Transformer Terminal

Buyer's Guide

RET 541, RET 543, RET 545

RET 541, RET 543, RET 545 1MRS755543

Issued: February 2005 Status: New Version: A/28.02.2005 Data subject to change without notice

Features

- Transformer terminal for protection, control, measurement and supervision of two-winding power transformers and generatortransformer blocks in distribution networks
- Designed to withstand harsh environments e.g. in heavy industry, marine and offshore applications
- Three-phase current differential protection with stabilized and instantaneous stages for fast and selective winding short-circuit and interturn fault protection as main protection
- Fast and reliable operation even with saturating CTs
- Numerical implementation of vector group matching allows wye-connection of measuring CTs as standard without interposing CTs, irrespective of transformer vector group
- Restricted earth-fault protection with the conventional high impedance principle or the stabilized numerical principle
- Three-phase overcurrent and earth-fault back-up protection with definite time and IDMT characteristics for both windings
- Thermal overload and negative phase sequence protection
- Additional protection functions available in the Multi –version terminal: overexcitation, overvoltage, undervoltage, residual overvoltage, directional overcurrent and earthfault, overfrequency, underfrequency and underimpedance line back-up protection
- Large graphic display, either integrated or as an external module
- Control functions including local and remote control of switching objects, including object status indication and interlockings on bay and substation level

- Optional automatic on-load tap-changer control function for single or parallel transformers using the Master-Follower, Negative Reactance or Minimizing Circulating Current principles
- Supports several methods to interface tapchanger position information to differential protection and voltage regulator
- Measurement of two sets of three-phase currents, phase-to-phase or phase to neutral voltages, neutral current, residual voltage, frequency, power factor, active and reactive power and energy
- Condition monitoring including circuitbreaker condition monitoring, trip circuit supervision and internal self-supervision of the transformer terminal
- Extensive set of integrated communication protocols: SPA, LON, IEC 60870-5-103, Modbus RTU/ASCII, DNP 3.0
- Interface to Profibus DP and IEC 61850
 based systems via adapters
- Part of ABB's substation automation system

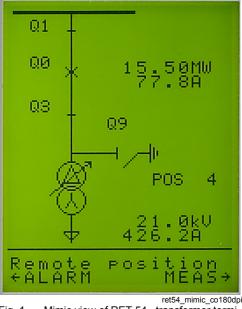


Fig. 1 Mimic view of RET 54_transformer terminal.

Application

4

The RET 541/543/545 transformer terminals are designed to be used for the protection, control, measurement and supervision of twowinding power transformers and generatortransformer blocks in distribution networks. RET 54_ terminals can also be used in harsh environments e.g. in heavy industry, marine and offshore applications.

The main protection function is three-phase current differential protection with stabilized and instantaneous stages for fast and selective winding short-circuit and interturn protection. Besides 2nd and 5th harmonic restraints, the stabilized stage also includes a waveform recognition-based blocking-deblocking feature. Reliable operation even with partially saturated current transformers, that is, short operate times at faults occurring in the zone to be protected and high stability at external faults are achieved. Increased sensitivity can be obtained by automatic adaptation to the position changes of the on load tap changer. Interposing current transformers are not needed: Any vector group matching and CT ratio corrections in a wide range are numerically implemented as well as zero-sequence current elimination, which prevents unwanted trips at earth faults occurring outside the protected area

In addition to the differential protection, the *Basic* version terminals incorporate the following protections: Restricted earth fault protection with stabilized numerical or high impedance principle, unbalance and thermal overload protections, three phase overcurrent and non-directional earth fault back-up protection with definite and IDMT characteristics on both sides of the transformer.

The *Multi*-version terminals, further including overvoltage and undervoltage, residual overvoltage, underfrequency and overfrequency, overexcitation, directional earthfault, directional overcurrent and underimpedance line back-up protections fulfill the most demanding application requirements.

Enhanced with the optional automatic voltage regulation function, the RET 54_terminal can be applied as a comprehensive integrated transformer management terminal. The voltage regulator can be applied for a single transformer or for parallel transformers with Master-Follower, Negative Reactance or Minimizing Circulating Current principles.

A special control version terminal with voltage regulator and control functions can be applied, when integration of voltage regulation and protection is not allowed. The graphical configuration tool, based on the IEC 61131-3 standard, enables easy creation of application-specific configurations and MIMIC pictures corresponding to different switchgear systems. The process status is shown on a dynamic large graphical display. Detailed information, for instance, measured values, events and application-specific alarms, are presented in the display views.

The RET 54_ terminals can measure two sets of three phase currents, phase-to-phase or phase-to-earth voltages, neutral current, residual voltage, frequency and power factor. Active and reactive power is calculated from the measured currents and voltages. Energy can be calculated on the basis of the measured power. The measured values can be indicated locally and remotely as scaled primary values.

With the condition monitoring functions the RET 54_transformer terminal monitors e.g. trip circuits, gas pressure of the breaker and breaker wear and provides scheduled time intervals for maintenance.

The RTD1 card, available as an option to the RET 541 and RET 543 terminals, provides versatile analog inputs enabling e.g. tap position supervision of the on load tap changer, RTD inputs for top and bottom oil temperature monitoring, and ambient temperature biasing for accurate thermal overload protection. The mA outputs allow transfer of any measurement data e.g. to PLCs.

By means of the graphic HMI display, the control functions in the transformer terminal indicate the position of disconnectors, circuit breakers and tap changer locally. Local control of these objects is possible via the push buttons on the front panel of the terminal. Furthermore, the terminal allows position information of the objects to be transmitted to the remote control system. Controllable objects, such as CBs, can also be opened and closed over the remote control system.

Supporting a wide range of communication protocols, including SPA, LON, IEC 60870-5-103, DNP 3.0 and Modbus RTU/ASCII, commonly used by utilities and industries, the terminals are flexibly integrated into different control systems. Connection to Profibus DP or IEC 61850 based system is possible via the interface adapters SPA-ZC 302 or SPA-ZC 400, respectively.

Design

The transformer terminals RET 541, RET 543 and RET 545 differ from each other regarding the number of digital inputs and outputs available. Please, refer to section "Ordering" for more details.

The functions of the RET 54_transformer terminal are categorized as:

- protection functions
- measurement functions
- control functions
- · condition monitoring functions
- communication functions
- · general functions
- standard functions

The functions are further divided to three subsets that correspond to different functionality levels, refer to section "Ordering Information"

Protection functions

Protection is one of the most important functions of the RET 54_transformer terminal. The protection function blocks (e.g. NOC3Low) are independent of each other and have e.g. their own setting groups and data recording.

The protection function blocks are documented on the CD-ROM "Technical Descriptions of Functions" (1MRS750889-MCD)

Measurement functions

The measurement function blocks are documented on the CD-ROM "Technical Descriptions of Functions" (1MRS750889-MCD)

Control functions

The control functions are used to indicate the position of switching devices, i.e. circuit breakers and disconnectors, and to execute open and close commands for controllable switching devices in the switchgear. Furthermore, there are supplementary functions for control logic purposes, e.g. on/off switches, MIMIC alarm, LED control, numerical data for the MIMIC and logic controlled position selection.

The control functions configured using the Relay Configuration Tool can be associated with position indicators that are part of the MIMIC configuration picture displayed on the HMI. Position indicators are used to indicate the position of switching devices via the MIMIC picture and to control them locally. The control function blocks are documented on the CD-ROM "Technical Descriptions of Functions" (1MRS750889-MCD)

Condition monitoring functions

The condition monitoring function blocks are documented on the CD-ROM "Technical Descriptions of Functions" (1MRS750889-MCD)

General functions

Additional functions are available for different general purposes to be used in logics such as activation of HMI backlight, switchgroups, and resetting of operation indications, latched output signals, registers and disturbance recorder.

Communication functions

The RET 54_ transformer terminal provides the IEC_103, Modbus, DNP 3.0, SPA and LON serial communication protocols.

In a customer-specific transformer terminal configuration, special events can be generated via an EVENT230 event function. EVENT230 is documented on the CD-ROM "Technical descriptions of Functions" (1MRS750889-MCD).

Standard functions

Standard functions are used for logics, such as interlocking, alarming and control sequencing. The use of logic functions is not limited and the functions can be interconnected with each other as well as with protection, measurement, power quality, control, condition monitoring and general functions. In addition, the digital inputs and outputs as well as LON inputs and outputs can be connected to standard functions by using the Relay Configuration Tool.

The standard function blocks are documented on the CD-ROM "Technical descriptions of Functions" (1MRS750889-MCD).

Other functions

Low auxiliary voltage indication

The RET 54_ transformer terminal is provided with a low auxiliary voltage indication feature. The power supply module issues an internal alarm signal when a drop in the power supply voltage is detected (ACFail, active low). The alarm signal is activated if the power supply voltage falls about 10% below the lowest rated DC input voltage of the power supply module.

Design (cont'd)

The indication of a low auxiliary voltage is available in the transformer terminal configuration and can be connected to any signal output of the RET 54 .

Overtemperature indication

The RET 54_transformer terminal includes an internal temperature supervision function. The power supply module issues an internal alarm signal when overtemperature has been detected inside the terminal enclosure. The alarm signal will be activated once the temperature inside the terminal enclosure increases to $+78^{\circ}$ C ($+75^{\circ}...+83^{\circ}$ C). Overtemperature indication is available in the transformer terminal configuration and can be connected to any signal output of the RET 54.

Analog channels

The transformer terminal measures the analog signals needed for protection, measuring, etc. via galvanically separated matching transformers.

RET 54_ transformer terminals have 9 analog channels. Furthermore, the transformer terminal includes virtual analog channels for calculating the residual current and residual voltage from phase currents and voltages. Both the amplitude and the phase angle are calculated for the virtual channels.

Note! When sensitive earth-fault protection is needed, core balance transformers are not recommended to be replaced with the numerically derived sum of phase currents. Normally, an earth-fault setting below 10% of the rated value requires the use of a core balance transformer.

Analog channels of the transformer terminal are configured with the CAP 505 Relay Product Engineering Tools.

A separate scaling factor can be set for each analog channel. The factors enable differences between the ratings of the protected unit and those of the measuring device (CT and VT ratio corrections). The setting value 1.00 means that the rated value of the protected unit is exactly the same as that of the measuring device.

Digital inputs

The digital inputs of the transformer terminals are voltage controlled and optically isolated with three treshold voltages defined by the order, see chapter "Ordering". The function of a digital input can be inverted. The programmable filter time removes debounces and short disturbances on a digital input. The filter time can be set for each digital input separately.

Some specific digital inputs can be programmed to operate either as digital inputs, as pulse counters or as used for time synchronization. When a digital input operates as a pulse counter, pulse counting frequency can be up to100 Hz.

Oscillation suppression

The transformer terminals have two global parameters for the suppression of digital input oscillation. The settings of these parameters determine the oscillation level and hysteresis for all digital inputs. Event is generated in case oscillation is detected.

Attributes of a digital input for transformer terminal configuration

For each digital input, the status of the input (value), the time tag for the status change (time) and the validity of the digital input (invalidity) can be issued by the attributes. These attributes are available in the transformer terminal configuration and can be used for various purposes.

RTD/analog inputs

The RET 541 and RET 543 transformer terminals equipped with an RTD/analog module (RTD1) have eight general purpose analog inputs for DC measurement. The RTD/analog inputs are galvanically isolated from the transformer terminal power supply and enclosure. However, the inputs have a common ground. The general purpose RTD/analog inputs accept voltage-, current- or resistancetype signals. For each measuring mode, a separate parameter is provided for choosing between the available measurement ranges. RTD/analog inputs can be applied for e.g. temperature measurement.

Digital outputs

The outputs of the transformer terminal are categorized as follows:

- HSPO: High-speed power output, doublepole contact, preferred for tripping purposes and for circuit breaker and disconnector control
- PO: Power output, either single-pole or double-pole contact, preferred for circuit breaker and disconnector control

	• SO: Signal output, either NO (Normally Open) or NO/NC (Normally Open/Normally Closed) contact. The output contact is a normal-duty contact and cannot be used for controlling a heavy load such as a circuit breaker.	operation modes are supported: non-latched, latched-steady and latched flashflashing. Alarms can be acknowledged remotely, locally or by using logic of the transformer terminal.
	Analog outputs The RET 541 and RET 543 transformer ter-	The alarm channels include time tagging for detected alarms. The time tagging principle used depends on the operation mode.
	minals equipped with an RTD/analog module have four general purpose 020 mA analog current outputs. All outputs are galvanically isolated from the supply and enclosure of the transformer terminal and from each other.	Interlocking LED indicator The interlocking LED indicates that control operation has been interlocked or that the interlocking is in bybass mode, e.g. when control is possible despite of interlocking.
	Analog outputs can be utilized for transfer- ring any measured or calculated information to panel meters or e.g. PLCs. Alarm LED indicators The transformer terminal offers eight alarm LED indicators to be configured with the Relay Mimic Editor. The LED colours (green,	Trip Circuit Supervision The purpose of this function is to supervise the tripping circuitry of the circuit breaker. An alarm will be generated in case a faulty tripping circuit, e.g. a circuit is not able to perform a trip, is detected.
	yellow, red), their use, and the ON and OFF state texts can be freely defined. Three basic	The supervision is based on the constant-cur- rent injection through the tripping circuitry.
Display panel	The transformer terminal is provided with either a fixed display or an external display module. The external display module requires a separate voltage supply from a common source with the main unit. The display con- sists of 19 rows divided into two windows: a main window (17 rows) and an assisting win- dow (2 rows). The graphic display presents detailed infor- mation on MIMIC, objects, events, measure- ments, control alarms, and parameters. The assisting window is used for terminal-depen- dent indications/alarms and help messages. Additionally, the panel includes the following HMI items: • three push-buttons for object control (I, O, object selection)	 eight freely programmable alarm LEDs with different colours and modes according to the configuration LED indicator for control interlocking three protection LED indicators HMI push-button section with four arrow buttons and buttons for clear and enter optically isolated serial communication port backlight and contrast control freely programmable button (F) which can be used in the configuration of the transformer terminal a button for remote/local control HMI has two main levels, the user level and the technical level. The user level is for "everyday" measurements and monitoring whereas the technical level is intended for advanced transformer terminal programming. Unauthorized access can be prevented with passwords.
Serial commu- nication	The transformer terminal has three serial communication ports, one on the front panel and two on the rear panel. The standard optical ABB connector The standard optical ABB connector (RS-232 connection) on the front panel is intended for the connection of a PC for configuring the transformer terminal with the CAP 50_tools. The front interface uses the SPA bus protocol.	SPA/IEC_103/DNP 3.0/Modbus communi- cation on the rear connector X3.2 The 9-pin D-type subminiature male connec- tor (RS-232 connection) on the rear panel connects the transformer terminal to the dis- tribution automation system via the SPA bus, IEC_103, DNP 3.0 or Modbus. The fibre- optic interface module type RER 123 is used to connect the transformer terminal to the fibre-optic communication bus for SPA and

IEC_103 protocols. RS-485 interface module RER 133 is used to connect the transformer terminal to the RS-485 communication bus for DNP 3.0 and Modbus.

LON/SPA bus communication on the rear connector X3.3

The 9-pin D-type subminiature female connector (RS-485 connection) on the rear panel connects the transformer terminal to the substation automation system via the SPA bus or the LON bus. The fibre-optic interface module type RER 103 is used to connect the transformer terminal to the fibre-optic communication bus. The RER 103 module supports both SPA bus and LON bus communication. The SPA-ZC 302 is an interface module that provides connectivity to the Profibus DP fieldbus and SPA-ZC 400 interface module provides connectivity to the IEC 61850-8-1 Station bus.

Self-supervision

The transformer terminal RET 54_ is provided with an extensive self-supervision system. The self-supervision system handles run-time fault situations and informs the user of faults via the HMI and LON/SPA bus communication.

When a fault has been detected, the green Ready indicator starts flashing, a fault indication text is displayed on the HMI and an event 0/E57 is generated. The fault indication text on the HMI consists of two rows: a general message 'internal fault', followed by the generated IRF code of the fault.

The relay will try to recover from a fault either by restarting the module (I/O module or HMI) that reported the fault, or by restarting the whole relay. During restarting the IRF state will remain active until the internal selfsupervision program has determined that the relay is operating normally. If the fault is still persistent after restarting three times, the relay will be in permanent IRF state.

Transformer terminal configuration

The Relay Configuration Tool, based on the IEC 61131-3 standard and included in the CAP 505 Relay Product Engineering Tools, is used for configuring the basic terminal, protection and logic function blocks, control and measurement functions, timers and other functional elements included in the logic functions category.

The programmable system of RET 54_transformer terminals allows the output contacts to be operated in accordance with the state of the logic inputs and the outputs of the protection, control, measurement and condition monitoring functions. The PLC functions (e.g. interlocking and alarm logic) are programmed with Boolean functions, timers, counters, comparators and flip-flops. The program is written in a graphic function block diagram language by using the configuration software.

Mimic configuration with Relay Mimic Editor

The Relay Mimic Editor, which is included in the CAP 505 Relay Product Engineering Tools, is used for configuring the graphic display and the alarm channels of the transformer terminal. The mimic configuration may include circuit breakers, disconnectors, indicators, measurement data objects and user-defined texts and explanations. Any configuration can be saved for later use. All of the eight alarm function blocks can be configured in the same alarm view of the mimic editor. ON and OFF state texts (only one language version at a time can be supported for the alarm) and LED colours can be defined. Three different colours can be used to define the ON and OFF state. Three basic modes are available:

- non-latched
- latched-steady
- latched flashing

Interlocking LED texts can also be defined in the same alarm view but the colour of the interlocking LED cannot be changed.

LON network configuration

The LON Network Tool is used for binding network variables between the transformer terminal units. Typically, LON horizontal communication is used for transferring object status data (open, close, undefined) between units for interlocking purposes. Additionally, LON horizontal communication is used to transfer measured current amplitude and phase angle information between terminals, when parallel control with MCC principle is to be applied.

DNP 3.0 and Modbus configuration

The Protocol Mapping Tool is used for configuring the DNP 3.0 and Modbus interfaces of the transformer terminal.

9

Transformer ter- minal parameter- ization	The parameters of the transformer terminal units can be set either locally over the HMI or externally via the serial communication using the Relay Engineering Tools CAP 501/505. Local parameterization When the parameters are set locally, the set- ting parameters can be chosen from the hier- archical menu structure. The desired language for parameter description can be selected.	External parameterization The Relay Setting Tool is used for parameter- izing and setting the transformer terminals externally. The parameters can be set off-line on a PC and downloaded to the transformer terminal over a communication port. The menu structure of the setting tool, including views for parameterization and settings, is the same as the menu structure of the transformer terminal.
Auxiliary voltage	For its operation, the RET 54_terminal, in- cluding the external display module, requires a secured auxiliary voltage supply. The termi- nal's internal power supply module forms the voltages required by the terminal electronics. The power supply module is a galvanically isolated (fly-back type) dc/dc converter. A green protection LED indicator on the front panel is lit when the power supply module is in operation.	Power supply modules There are two basic types of power supply modules available for the RET 54_: type PS1/_ and type PS2/ The operating range of digital inputs depends on the type of the power supply module. See Technical data.
Terminal connections	All external circuits are connected to the ter- minal blocks on the rear panel, see figures 24. The terminal block for the measuring transformers consists of fixed screw termi- nals. The serial interface RS-232 on the rear panel is used for connecting the transformer termi- nal to the SPA bus, the IEC_103, DNP 3.0 or Modbus. The SPA/IEC_103 is connected via a connection module type RER 123 fitted to the 9-pin D-type subminiature connector and screwed to the rear panel. DNP 3.0/Modbus is connected via a connection module, type RER 133.	The serial interface RS-485 on the rear panel is used for connecting the transformer termi- nal to the SPA bus or the LON bus. The SPA/LON bus is connected via a connection module type RER 103 fitted to the 9-pin D- type subminiature connector and screwed to the rear panel. The digital input and output contacts of the transformer terminal are connected to the multi-pole connectors. Protective earth is connected to the screw marked with the earth symbol.

1MRS755543

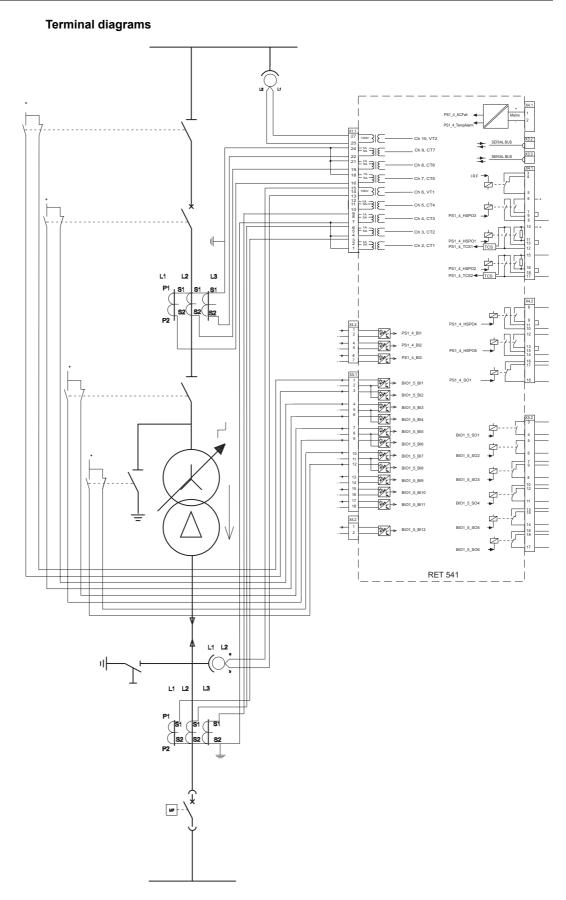


Fig. 2 Sample connection diagram of RET 541

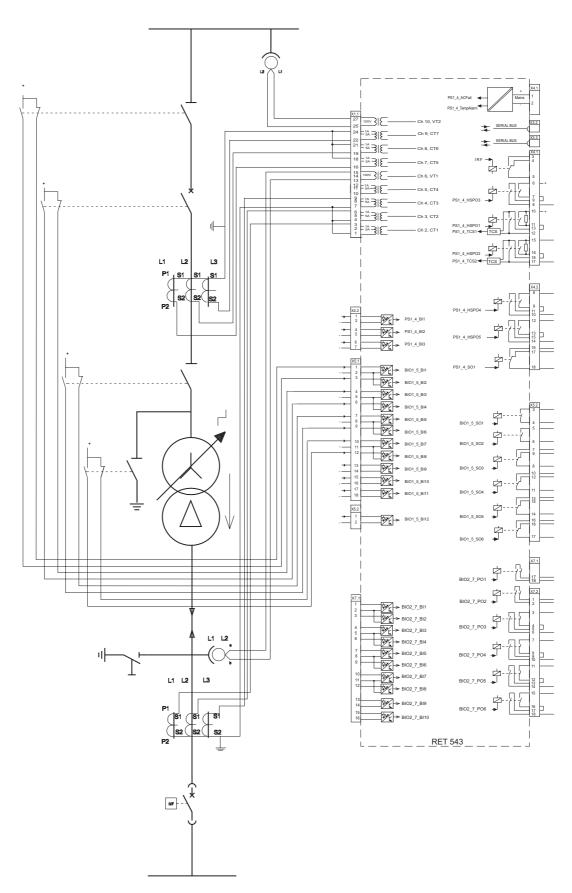


Fig. 3 Sample connection diagram of RET 543

1MRS755543

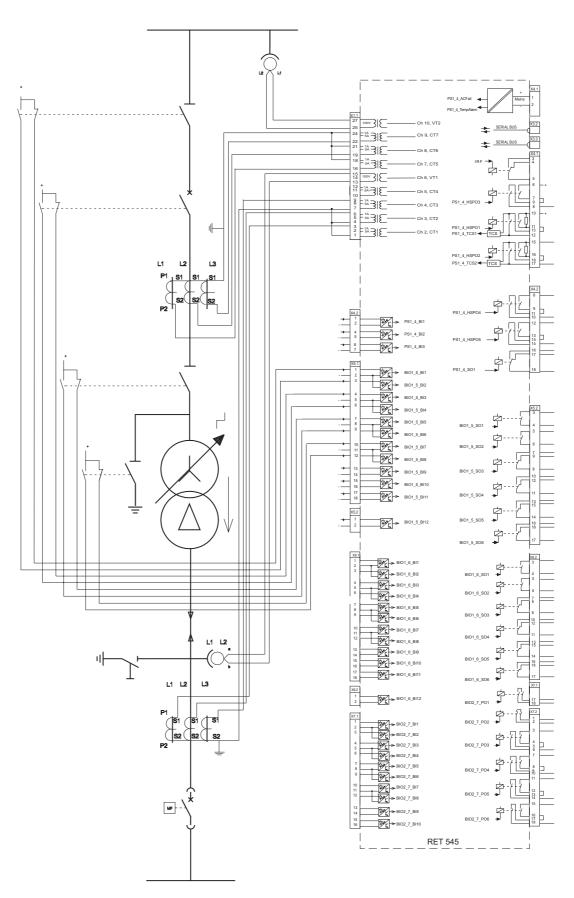


Fig. 4 Sample connection diagram of RET 545

Technical data

Table 1: General functions available for the RET 54_

Function	Description
INDRESET	Resetting of operation indicators, latched output signals, registers and waveforms i.e. the disturbance recorder
MMIWAKE	Activation of HMI backlight
SWGRP1	Switchgroup SWGRP1
SWGRP2	Switchgroup SWGRP2
SWGRP3	Switchgroup SWGRP3
SWGRP20	Switchgroup SWGRP20

Table 2: Standard functions available for the RET 54_

Function	Description
ABS	Absolute value
ACOS	Principal arc cosine
ADD	Extensible adder
AND	Extensible AND connection
ASIN	Principal arc sine
ATAN	Principal arc tangent
BCD2INT	Type conversion from BCD coded input to SINT (Tap changer)
BITGET	Get one bit
BITSET	Set one bit
BOOL_TO_*	Type conversion from BOOL to WORD / USINT / UINT / UDINT / SINT / REAL / INT / DWORD / DINT / BYTE
BOOL2INT	Type conversion from BOOL inputs to INT output
BYTE_TO_*	Type conversion from BYTE to WORD / DWORD
COMH	Hysteresis comparator
COS	Cosine in radians
CTD	Down-counter
CTUD	Up-down counter
CTU	Up-counter
DATE_TO_UDINT	Type conversion from DATE to UDINT
DINT_TO_*	Type conversion from DINT to SINT / REAL / INT
DIV	Divider
DWORD_TO_*	Type conversion from DWORD to WORD / BYTE
EQ	Extensible comparison to equal
EXP	Natural exponential
EXPT	Exponentiation
F_TRIG	Falling edge detector
GE	Extensible comparison to greater or equal
GRAY2INT	Type conversion from GRAY coded input to SINT (Tap changer)
GT	Extensible comparison to greater
INT_TO_*	Type conversion from INT to REAL / DINT
INT2BOOL	Type conversion from INT input to BOOL outputs
LE	Extensible comparison to less or equal
LIMIT	Limitation
LN	Natural logarithm
LOG	Logarithm base 10
LT	Extensible comparison to less
MAX	Extensible maximum
MIN	Extensible minimum
MOD	Modulo
MOVE	Move

Function	Description
MUL	Extensible multiplier
MUX	Extensible multiplexer
NAT2INT	Type conversion from natural binary coded input to SINT (Tap changer)
NE	Comparison to greater or less
NOT	Complement
OR	Extensible OR connection
R_TRIG	Rising edge detector
REAL_TO_*	Type conversion from REAL to USINT / UINT / UDINT / SINT / INT / DINT
ROL	Rotate to left
ROR	Rotate to right
RS	Reset dominant bistable function block
RS_D	Reset dominant bistable function block with data input
SEL	Binary selection
SHL	Bit-shift to left
SHR	Bit-shift to right
SIN	Sine in radians
SINT_TO_*	Type conversion from SINT to REAL / INT / DINT
SUB	Subtractor
SQRT	Square root
SR	Set dominant bistable function block
XOR	Extensible exclusive OR connection
TAN	Tangent in radians
TIME_TO_*	Type conversion from TIME to UDINT / TOD / REAL
TOD_TO_*	Type conversion from TOD to UDINT / TIME / REAL
TOF	Off-delay timer
TON	On-delay timer
TP	Pulse
TRUNC_REAL_TO*	Truncation toward zero from REAL to DINT / INT / SINT / UDINT / UINT / USINT
UDINT_TO_*	Type conversion from UDINT to USINT / UINT / REAL
UINT_TO_*	Type conversion from UINT to USINT / UDINT / REAL / BOOL
USINT_TO_*	Type conversion from USINT to UINT / UDINT / REAL
WORD_TO_*	Type conversion from WORD to DWORD / BYTE

Table 2: Standard functions available for the RET 54_

Table 3: Conditioning monitoring functions available for the RET 54_

Function	Description
CMBWEAR1	Circuit-breaker electric wear 1
CMBWEAR2	Circuit-breaker electric wear 2
CMCU3	Supervision function of the energizing current input circuit
CMGAS1	Gas pressure monitoring
CMGAS3	Three-pole gas pressure monitoring
CMSCHED	Scheduled maintenance
CMSPRC1	Spring charging control 1
CMTCS1	Trip circuit supervision 1
CMTCS2	Trip circuit supervision 2
CMTIME1	Operate time counter 1 for the operate time used (e.g. motors)
CMTIME2	Operate time counter 2 for the operate time used (e.g. motors)
CMTRAV1	Breaker travel time 1
CMVO3	Supervision function of the energizing voltage input circuit

FunctionDescriptionCO3DC1Three-state disconnector 1 with indicationCO3DC2Three-state disconnector 2 with indicationCOCB1Circuit breaker 1 control with indicationCOCB2Circuit breaker 2 control with indicationCOCBDIRDirect open for CBs via HMICODC1Disconnector 1 control with indicationCODC2Disconnector 2 control with indicationCODC3Disconnector 3 control with indicationCODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 3 indicationCOIND3Switching device 3 indicationCOIND4Switching device 4 indicationCOIND5Switching device 5 indicationCOIND6Switching device 6 indication	
CO3DC2Three-state disconnector 2 with indicationCOCB1Circuit breaker 1 control with indicationCOCB2Circuit breaker 2 control with indicationCOCB2Circuit breaker 2 control with indicationCOCB0IRDirect open for CBs via HMICODC1Disconnector 1 control with indicationCODC2Disconnector 2 control with indicationCODC3Disconnector 3 control with indicationCODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 3 indicationCOIND3Switching device 4 indicationCOIND4Switching device 5 indication	
COCB1Circuit breaker 1 control with indicationCOCB2Circuit breaker 2 control with indicationCOCBDIRDirect open for CBs via HMICODC1Disconnector 1 control with indicationCODC2Disconnector 2 control with indicationCODC3Disconnector 3 control with indicationCODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 3 indicationCOIND3Switching device 4 indicationCOIND4Switching device 5 indication	
COCB2Circuit breaker 2 control with indicationCOCBDIRDirect open for CBs via HMICODC1Disconnector 1 control with indicationCODC2Disconnector 2 control with indicationCODC3Disconnector 3 control with indicationCODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 2 indicationCOIND3Switching device 3 indicationCOIND4Switching device 4 indication	
COCBDIRDirect open for CBs via HMICODC1Disconnector 1 control with indicationCODC2Disconnector 2 control with indicationCODC3Disconnector 3 control with indicationCODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 3 indicationCOIND3Switching device 4 indicationCOIND4Switching device 5 indication	
CODC1Disconnector 1 control with indicationCODC2Disconnector 2 control with indicationCODC3Disconnector 3 control with indicationCODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 2 indicationCOIND3Switching device 3 indicationCOIND4Switching device 4 indicationCOIND5Switching device 5 indication	
CODC2 Disconnector 2 control with indication CODC3 Disconnector 3 control with indication CODC4 Disconnector 4 control with indication CODC5 Disconnector 5 control with indication COIND1 Switching device 1 indication COIND2 Switching device 2 indication COIND3 Switching device 3 indication COIND4 Switching device 4 indication COIND5 Switching device 5 indication	
CODC3 Disconnector 3 control with indication CODC4 Disconnector 4 control with indication CODC5 Disconnector 5 control with indication COIND1 Switching device 1 indication COIND2 Switching device 2 indication COIND3 Switching device 3 indication COIND4 Switching device 4 indication COIND5 Switching device 5 indication	
CODC4Disconnector 4 control with indicationCODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 2 indicationCOIND3Switching device 3 indicationCOIND4Switching device 4 indicationCOIND5Switching device 5 indication	
CODC5Disconnector 5 control with indicationCOIND1Switching device 1 indicationCOIND2Switching device 2 indicationCOIND3Switching device 3 indicationCOIND4Switching device 4 indicationCOIND5Switching device 5 indication	
COIND1 Switching device 1 indication COIND2 Switching device 2 indication COIND3 Switching device 3 indication COIND4 Switching device 4 indication COIND5 Switching device 5 indication	
COIND2 Switching device 2 indication COIND3 Switching device 3 indication COIND4 Switching device 4 indication COIND5 Switching device 5 indication	
COIND3 Switching device 3 indication COIND4 Switching device 4 indication COIND5 Switching device 5 indication	
COIND4 Switching device 4 indication COIND5 Switching device 5 indication	
COIND5 Switching device 5 indication	
COIND6 Switching device 6 indication	
COIND7 Switching device 7 indication	
COIND8 Switching device 8 indication	
COLOCAT Logic-controlled control position selector	
COLTC On-load tap changer controller (voltage regulator)	
COSW1 On/off switch 1	
COSW2 On/off switch 2	
COSW3 On/off switch 3	
COSW4 On/off switch 4	
MMIALAR1 Alarm channel 1, LED indicator	
MMIALAR2 Alarm channel 2, LED indicator	
MMIALAR3 Alarm channel 3, LED indicator	
MMIALAR4 Alarm channel 4, LED indicator	
MMIALAR5 Alarm channel 5, LED indicator	
MMIALAR6 Alarm channel 6, LED indicator	
MMIALAR7 Alarm channel 7, LED indicator	
MMIALAR8 Alarm channel 8, LED indicator	
MMIDATA1 MIMIC data monitoring point 1	
MMIDATA2 MIMIC data monitoring point 2	
MMIDATA3 MIMIC data monitoring point 3	
MMIDATA4 MIMIC data monitoring point 4	
MMIDATA5 MIMIC data monitoring point 5	

Table 4: Control functions available for the RET 54_

On load tap changer control function (volta	ge regulator). COLTC
Reference voltage	0.000 2.000 xUn
Delay time for the 1st control pulse	1.0 300.0 s
Delay time for the 2nd control pulse	1.0 300.0 s
Resistive line-drop compens. factor (Ur)	0.0 25.0 %Un
Reactive line-drop compens. factor (Ux)	0.0 25.0 %Un
Load phase angle (in NRP mode)	-89 +89 deg
Stability factor in parallel operation	0.0 70.0 %Un
Operation mode	Not in use Manual Automatic single Automatic follower Negative Reactance Principle Minimizing Circulating Current Controlled via op.mode inputs
Delay mode	Definite time Inverse time
Raise and lower pulse duration	0.5 10.0 s
Bandwith	0.60 9.00 %Un
Overcurrent blocking limit	0.10 5.00 xln
Undervoltage blocking limit	0.10 1.20 xUn
Overvoltage blocking limit	0.80 1.60 xUn
High circ. current blocking limit	0.10 5.00 xln
Max limit for LDC term	0.00 2.00 xUn
Reduce Set Voltage step	0.00 9.00 %Un
Max volt tap	-36 36
Min volt tap	-36 36
Max parallel trafos in MCC mode	4
Operation accuracies - voltage measurement:	Depends on the frequency of the voltage measured: f/fn = 0.95 1.05: <u>+</u> 1.0% of the set value or <u>+</u> 0.01xUn
 operation time DT mode: operation time IDMT mode: 	+1% of the set value or +250 ms 250ms and an inaccuracy which occurs when voltage varies +0.5%
 lower and raise output pulse duration: 	<u>+</u> 100 ms
Reset ratio (hysteresis)	20% of the set Bandwith

Table 5: On-load tap changer controller function block

Table 6: Measurement function blocks

General measurement/ analog input	on RTD/analog module, MEAI18
signals with a sensor input. They also in	ks can be used to measure general purpose dc or ac voltage clude a REAL type input which can be used to monitor any internal .g. input data from the RTD/analog module.
GE13 (V dc/ac)	-10000.0000010000.00000
General REAL type input	-10000.0000010000.00000

Analog output on RTD/analog module, MEAO1...4

The analog output function blocks handle the scaling of any internal REAL type IEC 61131-3 based signalto fit a selectable 0...20 mA or 4...20 mA range for use with the outputs on the RTD/analog module.General REAL type input-10000.00000...10000.00000

Neutral current measurement, MECU1A and MECU1B	
lo (A)	0.020000.0 A
lo (%)	0.080.0% In

IL1	0.020000.0 A	
IL2	0.020000.0 A	
IL3	0.020000.0 A	
IL1	0.01000.0% In	
IL2	0.01000.0% In	
IL3	0.01000.0% In	
IL1 demand	0.020000.0 A	
IL2 demand	0.020000.0 A	
IL3 demand	0.020000.0 A	
IL1 demand	0.01000.0% In	
IL2 demand	0.01000.0% In	
IL3 demand	0.01000.0% In	

Transient disturbance recorder for 16 analog channels, MEDREC16

The transient disturbance recorder MEDREC16 is used for recording the current and voltage waveforms, as well as the status data of internal IEC 61131-3 based logic signals and digital inputs connected to the transformer terminals. Maximum 16 analog inputs and 16 logic signal inputs are available. One fundamental cycle contains 40 samples.

Overwrite
Extension
0100%
0.0040.00 x In
0.0040.00 x In
0.0040.00 x In
0.002.00 x Un
0.0040.00 x In
0.002.00 x Un
0.002.00 x Un
0.00060.000 s

The recording can be triggered by any (or several) of the alternatives listed below:

triggering on the rising or falling edge of any (or several) of the digital inputs

triggering on overcurrent, overvoltage or undervoltage
manual triggering via the menu or with the push-button F on the front panel (if configured)
triggering via serial communication
periodic triggering
The recording length depends on the number of recordings and inputs used. For example, the following combination of recording length, number of recordings and number of inputs is available at 50 Hz (60 Hz):

# recordings \ # inputs	1	3	10
1	1163 cyc.	412 cyc.	126 cyc.
	23.3 s (19.4 s)	8.2 s (6.9 s)	2.5 s (2.1 s)
5	232 cyc.	82 cyc.	25 cyc.
	4.6 s (3.9 s)	1.6 s (1.4 s)	0.5 s (0.4 s)
10	115 cyc.	41 cyc.	12 cyc.
	2.3 s (1.9 s)	0.8 s (0.7 s)	0.24 s (0.2 s)

System frequency measurement, MEFR1		
Frequency	10.0075.00 Hz	
Average Freq.	10.00…75.00 Hz	
Voltage U	0.02.0 x Un	

Three-phase power and energy measurement, MEPE7		
P3 (kW)	-999999999999 kW	
Q3 (kvar)	-999999999999 kvar	
Power factor DPF	-1.001.00	
Power factor PF	-1.001.00	
P3 demand (kW)	-999999999999 kW	
Q3 demand (kvar)	-999999999999 kvar	
Energy kWh	099999999 kWh	
Reverse kWh	099999999 kWh	
Energy kvarh	0999999999 kvarh	
Reverse kvarh	0999999999 kvarh	

Residual voltage measurement, MEVO1A and MEVO1B	
Uo	0150000 V
Uo	0.0120.0% Un

Three-phase voltage measurement, MEVO3A and MEVO3B		
UL1_U12	0.00999.99 kV	
UL2_U23	0.00…999.99 kV	
UL3_U31	0.00…999.99 kV	
UL1_U12	0.002.00 x Un	
UL2_U23	0.002.00 x Un	
UL3_U31	0.002.00 x Un	
UL1_U12 average	0.00…999.99 kV	
UL2_U23 average	0.00…999.99 kV	
UL3_U31 average	0.00…999.99 kV	
UL1_U12 average	0.002.00 x Un	
UL2_U23 average	0.002.00 x Un	
UL3_U31 average	0.002.00 x Un	

Table 7: Protection function blocks

Three-phase non-directional overcurrent NOC3LowB,3I>	protection, low-set stages, NOC3Low, 3I>,
Start current	0.105.00 x In
Operate time at DT mode	0.05300.00 s
Time multiplier at IDMT mode	0.051.00
Operation mode	Not in use
	Definite time
	Extremely inverse
	Very inverse
	Normal inverse
	Long time inverse
	RI-type inverse
	RD-type inverse
	IEEE curves
Measuring mode	Peak-to-peak
	Fundamental frequency
Drop-off time of the operate time counter	01000 ms
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	±2.5% of set value or ±0.01 x In
Start time:	
- Injected currents	>2.0 x start current:
- internal time	<32 ms
- total time	<40 ms
Reset time	401000 ms (depends on the minimum pulse width set for
	the trip output)
Reset ratio, typically	0.95
Retardation time	< 45 ms
Operate time accuracy at DT mode	±2% of set value or ±20 ms
Accuracy class index E at IDMT mode	Class index E = 5.0 or ± 20 ms

Three-phase non-directional overcurrent protection, high-set stage, NOC3High, 3I>>, and instantaneous stage, NOC3Inst, 3I>>>		
Start current	0.1040.00 x ln	
Operate time	0.05300.00 s	
Operation mode	Not in use	
	Definite time	
	Instantaneous	
Measuring mode	Peak-to-peak	
	Fundamental frequency	
Drop-off time of the operate time counter	01000 ms	
	Note! The values below apply when f/fn = 0.951.05	
Operation accuracy	0.110 x In: ±2.5% of set value or ±0.01 x In	
	1040 x In: ±5.0% of set value	
Start time:		
 injected currents 	>2.0 x start current:	
- internal time	<32 ms	
- total time	<40 ms	
Reset time	401000 ms (depends on the minimum pulse width set for	
	the trip output)	
Reset ratio, typically	0.95	
Retardation time	< 45 ms	
Operate time accuracy at DT mode	±2% of set value or ±20 ms	

Three-phase directional overcurrent function, low-set stage, DOC6Low, I> $ ightarrow$			
Operation mode	Not in use		
	Definite time		
	Extremely inverse		
	Very inverse		
	Normal inverse		
	Long-time inverse		
	RI-type inverse		
	RD-type inverse		
Start current	0.0540.00 x In		
Operate time	0.05300.00 s		
Time multiplier	0.051.00		
Basic angle φ_{b}	090°		
Operation direction	Forward		
	Reverse		
Earth-fault protection	Disabled		
	Enabled		
Measuring mode	Phase-to-phase voltages, peak-to-peak measurement		
	Phase-to-phase voltages, fundamental freq. measurement		
	Phase-to-earth voltages, peak-to-peak measurement		
	Phase-to-earth voltages, fundamental freq. measurement		
Drop-off time of the operate time counter	01000 ms		
	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	0.110 x ln: ±2.5% of set value or ±0.01 x ln		
. ,	1040 x In: ±5.0% of set value		
	±2.5% of measured voltage or ±0.01 x Un		
	±2°		
Start time:			
- injected currents	>2.0 x start current:		
- internal time	<42 ms		
- total time	<50 ms		
Reset time	401000 ms (depends on the minimum pulse width set for		
	the trip output)		
Reset ratio, typically	0.95		
Retardation time	< 45 ms		
Operate time accuracy at DT mode	±2% of set value or ±20 ms		
Accuracy class index E at IDMT mode	Class index E = $5.0 \text{ or } \pm 20 \text{ ms}$		

Three-phase directional overcurrent function, high-set stage, DOC6High, I>>→, and instantaneous stage, DOC6Inst, I>>>→

Operation mode	Not in use
	Definite time
	Instantaneous
Start current	0.05…40.00 x In
Operate time	0.05300.00 s
Basic angle $\varphi_{\rm b}$	090°
Operation direction	Forward
	Reverse
Earth-fault protection	Disabled
	Enabled
Non-directional operation (when the direction	Disabled
cannot be determined)	Enabled
Measuring mode	Phase-to-phase voltages, peak-to-peak measurement
	Phase-to-phase voltages, fundamental freq. measurement
	Phase-to-earth voltages, peak-to-peak measurement
	Phase-to-earth voltages, fundamental freq. measurement
Drop-off time of the operate time counter	01000 ms

20

1MRS755	543
---------	-----

	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	0.110 x ln: ±2.5% of set value or ±0.01 x ln		
	1040 x In: ±5.0% of set value		
	±2.5% of measured voltage or ±0.01 x Un		
	±2°		
Start time:			
- injected currents	>2.0 x start current:		
- internal time	<42 ms		
- total time	<50 ms		
Reset time	401000 ms (depends on the minimum pulse width set for		
	the trip output)		
Reset ratio, typically	0.95		
Retardation time	< 45 ms		
Operate time accuracy at DT mode	±2% of set value or ±20 ms		

Three-phase underimpedance protection, low-set stage UI6Low, Z<, and high-set stage UI6High, Z<<			
Z-setting	0.0160.00 p.u.		
Operate time	0.04300.00 s		
UI6High	Not in use; In use		
Meas. signals (phase selection)	4 selections for ph-e voltages		
	7 selections for ph-ph voltages		
	(depends on the signals available)		
Measuring mode	Peak-to peak; Fund.freq.		
	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	± 3.0% of set value or ± 0.02 p.u.		
Start time:			
- injected impedance	= 0.50 x Z-setting		
- internal time	<42 ms		
- total time	<50 ms		
Reset time	701030 ms (depends on the minimum pulse width set for		
	the TRIP output)		
Reset ratio	Тур. 1.03		
Retardation time	< 45 ms		
Operate time accuracy	± 2% of set value or ± 20 ms		

Stabilized and instantaneous differential protection for transformers, Diff6T, 3 ΔI >,3 ΔI >>			
Basic setting; the lowest ratio of differential			
and nominal current to cause a trip	550%		
Starting ratio; slope of the 2nd line of the			
operating characteristics	1050%		
Turn-point 1; turnpoint between the 1st and			
2nd line of the operating characteristics	0.5 x ln		
Turn-point 2; turnpoint between the 2nd and			
3rd line of the operating characteristics	1.03.0 x ln		
Tripping value of the instantaneous stage	530 x ln		
	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	Phase difference measurement: ±4°		
	Stabilized stage: ±4% of set value or ±2% x In		
	Instantaneous stage: ±4% of set value or ±2% x In		
Trip time:			
- Injected currents	>2.0 x operating current		
- internal time	<35 ms		
- total time	<45 ms		
Reset time	601020 ms (depends on the minimum pulse width set for		
	the trip output)		
Reset ratio, typically	0.98		
Retardation time	< 40 ms		

Non-directional earth-fault protection, lo		
Start current	1.0100.0% of In	
Operate time at DT mode	0.05300.00 s	
Time multiplier at IDMT mode	0.051.00	
Operation mode	Not in use	
	Definite time	
	Extremely inverse	
	Very inverse	
	Normal inverse	
	Long time inverse	
	RI-type inverse	
	RD-type inverse	
	IEEE curves	
Measuring mode	Peak-to-peak	
	Fundamental frequency	
Drop-off time of the operate time counter	01000 ms	
	Note! The values below apply when f/fn = 0.951.05	
Operation accuracy	±2.5% of set value + 0.0005 x In	
Start time:		
 Injected currents 	>2.0 x start current:	
- internal time	<32 ms	
- total time	<40 ms	
Reset time	401000 ms (depends on the minimum pulse width set for	
	the trip output)	
Reset ratio, typically	0.95	
Retardation time	<45 ms	
Operate time accuracy at DT mode	±2% of set value or ±20 ms	
Accuracy class index E at IDMT mode	Class index E = 5.0 or ±20 ms	

Non-directional earth-fault protection, high-set stage, NEF1High, I_0 >>, and instantaneous stage, NEF1Inst, I_0 >>>		
Start current	0.1012.00 x ln	
Operate time	0.05300.00 s	
Operation mode	Not in use	
	Definite time	
	Instantaneous	
Measuring mode	Peak-to-peak	
	Fundamental frequency	
Drop-off time of the operate time counter	01000 ms	
	Note! The values below apply when f/fn = 0.951.05	
Operation accuracy	±2.5% of set value or + 0.01 x In	
Start time:		
- Injected currents	>2.0 x start current	
- internal time	<32 ms	
- total time	<40 ms	
Reset time	401000 ms (depends on the minimum pulse width set for	
	the trip output)	
Reset ratio, typically	0.95	
Retardation time	< 45 ms	
Operate time accuracy at DT mode	±2% of set value or ±20 ms	

Directional earth-fault protection, low-set s	stage, DEF2Low, I ₀ > \rightarrow		
Start current	1.025.0% of In		
Start voltage	2.0100.0% of Un		
Operate time at DT mode	0.1300.0 s		
Time multiplier at IDMT mode	0.051.00		
Operation mode	Not in use		
	Definite time		
	Extremely inverse		
	Very inverse		
	Normal inverse		
	Long time inverse		
Operation criteria	Basic angle & Uo		
	Basic angle		
	IoSin/Cos & Uo		
	IoSin/Cos		
	Non-directional lo		
	Non-directional Uo		
Operation direction	Forward		
•	Reverse		
Basic angle φ_{b}	-90°		
0 10	-60°		
	-30°		
	0°		
Operation characteristic	loSin(φ)		
•	$loCos(\phi)$		
Intermittent E/F	Not active		
	Active		
Measuring mode	Peak-to-peak		
0	Fundamental frequency		
Drop-off time of the operate time counter	01000 ms		
	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	$\pm 2.5\%$ of set value + 0.0005 x ln		
operation accuracy	$\pm 2.5\%$ of set value or ± 0.01 x Un		
	Phase angle $\pm 2^{\circ}$		
Start time:			
- Injected neutral current and residual voltage	>2.0 x start current and		
- injected neutral current and residual voltage	residual voltage >2.0 x start voltage		
- internal time	<72 ms		
- total time	< 72 ms < 80 ms		
Reset time	401000 ms (depends on the minimum pulse width set for		
	the trip output)		
Reset ratio, typically	0.95		
Retardation time	< 50 ms		
Operate time accuracy at DT mode	$\pm 2\%$ of set value or ± 20 ms		
Accuracy class index E at IDMT mode	Class index E = $5.0 \text{ or } \pm 20 \text{ ms}$		
Accuracy class much L at IDIVIT mode	01000 1100X L = 0.0 01 120 110		

Start current	1.0200.0% of In		
Start voltage	2.0100.0% of Un		
Operate time	0.1300.0 s		
Operation mode	Not in use		
	Definite time		
	Instantaneous		
Operation criteria	Basic angle & Uo		
•	Basic angle		
	IoSin/Cos & Uo		
	IoSin/Cos		
	Non-directional lo		
	Non-directional Uo		
Operation direction	Forward		
	Reverse		
Basic angle φ_{b}	-90°		
	-60°		
	-30°		
	0°		
Operation characteristic	loSin(φ)		
	loCos(φ)		
Intermittent E/F	Not active		
	Active		
Measuring mode	Peak-to-peak		
	Fundamental frequency		
Drop-off time of the operate time counter	01000 ms		
	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	±2.5% of set value + 0.0005 x In		
	±2.5% of set value or + 0.01 x Un		
	Phase angle ±2°		
Start time, injected neutral current and	Injected neutral current >2.0 x start current		
residual voltage	and residual voltage >2.0 x start voltage		
- internal time	<72 ms		
- total time	<80 ms		
Reset time	401000 ms (depends on the minimum pulse width set for		
	the trip output)		
Reset ratio, typically	0.95		
Retardation time	<50 ms		
Operate time accuracy at DT mode	±2% of set value or ±20 ms		

High-impedance based restricted earth-fault protection, REF1A, ΔI_0 >		
Basic setting; the lowest ratio of differential and nominal current to cause a trip	0.550%	
	Note! The values below apply when f/fn = 0.951.05	
Operation accuracy	±2.5% of set value or ±0.004 x In	
Trip time		
- injected currents	>2.0 x operating current:	
- internal time	<20 ms	
- total time	<30 ms	
Reset time	601020 ms (depends on the minimum pulse width set for	
	the trip output)	
Reset ratio	0.800.98	
Retardation time	This function block cannot be retarded but trips once the current exceeds the operate value	

Stabilized restricted earth-fault protection,	REF4A, ΔI_0 and REF4B, ΔI_0 >	
Basic setting	0.550%	
Operate time	0.04300.00 s	
Ratio I2f/I1f>	1050 %	
2nd harmonic blocking	Not in use / In use	
	Note! The values below apply when f/fn = 0.951.05	
Operation accuracy of differential current measurement	±4% of set value or ±0.02 x In	
Operation accuracy of phase angle measurement	±2%	
Start time:		
-injected currents	2.0 x operating current:	
- internal time	<30 ms	
- total time	<40 ms	
Reset time	401000 ms (depends on the minimum pulse width set for	
	the trip output)	
Reset ratio, typically	0.98 (0.900.98)	
Retardation time (Total retardation time when the current drops below the start value)	<50 ms	
Operation time accuracy at definite time mode	±2% of set value or ±20 ms	

Residual overvoltage protection, low-set stage, ROV1Low, U ₀ >			
Start voltage	2.020.0% of Un		
Operate time	0.05300.00 s		
Operation mode	Not in use		
	Definite time		
Measuring mode	Peak-to-peak		
	Fundamental frequency		
	Note! The values below apply when f/fn = 0.951.05		
Operation accuracy	±2.5% of set value or ±0.01 x Un		
Start time:			
-injected voltages	>2 x start voltage:		
- internal time	<32 ms		
- total time	<40 ms		
Reset time	401000 ms (depends on the minimum pulse width set for		
	the trip output)		
Reset ratio, typically	0.95		
Retardation time	Total time for blocking: < 25 ms		
	Total time when voltage drops below start value: < 50 ms		
Operate time accuracy at DT mode	±2% of set value or ±20 ms		

					40
l	IVI	RS	15	55	43

Residual overvoltage protection, high-set stage, ROV1High, U_0>>, and instantaneous stage, ROV1Inst, U_0>>>	
Start voltage	2.080.0% of Un
Operate time	0.05300.00 s
Operation mode	Not in use
	Definite time
Measuring mode	Peak-to-peak
	Fundamental frequency
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	±2.5% of set value or ±0.01 x Un
Start time	
 injected voltages 	>2 x start voltage
- internal time	<32 ms
- total time	<40 ms
Reset time	401000 ms (depends on the minimum pulse width set for
	the trip output)
Reset ratio, typically	0.95
Retardation time	Total time for blocking: < 25 ms
	Total time when voltage drops below start value: < 50 ms
Operate time accuracy at DT mode	±2% of set value or ±20 ms

BASIC SETTINGS:	
Starting current of the motor	0.1010.00 x ln
Max. starting time permitted for the motor	0.1120.0 s
Number of starts allowed from cold state	13
Type of device to be protected	Motor; through-ventilated, rated power < 1500 kW Motor; through-ventilated, rated power > 1500 kW Motor; surface cooling, rated power < 500 kW Motor; surface cooling, rated power > 500 kW Generator; hydro or small air-cooled turbine generators Generator; large turbine generators Transformer
Trip temperature	80.0120.0%
Prior alarm temperature	40.0100.0%
Restart inhibit (temperature limit for	40.0100.070
successful restarting)	40.0100.0%
Ambient temperature	-50.0100.0°C
Cooling time-constant	1.010.0 x time constant
Heating time-constant for generator or	
transformer	1999 min
	1
ADVANCED SETTINGS:	0.0.000.0 min
Short time-constant for stator	0.0999.0 min
Long time-constant for stator	0.0999.0 min
Weighting factor of the short time-constant for	
stator	0.001.00
Temperature rise of stator at rated current	0.0350.0 °C
Maximum temperature of stator	0.0350.0 °C
Short time-constant for rotor	0.0999.0 min 0.0999.0 min
Long time-constant for rotor	0.0999.0 mm
Weighting factor of the short time-constant for rotor	0.00 1.00
	0.001.00 0.0350.0 °C
Temperature rise of rotor at rated current	
Maximum temperature of rotor	0.0350.0 °C
Operation mode (principle of ambient temperature compensation)	Not in use No sensors; the set ambient temperature
	1 sensor used
	2 sensors used
Waiting time for a successful restart (Read-	
only parameter)	086400 s
Estimated time to the trip (Read-only	
parameter)	086400 s
Operation accuracy Reset ratio:	Note! The values below apply when f/fn = $0.951.05 \pm 1.0\%$, I = $0.110.0 \times In$
- trip	(Calculated temp. rise - 0.1) / Trip temperature
- start	(Calculated temp. rise - 0.1) / Prior alarm temperature
- restart	(Calculated temp. rise - 0.1) / Restart inhibit temperature
	limit

Operation mode	Not in use
	Definite time
	Inverse time
Start value of negative-sequence current I2	0.010.50 x ln
Operate time	0.1120.0 s
Operating characteristic constant K	5.0100.0
(corresponds to the machine constant, equal	
to the l_{2}^{2} t constant of the machine as stated	
by machine manufacturer)	
Definite start time at inverse-time mode	0.160.0 s
Definite minimum operate time	0.1120.0 s
Maximum operate time	50010000 s
Cooling time of the machine	510000 s
Number of phases to be measured	2 or 3
Rotation direction	Forward
	Reverse
Drop-off time of the operate time counter	01000 ms
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	±2.5% of set value or ±0.01 x In
Start time:	
 injected negative-seq. current 	= 2.00 x start value
- internal time	<32 ms
- total time	<40 ms
Reset time	701030 ms (depends on the minimum pulse width set fo
	the trip output)
Reset ratio, typically	0.96
Retardation time	<45 ms
Operate time accuracy at DT mode	±2% of set value or ±20 ms
Accuracy class index E at IDMT mode,	
typically	±2% of the calculated ideal operate time or ±20 ms

Three-phase overvoltage protection, low-set stage, OV3Low, 3U>	
Start voltage	0.101.60 x Un
Operate time	0.05300.0 s
Time multiplier	0.051.00
Operation mode	Not in use
	Definite time
	A curve
	B curve
Measuring mode	Phase-to-phase voltages; peak-to-peak measurement
	Phase-to-phase voltages; fundamental freq. measurement
	Phase-to-earth voltages; fundamental freq. measurement
Operation hysteresis	1.05.0%
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	±2.5% of set value
Start time:	
-injected voltages	= 1.1 x start voltage
- internal time	<42 ms
- total time	<50 ms
Reset time	401000 ms (depends on the minimum pulse width set for
	the trip output)
Reset ratio	0.96 (range 0.950.99)
Retardation time	< 50 ms
Operate time accuracy at DT mode	±2% of set value or ±20 ms
Accuracy class index E at IDMT mode, typically	±20 ms

Three-phase overvoltage protection, h	nigh-set stage, OV3High, 3U>>
Start voltage	0.101.60 x Un
Operate time	0.05300.0 s
Operation mode	Not in use
	Definite time
Measuring mode	Phase-to-phase voltages; peak-to-peak measurement
-	Phase-to-phase voltages; fundamental freq. measurement
	Phase-to-earth voltages; fundamental freq. measurement
Operation hysteresis	0.96 (range 0.950.99)
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	±2.5% of set value
Start time:	
- injected voltages	= 1.1 x start voltage
- internal time	<42 ms
- total time	<50 ms
Reset time	401000 ms (depends on the minimum pulse width set for
	the trip output)
Reset ratio, typically	0.95
Retardation time	< 50 ms
Operate time accuracy at DT mode	±2% of set value or ±20 ms

Three-phase undervoltage protection, low-set stage, UV3Low, 3U<	
Start voltage	0.101.20 x Un
Operate time	0.1300.0 s
Time multiplier	0.11.0
Operation mode	Not in use
	Definite time
	C curve
Measuring mode	Phase-to-phase voltages; peak-to-peak measurement
	Phase-to-phase voltages; fundamental freq. measurement
	Phase-to-earth voltages; fundamental freq. measurement
Operation hysteresis	1.05.0%
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	±2.5% of set value or ±0.01 x Un
Start time:	
- injected voltages	<0.5 x start voltage:
- internal time	<32 ms
- total time	<40 ms
Reset time	401000 ms (depends on the minimum pulse width set for
	the trip output)
Reset ratio	1.04 (range 1.0051.05)
Retardation time	< 60 ms
Operate time accuracy at DT mode	±2.5% of set value
Accuracy class index E at IDMT mode, typically	±35 ms

Three-phase undervoltage protection, high-set stage, UV3High, 3U<<	
Start voltage	0.101.20 x Un
Operate time	0.1300.0 s
Operation mode	Not in use
	Definite time
Measuring mode	Phase-to-phase voltages; peak-to-peak measurement Phase-to-phase voltages; fundamental freg. measurement
Operation hystoresia	Phase-to-earth voltages; fundamental freq. measurement 1.05.0%
Operation hysteresis	
2 <i>i</i>	Note! The values below apply when $f/fn = 0.951.05$
Operation accuracy	±2.5% of set value or ±0.01 x Un
Start time:	
- injected voltages	<0.5 x start voltage:
- internal time	<32 ms
- total time	<40 ms
Reset time	401000 ms (depends on the minimum pulse width set for
	the trip output)
Reset ratio	1.04 (range 1.0051.05)
Retardation time	<60 ms
Operate time accuracy at DT mode	±2.5% of set value

Phase-sequence voltage protection, PSV3St1 and PSV3St2, U ₁ <, U ₂ >, U ₁ >	
Start value U2>	0.011.00 x Un
Start value U1<	0.011.20 x Un
Start value U1>	0.801.60 x Un
Operate time U2>	0.0460.00 s
Operate time U1<	0.0460.00 s
Operate time U1>	0.0460.00 s
Operation mode	Not in use; U1< & U2> & U1>; U1< & U2>; U2> & U1>;
	U1< & U1>; U2>; U1<; U1>
Rotation direction selection	Forward; Reverse; Input ROT_DIR
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy	± 2.5% of set value or ± 0.01 x Un
Trip time, U2> operation:	
 Injected negative-sequency voltage 	= 1.1 x start value
- internal time	<42 ms
- total time	<50 ms
Trip time, U1< operation:	
 injected positive-sequency voltage 	= 0.50 x start value
- internal time	<32 ms
- total time	<40 ms
Trip time, U1> operation:	
 Injected positive-sequency voltage 	= 1.1 x start value
- internal time	<42 ms
- total time	<50 ms
Reset time	701030 ms (depends on the minimum pulse width
	set for the TRIP output)
Reset ratio, typically	U2> operation: 0.96
	U1< operation: 1.04
	U1> operation: 0.99
Retardation time	<45 ms (for all operations)
Operate time accuracy	± 2% of set value or ± 20 ms

Underfrequency or overfrequency protection, 5 stages, Freq1St1… Freq1St5, f, df/dt	
Operation mode	Not in use
	f 1 timer
	f 2 timers
	f OR df/dt>
	f AND df/dt>
	f OR df/dt<
	f AND df/dt<
Undervoltage limit for blocking	0.300.90 x Un
Start value for under-/overfrequency prot.	25.0075.00 Hz
Operate time for under-/overfrequency prot.	0.10120.00 s
Start value for df/dt protection	0.210.0 Hz/s
Operate time for df/dt protection	0.12120.00 s
Operation accuracy	Under-/overfrequency (f): ±10 mHz
- Frequency rate of change (df/dt):	
- real df/dt	<±5 Hz/s: ±100 mHz/s
- real df/dt	<±15 Hz/s: ±2.0% of real df/dt
- Undervoltage blocking	±1.0% of set value

operation accuracy	
- Frequency rate of change (df/dt):	
- real df/dt	<±5 Hz/s: ±100 mHz/s
- real df/dt	<±15 Hz/s: ±2.0% of real df/dt
- Undervoltage blocking	±1.0% of set value
Start time:	
- total start times at fn = 50 Hz:	
- frequency measurement	<100 ms
- df/dt measurement	<120 ms
Reset time	1401000 ms (depends on the minimum pulse width set
	for the trip output)
Operate time accuracy	±2% of set value or ±30 ms

Overexcitation protection, low-set stage, OE1Low, U/f>, and high-set stage, OE1High, U/f>>	
U/f start (DT mode)	1.002.00 x U/f
U/f start (IDMT mode)	1.002.00 x U/f
U max cont.	0.801.60 x Un
Operate time	0.10600.00 s
k	0.1100.0
Maximum time	50010000 s
Constant delay	0.1120.0 s
Cooling time	510000 s
Operation mode	Not in use; Definite time; Curve#1; Curve#2
Operation accuracies	2040 Hz: ±4% of set value; 4080 Hz: ±2% of set value
Start time:	
- Injected U/f	>2.0 x Un/fn
- internal time	<60 ms,
- total time	<70 ms
Reset time	1001060 ms (depends on the set minimum pulse width
	for the TRIP output)
Reset ratio:	
- 2040 Hz	typ. 0.99
- 4080 Hz	typ 0.97
Retardation time	<105 ms
Operate time accuracy at definite-time mode	2080 Hz: ±4% of set value or ±40 ms
Operate time accuracy at inverse-time modes	±100 ms or the accuracy appearing when the measured voltage varies ±1.0%

Three-phase transformer inrush and motor start-up current detector Inrush3, 3I _{2f} >	
Ratio I _{2f} /I _{1f} >	550%
Start current	0.105.00 x In
Operation mode	Not in use
	Inrush mode
	Start-up mode
	Note! The values below apply when f/fn = 0.951.05
Operation accuracy:	
- current measurement	±2.5% of set value or ±0.01 x In
- ratio I _{2f} /I _{1f} measurement	±5.0% of set value
Start time:	
- internal time	<32 ms
- total time	<40 ms

Fuse failure supervision, FuseFail, FUSEF		
Ratio U2/U1>	1050%	
Ratio I2/I1<	1050%	
Operation accuracy:		
- when f/fn = 0.981.02:	±2.0 percentage units (of settings Ratio U2/U1> and Ratio I2/I1<)	
- when f/fn = 0.951.05:	±4.0 percentage units (of settings Ratio U2/U1> and Ratio I2/I1<)	
- injected negative-sequence voltage	= 2.00 x Ratio U2/U1>	
BSOUT activation time:		
- f/fn=0.981.02	< 35 ms (within the same task and when the task interval is 10 ms)	
Reset time	20 ms (within the same task)	
Reset ratio:		
- for Ratio U2/U1>	0.80.96	
- for Ratio I2/I1<	1.041.2	

Table 8: Energizing inputs

Rated frequency		50.0/60.0 Hz	50.0/60.0 Hz	
Current inputs	rated current		1 A/5 A	
	thermal withstand	continuously	4 A/20 A	
	capability	for 1 s	100 A/500 A	
	dynamic current withs	dynamic current withstand, half-wave value		
	input impedance	input impedance		
Voltage inputs	rated voltage (parame	rated voltage (parameterization)		
	voltage withstand, cor	voltage withstand, continuously		
	burden at rated voltag	burden at rated voltage		

Table 9: Auxiliary power supplies

Туре	PS1/240V (RET 541, RET 543)	PS2/240V (RET 545 only)	External display module	PS1/48V (RET 541, RET 543)	PS2/48V (RET 545 only)	
Input voltage, ac	110/120/220/2	40 V		-		
Input voltage, dc	110/125/220 V	110/125/220 V			24/48/60 V	
Voltage variation	ac 85110%, dc 80120% of rated value			dc 80120%	of rated value	
Burden	<50 W					
Ripple in dc auxiliary voltage	max. 12% of th	ne dc value				
Interruption time in auxiliary dc voltage without resetting	c <40 ms, 110 V and <60 ms, 48 V and <100 ms, 200 V <100 ms, 60 V					
Internal overtemperature indication	+78°C (+75+83°C)					

Table 10: Digital inputs

Power supply version	PS1/240 V (High)	PS1/240 V (Medium), PS2/240 V	PS1/48 V (Low), PS2/48V
Input voltage, dc	220 V	110/125/220 V	24/48/60/110/125/ 220 V
Nominal treshold voltage, dc - operating range, dc	155 V 155265 V	80 V 80265 V	18 V 18265 V
Current drain	~225 mA		
Power consumption/input	<0.8 W		
Pulse counting (specific digital inputs), frequency range	0100 Hz		
Time synchronization (specific digital inputs) synchronization rate	once per minute or once per second		

Table 11: RTD/analog inputs

Supported RTD sensors	100 Ω Platinum	TCR 0.00385 (DIN 43760)	
	250 Ω Platinum	TCR 0.00385	
	1000 Ω Platinum	TCR 0.00385	
	100 Ω Nickel	TCR 0.00618 (DIN 43760)	
	120 Ω Nickel	TCR 0.00618	
	250 Ω Nickel	TCR 0.00618	
	1000 Ω Nickel	TCR 0.00618	
	10 Ω Copper	TCR 0.00427	
	120 Ω Nickel	TCR 0.00672 (MIL-T-24388C)	
Max lead resistance	200 Ω per lead		
(three-wire measurement)			
Accuracy	±0.5% of full scale		
	±1.0% of full scale for 10 Ω Copper RTD		
Isolation	2 kV (inputs to outputs and inputs to protective earth)		
Sampling frequency	5 Hz		
Response time	≤ Filter time + 30 ms (430 ms5.03 s)		
RTD/ Resistance sensing	max 4.2 mA RMS		
current	6.2 mA RMS for 10 Ω Copper		
Current input impedance	274 Ω ±0.1%		

Table 12: Analog outputs

Output range	020 mA
Accuracy	±0.5% of full scale
Max load	600 Ω
Isolation	2 kV (output to output, output to inputs and output to protective earth)
Response time	≤ 85 ms

Table 13: Signal outputs

Max system voltage	250 V ac/dc
Continuous carry	5 A
Make and carry for 0.5 s	10 A
Make and carry for 3 s	8 A
Breaking capacity when control circuit time-constant L/R <40 ms, at 48/110/220 V dc	1 A/0.25 A/0.15 A

Table 14: Power outputs

Max system voltage		250 V ac/dc	
Continuous carry		5 A	
Make and carry for 0.5	3	30 A	
Make and carry for 3 s		15 A	
Breaking capacity when control circuit time constant L/R <40 ms, at 48/110/220 V dc		5 A/3 A/1 A	
Minimum contact load		100 mA, 24 V ac/dc (2.4 VA)	
TCS (Trip Circuit	Control voltage range	20265 V ac/dc	
Supervision)	Current drain through the supervision circuit	approx. 1.5 mA (0.991.72 mA)	
Minimum voltage (threshold) over a contact		20 V ac/dc (1520 V)	

Table 15: Environmental conditions

Specified service temperature range		-10+55°C
Transport and storage temperature range		-40+70°C
Degree of protection by enclosure Front side, flush-mounted		IP 54
	Rear side, connection terminals	
Dry heat test		according to IEC 60068-2-2
Dry cold test		according to IEC 60068-2-1
Damp heat test, cyclic		according to IEC 60068-2-30 r.h. = 95%, T = 20°55°C
Storage temperature tests		according to IEC 60068-2-48

Table 16: Standard tests

Insulation tests	Dielectric test IEC 60255-5	Test voltage	2 kV, 50 Hz, 1 min.
	Impulse voltage test IEC 60255-5	Test voltage	5 kV, unipolar impulses, waveform 1.2/50 μs, source energy 0.5 J
	Insulation resistance measurements IEC 60255-5	Insulation resistance	> 100 MΩ, 500 V dc
Mechanical tests	Vibration tests (sinusoida	al)	IEC 60255-21-1, class I
	Shock and bump test		IEC 60255-21-2, class I
	Seismic test		IEC 60255-21-3, class 2

Table 17: Electromagnetic compatibility tests

The EMC immunity test level fulfills the requirements listed below				
1 MHz burst disturbance test, class	common mode	2.5 kV		
III, IEC 60255-22-1	differential mode	1.0 kV		
Electrostatic discharge test, class	for contact discharge	6 kV		
III, IEC 61000-4-2 and IEC 60255-22-2	for air discharge	8 kV		
Radio frequency interference test	conducted, common mode IEC 61000-4-6	10 V (rms), f = 150 kHz80 MHz		
	radiated, amplitude-modulated IEC 61000-4-3	10 V/m (rms), f = 80…1000 MHz		
	radiated, pulse-modulated ENV 50204	10 V/m, f = 900 MHz		
	radiated, test with a portable transmitter IEC 60255-22-3, method C	f = 77.2 MHz, P = 6 W; f = 172.25 MHz, P = 5 W		

Table 17: Electromagnetic compatibility tests

•	• •		
Fast transient disturbance test	power supply	4 kV	
(IEC 60255-22-4 and IEC 61000-4-4)	I/O ports	2 kV	
Surge immunity test (IEC 61000-4-5)	power supply	4 kV, common mode 2 kV, differential mode	
	I/O ports	2 kV, common mode 1 kV, differential mode	
Power frequency (50 Hz) magnetic field, IEC 61000-4-8	100 A/m		
Voltage dips and short interruptions, IEC 61000-4-11	30%, 10 ms >90%, 5000 ms		
Electromagnetic emission tests EN 55011 and EN 50081-2	conducted RF emission (mains terminal)	EN 55011, class A	
	radiated RF emission	EN 55011, class A	
CE approval	Complies with the EMC directive 89/336/EEC and the LV directive 73/23/EEC		

Table 18: Data communication

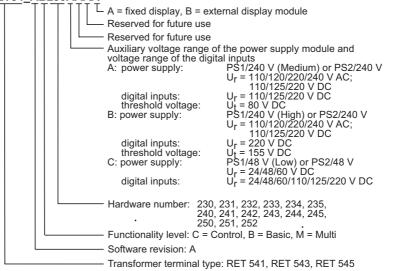
Rear interface, connector X3.1	not used, reserved for future purposes		
Rear interface, connector X3.2	RS-232 connection		
	the fibre-optic interface module	RER 123 for SPA and IEC_103	
	protocol	SPA, IEC_103	
	RS-485 connection		
	the RS-485 interface module RER 133 for DNP 3.0 and Modbus		
	protocol	DNP 3.0, Modbus	
	data transfer rates	DNP 3.0 and Modbus:	
		300 bps19.2 kbps, selectable	
Rear interface, connector X3.3	RS-485 connection		
	LON bus or SPA bus, selectable		
	the fibre-optic interface module RER 103 is needed for galvanic isolation		
	data transfer rates	SPA bus: 4.8/9.6/19.2 kbps LON bus: 78.0 kbps/1.2 Mbps	
	protocol	SPA, LON	
Rear interface, connector X3.4	RJ45 connection		
	galvanically isolated RJ45 connection for an external display module		
	communication cable	1MRS 120511.001 (1 m)	
		1MRS 120511.003 (3 m)	
Front panel	optical connection		
	protocol	SPA	
	serial communication cable	1MRS 120511.001 (1 m)	
SPA protocol	baud rates	4.8/9.6/19.2 kbps	
	start bits	1	
	data bits	7	
	parity	even	
	stop bits	1	
LON protocol	bit rates	78.0 kbps/1.2 Mbps	
IEC_103 protocol	baud rates	9.6/19.2 kbps	
	data bits	8	
	parity	even	
	stop bits	1	
DNP 3.0	bit rates	300, 600, 1200, 2400, 4800, 9600, 19200 bps	
	data bits	8	
	stop bits	1, 2	
	parity	none, odd, even	

Table 18: Data communication

Modbus RTU/ASCII	bit rates	300, 600, 1200, 2400, 4800, 9600, 19200 bps
	data bits	5, 6, 7, 8
	stop bits	1, 2
	parity	none, odd, even

Table 19: General

Toolboxes Event recording	CAP 501 CAP 505 LNT 505 all events are recorded in higher level syntax: reason, time, date	
	the last 100 events are recorded	
Data recording	records operate values	
Protection functions Control functions Condition monitoring functions Measurement functions	see Technical Descriptions of Functions, CD-ROM (1MRS 750889-MCD)	
Self-supervision	RAMs ROMs EEPROMs all analog reference voltages automatic test sequences for I/Os and HMI modules output contact condition monitoring (all contacts)	
Mechanical dimensions	Width: 223.7 mm (1/2 of a 19" rack) Height, frame: 265.9 mm (6U) Height, box: 249.8 mm Depth: 235 mm External display module Width: 223.7 mm	
	External display module Width: 223.7 mm Height: 265.9 mm Depth: 74 mm	
Weight of the unit	~8 kg	


Ordering

The following is to be specified when ordering RET 54_ transformer terminals:

- Order number (see figure below)
- Display language combination (e.g. English-German)
- Quantity of transformer terminals

Each RET 54_ transformer terminal has a specific order number that identifies the transformer terminal type as well as the hardware and the software as described in the figure below. The order number is printed on the marking strip on the front panel of the transformer terminal delivered, e.g. Order No: RET543AB230AAAA.

RET54_AB230AAAA

ret54_ordernumber_

Fig. 5 Order number of RET 54_ transformer terminal.

Language combinations

The display language combination (see table below) is identified by a three-digit suf-

fix in the software number labelled on the front panel of the transformer terminal, e.g. Software 1MRS110028-0.

Suffix	Language combination	
001	English-German	
002	English-Swedish	
003	English-Finnish	
007	English-Portuguese	
008	English-Polish	
009	English-Russian	
010	English-Spanish	

Number of digital inputs/outputs

The RET 541, RET 543 and RET 545 transformer terminals differ from each other as to

the number of digital inputs and outputs as follows:

Number of inputs/outputs	RET 541	RET 543	RET 545
Digital inputs	15	25	34
Trip circuit supervision inputs	2	2	2
Power outputs (NO single-pole)	0	2	3
Power outputs (NO double-pole)	5	9	11
Signal outputs (NO)	2	2	4
Signal outputs (NO/NC)	5	5	8
Self-supervision outputs	1	1	1

Functionality levels

The functionality level determines the extent of the selection of function blocks available for the transformer terminal. For more detailed information on the separate function blocks included in each selection, please consult your relay supplier.

Functionality level	Selection of function blocks
C (Control)	All control ¹ , condition monitoring and measurement functions
B (Basic)	All control ¹ , condition monitoring and measurement functions, basic protection functions
M (Multi)	All control ¹ , condition monitoring, measurement and protection functions

1) The COLTC Tap Changer control function block comes as standard in the Control version. In the Basic and the Multi versions, COLTC is available as an option.

Table 20: Transformer terminal functionality levels

				FUNCT	IONALITY	LEVELS
IEEE Code	IEC Symbol	Functions available in RET 541/543/545 Transformer Terminals. Processor capacity to be checked with "CPU load" tool	Code	RET541/3/5 CONTROL	RET541/3/5 BASIC	REF541/3/5 MULTI
		Short circuit and overcurrent				
87T	3∆I >, 3∆I >>	Three-phase differential protection for transformers, stabilized and	Diff6T		х	х
51	31 >	instantaneous stages Three-phase non-directional overcurrent, low-set stage	NOC3Low			
50 / 51 / 51B	31 >>	Three-phase non-dir. overcurrent, high-set stage / blockable overcurrent	NOC3High		х	х
50 / 51B	3 >>>	Three-phase non-dir. overcurrent, inst. stage / blockable overcurrent	NOC3Inst			
		Three-phase non-directional overcurrent function, low-set stage (B)	NOC3LowB			
67	31 > ->	Three-phase directional o/c, low-set stage	DOC6Low			
67	31 >> ->	Three-phase directional o/c, high-set stage / blockable overcurrent	DOC6High			х
67 21G	3 >>> -> Z<	Three-phase directional o/c, high-set stage / blockable overcurrent	DOC6Inst UI6Low			x
21G 21G	2< 7<<	Three-Phase Underimpedance Protection, Low-Set Stage Three-Phase Underimpedance Protection, High-Set Stage	UI6High			^
210	211	Earth-fault	Cloringit			
51N	lo > / SEF	Non-directional earth-fault, low-set stage	NEF1Low	1		
50N / 51N	lo >>	Non-directional earth-fault, high-set stage	NEF1High		х	х
50N	10 >>>	Non-directional earth-fault, instantaneous stage	NEF1Inst			
67N / 51N	lo > / SEF ->	Directional earth-fault, low-set stage	DEF2Low			
67N	o >> ->	Directional earth-fault, high-set stage	DEF2High		1	х
67N	10 >>> ->	Directional earth-fault, instantaneous stage	DEF2Inst BOV(11 avr		<u> </u>	
59N	Uo >	Residual overvoltage, low-set stage	ROV1Low BOV1High		1	v
59N 59N	Uo >> Uo >>>	Residual overvoltage, high-set stage Residual overvoltage, instantaneous stage	ROV1High ROV1Inst		1	x
59N 87N	Δ lo >	Stabilized restricted earth-fault protection (high voltage side)	REF4A			
87N	Δ lo >	Stabilized restricted earth-fault protection (low voltage side)	REF4B		х	x
87N	Δ Io >, REF	High-impedance based restricted earth-fault protection	REF1A		ĥ	~
		Overload / unbalanced load				
49T	3 2	Three-phase thermal overload protection	TOL3Dev		x	х
46	₂ >	Negative-phase-sequence (NPS) protection, low-set stage	NPS3Low		x	x
46	2 >>	Negative phase sequence (NPS) protection, high-set stage	NPS3High		Â	Â
	- 2	Over / undervoltage			1	
59	3U >	Three-phase overvoltage, low-set stage	OV3Low			Х
59	3U >>	Three-phase overvoltage, high-set stage	OV3High			
27	3U <	Three-phase undervoltage, low-set stage	UV3Low			Х
27	3U <<	Three-phase undervoltage, high-set stage	UV3High			
47	U1< & U2> & U1>	Three-phase phase sequency voltage protection, stage 1	PSV3St1		1	х
47	U1< & U2> & U1>	Three-phase phase sequency voltage protection, stage 2 Over/under frequency	PSV3St2			
81U/81O	f < / f > / df/dt	Underfrequency or overfrequency inc. rate of change, stage 1	Freq1St1			
81U/810	f < / f > / df/dt	Underfrequency or overfrequency inc. rate of change, stage 1	Freq1St2		1	
81U / 81O	f < /f > /df/dt	Underfrequency or overfrequency inc. rate of change, stage 3	Freq1St3		1	х
81U / 81O	f < / f > / df/dt	Underfrequency or overfrequency inc. rate of change, stage 4	Freq1St4		1	
81U / 81O	f < / f > / df/dt	Underfrequency or overfrequency inc. rate of change, stage 5	Freq1St5			
		Over / under excitation				
24	U/f>	Overexcitation Protection, Low-Set Stage U/f>	OE1Low			х
24	U/f>>	Overexcitation Protection, High-Set Stage U/f>>	OE1High		L	
	0101	Additional functions	la sue la C			
68 60	3l2f > FUSEF	Three-phase inrush detector Fuse failure supervision	Inrush3 FuseFail		Х	X
60 62BF	CBFP	Fuse failure supervision Circuit breaker failure	ruserall		x	X
UZDF	UDFF	Measurement function	-		~	^
	1	Current		I		1
	31	Three-phase current	MECU3A			
	31	Three-phase current, B -stage	MECU3B	х	х	х
	lo	Neutral current	MECU1A			
	lo	Neutral current, B -stage	MECU1B			
		Voltage				
	3U	Three-phase voltage	MEVO3A			
	3U	Three-phase voltage, B -stage	MEVO3B	х	х	х
	Uo Uo	Residual voltage	MEVO1A MEVO1B			
	UO	Residual voltage, B -stage Energy / Power	WEVUIB			
	E/P/Q/pf	Three-phase power and energy (incl. cos φ)	MEPE7	х	х	х
	E/F/Q/pi	Frequency		^	^	^
	f	System frequency	MEFR1	х	х	х
		Recording		~	~	
		Transient disturbance recorder	MEDREC16	х	х	Х
		In versions with RTD1 -card				
		Measurement of RTD/analog -inputs, general measurement Control of analog -outputs	MEAI18 MEAO14	х	х	х

EEE Code	IEC Symbol	Condition monitoring function	Code			
		Circuit breaker		-		•
	CBCM CBCM CBCM CBCM CBCM CBCM CBCM CBCM	CB electric wear 1 CB electric wear 2 Operation Time Counter 1 (e.g. motors) Operation Time Counter 2 (e.g. motors) Gas density supervision for three poles Spring charging control 1 Breaker travel time 1 Scheduled maintenance	CMBWEAR1 CMBWEAR2 CMTIME1 CMTIME2 CMGAS1 CMGAS3 CMSPRC1 CMTRAV1 CMSCHED	x	x	x
		Trip circuit		-	-	-
	TCS	Trip Circuit Supervision 1	CMTCS1	х	х	х
	TCS	Trip Circuit Supervision 2	CMTCS2			
		Measuring circuit		-		-
	MCS	Supervision of the energizing current input circuit	CMCU3	х	х	х
	MCS	Supervision of the energizing voltage input circuit	CMVO3			
		Control function				
		Circuit breakers, disconnectors / earthing switch Circuit breaker 1, 2 (2 state inputs / 2 control outputs)	COCB12			-
		Disconnector 15 (2 state inputs / 2 control outputs) Three state disconnector 1, 2 (3 state inputs) Object indication 18 (2 state inputs) MIMIC dynamic data point 15 on MMI (single line diagram) Aiarn 18 on MMI (ainr wiew) On/off switch 14 on MMI (single line diagram) Direct open for CBs via MMI Logic control position selector	CODC15 CO3DC12 COIND18 MMIDATA15 MMIALAR18 COSW14 COCBDIR COLOCAT	x	x	x
		Additional functions				
		Interlocking	-	х	х	х
		Command control	-			
		Standard functions				
		Operation indication, relay and register reset Activation of MII backlight Switchgroups SWGRP1SWGRP20 PLC logics (AND, OR, timers etc.) acc. to IEC 1131-3	INDRESET MMIWAKE SWGRP120 -	х	x	x
		Data communication				
		Event to be defined by the customer, E0E63 SPA bus LON bus	EVENT230 - -	x	x	x
		General functions				
		Main / secondary setting Remote setting Selfsupervision Annunclating, event generating and value recording Measurement, parameter and switching device status display Remote-end binary signal transfer Binary signal interbay transfer		x	x	x
		Options				
		Dual HMI language, desired language combination must be stated in the	purchase order	0	0	0
		On-load tap changer controller (voltage regulator), to be ordered as a				_
		separate item (1MRS 100144)	COLTC	х	0	0

Transformer Terminals functionality levels, cont

RET54_Functionality2.xls

Hardware versions of RET 541, RET 543 and RET 545

For the number of digital inputs and outputs of RET 54_ transformer terminals, refer to section "Order number" above. The number of matching transformers and analog inputs and outputs, and the auxiliary voltage range vary between the different hardware versions of RET 54_. Moreover, RET 541 and RET 543 can be supplied with an RTD/analog module. For more detailed information about the hardware of RET 54_, refer to the tables 20...28 below.

Table 21: Hardware versions of RET 541, 6I/3U transformers										
Or	der	num	ber							
RET541A_230AAAA	RET541A_230BAAA	RET541A_230CAAA	RET541A_230AAAB	RET541A_230BAAB	RET541A_233AAAA	RET541A_233BAAA	RET541A_233CAAA	RET541A_233AAAB	RET541A_233BAAB	
6	6	6	6	6	6	6	6	6	6	
3	3	3	3	3	3	3	3	3	3	
1	1	1	1	1	1	1	1	1	1	
	1			1		1			1	
1			1		1			1		
		1					1			
	1			1		1			1	
1			1		1			1		
		1					1			
					1	1	1	1	1	
1	1	1			1	1	1			
			1	1				1	1	
1	1	1	1	1	1	1	1	1	1	
		15					15			
		0					0			
5							5			
2						2				
5							5			
		2					2			
		1					1			
		0					8			
		0					4			
	Image: Non-State Image: Non-State Imag	Image: state of the stateof the stateof the stateof the state of the state of the state of	VICINITY V V V 6 6 6 3 3 3 1 1 1	URUNUE URUNUE Way and	Vertication of the second state of the seco	Norder number Very Very Very Very Very Very Very Very	Notes in the second se	Norder number Wey by	Order number Order number Weights Weights	

Table 21: Hardware versions of RET 541, 6I/3U transformers

HW modules	Or	der	num	ber						
	RET541A_231AAAA	RET541A_231BAAA	RET541A_231CAAA	RET541A_231AAAB	RET541A_231BAAB	RET541A_234AAAA	RET541A_234BAAA	RET541A_234CAAA	RET541A_234AAAB	RET541A 234BAAB
Analog interface				•			•	•	•	
Current trafo 1/5 A	7	7	7	7	7	7	7	7	7	7
Voltage trafo 100 V	2	2	2	2	2	2	2	2	2	2
Main processor boards										
CPU module	1	1	1	1	1	1	1	1	1	1
Power supply boards										
PS1: 80265 VDC/AC (High)		1			1		1			1
PS1: 80265 VDC /AC (Medium)	1			1		1			1	
PS1: 1880 VDC/AC (Low)			1					1		
PS2: 80265 VDC										
PS2: 1880 VDC										
Digital I/O boards										
BIO1:threshold voltage 155 VDC		1			1		1			1
BIO1: threshold voltage 80 VDC	1			1		1			1	
BIO1: threshold voltage 18 VDC			1					1		
BIO2: threshold voltage 155 VDC										
BIO2: threshold voltage 80 VDC										
BIO2: threshold voltage 18 VDC										
Analog I/O board										
RTD/analog module						1	1	1	1	1
Display boards										
Graphic HMI display, fixed	1	1	1			1	1	1		
Graphic HMI display, external				1	1				1	1
Mechanic										
1/2 enclosure	1	1	1	1	1	1	1	1	1	1
	1		45			1		45		
Digital inputs			15					15		
Power outputs, single pole			0					0		
Power outputs, double pole	<u> </u>		5					5 2		
Signal outputs (NO)	<u> </u>	2								
Signal outputs (NO/NC)		5						5		
Supervised trip circuits			2					2		
IRF outputs			0			1 8				
RTD/analog inputs			-					8		
Analog outputs			0					4		

Table 22: Hardware versions of RET 541, 71/2U transformers

HW modules	Or	der	num	ber		<u>n < < < n </u>								
	RET541A_232AAAA	RET541A_232BAAA	RET541A_232CAAA	RET541A_232AAAB	RET541A_232BAAB	RET541A_235AAAA	RET541A_235BAAA	RET541A_235CAAA	RET541A_235AAAB	RET541A_235BAAB				
Analog interface		1	1	1			1	1						
Current rafo 1/5 A	8	8	8	8	8	8	8	8	8	8				
Voltage trafo 100 V	1	1	1	1	1	1	1	1	1	1				
Main processor boards														
CPU module	1	1	1	1	1	1	1	1	1	1				
Power supply boards														
PS1: 80265 VDC/AC (High)		1			1		1			1				
PS1: 80265 VDC /AC (Medium)	1			1		1			1	-				
PS1: 1880 VDC/AC (Low)			1					1						
PS2: 80265 VDC														
PS2: 1880 VDC														
Digital I/O boards	·		•											
BIO1: threshold voltage 155 VDC		1			1		1			1				
BIO1: threshold voltage 80 VDC	1			1		1			1					
BIO1: threshold voltage 18 VDC			1					1						
BIO2: threshold voltage 155 VDC														
BIO2: threshold voltage 80 VDC														
BIO2: threshold voltage 18 VDC														
Analog I/O board														
RTD/analog module						1	1	1	1	1				
Display boards														
Graphic HMI display, fixed	1	1	1			1	1	1						
Graphic HMI display, external				1	1				1	1				
Mechanic			•											
1/2 enclosure	1	1	1	1	1	1	1	1	1	1				
Digital inputs			15					15						
Power outputs, single pole			0					0						
Power outputs, double pole			5					5						
Signal outputs (NO)			2					2						
Signal outputs (NO/NC)			5					5						
Supervised trip circuits			2					2						
IRF outputs			1					1						
RTD/analog inputs			0					8						
Analog outputs	1		0					4						

Table 23: Hardware versions of RET 541, 8I/1U transformers

HW modules	Or	der	num	ber							
	RET543A_240AAAA	RET543A_240BAAA	RET543A_240CAAA	RET543A_240AAAB	RET543A_240BAAB	RET543A_243AAAA	RET543A_243BAAA	RET543A_243CAAA	RET543A_243AAAB	RET543A 243BAAB	
Analog interface											
Current trafo 1/5 A	6	6	6	6	6	6	6	6	6	6	
Voltage trafo 100 V	3	3	3	3	3	3	3	3	3	3	
Main processor boards									1		
CPU module	1	1	1	1	1	1	1	1	1	1	
Power supply boards											
PS1: 80265 VDC/AC (High)		1			1		1			1	
PS1: 80265 VDC/AC (Medium)	1			1		1			1		
PS1: 1880 VDC/AC (Low)	1	l	1					1		-	
PS2: 80265 VDC	1										
PS2: 1880 VDC											
Digital I/O boards		•	•	•							
BIO1: threshold voltage 155 VDC		1			1		1			1	
BIO1: threshold voltage 80 VDC	1			1		1			1		
BIO1: threshold voltage 18 VDC			1					1			
BIO2: threshold voltage 155 VDC		1			1		1			1	
BIO2: threshold voltage 80 VDC	1			1		1			1		
BIO2: threshold voltage 18 VDC			1					1			
Analog I/O board											
RTD/analog module						1	1	1	1	1	
Display boards											
Graphic HMI display, fixed	1	1	1			1	1	1			
Graphic HMI display external				1	1				1	1	
Mechanic											
1/2 enclosure	1	1	1	1	1	1	1	1	1	1	
	1					1					
Digital inputs			25					25			
Power outputs, single pole			2					2			
Power outputs, double pole			9					9			
Signal outputs (NO)			2					2			
Signal outputs (NO/NC)			5					5			
Supervised trip circuits	<u> </u>	2						2			
IRF outputs			1			1					
RTD/analog inputs			0			8					
Analog outputs			0					4			

Table 24: Hardware versions of RET 543, 6I/3U transformers

Table 25: Hardware version	ns o	of R	ΕT	543	3, 7I	/2U	J tra	ans	fori	ner			
HW modules	Or	der	num	ber									
	RET543A_241AAAA	RET543A_241BAAA	RET543A_241CAAA	RET543A_241AAAB	RET543A_241BAAB	RET543A_244AAAA	RET543A_244BAAA	RET543A_244CAAA	RET543A_244AAAB	RET543A_244BAAB			
Analog interface													
Current trafo 1/5 A	7	7	7	7	7	7	7	7	7	7			
Voltage trafo 100 V	2	2	2	2	2	2	2	2	2	2			
Main processor boards													
CPU module	1	1	1	1	1	1	1	1	1	1			
Power supply boards													
PS1: 80265 VDC/AC (High)		1			1		1			1			
PS1: 80265 VDC/AC (Medium)	1			1		1			1				
PS1: 1880 VDC/AC (Low)			1					1					
PS2: 80265 VDC													
PS2: 1880 VDC													
Digital I/O boards													
BIO1: threshold voltage 155 VDC		1			1		1			1			
BIO1: threshold voltage 80 VDC	1			1		1			1				
BIO1: threshold voltage 18 VDC			1					1					
BIO2: threshold voltage 155 VDC		1			1		1			1			
BIO2: threshold voltage 80 VDC	1			1		1			1				
BIO2: threshold voltage 18 VDC			1					1					
Analog I/O board	r	1											
RTD/analog module						1	1	1	1	1			
Display boards		-	-			-	-						
Graphic HMI display, fixed	1	1	1			1	1	1					
Graphic HMI display, external				1	1				1	1			
Mechanic													
1/2 enclosure	1	1	1	1	1	1	1	1	1	1			
Digital inputs			25					25					
Power outputs, single pole			2					2					
Power outputs, double pole	9							9					
Signal outputs (NO)	2						2						
Signal outputs (NO/NC)	5						5						
Supervised trip circuits	2							2					
IRF outputs			1					1					
RTD/analog inputs			0					8					
Analog outputs			0					4					

Table 25: Hardware versions of RET 543, 7I/2U transformers

HW modules	Or	der	num	ber							
	RET543A_242AAAA	RET543A_242BAAA	RET543A_242CAAA	RET543A_242AAAB	RET543A_242BAAB	RET543A_245AAAA	RET543A_245BAAA	RET543A_245CAAA	RET543A_245AAAB	RET543A_245BAAB	
Analog interface											
Current trafo 1/5 A	8	8	8	8	8	8	8	8	8	8	
Voltage trafo 100 V	1	1	1	1	1	1	1	1	1	1	
Main processor boards											
CPU module	1	1	1	1	1	1	1	1	1	1	
Power supply boards											
PS1: 80265 VDC/AC (High)		1			1		1			1	
PS1: 80265 VDC/AC (Medium)	1			1		1			1		
PS1: 1880 VDC/AC (Low)			1					1			
PS2: 80265 VDC											
PS2: 1880 VDC											
Digital I/O boards											
BIO1: threshold voltage 155 VDC		1			1		1			1	
BIO1: threshold voltage 80 VDC	1			1		1			1		
BIO1: threshold voltage 18 VDC			1					1			
BIO2: threshold voltage 155 VDC		1			1		1			1	
BIO2: threshold voltage 80 VDC	1			1		1			1		
BIO2: threshold voltage 18 VDC			1					1			
Analog I/O board											
RTD/analog module						1	1	1	1	1	
Display boards											
Graphic HMI display, fixed	1	1	1			1	1	1			
Graphic HMI display external				1	1				1	1	
Mechanic											
1/2 enclosure	1	1	1	1	1	1	1	1	1	1	
	1					1					
Digital inputs			25					25			
Power outputs, single pole			2					2			
Power outputs, double pole			9					9			
Signal outputs (NO)			2					2			
Signal outputs (NO/NC)			5					5			
Supervised trip circuits			2					2			
IRF outputs			1			1					
RTD/analog inputs			0			8					
Analog outputs			0					4			

Table 26: Hardware versions of RET 543, 8I/1U transformers

HW modules	Or	der	num	ber	
	RET545A_250AAAA	RET545A_250BAAA	RET545A_250CAAA	RET545A_250AAAB	RET545A 250BAAB
Analog interface					
Current trafo 1/5 A	6	6	6	6	6
Voltage trafo 100 V	3	3	3	3	3
Main processor boards					
CPU module	1	1	1	1	1
Power supply boards					•
PS1: 80265 VDC/AC (High)					
PS1: 80265 VDC/AC (Medium)					
PS1: 1880 VDC/AC (Low)					
PS2: 80265 VDC	1	1		1	1
PS2: 1880 VDC	L		1		
Digital I/O boards					
BIO1: threshold voltage 155 VDC		2			2
BIO1: threshold voltage 80 VDC	2			2	
BIO1: threshold voltage 18 VDC			2		
BIO2: threshold voltage 155 VDC		1			1
BIO2: threshold voltage 80 VDC	1			1	
BIO2: threshold voltage 18 VDC			1		
Analog I/O board					
RTD/analog module					
Display boards					
Graphic HMI display, fixed	1	1	1		
Graphic HMI display, external				1	1
Mechanic					
1/2 enclosure	1	1	1	1	1
			<u> </u>		
Digital inputs 34					
Power outputs, single pole	3				
Power outputs, double pole	-				
Signal outputs (NO)	4				
Signal outputs (NO/NC)	8				
Supervised trip circuits	2				
IRF outputs					
RTD/analog inputs	0				
Analog outputs			0		

Table 27: Hardware versions of RET 545, 6I/3U transformers

HW modules	Or	der	num	ber	
	RET545A_251AAAA	RET545A_251BAAA	RET545A_251CAAA	RET545A_251AAAB	RET545A_251BAAB
Analog interface			•		
Current trafo 1/5 A	7	7	7	7	7
Voltage trafo 100 V	2	2	2	2	2
Main processor boards					
CPU module	1	1	1	1	1
Power supply boards		•			
PS1: 80265 VDC/AC (High)					
PS1: 80265 VDC/AC (Medium)					
PS1: 1880 VDC/AC (Low)					
PS2: 80265 VDC	1	1		1	1
PS2: 1880 VDC			1		
Digital I/O boards					
BIO1: threshold voltage 155 VDC		2			2
BIO1: threshold voltage 80 VDC	2			2	
BIO1: threshold voltage 18 VDC			2		
BIO2: threshold voltage 155 VDC		1			1
BIO2: threshold voltage 80 VDC	1			1	
BIO2: threshold voltage 18 VDC			1		
Analog I/O board					
RTD/analog module					
Display boards					
Graphic HMI display, fixed	1	1	1		
Graphic HMI display, external	1			1	1
Mechanic		-	·	-	
1/2 enclosure	1	1	1	1	1
Digital inputs			34		
Power outputs, single pole	3				
Power outputs, double pole	11				
Signal outputs (NO)	4				
Signal outputs (NO/NC)	8				
Supervised trip circuits	2				
IRF outputs	1				
RTD/analog inputs			0		
Analog outputs			0		

Table 28: Hardware versions of RET 545, 7I/2U transformers

HW modules	Or	der	num	ber	_
	RET545A_252AAAA	RET545A_252BAAA	RET545A_252CAAA	RET545A_252AAAB	RET545A_252BAAB
Analog interface		1		1	
Current trafo 1/5 A	8	8	8	8	8
Voltage trafo 100 V	1	1	1	1	1
Main processor boards					
CPU module	1	1	1	1	1
Power supply boards					
PS1: 80265 VDC/AC (High)					
PS1: 80265 VDC/AC (Medium)					
PS1: 1880 VDC/AC (Low)					
PS2: 80265 VDC	1	1		1	1
PS2: 1880 VDC			1		
Digital I/O boards					
BIO1: threshold voltage 155 VDC		2			2
BIO1: threshold voltage 80 VDC	2			2	
BIO1: threshold voltage 18 VDC			2		
BIO2: threshold voltage 155 VDC		1			1
BIO2: threshold voltage 80 VDC	1			1	
BIO2: threshold voltage 18 VDC			1		
Analog I/O board					
RTD/analog module					
Display boards					
Graphic HMI display, fixed	1	1	1		
Graphic HMI display, external				1	1
Mechanic					
1/2 enclosure	1	1	1	1	1
			0.4		
Digital inputs			34		
Power outputs, single pole			3		
Power outputs, double pole			11		
Signal outputs (NO)	4				
Signal outputs (NO/NC)	8				
Supervised trip circuits	2				
IRF outputs			1		
RTD/analog inputs			0		
Analog outputs	1		0		

Table 29: Hardware versions of RET 545, 8I/1U transformers

Software configu- ration	Each RET 54_transformer terminal allows various software configurations based on separate functions. Functions included in the selected functionality level can be activated	within the scope of the I/O connections and considering the total CPU load of the func- tions.
Parts and assembly descriptions	To achieve the best possible operation accuracy, all parts of a RET 54_ product have been calibrated together. Thus, each product forms a whole for which no separate spare	parts can be supplied. In the event of mal- function, please consult your transformer ter- minal supplier.

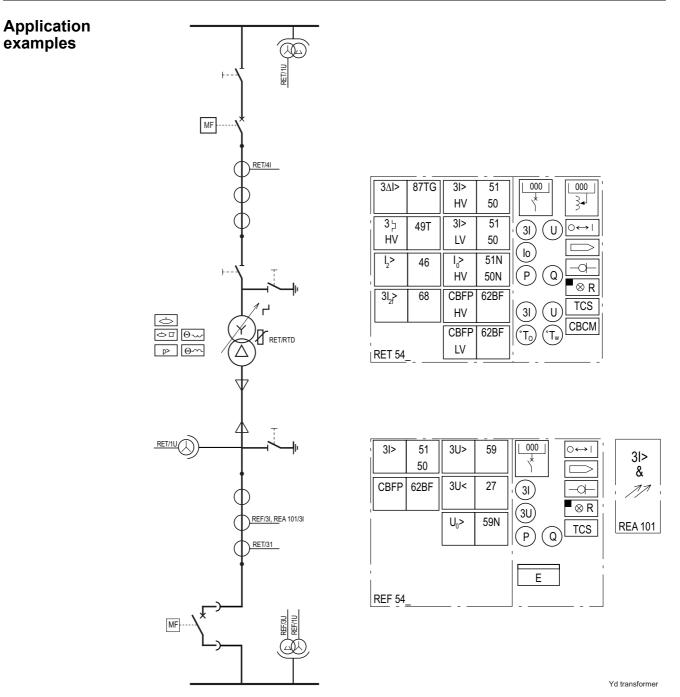
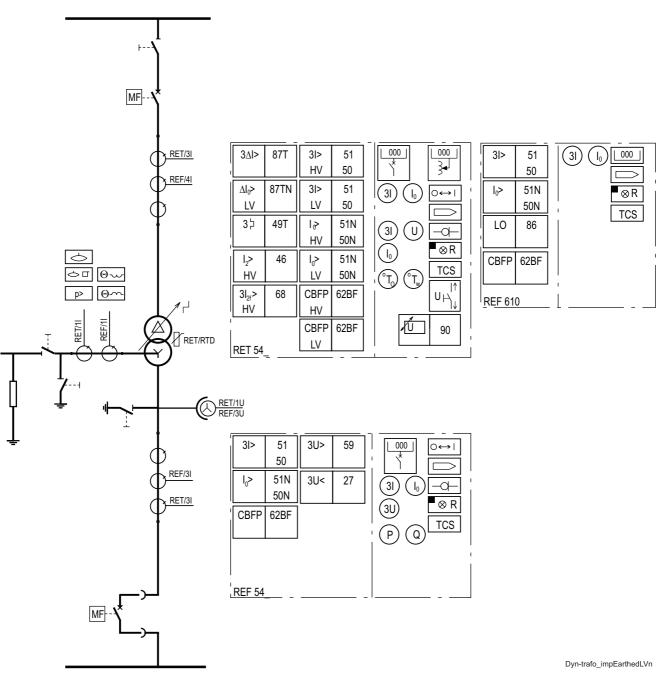



Fig. 6 Protection, control and supervision functions of a Yd-connected power transformer, implemented with RET 543 transformer terminal, REF543 feeder terminal and REA 101 arc protection. Position indication of the on-load tap changer is used to increase the sensitivity of the differential function of the transformer. In this example, the voltage controller is not included in the RET 543 transformer terminal.

- Fig. 7 Prote
 - Protection, control, measurement and supervision functions of an Dyn-connected power transformer, implemented with RET 543 transformer terminal and an REF 543 feeder terminal. The neutral point of the low-voltage network is earthed via a high impedance. REF 610 is used as a backup relay on the high-voltage side. This sceme can be applied also for parallel connected transformers.



Fig. 8 Protection, control, measurement and supervision functions of a YNd-connected power transformer, implemented with an RET 543 transformer terminal, REF 543 feeder terminals and REA 101 arc protection. The low-voltage network is earthed via a zig-zag earthing transformer.

1MRS755543

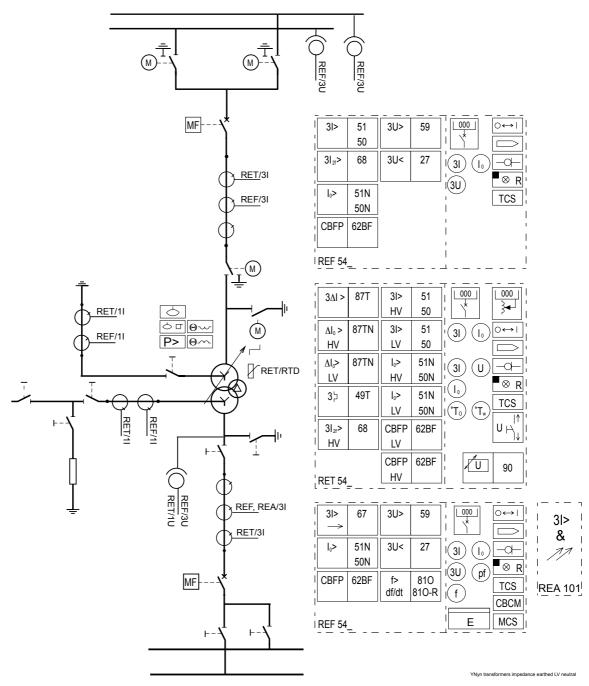
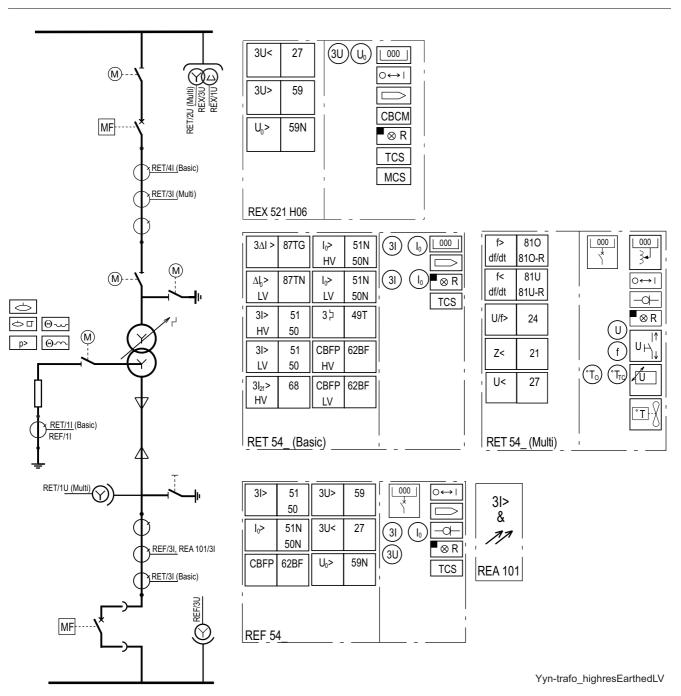



Fig. 9 Protection, control, measurement and supervision functions of YNyn-connected power transformers, implemented with RET 543 transformer terminals, REF 543 feeder terminals and REA 101 arc protection. The neutral point of the low-voltage network is earthed via a low resistance. The scheme is also applicable to other types of low-impedance earthed networks, where the neutral point is earthed effectively or via a low reactance. This sceme can be applied also for parallel connected transformers.

- Fig. 10
- Protection, control, measurement and supervision functions of an Yyn-connected industrial power transformer, implemented with RET 543 transformer terminals, an REF 543 feeder terminal, an REX 521 protection relay and REA 101 arc protection. The neutral point of the low-voltage network is earthed via a high resistance.

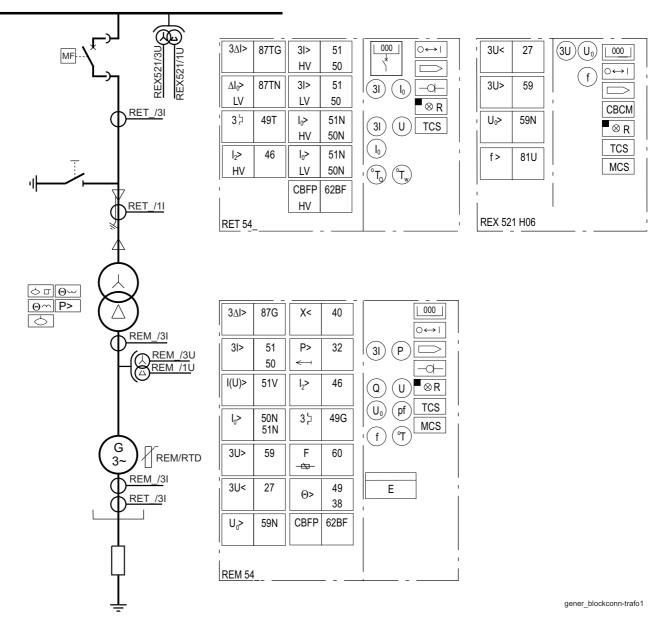


Fig. 11 Transformer in block connection with a generator. The transformer terminal RET 543 is used for overall differential protection. An earthing resistor is recommended for the generator. The REX 521 protection relay is used for abnormal voltage and frequency supervision and protection of the network and the machine.

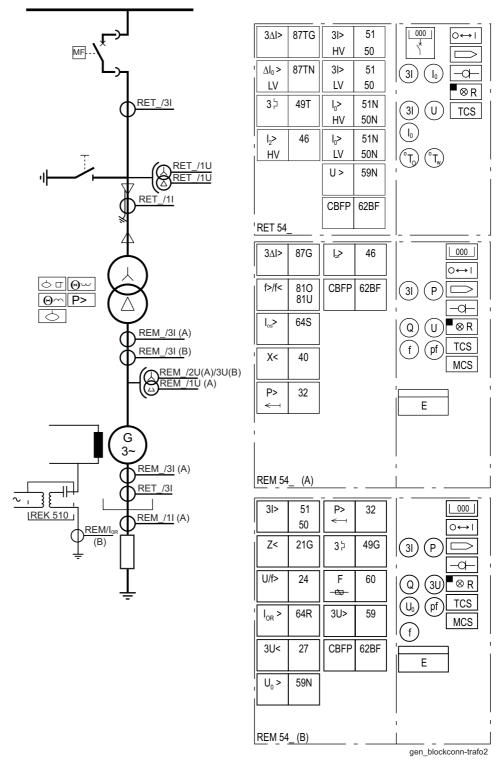


Fig. 12 Transformer in block connection with a generator. The transformer terminal RET 543 is used for overall differential protection. An earthing resistor is recommended for the generator. Generator protection functions are divided for two REM 543 machine terminals (A and B). The current injection device REK 510 is used in the rotor earth-fault protection scheme.

Transformer Terminal

RET 541, RET 543, RET 545

1	N	١R	S	75	5	54	43

31 >	50/51	 = multiple-stage three-phase overcurrent protection, double low-set, high-set and instantaneous stages available (NOC3_)
3 >	67	= multiple-stage three-phase directional overcurrent protection, low-set, high-set and instantaneous stage available (DOC6_)
I ₀ >	50N/51N	= multiple-stage earth-fault protection, low-set, high-set and instantaneous stage available (NEF1_)
l ₂ >	46	 negative phase sequence (NPS) protection, low-set and high-set stages available (NPS3_)
31 _{2f} >	68	= inrush detection based on the 2nd harmonic content of phase currents, applied for preventing possible unnecessary operation of overcurrent or earth-fault protection during transformer switching-in or to start cold load pick-up logic (Inrush3)
3∆ I >	87T	= three phase differential protection for transformers, stabilized and instantaneous stages (Diff3)
3∆ I >	87TG	= overall differential protection for generator and transformer blocks, stabilized and instantaneous stages (Diff6T)
Δl ₀ >	87TN	= restricted earth-fault (REF) protection, low- or high-impedance type (Diff3)
I(U)>	51V	= voltage-dependent overcurrent protection, low-set and high-set stages available (VOC6_)
۱ _{0S} >	64S	= stator earth-fault protection (NEF1_)
I _{0R} >	64R	= rotor earth-fault protection (NEF1_)
U/f	24	= overexcitation protection, low-set and high-set stages available (OE1_)
U <	27	= undervoltage protection, low-set and high-set stage available (UV3_)
3U <	27	= three-phase undervoltage protection, low-set and high-set stage available (UV3_)
3U >	59	= three-phase overvoltage protection, low-set and high-set stage available (OV3_)
U ₀ >	59N	= multiple-stage residual overvoltage protection, low-set, high-set and instantaneous stage available (ROV1_)
f >	81U	= overfrequency protection (incl. in Freq1St_)
f > df/dt	81U 81U-R	= overfrequency protection and frequency rate of change function (incl. in Freq1St_)
f < df/dt	810 810-R	= underfrequency protection and frequency rate of change function (incl. in Freq1St_)
f>/f<	810 81U	= over/underfrequency protection (incl. in Freq1St_)
3Þ	49G	= three-phase thermal overload protection for generator (TOL3Dev)
35	49T	= three-phase thermal overload protection for transformers (TOL3Dev)
Θ>	49 38	= thermal supervision for generator windings and bearings with RTDs (MEAI_)
CBFP	62BF	= circuit-breaker failure protection (included in all current-based short circuit and earth-fault protection function blocks)

Fig. 13 Symbol notations, part I

SYMNOT1_RET

RET 541, RET 543, RET 545 1MRS755543

Z< 21G	 underimpedance protection for generator, low-set and high-set stages (UI6)
3Z< 21	 = three-phase underimpedance protection, low-set and high-set stages (UI6)
X< 40	= underexcitation protection, low-set and high-set stages (UE6_)
P> 32	 underpower, low-forward power or reverse power protection, stages 1, 2 and 3 available (UPOW6St_)
F 60	= fuse failure supervision (FuseFail)
31 > & *	= arc protection with REA 101
MCS	= measuring circuit supervision
TCS	= trip circuit supervision
CBCM	= circuit-breaker condition monitoring
U 90V	= automatic voltage regulation (COLTC)
	= manual voltage regulation (COLTC)
P	= active power measurement, indication and supervision
Q	= reactive power measurement, indication and supervision
	= 3-phase current measurement, indication and supervision
3U	= 3-phase voltage or phase-to-phase voltage measurement, indication and supervision
f	= frequency measurement, indication and supervision
pf	= power factor measurement, indication and supervision
	= residual current measurement, indication and supervision
	= residual voltage measurement, indication and supervision

Fig. 14 Symbol notations, part II

- = phase voltage or phase-to-phase voltage measurement, indication and supervision
- = oil temperature measurement, indication and supervision
- = transformer winding temperature measurement, indication and supervision
- = tap changer temperature measurement, indication and supervision
- = ambient temperature measurement, indication and supervision
- = energy counter, forward or reverse active / reactive energy (MEPE7)
- = current waveform distortion measurement (PQCU3H)
- = voltage waveform distortion measurement (PQVU3H)
- = annunciating, event generating and value recording functions
- = disturbance recorder (MEDREC16)
- = digital value indication
- = HMI/MIMIC display
- = tap changer position display

O

- = local and remote control interface
- = bay-oriented interlocking logic

SYMNOT3_RET

Fig. 15 Symbol notations, part III

Application selection tables for RET 541, RET 543 and RET 545 functions

Table 30: Protection functions

Types of fault	IEEE Device No.	IEC Symbol	Protection function	Function block code
Differential protection	87T	3∆I>, 3∆I>>	Stabilized and instantaneous differential protection for transformers	Diff6T
Short circuit and overcurrent	51	3 >	Three-phase non- directional overcurrent, low-set stage	NOC3Low
	51	3 >	Three-phase non- directional overcurrent, low-set stage	NOC3LowB
	50/51/51B	3 >>	Three-phase non- directional overcurrent, high-set stage	NOC3High
	50/51B	3 >>>	Three-phase non- directional overcurrent, instantaneous stage	NOC3Inst
	67	3l>→	Three-phase directional o/c, low-set stage	DOC6Low
	67	3 >>→	Three-phase directional o/c, high-set stage	DOC6High
	67	3 >>>→	Three-phase directional o/c, instantaneous stage	DOC6Inst
Underimpedance	21	Z<	Three-phase underimpedance,low-set stage	UI6Low
	21	Z<<	Three-phase underimpedance, high- set stage	UI6High
Earth fault	51N	lo>/SEF	Non-directional earth- fault, low-set stage (or SEF = sensitive earth- fault protection)	NEF1Low
	50N/51N	10>>	Non-directional earth- fault, high-set stage	NEF1High
	50N	10>>>	Non-directional earth- fault, instantaneous stage	NEF1Inst
	67N/51N	lo>→/SEF	Directional earth-fault, low-set stage (or SEF = sensitive earth-fault protection)	DEF2Low
	67N	10>>→	Directional earth-fault, high-set stage	DEF2High
	67N	10>>>→	Directional earth-fault, instantaneous stage	DEF2Inst
	59N	Uo>	Residual overvoltage, low-set stage	ROV1Low
	59N	U0>>	Residual overvoltage, high-set stage	ROV1High
	59N	Uo>>>	Residual overvoltage, instantaneous stage	ROV1Inst
	87N	ΔΙο>	High-impedance based restricted earth-fault protection	REF1A

Table 30: Protection functions

Types of fault	IEEE Device No.	IEC Symbol	Protection function	Function block code
Earth-fault	87TN	ΔΙο>	Stabilized restricted earth-fault protection	REF4A
	87TN	∆lo>	Stabilized restricted earth-fault protection	REF4B
Overload	49M/49G/49T	3 -	Three-phase thermal protection for devices (motors, generators and transformers)	TOL3Dev
Negative phase- seguence	46	l ₂ >	Negative phase- seguence protection, low-set stage	NPS3Low
	46	I ₂ >>	Negative phase- seguence protection, high-set stage	NPS3High
Overvoltage/ undervoltage	59	3U>	Three-phase overvoltage, low-set stage	OV3Low
	59	3U>>	Three-phase overvoltage, high-set stage	OV3High
	27	3U<	Three-phase undervoltage, low-set stage	UV3Low
	27	3U<<	Three-phase undervoltage, high-set stage	UV3High
	27, 47, 59	U ₁ < U ₂ > U ₁ >	Phase-sequence voltage protection, stage 1	PSV3St1
	27, 47, 59	U ₁ < U ₂ > U ₁ >	Phase-sequence voltage protection, stage 2	PSV3St2
Overfrequency/ underfrequency	81U/81O	f, df/dt	Underfrequency or overfrequency, stage 1 (incl. rate of change)	Freq1St1
	81U/81O	f, df/dt	Underfrequency or overfrequency, stage 2 (incl. rate of change)	Freq1St2
	81U/81O	f, df/dt	Underfrequency or overfrequency, stage 3 (incl. rate of change)	Freq1St3
	81U/81O	f, df/dt	Underfrequency or overfrequency, stage 4 (incl. rate of change)	Freq1St4
	81U/81O	f, df/dt	Underfrequency or overfrequency, stage 5 (incl. rate of change)	Freq1St5
Overexcitation	24	U/f>	Overexcitation protection, low-set stage	OE1Low
	24	U/f>>	Overexcitation protection, high-set stage	OE1High
Additional func- tions	68	3l _{2f} >	Three-phase transformer inrush and motor start-up current detector	Inrush3
	60	FUSEF	Fuse failure supervision	FuseFail

Table 31: Measurement functions

Types of measurement	IEC Symbol	Measurement function	Function block code
General measurement/ analog input or analog output	mA/V/°C/Ω	General measurement/ analog input on RTD/analog module	MEAI18
	mA	Analog output on RTD/analog module	MEAO14
Current	31	Three-phase current measurement, stage A	MECU3A
	31	Three-phase current measurement, stage B	MECU3B
	lo	Neutral current measurement, stage A	MECU1A
	lo	Neutral current measurement, stage B	MECU1B
Voltage	3U	Three-phase voltage measurement, stage A	MEVO3A
	3U	Three-phase voltage measurement, stage B	MEVO3B
	Uo	Residual voltage measurement, stage A	MEVO1A
	Uo	Residual voltage measurement, stage B	MEVO1B
Energy / Power	E, P, Q, pf	Three-phase power and energy measurement	MEPE7
Frequency	f	System frequency measurement	MEFR1
Recording		Transient disturbance recorder	MEDREC16

Table 32: Control functions

Types of control	Symbol	Control function	Function block code
Circuit breaker	0 ↔ 1	Circuit breaker 1 (2 state inputs / 2 control outputs)	COCB1
	0 ↔ 1	Circuit breaker 2 (2 state inputs / 2 control outputs)	COCB2
	0 ↔ 1	Direct open for CBs via HMI	COCBDIR
Disconnector	0 ↔ 1	Disconnector 15 (2 state inputs / 2 control outputs)	CODC1CODC5
	0 ↔ 1	Three state disconnector 1 (3 state inputs/ 4 control outputs)	
	0 ↔ 1	Three-state disconnector 2 (3 state inputs/ 4 control outputs)	

Table 32: Control functions

Types of control	Symbol	Control function	Function block code
Other control functions		Object indication 18 (2 state inputs)	COIND1COIND8
		On/off switch 14 (1 output)	COSW1COSW4
		Logic control position selector	COLOCAT
		On-load tap changer controller (voltage regul.)	COLTC
		MIMIC dynamic data point 15	MMIDATA1MMIDATA5
		Alarm 18 (HMI, remote)	MMIALAR1MMIALAR8

Table 33: Condition monitoring functions

Types of condition monitoring	Symbol	Condition monitoring function	Function block code
Circuit breaker	CBCM	CB electric wear 1	CMBWEAR1
	CBCM	CB electric wear 2	CMBWEAR2
	СВСМ	Operate time counter 1 for used operate time (motors)	CMTIME1
	CBCM	Operate time counter 2 for used operate time (motors)	CMTIME2
	CBCM	Gas pressure monitoring	CMGAS1
	CBCM	Three-pole gas pressure monitoring	CMGAS3
	CBCM	Spring charging control 1	CMSPRC1
	CBCM	Breaker travel time 1	CMTRAV1
	CBCM	Scheduled maintenance	CMSCHED
Trip circuit	TCS	Trip Circuit Supervision 1	CMTCS1
	TCS	Trip Circuit Supervision 2	CMTCS2
Measuring circuit	MCS	Supervision function of the energizing current input circuit	CMCU3
	MCS	Supervision function of the energizing voltage input circuit	CMVO3

References

Additional information

Transformer Terminal RET 54_ Technical Reference Manual, General	1MRS755225	
Technical Descriptions of Functions	1MRS750889-MCD (CD-ROM only)	
Installation Manual	1MR 750526-MUM	
Operator's Manual	1MR 750500-MUM	
Technical Reference Manual RER 103	1MRS750532-MUM	
Technical Reference Manual RER 123	1MRS751143-MUM	
Protection & Control Terminals REF 54_, REM 54_, RET 54_ and REC 523 Configuration Guideline	1MRS750745-MUM	
Bus Connection Module RER 133 Technical Description	1MRS755163	

Echelon, LON and LonTalk are registered trademarks of Echelon Corporation.

All other product names or brands are trademarks, registered trademarks, or service marks of their respective owners.

ABB Oy Distribution Automation P.O. Box 699 FI-65101 Vaasa, FINLAND Tel +358 10 22 11 Fax +358 10 224 1094 www.abb.com/substationautomation