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ABSTRACT 
 
This contribution summarizes the results of a project for optimization of a froth flotation circuit. A 

model predictive control based approach has been developed and tested on a zinc flotation circuit in 
Sweden. The basic idea is to use air flows and chemicals to control the concentrate in the product and in 
the tailing. The activities in the project covered modeling, design, implementation, and tests at a customer 
site. The on-line model predictive controller implementation has been done using Expert Optimizer. The 
result from the site test demonstrates the benefit of using model predictive control compared to the existing 
manual strategy. 
 



INTRODUCTION 
 
Froth flotation 
 

Froth flotation is a common method to extract a certain type of mineral from ore while depressing 
the amount of undesired minerals in the extracted concentrate. It is done by adding certain chemical 
reagents to selectively rendering the desired mineral hydrophobic. In a flotation cell, air bubbles then lifts 
the mineral. The resulting froth layer is then skimmed to produce the concentrate. Normally a flotation 
process consists of several flotation cells together with cyclones, mills, and mixing tanks. For poly-metallic 
ore different flotation circuits and a grinding circuit can be combined in order to form a concentrator used 
for extracting several mineral types from the same ore. This is the case for the Garpenberg concentrator, 
although our focus here is zinc. 

 
Motivation 
 

Due to the strong interaction between recovery (ratio between the quantity of valuable mineral in 
the concentrate and its original quantity in the ore), the economically best way to operate the concentrator 
is typically a trade off between these variables. This trade off is illustrated in Figure 1 where data from the 
zinc flotation circuit of Boliden concentrator in Garpenberg for the year 2007 is shown. The arrows 
indicate how it would be desired to drive the process closer to its efficiency boundary, which is indicated 
by the dashed line. 

 

 
 

Figure 1 – Trade-off between grade and recovery (dash-dotted curve). 
Daily averaged data from the Garpenberg concentrator for the year 2007 is shown (grey points) 

 
Disturbances acting on the flotation circuit will have a negative impact on the performance and, 

consequently on the economical result. The variation of the feed into the circuit is the main disturbance that 
we are facing here. Figure 2 illustrates the feed variability using data from two different days. The two 
shown curves are the zinc mass content and the mass content of the solid fraction. These have been 
obtained using an on-line X-ray analyzer. The left figure shows an eventful day where the zinc grade in the 
feed drops about five percentage units in about eight hours. The right figure represents a day with 
significantly less variation in the feed. 

 



            
 

Figure 2 – Variability of the feed into the process. 
Two days featuring high (left-hand side, March 3, 2008) 

and low (right-hand side, February 27, 2008) feed variability are shown. 
continuous line = Zinc mass fraction in %, dashed line = solid mass fraction in % 

 
BOLIDEN GARPENBERG CONCENTRATOR 

 
The Garpenberg concentrator, which is owned and operated by Boliden, processes a polymetallic 

ore extracted from an underground mine. The concentrator is composed of three flotation circuits and has a 
capacity of roughly 1400000 metric tons of ore per year. It yields three concentrates − a copper concentrate 
(chalcopyrite), a lead concentrate (galena), and a zinc concentrate (sphalerite). Furthermore, gravity 
separation is used in order to extract gold. The results described in this paper have been obtained on the 
zinc flotation circuit in a research project involving ABB and Boliden. 
 

 
 

Figure 3 – Boliden Garpenberg concentrator – Simplified process layout  
 



Manipulated variables 
 

The zinc flotation circuit in Garpenberg can be influenced using different variables. Figure 3 
shows a simplified process layout including these manipulated variables. Here, the air rates into each cell, 
the froth layer thicknesses, and the addition of chemical reagents (frother, activator, collector, and 
depressant) can be employed. In addition, the valve at the tailings port in each flotation bank can be 
adjusted. 
 
Measured variables 
 

A flotation circuit typically comprises a variety of sensors. Figure 3 shows the most important 
sensors installed in the zinc flotation circuit in Garpenberg. Volume flows are measured at three positions 
in the circuit. Furthermore, an on-line X-ray analyzer taking samples from different locations in the circuit 
is used in order to determine the mass content of different metals (zinc, iron, copper, lead, etc.) as well as 
the overall solid fraction. Most of the flotation cells are equipped with sensors for measurements for froth 
level thickness and air rate. 

 
Existing Control 
 

Automatic low-level control is used for the regulation of the froth levels using the froth level 
sensors and the valves at the tailings ports. However, manual control of the plant is still state of the art for 
optimizing flotation performance. This means that a human operator has to observe the behaviour of the 
circuit using the various sensor outputs and determine appropriate set-points for the abovementioned 
manipulated variables. 
 

This situation is suboptimal for the following reasons. Firstly, due to the aforementioned feed 
variations, the process is usually not in a steady state. Secondly, the dynamic interactions inside a flotation 
circuit (e.g. recirculating flows, cf. Figure 3, or time delays) are intricate and pose a challenge for human. 
Thirdly, operator shift changes, in combination the operators’ different philosophies concerning how the 
process should be controlled, upset the process. Fourthly, the dynamic variations inside the process may 
lead to an excess of the design limits of the equipment, thus reducing its lifetime. 
 

It must also be noted that, among others, one precondition for the success of the controller 
described in this paper is the ability to tightly control the pulp levels of the flotation cells. Although simple 
PID loops are most often implemented, level control is a multivariable control problem due to the 
interactions between the cells. A case study on multivariable level control is reported for instance in [6]. 
Furthermore, the existence of operating constraints suggests the use of advanced process control techniques 
in the form of an additional control strategy inside Expert Optimizer. 
 

METHODOLOGY 
 
Objective and scope 
 

Given the abovementioned issues, automatic control is expected to lead to significant 
improvement in terms of flotation performance. In the remainder of this contribution, we will present a 
solution to the problem of controlling the zinc flotation circuit in Garpenberg based on model predictive 
control (MPC). To our knowledge, various approaches resorting to expert systems exist, but so far, no 
MPC-based solution has been applied successfully to a complete flotation circuit. 
 

Our aim is twofold. Firstly, we would like to stabilize the process in spite of external disturbances. 
Secondly, the zinc concentrate production should be maximized while guaranteeing a minimum 
concentrate quality (i.e. zinc grade). This means that, according to Figure 1, we try to push the process to 



an operating point closer to the upper limit. In order to fulfil this, optimal set-points should automatically 
be chosen by the controller.  
 

A secondary objective concerns the tailoring of an efficient engineering process for the solution. It 
should be possible for a commissioning engineer to apply the control strategy to a different flotation circuit 
with a reasonable amount of effort. 
 
Model predictive control 
 

The core of our solution is model predictive control (MPC, see [1]). MPC is inherently 
multivariable, and its fundamental principle is to predict the process behaviour during a finite horizon in 
the future using a discrete-time model, cf. Figure 4. 
 

 
 

Figure 4 – Principle of model predictive control 
 

Based on this prediction (continuous line), a sequence of future control moves (dashed line) is 
computed using mathematical optimization. This sequence must comply with operational constraints and 
optimizes a revenue function that maps goals such as set-point deviation and use of actuators. The 
underlying optimization problem is solved at each sampling time, but only the first control move is carried 
out (circle), thus yielding closed-loop control. 
 

The optimization horizon should be long enough in order to cover the time constant of the 
process. Since a flotation circuit is a rather slow process, the sampling time of the controller can be chosen 
such as to allow enough time in order to perform the computations for solving the optimization problem. 
 

The three main ingredients, which we will describe in details in the following, are thus 
• a dynamical model, 
• the combination of revenue function and constraints, and 
• the knowledge of the current dynamical state of the process. 

 
 
 



Generation of the dynamical model 
 

The future behaviour of the process must be predicted using a reliable dynamical model of the 
flotation circuit. There are two fundamental approaches for how the model for the MPC is obtained, 
commonly named using the terminology “grey box models” and “first principles models”. In real 
applications though, the methods are blended in one way or another. Below we give a short description of 
both methods. 
 
Grey Box Modelling 
 

The approach here is to use system identification [5] to obtain a discrete time model of the 
flotation process. The model defined as follows: 
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where x[k], u[k], d[k], and y[k] are state variables, manipulated variables, measured disturbance variables, 
and measured output variables at time step k respectively. The matrices A, Bu, Bd, and C are obtained using 
gray box identification using historical time series data. Gray box identification here means that the block 
structures of the matrices are assumed to be known, and with certain zero elements. This approach will 
give an identification problem with fewer parameters, and hence also a better model than if all parameters 
in the A, Bu, Bd, and C matrices were identified using a black box modelling approach. 
 

The first step in system identification is to do experiments with the process. During spring 2007, 
experiments where conducted on the zinc flotation circuit where selected manipulated variables were 
excited by pseudo-random binary signals (PRBS) superimposed on the ordinary control signals. An 
example of such a signal is given in Figure 5. The bandwidth of the excitation signal was chosen based on 
the expected dynamics of the flotation circuit which resulted in switching intervals of, roughly, 30-100 
minutes. Using PRBS signals in all inputs simultaneously, as was done here, keeps the time for 
experiments with the real process to a minimum. Here, data for the grey box identification of the model (1), 
was collected during three successful one-day experiments. 

 

  
 

Figure 5 – An example of signals used in the system identification; the  
excitation signal (below) for the cleaner air flow addition, and the response  

in zinc grade in the cleaning (above). The time scale is in minutes 
 



In the second step in the system identification, the free parameters of the A, Bu, Bd, and C matrices 
are obtained using mathematical optimization where the error between the measured and the predicted 
outputs is minimized. This is done off-line, using logged data from the experiments. Here ARX models 
were used. 
 
First Principles Modelling 
 

This alternative approach uses the Mixed-Logical Dynamical (MLD) framework which 
incorporates real and boolean variables as well as constraints and offers great flexibility (e.g. piecewise 
linear dynamics), see [4]. An MLD is defined as follows: 
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x[k], u[k], and y[k] are real state, input, and output variables at time step k respectively. δ[k] and 

z[k] are boolean and real auxiliary variables, respectively. Although boolean variables have not been used 
in this application, the MLD framework is of great importance because of its capability of integrating 
constraints (an example for such constraints are interconnections between flotation cells) in the model. 
 

The modeling paradigms are first principles and modularity (i.e. the overall model of the flotation 
circuit can be assembled from basic components), thus yielding an easily comprehensible model. The 
required basic components are basically those shown in Figure 3, e.g. the model of a flotation cell, of a 
mixing tank, or of an X-ray analyzer. 
 

For control purposes, the dynamical model must be of low complexity. Because of closed-loop 
control, it is generally sufficient to capture the dominant effects of the process. Our model should be 
considered in this light. Another important requirement is to dispose of dynamical states and parameters 
that have a physical meaning. 
 

 
 

Figure 6 – Schematic of the model of a flotation cell 
 

Figure 6 gives an overview of the main aspects covered by the model of a single flotation cell, the 
most frequently used building block for assembling the overall plant model. The most important feature to 
be mentioned is the observation of the continuity equation, i.e. the content in terms of a certain fraction 
(e.g. sphalerite) in the cell varies in function of the inflows and outflows of this fraction. 
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Cost Function Design and Constraints 
 

The cost function used in MPC consists of two components, namely 
• a quadratic cost for the set-point deviation of the zinc grades in the concentrate and in the 

tailings and 
• a quadratic cost for the control signal increments. 

The circulating volumetric flow was given an upper limit in the MPC. The remaining measured 
variables (as described in the corresponding section) were used as inputs to the state estimator.  
 
Knowledge of the current dynamical state 
 

A prerequisite for MPC is the knowledge of the current plant state. In a multivariable process such 
as a flotation circuit, this is a non-trivial task. 
 

In this case we resort to the well established Kalman filter (see for example [1]) in order to 
provide an estimate of the plant state based on the variables measured in the past. To obtain error free 
tracking, i.e. integral action, the model (1) needs to be augmented with states to handle offsets that always 
occur in a real world process.  
 

A thorough description of our state estimation approach is not the scope of this contribution. Let 
us mention here though that Moving Horizon Estimation (see [3] for example) could also be used. It offers 
some advantages over the Kalman Filter like explicit consideration of process constraints at a price of a 
more complex computation. 
 

IMPLEMENTATION 
 

ABB’s cpmPlus Expert Optimizer is the advocated tool for implementation of advanced process 
control in general, and model predictive control in particular, for the mineral processing industry and 
others. In addition to the general framework for model predictive control, cpmPlus Expert Optimizer also 
includes tools for fuzzy logic and neural networks. The software, which runs on a separate PC, is also 
capable of handling a large number of communication protocols and can thus be interfaced easily with 
DCS (distributed control systems) from many vendors. 
 

 
 

Figure 7 – Structure of the overall control and estimation strategy 
 



Overall control and state estimation strategy 
  

Figure 7 shows the overall control and estimation strategy used in this application. In Garpenberg 
the underlying DCS is the ABB 800xA system, where the communication with Expert Optimizer is 
achieved using OPC (OLE for Process Control). The 800xA system implements the low level controllers 
where some of them receive their set-points from Expert Optimizer. The 800xA system is also used for the 
operator interaction in Garpenberg. 
 

The implementation in Expert Optimizer covers not only the model predictive controller and the 
Kalman filter state estimation, it contains also signal processing functions (e.g. validation, scaling, non-
linear transformation) for the inputs and the outputs. 

 
RESULTS FROM EVALUATION PERIOD 

 
The performance of the control strategy based on the grey box model was evaluated during a test 

period including September and November 2008. During the two month long test period the model 
predictive controller was in operation for one to two days, then it was turned off for one to two days. The 
motivation for this switching forth and back was to decrease the influence of the quality of the ore on the 
performance to make a fair comparison of the new MPC based strategy and the existing control strategy. 
 

In total there were 25 days with the MPC controlling the flotation circuit and there were 31 days 
where the existing control strategy was used. Table 1 summarizes the outcome of the whole evaluation 
period. The results are shown for days with and without MPC. The figures for “On/Off 1 day” refer to the 
performance during the last day of at least one day operation with or without MPC. The figures for 
“On/Off 2 days” refer to the performance during the last day of at least two days operation with or without 
MPC. By only considering achievements for the last day, the results for the “On/Off 2 days” are assumed 
to be less influenced by the other strategy, and therefore probably slightly more credible. No particular 
difference can be seen in the zinc product concentrates in column three. The zinc concentrates in the 
tailings are slightly lower for the periods when MPC is used. The important difference is that the recovery 
for the zinc, in column five, is at least one percentage unit higher when MPC is used compared with the 
existing manual control strategy. Also the concentrator efficiency in the rightmost column is at least one 
percentage unit higher for the MPC based strategy. The concentrator efficiency (CE) is defined as the ratio 
of the revenue of the concentrator and the theoretical maximum revenue that the concentrator could have, 
assuming the same feed. This has been used to be able to compare the results for different zinc grades in 
the ore feed. 
 

Table 1 – Summary of result from the evaluation period (CE = concentrator efficiency) 
 

  Ore Concentrate Tailings Recovery CE for Zn 
  % Zn % Zn % Zn % % 
On total  7.17 53.57 0.55 90.61 88.34 
Off total  7.89 53.77 0.66 89.40 87.32 
On 1 day  7.66 53.53 0.58 90.60 88.28 
Off 1 day  8.07 53.58 0.71 88.74 86.52 
On 2 days  6.66 54.36 0.50 91.43 89.78 
Off 2 days  7.40 54.81 0.57 90.08 88.80 

 
Figure 8 shows histograms for the recovery in % and for the zinc product concentrate for the days 

with and without model predictive control during the evaluation period. Also here it is hard to see any 
difference in the concentrate, but there is an overweight for higher recovery with model predictive control. 

 



  

 
 

Figure 8 – Recovery and concentrate grade for the days without control (left column) and  
for the days with control (right column) during the evaluation period  

 
CONCLUSIONS 

 
In this paper, we have presented how model predictive control can be applied to a froth flotation 

circuit. More specifically, we described the way a flotation circuit works, the economic objectives 
important for its operation, and the sensors and actuators used in order to influence it. Then, we described  
the elements forming our control and estimation strategy using two approaches and how they can be 
implemented on Expert Optimizer. Results from a test period with the MPC based on grey box modelling 
were also presented. 
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