ACS 6000

Medium voltage AC drives for control of 3 – 27 MW motors up to 3.3 kV
ABB’s ACS 6000 medium voltage drive provides the optimum solution for applications where high power and maximum reliability is required. Since its introduction, the ACS 6000 has gained an excellent reputation for high quality and reliability. As a result ABB has worldwide the largest installed base of medium voltage multidrives incorporating the latest technology.

ABB’s ACS 6000 is a modular drive designed for the most demanding single-motor or multi-motor applications. The optimum configuration for each application is reached by combining the modules with minimum engineering effort resulting in lower investment costs and a smaller footprint. It is available with five sizes of inverter modules (3, 5, 7, 9 and 11 MVA).

Several motors can be linked to the ACS 6000 via the common DC bus, enabling multi-machine operation with only one multidrive converter. A multidrive, common DC bus converter principle offers a solution with optimum efficiency.

The ACS 6000 medium voltage drive can be used in a wide range of industries.

ACS 6000 success
- Average annual increase of more than 100% since product launch
- Largest installed base of medium voltage multidrives worldwide

Fields of application

<table>
<thead>
<tr>
<th>Industries</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement, Mining and Minerals</td>
<td>Mine hoists, conveyors, crushers and mills</td>
</tr>
<tr>
<td>Chemical, Oil and Gas</td>
<td>Pumps, compressors, extruders, mixers and blowers</td>
</tr>
<tr>
<td>Marine</td>
<td>Main propulsion, thrusters, pumps and compressors</td>
</tr>
<tr>
<td>Metals</td>
<td>Rolling mills, coilers, pumps and fans</td>
</tr>
<tr>
<td>Pulp and Paper</td>
<td>Fans, pumps, refiners and chippers</td>
</tr>
<tr>
<td>Power Generation</td>
<td>Fans and pumps</td>
</tr>
<tr>
<td>Water and Waste Water</td>
<td>Pump applications, fresh water and waste water</td>
</tr>
<tr>
<td>Other Applications</td>
<td>Test stands and wind tunnels</td>
</tr>
</tbody>
</table>
Key features

The ACS 6000 medium voltage drive for speed and torque control of 3 – 27 MW induction or synchronous motors is a member of the ABB AC drives product family. It offers a number of unique key features.

Powerful performance
Fast and accurate process control in combination with low energy consumption results in top performance. The motor control platform of the ACS 6000 is based on ABB’s award-winning Direct Torque Control (DTC) technology. DTC provides the highest torque and speed performance ever achieved in medium voltage drives. As a result, control of the drive is immediate and smooth under all conditions.

High efficiency and reliability
The ACS 6000 uses a revolutionary power semiconductor switching device known as IGCT (Integrated Gate Commutated Thyristor) researched and designed by ABB. The use of IGCTs results in a less complex, more efficient and reliable high-power medium voltage drive, minimizing operating and maintenance costs.

Key product features

- **DTC control platform**
 for exceptionally high torque and speed performance
- **IGCT power semiconductors**
 for highest reliability and efficiency
- **Line Supply Unit (LSU)**
 for two-quadrant operation with a constant power factor of 0.96 over the whole speed range
- **Active Rectifier Unit (ARU)**
 for four-quadrant operation and reduced harmonics, adjustable power factor
- **Common DC bus**
 for single and multiple-motor operation and energy recuperation
- **Modular design**
 for optimum configurations

![The ACS 6000 inverter topology](image-url)
High availability
Maximum reliability and short repair time results in a drive with high availability.

Optimized energy flow
The common DC bus allows several motors to be connected to the same DC bus, providing an optimized energy flow.

The braking energy generated in one motor can be transferred to other inverters via the common DC bus without power consumption from the supply network. Due to the near unity power factor throughout the whole speed range the energy efficiency is optimal.

ACS 6000 advantages

- High power and maximum reliability
- Smooth torque over the entire speed range
- Applications operate at optimum efficiency
- Compact and high power density
- Low noise and vibration levels
- Minimized energy consumption with common DC bus
- Regeneration of rotating energy

Flexible
Optimum configuration
The modular design of the ACS 6000 allows the optimum configuration of any drive system. Each configuration, consisting of well-proven and certified modules, exactly fits the customer’s requirements.

Smooth system integration
The ACS 6000 integrates easily into the industrial environment because it can be optimally configured for single-motor and multi-motor applications without additional control equipment. The high power density and compact design and the drive’s communication abilities minimize the overall installation and operational costs.

The drive can be connected to the network through one or several transformers depending on power and harmonics requirements. Even a transformerless solution is available for certain applications.

Optimized energy flow with common DC bus e.g. cold reversing steel mill

[Diagram showing energy flow with three motors connected to a common DC bus]
ACS 6000 water-cooled

- User-friendly control panel for local operation
 - Keypad with multi-language display
 - Main supply on/off pushbuttons
 - Emergency stop push-button

- DC bus grounding switch for safety

- EMC compliant cabinet for problem-free operation in electromagnetic environment

- Electromechanically interlocked doors of power sections for safety
ABB

Line Supply Unit (LSU)
6- or 12-pulse diode rectifier unit

Inverter Unit (INU)
Self-commutated, 6-pulse, 3-level voltage source inverter with IGCT technology

Water Cooling Unit (WCU)
Supplies the cooling system with deionized water for the main power components in LSU, INU and CBU

Terminal Unit (TEU) and Control Unit (COU)
Contains the power terminals and the control swing frame

Capacitor Bank Unit (CBU)
DC capacitors for smoothing the intermediate DC voltage

Power Electronic Building Block (PEBB), one phase leg of a three-level Voltage Source Inverter (VSI) topology to be configured to act as an AC to DC or DC to AC converter
Reliability has been the main guiding principle of the research and development activities for ABB’s medium voltage AC drives.

Part count
The fewer the parts the higher the reliability. ABB uses high power semiconductor switching devices and a topology that brings down the part count to a minimum. This results in a reliable, compact and service-friendly drive.

Fuseless design
The ACS 6000 medium voltage drive is designed to operate safely without fuses, resulting in less spare parts and better overall reliability. This allows fast startup after safety interruptions.

Encoderless
Encoders are known to cause failures due to their exposed position on the motor. ABB’s ACS 6000 medium voltage drive can operate without encoder, thereby reducing maintenance costs and ensuring high levels of availability.

IGCT switching devices
ABB has developed a high power semiconductor called IGCT (Integrated Gate Commutated Thyristor) to allow the use of modern control algorithms, which can eliminate harmonics, improve dynamic response time and maintain, or even control, the power factor.

Low losses
The inherently low total losses of the IGCT require low cooling capacity and small cooling equipment.

Control
The ACS drive control platform is based on ABB’s award-winning Direct Torque Control (DTC), resulting in the highest torque and speed performance as well as lowest losses ever achieved in medium voltage drives. Control of the drive is immediate and smooth under all conditions and the audible noise in the motor is considerably reduced.

What is Direct Torque Control?
DTC is a revolutionary motor control method for AC drives that allows accurate control of both motor speed and torque without pulse encoder feedback from the motor shaft. In DTC, stator flux and torque are used as primary control variables. The motor state calculations are updated 40,000 times a second (i.e. every 25 µs) in the advanced motor software model by the high-speed digital signal processor. Due to the continuous updating of the motor state and the comparison of the actual values to the reference values, every single switching in the inverter is determined separately. DTC ensures the absolute lowest losses by switching the power semiconductors only when necessary.

Fast response to mains fluctuations and process side changes
The exceptionally fast torque step response of the ACS 6000 means that it can respond to process and mains changes extremely fast. This enables easy handling of power-loss situations and sudden load changes.

Typical torque (T) response of a DTC drive, compared with flux vector control with open loop Pulse Width Modulation (PWM)
Common DC bus
The ACS 6000 modularity is based on the common DC bus converter principle, where several motors (synchronous and induction) can be connected to the same DC bus. With five sizes of inverter modules available (3, 5, 7, 9 and 11 MVA), the optimum configuration for a specific application can be reached by combining the modules with minimum engineering effort. By linking the modules in parallel, the power can be increased to 27 MVA.

Multidrive topologies with a common DC bus offer a solution with optimum efficiency. Energy regenerated from one section in braking mode can be directly used by another section via the DC bus without power consumption from the supply network.

ACS 6000 modules
Active Rectifier Unit (ARU) , Inverter Unit (INU)
The Active Rectifier Unit (ARU) rectifies the AC line voltage and charges the DC link capacitors whereas the Inverter Unit (INU) inverts the DC voltage to the AC motor voltage.

The layout and equipment of the INU and the ARU are identical. They are self-commutated, 6-pulse, 3-level voltage source inverters, incorporating IGCT technology for a reliable, fuseless operation with a minimum number of drive components.

The ARU allows four-quadrant operation for regenerative braking, which reduces the overall energy consumption. It controls the power factor to unity in the whole operating range even at very low speeds. Optionally the ARU can be dimensioned to compensate reactive power generated by other loads connected to the same network.

Line Supply Unit (LSU)
The Line Supply Unit (LSU), designed for two-quadrant operation, maintains the power factor at 0.96 in the whole operating range.

Typically, the LSU is used for applications which only require two-quadrant operation. If short-term braking capability is needed, a Resistor Braking Unit with internal or external resistors can be installed.
Modular use, one design

The ACS 6000 is based on a modular product platform, expanding in line with customer’s requirements.

The ACS 6000 is designed as a set of modules. The modules are arranged according to the required output power, motor configuration and process needs.

Benefits of modularity

- Converter rating optimally adapted to customer requirements.
- Each configuration consists of well-proven modules, minimizing the risk of design errors even when extensive systems are engineered.
- The compact, standardized design and the integrated water-cooling system reduce space requirements and have positive impacts on room air conditioning.
- Multidrive topologies with common DC bus are possible.
- Reduced installation and commissioning time.

Depending on the application, the following four basic types of configurations are used:

Single-motor drive configurations
For synchronous, induction and permanent magnet motors. Single-motor configurations are commonly used in applications which require large, independent and decentralized drives.

Multi-motor drive configurations
For multiple synchronous or induction motors or a combination of both types. Up to five motors can be linked to a common DC bus, enabling multiple machine operation. Synchronous and/or induction motors, high or low power, any combination is possible in order to provide the optimum configuration.

Redundant drive configurations
For motors with two winding systems. Single drives can be configured to allow various schemes for redundancy offering greater availability of the drive system.

Twin configurations
For motors with winding systems supplied on both ends by the converter. This allows higher converter output frequencies and double output voltage.
ACS 6000 for induction or synchronous motors

Depending on the power rating and the application characteristics, the ACS 6000 can be used with induction or synchronous motors.

ACS 6000 for induction motors
Squirrel cage induction motors are the workhorses of the industry due to their versatility, reliability and simplicity. ABB’s broad range of medium voltage AC induction motors includes ribbed cast iron fan cooled motors and modular type welded frame motors.

The ACS 6000 is typically used with induction motors for applications such as pumps, fans, compressors, conveyors, hoists, mills, crushers and propulsion systems.

ACS 6000 for synchronous motors
Synchronous motors are typically considered for higher power ratings (e.g. above 8 MW to more than 100 MW). In addition to their high power capabilities, synchronous motors offer a wide field weakening range as well as the benefits of high efficiency and high performance.

The ACS 6000 synchronous drive is ideal for applications which require dynamic response and high torque, such as rolling mills and mine hoists and for high power applications, such as marine propulsion drives.

For special applications (e.g. low speed pumps) the ACS 6000 can be used with permanent magnet motors.
The ACS 6000 medium voltage drive with its modular concept allows optimum integration into the customer's industrial environment.

The ACS 6000 can either be installed to control just one motor, or to control several motors with comprehensive control features, minimizing overall installation and operational costs. The drive can be supplied by one or several transformers depending on power and harmonics requirements. Even a transformerless solution is available for certain applications.

ACS 6000 system integration

- Low network harmonics
- High power factor in the whole operating range
- Optional reactive power (VAR) compensation
- Small footprint
- Fast commissioning
- EMC compliant

Smooth integration into existing systems

Commissioning

The ACS 6000 is easy to commission. In its multidrive configuration, the ACS 6000 is much faster to commission than the equivalent number of single drives.

Control system

ABB offers an open communication strategy enabling connection to a PLC (Programmable Logic Controller) or a DCS (Distributed Control System). Fieldbus connectivity with a wide variety of protocols is available.

The ACS 6000 product family platform offers the possibility to monitor the transformers as well as the motors with the drive’s control system.

Applicable standards

The ACS 6000 meets the IEEE 519-1992 and IEC 61000-2-4 specifications for voltage and current harmonic distortion for virtually all installations. This eliminates the need for expensive harmonic filters and protects other electrical equipment from harmonic disturbances.

The ACS 6000 meets EN (IEC), CE, UL’, cUL’ and other standards to ensure smooth system integration worldwide.

* on request
The ACS 6000 allows smooth and simple system integration into the customer’s industrial environment.

Open control system
ABB offers an open communication strategy, enabling connection to higher-level process controllers. The ACS 6000 can be installed with all major fieldbus adapters for smooth integration, monitoring and controlling of different processes, according to customer requirements.

IndustrialIT
ABB’s IndustrialIT means increased standardization and seamless interaction of different ABB products. The ACS 6000 bears the IndustrialIT Enabled symbol, a special mark indicating that the drive can be easily integrated into the IndustrialIT architecture in a ‘plug & produce’ manner.

Monitoring and diagnostics

The ACS 6000 is available with an intelligent remote monitoring and diagnostics system, which allows secure access to the drive from any location in the world.

DriveMonitor™ allows real-time access to the drive. It supports monitoring, configuration and diagnostics of ABB drives independent of the implemented control method, thus also enabling the connection of existing installations.

The optional tool consists of a hardware module inside the drive, as well as a software layer that automatically collects and analyses selected drive signals and parameters.

Long-term monitoring functions deliver important information on equipment status, tasks needed and possible performance improvements. Diagnostic procedures and trending can cover not only the converter itself but other parts of the shaft train as well - everything according to customer needs and preferences.

Benefits:
• Early detection to avoid costly repairs
• Reduction of process-critical faults
• Optimization of maintenance cost and schedule over the product life cycle
• Long-term statistics for optimization of process performance
• Easier root cause analysis - reduced Mean Time To Repair (MTTR)
Testing, service and support

The ACS 6000 is backed by unrivalled service and support from the customer’s initial inquiry throughout the entire life cycle of the drive system.

Testing
ABB is committed to ensuring the reliability of every drive it delivers. To verify that quality standards and customer requirements are fully met every component of a drive is subjected to thorough testing in ABB’s modern test facilities.

ACS 6000 single drive
Tests of the ACS 6000 single drive additionally include load and functional tests on the test lab motor.

ACS 6000 multidrive
The multidrive modules are tested separately one by one as well as in a line-up, where the control functionality of the entire drive system is tested.

Extended testing
If required ABB also offers the possibility to perform extended testing in ABB’s test facilities.

Life-cycle management
ABB’s drive life-cycle management model maximizes the value of the equipment and maintenance investment by maintaining high availability, eliminating unplanned repair costs and extending the lifetime of the drive. Life-cycle management includes:
• providing spare parts and expertise throughout the life cycle
• providing efficient product support and maintenance for improved reliability
• adding functionality to the initial product by following the upgrade path
• providing a smooth transition to a new technology at the end of the life cycle

Training
Extensive training for ABB’s medium voltage drives can be provided at the ABB University. A range of training programs is offered from basic tutorials to programs tailored to the customer’s specific needs. -> www.abb.com/abbuniversity

Global network, local presence
After sales service is an integral part of providing the customer with a reliable and efficient drive system. The ABB Group of companies operates in more than 100 countries and has a worldwide network of service operations. Wherever you are, ABB is there for you.

Services for ABB’s medium voltage drives

- Supervision of installation and commissioning
- Training
- Remote diagnostics
- Customized maintenance contracts
- Local support
- 24 x 365 support line
- Spare parts and logistics network
- Worldwide service network
Data sheet ACS 6000

Motor Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage (kV)</th>
<th>Shaft Power (kW*)</th>
<th>Cooling</th>
<th>Type Code</th>
<th>Power (kVA)</th>
<th>Current (A)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>6000</td>
<td>8100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>9400</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>12000</td>
<td>16100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>15400</td>
<td>20600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>18000</td>
<td>24100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>6000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7000</td>
<td>9385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>9400</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>12000</td>
<td>16100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>15400</td>
<td>20600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>18000</td>
<td>24100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>23200</td>
<td>31100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>4800</td>
<td>6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>6800</td>
<td>9100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>8700</td>
<td>11700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>10600</td>
<td>14200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>13500</td>
<td>18100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>17400</td>
<td>23300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>20300</td>
<td>27200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>6700</td>
<td>9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>8600</td>
<td>11500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>10500</td>
<td>14100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>13400</td>
<td>18000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>17200</td>
<td>23000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>18000</td>
<td>24100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>25800</td>
<td>34600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single Drives with LSU

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage (kV)</th>
<th>Shaft Power (kW*)</th>
<th>Cooling</th>
<th>Type Code</th>
<th>Power (kVA)</th>
<th>Current (A)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>6000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7000</td>
<td>9385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>9400</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single Drives with ARU

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage (kV)</th>
<th>Shaft Power (kW*)</th>
<th>Cooling</th>
<th>Type Code</th>
<th>Power (kVA)</th>
<th>Current (A)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>6000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7000</td>
<td>9385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>9400</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Induction motors

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage (kV)</th>
<th>Shaft Power (kW*)</th>
<th>Cooling</th>
<th>Type Code</th>
<th>Power (kVA)</th>
<th>Current (A)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>6000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7000</td>
<td>9385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>9400</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Synchronous motors

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage (kV)</th>
<th>Shaft Power (kW*)</th>
<th>Cooling</th>
<th>Type Code</th>
<th>Power (kVA)</th>
<th>Current (A)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>6000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7000</td>
<td>9385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>9400</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multidrive Examples

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage (kV)</th>
<th>Shaft Power (kW*)</th>
<th>Cooling</th>
<th>Type Code</th>
<th>Power (kVA)</th>
<th>Current (A)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>16500</td>
<td>22100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>8800</td>
<td>11800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>7700</td>
<td>10300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>6000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>2600</td>
<td>3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>17400</td>
<td>23300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>10700</td>
<td>14300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>8800</td>
<td>11800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>6800</td>
<td>9100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>16500</td>
<td>22100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>17600</td>
<td>23600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>12000</td>
<td>16100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>4300</td>
<td>5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

* Indicative information:
- induction motor efficiency 97.5%, power factor 0.88;
- synchronous motor efficiency 97.5%, power factor 1.0.

** 11 MVA INU power is subject to motor design.
*** Length and weight are approximate values.
**** This version includes an IFU (Integrated Filter Unit).
Data sheet ACS 6000

<table>
<thead>
<tr>
<th></th>
<th>Line Supply Unit (LSU)</th>
<th>Active Rectifier Unit (ARU)</th>
<th>Input Reactor Unit (Transformerless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power range</td>
<td>Single INU: 3, 5, 7, 9, 11 MVA; Double INU: 14, 18, 22 MVA; Triple/quadruple INU: up to 30 MVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main supply voltage</td>
<td>+10/-10 % 2 x 1725 V (12 p)¹</td>
<td>3160 V (6 p)</td>
<td>3300 V (6 p)</td>
</tr>
<tr>
<td>50/60 Hz</td>
<td>+15/-5 % 2 x 1650 V (12 p)²</td>
<td>3000 V (6 p)</td>
<td>3300 V (6 p)</td>
</tr>
<tr>
<td>Motor voltage (max)</td>
<td>3100 V ³</td>
<td>3150 V</td>
<td>3000 V</td>
</tr>
<tr>
<td>Input power factor</td>
<td>0.96</td>
<td>1.0 (optional adjustable)</td>
<td>0.98 – 0.95</td>
</tr>
<tr>
<td>Output power factor</td>
<td>Induction motor: typically > 0.84; synchronous motor: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency at rated load including all auxiliaries</td>
<td>> 98.5 %</td>
<td>> 97.7 %</td>
<td>> 98.5 %</td>
</tr>
<tr>
<td>External cooling water</td>
<td>Inlet temperature: min 10 °C; max 32 °C (max. 42 °C with derating)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure: 200 ... 500 kPa (pressure drop ca. 150 kPa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multidrive with 18 MVA ARU and 9, 7 and 5 MVA

Dimensions

![Multidrive with 18 MVA ARU and 9, 7 and 5 MVA Dimensions](image)

Single line

![Single line](image)

Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARU</td>
<td>Active Rectifier Unit</td>
</tr>
<tr>
<td>IFU</td>
<td>Input Filter Unit</td>
</tr>
<tr>
<td>INU</td>
<td>Inverter Unit</td>
</tr>
<tr>
<td>IRU</td>
<td>Input Reactor Unit</td>
</tr>
<tr>
<td>LSU</td>
<td>Line Supply Unit</td>
</tr>
<tr>
<td>TEU</td>
<td>Terminal Unit</td>
</tr>
<tr>
<td>COU</td>
<td>Control Unit</td>
</tr>
<tr>
<td>WCU</td>
<td>Water Cooling Unit</td>
</tr>
</tbody>
</table>

ABB

ACS 6000 - 16
General features

Inverter type
Voltage Source Inverter Neutral-Point Clamped (VSI-NPC)

Motors
Induction, synchronous and permanent magnet motors; 3000 – 27 000 kVA water cooled

Standards
IEC 60146, IEC 60721
All common standards including EN, IEC, CE
Marine standards optional

Input
Medium voltage input transformer for 12-pulse diode rectifier, 6-pulse ARU
Variation: \(\pm 10\%\) of nominal voltage, down to \(-25\%\) safe operation with derated output

Auxiliary voltage
Common 400 – 690 VAC, 3-phase, 50 Hz/60 Hz

UPS (Uninterruptable Power Supply)
If available, a UPS can be connected for control power supply, 110–240 VAC, single phase or 110/220 VDC. Alternatively the drive can be equipped with back-up capacitors (for short term control power-loss ride-through)

Output frequency
0 to \(\pm 75\) Hz (Twin 250 Hz)

Rated output voltage
Standard: 3.0 – 3.3 kV
Optional: 2.3 kV

Maritime properties

Marine standards
IEC 60092, IEC 60721-3-6, IEC 60068-2- (1,2,6,30,52)
CE marking according to EU directives

Marine certification
Available for Lloyd’s, DNV, ABS and others

Braking
0.8 MW (Resistor Braking Unit – Internal Resistor)
2.3 MW (Braking Chopper Unit – External Resistor)

Ambient temperature
+5 °C to 45 °C (higher with derating)
31 °F to 113 °F (higher with derating)

Enclosure classes
Standard: IP32
Optional: up to IP54

Control interface (optional)
All common fieldbuses including Profibus, Modbus, DeviceNet, ABB AF100, others

Industrial
Compatible (Level 1)

Protective functions

Converter:
Overcurrent, short circuit, earth fault, phase loss, overvoltage, undervoltage, over-temperature, output frequency, network disturbance, cooling supervision

Motor:
Overload, underload, stall protection

Optional
- Motor supervision I/Os
 - Fault/alarm: overtemperature, vibration of bearings
 - PT 100: winding & bearing temperatures
- Transformer supervision I/Os
 - Fault/alarm: overtemperature, overcurrent
 - PT 100: winding temperatures
- Hardwired signals: drive control and drive status indication
 - References: start/stop, speed/torque etc.
 - Actual feedbacks: ready/running, current/voltage/power etc.
- Braking chopper

Hardware
Optional inverter output isolator
Optional customer signal I/Os
Varnished control boards

Mechanics
Vibration dampers
Maritime handgrips for doors
Anticondensation heaters
Locking device for 90° open doors
Flame-retardant properties
Halogen-free wiring and cable ducts

Redundancy
Various redundancy schemes
(please contact ABB for further information)