location

- \(T_1 \) \(I_k' = 50 \text{ kA} \)
- \(T_2 \) \(I_k'' = 50 \text{ kA} \)
- \(I_k \text{perm.} = 50 \text{ kA} \)

\(I_k' = 50 \text{ kA} \)

\(I_k'' = 50 \text{ kA} \)

\(50 \text{ kA} \times \chi \times \sqrt{2} \)

\(125 \text{ kA} \)

\(250 \text{ kA} \)

\(i_1 \)

\(i \)

\(t \)

\(u \)
I_s-limiter – Function

Breaking of a short-circuit current with I_s-limiter

\[
I = I_1 + I_2
\]

- **Without I_s-limiter**
- **With I_s-limiter**

Current curve at the short-circuit location
I_s-limiter – Function
Insert-holder, insert and current flow
I_s-limiter – Structure

Typical System Components

- 3 CT’s
- 3 Tripping units
- 3 Inserts holders with inserts
Is-limiter – Structure
Truck mounted panel

Type tested
- acc. to IEC 62271-200

Internal arc classification
- IAC A FLR
Self monitoring

Redundancy
(separate independent system for each phase)

Protection against EMI
- EMC tested according to IEC 61000
- Special current transformers
 (low impedance shield between primary and secondary winding)
- Filters for incoming / outgoing wires
- Special tripping and measuring wires
 (each pair tightly twisted and protected by steel conduit)

Test equipment
(quick, complete and easy test by user)
I_s-limiter – Reliability

Test equipment

I_s-limiter insert holder with test insert

Test equipment
I_s-limiter – Function

Detection of short-circuit currents

1. Short-circuit current without I_s-limiter
I_s-limiter – Function
Detection of short-circuit currents

1 Short-circuit current without I_s-limiter
I_s-limiter – Function
Detection of short-circuit currents

Short-circuit current without I_s-limiter

Short-circuit current - I_s-limiter tripped -

$\mathbf{\text{i}_{\text{limit}} \wedge \left(\frac{\text{di}}{\text{dt}}\right)}$

$\wedge \equiv \text{logical „and“}$
I_s-limiter – Function

Detection of short-circuit currents

1. **Short-circuit current without I_s-limiter**
2. **Short-circuit current**
 - I_s-limiter tripped -
3. **Overcurrent**
 - I_s-limiter not tripped -
4. **Peak value of service current**

\[i_{\text{limit}} \land \left(\frac{\text{di}}{\text{dt}} \right) \]

\(\land \) ≡ logical „and“
Is-limiter – Function
Sequence of tripping

- **T₀**: Time to cross tripping criteria (threshold current i_{limit} and gradient di/dt)
- **T₁**: Response time of electronic ~15 µs
- **T₂**: Time to break main current path and commutate current to fuse ~85 µs
- **T₃**: Melting time of fuse ~500 µs
- **T₄**: Arc duration in fuse

- i_A: RMS current at crossing tripping criteria (threshold current i_{limit} and gradient di/dt)
- i_B: RMS current at start of fuse melting
- i_C: Maximum RMS current
Advantages:

- Improving „power quality“
- Increasing grid’s reliability
- Reducing network-impedance
- Optimizing load flow
- Existing busbar system and cabling does not have to be changed
Advantages:

- Connecting generator independent of grid's short-circuit capability
- Existing busbar system and cabling does not have to be changed
- Separate generator breaker needless
Advantages:

- Avoid ohmic losses (copper losses) of the reactor
- Avoid voltage drop of reactor
- Avoid electro-magnetic field of reactor
- Greenhouse aspects (CO₂ and heating)
I_s-limiter – Application
Connection of a generator to a network with current-direction comparison

Advantages:

- Connect private / industrial generator feeder to the fully loaded grid ①
- Selective tripping of the I_s-limiter (Tripping only at faults within grid section ①, not at faults within grid sections ②)
Benefits for utility/municipal networks:

- IPPs can also be connected to utility/municipal networks in which short-circuit capacity is fully utilized.
- Rising energy demand in the public networks can be covered.
- No conversion of the public networks (for increased short-circuit current carrying capacity) is required.
- There are no negative effects from these additional IPPs on the customers already connected to the public network.
I_s-limiter – Application
Distributed power generation

Benefits for IPPs:

- Connection of IPPs is not detrimental to public grid
- Use of renewable energies possible
- Distributed power generation close to consumers possible
- Customer established power supply system independent of the public grid possible
- Redundancy
- Return of Investment by selling power to public grid
- Improving public image due to use of renewable energies
Is-limiter – Application
Is-limiter with summation of currents

Advantages:

- Tripping of dedicated Is-limiter close to fault location
- Existing busbar system and cabling does not have to be changed
- Reducing network-impedance
- Optimizing load flow
- Greenhouse aspects (CO₂ and heating)
Power and productivity for a better world™