

(CHINESE)

简介:

本启动指南旨在帮助用户启动 µFLO

系列流量计算机。本指南中通篇将提到在设备显示屏上的不同信号器位置 中显示的状态代码。因为现在可以对这八个信号器中的任何一个进行分配 ,所以没有针对特定代码的具体信号器。但是,对于那些您熟悉以前分配 的信号器,通常装运设备时包含默认为您所熟悉的分配。这对通信端口更 适合,因为用户可能将自定义应用程序分配给了其它信号器。

建议的启动顺序

提示:第1步到第22

步是建议的启动顺序,并且某些步骤并不详细论述。不详细论述的步骤或 者是由于不需要详细论述,或者是由于在本"启动指南"的后面提供了详 细信息。例如,后面的一些主题专门讲述 RTD

的安装和布线、主电池的安装、太阳能电池板的安装以及其它信息。因此,应该在开始安装前浏览本指南的全部内容以了解提供了哪些信息。还应记住,RS485

总线上的设备可能不具有电池或太阳能电池板,因为可以从远程电源(例 如其它 µFLO)给它们供电,所以不必包含电池或太阳能电池板。

实际安装和管道铺设:

- 1. 拆包
- 2. 检查组件是否损坏、短缺或不正确。
- 3. 确定安装 μ FLO 的位置。
- 安装用于 μFLO 的支撑(管道鞍、直接安装、地面中铺设的管道)。使用硅树脂喷剂 或特氟纶胶带将 U 形螺栓贴到 2 英寸的管道上,以避免磨损。(请参见图 1 和图 2)
- 5. 将多支管安装到 μFLO 的底部。由于订购的 μFLO 的流向可以是从左到右或从右到左,因此,请通过查看标明(+)和(-)的传感器标签,确定流向。加号(+)指示高面(上行面),因此流量是从(+)到(-)。对于直接安装多支管,方向非常重要。(请参见图3,了解典型多支管配置情况)
- 6. 将不锈钢管线从多支管连接到导压阀。使用相等的多支管以避免损坏 μFLO
 的传感器,向多支管施加压力并检查是否有泄漏情况。为得到最佳度 量,请将孔口较大、长度较短的等长仪表器管线向下倾斜到导压阀 (每 3 英尺最少 1 英寸)。

图 2(管道安装)

图 3 (典型多支管安装)

安装 RTD 探测器:

7. 安装 RTD 并将连线连接到连接器块 J9。(请参见第 6 页和图 5)

安装电池:

- 确认存储器备用锂电池为启用。这是 J1、端子 1 和 2。(请参见第 7 页和图 5)
- 9. 安装已充满电的电池并将它连接到电池连接器 J6。(请参见第 7 页和图 5)
- 10. 显示屏应迅速经历启动过程,然后开始滚过默认的显示项。(如果不是这样,请参见第 19页上的提示)这通常确保组件和连线正确。有关典型默认显示,请参考第 15页上的"标准显示"。有关位置、符号和描述,请参考第 16页上的"可视警报和状态代码"。您应该在 A7 信号器中看到LC 代码(请参见图 10),因为尚未连接充电电源。这是用于 I/O子系统应用程序的典型信号器,但可能会因系统不同而有所变化。

安装太阳能电池板:

11. 组装、安装并连接太阳能电池板或交流充电器。切勿在主电池组断开的情况下连接充电器。(请参见第 8 页和第 9 页)¹。 代码应在充电电源连接后消失。显然,太阳能供电的设备将依赖阳光的强度。

设置:

- 将运行 PCCU32 的 FS/2 或笔记本电脑与设备相连。要使用 FS/2,必须从工厂订购具有 FS/2 支持的 μFLO。PCCU32 必须具有软件版本 4.3 或更高版本,FS/2 必须为 2018583-007 或更高。
- 13. 配置 μFLO: 使用 PCCU32 或 FS/2 中的 "Entry Mode" (输入模式) 设置日期/时间、ID、位置和 AGA 设置。
- 14. 在 "Calibration Mode"(校准模式)中,为静态压力、差动压力和温度验证寄存器。 (仅限 PCCU32)
- 在 "Calibration Mode"(校准模式)模式中,选择 "RTD Installed"(RTD 已安装),取消选取 "Use Fixed TF"(使用固定 TF),并且如果使用温度标准则调整 "RTD Bias"(RTD 偏差)。
- 16. 在 "Calibration Mode"(校准模式)中,执行 "(as found)"(按发现的)校准检查。

- 17. 如果需要校准,则使用自重测试装置或可接受标准,首先校准静态压力,然后校准差动压力。确保在 AP 校准期间两个导压阀均关闭,旁通阀均打开,以避免 "false DP"(错误 DP)。确保在多支管或测试设备中没有泄漏。
- 18. 根据需要执行 "as left"(按遗留的)校准检查。
- 19. 将流量计算机放置于管线上:为了避免导致切换和/或校准移位,关闭 通风阀,打开两个旁通阀,然后缓慢打开导压阀(首先打开高压力侧)。一旦两个导压阀完全打开后,可以关闭旁通阀。
- 20. 确认该设备正在正确计算流量。观察显示屏或查看 PCCU32 的"Entry Mode"(输入模式)中的 "Current Values"(当前值)。
- 21. 收集数据并查看事件和特性文件,以确保所有参数都正确设置。
- 22. 可选:在确保所有设置和校准都已完成并且设备位于计算流量的线路 上后,建议从 "Entry Mode"(输入模式)发送 "Reset Volume"(重置流量)命令。这使得设备还原为默认状态,此状态被 视为正确即时数据的正式起点。"Reset Volume"(重置流量)将记录在 Events 文件中,以标记日期和时间。

RTD 和探测器的安装和布线

RTD 测量气流温度。在本节中提供的过程使用户能够将 RTD 安装到仪表管道中,并将引线连接到主电路板上。

提供的 Totalflow 材料

- 具有 10 英尺缆线的 RTD 探测器。可选长度为 15 英尺、25 英尺、30 英尺、40 英尺和 50 英尺。
- 具有 ½ 英寸 NPT 螺纹的一个 (1) **Thermowell** 保护套管。可选螺纹为 ½ 英寸和 1 英寸。
- 尼龙带卷

客户提供的材料

- 客户必须指定或提供 Thermowell "U"长度。
- 特氟纶胶带
- 1. 将 Thermowell 保护套管安装到仪表管道中。
- 使用四头挡圈钳,调整探测器长度, 以便它作为 Thermowell 保护套管底部的支承的弹簧。
- 从µFLO 机箱中取下 扣式插头之一并安装缆线接头。 从缆线接头上取下螺帽、密封环和 橡胶索环。将螺帽、 密封环和橡胶索环滑到 RTD 缆线上并将缆线穿过缆线接头主体。应该令缆线足够长,可以延伸到 设备上,以便将连线连接到 RTD 端子块 J9。(请参见图 5)
- 4. 用索环、密封环和螺帽使缆线牢固。

注:

应首先从设备上取消充电电源和普通电源,然后再执行任何的 现场连线。

- 5. 按如下所示将 RTD 探测器连接到 μFLO 的 RTD 连接器:在进行与端子块的连接前,应首先取下平接线片(如果连有)并将线端剪去 1/4 英寸。从 μFLO 的主电路板上取下 J9 端子块。(请参见图 5)
- 6. 松开端子块紧固螺钉,插入连线,然后重新拧紧。在连线已连接好的 情况下重新安装端子块。

5

电池安装

1.

要延长电池组的寿命,在安装前应给电池充满电。使用太阳能电 池板的系统无法给电池充满电。此外,快速充电(太阳能电池板不提 供此功能)可以提高电池的寿命。(请参见下面的提示)

2. 将电池组插入电池舱并令其尺寸长的那一部分朝外。

- 3. 将电池组连接器连接到主电路板电池连接器 J6。(请参见图 5)
- 4. 观察 LCD,显示屏应启动并显示 "Warm Start"(热启动)信息,而且开始滚过默认的显示项。
 - 警告:

<u>不要</u>将太阳能电池板电源线连接到设备,除非连接 了主电池组。

提示:

为了给电池重新充电,快速充电将不会在电池中缓慢累积 电量,这比"慢速充电"的效率高得多。与短时迅速放电的电池 组相比,人们可能不大愿意恢复缓慢消耗电量(例如太阳能充电 系统上的微弱照明情况或存储中的设置导致的电量缓慢消耗)的 电池。请将电池存储在凉爽环境中,以减少耗电。

锂电池

- 确认 "Memory Backup"(存储器备用锂电池)为 "Enabled"(启用),并且 J1 的上部两个针脚(1 和 2)上有跳线。J1 就在紧下方以及 RTD 连接器的稍微左一点。(请参见图 5)
- 确认└(低锂电池警报)未显示在 A7 信号器上(默认)此警报指示锂电池的电压低于 2.5 伏特并且应被替换。

太阳能电池板安装

- Totalflow 一个太阳能电池板和缆线
- 提供的材料 两个 U 形螺栓和紧固五金件
 - 一个太阳能电池板支架
- **客户提供的材** 束线带
 - 一个 9 英寸或更长的 2 英寸直径的管的延长部分
 - 一个 2 英寸轴环

过程:

料

注:如果管子足够长而没有延长部分,则无需执行第1步和第2步。

- 将 2 英寸管的轴环连接到 μFLO 安装管的顶端。牢固拧紧。(请参见图 4)
- 2. 将 2 英寸管的延长部分安装到轴环上并牢固拧紧。
- 3. 通过提供的五金件在安装支架上安装太阳能电池板。
- 4. 用 U 形螺栓和附带的安装五金件将太阳能电池板安装板连接到 2 英寸管的顶端。在太阳能电池板的朝向正确前,不要紧固 U 形螺栓。
- 5. 如果需要,将太阳能电池板电源线连接到设备背面的太阳能电池板连 接器。在所有步骤均已完成并且主电池组已连好前,不要将缆线的另 一端连接到 μFL0 设备上。
- 6. 在北半球将太阳能电池板面朝南放置,在南半球将太阳能电池板面朝 北放置。拧紧 U 形螺栓以避免由于刮风或振动而造成移动。
- 7. 使用数字伏特计检查太阳能电池板极性,以确保(+)和(-) 连线正确标识。
- 太阳能电池板电源线连接到端子块 J7 充电器输入端子上(请参见图 5)。从μFL0 机箱中取下扣式插头之一并安装缆线接头。从缆线接头上取下螺帽、 密封环和橡胶索环。将螺帽、密封环和索环滑到缆线上并将缆线穿过 缆线接头的主体。令电源线足够长,可以延伸到设备上,以便连接到 充电器输入 +/- 端子。
- 9. 用索环、密封环和螺帽使太阳能电池板缆线牢固。
- **提示**: 为防止湿气进入 μFLO,应该让缆线向下"倾斜",然后升高到进出孔。这将提 供一个通道,以便雨水从进出孔流出。

8

图 4 (太阳能电池板安装)

图 5(µFLO 板布局)

注: 出于方向目的,只显示连接器和主要组件。

图 6(RS-485 端子板)

图 7(RS-232 端子板)

图 8(RS-422 端子板)

图 6、7 和 8 是插入 *µ*FLO 板的 J3 的端子板,它提供不同的通信选项。

远程通信

下面的论述主要针对 µFLO 与主机 (通常为 WinCCU) 之间的通信。

要与主机通信, μFLO 应具有起到 RS232、RS485 或 RS422 功能的远程通信端口。根据客户的订单,大多数设备在装运时都装好了 15 针连接器 (J3)

和通信设备(例如无线装置)之间的适当缆线。其它选件是一个端子板, 它直接插在标记有适当端子的 15 针连接器上。(请参见第 10 页和第 11 页)

在安装好 μ FLO

并且设好通信路线后,用户需要输入适当的通信参数。µFLO 最可能附带用于 "Totalflow Remote" (Totalflow 远程)协议的 Com1 设置。如果不是这样,则按如下所示使用 PCCU32 的 "Entry" (输入)模式来选择该协议。必须首先选择该协议以用于要显示的 适当通信参数。信号器位置 A8 (默认)中不断闪烁的电线杆符号 "†"指示 Com1 端口处于活动状态。有关警报字符、位置和描述的完整说明,请参见第 17 页上的"可视警报代码"。

其它通信选项

在选择协议后,验证其它通信参数。除调制解调器外的所有通信参数都可以在 "Setup"(设置)和

"Advanced"(高级)选项卡中找到。调制解调器参数具有自己的选项卡。 系统附带用于通信的默认设置,但这些设置可能需要微调。只有在用户想 要在指定时间启动通信端口和通信设备以节电时,才需要设置 "Schedule"(时间表)选项卡参数。

Entry			
⊡ ·· TOTALFLOW ⊡ ·· Communications □ ·· Local	Setup ,	Advanced Schedule Modem	1
… Com1 … I/O Subsystem … Holding Registers ⊕ Measurement … FS2 Interface		Description	Value
	0.4.3	Port Name	Com1
	2.0.6	Protocol	Totalflow Remote
	2.0.2	Baud Rate	4800
	2.0.7	Listen Cycle	4
⊞- Displau			
	<u>B</u> e-re	ead S <u>a</u> ve <u>S</u> end	<u>C</u> lose <u>H</u> elp

图 9(PCCU32 输入模式)

通信故障排除

很难排除不通信的新无线装置或调制解调器系统的问题,因为无法保证永 远都操作无误,并且所有初始硬件和软件设置都是怀疑对象。可能存在多 种问题,导致不得已采用更换组件这种不适当的故障排除方法。使用以下 核对清单作为辅助。

- 在 A8 显示屏中(默认位置)"+"是否按侦听周期时间闪烁(仅限 Totalflow 远程协议)? 如果不闪烁,
 - 1. 需要使用 PCCU32 在 "Entry Mode"(输入模式)中选择该协议。 2. 12 VDC 电池电压不足。
- 确保基本无线装置在其它位置工作。
- 确认工作站 ID 和设备 ID 与 WinCCU 匹配并且是具有该 ID 的唯一流量计算机。
- 确认波特率、停止位、安全代码和侦听周期时间与 WinCCU 相同。 •
- 确认 WinCCU 正使用数据包协议。 *μ*FLO 系列设备只支持 DB2 数据包协议。
- μ FLO 确认从 电路板上的 J3 到无线装置的缆线以及从无线装置到天线的缆线正确就位。
- 在使用通信端子板时, 验证与无线装置或其它通信设备的连线。还要 验证端子板上 J2 的设置。对于警报呼叫功能, RS232 设置为 **DCD**。(请参见第 11 页)

提示:

若要检查两个或多个线路连接是否出现连线短路或开路情 况,请连续使用万用表设置(电阻)。一次检查从一个设备到另 一个设备的两条线路。如果要测试黑色和白色线路,则在两端断 开这两条线路,在黑色线路放置一个探测器,在白色线路放置另 一个探测器。如果没有短路,则万用表应显示 OL 或 OFL (超过范围)。在另一端使两条连线跳线。如果没有开路, 则万用表应显示低电阻。此方法要求只测试连线的一端,而不管 两个设备之间的距离有多远。

- 如果使用无线装置,则验证具有正确频率范围的方向天线指向底部(± 6°)。该天线应竖直安装,叶片与地面保持垂直。验证无线装置工作正 常,并目采用相同的频率。
- 如果使用调制解调器,则通过检查端线和环线,在电话公司的接线盒 验证线路的拨号音。检查从电话公司的接线盒到拨号调制解调器的连 线。如果是蜂窝电话,还要检查提供的端线和环线电压是否正确。确 保电话号码在 μ FLO 和 WinCCU 中正确。
- 在美国,电话公司使用 48 注: 伏电源,因此端线和环线线路之间的典型挂机电压应小于 48 伏。还可以用另一种衡量方法,端线到地面约为零伏,环线到地 面约为 - 48 伏。

如果是摘机情况;则端线到地面约为 -20 伏,而环线到地面约为 -28 伏, 或者端线和环线之间约为 8 伏。

其它国家/地区中的用户将需要向其当地电话公司咨询,了解电压 规格。

连线

基于订购的选件,将随每一 *μ*FLO 提供具体的连线图。大多数连线图(包括通信)都在互联网上提供,网址 为

http://www.abb.com/totalflow。要查看是否提供连线图,请转到该网站, 选择 "Continuing Customer Service and Support"(继续客户服务和支持),然后选择"Wiring

Instructions"(连线指导)。在本指南的第 10 页和第 11 页显示了 μFLO 的通信输出针脚。

标准显示

设备的显示屏上出现的各项是用户可通过编程方式控制的,但要基于测量应用程序;设备附带一些默认的显示项。下表是用于 AGA-3 应用程序的一组典型的默认显示。如果设备支持"可选设备"功能,则工程设备可能会与所示内容不同。

说明	标准显示
当前日期和时间	DATE/TIME
24 小时时钟	MM/DD/YY HH:MM:SS
昨天的百分比 DP 低限制	Yest DP Low
低于 DP 低设置点的百分比时间	NN PERCENT
昨天的百分比 DP 高限制	Yest DP High
高于 DP 高设置点的百分比时间	NN PERCENT
当前流速	Flow Rate
可编程 SCF、MCF 或 MMCF	NNNNNN.N SCF/HR
总累积量	Total Accum.Volume
可编程 SCF、MCF 或 MMCF	NNNNNN.NN MCF
电池电压	Battery Voltage
以伏特显示	NN.N VOLTS
工作站 ID 接线盒的 ID。	Station ID
差动压力	Diff. Pressure
英寸 H20	NNN.N IN. H20
绝对静态压力	Static Pressure
PSIA	NNN.N PSIA
流动温度	Temperature
°F	NN.N DEG. F
昨天的量	Yesterday's Volume
可编程 SCF、MCF 或 MMCF	NNNN.N MCF
以前的计算期间量	Last Calc. Volume NNNN.N SCF
设备 ID 单独应用程序 ID	Device ID
充电器电压	Charger NN.N VOLTS

显示每个参数的持续时间可能会在 1 到 255 秒之间不等(默认值为 4 秒);设置为 0 秒将关闭该显示项。

可视警报和状态代码

在 μFLO 完成日志期限流量的记录和操作记录后,LCD 将显示已发生的所有警报情况。此外,在 μFLO 的内存中将存储警报情况的日期、小时时间和类型。在存在警报情况时还 显示状态代码。警报或状态代码可以是字符、字母或符号。表 1 中所示的警报和状态代码将出现在 LCD 屏幕的右侧;请参见下面的图示。表 1 中描述了每个代码的说明。

图 10 (信号器位置)

注: μ FLO

系列设备中的应用程序可被分配给任何信号器。要验证当前分配 ,请参见 PCCU32 的 "Entry Mode"(输入模式)中 "Display"(显示器)下的 "Annunciators"(信号器)。(请参见图 11)

⊡- AGA-3 ⊕- Communications 1/O Subsystem	S	etup 4	Annunciators	
 Holding Registers ⊕ Measurement 			Annunciator	Application
		23.6.0	A1	AGA-3
Trend Sustem		23.6.1	A2	Display
Display		23.6.2	A3	Unassigned
		23.6.3	Α4	Unassigned
		23.6.4	A5	Unassigned
		23.6.5	A6	Local
		23.6.6	A7	I/O Subsystem
		23.6.7	A8	Com1
		<u>R</u> e-re	ad	Save Send Close Help

图 11 (信号器分配)

表 1 警报和状态 - 代码和描述

警报/状态 代码	说明				
I/0 子系统					
L	低锂电池电量警报: 在显示 4.(低锂电池)时,锂电池电压低于 2.5 VDC。新锂电池的电压测量值约为 3.6 VDC。				
L C	低充电器: 如果电池充电电压小于 0.4 VDC 但大于电池电压,则显示。				
通信					
\rightarrow	传输数据:				
\leftarrow	接收数据:				
!	Nak.。负确认,带有数据包列表。				
+	Ack.。接收请求的正确认。				
т.	等待确认。在传输后等待响应。				
?	异常警报处理。				
Ť	ID 已识别。				
+	侦听周期。如果此远程端口处于活动状态并且正在运行 Totalflow 远程协议,则闪烁。与侦听周期(发生在 1、2 或 4 秒间隔)同步则闪烁。				
М	MODBUS ASCII:选择了 Modbus ASCII 协议来用于分配给此信号器的端口。				
m	MODBUS RTU:选择了 Modbus RTU 协议来用于分配给此信号器的端口。				

L	本地协议。在 PCCU32 端口处于活动状态并且正运行 TOTALFLOW 本地协议时显示。		
¥	数据包协议。选择了 Totalflow 数据包协议来用于分配给此信号器的端口。		
R	<i>LevelMaster 协议:</i> 选择了 LevelMaster 协议来用于分配给此信号器的端口。		
	测量应用程序		
B _F	逆流情况: 只有在显示 DP 变量时才出现。		
Z	零流量情况:只有在显示流速变量时才出现。		
Н	<i>保持:</i> 在 PCCU32 处于 "Calibration Mode"(校准模式)并且测量应用程序处于 "Hold"(保持)模式时显示。		
A	警报情况。需要查看警报。您可能需要将应用程序限制与 当前值进行比较,以确定在哪里存在警报情况。		
A D	模拟数字转换器失败。如果模拟数字转换器的差动压力、绝对 静态压力或温度读数超过了最大计数或小于最小计数,则显示 。		
显示应用程序			
1	编号表示当前要显示的显示器组编号。		
Î	显示的项的值高于在 "Display Item Setup"(显示项设置)屏幕上指定的 "Data High Limit"(数据上限)值。		
Ļ	显示的项的值低于在 "Display Item Setup"(显示项设置)屏幕上指定的 "Data Low Limit"(数据下限)值。		

提示: 如果显示屏不按预期滚动

在启动时,设备应快速经历启动过程并开始循环显示预编程的显示项。如果显示屏在启动后不滚动和/或外观如下:(部件号仅用于举例)

6200 μFLO Boot Prom 2100917-001 (COPYRIGHT)

断开与主电源的连接,然后重新连接它。您应该看到如下内容:

Verifying Flash	或	COLD BOOT
XXXXX		Flash 2100917-001
Checksum = XXXX		6213 μ FLO Flash
Verity Passed		2100917-001 (COPYRIGHT)

如果显示屏仍不滚动,则尝试断开与电源的连接,然后再次重新连接它。 如果仍不成功,则执行以下操作:

对于 PCCU32,连接到设备并建立通信(例如 "Connect To Totalflow"(连接到 Totalflow)、"Entry Mode"(输入模式)等)。进入 "Terminal Mode"(端子模式)并键入

"0.0.0=COLD"(不要输入引号)。该设备应进行冷启动过程,然后开始滚动。如果这还不成功,则拨打本指南后面的电话号码,向客户服务代表咨询。

ABB Inc. Totalflow Products 7051 Industrial Blvd. Bartlesville, Oklahoma 74006USA

电话: 美国 (800)442-3097 国际 001-918-338-4880

